+. Conv-+-12-conv and . Maxpolling, × 3) + Dropout(0.3) ) + (24 filters + 24 filters + MaxPolling(3 × 3)+ Dropout(.5) ) + FullyCon64 + Dropout (.5) + SoftMax. Categorical cross-entropy as loss function and adaptive gradient

R. Achanta, « SLIC super pixels compared to state-of-the-art super pixel methods, 2012.

P. K. Agarwal, « Computing the Gromov-Hausdorff distance for metric trees, International Symposium on Algorithms and Computation, pp.529-540, 2015.

A. Agarwala, « Keyframe-based tracking for rotoscoping and animation, 2004.

J. Angulo and D. Jeulin, « Stochastic watershed segmentation, ISMM 1, pp.265-276, 2007.

J. Angulo, S. Velasco-forero, and J. Chanussot, « Multiscale stochastic watershed for unsupervised hyperspectral image segmentation, Geoscience and Remote Sensing Symposium, vol.3, p.93, 2009.

P. Arbelaez, « Contour detection and hierarchical image segmentation, vol.5, pp.898-916, 2011.

P. Arbelaez, « Boundary extraction in natural images using ultrametric contour maps, Computer Vision and Pattern Recognition Workshop, 2006. CVPRW'06. Conference on. IEEE, pp.182-182, 2006.

T. Asano, « Clustering algorithms based on minimum and maximum spanning trees, Proceedings of the fourth annual symposium on Computational geometry, pp.252-257, 1988.

X. Bai, « Video SnapCut: robust video object cutout using localized classifiers, ACM Transactions on Graphics, vol.28, 2009.

C. Ballester, V. Caselles, and P. Monasse, « The tree of shapes of an image, ESAIM: Control, Optimisation and Calculus of Variations 9, pp.1-18, 2003.

L. Bao, « Tree filtering: Efficient structure-preserving smoothing with a minimum spanning tree, IEEE Transactions on Image Processing, pp.555-569, 2014.

J. T. Barron and B. Poole, « The fast bilateral solver, European Conference on Computer Vision, pp.617-632, 2016.

S. Basu, I. Davidson, and K. Wagstaff, Constrained clustering: Advances in algorithms, theory, and applications, 2008.

S. Bell, K. Bala, and N. Snavely, « Intrinsic Images in the Wild, ACM Trans. on Graphics, pp.33-37, 2014.

R. Bellman, Dynamic Programming, 1957.

J. Benzécri, L'analyse des données, vol.2, 1973.

C. Berge, Graphs, vol.6, 1985.

P. Berkhin, « A survey of clustering data mining techniques, Grouping multidimensional data, pp.25-71, 2006.

K. B. Bernander, « Improving the stochastic watershed, Pattern Recognition Letters, vol.34, pp.993-1000, 2013.

S. Beucher, « Segmentation d'images et morphologie mathématique, 1990.

S. Beucher and F. Meyer, « The morphological approach to segmentation: the watershed transformation, Optical Engineering-New York-Marcel Dekker, pp.433-433, 1992.

O. Boruvka, « O jistém problému minimálním, Práce mor. p?írodov?d. spol. v Brn? III, vol.3, pp.37-58, 1926.

B. E. Boser, I. M. Guyon, and V. N. Vapnik, « A training algorithm for optimal margin classifiers, Proceedings of the fifth annual workshop on Computational learning theory, 1992.

Y. Boykov and V. Kolmogorov, « An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision, IEEE transactions, pp.1124-1137, 2004.

L. Breiman, « Random forests, Machine learning 45.1, pp.5-32, 2001.

J. Bricola, M. Bilodeau, and S. Beucher, « A multi-scale and morphological gradient preserving contrast, 14th International Congress for Stereology and Image Analysis, 2015.

S. Caelles, « One-Shot Video Object Segmentation, Computer Vision and Pattern Recognition (CVPR), 2017.

F. Cao, P. Musé, and F. Sur, « Extracting meaningful curves from images, Journal of Mathematical Imaging and Vision, vol.22, pp.159-181, 2005.

G. Carlsson and F. Mémoli, « Characterization, stability and convergence of hierarchical clustering methods, Journal of machine learning research 11.Apr, pp.1425-1470, 2010.

F. Cayley and . Lvii, On the mathematical theory of isomers, The London, vol.47, pp.444-447, 1874.

T. Chan and W. Zhu, « Level set based shape prior segmentation, vol.2, pp.1164-1170, 2005.

C. Chang, Hyperspectral imaging: techniques for spectral detection and classification, vol.1, 2003.

J. Chang, D. Wei, and J. W. Iii, « A Video Representation Using Temporal Superpixels, 2013.

F. Chen and H. Yu, « Deep learning shape priors for object segmentation, pp.1870-1877, 2013.

J. Chen, S. Paris, and F. Durand, « Real-time edge-aware image processing with the bilateral grid, ACM Trans. Graph, vol.26, p.103, 2007.

Y. Chen and D. Dai, « Scale-Aware Alignment of Hierarchical Image Segmentation, pp.0-0, 2016.

Y. Chuang, « Video matting of complex scenes, 2002.

M. Cimpoi, « Describing textures in the wild, Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on. IEEE, pp.3606-3613, 2014.

D. Comaniciu and P. Meer, « Mean shift: A robust approach toward feature space analysis, vol.5, pp.603-619, 2002.

C. Cortes and V. Vapnik, « Support-vector networks, Machine learning 20.3, pp.273-297, 1995.

C. Couprie, « Power watershed: A unifying graph-based optimization framework, vol.7, pp.1384-1399, 2011.

J. Cousty, « Hierarchical segmentations with graphs: quasi-flat zones, minimum spanning trees, and saliency maps, Journal of Mathematical Imaging and Vision, 2017.

M. A. Cox and T. F. Cox, « Multidimensional scaling, Handbook of data visualization, pp.315-347, 2008.

J. Crespo, « The flat zone approach: a general low-level region merging segmentation method, Signal Processing, vol.62, pp.37-60, 1997.

G. Csurka, « Visual categorization with bags of keypoints, Workshop on Statistical Learning in Computer Vision, ECCV, pp.1-22, 2004.

N. Dalal and B. Triggs, « Histograms of oriented gradients for human detection, Computer Vision and Pattern Recognition, vol.1, pp.886-893, 2005.

S. Dasgupta, « A cost function for similarity-based hierarchical clustering, Proceedings of the forty-eighth annual ACM symposium on Theory of Computing, pp.118-127, 2016.

I. Davidson and S. Ravi, « Agglomerative hierarchical clustering with constraints: Theoretical and empirical results, European Conference on Principles of Data Mining and Knowledge Discovery, pp.59-70, 2005.

A. P. Dempster, N. M. Laird, and D. B. Rubin, « Maximum likelihood from incomplete data via the EM algorithm, Journal of the royal statistical society. Series B, pp.1-38, 1977.

J. Deng, « ImageNet: A Large-Scale Hierarchical Image Database, 2009.

E. W. Dijkstra, « A note on two problems in connexion with graphs, Numerische mathematik 1.1, pp.269-271, 1959.

S. Drouyer, « Sparse stereo disparity map densification using hierarchical image segmentation, International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing, pp.172-184, 2017.

L. Euler, « Solutio problematis ad geometriam situs pertinentis, Commentarii Academiae Scientiarum Imperialis Petropolitanae, vol.8, pp.128-140, 1736.

Q. Fan, « JumpCut: Non-Successive Mask Transfer and Interpolation for Video Cutout, 2015.

P. Fankhauser, « Kinect v2 for mobile robot navigation: Evaluation and modeling, Advanced Robotics (ICAR), 2015 International Conference on. IEEE, pp.388-394, 2015.

J. Felsenstein, Inferring phylogenies, vol.2, 2014.

P. F. Felzenszwalb and D. P. Huttenlocher, « Efficient graph-based image segmentation, vol.2, pp.167-181, 2004.

M. A. Fischler and R. C. Bolles, « Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography, Readings in computer vision, pp.726-740, 1987.

E. W. Forgy, « Cluster analysis of multivariate data: Efficiency vs. interpretability of classifications, biometrics 21, pp.768-769, 1965.

G. Franchi and J. Angulo, « Bagging stochastic watershed on natural color image segmentation, International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing, pp.422-433, 2015.

K. Fukushima, « Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position, Biological cybernetics, 1980.

C. Gomila, « Mise en correspondance de partitions en vue du suivi d'objets, 2001.

C. Gomila and F. Meyer, « Graph-based object tracking, Proceedings. 2003 International Conference on, vol.2, p.41, 2003.

M. Gondran, « Path algebra and algorithms, Combinatorial programming: methods and applications, pp.137-148, 1975.

M. Gondran, M. Minoux, and S. Vajda, Graphs and Algorithms, 1984.
URL : https://hal.archives-ouvertes.fr/hal-01304880

I. J. Goodfellow, J. Shlens, and C. Szegedy, « Explaining and harnessing adversarial examples, 2014.

M. Grimaud, « New measure of contrast: the dynamics, San Diego'92. International Society for Optics and Photonics, pp.292-305, 1992.

M. Gromov, J. Lafontaine, and P. Pansu, Structures métriques pour les variétés riemanniennes. Cedic, 1981.

M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, 2007.

M. Grundmann, « Efficient hierarchical graph-based video segmentation, 2010.

L. Gueguen, S. Velasco-forero, and P. Soille, « Local Mutual Information for DissimilarityBased Image Segmentation, pp.1-20, 2013.

L. Guigues, J. P. Cocquerez, and H. Le-men, « Scale-sets image analysis, vol.3, pp.289-317, 2006.

L. Hagen and A. B. Kahng, « New spectral methods for ratio cut partitioning and clustering, IEEE transactions, pp.1074-1085, 1992.

H. He and E. A. Garcia, « Learning from imbalanced data, IEEE Transactions on knowledge and data engineering, vol.21, pp.1263-1284, 2009.

H. He and Y. Ma, Imbalanced learning: foundations, algorithms, and applications, 2013.

K. He and X. Zhang, « Deep residual learning for image recognition, 2016.

K. A. Heller, « One class support vector machines for detecting anomalous windows registry accesses, Proceedings of the workshop on Data Mining for Computer Security, vol.9, 2003.

G. E. Hinton and S. T. Roweis, « Stochastic neighbor embedding, Advances in neural information processing systems, pp.857-864, 2003.

H. Hotelling, « Analysis of a complex of statistical variables into principal components, » In: Journal of educational psychology, vol.24, p.417, 1933.

T. Hu, « The Maximum Capacity Route Problem, Operations Research, pp.898-900, 1961.

D. Hubel and T. Wiesel, « Receptive fields and functional architecture of monkey striate cortex, The Journal of physiology, 1968.

P. T. Inc, Collaborative data science, 2015.

A. K. Jain, M. N. Murty, and P. J. Flynn, « Data clustering: a review, ACM computing surveys (CSUR) 31.3, pp.264-323, 1999.

V. Jampani, R. Gadde, and P. V. Gehler, « Video Propagation Networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.451-461, 2017.

V. Jarnik, O jistém problému minimálním.(Z dopisu panu O. Boruvkovi), 1930.

D. Jeulin, « Dead leaves models: From space tessellation to random functions, Advances in Theory and Applications of Random Sets, pp.137-156, 1997.

D. Jeulin, « Morphological probabilistic hierarchies for texture segmentation, Mathematical Morphology-Theory and Applications, vol.1, issue.1, 2016.

L. Kaufman and P. J. Rousseeuw, Finding groups in data: an introduction to cluster analysis, vol.344, 2009.

B. R. Kiran and J. Serra, « Global-local optimizations by hierarchical cuts and climbing energies, Pattern Recognition 47.1, pp.12-24, 2014.

B. R. Kiran and J. Serra, « Global-local optimizations by hierarchical cuts and climbing energies, Pattern Recognition 47.1, pp.12-24, 2014.

G. Kirchoff, « Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung det linearen Verteilung galvanischer Ströme gefurht wird, Annalen der Physik u. Chemie, pp.497-508, 1847.

J. M. Kleinberg, « An impossibility theorem for clustering, Advances in neural information processing systems, pp.463-470, 2003.

A. Krizhevsky, I. Sutskever, and G. Hinton, Imagenet classification with deep convolutional neural networks ». In: NIPS, 2012.

J. B. Kruskal, « On the shortest spanning subtree of a graph and the traveling salesman problem, Proceedings of the American Mathematical society, pp.48-50, 1956.

C. Lampert, M. Blaschko, and T. Hofmann, « Beyond Sliding Windows: Object Localization by Efficient Subwindow Search, pp.1-8, 2008.

M. Lang, « Practical temporal consistency for image-based graphics applications, ACM Transactions on Graphics, vol.31, 2012.

C. Lantuéjoul and S. Beucher, « On the use of the geodesic metric in image analysis, Journal of Microscopy, vol.121, pp.39-49, 1981.

B. Lecun and B. Denker, « Handwritten digit recognition with a backpropagation network, 1990.

Y. Lecun and L. Bottou, « Gradient-based learning applied to document recognition, Proceedings of the IEEE 86, vol.11, pp.2278-2324, 1998.

J. A. Lee and M. Verleysen, Nonlinear dimensionality reduction, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01517215

R. Lerallut, « Modelization and Interpretation of Images using Graphs, 2006.

A. Levinshtein, « Turbopixels: Fast superpixels using geometric flows, IEEE transactions, vol.12, pp.2290-2297, 2009.

Y. Li, « Video object cut and paste, ACM Transactions on Graphics, vol.24, pp.595-600, 2005.

T. Lin, « Microsoft coco: Common objects in context, pp.740-755, 2014.

C. V. Linné and L. Salvius, Systema naturae per regna tria naturae :secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Holmiae :Impensis Direct. Laurentii Salvii, p.881, 1758.

Z. Liu, « Co-saliency detection based on hierarchical segmentation, IEEE Signal Processing Letters, vol.21, pp.88-92, 2014.

J. Long, E. Shelhamer, and T. Darrell, « Fully convolutional networks for semantic segmentation, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.3431-3440, 2015.

D. G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, pp.91-110, 2004.

L. V. Maaten and G. Hinton, Journal of machine learning research 9, pp.2579-2605, 2008.

V. Machairas, « Waterpixels, pp.3707-3716, 2015.

J. Mairal, F. Bach, and J. Ponce, « Task-driven dictionary learning, IEEE transactions, pp.791-804, 2012.

J. Malik, « Contour and texture analysis for image segmentation, International journal of computer vision, vol.43, pp.7-27, 2001.

F. Malmberg, C. L. Hendriks, and R. Strand, « Exact evaluation of targeted stochastic watershed cuts, Discrete Applied Mathematics, vol.216, pp.449-460, 2017.

L. M. Manevitz and M. Yousef, « One-class SVMs for document classification, Journal of machine Learning research 2.Dec, pp.139-154, 2001.

B. Marcotegui, « A video object generation tool allowing friendly user interaction, ICIP 99. Proceedings. 1999 International Conference on, vol.2, pp.391-395, 1999.

G. Marcus, Deep Learning: A Critical Appraisal ». In: arXiv preprint, 2018.

N. Marki, « Bilateral Space Video Segmentation, 2016.

G. Matheron, « Les nivellements, Tech. Rep. Ecole des Mines de Paris, 1997.

G. Matheron, Random sets and integral geometry, 1975.

W. Mcculloch and W. Pitts, « A logical calculus of the ideas immanent in nervous activity, Bulletin of Mathematical Biophysics, 1943.

G. Mclachlan and T. Krishnan, The EM algorithm and extensions, vol.382, 2007.

F. Mémoli and G. Sapiro, « Comparing point clouds, ACM SIGGRAPH symposium on Geometry processing, pp.32-40, 2004.

F. Meyer and S. Beucher, « Morphological segmentation, Journal of visual communication and image representation 1.1, pp.21-46, 1990.

F. Meyer, « Minimum spanning forests for morphological segmentation, Mathematical morphology and its applications to image processing, pp.77-84, 1994.

, « Topographic distance and watershed lines, Signal processing, vol.38, pp.113-125, 1994.

, « The levelings, pp.199-206, 1998.

, « Grey-weighted, ultrametric and lexicographic distances, Mathematical Morphology: 40 Years On, pp.289-298, 2005.

, « Adjunctions on the lattice of dendrograms, International Workshop on GraphBased Representations in Pattern Recognition, pp.91-100, 2013.

F. Meyer, « Flooding edge or node weighted graphs, International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing, pp.341-352, 2013.

, « Flooding Edge Weighted Graphs, International Workshop on Graph-Based Representations in Pattern Recognition, pp.31-40, 2013.

, « Watersheds on weighted graphs, Pattern Recognition Letters, vol.47, pp.72-79, 2014.

, « The waterfall hierarchy on weighted graphs, International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing, pp.325-336, 2015.

F. Meyer and R. Lerallut, « Morphological operators for flooding, leveling and filtering images using graphs, International Workshop on Graph-Based Representations in Pattern Recognition, pp.158-167, 2007.

F. Meyer and J. Stawiaski, « A stochastic evaluation of the contour strength, Joint Pattern Recognition Symposium, pp.513-522, 2010.

K. Mikolajczyk and C. Schmid, « A performance evaluation of local descriptors, IEEE transactions on pattern analysis and machine intelligence 27, vol.10, pp.1615-1630, 2005.

V. Mnih, « Human-level control through deep reinforcement learning, Nature 518, vol.7540, p.529, 2015.

P. Monasse and F. Guichard, « Fast computation of a contrast-invariant image representation, IEEE Transactions on Image Processing, vol.9, pp.860-872, 2000.

D. Mumford and J. Shah, « Optimal approximations by piecewise smooth functions and associated variational problems, Communications on pure and applied mathematics 42, vol.5, pp.577-685, 1989.

L. Najman and M. Schmitt, « Geodesic saliency of watershed contours and hierarchical segmentation, IEEE Transactions, vol.12, pp.1163-1173, 1996.

M. Naumov and T. Moon, Parallel Spectral Graph Partitioning, pp.2016-2017, 2016.

J. Ne?etril and H. Ne?etrilová, « The Origins of Minimal Spanning Tree AlgorithmsBoruvka and Jarn?k, 2010.

A. Y. Ng, M. I. Jordan, and Y. Weiss, « On spectral clustering: Analysis and an algorithm, Advances in neural information processing systems, pp.849-856, 2002.

A. Nguyen, J. Yosinski, and J. Clune, Deep neural networks are easily fooled: High confidence predictions for unrecognizable images, pp.427-436, 2015.

M. Niepert, M. Ahmed, and K. Kutzkov, « Learning convolutional neural networks for graphs, International conference on machine learning, pp.2014-2023, 2016.

M. Oquab, « Is object localization for free? Weakly-supervised learning with convolutional neural networks, vol.8, pp.1533-1548, 2012.

A. Pardo, « Semantic image segmentation using morphological tools, Proceedings. 2002 International Conference on, vol.2, pp.II-II, 2002.

F. Perazzi and J. Pont-tuset, « A Benchmark Dataset and Evaluation Methodology for Video Object Segmentation, Computer Vision and Pattern Recognition, 2016.

F. Perazzi and O. Wang, « Fully Connected Object Proposals for Video Segmentation, 2015.

F. Perazzi and A. Khoreva, « Learning Video Object Segmentation From Static Images, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.2663-2672, 2017.

F. Pérez and B. E. Granger, « IPython: a System for Interactive Scientific Computing, Computing in Science and Engineering, vol.9, pp.21-29, 2007.

B. Perret, « Evaluation of hierarchical watersheds, IEEE Transactions on Image Processing, vol.27, pp.1676-1688, 2018.

X. Pitkow, « Exact feature probabilities in images with occlusion, Journal of vision, vol.10, pp.42-42, 2010.

T. Pock, « An algorithm for minimizing the Mumford-Shah functional, IEEE 12th International Conference on. IEEE, pp.1133-1140, 2009.

B. L. Price, B. S. Morse, and S. Cohen, « LIVEcut: Learning based interactive video segmentation by evaluation of multiple propagated cues, 2009.

R. C. Prim, « Shortest connection networks and some generalizations, Bell Labs Technical Journal, vol.36, issue.6, pp.1389-1401, 1957.

S. A. Ramakanth and R. V. Babu, « SeamSeg: Video Object Segmentation Using Patch Seams, 2014.

J. Redmon, « You only look once: Unified, real-time object detection, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.779-788, 2016.

Z. Ren and G. Shakhnarovich, « Image segmentation by cascaded region agglomeration, pp.2011-2018, 2013.

J. Rivest, P. Soille, and S. Beucher, « Morphological gradients, SPIE/IS&T 1992 Symposium on Electronic Imaging: Science and Technology. International Society for Optics and Photonics, pp.139-150, 1992.

C. Ronse, « Adjunctions on the lattices of partitions and of partial partitions, Applicable Algebra in Engineering, Communication and Computing 21, vol.5, pp.343-396, 2010.

E. Rosten and T. Drummond, « Machine learning for high-speed corner detection, pp.430-443, 2006.

A. Saglam and N. A. Baykan, « Sequential image segmentation based on minimum spanning tree representation, Pattern Recognition Letters, vol.87, pp.155-162, 2017.

. References, P. Salembier, and L. Garrido, « Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval, vol.4, pp.561-576, 2000.

P. Salembier, A. Oliveras, and L. Garrido, « Antiextensive connected operators for image and sequence processing, IEEE Transactions on Image Processing, pp.555-570, 1998.

D. Santana-maia, « Evaluation of Combinations of Watershed Hierarchies, Mathematical Morphology and Its Applications to Signal and Image Processing: 13th International Symposium, pp.133-145, 2017.

A. Santoro, « A simple neural network module for relational reasoning, Advances in neural information processing systems, pp.4974-4983, 2017.

D. Scharstein, « High-resolution stereo datasets with subpixel-accurate ground truth, German Conference on Pattern Recognition, pp.31-42, 2014.

P. Sermanet, « OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks, 2013.

J. Serra, C. Vachier, and F. Meyer, Mathematical Morphology: From Theory to Applications (, pp.199-228

J. Shi and J. Malik, « Normalized cuts and image segmentation, IEEE Transactions, pp.888-905, 2000.

L. Sifre and S. Mallat, « Rotation, scaling and deformation invariant scattering for texture discrimination, Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on. IEEE, pp.1233-1240, 2013.

K. Simonyan and A. Zisserman, « Very Deep Convolutional Networks for Large-Scale Image Recognition, 2014.

K. Simonyan and K. Zisserman, « Very deep convolutional networks for large-scale image recognition, 2015.

A. K. Sinop and L. Grady, « A seeded image segmentation framework unifying graph cuts and random walker which yields a new algorithm, IEEE 11th International Conference on. IEEE, pp.1-8, 2007.

. Smil, Simple Morphological Image Library, 2015.

P. Soille, « Preventing chaining through transitions while favouring it within homogeneous regions, International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing, pp.96-107, 2011.

J. Stawiaski, « Optimal path: Theory and models for vessel segmentation, International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing, pp.417-428, 2011.

J. Stawiaski and F. Meyer, « Minimum spanning tree adaptive image filtering, 16th IEEE International Conference on. IEEE, pp.2245-2248, 2009.

B. Su, S. Lu, and C. L. Tan, « Blurred Image Region Detection and Classification, ACM International Conference on Multimedia. MM '11, pp.1397-1400, 2011.

J. Sylvester, « Chemistry and Algebra, Nature, vol.17, p.284, 1878.

C. Szegedy, « Going deeper with convolutions, 2015.

C. Tomasi and R. Manduchi, « Bilateral filtering for gray and color images, Sixth International Conference on. IEEE, pp.839-846, 1998.

W. S. Torgerson, « Multidimensional scaling: I. Theory and method, Psychometrika 17, vol.4, pp.401-419, 1952.

C. Vachier and F. Meyer, « Extinction value: a new measurement of persistence, Proceedings of the IEEE Workshop on Non Linear Signal/Image Processing, pp.254-257, 1995.

O. Veksler, « Star shape prior for graph-cut image segmentation, pp.454-467, 2008.

L. Vincent, « Morphological grayscale reconstruction in image analysis: applications and efficient algorithms, IEEE transactions on image processing, pp.176-201, 1993.

P. Viola and M. Jones, « Rapid object detection using a boosted cascade of simple features, pp.511-518, 2001.

V. Luxburg and U. , « A tutorial on spectral clustering, Statistics and computing, vol.17, pp.395-416, 2007.

G. Wang, C. Zhang, and J. Zhuang, « Clustering with Prim's sequential representation of minimum spanning tree, Applied Mathematics and Computation, vol.247, pp.521-534, 2014.

J. Wang and Y. Jia, « Normalized tree partitioning for image segmentation, Computer Vision and Pattern Recognition, pp.1-8, 2008.

C. Xu and J. Corso, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2012.

Y. Xu and E. Carlinet, « Hierarchical Segmentation Using Tree-Based Shape Space, pp.1-1, 2016.

Y. Xu, V. Olman, and D. Xu, « Minimum spanning trees for gene expression data clustering, Genome Informatics, vol.12, pp.24-33, 2001.

Y. Xu and E. C. Uberbacher, « 2D image segmentation using minimum spanning trees, Image and Vision Computing, vol.15, pp.47-57, 1997.

Y. Xu, T. Géraud, and L. Najman, « Hierarchical image simplification and segmentation based on Mumford-Shah-salient level line selection, Pattern Recognition Letters, 2016.

Z. Yan and X. S. Zhou, How intelligent are convolutional neural networks? » In: arXiv preprint, 2017.

J. Yosinski, How transferable are features in deep neural networks? » In: Advances in neural information processing systems, pp.3320-3328, 2014.

Y. Yu, C. Fang, and Z. Liao, « Piecewise Flat Embedding for Image Segmentation, pp.1368-1376, 2015.

R. B. References-zadeh and S. Ben-david, « A uniqueness theorem for clustering, Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence, pp.639-646, 2009.

C. T. Zahn, « Graph-theoretical methods for detecting and describing gestalt clusters, IEEE Transactions on computers, vol.100, pp.68-86, 1971.

F. Zanoguera, B. Marcotegui, and F. Meyer, « A toolbox for interactive segmentation based on nested partitions, ICIP 99. Proceedings. 1999 International Conference on, vol.1, pp.21-25, 1999.
DOI : 10.1109/icip.1999.821556

URL : http://cmm.ensmp.fr/~marcoteg/momusys/vogue/papers/icip_spatialseg_paper.pdf

M. F. Zanoguera, « Segmentation interactive d'images fixes et de séquences vidéo basée sur des hiérarchies de partitions, 2001.

S. Zheng, Proceedings of the IEEE International Conference on Computer Vision, pp.1529-1537, 2015.

H. Zhou, Y. Yuan, and C. Shi, « Object tracking using SIFT features and mean shift, Computer vision and image understanding 113, vol.3, pp.345-352, 2009.
DOI : 10.1016/j.cviu.2008.08.006

J. Zhu, « 1-norm support vector machines, Advances in NIPS, pp.49-56, 2004.

D. Zoran and Y. Weiss, « Natural images, Gaussian mixtures and dead leaves, Advances in NIPS, pp.1736-1744, 2012.

A. Fehri, S. Velasco-forero, and F. Meyer, « Automatic Selection of Stochastic Watershed Hierarchies, 24th European Signal Processing Conference. IEEE, pp.1877-1881, 2016.
DOI : 10.1109/eusipco.2016.7760574

URL : http://arxiv.org/pdf/1609.02715

, « Prior-based Hierarchical Segmentation Highlighting Structures of Interest, International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing, pp.146-158, 2017.

, « Segmentation hiérarchique faiblement supervisée, Actes du 26e Colloque GRETSI, 2017.

, « Characterizing Images by the Gromov-Hausdorff Distances Between Derived Hierarchies