W. Zhao, L. Denis, C. A. Deledalle, H. Ma??trema??tre, J. Nicolas et al., Ratiobased multi-temporal SAR images denoising, IEEE Transactions on Geoscience and Remote Sensing, 2019.

H. Fan, W. Gu, W. Zhao, and L. Lu, Long time series mining subsidence monitoring in a wide area with an accumulative DInSAR method : A case study in Fengfeng coalfield in China, Computer Modeling in Engineering & Sciences, 2018.

W. Zhao, C. A. Deledalle, L. Denis, H. Ma??trema??tre, J. Nicolas et al., RA-BASAR : A FAST RATIO BASED MULTI-TEMPORAL SAR DESPECKLING. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2018.

S. Lobry, L. Denis, F. W. Tupin, and . Zhao, Décomposition de séries temporelles dimages SAR pour la détection de changement, 2017.

W. Zhao, S. Lobry, H. Ma??trema??tre, J. Nicolas, and F. Tupin, Urban area change detection based on generalized likelihood ratio test. 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp), vol.152, 2017.

R. Abergel, L. Denis, S. Ladjal, and F. Tupin, Subpixellic methods for sidelobes suppression and strong targets extraction in single look complex SAR images, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.11, issue.3, pp.759-776, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01570857

A. Abuelgasim, W. Ross, S. Gopal, and C. Woodcock, Change detection using adaptive fuzzy neural networks: environmental damage assessment after the Gulf War, Remote Sensing of Environment, vol.70, issue.2, pp.208-223, 1999.

B. Aiazzi, L. Alparone, and S. Baronti, Multiresolution local-statistics speckle filtering based on a ratio Laplacian pyramid, IEEE Transactions on Geoscience and Remote Sensing, vol.36, issue.5, pp.1466-1476, 1998.

B. Aiazzi, L. Alparone, S. Baronti, A. Garzelli, and C. Zoppetti, Nonparametric change detection in multitemporal SAR images based on mean-shift clustering, IEEE Transactions on Geoscience and Remote Sensing, vol.51, issue.4, pp.2022-2031, 2013.

V. Akbari, S. Anfinsen, A. Doulgeris, T. Eltoft, G. Moser et al., Polarimetric SAR Change Detection With the Complex Hotelling-Lawley Trace Statistic, IEEE Transactions on Geoscience and Remote Sensing, vol.54, issue.7, pp.3953-3966, 2016.

L. Alparone, S. Baronti, R. Carl, and C. Puglisi, An adaptive order-statistics filter for SAR images, International journal of remote sensing, vol.17, issue.7, pp.1357-1365, 1996.

S. Aminikhanghahi and D. Cook, A survey of methods for time series change point detection. Knowledge and information systems, vol.51, pp.339-367, 2017.

D. Amitrano, F. Cecinati, G. D. Martino, A. Iodice, P. Mathieu et al., An end-user-oriented framework for rgb representation of multitemporal sar images and visual data mining. In Image and Signal Processing for Remote Sensing XXII, International Society for Optics and Photonics, vol.10004, p.100040, 2016.

T. Anderson and E. Mathématicien, An introduction to multivariate statistical analysis, vol.2, 1958.

S. Anfinsen, A. Doulgeris, and T. Eltoft, Estimation of the equivalent number of looks in polarimetric Synthetic Aperture Radar imagery, IEEE Transactions on Geoscience and Remote Sensing, vol.47, issue.11, pp.3795-3809, 2009.

F. Argenti and L. Alparone, Speckle removal from SAR images in the undecimated wavelet domain, IEEE Transactions on Geoscience and Remote Sensing, vol.40, issue.11, pp.2363-2374, 2002.

F. Argenti, A. Lapini, T. Bianchi, and L. Alparone, A tutorial on speckle reduction in Synthetic Aperture Radar images. IEEE Geoscience and remote sensing magazine, vol.1, pp.6-35, 2013.

V. Arsigny, P. Fillard, X. Pennec, and N. Ayache, Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magnetic resonance in medicine, vol.56, pp.411-421, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00502678

M. Aulard-macler, Sentinel-1 Product Definition, MDA Technical Note Ref, 2012.

N. Baghdadi and M. Zribi, Land Surface Remote Sensing in Agriculture and Forest, 2016.

M. Basseville and I. V. Nikiforov, Detection of abrupt changes: theory and application, vol.104, 1993.
URL : https://hal.archives-ouvertes.fr/hal-00008518

Y. Bazi, L. Bruzzone, and F. Melgani, An unsupervied approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images, IEEE Transactions on Geoscience and Remote Sensing, vol.43, issue.4, pp.2972-2982, 2005.

Y. Bazi, L. Bruzzone, and F. Melgani, An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images, IEEE Transactions on Geoscience and Remote Sensing, vol.43, issue.4, pp.874-887, 2005.

M. Ben-salah, A. Mitiche, and I. B. Ayed, Multiregion image segmentation by parametric kernel graph cuts, IEEE Transactions on Image Processing, vol.20, issue.2, pp.545-557, 2011.

J. Berger, T. Patel, D. Shin, J. Piltz, and R. Stone, Computerized stereochronoscopy and alternation flicker to detect optic nerve head contour change, Ophthalmology, vol.107, issue.7, pp.1316-1320, 2000.
DOI : 10.1016/s0161-6420(00)00157-3

D. Bickel, SAR image effects on coherence and coherence estimation, Sandia National Laboratories Report, pp.2014-0369, 2014.

J. M. Bioucas-dias and M. A. Figueiredo, Multiplicative noise removal using variable splitting and constrained optimization, IEEE Transactions on Image Processing, vol.19, issue.7, pp.1720-1730, 2010.
DOI : 10.1109/tip.2010.2045029

URL : http://arxiv.org/pdf/0912.1845

F. Bovolo and L. Bruzzone, A detail-preserving scale-driven approach to change detection in multitemporal SAR images, IEEE Transactions on Geoscience and Remote Sensing, vol.43, issue.12, pp.2963-2972, 2005.

F. Bovolo and L. Bruzzone, The time variable in data fusion: A change detection perspective, IEEE Geoscience and Remote Sensing Magazine, vol.3, issue.3, pp.8-26, 2015.

G. Brigot, E. Colin-koeniguer, A. Plyer, and F. Janez, Adaptation and evaluation of an optical flow method applied to coregistration of forest remote sensing images, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.9, issue.7, pp.2923-2939, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01403019

D. Brunner, G. Lemoine, and L. Bruzzone, Earthquake damage assessment of buildings using VHR optical and SAR imagery, IEEE Transactions on Geoscience and Remote Sensing, vol.48, issue.5, pp.2403-2420, 2010.

L. Bruzzone, Multitemporal analysis. 6th ESA advanced training course on land remote sensing, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00729089

. Ltc2015_bruzzone and . Pdf,

L. Bruzzone and F. Bovolo, A novel framework for the design of change-detection systems for very-high-resolution remote sensing images, Proceedings of the IEEE, vol.101, issue.3, pp.609-630, 2013.

L. Bruzzone and D. F. Prieto, Automatic analysis of the difference image for unsupervised change detection, IEEE Transactions on Geoscience and Remote sensing, vol.38, issue.3, pp.1171-1182, 2000.

A. Buades, B. Coll, and J. Morel, A non-local algorithm for image denoising, Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol.2, pp.60-65, 2005.

G. Camps-valls, L. Gómez-chova, J. Marí, J. Rojo-´-alvarez, and M. Martínez-ramón, Kernel-based framework for multitemporal and multisource remote sensing data classification and change detection, IEEE Transactions on Geoscience and Remote Sensing, vol.46, issue.6, pp.1822-1835, 2008.

N. Casagli, V. Tofani, S. Morelli, W. Frodella, A. Ciampalini et al., Remote sensing techniques in landslide mapping and monitoring, keynote lecture, Workshop on World Landslide Forum, pp.1-19, 2017.

M. Cha, R. Phillips, P. Wolfe, and C. Richmond, Two-stage change detection for synthetic aperture radar, IEEE Transactions on Geoscience and Remote sensing, vol.53, issue.12, pp.6547-6560, 2015.

H. Chen, M. Arora, and P. Varshney, Mutual information-based image registration for remote sensing data, International Journal of Remote Sensing, vol.24, issue.18, pp.3701-3706, 2003.

G. Chierchia, D. Cozzolino, G. Poggi, and L. Verdoliva, SAR image despeckling through convolutional neural networks, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01710036

G. Chierchia, M. E. Gheche, G. Scarpa, and L. Verdoliva, Multitemporal SAR image despeckling based on block-matching and collaborative filtering, IEEE Transactions on Geoscience and Remote Sensing, vol.55, issue.10, pp.5467-5480, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01710027

M. Ciuc, P. Bolon, E. Trouvé, V. Buzuloiu, and J. Rudant, Adaptive-neighborhood speckle removal in multitemporal Synthetic Aperture Radar images, Applied Optics, vol.40, issue.32, pp.5954-5966, 2001.

D. Coltuc, E. Trouvé, F. Bujor, N. Classeau, and J. Rudant, Time-space filtering of multitemporal SAR images, Geoscience and Remote Sensing Symposium, Proceedings. IGARSS 2000, vol.7, pp.2909-2911, 2000.

D. Coltuc, J. Becker, and R. Radescu, A mean based algorithm for the multi-temporal SAR image filtering, Geoscience and Remote Sensing Symposium, 2002. IGARSS'02, vol.3, pp.1798-1800, 2002.

K. Conradsen, A. Nielsen, J. Schou, and H. Skriver, A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data, IEEE Transactions on Geoscience and Remote Sensing, vol.41, issue.1, pp.4-19, 2003.

K. Conradsen, A. Nielsen, and H. Skriver, Determining the points of change in time series of polarimetric SAR data, IEEE Transactions on Geoscience and Remote Sensing, vol.54, issue.5, pp.3007-3024, 2016.

P. Coppin, I. Jonckheere, K. Nackaerts, B. Muys, and E. Lambin, Review article digital change detection methods in ecosystem monitoring: a review, International journal of remote sensing, vol.25, issue.9, pp.1565-1596, 2004.

D. Corr and A. Rodrigues, Coherent change detection of vehicle movements, vol.5, pp.2451-2453, 1998.

S. Cui, Spatial and temporal SAR image information mining, 2014.

S. Cui, G. Schwarz, and M. Datcu, A benchmark evaluation of similarity measures for multitemporal SAR image change detection, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.9, issue.3, pp.1101-1118, 2016.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, Image denoising by sparse 3-D transform-domain collaborative filtering, IEEE Transactions on image processing, vol.16, issue.8, pp.2080-2095, 2007.

R. Daudt, B. L. Saux, A. Boulch, and Y. Gousseau, Urban change detection for multispectral earth observation using convolutional neural networks, International Geoscience and Remote Sensing Symposium (IGARSS), 2018.
URL : https://hal.archives-ouvertes.fr/hal-01899024

C. Deledalle, L. Denis, and F. Tupin, Iterative weighted maximum likelihood denoising with probabilistic patch-based weights, IEEE Transactions on Image Processing, vol.18, issue.12, pp.2661-2672, 2009.
URL : https://hal.archives-ouvertes.fr/ujm-00431266

C. Deledalle, L. Denis, and F. Tupin, How to compare noisy patches? Patch similarity beyond Gaussian noise, International journal of computer vision, vol.99, issue.1, pp.86-102, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00672357

C. Deledalle, L. Denis, G. Poggi, F. Tupin, and L. Verdoliva, Exploiting patch similarity for SAR image processing: the nonlocal paradigm, IEEE Signal Processing Magazine, vol.31, issue.4, pp.69-78, 2014.
URL : https://hal.archives-ouvertes.fr/ujm-00957334

C. Deledalle, L. Denis, F. Tupin, M. A. Reigber, . Jäger et al., A unified nonlocal framework for resolution-preserving (Pol)(In) SAR denoising, IEEE Transactions on Geoscience and Remote Sensing, vol.53, issue.4, pp.2021-2038, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00844118

C. Deledalle, L. Denis, S. Tabti, and F. Tupin, MuLoG, or how to apply Gaussian denoisers to multi-channel SAR speckle reduction?, IEEE Transactions on Image Processing, vol.26, issue.9, pp.4389-4403, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01388858

F. Dellinger, J. Delon, Y. Gousseau, J. Michel, and F. Tupin, Change detection for high resolution satellite images, based on SIFT descriptors and an a contrario approach, Geoscience and Remote Sensing Symposium (IGARSS), pp.1281-1284, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01059366

F. Dellinger, J. Delon, Y. Gousseau, J. Michel, and F. Tupin, SAR-SIFT: a SIFT-like algorithm for SAR images, IEEE Transactions on Geoscience and Remote Sensing, vol.53, issue.1, pp.453-466, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00831763

O. Hondt, S. Guillaso, and O. Hellwich, Iterative bilateral filtering of polarimetric SAR data, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.6, issue.3, pp.1628-1639, 2013.

E. Domínguez, E. Meier, D. Small, M. Schaepman, L. Bruzzone et al., A multisquint framework for change detection in high-resolution multitemporal SAR images, IEEE Transactions on Geoscience and Remote Sensing, vol.56, issue.6, pp.3611-3623, 2018.

P. Eklund, J. You, and P. Deer, Mining remote sensing image data: an integration of fuzzy set theory and image understanding techniques for environmental change detection, Data Mining and Knowledge Discovery: Theory, Tools, and Technology II, vol.4057, pp.265-273, 2000.

S. Foucher, SAR image filtering via learned dictionaries and sparse representations, IGARSS (1), pp.229-232, 2008.

S. Foucher, G. Bénié, and J. Boucher, Multiscale MAP filtering of SAR images, IEEE Transactions on image processing, vol.10, issue.1, pp.49-60, 2001.

V. Frost, J. Stiles, K. Shanmugan, and J. Holtzman, A model for radar images and its application to adaptive digital filtering of multiplicative noise, IEEE Transactions on Pattern Analysis and Machine Intelligence, issue.2, pp.157-166, 1982.

L. Gagnon and A. Jouan, Speckle filtering of SAR images: a comparative study between complex-wavelet-based and standard filters, Wavelet Applications in Signal and Image Processing V, vol.3169, pp.80-92, 1997.

F. Gao, J. Dong, B. Li, and Q. Xu, Automatic change detection in synthetic aperture radar images based on PCANet, IEEE Geoscience and Remote Sensing Letters, vol.13, issue.12, pp.1792-1796, 2016.

L. Gomez, M. Buemi, J. Jacobo-berlles, and M. Mejail, A new image quality index for objectively evaluating despeckling filtering in SAR images, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.9, issue.3, pp.1297-1307, 2016.

L. Gomez, R. Ospina, and A. Frery, Unassisted quantitative evaluation of despeckling filters, Remote Sensing, vol.9, issue.4, p.389, 2017.

M. Gong, Z. Zhou, and J. Ma, Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering, IEEE Transactions on Image Processing, vol.21, issue.4, pp.2141-2151, 2012.

M. Gong, P. Zhang, L. Su, and J. Liu, Coupled dictionary learning for change detection from multisource data, IEEE Transactions on Geoscience and Remote Sensing, vol.54, issue.12, pp.7077-7091, 2016.

M. Gong, J. Zhao, J. Liu, Q. Miao, and L. Jiao, Change detection in synthetic aperture radar images based on deep neural networks, IEEE transactions on neural networks and learning systems, vol.27, pp.125-138, 2016.

M. Gong, X. Niu, P. Zhang, and Z. Li, Generative adversarial networks for change detection in multispectral imagery, IEEE Geoscience and Remote Sensing Letters, vol.14, issue.12, pp.2310-2314, 2017.

M. Gong, H. Yang, and P. Zhang, Feature learning and change feature classification based on deep learning for ternary change detection in SAR images, ISPRS Journal of Photogrammetry and Remote Sensing, vol.129, pp.212-225, 2017.

M. Gong, T. Zhan, P. Zhang, and Q. Miao, Superpixel-based difference representation learning for change detection in multispectral remote sensing images, IEEE Transactions on Geoscience and Remote Sensing, vol.55, issue.5, pp.2658-2673, 2017.

J. Goodman, Some fundamental properties of speckle, Journal of the Optical Society of America, vol.66, issue.11, pp.1145-1150, 1976.

J. Goodman, Speckle phenomena in optics: theory and applications, 2007.

H. Griffiths, C. Baker, and D. Adamy, Stimson's introduction to airborne radar, 2014.

H. Guo, J. Odegard, M. Lang, R. Gopinath, I. Selesnick et al., Wavelet based speckle reduction with applications to SAR based ATD/R, IEEE International Conference on Image Processing, 1994.

T. Habib, J. Chanussot, J. Inglada, and G. Mercier, Abrupt change detection on multitemporal remote sensing images: a statistical overview of methodologies applied on real cases, Geoscience and Remote Sensing Symposium, pp.2593-2596, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00372335

C. Huang, K. Song, S. Kim, J. Townshend, P. Davis et al., Use of a dark object concept and support vector machines to automate forest cover change analysis, Remote Sensing of Environment, vol.112, issue.3, pp.970-985, 2008.

M. Hussain, D. Chen, A. Cheng, H. Wei, and D. Stanley, Change detection from remotely sensed images: From pixel-based to object-based approaches, ISPRS Journal of Photogrammetry and Remote Sensing, vol.80, pp.91-106, 2013.

J. Inglada and A. Giros, On the possibility of automatic multisensor image registration, IEEE Transactions on Geoscience and Remote Sensing, vol.42, issue.10, pp.2104-2120, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00569950

J. Inglada and G. Mercier, A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis, IEEE transactions on geoscience and remote sensing, vol.45, pp.1432-1445, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00582539

J. Jung, D. Kim, M. Lavalle, and S. Yun, Coherent Change Detection Using InSAR Temporal Decorrelation Model: A Case Study for Volcanic Ash Detection, IEEE Transactions on Geoscience and Remote Sensing, vol.54, issue.10, pp.5765-5775, 2016.

S. M. Kay, Fundamentals of statistical signal processing. detection theory, Volume ii, 1998.

M. Kendall and A. Stuart, The advanced theory of statistics, Distribution theory, vol.1, 1977.

C. Kervrann and J. Boulanger, Optimal spatial adaptation for patch-based image denoising, IEEE Transactions on Image Processing, vol.15, issue.10, pp.2866-2878, 2006.

S. Khan, X. He, F. Porikli, and M. Bennamoun, Forest change detection in incomplete satellite images with deep neural networks, IEEE Transactions on Geoscience and Remote Sensing, vol.55, issue.9, pp.5407-5423, 2017.

S. Khan, X. He, F. Porikli, M. Bennamoun, F. Sohel et al., Learning deep structured network for weakly supervised change detection, Proc. Int. Joint Conf. Artif. Intell.(IJCAI), pp.1-7, 2017.

S. Khorram, Accuracy assessment of remote sensing-derived change detection, 1999.

E. Koeniguer, A. Boulch, P. Trouvé, and F. Janez, Colored visualization of multitemporal SAR data for change detection : issues and methods, Synthetic Aperture Radar (EUSAR), 2018.

E. Koeniguer, J. Nicolas, B. Pinel-puyssegur, J. Lagrange, and F. Janez, Visualisation des changements sur séries temporelles radar: méthode REACTIVévaluéèREACTIVévaluéè a l'´ echelle mondiale sous Google Earth Engine, Conférence Française de Photogrammétrie et de Télédétection (CFPT), 2018.

V. Krylov, G. Moser, A. Voisin, S. Serpico, and J. Zerubia, Change detection with synthetic aperture radar images by Wilcoxon statistic likelihood ratio test, 19th IEEE International Conference on, pp.2093-2096, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00724284

D. Kuan, A. Sawchuk, T. Strand, and P. Chavel, Adaptive noise smoothing filter for images with signal-dependent noise, IEEE transactions on pattern analysis and machine intelligence, pp.165-177, 1985.

T. Lê, A. Atto, E. Trouvé, and J. Nicolas, Adaptive multitemporal SAR image filtering based on the change detection matrix, IEEE Geoscience and Remote Sensing Letters, vol.11, issue.10, pp.1826-1830, 2014.

T. Lê, A. Atto, E. Trouvé, A. Solikhin, and V. Pinel, Change detection matrix for multitemporal filtering and change analysis of SAR and PolSAR image time series, ISPRS Journal of Photogrammetry and Remote Sensing, vol.107, pp.64-76, 2015.

J. Lee, Digital image enhancement and noise filtering by use of local statistics, IEEE Transactions on Pattern Analysis and Machine Intelligence, issue.2, pp.165-168, 1980.

J. Lee, Refined filtering of image noise using local statistics. Computer graphics and image processing, vol.15, pp.380-389, 1981.

J. Lee, Speckle analysis and smoothing of Synthetic Aperture Radar images. Computer graphics and image processing, vol.17, pp.24-32, 1981.

J. Lee, A simple speckle smoothing algorithm for synthetic aperture radar images, IEEE Transactions on Systems, Man, and Cybernetics, issue.1, pp.85-89, 1983.

J. Lee, Speckle suppression and analysis for Synthetic Aperture Radar images, Optical engineering, vol.25, issue.5, pp.636-643, 1986.

J. Lee, M. Grunes, and S. Mango, Speckle reduction in multipolarization, multifrequency SAR imagery, IEEE Transactions on Geoscience and Remote Sensing, vol.29, issue.4, pp.535-544, 1991.

F. Liao, E. Koshelev, M. Milton, Y. Jin, and E. Lu, Change detection by deep neural networks for synthetic aperture radar images, Computing, Networking and Communications (ICNC, pp.947-951, 2017.

J. Liu, M. Gong, K. Qin, and P. Zhang, A deep convolutional coupling network for change detection based on heterogeneous optical and radar images, IEEE transactions on neural networks and learning systems, 2016.

J. Liu, M. Gong, J. Zhao, H. Li, and L. Jiao, Difference representation learning using stacked restricted Boltzmann machines for change detection in SAR images, Soft Computing, vol.20, issue.12, pp.4645-4657, 2016.

Z. Liu, G. Mercier, J. Dezert, and Q. Pan, Change detection in heterogeneous remote sensing images based on multidimensional evidential reasoning, IEEE Geoscience and Remote Sensing Letters, vol.11, issue.1, pp.168-172, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01865172

S. Lobry, L. Denis, and F. Tupin, Multi-temporal SAR image decomposition into strong scatterers, background, and speckle, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.9, issue.8, pp.3419-3429, 2016.
DOI : 10.1109/jstars.2016.2555579

URL : https://hal.archives-ouvertes.fr/hal-01431646

S. Lobry, L. Denis, and F. Tupin, Multitemporal SAR image decomposition into strong scatterers, background, and speckle, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.9, issue.8, pp.3419-3429, 2016.
DOI : 10.1109/jstars.2016.2555579

URL : https://hal.archives-ouvertes.fr/ujm-01376896

P. Lombardo and C. Oliver, Maximum likelihood approach to the detection of changes between multitemporal SAR images, IEE Proceedings-Radar, Sonar and Navigation, vol.148, issue.4, pp.200-210, 2001.

P. Lombardo and T. Pellizzeri, Maximum likelihood signal processing techniques to detect a step pattern of change in multitemporal SAR images, IEEE Transactions on Geoscience and Remote Sensing, vol.40, issue.4, pp.853-870, 2002.

N. Longbotham, F. Pacifici, T. Glenn, A. Zare, M. Volpi et al., Multi-modal change detection, application to the detection of flooded areas: Outcome of the 2009-2010 data fusion contest. IEEE Journal of selected topics in applied earth observations and remote sensing, vol.5, p.331, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00799164

A. Lopes, E. Nezry, R. Touzi, and H. Laur, Structure detection and statistical adaptive speckle filtering in SAR images, International Journal of Remote Sensing, vol.14, issue.9, pp.1735-1758, 1993.

H. Lyu, H. Lu, and L. Mou, Learning a transferable change rule from a recurrent neural network for land cover change detection, Remote Sensing, vol.8, issue.6, p.506, 2016.
DOI : 10.3390/rs8060506

URL : https://www.mdpi.com/2072-4292/8/6/506/pdf

P. Meer, R. Park, and K. Cho, Multiresolution adaptive image smoothing, Graphical Model and Image Processing, vol.56, pp.140-148, 1994.
DOI : 10.1006/cgip.1994.1013

J. Mercer, Functions of positive and negative type, and their connection with the theory of integral equations. Philosophical transactions of the royal society of London. Series A, containing papers of a mathematical or physical character, vol.209, pp.415-446, 1909.

G. Mercier, G. Moser, and S. Serpico, Conditional copulas for change detection in heterogeneous remote sensing images, IEEE Transactions on Geoscience and Remote Sensing, vol.46, issue.5, pp.1428-1441, 2008.

G. Metternicht, Change detection assessment using fuzzy sets and remotely sensed data: an application of topographic map revision, ISPRS Journal of Photogrammetry and Remote Sensing, vol.54, issue.4, pp.221-233, 1999.

L. Mou, L. Bruzzone, and X. Zhu, Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery, 2018.
DOI : 10.1109/tgrs.2018.2863224

URL : https://doi.org/10.1109/tgrs.2018.2863224

A. Ng, M. Jordan, and Y. Weiss, On spectral clustering: Analysis and an algorithm, Advances in neural information processing systems, pp.849-856, 2002.

J. Nicolas, Application de la transformée de Mellin: ´ etude des lois statistiques de limagerie cohérente, 2006.

J. Nicolas, Application de la transformée de Mellin: ´ etude des lois statistiques de l'imagerie cohérente version corrigée, 2017.

J. Nicolas and S. Anfinsen, Introduction to second kind statistics: Application of logmoments and log-cumulants to the analysis of radar image distributions, Trait. Signal, vol.19, issue.3, pp.139-167, 2002.

J. Nicolas, E. Trouve, R. Fallourd, F. Vernier, F. Tupin et al., A first comparison of Cosmo-Skymed and TerraSAR-X data over Chamonix Mont-Blanc test-site, Geoscience and Remote Sensing Symposium (IGARSS), pp.5586-5589, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00797185

A. Nielsen, K. Conradsen, and H. Skriver, Change detection in a short time sequence of polarimetric C-band SAR data, ESA Living Planet Symposium, 2016.

C. Oliver and S. Quegan, Understanding synthetic aperture radar images, 2004.

C. Oliver and S. Quegan, Understanding Synthetic Aperture Radar images, 2004.

N. Otsu, A threshold selection method from gray-level histograms, IEEE transactions on systems, man, and cybernetics, vol.9, pp.62-66, 1979.
DOI : 10.1109/tsmc.1979.4310076

J. Park, W. Song, and W. Pearlman, Speckle filtering of SAR images based on adaptive windowing. IEE Proceedings-Vision, Image and Signal Processing, vol.146, pp.191-197, 1999.

S. Parrilli, M. Poderico, C. Angelino, and L. Verdoliva, A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage, IEEE Transactions on Geoscience and Remote Sensing, vol.50, issue.2, pp.606-616, 2012.

M. Pham, G. Mercier, and J. Michel, Change detection between SAR images using a pointwise approach and graph theory, IEEE Transactions on Geoscience and Remote Sensing, vol.54, issue.4, pp.2020-2032, 2016.
DOI : 10.1109/tgrs.2015.2493730

URL : https://hal.archives-ouvertes.fr/hal-01865181

A. Plyer, E. Colin-koeniguer, and F. Weissgerber, A new coregistration algorithm for recent applications on urban SAR images, IEEE Geoscience and Remote Sensing Letters, vol.12, issue.11, pp.2198-2202, 2015.

M. Preiss and N. Stacy, Coherent change detection: Theoretical description and experimental results, DEFENCE SCIENCE AND TECHNOLOGY OR-GANISATION EDINBURGH, 2006.

J. Prendes, M. Chabert, F. Pascal, A. Giros, and J. Tourneret, A new multivariate statistical model for change detection in images acquired by homogeneous and heterogeneous sensors, IEEE Transactions on Image Processing, vol.24, issue.3, pp.799-812, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01127988

J. Prendes, M. Chabert, F. Pascal, A. Giros, and J. Tourneret, A Bayesian nonparametric model coupled with a Markov random field for change detection in heterogeneous remote sensing images, SIAM Journal on Imaging Sciences, vol.9, issue.4, pp.1889-1921, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01416149

L. Pulvirenti, M. Chini, N. Pierdicca, and G. Boni, Use of SAR data for detecting floodwater in urban and agricultural areas: The role of the interferometric coherence, IEEE Transactions on Geoscience and Remote Sensing, vol.54, issue.3, pp.1532-1544, 2016.

N. Quarmby and J. Cushnie, Monitoring urban land cover changes at the urban fringe from SPOT HRV imagery in south-east England, International Journal of Remote Sensing, vol.10, issue.6, pp.953-963, 1989.

S. Quegan and J. Yu, Filtering of multichannel SAR images, IEEE Transactions on Geoscience and Remote Sensing, vol.39, issue.11, pp.2373-2379, 2001.

S. Quegan, T. Le-toan, J. Yu, F. Ribbes, and N. Floury, Multitemporal ERS SAR analysis applied to forest mapping, IEEE Transactions on Geoscience and Remote Sensing, vol.38, issue.2, pp.741-753, 2000.

S. Quegan, J. Yu, and T. Letoan, Iterated multi-channel filtering of SAR images, Geoscience and Remote Sensing Symposium, 2000. Proceedings. IGARSS 2000, vol.2, pp.657-659, 2000.

G. Quin, Dtection de Changement en Imagerie Radar, 2011.

G. Quin, B. Pinel-puyssegur, J. Nicolas, and P. Loreaux, MIMOSA: An automatic change detection method for SAR time series, IEEE Transactions on Geoscience and Remote Sensing, vol.52, issue.9, pp.5349-5363, 2014.

R. Radke, S. Andra, O. Al-kofahi, and B. Roysam, Image change detection algorithms: a systematic survey, IEEE transactions on image processing, vol.14, issue.3, pp.294-307, 2005.

P. Riot, A. Almansa, Y. Gousseau, and F. Tupin, A correlation-based dissimilarity measure for noisy patches, International Conference on Scale Space and Variational Methods in Computer Vision, pp.184-195, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01492429

P. Rosin and E. Ioannidis, Evaluation of global image thresholding for change detection, Pattern recognition letters, vol.24, issue.14, pp.2345-2356, 2003.

L. Rudin, P. Lions, and S. Osher, Multiplicative denoising and deblurring: theory and algorithms, Geometric Level Set Methods in Imaging, Vision, and Graphics, pp.103-119, 2003.

P. Sahoo, S. Soltani, and A. Wong, A survey of thresholding techniques. Computer vision, graphics, and image processing, vol.41, pp.233-260, 1988.

A. Schubert, D. Small, M. Jehle, and E. Meier, COSMO-SkyMed, TerraSAR-X, and RADARSAT-2 geolocation accuracy after compensation for earth-system effects, Geoscience and Remote Sensing Symposium (IGARSS), pp.3301-3304, 2012.

A. Schubert, D. Small, N. Miranda, D. Geudtner, and E. Meier, Sentinel-1A product geolocation accuracy: commissioning phase results, Remote Sensing, vol.7, issue.7, pp.9431-9449, 2015.

E. Schubert, M. Weiler, and H. Kriegel, Signitrend: scalable detection of emerging topics in textual streams by hashed significance thresholds, Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.871-880, 2014.

M. Sezgin and B. Sankur, Survey over image thresholding techniques and quantitative performance evaluation, Journal of Electronic imaging, vol.13, issue.1, pp.146-166, 2004.

J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Transactions, vol.22, issue.8, pp.888-905, 2000.

D. Small and A. Schubert, Guide to ASAR geocoding, 2008.

L. Su, M. Gong, P. Zhang, M. Zhang, J. Liu et al., Deep learning and mapping based ternary change detection for information unbalanced images, Pattern Recognition, vol.66, pp.213-228, 2017.

X. Su, C. Deledalle, F. Tupin, and H. Sun, Two-step multitemporal nonlocal means for synthetic aperture radar images, IEEE Transactions on Geoscience and Remote Sensing, vol.52, issue.10, pp.6181-6196, 2014.

X. Su, C. Deledalle, F. Tupin, and H. Sun, NORCAMA: Change analysis in SAR time series by likelihood ratio change matrix clustering, ISPRS Journal of Photogrammetry and Remote Sensing, vol.101, pp.247-261, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00997786

C. Tison, J. Nicolas, F. Tupin, and H. Ma??trema??tre, A new statistical model for Markovian classification of urban areas in high-resolution SAR images, IEEE transactions on geoscience and remote sensing, vol.42, pp.2046-2057, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00556167

D. Tomowski, M. Ehlers, and S. Klonus, Colour and texture based change detection for urban disaster analysis, Urban Remote Sensing Event (JURSE), pp.329-332, 2011.

R. Torres, P. Snoeij, D. Geudtner, D. Bibby, M. Davidson et al., GMES sentinel-1 mission, Remote Sensing of Environment, vol.120, pp.9-24, 2012.

R. Touati and M. Mignotte, An energy-based model encoding nonlocal pairwise pixel interactions for multisensor change detection, IEEE Transactions on Geoscience and Remote Sensing, vol.56, issue.2, pp.1046-1058, 2018.

R. Touzi, A. Lopes, and P. Bousquet, A statistical and geometrical edge detector for SAR images, IEEE Transactions on geoscience and remote sensing, vol.26, issue.6, pp.764-773, 1988.

F. Tung and E. Ledrew, The determination of optimal threshold levels for change detection using various accuracy indexes, Photogrammetric Engineering and Remote Sensing, vol.54, issue.10, pp.1449-1454, 1988.

F. Tupin, How advanced image processing helps for SAR image restoration and analysis. IEEE Geoscience and Remote Sensing Newsletter, Cumulative, pp.10-17, 2011.

F. Tupin, J. Inglada, and J. Nicolas, Remote Sensing Imagery, 2014.

G. Vasile, E. Trouvé, J. Lee, and V. Buzuloiu, Intensity-driven adaptive-neighborhood technique for polarimetric and interferometric SAR parameters estimation, IEEE Transactions on Geoscience and Remote Sensing, vol.44, issue.6, pp.1609-1621, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00164080

J. Vert, K. Tsuda, and B. Schölkopf, A primer on kernel methods, Kernel Methods in Computational Biology, pp.35-70, 2004.

M. Volpi, G. Camps-valls, and D. Tuia, Spectral alignment of multi-temporal crosssensor images with automated kernel canonical correlation analysis, ISPRS Journal of Photogrammetry and Remote Sensing, vol.107, pp.50-63, 2015.

U. and V. Luxburg, A tutorial on spectral clustering, Statistics and computing, vol.17, issue.4, pp.395-416, 2007.

P. Wang, H. Zhang, and V. Patel, SAR image despeckling using a convolutional neural network, IEEE Signal Processing Letters, vol.24, issue.12, pp.1763-1767, 2017.

S. Wang, M. Zhou, Z. Liu, Z. Liu, D. Gu et al., Central focused convolutional neural networks: Developing a data-driven model for lung nodule segmentation, Medical image analysis, vol.40, pp.172-183, 2017.

Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Transactions on Image Processing, vol.13, issue.4, pp.600-612, 2004.

S. Wilks, The large-sample distribution of the likelihood ratio for testing composite hypotheses, The Annals of Mathematical Statistics, vol.9, issue.1, pp.60-62, 1938.

H. Xie, L. Pierce, and F. Ulaby, Despeckling SAR images using a low-complexity wavelet denoising process, Geoscience and Remote Sensing Symposium, vol.1, pp.321-324, 2002.

H. Xie, L. Pierce, and F. Ulaby, Statistical properties of logarithmically transformed speckle, IEEE Transactions on Geoscience and Remote Sensing, vol.40, issue.3, pp.721-727, 2002.

J. Yu and S. Quegan, Multi-channel filtering of SAR images, Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), 2000.

Y. Yu and S. Acton, Speckle reducing anisotropic diffusion, IEEE Transactions on image processing, vol.11, issue.11, pp.1260-1270, 2002.

H. Zebker, Studying the Earth with interferometric radar, Computing in Science & Engineering, vol.2, issue.3, pp.52-60, 2000.

Y. Zhan, K. Fu, M. Yan, X. Sun, H. Wang et al., Change detection based on deep siamese convolutional network for optical aerial images, IEEE Geoscience and Remote Sensing Letters, vol.14, issue.10, pp.1845-1849, 2017.

H. Zhang, M. Gong, P. Zhang, L. Su, and J. Shi, Feature-level change detection using deep representation and feature change analysis for multispectral imagery, IEEE Geoscience and Remote Sensing Letters, vol.13, issue.11, pp.1666-1670, 2016.

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising, IEEE Transactions on Image Processing, vol.26, issue.7, pp.3142-3155, 2017.

P. Zhang, M. Gong, L. Su, J. Liu, and Z. Li, Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images, ISPRS Journal of Photogrammetry and Remote Sensing, vol.116, pp.24-41, 2016.

W. Zhang, Q. Zhang, and C. Yang, Improved bilateral filtering for SAR image despeckling, Electronics letters, vol.47, issue.4, pp.286-288, 2011.

J. Zhao, M. Gong, J. Liu, and L. Jiao, Deep learning to classify difference image for image change detection, Neural Networks (IJCNN), 2014 International Joint Conference on, pp.411-417, 2014.

W. Zhao, Z. Wang, M. Gong, and J. Liu, Discriminative feature learning for unsupervised change detection in heterogeneous images based on a coupled neural network, IEEE Transactions on Geoscience and Remote Sensing, vol.55, issue.12, pp.7066-7080, 2017.

W. Zhao, C. Deledalle, L. Denis, H. Ma??trema??tre, J. Nicolas et al., RABASAR: A fast ratio based multi-temporal SAR despeckling, IEEE International Geoscience and Remote Sensing Symposium, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01860257

W. Zhao, C. Deledalle, L. Denis, H. Ma??trema??tre, J. Nicolas et al., Ratio-based multitemporal SAR images denoising: RABASAR. IEEE Transactions on Geoscience and Remote Sensing, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01791355

B. Zitova and J. Flusser, Image registration methods: a survey. Image and vision computing, vol.21, pp.977-1000, 2003.