J. Halary, F. Lauprêtre, and L. Monnerie, Polymer Materials: Macroscopic Properties and Molecular Interpretations, 2011.

M. Nasraoui, P. Forquin, L. Siad, and A. Rusinek, Influence of strain rate, temperature and adiabatic heating on the mechanical behaviour of poly-methyl-methacrylate: Experimental and modelling analyses, Mater. Des, vol.37, pp.500-509, 2012.

K. Schmidt-rohr, A. S. Kulik, H. W. Beckham, A. Ohlemacher, U. Pawelzik et al., Molecular Nature of the ? Relaxation in Poly(methyl methacrylate) Investigated by Multidimensional NMR, Macromolecules, vol.27, pp.4733-4745, 1994.

I. M. Ward and J. Sweeney, An Introduction to the Mechanical Properties of Solid Polymers, vol.17, 2004.

P. Lomellini, Effect of chain length on the network modulus and entanglement, vol.33, pp.1255-1260, 1992.

L. H. Sperling, Introduction to Physical Polymer Science

N. Alves, G. Ribelles, G. Tejedor, and J. Mano, Viscoelastic behavior of poly (methyl methacrylate) networks with different cross-linking degrees, Macromolecules, pp.3735-3744, 2004.

I. M. Neyelov, A. A. Darinskii, Y. Ya, and N. K. Balabayev, Molecular dynamics of a polymer chain with a crosslink, Polym. Sci. U.S.S.R, vol.22, issue.8, pp.1929-1939, 1980.

T. J. Fox and S. Loshaek, Influence of molecular weight and degree of crosslinking on the specific volume and glass temperature of polymers, J. Polym. Sci, vol.15, pp.371-390, 1955.

M. Krumova, D. Lopez, R. Benavente, C. Mijangos, and J. M. Peren, Effect of crosslinking on the mechanical and thermal properties of poly (vinyl alcohol), Polymer, vol.41, pp.9265-9272, 2000.

N. Billon, New Constitutive Modeling for Time-Dependent Mechanical Behavior of Polymers Close to Glass Transition : Fundamentals and Experimental Validation, J. Appl. Polym. Sci, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00682763

E. M. Arruda, M. C. Boyce, and R. Jayachandran, Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers, Mech. Mater, vol.19, pp.193-212, 1995.

C. Sell and J. M. Haudin, Lois de comportement mécanique des polymères solides. Introduction à la mécanique des polymères, 1995.

J. Richeton, S. Ahzi, K. S. Vecchio, F. C. Jiang, and R. R. Adharapurapu, Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: Characterization and modeling of the compressive yield stress, Int. J. Solids Struct, vol.43, issue.7-8, pp.2318-2335, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00096988

R. W. Nunes, J. R. Martin, and J. F. Johnson, Influence of Molecular Weight and Molecular Weight Distribution on Mechanical Properties of Polymers, Polym. Eng. Sci, vol.22, issue.4, pp.205-228, 1982.

L. Song, L. Ren, M. Zhang, S. Sun, G. Gao et al., , p.143

, Entanglement Density on Mechanical Properties and Deformation Behavior of RubberModified PVC/?-MSAN Blends, Ind. Eng. Chem. Res, vol.52, pp.12567-12573, 2013.

H. G. Van-melick, L. E. Govaert, and H. E. Meijer, On the origin of strain hardening in glassy polymers, Polymer, vol.44, pp.2493-2502, 2003.

S. Bensason, E. Stepanov, S. Chum, A. Hiltner, and E. Baer, Deformation of Elastomeric Ethylene -Octene Copolymers, Macromolecules, vol.9297, issue.96, pp.2436-2444, 1997.

M. A. Sutton, J. Orteu, and H. W. Schreier, Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications
URL : https://hal.archives-ouvertes.fr/hal-01729219

E. Baquet, Modélisation thermomécanique visco-hyperélastique du comportement d'un polymère semi-cristallin : application au cas d'une matrice polyamide 6.6, 2011.

A. Maurel-pantel, E. Baquet, J. Bikard, J. L. Bouvard, and N. Billon, A thermomechanical large deformation constitutive model for polymers based on material network description: Application to a semi-crystalline polyamide 66, Int. J. Plast, vol.67, pp.102-126, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01083213

J. D. Ferry, Viscoelastic Properties of Polymers, 1980.

S. F. Edwards and T. Vilgis, The effect of entanglements in rubber elasticity, Polymer, vol.27, pp.483-492, 1986.

E. Gorlier, Caractérisation rhéologique et structurale d'un PET. Application au procédé de bi-étirage soufflage de bouteilles, 2001.

F. Gehring, J. Bouvard, and N. Billon, Modeling of time dependent mechanical behavior of polymers: Comparison between amorphous and semicrystalline polyethylene terephthalate, J. Appl. Polym. Sci, vol.133, issue.35, pp.1-17, 2016.

G. Quandalle, Etude et modélisation mécanique de la cristallisation induite par la déformation des polymères: caoutchouc naturel réticulé et PET, MINES ParisTech, 2017.

J. Brydson, Acrylic Plastics, Plastics Materials, pp.398-424, 1999.

J. Brandup, E. Immergut, and E. Grulke, Polymer handbook. Poymer International, 1999.

R. J. Young and C. I. Chung, Introduction to Polymers, Journal of Engineering Materials and Technology, vol.104, p.297, 1982.

N. G. Mccrum, C. P. Buckley, and C. B. Bucknall, Principles of polymer engineering, 1997.

J. D. Menczel and R. B. Prime, Thermal Analysis of Polymers: Fundamentals and Applications, 2008.

T. G. Fox and P. J. Flory, Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight, Appl. Phys, vol.21, issue.6, pp.581-591, 1950.

L. P. Blanchard, J. Hesse, and S. L. Malhotra, Effect of Molecular Weight on Glass Transition by Diflerential Scanning Calorimetry, Can. J. Chem, vol.52, issue.18, pp.3170-3175, 1974.

H. Stutz, K. Illers, and J. Mertes, A Generalized Theory for the Glass Transition Temperature of Crosslinked and Uncrosslinked Polymers, J. Polym. Sci. Part B, vol.28, pp.1483-1498, 1990.

K. P. Menard, Dynamic mechanical analysis, En. Polym. Sci. Tech, vol.9, pp.563-590, 2004.

O. Starkova and A. Aniskevich, Poisson's ratio and the incompressibility relation for various strain measures with the example of a silica-filled SBR rubber in uniaxial tension tests, Polym. Test, vol.29, pp.310-318, 2010.

C. G. Sell, J. M. Hiver, and A. Dahoun, Experimental characterization of deformation damage in solid polymers under tension, and its interrelation with necking, Int. J. Solids Struct, vol.39, pp.3857-3872, 2002.

S. I. Naqui and I. M. Robinson, Review Tensile dilatornetric studies of deformation in polymeric materials and their composites, J. Mater. Sci, vol.28, pp.1421-1429, 1993.

P. Bhargava and A. T. Zehnder, High Temperature Shear Strength of T650-35 / HFPE-II-52 Polyimide Matrix Unidirectional Composite, Exp. Mech, vol.46, pp.245-255, 2006.

, Standard Test Method for Shear Properties of Composite Materials by the V-Notched, ASTM Standard D 5379/D 5379M-98


N. Melin, The modified Iosipescu shear test for orthotropic materials, KTH Engineering Sciences, 2008.

J. Morton, H. Ho, M. Y. Tsai, and G. L. Farley, An Evaluation of the losipescu Specimen for Composite Materials Shear Property Measurement, J. Compos. Mater, vol.26, pp.708-750, 1992.

H. Ho, M. Y. Tsai, J. Morton, and G. L. Farley, Numerical Analysis of the losipescu Specimen for Composite Materials, Compos. Sci. Technol, vol.46, pp.115-128, 1993.

F. Pierron, A. Vautrin, and B. Harris, The Iosipescu in-plane Shear Test: Validation on an Isotropic Material, Exp. Mech, vol.35, pp.130-136, 1995.

J. P. Norton, An introduction to identification, 1985.

A. Tarantola, Inverse ProblemTheory, 1987.

H. D. Bui and P. Germain, Introduction aux problèmes inverses en mécanique des matériaux, 1993.

J. A. Nelder and R. Mead, A simplex method for function minimization, Comput. J, vol.7, pp.308-313, 1965.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, Convergence properties of the nelder-mead simplex method in low dimensions, SIAM J. Optim, vol.9, issue.1, 1998.

L. Monnerie, L. Jean, L. Halary, D. Recherche, and H. Dunant, Investigation of SolidState Transitions in Linear and Crosslinked Amorphous Polymers, Adv. Polym. Sci, pp.35-213, 2005.

N. M. Alves, J. F. Mano, J. L. Gómez-ribelles, and J. A. Gómez-tejedor, Departure from the Vogel behaviour in the glass transition-thermally stimulated recovery, creep and dynamic mechanical analysis studies, Polymer, vol.45, issue.3, pp.1007-1017, 2004.

A. Schönhals, Dielectric spectroscopy on the dynamics of amorphous polymeric systems, Sta, issue.i, pp.1-17, 1998.

A. D. Mulliken and M. C. Boyce, Mechanics of the rate-dependent elastic-plastic deformation of glassy polymers from low to high strain rates, Int. J. Solids Struct, vol.43, issue.5, pp.1331-1356, 2006.

B. Zuo, W. Liu, H. Fan, Y. Zhang, T. He et al., Suppressed surface dynamics of poly(methyl methacrylate) chains in the corona of collapsed dry micelles tethered by a fluorinated block core, Soft Matter, vol.9, pp.5428-5437, 2013.

R. Casalini and C. M. Roland, Effect of crosslinking on the secondary relaxation in polyvinylethylene, J. Polym. Sci. Part B Polym. Phys, vol.48, issue.5, pp.582-587, 2010.

M. T. Shaw and W. J. Macknight, Introduction to Polymer Viscoelasticity: Third Edition, 2005.

J. L. Halary, A. K. Outlache, J. F. Louyot, B. Jasse, T. Sarraf et al., Viscoelastic Properties of Styrene-co-Methyl Methacrylate Random Copolymers, J. Polym. Sci. Part B Polym. Phys, vol.29, pp.933-943, 1991.

O. Kramer, Contribution of entanglements to rubber elasticity, Polymer, vol.20, pp.1336-1342, 1979.

W. W. Graessley and S. F. Edwards, Entanglement interactions in polymers and the chain contour concentration, Polymer, vol.22, issue.10, pp.1329-1334, 1981.

S. Wu, Chain Structure and Entanglement, J. Polym. Sci. Part B Polym. Phys, vol.27, pp.723-741, 1989.

L. J. Fetters, D. J. Lohse, and R. H. Colby, Chain Dimensions and Entanglement Spacings: Physical Properties of Polymers Handbook, 1996.

R. Neviere, An extension of the time-temperature superposition principle to non-linear viscoelastic solids, Int. J. Solids Struct, vol.43, pp.5295-5306, 2006.

J. Furmanski, C. M. Cady, and E. N. Brown, Time -temperature equivalence and adiabatic heating at large strains in high density polyethylene and ultrahigh molecular weight polyethylene, Polymer, vol.54, issue.1, pp.381-390, 2013.

J. Furmanski, E. N. Brown, B. Clements, C. M. Cady, and G. T. Gray, Large-strain timetemperature equivalence in high density polyethylene for prediction of extreme deformation and damage, EPJ Web Conf, vol.26, 2012.

M. J. Kendall and C. R. Siviour, Experimentally simulating adiabatic conditions : Approximating high rate polymer behavior using low rate experiments with temperature pro fi les, Polymer, vol.54, issue.18, pp.5058-5063, 2013.

J. Diani, P. Gilormini, and J. S. Arrieta, Direct experimental evidence of time-temperature superposition at fi nite strain for an amorphous polymer network, Polymer, vol.58, pp.107-112, 2015.

J. L. Bouvard, D. K. Francis, M. A. Tschopp, E. B. Marin, D. J. Bammann et al., An internal state variable material model for predicting the time , thermomechanical , and stress state dependence of amorphous glassy polymers under large deformation, Int. J. Plast, vol.42, pp.168-193, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00767846

A. Chrysochoos, Thermomechanical Analysis of the Cyclic Behavior of Materials, Procedia IUTAM, vol.4, pp.15-26, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00832345

J. W. Kim, G. A. Medvedev, and J. M. Caruthers, The response of a glassy polymer in a loading/unloading deformation: The stress memory experiment, Polymer, vol.54, issue.21, pp.5993-6002, 2013.

C. Xiao, J. Y. Jho, and A. F. Yee, Correlation between the shear yielding behaviour and secondary relaxations of bisphenol A polycarbonate and related copolymers, Macromolecules, vol.27, pp.2761-2768, 1994.

L. P. Chen, A. F. Yee, and E. J. Moskala, The molecular basis for the relationship between the secondary and mechanical properties of a series of polyester copolymer glasses, Macromolecules, vol.32, pp.5944-5955, 1999.

B. Brulé, J. L. Halary, and L. Monnerie, Molecular analysis of the plastic deformation of amorphous semi-aromatic polyamides, Polymer, vol.42, pp.9073-9083, 2001.

D. Rana, V. Sauvant, and J. L. Halary, Molecular analysis of yielding in pure and antiplasticized epoxy-amine thermosets, J. Mater. Sci, vol.37, pp.5267-5274, 2002.

J. Richeton, S. Ahzi, L. Daridon, and Y. Rémond, A formulation of the cooperative model for the yield stress of amorphous polymers for a wide range of strain rates and temperatures, Polymer, vol.46, issue.16, pp.6035-6043, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00447211

J. Richeton, S. Ahzi, K. S. Vecchio, F. C. Jiang, and A. Makradi, Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates, Int. J. Struct, vol.44, pp.7938-7954, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00322014

C. M. Cady, W. Blumenthal, I. G. Gray, and D. Idar, Determining the constitutive response of polymeric materials as a function of temperature and strain rate, J. Phys. IV, vol.110, pp.27-32, 2003.

J. L. Jordan, C. R. Siviour, J. R. Foley, and E. N. Brown, Compressive properties of extruded polytetrafluoroethylene, Polymer, vol.48, pp.4184-4195, 2007.

C. R. Siviour, S. M. Walley, W. G. Proud, and J. E. Field, The high strain rate compressive behavior of polycarbonate and polyvinylidene difluoride, Polymer, vol.46, pp.12546-12555, 2005.

J. L. Jordan, J. R. Foley, and C. R. Siviour, Mechanical properties of Epon 826/DEA epoxy, Mech. Time-Dependent Mater, vol.31, pp.523-544, 2008.

S. Hillmansen and R. N. Haward, Adiabatic failure in polyethylene, Polymer, vol.42, pp.9301-9312, 2001.

S. V. Shenogin, G. W. Hohne, and E. F. Oleinik, Thermodynamics of the pre-yield deformation behavior of glassy polymers: measurements with new deformation calorimeter, Thermochim. Acta, vol.391, pp.13-23, 2002.

O. B. Salamatina, S. N. Rudnev, Z. Bartczk, A. Galeski, and E. F. Oleinik, Thermodynamics of inelastic deformation of amorphous and crystalline phases in linear polyethylene, Polym. Sci. Ser. A, vol.53, pp.775-786, 2011.

D. N. Theodorou and U. V. Suter, Local structure and the mechanism of response to elastic deformation in a glassy polymer, Macromolecules, vol.19, pp.379-387, 1986.

J. Wu and C. P. Buckley, Plastic deformation of glassy polysterene: a unified model of yield and the role of chain length, J. Polym. Sci. Part B, vol.42, pp.2027-2040, 2004.

E. T. ,

T. A. Klompen,

L. E. Engels, H. E. Goavert, and . Meijer, Modelling of the postyield response of glassy polymers: influence of thermomechanical history, Macromolecules, vol.38, pp.6997-7008, 2005.

H. E. Meijer and L. E. Govaert, Mechanical performance of polymer systems : The relation between structure and properties, Prog. Polym. Sci, vol.30, pp.915-938, 2005.

P. Prentice, Influence of molecular weight on the fracture of poly ( methyl methacrylate, Polymer, vol.24, 1982.

R. N. Harward and G. Thackray, The use of a mathematical model to describe isothermal stress-strain curves in glassy thermoplastics, Proc. R. Soc. London, vol.302, pp.453-472, 1968.

Y. Tomita, Constitutive modelling of deformation behavior of glassy polymers and applications, Int. J. Mech. Sci, vol.42, pp.1455-1469, 2000.

G. Capaccio and I. M. Ward, Preparation of ultra-high modulus linear polyethylenes; effect of molecular weight and molecular weight distribution on drawing behaviour and mechanical properties, Polymer, vol.15, 1974.

R. P. Wool, Polymer Interfaces: Structure and Strength, 1995.

L. E. Nielsen and R. F. Landel, Mechanical Properties of Polymers, 1994.

Z. Bartczak, Effect of Chain Entanglements on Plastic Deformation Behavior of Linear Polyethylene, Macromolecules, vol.38, pp.7702-7713, 2005.

D. Hossain, M. A. Tschopp, D. K. Ward, J. L. Bouvard, P. Wang et al., Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene, Polymer, vol.51, issue.25, pp.6071-6083, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01715443

J. E. Shepherd, D. L. Mcdowell, and K. I. Jacob, Modeling morphology evolution and mechanical behavior during thermo-mechanical processing of semi-crystalline polymers, J. Mech. Phys. Solids, vol.54, pp.467-489, 2006.

H. Wang, H. Zhou, Z. Huang, Y. Zhang, and X. Zhao, Constitutive modeling of polycarbonate over a wide range of strain rates and temperatures, Mech. TimeDependent Mater, vol.21, pp.97-117, 2017.

W. P. Cox and E. H. Merz, Correlation of dynamic and steady flow viscosities, J. Polym. Sci, vol.28, pp.619-622, 1958.

C. Sell and S. Boni, Application of the plane simple shear test for determination of the plastic behaviour of solid polymers at large strains, J. Mater. Sci, vol.18, pp.903-918, 1983.

C. Sell and A. J. Gopez, Plastic banding in glassy polycarbonate under plane simple shear, J. Mater. Sci, vol.20, pp.3462-3478, 1985.

M. C. Boyce, E. M. Arruda, and R. Jayachandran, The Large Strain Compression, Tension, and Simple Shear of Polycarbonate, Polym. Eng. Sci, vol.34, pp.716-725, 1994.


T. Rey, G. Chagnon, J. L. Cam, and D. Favier, Influence of the temperature on the mechanical behaviour of filled and unfilled silicone rubbers, Polym. Test, vol.32, pp.492-501, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01073891

J. L. Bouvard, D. K. Ward, D. Hossain, S. Nouranian, E. B. Marin et al., Review of Hierarchical Multiscale Modeling to Describe the Mechanical Behavior of Amorphous Polymers, J. Eng. Mater. Technol, vol.131, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01719475

S. G. Bardenhagen, M. G. Stout, and G. T. Gray, Three-Dimensional Finite Deformation Viscoplastic Constitutive Models for Polymeric Materials, Mech. Mater, vol.25, pp.235-253, 1997.

V. A. Lubarda, D. J. Benson, and M. A. Meyers, Strain-Rate Effects in Rheological Models of Inelastic Response, Int. J. Plast, vol.19, pp.1097-118, 2003.

A. S. Khan, O. Lopez-pamies, and R. Kasmi, Thermo-mechanical large deformation response and constitutive modeling of viscoelastic polymers over a wide range of strain rates and temperatures, Int. J. Plast, vol.22, pp.581-601, 2006.

C. Sell and J. J. Jonas, Determination of the plastic behavior of solid polymers at constant true strain rate, J. Mater. Sci, vol.14, pp.583-591, 1979.

C. Sell, N. A. Aly-helal, and J. J. Jonas, Effect of stress triaxiality on neck propagation during the tensile stretching of solid polymers, J. Mater. Sci, vol.18, pp.1731-1742, 1983.

N. Billon, Effet de couplage thermomécanique dans la caractérisation du comportement de polymères solides, Mécanique Ind, vol.4, pp.357-364, 2003.

R. N. Haward and G. Thackray, The Use of a Mathematical Model to Describe Isothermal Stress-Strain Curves in Glassy Thermoplastics, Proc. R. Soc. London, vol.302, pp.453-472, 1968.

H. Eyring, Viscosity, plasticity and diffusion as examples of absolute reaction rates, J. Chem, vol.4, 1936.
DOI : 10.1063/1.1749836

R. E. Robertson, Theory for the Plasticity of Glassy Polymers, J. Chem. Phys, vol.44, pp.3950-3956, 1966.

A. S. Argon, A Theory for the Low Temperature Plastic Deformation of Glassy Polymers, Philos. Mag, vol.28, pp.839-865, 1973.

M. C. Boyce, D. M. Parks, and A. S. Argon, Large enelastic deformation of glasy polymers, part I rate dependent constitutive model, Mech. Mater, vol.7, pp.15-33, 1988.
DOI : 10.1016/0167-6636(88)90003-8

T. Ree and H. Eyring, Theory of Non-Newtonian Flow. I. Solid Plastic System, J. Appl. Phys, vol.26, pp.793-800, 1955.

T. Ree and H. Eyring, Rheology: Theory and Applications, vol.III, 1958.

M. C. Boyce, E. L. Montagut, and A. S. Argon, The effect of thermomechanical coupling on the cold drawing process of glassy polymersNo Title, Polym. Eng. Sci, vol.32, pp.1073-1085, 1992.

R. Dupaix and M. C. Boyce, Constitutive modeling of the finite strain behavior of amorphous polymers in and above the glass transition, Mech. Mater, vol.39, pp.39-52, 2007.

G. Marckmann and E. Verron, COMPARISON OF HYPERELASTIC MODELS FOR RUBBER-LIKE MATERIALS, RUBBER Chem. Technol, vol.79, pp.835-858, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01004680

M. Mooney, A theory of large elastic deformation, J. Appl. Phys, vol.11, pp.582-592, 1940.

R. S. Rivlin, Large elastic deformations of isotropic materials. IV. Further developments of the general theory, Philos. Trans. R. Soc. London. Ser. A, Math. Phys. Sci, vol.241, pp.379-397, 1948.

O. H. Yeoh, Some Forms of the Strain Energy Function for Rubber, Rubber Chem. Technol, vol.66, pp.754-771, 1993.

R. W. Ogden, Large deformation isotropic elasticity -on the correlation of theory and experiment for incompressible rubberlike solids, Proc. R. Soc. London, vol.326, 1972.

R. W. Ogden, Elastic deformations of rubberlike solids, 1982.

R. W. Ogden, Non-Linear elastic deforamtions, 1997.

L. R. Treloar, THE ELASTICITY OF A NETWORK OF LONG CHAIN MOLECULES I, Trans. Faraday Soc, vol.39, pp.36-41, 1942.

R. Ball, M. Doi, S. F. Edwards, and M. Warner, Elasticity of entangled networks, Polymer, vol.22, 1981.

E. M. Arruda and M. C. Boyce, A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials, J. Mech. Phys. Solids, vol.41, pp.389-412, 1993.
URL : https://hal.archives-ouvertes.fr/hal-01390807

M. Kaliske and G. Heinrich, An Extended Tube-Model for Rubber Elasticity: StatisticalMechanical Theory and Finite Element Implementation, Rubber Chem. Technol, vol.72, pp.602-632, 1999.

M. Pyrz and F. Zairi, Identification of viscoplastic parameters of phenomenological constitutive equations for polymers by deterministic and evolutionary approach, Model. Simul. Mater. Sci. Eng, vol.15, pp.85-103, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00192344

F. Zairi, M. Nait-abdelaziz, K. Woznica, and J. Gloaguen, Elasto-viscoplastic constitutive equations for the description of glassy polymers behavior at constant strain rate, J. Eng. Mater. Technol, vol.129, pp.29-35, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00142646

S. M. Mirkhalaf, F. M. Andrade-pires, and R. Simoes, An elasto-viscoplastic constitutive model for polymers at finite strains: Formulation and computational aspects, Comput. Struct, vol.166, pp.60-74, 2016.

S. M. Mirkhalaf, F. M. Andrade-pires, and R. Simoes, Modelling of the post yield response of amorphous polymers under different stress states, Int. J. Plast, vol.88, pp.159-187, 2017.

O. A. Hasan and M. C. Boyce, A Constitutive Model for the Nonlinear Viscoelastic Viscoplastic Behavior of Glassy-Polymers, Polym. Eng. Sci, vol.35, issue.4, pp.331-344, 1995.

A. Muliana, K. R. Rajagopal, D. Tscharnuter, and G. Pinter, A nonlinear viscoelastic constitutive model for polymeric solids based on multiple natural configuration theory, Int. J. Solids Struct, pp.95-110, 2016.

J. Guo, J. Liu, Z. Wang, X. He, L. Hu et al., A thermodynamics viscoelastic constitutive model for shape memory polymers, J. Alloys Compd, vol.705, pp.146-155, 2017.

C. Yu, G. Kang, K. Chen, and F. Lu, A thermo-mechanically coupled nonlinear viscoelastic-viscoplastic cyclic constitutive model for polymeric materials, Mech. Mater, vol.105, pp.1-15, 2017.

Y. Li, Y. He, and Z. Liu, A viscoelastic constitutive model for shape memory polymers based on multiplicative decompositions of the deformation gradient, Int. J. Plast, vol.91, pp.300-317, 2017.

J. Gu, J. Leng, and H. Sun, A constitutive model for amorphous shape memory polymers based on thermodynamics with internal state variables, Mech. Mater, vol.111, pp.1-14, 2017.

F. Praud, G. Chatzigeorgiou, J. Bikard, and F. Meraghni, Phenomenological multimechanisms constitutive modelling for thermoplastic polymers, implicit implementation and experimental validation, Mech. Mater, vol.114, pp.9-29, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01575686

P. J. Dooling, C. P. Buckley, S. Rostami, and N. Zahlan, Hot-drawing of poly(methyl methacrylate) and simulation using a glass -Rubber constitutive model, Polymer, vol.43, pp.2451-2465, 2002.

C. P. Buckley and D. C. Jonest, Glass-rubber constitutive model for amorphous polymers near the glass transition, Polymer, vol.36, pp.3301-3312, 1995.

C. P. Buckley and D. C. Jonest, Hot-drawing of poly ( ethylene terephthalate ) under biaxial stress: application of a three-dimensional glass-rubber constitutive model, Polymer, vol.37, pp.2403-2414, 1996.

P. G. Gennes, Scaling Concepts in Polymer Physics, 1979.

A. M. Adams, C. P. Buckley, and D. P. Jones, Biaxial hot drawing of poly(ethylene terephthalate): Measurements and modelling of strain-stiffening, Polymer, vol.41, pp.771-786, 2000.

J. Sweeney, R. Spares, and M. Woodhead, A Constitutive Model for Large Multiaxial Deformations of Solid Polypropylene at High Temperature, Polym. Eng. Sci, vol.49, pp.1902-1908, 2009.

L. Anand, N. M. Ames, V. Srivastava, and S. A. Chester, A thermomechanically coupled theory for large deformations of amorphous polymers. part I: Formulation, Int. J. Plast, vol.25, pp.1474-1494, 2009.

N. M. Ames, V. Srivastava, S. A. Chester, and L. Anand, A thermomechanically coupled theory for large deformations of amorphous polymers. part II: Applications, Int. J. Plast, vol.25, pp.1495-1539, 2009.

V. Srivastava, S. A. Chester, N. M. Ames, and L. Anand, A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition, Int. J. Plast, vol.26, issue.8, pp.1138-1182, 2010.

A. N. Gent, A new constitutive relation for rubber, Rubber Chem. Technol, vol.69, pp.59-61, 1996.

G. Ayoub, F. Zaïri, M. Naït-abdelaziz, and J. M. Gloaguen, Modelling large deformation behaviour under loading-unloading of semicrystalline polymers: Application to a high density polyethylene, Int. J. Plast, vol.26, issue.3, pp.329-347, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00461482

J. S. Bergstrom and M. C. Boyce, Constitutive modeling of the large strain timedependent behavior of elastomers, J. Mech. Phys. Solids, vol.46, pp.931-954, 1998.

M. C. Boyce, S. Socrate, and P. G. Llana, Constitutive model for the finite deformation stress-strain behavior of poly(ethylene terephthalate) above the glass transition, Polymer, vol.41, pp.2183-2201, 2000.

O. U. Colak, Modeling deformation behavior of polymers with viscoplasticity theory based on overstress, Int. J. Plast, vol.21, pp.145-160, 2005.

R. Ball, Elasticity of entangled networks, Polymer, vol.22, pp.1010-1018, 1981.

J. Sweeney, A constitutive law for large deformations of polymers at high temperatures, J. Mech. Phys. Solids, vol.44, pp.1033-1049, 1996.

A. C. , -. Lew, and C. P. Buckley, Biaxial constitutive response of PET during hot drawing: Experimental study and new implications for constitutive modelling, Annual Technical Conference -ANTEC, Conference Proceedings, vol.4, pp.2294-2298, 2007.

E. Gorlier, J. F. Agassant, J. M. Haudin, and N. Billon, Experimental and theoretical study of uniaxial deformation of amorphous poly(ethylene terephthalate) above glass transition temperature, Plast. Rubber Compos, vol.30, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01654657

L. Fahrmeir, T. Kneib, and S. Lang, Regression: Modelle, Methoden und Anwendungen, 2009.

M. G. Brereton, P. G. Klein, and ;. Edwards, Analysis of the rubber elasticity of polyethylene networks based on the slip link model of S, Polymer, vol.29, pp.970-974, 1988.

J. Sweeney and I. M. Ward, Rate dependent and network phenomena in the multiaxial drawing of poly(vinyl chloride), Polymer, vol.36, pp.299-308, 1995.

J. Sweeney, T. L. Collins, P. D. Coates, and I. M. Ward, Application of an elastic model to the large deformation, high temperature stretching of polypropylene, Polymer, vol.38, pp.5991-5999, 1997.

R. G. Matthews, R. A. Duckett, I. M. Ward, and D. P. Jones, The biaxial drawing behaviour of poly, vol.38, pp.4795-4802, 1997.

Y. Marco, Caractérisation multi-axiale du comportement et de la micro-structure d'un semi-cristallin : Application au cas du PET, 2003.

R. W. Ogden, G. Saccomandi, and I. Sgura, Fitting hyperelastic models to experimental data, Comput. Mech, vol.34, issue.6, pp.484-502, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01727230

C. Dessi, G. D. Tsibidis, D. Vlassopoulos, M. De-corato, M. Trofa et al., Analysis of dynamic mechanical response in torsion, J. Rheol. (N. Y. N. Y), vol.60, issue.2, pp.275-287, 2016.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods, vol.9, pp.671-675, 2012.

F. Grytten, H. Daiyan, M. Polanco-loria, and S. Dumoulin, Use of digital image correlation to measure large-strain tensile properties of ductile thermoplastics, Polym. Test, vol.28, issue.6, pp.653-660, 2009.

N. Candau, C. Pradille, J. L. Bouvard, and N. Billon, On the use of a four-cameras stereovision system to characterize large 3D deformation in elastomers, Polym. Test, vol.56, pp.314-320, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01414261

H. Schreier, J. Braasch, and M. Sutton, Systematic errors in digital image correlation caused by intensity interpolation, Opt. Eng, vol.39, issue.11, 2000.
DOI : 10.1117/1.1314593

V. P. Zok, M. N. Rajan, and W. F. , Optimization of Digital Image Correlation for High-Resolution Strain Mapping of Ceramic Composites, Exp. Mech, pp.1407-1421, 2012.

I. Eshraghi, M. R. Dehnavi, and N. Soltani, Effect of Subset Parameters Selection on the Estimation of Mode-I Stress Intensity Factor in a Cracked PMMA Specimen using Digital Image Correlation, Polym. Test, 2014.

M. Ashrafi and M. E. Tuttle, High Strain Gradient Measurements in Notched Laminated Composite Panels by Digital Image Correlation, Compos. Hybrid, Multifunct. Mater, vol.4, pp.75-81, 2015.
DOI : 10.1007/978-3-319-06992-0_10

P. J. Flory, Thermodynamics Relation for High Elastic Materials, Trans. Faraday Soc, vol.57, pp.829-838, 1961.

J. C. Simo, R. L. Taylor, and K. S. Pister, Variational and Projection Methods for the Volume Constraint in Finite Deformation Elastoplasticity, Constraints Finite Deform. Elastoplast, vol.51, pp.177-208, 1985.

E. H. Lee, Elastic Plastic Deformation at Finite Strain, ASME J. Appl. Mech, vol.36, pp.1-6, 1969.
DOI : 10.21236/ad0678483

F. Sidoroff, Nonlinear Viscoelastic Model with Intermediate Configuration, J. Mech, vol.13, pp.679-713, 1974.

J. Lubliner, A Model of Rubber Viscoelasticity, Mech. Res. Commun, vol.12, pp.93-99, 1985.

A. Andriyana, L. Silva, and N. Billon, Viscoelastic Characterization of Short Fibres Reinforced Thermoplastic in Tension and Shearing, Appl. Mech. Mater, pp.419-423, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00514372

G. A. Holzapfel, Nonlinear Solid Mechanics. A Continuum Approach for Engineering, 2000.

J. C. Simo and T. R. Hughes, Computational Inelasticity, 1998.

S. Reese and S. Govindjee, A THEORY OF FINITE VISCOELASTICITY AND NUMERICAL ASPECTS, Int. J. Solids Struct, vol.35, pp.3455-3481, 1998.