Apprentissage automatique rapide et lent - PASTEL - Thèses en ligne de ParisTech Accéder directement au contenu
Thèse Année : 2019

Fast and slow machine learning

Apprentissage automatique rapide et lent

Résumé

The Big Data era has revolutionized the way in which data is created and processed. In this context, multiple challenges arise given the massive amount of data that needs to be efficiently handled and processed in order to extract knowledge. This thesis explores the symbiosis of batch and stream learning, which are traditionally considered in the literature as antagonists. We focus on the problem of classification from evolving data streams.Batch learning is a well-established approach in machine learning based on a finite sequence: first data is collected, then predictive models are created, then the model is applied. On the other hand, stream learning considers data as infinite, rendering the learning problem as a continuous (never-ending) task. Furthermore, data streams can evolve over time, meaning that the relationship between features and the corresponding response (class in classification) can change.We propose a systematic framework to predict over-indebtedness, a real-world problem with significant implications in modern society. The two versions of the early warning mechanism (batch and stream) outperform the baseline performance of the solution implemented by the Groupe BPCE, the second largest banking institution in France. Additionally, we introduce a scalable model-based imputation method for missing data in classification. This method casts the imputation problem as a set of classification/regression tasks which are solved incrementally.We present a unified framework that serves as a common learning platform where batch and stream methods can positively interact. We show that batch methods can be efficiently trained on the stream setting under specific conditions. The proposed hybrid solution works under the positive interactions between batch and stream methods. We also propose an adaptation of the Extreme Gradient Boosting (XGBoost) algorithm for evolving data streams. The proposed adaptive method generates and updates the ensemble incrementally using mini-batches of data. Finally, we introduce scikit-multiflow, an open source framework in Python that fills the gap in Python for a development/research platform for learning from evolving data streams.
L'ère du Big Data a révolutionné la manière dont les données sont créées et traitées. Dans ce contexte, de nombreux défis se posent, compte tenu de la quantité énorme de données disponibles qui doivent être efficacement gérées et traitées afin d’extraire des connaissances. Cette thèse explore la symbiose de l'apprentissage en mode batch et en flux, traditionnellement considérés dans la littérature comme antagonistes, sur le problème de la classification à partir de flux de données en évolution. L'apprentissage en mode batch est une approche bien établie basée sur une séquence finie: d'abord les données sont collectées, puis les modèles prédictifs sont créés, finalement le modèle est appliqué. Par contre, l’apprentissage par flux considère les données comme infinies, rendant le problème d’apprentissage comme une tâche continue (sans fin). De plus, les flux de données peuvent évoluer dans le temps, ce qui signifie que la relation entre les caractéristiques et la réponse correspondante peut changer. Nous proposons un cadre systématique pour prévoir le surendettement, un problème du monde réel ayant des implications importantes dans la société moderne. Les deux versions du mécanisme d'alerte précoce (batch et flux) surpassent les performances de base de la solution mise en œuvre par le Groupe BPCE, la deuxième institution bancaire en France. De plus, nous introduisons une méthode d'imputation évolutive basée sur un modèle pour les données manquantes dans la classification. Cette méthode présente le problème d'imputation sous la forme d'un ensemble de tâches de classification / régression résolues progressivement.Nous présentons un cadre unifié qui sert de plate-forme d'apprentissage commune où les méthodes de traitement par batch et par flux peuvent interagir de manière positive. Nous montrons que les méthodes batch peuvent être efficacement formées sur le réglage du flux dans des conditions spécifiques. Nous proposons également une adaptation de l'Extreme Gradient Boosting algorithme aux flux de données en évolution. La méthode adaptative proposée génère et met à jour l'ensemble de manière incrémentielle à l'aide de mini-lots de données. Enfin, nous présentons scikit-multiflow, un framework open source en Python qui comble le vide en Python pour une plate-forme de développement/recherche pour l'apprentissage à partir de flux de données en évolution.
Fichier principal
Vignette du fichier
75748_MONTIEL_LOPEZ_2019_archivage.pdf (4.73 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-02098633 , version 1 (12-04-2019)

Identifiants

  • HAL Id : tel-02098633 , version 1

Citer

Jacob Montiel López. Apprentissage automatique rapide et lent. Base de données [cs.DB]. Université Paris Saclay (COmUE), 2019. Français. ⟨NNT : 2019SACLT014⟩. ⟨tel-02098633⟩
1087 Consultations
884 Téléchargements

Partager

Gmail Facebook X LinkedIn More