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Spécialité de doctorat: Informatique
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Assistant Professor, École Polytechnique (LIX) Examinateur

Albert Bifet
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A B S T R A C T

The Big Data era has revolutionized the way in which data is created
and processed. In this context, multiple challenges arise given the mas-
sive amount of data that needs to be efficiently handled and processed
in order to extract knowledge. This thesis explores the symbiosis of
batch and stream learning, which are traditionally considered in the
literature as antagonists. We focus on the problem of classification
from evolving data streams.

Batch learning is a well-established approach in machine learning
based on a finite sequence: first data is collected, then predictive mod-
els are created, then the model is applied. On the other hand, stream
learning considers data as infinite, rendering the learning problem
as a continuous (never-ending) task. Furthermore, data streams can
evolve over time, meaning that the relationship between features and
the corresponding response (class in classification) can change.

We propose a systematic framework to predict over-indebtedness, a
real-world problem with significant implications in modern society.
The two versions of the early warning mechanism (batch and stream)
outperform the baseline performance of the solution implemented by
the Groupe BPCE, the second largest banking institution in France.
Additionally, we introduce a scalable model-based imputation method
for missing data in classification. This method casts the imputation
problem as a set of classification/regression tasks which are solved
incrementally.

We present a unified framework that serves as a common learning
platform where batch and stream methods can positively interact.
We show that batch methods can be efficiently trained on the stream
setting under specific conditions. The proposed hybrid solution works
under the positive interactions between batch and stream methods.
We also propose an adaptation of the Extreme Gradient Boosting (XG-
Boost) algorithm for evolving data streams. The proposed adaptive
method generates and updates the ensemble incrementally using mini-
batches of data. Finally, we introduce scikit-multiflow, an open source
framework in Python that fills the gap in Python for a developmen-
t/research platform for learning from evolving data streams.
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Part I

I N T R O D U C T I O N





1 I N T R O D U C T I O N

In recent years we have witnessed a digital revolution that has dramat-
ically changed the way in which we generate and consume data. In
2016, 90% of the world’s data was created just on the last 2 years and
is expected that by 2020 the digital universe will reach 44 zettabytes
(44 trillion gigabytes1). This new paradigm of ubiquitous data has
impacted different sectors of society including government, healthcare,
banking and entertainment, to name a few. Due to the extent of its
potential data has been dubbed “the oil of the digital era”2.

The term Big Data is used to refer to this groundbreaking phe-
nomenon. A continuous effort exists to delimit this term; a popular
approach are the so called “4 Vs” of big data: Volume, Velocity, Variety
and Veracity. Volume is related to the scale of the data which varies
depending on the application. Velocity considers the rate at which data
is generated/collected. Variety represents the different types of data,
including traditional structured data and emerging unstructured data.
Finally, Veracity corresponds to the reliability that can be attributed to
the data.

Another significant factor is the dramatic growth of the Internet of
Things (IoT), which is the ecosystem where devices (things) connect,
interact and exchange data. Such devices can be analog or digital,
e.g. cars, airplanes, cellphones, etc. By 2013, 20 billion of such devices
were connected to the internet and this number is expected to grow to
32 billion by 2020, this means an increment from 7% to 15% of the total
number of connected devices. The contribution of IoT to the digital
universe is considerable. For example, data only from embedded
systems accounted for 2% of the world’s data in 2013, and is expected
to hit 10% by 2020

3, Figure 1.1.

1.1 motivation

In its raw state, data contains latent information which can potentially
be converted into knowledge (and value). However, as the amount of
data and its complexity increases, its analysis becomes unfeasible for
humans. To overcome this, Artificial Intelligence is the field of study that

1 The digital universe in 2020, John Gantz and David Reinsel, IDC, February 2013.
2 The world’s most valuable resource is no longer oil, but data, The Economist, May 2017.
3 The Digital Universe of Opportunities: Rich Data and the Increasing Value of the Internet of

Things, IDC, April 2014.

3
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Figure 1.1: IoT explosion in the digital era.

aims to produce machines which can replicate human’s intelligence
without its biological limitations.

The ultimate goal is to convert data into knowledge which in turn
translates into actions. In other words, we are interested in finding pat-
terns in the data. Machine Learning, a sub-field of artificial intelligence,
is a kind of data analysis that automates the process of finding and
describing patterns in data by building analytical models. Machine
learning is based on the assumption that machines can learn from data,
identify patterns and make predictions with minimal human interven-
tion. The minimal pipeline of machine learning, Figure 1.2, involves
using the data that represents a phenomenon to build a mathematical
model which represents its nature.

Artificial intelligence (including machine learning) is already a key
element for competitiveness and growth in different industries, what’s
more, it has disrupted not only the private sector but the public sector
as well. Several countries include artificial intelligence initiatives as a
key axis for national development and competitiveness. For example,
artificial intelligence is one of the pillars of Horizon 2020, the EU’s
Research and Innovation program that implements the Europe 2020
initiative for Europe’s global competitiveness. Similarly, in March 2018

France unveiled its national artificial intelligence strategy which not
only aims at strengthening the role of France in this field, but also
proposes an ethical framework to regulate it4.

data training model

Figure 1.2: The minimal pipeline of machine learning. Data in a digital
format is used during training to build a mathematical model
that represents a phenomenon.

4 Villani Report, March 2018.
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1.2 challenges and opportunities

Machine learning is not new, in reality is a well established field of
study with a strong scientific and technical background. However,
the disruptive impact of big data and the challenges it poses has
reinvigorated the research community. Furthermore, it has contributed
to turn machine learning into a matter of great interest to the general
public. Currently, one of the most active research directions in the
ubiquitous data era is to facilitate the mechanisms to perform machine
learning at scale. In this context, it is vital that learning methods are
able to keep the pace with data, not only in terms of volume but also
the speed at which it is generated and processed, in order to be useful
to humans.

For example, online financial operations in the digital era are be-
coming the norm in multiple countries. In this context, automatic
fraud detection mechanisms are required to protect millions of users.
Training is performed on massive amounts of data, thus consideration
of runtime is critical: waiting until a model is trained means that po-
tential frauds may pass undetected. Another example is the analysis of
communication logs for security, where storing all logs is impractical
(and in most cases unnecessary). The requirement to store all data is
an important limitation of methods that rely on doing multiple passes
over the data.

Traditionally, the minimal pipeline depicted in Figure 1.2 is applied
to batches or chunks of data. As new data becomes available, the same
sequence is repeated and a new model is generated. This approach,
known as Batch Learning, has been proven effective in many real-world
applications. However, it represents important compromises when
tackling big data problems. For example, if data is coming at high
speed rates, we need to run the full pipeline over and over again
to keep a sequence of models consistent with recent data. Since (in
general) no knowledge is retained, we need to run the entire pipeline

Figure 1.3: Investment vs data size. Batch learning often struggles to main-
tain investment (time, memory, cost) below a reasonable level.
Stream learning addresses this situation by efficiently generating
incremental models from infinite data streams.
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again, which can represent a considerable waste of resources if the
data only presents small variations over time. Also challenging is to
define the amount of data to use or the time we are willing to wait
while maximizing the chances of generating an optimal model.

The balance between the investment in resources (time, memory,
costs) and the quality of the model is a critical element for the viability
of a learning algorithm in real-world big data applications. Stream
Learning is the emerging research field which focuses on learning from
infinite data streams. A stream learning algorithm only sees data once,
modifies its internal state (model) and then moves on to process the
next data sample with the premise that past samples are not seen
again. Stream learning emphasizes on an efficient use of resources
without compromising learning, Figure 1.3. In this thesis, we focus on
the overlapping region between batch and stream learning.

1.3 open data science

Data Science is an emerging interdisciplinary field in the digital era
which unifies statistics, data analysis and machine learning to extract
knowledge and insights from data. One of the major contributors to
the fast adoption of data science is the Open Source movement. The
designation “open source” is attributed to something that people,
other than the author, can modify and share because its design is
publicly available. In the context of software development it refers to
the process used to develop computer programs. The machine learn-
ing community has benefitted from an ample number of open source
frameworks focused on multiple topics and platforms (operative sys-
tem and programming language). As examples of the advantages of
open source research we can pinpoint:

• Reproducible research, an essential part of the scientific process.

• Faster development, since researchers can focus on the core
elements of their work without getting sidetracked by technical
details.

• Fosters collaboration, by providing a common platform on
which a community can thrive.

• Democratization of machine learning by reducing the technical
gap for non-expert individuals.

• Maintainability based on the community and not in isolated
individuals or groups.
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1.4 contributions

In this section we summarize the contributions of this thesis. In Ta-
ble 1.1 we categorize each chapter by type of learning (batch and/or
stream) and its focus (research and/or application).

In the context of over-indebtedness prediction (Chapter 3):

• Unlike other approaches we embrace over-indebtedness pre-
diction as a multifaceted classification problem and provide a
comprehensive data-driven solution.

• We focus on the feature-selection process rather than on specific
hand-picked features. In the literature, several solutions rely
on fixed sets of features assuming that: i) Data from different
banking institutions have similar distributions. ii) Features are
replicable. Assumptions that are difficult to fulfill in real-world
applications.

• We study the impact of extreme class imbalance. Although the
primary objective is to identify people at risk, the impact of
misclassification on both classes is considered. i) We apply a
multi-metric criterion to find the best compromise between a
model’s performance and fairness. ii) We discuss the associated
cost of misclassifying instances.

• As far as we know, this study is the first to cast over-indebtedness
prediction as a stream learning problem. This is an attractive
solution since stream models adapt to changes in the data, a
drawback of traditional batch learning where new models have
to be generated over time to replace obsolete models.

Regarding missing data imputation (Chapter 4):

• We propose a new scalable and effective model-based imputation
method that casts the imputation process as a set of classifica-
tion/regression tasks.

• Different to well established imputation techniques, the pro-
posed method is non-restrictive on the type of missing data,
supporting: Missing At Random and Missing Completely At Ran-
dom mechanisms, numerical and nominal data, small to large
data sets, including high dimensional data.

• We provide a solution to impute multiple features at a time
via multi-label learning. To the extent of our knowledge, our
approach is the first to address multi-label learning for hybrid
data types, meaning that it imputes numerical and nominal data
concurrently.
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The contributions of the fast and slow learning framework (Chap-
ter 5) are:

• We propose a unified strategy for machine learning based on
fast (stream) and slow (batch) learners. By considering learning
as a continuous task, we show that batch learning methods
can be effectively adapted to the stream setting under specific
conditions.

• We show the applicability of this new paradigm in classification.
Test results on synthetic and real-world data confirm that the
Fast and Slow Classifier leverages stream and batch methods
by combining their strengths: a fast model adapts to changes
in the data and provides predictions based on current concepts
while a slow model generates complex models built on wider
data distributions.

• We believe that our research sheds a new light on the possibility
of hybrid solutions where batch and stream learning positively
interact. This has special relevance in real-world applications
bounded to batch solutions and whose transition to the stream
setting represents a big compromise.

For our work on boosting for stream learning (Chapter 6), we list
the following contributions:

• We propose an adaptation of the eXtreme Gradient Boosting
(XGBoost) algorithm for evolving data streams. The core idea
is the incremental creation/update of the ensemble, i.e., weak
learners are trained on mini-batches of data and then added to
the ensemble.

• Additionally, we consider a simple batch-incremental approach
where members of the ensemble are full XGBoost models trained
on consecutive mini-batches. If resource consumption is a sec-
ondary consideration, this approach (after parameter tuning)
may be a worthwhile candidate for application in practical data
stream mining scenarios.

• We perform a thorough evaluation in terms of performance,
hyper-parameters relevance, memory and training time. Al-
though the main objective is learning from data streams, we
believe that our stream method is an interesting alternative to
the batch version for some applications given its efficient man-
agement of resources and adaptability. In addition, our evalua-
tion serves as an update on studies found in the literature that
compare instance-incremental and batch-incremental methods.

Finally, the contributions of our open source stream learning frame-
work (Chapter 7):



1.5 publications 9

• We introduce scikit-multiflow, an open source framework for
learning from data streams and multi-output learning in Python.
The source code is publicly available and distributed under the
BSD 3-Clause.

• scikit-multiflow provides multiple state-of-the-art learning meth-
ods, data generators and evaluators for different stream learning
problems, including single-output, multi-output and multi-label.

• scikit-multiflow is conceived to serve as a platform to encourage
the democratization of stream learning research. For example,
proposed methods in Chapter 5 and Chapter 6 are implemented
on scikit-multiflow and the corresponding evaluation is (in most
cases) performed on this platform.

Table 1.1: Field and focus of the content in this work.

Learning
Stream

Learning
Batch

Research Application

Chapter 3 3 3 3

Chapter 4 3 3

Chapter 5 3 3 3

Chapter 6 3 3 3

Chapter 7 3 3 3 3

1.5 publications

The research work presented in this thesis has been published on sci-
entific venues in the corresponding field. In the following we provide
a list of selected publications:

• Jacob Montiel, Albert Bifet, and Talel Abdessalem. “Predicting
over-indebtedness on batch and streaming data.” In: 2017 IEEE
International Conference on Big Data, BigData 2017, Boston, MA,
USA, December 11-14, 2017. 2017, pp. 1504–1513

• Jacob Montiel, Jesse Read, Albert Bifet, and Talel Abdessalem.
“Scalable Model-Based Cascaded Imputation of Missing Data.”
In: Advances in Knowledge Discovery and Data Mining - 22nd Pacific-
Asia Conference, PAKDD 2018, Melbourne, VIC, Australia, June 3-6,
2018, Proceedings, Part III. 2018, pp. 64–76

• Jacob Montiel, Albert Bifet, Viktor Losing, Jesse Read, and Talel
Abdessalem. “Learning Fast and Slow: A Unified Batch/Stream
Framework.” In: 2018 IEEE International Conference on Big Data,
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BigData 2018, Seattle, WA, USA, December 10-13, 2018. IEEE. 2018,
pp. 1065–1072

• Jacob Montiel, Jesse Read, Albert Bifet, and Talel Abdessalem.
“Scikit-Multiflow: A Multi-output Streaming Framework.” In:
Journal of Machine Learning Research 19.72 (Oct. 2018), pp. 1–5

The following papers have been submitted to journals in the field of
machine learning and are under review:

• Jacob Montiel, Jesse Read, Albert Bifet, and Talel Abdessalem.
“A Hybrid Framework for Scalable Model-based Imputation.”
In: (2018). Submited

• Jacob Montiel, Rory Mitchell, Eibe Frank, Bernhard Pfahringer,
Talel Abdessalem, and Albert Bifet. “Adaptive XGBoost for
Evolving Data Streams.” In: (2018). Submited

1.6 outline

We provide a general description of the content of this thesis, the rele-
vant research fields and its application. Preliminaries and related work
are discussed in Chapter 2. In Chapter 3 we introduce a data-driven
early warning mechanism to predict over-indebtedness, an application
of supervised learning with important implications for society. We
explore batch and stream learning as independent approaches for the
same problem. In Chapter 4 we focus on missing data, a common
feature of data that can compromise learning if it is not properly
handled. We present a scalable model-based imputation method for
batch learning classification. Next, we focus on a research question
that raises from the work in Chapter 3: Can batch and stream learning
solutions work together? In contrast to the traditional conception that
batch and stream learning are mutually exclusive, we propose an
unified approach by integrating batch and stream techniques under a
continuous learning framework. Following the same research direc-
tion, Chapter 6 introduces an adaption of eXtreme Gradient Boosting
for mining evolving data streams. Then, in Chapter 7 we describe
scikit-multiflow, an open source stream learning framework. scikit-
multiflow fills the need of an open source stream learning platform in
Python and is used to implement and evaluate the methods in Chap-
ter 5 and Chapter 6. Finally, we present our conclusions and future
directions in Chapter 8.



2 P R E L I M I N A R I E S A N D R E L AT E D
W O R K

In this Chapter, we discuss the technical background for the content
of this thesis and present related work. This chapter covers three
major topics: streaming supervised learning, over-indebtedness prediction
and missing data imputation.

2.1 streaming supervised learning

In this thesis, we focus on classification, a type of supervised learning
where a model h is generated (trained) from labeled data (X, y). Each
data sample i in (X, y) is composed of a features vector ~xi and the
corresponding response yi, which in the case of classification is the
class label to learn. The objective is to apply the model h to unknown
(unlabeled) data X′, where {X∪X′} = ∅, to predict the corresponding
class label

y′ = h(X′) (2.1)

Two classes are considered in binary classification, y ∈ {0, 1}, while
K > 2 classes are used in multi-class classification, y ∈ {1, . . . , K}. For
both binary and multi-class classification only one class is assigned per
instance. In traditional single-output models, we deal with a single
target variable yi for which one corresponding output is produced per
test instance. Multi-output models can produce multiple outputs to
assign to multiple target variables ~yi for each test instance.

With the development of the internet of things, more data is con-
tinuously collected at faster rates. Most state-of-the-art data min-
ing techniques, designed to work in batches of data, do not provide
native support for continuous flows of data. From this, a new ap-
proach emerges: stream learning. The stream data model assumes a
non-stopping, theoretically infinite, flow of data. In this context it is
vital that learning methods are efficient in terms of resources, in par-
ticular time and memory. This leads to a set of special requirements,
a type of trademark, for stream data mining methods [17]:

1. Process one example at a time, and inspect it only once. Differ-
ent to batch learning, the assumption is that there is not enough
time nor space to store multiple samples, failing to meet this
requirement implies the risk of missing incoming data.

2. Use a limited amount of memory. Data streams are assumed to
be infinite, storing data for further processing is impractical.

11
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Figure 2.1: Stream supervised learning. A data stream is an infinite source of
data whereas a predictive model transitions from ready to either
train or predict and back. Labeled data is used to train/update
the model. If data is unlabeled, then the model predicts the cor-
responding target value (class label in the case of classification).

3. Work in a limited amount of time. In other words, avoid bottle-
necks generated by time consuming tasks which in the long run
could make the algorithm fail.

4. Be ready to predict at any point. Different to batch models,
stream models are continuously updated and shall be ready to
predict at any point in time.

Learning from data streams is an important tool in the context of
applications that require specialized methods to process and under-
stand large volumes of data that are continuously generated. We can
define learning from evolving data streams as follows. Consider a
continuous stream of data A = {(~xt, yt)}|t = 1, . . . , T where T → ∞.
Input ~xt is a feature vector and yt the corresponding target where y
is continuous in the case of regression and discrete for classification.
The objective is to predict the target y′ for an unknown ~x′. The stream
learning process is outlined in Figure 2.1.

Different to batch learning, where all data (X, y) is available during
the training phase; in stream learning, training is performed incre-
mentally as new data (~xt, yt) becomes available. In stream learning,
the training phase never ends and predictive models are continuously
being updated. This is a key difference with respect to batch learning
where models are generated after analyzing all the available data and
where a new model is generated each time as more data is available.

Also important is to note that stream learning is resource-wise
efficient, Figure 2.2. In terms of memory, the model size is desired
to remain stable no mather the amount of data. This means that the
model size fits in memory no mather the volume of seen data. On the
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Figure 2.2: Stream learning represents an efficient management of resources
(memory and time) without compromising model performance.

other hand, training time is expected to grow linearly with respect to
the volume of data processed from the stream.

2.1.1 Performance Evaluation

The evaluation of stream learning methods requires special considera-
tions due to its incremental nature. Performance P of a given model
is measured according to some loss function ` that evaluates the dif-
ference between expected (true) class labels y and the predicted class
labels ŷ.

P(h) = `(y, ŷ) (2.2)

For example, a popular and straightforward loss function for classi-
fication is the zero-one losss function which corresponds to the notion
of weather the model made a mistake or not when predicting.

`(y, ŷ) =

0, y = ŷ

1, y 6= ŷ
(2.3)

Two prevalent methods in the stream learning literature are hold-
out and prequential evaluation. The hold-out evaluation is a popular
evaluation method for both batch and stream learning. In hold-out
evaluation, testing is performed on a separate set. On the other hand,
prequential evaluation [32] or interleaved-test-then-train evaluation, is
a popular performance evaluation method for the stream setting only.
In prequential evaluation, tests are performed on new data samples
before they are used to train (update) the model.

2.1.2 Concept Drift

Considering the theoretical infinite nature of data streams, an interest-
ing phenomenon arises: the underlying relationship between features
and their corresponding target(s) can evolve (change) over time. This
phenomenon is known as Concept Drift. Real concept drift is defined
as changes in the posterior distribution of the data p(y|X). Real con-
cept drift means that the unlabeled data distribution does not change,
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abrupt gradualincremental recurring outlier
t

μ

Figure 2.3: Drift patterns1, depicted as the change of mean data values over
time. Note that an outlier is not a change but noise in the data.

whereas data evolution refers to the unconditional data distribution
p(X). This is a major difference between stream and batch learning
given that in the latter the joint distribution of data p(X, y) is, in gen-
eral, assumed to remain stationary. In the context of evolving data
streams, concept drift is defined between two points in time to, t1 as

pt0(X, y) 6= pt1(X, y) (2.4)

Depending on the pattern of the change, Figure 2.3, we can estimate
the impact of concept drift on learning. We can categorize concept
drift into the following patterns [50]:

• Abrupt. When a new concept is immediately introduced. The
transition between concepts is minimal. In this case, adaptation
time is vital since the old concept becomes is no longer valid.

• Incremental. Can be interpreted as the transition from an old
concept into a new concept where intermediate concepts appear
during the transition.

• Gradual. When old and new concepts concur within the transi-
tion period. Can be challenging since both concepts are some-
what valid during the transition.

• Recurring. If an old concept is seen again as the stream pro-
gresses. For example, when the data corresponds to a seasonal
phenomenon such as the circadian rhythm.

Concept drift is of special interest when working with evolving data
streams due to its direct impact on learning. Although the incremental
nature of stream methods provides some robustness to concept drift,
specialized methods have been proposed to explicitly detect drift. Mul-
tiple drift detection methods have been proposed in the literature, [50]
provides a thorough survey of this topic. In general, drift detection
methods work under a common framework: the objective is to accu-
rately detect changes in the data distribution while being robust to
noise and resource-wise efficient, in agreement with stream learning
requirements. Some concept-drift-aware methods use drift detectors to
react faster and efficiently to changes. For example, the Hoeffding Tree
algorithm [64] (a kind of decision tree for streams) does not address
concept drift directly. To solve this, the Hoeffding Adaptive Tree [14]

1 Figure is based on [50]
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uses ADaptive WINdowing (ADWIN) [13] to detect drifts. If a drift is
detected, the structure of the tree is updated by replacing old branches
with new branches trained on the current concept.

ADWIN is a popular drift detection method with mathematical
guarantees. ADWIN efficiently keeps a variable-length window of re-
cent items; such that it holds that there has no been change in the data
distribution. This window is further divided into two sub-windows
(W0, W1) used to determine if a change has happened. ADWIN com-
pares the average between W0 and W1 to confirm that they correspond
to the same distribution. Concept drift is detected if the distribution
equality no longer holds. Upon detecting a drift, W0 is replaced by
W1 and a new W1 is initialized. ADWIN uses a confidence value
δ =∈ (0, 1) to determine if the two sub-windows correspond to the
same distribution.

2.1.3 Ensemble Learning

Ensemble methods are a popular approach to improve performance
and robustness[25, 54, 96]. Different to single-models, ensemble meth-
ods yield predictions by combining the predictions of multiple mod-
els, Figure 2.4. The reasoning for this is that finding a single top model
is difficult, whereas multiple “weak” models are relatively easy to
train and combined performance can be at par with state-of-the-art
methods [44]. The superiority of ensemble classifiers over single classi-
fiers is justified in[34] on three reasons: (i) Statistical, having multiple
models can reduce the risk of selecting a single sub-optimal function.
(ii) Computational, potentially avoid local optima in some methods by
optimizing different functions. And (iii) Representational, new func-
tions can be obtained from the combination of the base functions in
the ensemble.

One of the first techniques to address concept drift with ensembles
trained on streaming data is the SEA algorithm [113], a variant of
bagging which maintains a fixed-size ensemble trained incrementally
on chunks of data. Online Bagging [93] is an adaptation of bagging for
data streams. Similar to batch bagging, M models are generated and
then trained on N samples. Different to batch bagging where samples
are selected with replacement, in Online Bagging samples are assigned
a weight based on Poisson(1). Leveraging Bagging [18], builds upon
Online Bagging. The key idea is to increase accuracy and diversity on
the ensemble via randomization. Additionally, Leveraging Bagging
uses ADWIN to detect drifts, and if a change is detected, the worst
classifier is dropped and a new one is added to the ensemble. The
Ensemble of Restricted Hoeffding Trees [12] is an ensemble method that
combines the predictions of multiple models using stacking. The base
level models are Hoeffding Trees trained on different attribute-subsets
and the meta level learners are perceptrons (one per class value)
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Figure 2.4: Ensemble model. Data (labeled or unlabeld) is passed to the
n members of the ensemble. If data is labeled then it is used
to train each member of the ensemble. Diversity is a key ele-
ment of ensembles, thus it is assumed that the trained models
will be slightly different in order to profit from their combined
predictions. If data is unlabeled, then each member of the ensem-
ble yields its corresponding prediction which are combined to
generate the final prediction for the ensemble.

trained on class probabilities from the base level models. The Diversity
for Dealing with Drifts ensemble method in [83] uses a diversity control
mechanism based on online bagging and a drift detector to speed-up
adaptation. This method keeps two ensembles, one with low diversity
and one with high diversity. Both ensembles are trained with incoming
data but only one is used to provide predictions, the low-diversity
ensemble for stable regions (no concept drift) and the high-diversity
ensemble in regions after a drift is detected and until entering in a
stable concept region.The Self Adjusting Memory algorithm [79] builds
an ensemble with models targeting current or former concepts. SAM
works under the Long-Term — Short-Term memory model (LTM-STM),
where the STM focuses on the current concept and the LTM retains
information about past concepts. A cleaning process is in charge of
controlling the size of the STM while keeping the information in the
LTM consistent with the information in the STM. Adaptive Random
Forest [54] is an extension of Random Forest designed to work on
data streams. The base learners are Hoeffding Trees, attributes are
randomly selected during training, and concept drift is tracked using
ADWIN on each member of the ensemble. If a member of the ensemble
exhibits a drop in performance (presumably due to concept drift), then
it is replaced by an alternate tree trained on the new concept.

Boosting is another popular ensemble strategy in the batch setting.
The Pasting Votes method [22] is the first to apply boosting on large
data sets by using different sub-sets on each iteration, thus it does
not require to store all data and potentially can be used on stream
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data. Predictions are obtained by aggregating many weak learners
(batch classifiers) trained on different small subsets generated either
by random sampling or importance sampling (equal number of cor-
rectly [easy] and incorrectly [difficult] classified samples). A similar
approach based on boosting is Racing Committees [42]. Different to [22],
Racing Committees includes an adaptive pruning strategy to manage
resources (time and memory). Pruning is only applied on the last
model in the boosting sequence to decide if a new model should be
added. Additionally, the batch size used for training the ensemble can
be chosen among several candidates based on "racing", i.e. candidates
run concurrently. In the stream setting, a number of approaches for
boosting have been proposed. Learn++ [97], inspired in AdaBoost [44],
generates a batch-based ensemble of weak classifiers trained on dif-
ferent sample distributions and combines weak hypotheses through
weighted majority voting. The distribution update rule in AdaBoost is
aimed at improving the ensemble’s accuracy by focusing on difficult
(misclassified) samples, whereas Learn++ focuses on incremental data
that could introduce new classes. Alongside Online Bagging, Oza and
Russell introduced an online versions of boosting in [93]. Different to
the bagging version, when a member of the ensemble misclassifies
a training example, the associated Poisson-distribution is increased
when passing it to the next member of the ensemble, otherwise it is
decreased. A boosting-like ensemble method explicitly designed to
handle concept drift is proposed in [108]. The ensemble is generated
using knowledge-based sampling where patterns are discovered itera-
tively. The distributions update rule measures the correlation between
predictions and true class label to ensure that new distributions do
not include knowledge already encoded in the weak models. Online
Boost-By-Majority [11] is a stream version of the boost-by-majority al-
gorithm [43] for binary classification, based on a weaker assumption of
online weak learners. The authors propose an optimal version in terms
of ensemble size and sample complexity and one sub-optimal version
that is adaptive and parameter-free. The Online Multiclass Boost-By-
Majority algorithm [66] is an extension for multiclass classification.
Similarly, one optimal version and one sub-optimal version are intro-
duced. BoostVHT [117] improves training time by taking advantage
of parallel and distributed architectures without modifying the order
assumption in boosting. To achieve this, they use as base learner the
Vertical Hoeffding Trees[71], a model-parallel distributed version of
the Hoeffding Tree.

2.1.4 Incremental Learning

Two main branches can be distinguished in stream learning depend-
ing on the schema used to train a model: Instance-incremental meth-
ods [12, 14, 18, 54, 79, 93], use one sample at a time for training.
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Batch-incremental methods [22, 42, 97] use batches of data. Once a
given number of samples are stored in the batch, they are used to train
the model. The Accuracy-Weighted Ensembles [119], is a framework for
mining streams with concept drift using weighted classifiers. The
members of the ensemble are discarded by an instance-based pruning
strategy if they are below a confidence threshold. A relevant study
is [104], where the authors compare batch-incremental and instance-
incremental methods for the task of classification of evolving data
streams. While instance-incremental methods perform better on aver-
age, batch-incremental methods achieve similar performance in some
scenarios.

2.2 over-indebtedness prediction

Over-indebtedness is a serious social and economical problem which
has been subject of multi-disciplinary research for a long time. Risk
prediction solutions have been proposed for bank and firms as well
as consumers (households). The financial crisis of 2008 reinforced the
commitment of governments and financial institutions to implement
measures to control and minimize the risk of over-indebtedness [29,
30, 41, 53, 102].

Traditionally, economical and demographic factors are considered
primary factors of debt, as suggested by empirical models. Empirical
approaches for over-indebtedness prediction have been studied since
the late 60s. We refer the reader to [103] for a review of empirical
approaches for bankruptcy prediction in banks and firms from 1968 to
2005. Papers are categorized primary by the technique employed but
consideration is also given to data sources, features and techniques to
measure performance. Early approaches based on statistical techniques
have been replaced by newer intelligent techniques which provide
better performance such as neural networks [5, 116], genetic algorithms
[110], discriminant analysis [24], and support vector machines [63, 81,
109], to mention a few.

Recent inter-disciplinary empirically driven approaches provide an
alternative explanation in terms of economic behavior [1, 51, 62, 68,
92, 112], given that conventional economics have been proven to be
insufficient to explain the multi-causal nature of over-indebtedness.
These studies provide evidence of the relevance of psychological and
behavioral factors on over-indebtedness.

Despite the potential benefits of feature selection [23, 55], its applica-
tion is still limited in over-indebtedness prediction. In [115] the author
points out that only 6 out of 18 studies published from 2001 to 2007

consider Feature Selection as part of their approaches. Traditionally,
researchers rely on the development of new models to attain better
prediction performance. We argue that recent developments on feature
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selection techniques [76] represent an opportunity for data mining
applications, such as over-indebtedness prediction.

2.3 missing data imputation

Missing data mechanisms describe the underlying nature of this phe-
nomenon and are classified into three major categories [77]: I. Missing
Completely At Random (MCAR), the strongest assumption of miss-
ingness, where the events behind missing values are independent
of observable variables and the missing values themselves, in other
words, they are entirely at random. II. Missing At Random (MAR), in-
termediate level of missingness, where missingness can be explained
by observable variables. III. Missing Not At Random (MNAR), when
data is not MCAR nor MAR and the reason for missingness of data is
related to the value of the missing data itself. Consider X the matrix of
input attributes and y the corresponding labels, let D = (X, y). For the
observed values (not missing) Dobs, let Dobs = (Xobs, y). A missingness
matrix M with the same shape as X indicates if a value is missing on
X by setting its ijth entry to 1. It follows that:

MCAR: P(M|D) = P(M)

MAR: P(M|D) = P(M|Dobs)
(2.5)

In the presence of missing data, three approaches are usually consid-
ered [45]: (i) Discard instances with missing values, (ii) Let the learning
algorithm deal with missing values, (iii) Impute (fill) missing data.
Option (i) is reasonable if the amount of missing values is very small,
otherwise discarding large number of instances can make the learning
task harder or even infeasible. Additionally, for highly dimensional
data sets, discarding a complete instance due to the presence of at least
one missing value represents a significant compromise. Option (ii) is
considered under the premise that the learning algorithm supports
missing values in the data. Even if this is the case, we need to under-
stand how the algorithm handles missing values and the limitations of
such approach. Imputation (iii) is usually the recommended approach.

Although most imputation techniques focus on MCAR data [45,
69], we argue that imputation methods shall tackle both MCAR and
MAR scenarios. However, manual imputation of MCAR and MAR
data is a time consuming process and requires deep understanding
of the data and the phenomena that it describes. On the other hand,
manual imputation is recommended for MNAR data, given that data
specialists are more likely to identify the reasons behind this type of
missing data and the proper way to handle it. Finally, current trends
in data generation and collection have shifted the data archetype in
the machine learning community to larger and more complex data.
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Under this scenario, imputing data manually is impractical, therefore
scalable automatic imputation solutions are required for real-world
applications, one of such applications is classification.

Various approaches have been proposed in the literature. Basic
methods rely on simple statistical values such as mean [77, 90] and co-
variance [77]. Other methods reconstruct incomplete data incrementally:
kNN based methods [9, 69, 120] impute data based on the neighbor-
hood of a missing value and show good results when the data is
small. However, these methods suffer the computational burden of the
kNN algorithm making scalability an issue. Self-Organizing Map Impu-
tation (SOMI) [39] is a neural network model that first ignores missing
data when finding patterns, and then imputes missing data based on
the weights of activation nodes of the previously estimated patterns.
Expectation Maximization Imputation (EMI) [33] performs imputation
based on the expectation-maximization algorithm. EMI imputes val-
ues based on mean and covariance during the expectation step, then
updates them in the maximization step, this process continues until
convergence. Kernel methods [98, 99, 124] build imputation models
based on kernel functions. These non-parametric methods usually
consist of two stages: kernel function selection and bandwidth adjust-
ment. Fuzzy C-Means Imputation (FCMI) [75] and k-Means clustering
(KMC) [122], use clusters generated from non-missing data. While
some imputations methods use the entire data set (EMI, Mean Impu-
tation, Most Frequent Value), others use only parts of it (kNNI, FCMI,
KMI).

In the following, we summarize relevant imputation methods and
categorize them in Table 2.1:

Table 2.1: Related imputation methods categorization

(a) (b) (c) (d) (e) (f)

Data Type
Numerical 3 3 3 7 3 3

Nominal 7 3 3 3 3 7

Mechanism
MAR 7 7 7 7 7 7

MCAR 3 3 3 3 3 3

Performance
Evaluation

Classification 3 7 7 3 7 7

Regression 3 7 7 7 7 7

Imputation
Error1

7 3 3 7 3 3

Data set size2 S S-L S-L S-M S S

Missing values
ratio3

S-L S S M-L M-L M-L

1 With respect to the complete data set.
2 Values count: Small [<200K], Medium [200K-600K], Large [>600K]
3 Small [<10%], Medium: [10%-25%], Large [>25%]
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(a) Locally Linear Reconstruction (LLR) [69] determines the number
of neighbors k and the weights given to the neighbors in kNN
learning. Imputation is limited to numerical values. Imputed
data sets are used to train classification/regression models. LLR
assumes k to be ‘sufficiently large’ which represents a compro-
mise for large data sets.

(b) A combination of EMI with Decision Trees (DMI) and Deci-
sion Forest (SiMI) are proposed in [100]. The goal is to identify
segments of data where instances have higher similarity and
attribute correlation. A tree-based algorithm identifies partitions
in the data, given that leaves are sets of mutually exclusive in-
stances. Imputation of numerical and nominal data is performed
via EMI and Majority Class respectively.

(c) FEMI [101] uses the General Fuzzy C-Means (GFCM) [74] clus-
tering algorithm to find most similar instances for imputation
via EMI. FEMI supports imputation of numerical and nominal
data. The required number of k clusters is manually set.

(d) A model-based approach is provided in [114]. Imputation of
nominal data is performed via a classification approach, based
only on observed values. Imputed data is used to train a classifi-
cation model which is applied to complete test instances.

(e) A non-parametric iterative imputation method for numerical
and nominal values is proposed in [124]. This method uses a
mixed-kernel-based estimator and applies a grid search strategy
for selecting the optimal bandwidth. Imputed values are used to
impute missing values in subsequent iterations.

(f) An iterative model-based imputation method is presented
in [107]. Imputation of numerical data is carried by iteratively
applying regression functions in two stages. In Iteration 1, a
regression model is constructed for each attribute with miss-
ing data based only on observed data, then missing values are
predicted using these models. In Iteration 2, predicted values
are merged with observed data and new models are generated.
Iteration 2 is repeated until the difference between predictive
values falls bellow a user defined threshold.
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3 O V E R - I N D E B T E D N E S S
P R E D I C T I O N

Household over-indebtedness is an important challenge for financial
institutions and an interdisciplinary research topic. It is defined by the
European Union (EU) as “difficulties meeting (or falling behind with)
commitments, whether these relate to servicing secured or unsecured
borrowing or to payment of rent, utility or other household bills”. The
multi-causal nature of over-indebtedness falls in the intersection of
banking, budgeting, social and behavioral issues. On the other hand,
this problem falls under the scope of the Big Data paradigm, given the
large amount of data to process, the different types of data available
and the continuous flow of incoming data.

The financial crisis of 2008 triggered household problems such as
unemployment, unexpected lower income and welfare retrenchment
which combined increased the risk of over-indebtedness in the EU [29].
In 2011, one in almost nine households (11.4%) across the EU were
in arrears with their commitments [30]. According to the Banque de
France, 223 700 cases of over-indebtedness were annually reported
in average from 2010 to 2015, and in the third trimester of 2016 the
average debt was estimated at 41 470 euros.

Lessons from the crisis resulted in changes to EU legislation aimed
to ease and prevent household over-indebtedness. In France, mea-
sures for the prevention of over-indebtedness were enforced by the
Banking Reform of 2013. The AFECEI (French Association of Credit
Institutions and Investment Firms) Charter on banking inclusion and
the prevention of over-indebtedness was updated with 2 additional
support measures in 2015: (i) Establishing early warning mechanisms
for clients in delicate financial positions. (ii) Offering suitable internal
responses to clients identified as being in delicate financial positions.
In alignment with these reforms, Groupe BPCE, the second largest
French banking institution with 35 million clients, implemented an
early warning mechanism used by two members of the group: Caisse
d’Epargne (CE) and Banque Populaire (BP). The warning mechanism by
Groupe BPCE predicts the risk of over-indebtedness 6 months before
the event, using available customer data: contracts, bank activities, sav-
ings accounts, etc. If a client is identified as in risk the bank proceeds
to propose targeted offers to avoid the fall in over-indebtedness. The
warning mechanism is described in Table 3.1.

In this chapter we approach over-indebtedness risk prediction from
batch and stream perspectives, and propose a data-driven framework
(OVI1) as an early warning mechanism to prevent over-indebtedness.
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Caisse d’Epargne Banque Populaire

Gini Coefficient 84.1% 88.2%

Population Clients with an active account

and a personal loan.

DB generation Monthly. Previous data is lost

Data range 12-24 months

Features 8 categorical features

Balancing Random Under Sampling

ML Algorithm Logistic Regression

Table 3.1: Over-indebtedness warning mechanism used by the Groupe BPCE.
Baseline performance for each bank is measured using the gini-
coefficient.

The rest of the chapter is organized as follows: In Section 3.1 we
discuss the challenges related to the over-indebtedness prediction
problem. The proposed solution is presented in Section 3.2. Section 3.3
describes the methodology for our experimental evaluation.

3.1 a multifaceted problem

Over-indebtedness prediction is a challenging research topic with im-
portant implications at personal, social and economical levels. Early
warning mechanisms are deployed by financial institution as a pre-
dictive measure for this problem. In the literature, multiple solutions
focus on applying a specific learning algorithm with a fixed set of
features [115]. This is the case of the warning mechanism by Groupe
BPCE where a popular algorithm (logistic regression) is applied on
data from two banks within the group. In Table 3.1, we see a differ-
ence of ∼ 4% in performance despite the fact that the model is trained
using the same learning algorithm and the same set of features. This
shows that data from each bank has its own internal structure which
results in different performance. Thus, we argue that the practice of
fitting the data to a pre-defined machine learning pipeline represents
a significant compromise.

Under this scenario, we present a framework that addresses the mul-
tiple challenges in the prediction of over-indebtedness, namely: feature
selection, data balancing, learning method and model evaluation. The
framework involves a common set of tasks with a tailored configuration
for different banks. The framework is designed to adapt to the data
and not the other way around. This is similar to the treatment of some
diseases, where a treatment is personalized given the general health
state of the patient, life habits, allergies, etc.



3.1 a multifaceted problem 27

Furthermore, the complexity of financial markets results in contin-
uous changes in data distribution and in the relationship between
features and the class they represent. The traits that define over-
indebtedness risk today might not be the same in a few months.
Under this scenario, conventional batch models get obsolete over time
and have to be replaced.

In the following we discuss the challenges related to designing
and implementing a warning mechanism for over-indebtedness risk
prediction.

3.1.1 Feature Selection

In supervised learning, the more information (features) to describe a
phenomenon, the better. However, high dimensional data sets usually
suffer of redundancy and noise. When considering the inclusion of mul-
tiple features we must ensure that (i) they are relevant to the problem
we are facing and (ii) they provide additional information. Feature
quality is preferred over quantity. Redundant features can hinder learn-
ing since we could end over-fitting over superfluous information. On
the other hand, unrelated features introduce noise. Another aspect to
consider is the computational burden associated to processing redun-
dant or unrelated features.

Feature Selection consists in automatically finding a subset of fea-
tures f ∈ F , where F is the set of all available features, such that f
maximizes the prediction power of our model while keeping its gener-
alization (avoids over-fitting). Feature selection also reduces computa-
tional burden and processing time by reducing dimensionality [55].
Feature selection techniques are divided [23] into:

• Classifier dependent: Wrapper methods use classifier accuracy
as lead during the selection process. Embedded methods perform
feature selection during the training stage of a classifier.

• Classifier-independent: Filter methods find generic subsets of
statistically relevant features under the assumption that more
information will lead to better learning and classification.

In terms of robustness against over-fitting, filters result in better
generalization than embedded methods, which in turn prevail over
wrappers. In terms of speed, filters are in general faster, followed by
embedded methods, while wrappers are the slowest.

Solutions for over-indebtedness prediction in the literature are usu-
ally bounded to a specific set of features (either automatically or
manually selected) and assume that they can be replicated. In practice,
this is not the case, since data collection in real-world applications are
difficult to change. Given that many applications are limited to avail-
able data we focus on the selection process rather than in the resulting
set of selected features.
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3.1.2 Data Balancing

Data for over-indebtedness prediction is inherently unbalanced. In a
normal and healthy financial scenario, the majority of people belongs
to the not-over-indebted class while a very small percentage falls
in the over-indebted class. In both CE and BP, the over-indebted
class represents less than 1% of the data. This scenario represents a
challenge for learning since the over-indebted class is extremely under-
represented. Most supervised learning algorithms do not perform
well on unbalanced data, and those that support it may fail when the
imbalance is extreme [59]. For the two-classes case, where |Cmaj| and
|Cmin| are the size of the majority and minority classes respectively,
extreme class imbalance is defined as:

|Cmaj| � |Cmin| (3.1)

Data Balancing automatically reduces class imbalance while keeping
the underlying distribution of the data; the goal is to provide enough
information about each class to the learning algorithm. Reducing
class imbalance can also reduce over-fitting. An extensive review
of imbalanced learning with two-classes is provided in [59]. Data
balancing techniques are divided into two major groups:

• Under-sampling: select a subset from the majority class C′maj ∈
Cmaj such that

|C′maj| ≈ |Cmin| × ratio (3.2)

• Over-sampling: synthetically add minority class samples via an
over-sampling function f (Cmin) = C′min

|Cmaj| × ratio ≈ |C′min| (3.3)

The desired class balance ratio in Eq. 3.2 and Eq. 3.3 is usually 1.0
for 1 : 1 class balance.

3.1.3 Supervised Learning

Selecting a supervised learning algorithm is not a trivial task. More-
over, trying to fit the data into a pre-selected algorithm compromises
the information contained in the data. Understanding how learning
algorithms work and their limitations is fundamental. Other factors to
consider are:

• The variety or form of the data; the availability and capacity
to get new/more data; data reliability; the linear or non-linear
nature of the data, etc.

Model interpretability and complexity are key factors for real-
world applications. Interpretability is crucial when decisions
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based on predictive models have a direct impact on people’s
lives. This discourages the usage of black-box models since there
are no reliable means to explain the internal mechanisms applied
and the corresponding results.

•• System constraints and resources (usually over-looked) play
a major role on the design and implementation of real-world
solutions. It is essential to keep in mind constraints in terms of
computational power, data storage, scalability, etc.

Logistic Regression (LR) is a well known statistical method exten-
sively used in economics due to its interpretability and ease of use
(minimal parameter tuning). This technique is used in the warning
mechanism by Groupe BPCE. The LR algorithm models the posterior
probabilities of the class y via linear functions of ~x inputs. The cost
function minimized for the binary class case is:

cost(θ) = − 1
m

[ m

∑
i=1

y(i)log(hθ(~x(i))

+ (1− y(i))log(1− hθ(~x(i))
] (3.4)

where hθ = 1/(1 + e−θᵀ~x) is the logistic (sigmoid) function and θ is
the set of parameters to fit.

On the other hand, Tree Ensembles such as Random Forest (RF) and
Boosting Trees (BT) are state-of-the-art machine learning methods for
classification [25], popular in the research community. LR is a good
option when the number of samples is small and features show linear
nature and simple interactions. Tree Ensembles are robust to noise and
handle well non-linearity and complex feature interactions, specially
if the number of samples is large. Tree Ensembles interpretability,

Table 3.2: Comparison between logistic regression and tree ensembles.

Logistic
Regression

Tree
Ensembles

Parametric 3 7

Decision boundary
Linear
Single

Non-linear
Single/Multiple

Learns feature
interactions

7 3

Robust to noise
(irrelevant features)

7 3

Performs well with
few samples

3 7

Interpretable 3 3*

Tuning Parameters Minimal
Several (BT)
Some (RF)

* Affected by the ensemble size.
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although easy, is affected by the size and number of trained trees. In
terms of tuning parameters, LR is the simplest, only requiring one
parameter for regularization. RF has parameters to control model
complexity and computational resources. Boosting Trees are known
for the large number of tuning parameters and finding the best setting
for a specific task is a dedicated research topic. A comparison between
logistic regression and tree ensembles is available in Table 3.2.

3.1.4 Stream Learning

Stream data mining algorithms are a compelling option for over-
indebtedness prediction since they handle big data sets in an efficient
way and the generated model is continuously updated. In the current
approach (Table 3.1) Groupe BPCE collects data over time (monthly).
Given that class definitions evolve to reflect changes in the financial
system, batch models have a finite time span of optimal performance.
Furthermore, batch models require additional work to evaluate and
track performance over time, determine when the model has been
rendered obsolete and trigger the generation of a new model. Since
batch models only consider data from the current month, previous
knowledge is lost. On the contrary, stream models are continuously
updated taking into account the chronological order of data. Newer
data has a bigger impact in the updated model than older data.

Bagging is an ensemble method used to improve accuracy. Online
Bagging (OB) [93] is a popular stream technique where each example
is given a weight according to Poisson(1) instead of sampling with
replacement as in the batch case. Two base learners commonly used
along OB are Hoeffding Trees (HT) [35] and Random Hoeffding Trees
(RHT). HT are a stream version of Decision Trees. RHT use just a part
of the features taken randomly, combined with OB the result is a kind
of random forest for data streams.

3.2 a data-driven warnining mechanism

In this section, we describe Over-Indebtedness Risk Prediction 1

(OVI1), a novel framework designed for inter-bank application. De-
picted in Figure 3.1, OVI1 consists of four common tasks over three
stages:

(i) Pre-processing, involves feature selection and data balancing.
The input is a high dimensional and extremely unbalanced data
set and the output is a lower dimension and balanced data set.

(ii) Training, where a supervised learning algorithm trains a predic-
tive model using the pre-processed data.
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Figure 3.1: The OVI1 framework incorporates a set of common tasks,
whereas a tailored configuration ensures optimal performance
over different data distributions for inter-bank application.

(iii) Prediction, where a highly unbalanced test data is classified by
the trained model.

We provide a tailored configuration for each bank based on the intrin-
sic characteristics of their data. Finally, two versions of the framework
are available depending on the type of learning paradigm used: OVI1-
batch and OVI1-stream.

Selecting the proper criteria to evaluate performance is vital. The
performance of the current approach is measured using the gini coef-
ficient (gini ratio or gini index) which is an interpretation of the Area
Under Receiver Operating Characteristic (AUROC) curve

gini coefficient = (2×AUROC)− 1 (3.5)

The gini coefficient discerns between discriminative models and those
that are only representative. This is particularly important when dealing
with unbalanced data. Nonetheless, using a single metric to compare
predictive models performance is sometimes obscure and can be
misleading, specially since the gini coefficient may provide overly
optimistic performance results on highly skewed data [59].

Table 3.3 shows an example of the performance paradox on un-
balanced data. Using a single metric criteria (gini coefficient), model

Table 3.3: Different to single-metric criteria (gini coefficient), multi-metric
criteria (including sensitivity and specificity) shows that model B
is biased against the positive (over-indebted) class.

model rank single rank mult. gini-coeff. sn sp

A 3rd. 2nd. 92.5% 92.9% 88.7%

B 1st. 3rd. 93.4% 69.9% 91.2%

C 2nd. 1st. 93.3% 92.3% 89.8%
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B seems the best option compared to A and C. If additional metrics
are considered, namely sensitivity (sn) and specificity (sp), we see that
model B is biased against the positive (over-indebted) class, it sacrifices
sensitivity over specificity to achieve a better gini coefficient. Model C
represents the best compromise, it keeps a good gini coefficient while
being fair among classes.

The usage of sensitivity and specificity follows two practical reasons:

(i) They are linearly related to the gini coefficient, the ROC space is
also known as the sensitivity vs (1 - specificity) plot, and

(ii) They provide insight into the model fairness: sensitivity is the
ratio of correctly identified over-indebted instances while speci-
ficity is the ratio of correctly identified not-over-indebted in-
stances.

The specificity-sensitivity trade-off is especially important consid-
ering the extreme class imbalance and the associated cost to each class.
Although the main objective is to identify people in risk of over-
indebtedness, it is also important to consider the implications of
misclassifying a person as being at risk. From Eq. 3.1 it follows that

NFP � NFN (3.6)

where NFP and NFN are the number of false positives (FP) and false
negatives (FN) respectively. The associated cost is defined as

cost = costFP + costFN (3.7)

Individual cost for FP and FN are given by

costFP = NFP × c f p (3.8)

costFN = NFN × c f n (3.9)

where, c f p is the cost of misclassifying a person as in risk and c f n
the cost of misclassifying a person as not in risk. Although the value
of c f p can be simply determined in financial terms, c f n might not be
measurable only by economic factors. The estimation of the associated
cost is out of the scope of this research, nevertheless we take it into
consideration when evaluating the performance of predictive models.
A model is considered good if it optimizes the gini coefficient while
optimizing both sensitivity and specificity

arg max
sn,sp

(
gini coefficient(sn, sp)− |sn− sp|

)
(3.10)

We define a multi-metric evaluation criteria where:

1. Gini-coefficient is the over-all performance metric.
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2. Higher sensitivity is preferred (identify people in risk of over-
indebtedness). Models that sacrifice sensitivity over specificity
are ignored.

3. Given the class imbalance, speci f icity & sensitivity is expected.
Lower specificity means that the model fails to retain discrimi-
native information from the non-over-indebted class.

4. Considering Eq. 3.6, small variations from highest sensitivity are
justified in the specificity-sensitivity trade-off given their impact
on the associated cost (Eq. 3.7).

3.2.1 Generalization

OVI1 is a comprehensive framework for a multifaceted problem and
is intended to function as a template for defining custom solutions for
over-indebtedness prediction. The generic nature of OVI1 is designed
with replicability in mind. In this chapter, we show how we find two
tailored configurations for two banks using real-data, a process that
can be applied to other banking institutions inside and outside the
group. Additionally, we believe that OVI1 can be easily adapted to
other domains under similar conditions. One example is failure predic-
tion on airplanes where misclassifying failures has major implications,
the amount of failure examples is extremely small, and the set of
relevant features may vary depending on the type of failure to predict
and the components of the aircraft.

3.3 experimental evaluation

Real-world data sets provided by Groupe BPCE are outlined in Ta-
ble 3.4. Data is fully anonymized and comprises economic and de-
mographic features. Additional to a common subset of features (used
in the baseline), specific features for each bank are included in the
data sets. It is important to point out that the data sets are similar in
the sense that both contain economic and demographic data and are
generated by institutions within the same financial group, but there
are differences in terms of size (number of instances and number of
features) and the intrinsic characteristics of the data.

Due to privacy policies, we cannot provide a detailed description
of the features in the data sets, we refer the reader to [5, 81, 82]
for examples of similar financial features and [72] for demographic
features. It is also important to remember that the automatic feature
selection process should be replicated rather than the set of features.
The rationale for this is two-folded:

(i) Selected features are not transferable between data sets with
different data distributions.
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Table 3.4: Characteristics of real-world data provided by Groupe BPCE. No-
tice the extreme imbalance between over-indebted and not-over-
indebted classes.

Caisse d’Epargne Banque Populaire

Instances 1 676 453 705 736

Features 193 83

Over-Indebted 0.37% 0.24%

Not-Over-Indebted 99.63% 99.76%

Size (MB) 1776 254

Date September 2014 June 2015

(ii) Data collection mechanisms in real-world applications are com-
plex and hard to change. We are generally bounded to available
features, as in the case for the BP and CE data.

In order to define the best configuration for each bank, we compare
framework performance using multiple configurations against the
baseline corresponding to the mechanism by BPCE. We use real-world
labeled data and validate results by 10-fold cross-validation. Table 3.5
lists the techniques for feature selection, data balancing and supervised
learning used in our tests.

For feature selection, we test 2 embedded methods and 4 filter
methods. Embedded methods: rfe uses an external estimator (we use
LR in our tests) to recursively select a subset of features. ig uses the
feature ranking from tree-based algorithms to select relevant features.
We use different tree based classifiers: decision trees, extreme random
trees, random forest, gradient boosting trees, and extreme gradient
boosting. Tested filter methods include 2 uni-variate methods, χ2

and var; and 2 mutual information selection methods, jmi and cmim.
jmi looks for complementary features in the feature space and cmim
iteratively selects features that maximize mutual information. We use
10 feature selection methods × 50 subset sizes × 6 ML algorithms, for
a total of 300 feature selection tests.

For data balancing, we test 6 under-sampling techniques and 5

over-sampling techniques. Under-sampling: rus, where a subset of
the majority class is selected at random. nm1, nm2, nm3 use the kNN
classifier to drive under-sampling. ee generates several subsets to be
used in an ensemble learning system. For our tests we modify ee,
instead of training an ensemble system, a single classifier is trained
using the merge of all subsets obtained from ee. This way more sam-
ples of the majority class are used for training. Although duplicated
samples from the minority class are introduced (to achieve class bal-
ance), they do not provide additional information and have no impact
on the model. bc systematically performs under-sampling in a su-
pervised learning fashion. Over-sampling: SMOTE creates minority
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Table 3.5: Techniques used in our tests.

Feature Selection

Recursive Feature Elimination (rfe) Embedded method

Information Gain (ig) Embedded method

Chi-squared test (χ2) Filter method

Variance (var) Filter method

Joint Mutual Information (jmi) [121] Filter method

Conditional Mutual Filter method

Information Maximization (cmim) [40]

Data Balancing

Random under-sampling (rus) Under-sampling

NearMiss-1,2,3 (nm1,2,3) [123] Under-sampling

EasyEnsemble (ee) [78] Under-sampling

BalanceCascade (bc) [78] Under-sampling

Synthetic Minority Over-sampling

Over-sampling Technique (SMOTE) [26]

SMOTE Borderline 1,2 (smoteb1,2) [58] Over-sampling

SMOTE+Edited Nearest Neighbors (senn) [10] Over-sampling

SMOTE+Tomek links (stl) [10] Over-sampling

Model Training

Logistic Regression (LR) Batch Learning

Decision Trees (DT) Batch Learning

Random Forest (RF) Batch Learning

Extremely Randomized Trees (ET) [52] Batch Learning

Gradient Boosting Trees (GBT) Batch Learning

Extreme Gradient Boosting (XGB) [28] Batch Learning

Online Bagging (OB) [93] Stream Learning

Hoeffding Trees (HT) [35] Stream Learning

Random Hoeffding Trees (RHT) Stream Learning

class samples by adding noise to existing samples. smoteb1, smoteb2
favor synthetic samples in the border between classes. senn and stl
include data cleaning to reduce overlapping. We set as goal a 1:1
class ratio. In the case of over-sampling, 2 steps are performed due to
extreme class imbalance. In Step 1, we use over-sampling to increase
the minority class from < 1% to 5% and 10%. In Step 2, we reduce the
majority class (reaching 1:1 ratio) via under-sampling (rus, nm1, nm2
or nm3). Under-sampling tests include 6 under-techniques whereas
over-sampling tests are composed by 5 over-sampling techniques × 2

over-sampling ratios × 4 under-sampling techniques. In total 46 data
balancing tests are performed.
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For batch learning, we test logistic regression (LR) and tree based
algorithms decision trees (DT), extreme random trees (ET), random for-
est (RF), gradient boosting trees (GBT) and extreme gradient boosting
(XGB). As discussed in Section 3.1.3, parameter tuning is a character-
istic of tree ensembles and can provide advantage (or disadvantage)
against other techniques such as LR. OVI1 is designed to be indepen-
dent of parameter tuning, thus, for all tree ensembles algorithms, the
number of estimators is set to 100 and the rest of parameters are kept
to default values.

Finally, for stream learning we test OB with HT and RHT as base
learners. As discussed in Section 3.1.4, stream algorithms process
a single instance at a time and the model is updated over time as
more samples are processed. A standard procedure to transform
batch data into data streams is to perform multiple passes over the
data to simulate data flow (usually in the order of 50,000+ samples).
Class concepts are reinforced by exposing stream learners to repeated
patterns over time. In our tests we perform 10 passes over the CE data
and 30 passes for BP. Since the number of training samples in the BP
data set is small in the context of stream learning, an additional test is
performed by introducing data collected in the previous month.

3.4 results

In this section we discuss the result from our experiments. Results are
analyzed by the challenge addressed: feature selection, data balancing
and learning paradigm.

3.4.1 Feature Selection

Figure 3.2 shows the impact of feature selection on predictive models
performance. Performance increases as more features are added. We
found that <50 features are required to reach the performance plateau
where gains from additional features are marginal. χ2 performs as
expected on both data sets, while var has a cold-start on CE. Nonethe-
less, the over-simplicity of these two methods implies an important
compromise in terms of exploiting hidden information or feature in-
teraction in the data. Unexpectedly, although rfe performs well in BP,
it fails for CE. cmim, jmi and ig-dt perform well on both data sets. We
use ig-dt to represent tree-based feature selection techniques since test
results show that performance gains from different tree classifiers are
marginal. Notice that while in BP most algorithms eventually reach a
similar plateau, in CE, Figure 3.2a, LR reaches a lower plateau than all
the ensemble trees. This is evidence of the non-linear nature of the CE
data, which explains why rfe (using a linear estimator) fails. We also
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Figure 3.2: Feature selection tests. Performance over increasing number of
selected features.

observe that the plateau for jmi is slightly below the plateaus for cmim
and ig-dt.

In order to find the appropriate feature selection technique for inter-
bank application within the group, performance on both data sets are
considered. We apply the multi-metric criteria discussed inSection 3.2
to evaluate model performance. Although ig-dt performs well in both
data sets it is important to note the model dependency and risk of
over-fitting inherent to embedded methods. cmim represents the best
compromise between inter-bank application and model performance,
with RF and XGB as top performers.

Figure 3.3 shows the performance of different learning algorithms
using the sets of numerical and categorical features selected using
cmim, due to space limitations we only display the baseline and the top
performers (LR, RF, and XGB). Interestingly, selected features for CE



38 over-indebtedness prediction

80.0 82.5 85.0 87.5 90.0 92.5 95.0 97.5 100.0%

LR

RF

XGB

84.1

79.9

84.7

87.2

84.0

87.7

82.6

82.0

82.4

baseline

baseline (gini) gini sn sp
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(b) CE - using selected features.
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(c) BP - using hand-picked features.
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(d) BP - using selected features.

Figure 3.3: Feature selection tests. Performance of baseline hand-picked
features vs automatically selected features (cmim), using 22 (CE)
and 34 (BP) numerical and categorical features.

only include 2 out of the 8 features in the hand-picked set. This shows
that the non-linear characteristics of the data and the complex interac-
tion between features is hard for humans to grasp. On the other hand,
selected features for BP include 5 out of 8 features in the hand-picked
set. Additionally, we observe that LR performance in BP is close to
RF and XGB, which provides further evidence of the linear nature of
the BP data. In general, we see the benefit of using automatic feature
selection, performance gains result from features already available
which are ignored in the baseline solution. Regarding the impact of
feature selection on the specificity-sensitivity trade-off. In CE, speci-
ficity becomes greater than sensitivity which is desired since it means
that discriminative information from the majority class is retained. In
BP, we see that the gap is reduced without sacrificing sensitivity but
specificity still trails behind. We conclude that available features fail
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to optimally describe the majority class. Further feature engineering,
e.g. latent and temporal features, could correct this behavior.

3.4.2 Data Balancing

Results in Section 3.4.1 show that proper feature selection plays a
major role in performance. Data balancing can be used to fine tune
a predictive model by retaining discriminative information from the
majority class. In Figure 3.3b, we see that cmim + rus results in a good
specificity-sensitivity trade-off for CE. We found that applying other
balancing techniques for CE results in marginal gains or even lower
performance. On the other hand, predictive models using cmim + rus
on BP show better sensitivity, see Figure 3.3d. Therefore, we focus
on the BP case for discussing fine tuning predictive models via data
balancing.

Chaining over-sampling (minority class) and under-sampling (majority
class) results in adding noisy instances to the minority class while
adding even more instances to the majority class. Test results show that
this harms performance, since the trained model is less certain about
the minority class (due noise) and more certain about the majority class
(due to additional instances), it sacrifices sensitivity over specificity.

From under-sampling tests, we find that nm3 performs better than
nm1 and nm1 performs better than nm2 but all three fail to outperform
rus. Moreover, nm2 complexity restricts its applicability on big data
sets. The best under-sampling performers are bc and the modified ee.
Due to space limitations only the top performers (cmim + [bc,ee]) are
shown in Figure 3.4. Notice the negative impact of bc and ee on RF,
which improves gini-coefficient by further increasing the sensitivity-
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(a) BP - BalanceCascade
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Figure 3.4: BP data balancing. In general, balance cascade and easy ensemble
reduce the specificity-sensitivity gap. This is not the case for RF,
which tends to favor specificity over sensitivity.
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specificity gap. On the other hand, XGB improves gini-coefficient
while reducing the gap. Although bc does a better job at reducing the
sensitivity-specificity gap, its classifier dependency adds one degree of
freedom to the framework. Therefore we recommend ee given its easy
implementation and classifier independence. Considering the extreme
class imbalance, the small loss in sensitivity (-1.7 instances correctly
classified as in risk), is compensated by the gains in specificity (+850.3
instances correctly classified as NOT in risk). The decision to use rus
or ee depends on the associated cost given by Eq. 3.7. Despite the fact
that data balancing can reduce the specificity-sensitivity gap, feature
engineering is recommended in order to find features with better
discriminative power.

3.4.3 Batch vs Stream Learning

Table 3.6 summarizes the top results achieved by OVI1-batch using
RF and XGB and by OVI1-stream using OB with HT and RHT with
and without model-update. In Figure 3.5, the top results are shown,
including the actual number of clients classified (confusion matrix).
For both tests, batch and streaming, we use the best set of features
(per bank) found via cmim.

For the batch setting (Figure 3.5), XGB over-performs RF while re-
ducing the sensitivity-specificity gap. CE and BP data show improve-
ments in both specificity and sensitivity compared with the baseline.
For CE, OVI1-batch with XGB reaches performance gains of +12.0%
gini coefficient, +2.8% sensitivity and 14.4% specificity. Large gains
are explained by the non-linear nature of the CE data, which is better
handled by tree ensembles. Additionally, greater specificity (while

Table 3.6: OVI1 framework (batch and stream) against baseline.

mechanism f-sel d-bal model gini sn sp

C
ai

ss
e

d’
Ep

ar
gn

e baseline manual rus LR 84.1 87.2 82.6

OVI1-batch cmim rus RF 95.5 88.3 96.7

OVI1-batch cmim rus XGB 96.1 90.0 96.2

OVI1-stream cmim rus OB HT static 94.4 87.5 96.4

OVI1-stream cmim rus OB RHT static 92.7 86.0 95.2

Ba
nq

ue
Po

pu
la

ir
e baseline manual rus LR 88.2 91.2 84.1

OVI1-batch cmim rus RF 91.7 92.6 88.6

OVI1-batch cmim ee XGB 93.1 92.2 89.2

OVI1-stream cmim rus OB RHT static 86.2 86.6 85.3

OVI1-stream cmim rus OB RHT updated 89.4 89.9 86.5
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Figure 3.5: Baseline vs top performers. For CE, OVI1-batch and OVI1-
stream provide over-all better performance and correct the low
specificity in the baseline. Gains in BP are lower which is ex-
pected given that the baseline performance is better than in CE.
The specificity-sensitivity gap is reduced but specificity is lower,
better features are required to describe the majority class. Al-
though gains for OVI1-stream are marginal in BP, it is important
to remember the major role that automatic model updates play
when predicting over evolving financial data. Confusion matrices
are the average of 10-fold cross validation.

also improving sensitivity) implies the proper handling of the major-
ity class (not-over-indebted). For BP, OVI1-batch with XGB achieves
+4.9% gini coefficient, +1.0% sensitivity and +5.1% specificity. Even
though data balancing (modified ee) reduces the specificity-sensitivity
gap, specificity trails behind sensitivity as in the baseline. It is very
likely that the available pool of features fails to optimally describe the
majority class. In general, performance gains for BP are lower than
those for CE primary due to lower specificity. However, it should be
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noted that, in the baseline, performance is already better in BP com-
pared to CE. We see that OVI1-batch represents optimal performance
for CE, and a boost in performance for BP.

Figure 3.5 shows the results of OVI1-stream. The same behavior in
the sensitivity-specificity trade-off is observed, specificity is greater
than sensitivity in CE and lower in BP. For CE, OVI1-stream with a
static model generated using the current month data and OB with HT
outperforms the baseline with gains of +10.3% gini coefficient, +0.3%
sensitivity and +13.8% specificity. On the contrary, the smaller number
of samples on the BP data set results in under-performance of stream
learning techniques which fall short against the baseline when a static
model is trained using only the data from the current month. When
consecutive months (current + previous) are considered, OVI1-stream

using OB and RHT results in +1.3% gini coefficient, -1.1% sensitivity
and +2.5% specificity. The small loss in sensitivity is compensated by
the gain in specificity (and gini coefficient). In CE we see that OVI1-
stream provides a large performance boost similar to OVI1-batch.
On the other hand, performance of OVI1-stream for BP is lower than
OVI1-batch but still above the baseline. Despite this, we consider
that OVI1-stream for BP is a good option considering the model is
continuously updated (adapts) adding robustness against changes in
debt data, which is not be handled by batch models. Additionally, it
is worth noting the smaller size of the BP data and the limitations
of our tests to 2 months of data, while stream learning methods are
known to perform better when exposed to large amounts of data (as
in CE). Finally, two characteristics of stream learning are exploited
when using consecutive data: (i) the model is automatically updated
and (ii) chronological order is retained ensuring that the predictive
model is consistent with current data.



4 M I S S I N G DATA I M P U TAT I O N AT
S C A L E

Missing data is a common phenomenon in real-world applications. It
can be introduced during data collection by human manipulation or by
sensor failures, or by hardware/software failures during data storage
and/or transmission. The average amount of missing data is estimated
in a range between 5% and 20% [101, 114]. Missing data has a negative
effect on performance of supervised learning methods, according to [2],
ratios between 5–15% require the usage of sophisticated methods while
above 15% of missing values can compromise data interpretation.

Under the big data paradigm, scalable and practical approaches
are required to handle missing data. Proper imputation methods are
essential to provide complete data to supervised learning algorithms
that rely on the quality and quantity of data. In this chapter, we
present an effective and scalable imputation method for numerical
and nominal data, which mitigates the impact of MAR and MCAR
data (Section 2.3) on binary and multi-class classification.

The rest of this chapter is organized as follows. Section 4.1 intro-
duces our imputation method. The methodology for the experimental
evaluation is described in Section 4.2 and results are discussed in
Section 4.3.

4.1 a model-based imputation method

A predominantly characteristic of data used to train predictive mod-
els is the underlying presence of correlation/interaction between at-
tributes [23, 55, 76]. Under this assumption, we introduce Cascade

Imputation (CIM), a model-based incremental imputation method.
CIM casts the imputation process as a set of classification/regression
tasks where unobserved values are imputed on a supervised learn-
ing fashion, in other words, a predictive model for missing data is
generated based on input-response samples.

Similarly, we introduce an extension of CIM to impute multiple at-
tributes at a time. This is consistent with the multi-label learning prob-
lem where a set of labels are associated to each instance. Accordingly,
we develop two multi-label versions of CIM: Multi-label Cascade Im-
putation (Multi-CIM) which builds upon Classifier Chains [105], and
Ensemble-Multi-label Cascade Imputation (eMulti-CIM) which
aims to improve generalization by training a collection of models in
the form of an ensemble. To the extent of our knowledge, this is the
first work to address the simultaneous learning/prediction of nominal

43
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and numerical data in multi-label learning, previous works only focus
on a single type of data at a time.

4.1.1 Cascade Imputation

In the following, we describe the main steps performed by CIM. Given
an incomplete data set D = (X, y), we want to find the corresponding
imputed data set D′ = (X′, y). Figure 4.1a shows the original positions
of missing data (in red) in X. First, CIM splits X column-wise, keeping
complete data to the left and incomplete data to the right. Columns
are sorted (ascending order) based on the amount of missing values.
Figure 4.1b shows the updated column order after sorting.

CIM iterates trough the columns with missing values, incremen-
tally imputing attribute-columns via predictive models, hence cascade
imputation. For each column with missing values i, CIM trains a
classification model if the attribute is nominal or a regression model
if it is numerical. On each iteration i, CIM sorts rows in X, placing
all instances where the value of i is known (observed) at the top and
instances with unknown (missing) values at the bottom. Figure 4.1c
shows the updated row positions after sorting.

Columns 0→ i correspond to the setup of a classification/regres-
sion problem. Known inputs Xtrain and their responses ytrain are used
to train a model hi. Imputed values result from applying the cor-
responding model imputed = hi(Xpredict). This process is repeated
until all attributes with missing values have been processed. Imputed
values (in green) are used on following iterations of the algorithm,
Figure 4.1d. When done, X′ rows are sorted back to the original order
and we have D′ = (X′, y). The pseudo code for CIM is shown in
Algorithm 1.

Additionally, CIM calculates for each instance j a missingness weight
wj, Eq. 4.1, ranging from 0 (all values missing) to 1 (no missing values).
In practice, 0 < wj ≤ 1. wj represents the level of noise that may be

(a) (b) (c) (d)

Figure 4.1: CIM Steps. (4.1a) Original data with missing values marked in
red. (4.1b) Updated positions after sorting attributes by count
of missing values. (4.1c-4.1d) Imputation iterations, repeated
until data set is complete. Imputed values in green are used in
following iterations of the algorithm.
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Algorithm 1: Cascade Imputation

Input : Matrix X with missing values
Output : Matrix X′ with imputed values

1 Function CASCADE(X)

2 n = number of instances in X;
3 d = number of attributes in X;
4 rowsoriginal ← original row order of X;
5 for i = 0 to n do
6 countmis = number of missing attributes in row i in X;
7 weights[i] = (d− countmis)/d ; /* Missingness weights

*/
8 X ← sort columns per number of missing values ;

/* Ascending order, left to right */

9 for k = 1 to d; /* Need at least one column for

learning */

10 do
11 if attribute k has missing values then
12 m = number of missing values for attribute k;
13 rowsobs ← rows with observed values for attribute k;
14 rowsmis ← rows with missing values for attribute k;
15 Xtrain = X[rowsobs][0 to k− 1];
16 ytrain = X[rowsobs][k];
17 Xpredict = X[rowsmis][0 to k− 1];
18 if attribute k is categorical then
19 learner ← classifier;
20 else
21 learner ← regressor;
22 h =TRAIN(Xtrain, ytrain) ; /* Train model */

23 X[rowsmis][k] = h(Xpredict) ; /* Imputation */

24 X′ =REINDEX(X, rowsoriginal);
25 X′ =CONCATENATE(X′, weights) ; /* Include weights */

26 return X′;

introduced by the imputation process, and can be used in the final
classification task to assign higher importance to complete instances
over imputed ones.

wj =
|Xj| − |Xj−mis|

|Xj|
(4.1)

Although CIM can be paired with different classifiers/regressors,
we propose two configurations based on popular algorithms in the
research community [25]. CIM-LR uses logistic regression and linear
regression, while CIM-RF uses random forest. Logistic and linear
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regression are both types of generalized linear models which which
can be formulated as:

y = Xβ + ε (4.2)

where y is a vector of observed values, X is a matrix of row-vectors
xi, β is a parameter vector and ε is the error or noise. y is continuous
in the regression case; while for classification, y is the probability of
a categorical outcome, a two states variable for the most basic case.
Random forest, a type of tree ensemble, is robust to noise and handles
well non-linearity and complex attributes interactions, specially if the
number of samples is large. Random forest creates n independent and
fully grown decision trees Ti. For regression, the average value of the
trees is calculated. For classification, a majority vote is applied for the
class predictions Ci(x) = k of each tree.

Regression, f (x) =
1
n

n

∑
i=1

Ti(x) (4.3)

Classification, C(x) = arg max
k

n

∑
i=1

(Ci(x) = k) (4.4)

Resources required by CIM are upper bounded by the classification
task on the complete attributes set X. On each independent iteration,
a subset Xtrain ∈ X is used. The number of iterations m required is
limited by the number of attributes d where m ≤ d. If all attributes have
at least one missing value, then CIM starts the cascade immediately
after the attribute with less missing values. For each iteration, if an
instance in Xtrain has missing values, it is removed; if a missing value is
in Xpredict, it is replaced with zero. Once the cascade ends, CIM imputes
the first attribute. The worst case scenario is if all the attributes in
a high dimensional data set have missing values. We discuss this
scenario in the test section.

4.1.2 Multi-label Cascade Imputation

In the previous section, we described how the cascade method works
by incrementally imputing a single attribute at time. A natural ex-
tension of this process, is to impute multiple attributes during the
same step within the cascade. In other words, we can consider the
imputation problem as a set of multi-label learning problems. Recall
that in single-label learning there is a single target to learn for each
instance j, this is (Xj, yj). On the other hand, in multi-label learning,
the same instance corresponds to a subset of l possible labels (Xj, Yj)

where Yj = {y0j , y1j , . . . , ylj}. Additionally, labels in Yj are not mutually
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(a) (b) (c) (d)

Figure 4.2: Multi-CIM Steps. (4.2a) Original data with missing values
marked in red. (4.2b) Updated positions after sorting attributes
by count of missing values. (4.2c-4.2d) Multi-label imputation
iterations, repeated until data set is complete. Imputed values in
green are used in following iterations of the algorithm. Different
to CIM, multiple cascade passes might be required.

exclusive (as indeed, such a case is known as multi-class). A popular
method for multi-label learning is Classifier Chains (CC) [105]. CC
exploits correlation between labels by incrementally building binary
classifiers for each label. The i-th classifier hi is constructed on (X, yi),
where yi ∈ Y and i = {0, 1, . . . , l}. After the hi model is trained, its
predictions are used to extend the attribute space for model hi+1 cor-
responding to the next label in the chain. In the case of multi-label
regression, a number of regressors are constructed in similar fashion,
this is known as Regressors Chains (RC).

Multi-label Cascade Imputation (Multi-CIM), is an extension of
CIM to allow imputation of multiple attributes at a time. It is important
to note that Multi-CIM handles different setups where targets (labels)
to predict can either be numeric, nominal or a combination of both.
The combination of numerical and nominal is a special case given
that traditional multi-label solutions have focused on homogeneous
data types. As far as we know, this is the first work to employ chain-
multi-label models for heterogeneous target types. For the rest of the
chapter, we refer to the combination of CC and RC as Hybrid Chains

(HC).
The steps performed by Multi-CIM are shown in Figure 4.2. The

sorting of columns and rows are performed in a similar way as in CIM,
Figure 4.2a shows a data set with missing values. First, Multi-CIM
sorts the columns by the number of missing values, in ascending order
from left to right, see Figure 4.2b. In the next step, Figure 4.2c, rows are
sorted to build the learning task setup. Different to CIM, Multi-CIM
takes l-attributes to impute, from the resulting data arrangement, the
learning task corresponds to building a model based on (Xtrain, Ytrain)

to impute the missing values as Ypredict = h(Xpredict).
Given that the location of missing values across multiple attributes

are not necessarily the same, this means that missing values might
be introduced into the Xtrain, Ytrain and Xpredict matrices. During the
learning task, train data instances with missing values are ignored,
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while in Xpredict missing values are replaced with zero. On the other
hand, it might be the case that not all values in Ypredict are actually
missing, if a value is known then the prediction is ignored. Consider a
missingness matrix M with the same shape as Ypredict which indicates
if the ij-th value is missing in Ypredict by setting Mij = 1 or Mij = 0 if
the value is known, then

Ypredictij =

hi(Xpredictj), if Mij = 1

Ypredictij , otherwise
(4.5)

After imputing the current set of attributes Yk, the cascade continues
with the next set of attributes Yk+1, Figure 4.2d. Different to CIM,
multiple passes of the cascade might be required to impute all missing
values. The number of cascade passes is proportionally related to the
number of labels l to impute and the ratio of missing values. Notice
that, as in CIM, imputed values are used in subsequent iterations
within the cascade.

Similar to CC, Multi-CIM performance is strongly related to the
order of the labels within the chain.To overcome this, Ensemble-
Multi-label Cascade Imputation (eMulti-CIM) increases diversity
by building an ensemble of HC, Figure 4.3. The steps performed
by eMulti-CIM are the same as Multi-CIM, except that it uses an
ensemble of m HC base models instead of a single one to impute
multiple attributes simultaneously. To enforce diversity, the order
of labels within the chain are randomly permuted, this means that
each base models is trained based on different label-order. The final
imputation values are obtained by combining the predictions (P) of
the base models within the ensemble; calculating the average if the
attribute contains numeric data or using majority vote if the attribute
contains nominal data:

Yij =

 1
m ∑m

k=1 Pij, if the j-th attribute is numeric

arg maxk ∑m
i=1(Pij = k), if the j-th attribute is nominal

(4.6)

Figure 4.3: In eMulti-CIM, m base models (HC) are used to create an en-
semble. Final imputation (prediction) is calculated by merging
the outputs of the members of the ensemble.
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Table 4.1: Data sets. [Domain] B: biology, D: demography, I: image, M: music,
T: text; [Type] B: binary, MC: multi-class.

Name Domain Instances
Attributes

Source1 Type
Num. Nom.

Adult D 48,842 6 8 UCI B

Census-IKDD2 D 299,285 7 33 UCI B

Music M 593 72 0 MEKA B3

Enron T 1,702 0 1,001 MEKA B3

Genbase B 661 0 1,186 MULAN B3

Llog T 1,460 0 1004 MEKA B3

Medical T 978 0 1,449 MEKA B3

Scene I 2,407 294 0 MEKA B3

Yeast B 2,417 103 0 MEKA B3

Covtype B 581,012 10 44 UCI MC

1 Repository
2 Census-Income (KDD)
3 Multi-label data set. We use the first class-label to

test binary classification.

4.2 experimental evaluation

We are interested in the impact of imputation on classification. In
order to thoroughly evaluate our proposed method, we use 10 data
sets (Table 4.1) from a variety of domains and with the following
characteristics:

• Classification type: Our tests focus on binary and multi-class
classification. Although we use multi-label data sets, we test
binary classification by learning and evaluating only one label
(first label by default), this is equivalent to learning and evaluat-
ing under the baseline binary relevance classifier (see Chapter 2).
This also serves to control the complexity of our tests given that
different classification tasks require different metrics to measure
performance.

• Data type: Numerical, nominal or a combination of both.

• Size: Defined by the number of instances × the number of
attributes. Current trends in data collection, processing and
storage have shifted the attention of the research community to
larger data sets. Data sets range from small (< 200K values) to
large (> 600K values).

adult Data extracted from the US 1994 Census database. The classes
correspond to whether a person makes over 50K a year. Also known
as ‘Census Income’.
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census-income kdd Contains weighted census data from the 1994

and 1995 Current Population Surveys by the US Census Bureau. Each
instance includes 41 demographic and employment related variables.

music Corresponds to labeled audio tracks with different moods,
e.g. amazed-surprised, happy-pleased, etc. Instances are described by
72 numerical attributes.

enron Contains annotations for for a subset (1700 messages) of
the Enron Email Data set, labelled by the UC Berkeley Enron Email
Analysis Project.

genbase The purpose of this data set is to classify proteins into the
most important protein families. Each protein sample is described by
1186 nominal attributes.

llog A text data set where the task is to classify articles into one or
more categories. Includes 1460 articles from the ‘Language Log’ blog,
organized into 75 categories.

medical Information extracted from free text reports by radiologists
and labeled into 45 diagnosis codes from the ICD-9-CM (International
Classification of Diseases, Ninth Revision, Clinical Modification).

scene A data set for semantic scene categorization, where each of
the instances (images) can belong to one or more classes.

yeast A set of genes, described by 103 attributes, labeled into 14

groups of the Functional Catalogue (annotation scheme for the func-
tional description of proteins).

covtype This data set contains data collected over time by the US
Forest Service. Classes correspond to cover type in forest on squares
of 30× 30 meters.

Different types of tests are performed in order to evaluate multiple
aspects of the proposed method. We categorize our tests into: impact
of imputation on classification, scalability, imputed vs incomplete data for
model training and multi-label imputation.

4.2.1 Impact on Classification

We compare the performance of classifiers trained on imputed data
with multiple ratios of missing data vs the (baseline) performance
of a classifier trained using complete data. This test is performed as
follows:
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1. Generate missing data. First, we remove all original missing val-
ues from each data set. Then, for each complete set we generate
incomplete versions with 4 missing values ratios (5%, 10%, 25%
and 50%) and 2 mechanisms (MCAR and MAR). For MCAR,
we draw at random a number from a uniform distribution
fU(vi,j) = xi,j for each value vi,j in the data set, if xi,j ≤ t then
we mark the value as missing. The threshold t is defined by the
ratio of missing values. For MAR, we draw at random a pair of
attributes (A, B) and a threshold tA ∈ A. A value Bj is marked
as missing if Aj ≤ tA. This process is repeated until the ratio of
missing values is reached. We generate 10 different versions of
each configuration for a total of (10× 4× 2 = 80) incomplete
sets for each complete data set.

2. Impute missing data. We compare CIM against 4 well estab-
lished imputation techniques. Constant imputation (Constant)
where a constant value is used to fill missing values. We use
0 for numerical values and define a ‘missing’ class for nomi-
nal values. Simple imputation (Simple), fills missing values using
the mean value for numerical attributes and the most-frequent
value for nominal attributes. Expectation-Maximization Imputation
(EMI) [33, 61, 70] is an iterative method with two steps. Expec-
tation (E), where values are imputed based on observed values.
And Maximization (M), where imputed values are evaluated
and updated if necessary according to the data distribution. The
EM algorithm converges to imputed values consistent with the
observed distribution. k-Nearest Neighbor Imputation (kNNI) [9]
uses the neighborhood of a missing value to estimate the cor-
responding imputation value. Defining the optimal k value is
challenging and has important implications on performance at
the cost of computational burden [36, 80]. In our tests we use
k = 3, as a compromise given the range of data set sizes. Al-
though parameter tuning can improve performance of predictive
models, it would increase the complexity of CIM. In our tests, we
set the classifiers/regressors in CIM-LR and CIM-RF to default
values, using 100 trees for random forest. In total, we generate
80× 6 = 480 imputed versions of each data set.

3. Use imputed data for classification. We train classification mod-
els using the imputed data and compare the performance of
these models against the baseline performance of models gen-
erated using complete data. In order to control the complex-
ity of our tests we use logistic regression and random forest
as final classifiers. Our focus is to measure the impact of im-
puted data, thus, we use default parameters for each classi-
fier, again using 100 trees for random forest. We use 10-fold
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cross validation for each classification test, and perform in total
(480× 2× 10 = 9600) tests for each data set.

4.2.2 Scalability

To test the scalability of CIM, we focus on three large data sets, Adult,
Covtype and Llog. We compare the two versions of CIM against EMI
and kNNI. Simple and Constant are not included given their low
complexity. For each complete data set D, we create subsets Di ∈ D
corresponding to 5%, 10%, 25%, 50%, 75% and 100% of the complete
data set sizes. Then, for each complete subset Di we generate 10

incomplete versions with 5%, 10%, 25% and 50% missing values ratios
using MCAR and MAR. In total, we measure imputation time on
(6× 10× 4× 2 = 480) incomplete sets. Reported times are the average
of imputing each incomplete sets for each combination of set size,
missing values ratio and missingness mechanism.

4.2.3 Imputed vs Incomplete Data

Since some algorithms handle missing data internally, we are inter-
ested in comparing performance of models trained on incomplete
data vs models trained on imputed data. eXtreme Gradient Boosting
(XGB) [28] handles missing values by defining a default split direction
on each tree node. An instance is classified into the default direction
if the attribute value needed for the split is missing. We generate 3

classification models using XGB, one model is trained on incomplete
data and the other two models are trained on imputed data from
CIM-LR and CIM-RF. Again, we focus on the Adult, Covtype and Llog
data sets. For each complete set we generate 10 incomplete versions
with 5%, 10%, 25% and 50% missing values ratios using MCAR and
MAR. Final classification task is evaluated using logistic regression
and random forest with 10-fold cross validation. In total we perform
(4× 10× 2× 3× 10 = 2400) tests for each data set.

4.2.4 Multi-label Imputation

We compare the impact on classification when using single-label im-
putation vs multi-label imputation, in other words CIM vs Multi-
CIM/eMulti-CIM. Preliminary tests confirm that the distribution of
missing values in MCAR data have a considerable impact on the num-
ber of cascade passes in Multi-CIM and eMulti-CIM. This is because,
differently to MAR, missing values are equally distributed across the
data, reducing the chances of getting large regions of missing values to
impute. In consequence, Multi-CIM performs more passes increasing
considerably the imputation time, undermining the potential of multi-
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label imputation on MCAR data. For testing multi-label imputation,
we focus on MAR data on the representative data sets, namely Adult,
Covtype and Llog.

First, we compare CIM against Multi-CIM. To provide a fair com-
parison we use the same base learners the internal learning tasks in
both techniques. We use as base classifier/regressor either logistic re-
gression/linear regression (CIM-LR, Multi-CIM-LR) or random forest
(Multi-CIM-RF, Multi-CIM-RF). We test using three different number
of labels (targets) to impute simultaneously, l = {3, 5, 7}. 4 ratios of
missing values 5%, 10%, 25% and 50% are used and 10 incomplete ver-
sions are generated for each pair of data set-ratio. The final classifica-
tion task is performed using logistic regression and random forest with
10-fold cross validation. In total we perform (10× 4× 3× 10 = 1200)
tests for each data set.

Second, we test CIM against eMulti-CIM. The number of labels to
impute is set to l = 7 and two ensemble sizes are tested m = {10, 30}.
Since we are creating an ensemble, we opt to use single models as base
learners for the HC, in our tests we use decision trees. We compare
CIM paired with random forest (CIM-RF) against eMulti-CIM with
decision trees as base learner for the chains (eMulti-CIM-DT). The
same ratios of missing values are used. For the final classification
task, we use logistic regression and random forest with 10-fold cross
validation. In this case, (10× 4× 2× 10 = 600) tests are performed
per data set.

4.2.5 Measuring Performance

An appropriate metric is vital to compare predictive models. Simple
metrics such as accuracy can be misleading when classes (labels) are
unbalanced [59], a trait of real-world data. For example, in binary
classification, if a data set has only 4% of positive instances and
we train a model that classifies all (100%) test instances as negative.
Although the classifier fails for all positive instances its accuracy is
96%, which is misleading. The data sets in our tests, Table 4.1, present
different degrees of class imbalance, being particularly high in multi-
label data sets, since we only consider one class for binary classification
the rest of classes-labels are grouped into a larger (negative) class.

We use two metrics that account for the actual amount of correctly
classified instances, namely: Area Under the Receiver Operating Char-
acteristic Curve (AUROC) [38] to evaluate performance of binary
classifiers and F1-Score for multi-class classifiers. The ROC curve is
a popular tool used to measure the performance of binary classifiers.
It represents the trade-off between true positives and false positives
as the positive threshold (t) changes. The ROC Space is defined by
the false positive rate (fpr) and the true positive rate (tpr). The Area
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Under the Curve (AUC) reduces the interpretation of the ROC curve
to a single metric.

AUROC =

∞∫
−∞

tpr(t) f pr(t)dt (4.7)

tpr =
tp

tp + f n
f pr =

f p
f p + tn

(4.8)

The perfect classifier will have AUROC = 1.0, while a random
classifier is the one with AUROC = 0.5. Any value lower than 0.5
means a classifier performs worse than a random guess.

Similarly, F1-Score is a popular metric to measure the performance
of binary classifiers and can be extended to the multi-class case. F1-
Score measures performance as a trade-off between the ratio of true
positives against all actual positives (precision) vs the ratio of true
positives against all predicted positives (recall).

F1-Score = 2
pr

p + r
(4.9)

precision = p =
tp

tp + f p
recall = r =

tp
tp + f n

(4.10)

where tp, f p, f n, tn correspond to the number of True Positives, False
Positives, False Negatives and True Negatives, respectively.

Given the multiple configurations in our test setup, we define an
Overall Performance Ranking to simplify the interpretation of results.
Since we are interested in robust methods, we focus on the general
behavior of imputation methods over multiple configurations rather
than on isolated cases. We use the Root Mean Square Error (RMSE)
to measure the performance difference between a classifier trained
on complete data (zbase), and the same classifier trained on imputed
data (zi), where i corresponds to n missing values ratios. The RMSE
is calculated as:

RMSE =

√
1
n

n

∑
i=1

(zbase − zi)2 (4.11)

Then, we rank each imputation method based on its RMSE within a
test set. One test set contains results grouped by [data-set, supervised
learning algorithm, missing data mechanism] for n missing values
ratios. We award points based on the following criteria:

3: Top: If the method is the best performer and there are no ties.
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2: Tie: If multiple methods fall in a 5% band from the top perfor-
mance.

1: Runner-up: Methods bellow 5% from the top.

0: If the imputation method fails for all the files in the test set.

0: If the method is the last among non-fail methods and the
difference with the best runner-up is larger than 1x the difference
between top and best runner-up.

4.3 results

Consider the operating range of an imputation method as the conditions
under which imputation is successful. Such conditions include the
characteristics of the data (number of instances, dimensionality, type
–nominal or numerical–, etc.), as well as the nature and amount of
the missing values. Interestingly, we observe that the operating range
of EMI and kNNI is rather small, and they fail under multiple test
configurations.

Table 4.2 shows the number of successful imputations over 40 in-
complete data sets for each mechanism. kNNI fails when the number
of values in the data set is large (Adult, Census-IKDD, Covtype, Enron,
Genbase, Llog, Medical, Scene and Yeast), regardless of the missing
data mechanism or missing values ratio. On the contrary, when the

Table 4.2: Number of successful imputations (out of 40) for each test set.
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Adult 40 40 40 40 0 40 40 40 40 31 0 40

Census-IKDD 40 40 40 40 0 40 40 40 40 31 0 40

Music 40 40 40 11 40 40 40 40 40 10 40 40

Enron 40 40 40 0 0 40 40 40 40 0 0 40

Genbase 40 40 40 0 0 40 40 40 40 0 0 40

Llog 40 40 40 0 0 40 40 40 40 0 0 40

Medical 40 40 40 0 0 40 40 40 40 0 0 40

Scene 40 40 40 15 0 40 40 40 40 0 0 40

Yeast 40 40 40 36 40 40 40 40 40 10 40 40

Covtype 40 40 40 0 0 40 40 40 40 0 0 40

Total 400 400 400 142 80 400 400 400 400 82 80 400
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number of values is small (Music,Yeast), kNNI performance is in the
top-tier. On the other hand, EMI is sensitive to high dimensionality
(Enron, Genbase, Llog, Medical), and success ratio drops as the miss-
ing values ratio increases (Adult, Census-IKDD, Music, Scene, Yeast),
especially on MCAR data. This indicates that EMI is sensitive to data
size, missingness mechanism and ratio of missing values. In contrast,
CIM-LR, CIM-RF, Constant and Simple methods successfully impute
data for all test configurations. However, Constant’s performance is
mostly inconsistent with worst performance on small data sets and
on MCAR. Simple performs remarkably well through our tests. It is
interesting that such simplistic solution performs in overall better than
EMI and kNNI across multiple test configurations. Finally, the two
versions of CIM show the best overall performance, being CIM-RF the
top performer.

The ranking of overall performance across multiple test configura-
tions is available in Table 4.3. Top performer is CIM-RF, followed by
CIM-LR and Simple. Notice that optimal performance is achieved by
CIM without using parameter tuning for the internal classification/re-
gression tasks. Although Constant imputes data successfully for all
tests, its overall performance is low. kNNI is next as it shows good per-
formance with small to medium size data sets but fails on large data
sets. The worst performer in our tests is EMI given its narrow operat-
ing range. However, it is important to remark its good performance
when the missing values ratio and the data set size are small. The
Scene data set is an odd case since EMI provides above the baseline
performance for 5%, 10% and 50% missing values. Moreover, reserva-
tion is required since not all files are successfully imputed (only one
file with 50% missing values is successfully imputed). We also see a
boost in performance above the baseline in other cases, predominantly
on those where the missing values ratio is small (Music, Llog, Scene).
Detailed information for these results is available in Appendix 4.

Table 4.3: Overall performance ranking over multiple test configurations.
Larger values are better. Top performer is CIM-RF, followed by
CIM-LR and Simple.

Classifier Mechanism C
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Logistic Regression
MAR 13 17 14 1 2 12

MCAR 15 21 5 0 4 10

Random Forest
MAR 16 11 13 1 2 18

MCAR 13 18 7 0 3 16

Total 57 67 39 2 11 56
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Figure 4.4: Scalability test results for CIM, EMI and kNNI. CIM imputation
time decreases with larger missing values ratios, while EMI and
kNNI are weak against large data set sizes and ratio of missing
values.

The impact of the supervised learning algorithm on performance is
also important to consider. In Table 4.3 we see that logistic regression
and CIM-RF are a good combination for both MAR and MCAR. Re-
sults show that random forest does a better job at exploiting imputed
data from CIM-LR and Simple. In particular, we see a significant
boost in performance when Simple is paired with random forest. This
explains the close gap between CIM-LR and Simple in the overall
performance ranking. Covtype with more than 31M values provides
insight on the suitability of sophisticated imputation methods for big
data sets. The top performer in this case is CIM-LR, followed closely
by Simple and CIM-RF. This suggests that Simple represents a good
compromise for extremely large data sets, given the computational
burden of sophisticated imputation methods.

Scalability test results are shown in Figure 4.4 for Adult, Llog and
Covtype. We observe that CIM takes longer to impute MCAR data.
This is expected given that missing values are equally distributed
across the data attributes, requiring more iterations of the cascade.
CIM is faster on MAR data with low missing values ratio, but as
the ratio increases (≥ 25%) there are more attributes to process and
imputation time gets closer to the time for MCAR. Notice that for
kNNI and EMI, imputation time increases along with the missing
values ratio, while the contrary happens for CIM-LR and CIM-RF.
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Figure 4.5: Performance comparison between classification models trained
using incomplete vs imputed data. Models are created using
XGB which handles missing values in the train data.

This is explained by the fact that there is less training data as the
number of missing values increases, which results in less training time
for the classification/regression models within CIM. In Adult, kNNI is
the slowest imputation method. On the other hand, Llog presents the
worst case scenario for CIM given its high dimensionality, especially
with MCAR data. Nonetheless, notice that the gap between CIM
and kNNI decreases as data size and missing values ratio increase.
For Covtype, kNNI is again the slowest to impute data and starts to
fail at 25% of the original data set size, while CIM-LR and CIM-RF
successfully impute data for all subset sizes. EMI fails to impute data
for all subsets of Llog and Covtype.

In Figure 4.5 we show the results of training a classification model
(XGB) using incomplete data vs imputed data. For Llog, we see that the
classifier trained on incomplete data trails behind as the ratio of
missing values increases. This is more noticeable on MCAR data.
Covtype provides a large number of instances to learn from, still we
see a considerable performance gap on MAR data. On the contrary, the
3 classifiers for MCAR data behave similarly. In Adult, we find similar
performance for both MAR and MCAR data with a ∆AUROC ≤ 0.02.
We conclude that, although there are some instances (Adult) where
training on incomplete data can provide good results, this is not the
general case and automatic imputation methods shall be considered,
especially if the missing values ratio is above 5%.

Finally, single-label vs multi-label test results are shown in Figure 4.6
for Multi-CIM and in Figure 4.7 for eMulti-CIM. We omit plots for
the Adult given that the difference in performance is marginal for both
Multi-CIM and eMulti-CIM. Considering the overhead from multi-
ple cascade passes we find that CIM represents the best compromise
between learning performance and imputation time. In the case of
Multi-CIM, Figure 4.6, we observe gains in Llog (a high dimensional
data set) compared with CIM when using multi-label imputation,
specially when the ratio of missing values is ≤ 25%. However, the
combination of CIM-RF with logistic regression, is particularly hard to
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Figure 4.6: CIM vs Multi-CIM test. Three number of labels (3, 5, 7) are
used for Multi-CIM. While we observe performance gains in
high dimensional data (Llog), the impact of the final learner
shows that combining CIM-RF with logistic regression is a good
compromise. Notice that larger number of labels (7) can improve
performance on small-medium missing values ratios.

outperform for Multi-CIM. This is consistent with our previous obser-
vations regarding the impact of the final learner on the interpretation
of imputed data. In Covtype, Multi-CIM consistently under-performs
with respect to CIM. In Figure 4.7, we compare eMulti-CIM using
decision trees and two ensemble sizes m = {10, 30} against CIM-RF
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Figure 4.7: eMulti-CIM test, setting to 7 the number of labels to impute at a
time for Multi-CIM and eMulti-CIM and using two ensemble
sizes (10, 30) for eMulti-CIM.

and Multi-CIM-RF. In Llog we observe improvement over Multi-CIM
when m = 30 but still fails to outperform the combination of CIM-RF
and logistic regression. On the other hand, in Covertype, we observe
that the ensemble approach in eMulti-CIM reduces the gap observed
between CIM and Multi-CIM, without outperforming CIM.

As previously discussed, a major source of unreliability in Multi-
CIM and eMulti-CIM is the distribution of missing values which leads
to the introduction of missing values during the cascade. Considering
the rather unsatisfactory results we believe that further research is
need, such as optimizing the learning tasks creation to maximize
regions with missing values. Although multi-label imputation results
are below expectations, we note two interesting outcomes: First, we
confirm the viability of using HC on heterogeneous data types. Second,
these results indicate that CIM is a simple, yet scalable and efficient
imputation method.

Test results show that CIM performs well on a variety of condi-
tions, expanding beyond the operating range of EMI and kNNI. An
additional consideration is the straightforward implementation of
an imputation+classification pipeline using CIM, given that it does not
require extra tools to the ones used for the classification problem.
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A common premise (communis opinio) in machine learning is that
batch and stream learning are mutually exclusive. A typical start point
when tackling machine learning problems, is to categorize them as
either batch or stream, and from that point most studies treat them
separately. This separation often arises from specific requirements and
expectations from both types of learning.

In batch learning, constraints on resources such as time and memory
are somewhat relaxed (within acceptable limits) in favor of complex
models that generalize well the data that describes a phenomenon. For
example, neural networks (NN) and tree ensembles, such as random
forest (RF) and extreme gradient boosting (XGB), are popular tech-
niques in classification that require large amounts of data for training.
Additionally, as the amount and complexity of the data increases,
these techniques are known to be computationally demanding [91].
For example, in [73], a large deep neural network is used to learn
high-level features. Training time on 10 million images is 3 days for
a 9-layer locally connected sparse autoencoder, using 1000 machines
(16000 cores).

On the other hand, requirements for stream learning [15] are based
on the assumption of a continuous flow of data. In this context, storing
data is impractical, thus models are incrementally trained, data is
processed as it arrives (one at a time) and never re-used nor stored.
Streaming techniques prioritize the optimization of two resources:
time and storage. Since streams are assumed to be potentially infinite,
stream models are required to be always available, this means that they
must provide predictions at any time.

Different to the batch setting, where data distribution is assumed
static, in data streams the relationship between input data and the
corresponding response (label) may change over time, this is known
as Concept Drift. Without intervention, batch learners will fail after
drift occurs, since they were essentially trained on data that does not
correspond to the current concept. A common intervention is to train
a new batch model introducing the new concepts. Stream techniques,
on the other hand, adapt to new concepts as the model is updated
while some techniques even include special mechanisms designed to
handle drifts.

In this chapter, we consider that learning is a continuous activity
and aim to show that there exists an overlapping region where batch
and stream learning can positively interact, benefiting from their
strengths while compensating their weaknesses. Stream learners are
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easier and cheaper to maintain, they adapt (react) to changes in the
data distribution and provide predictions based on the most recent
data. Batch learners require time to collect sufficient data before they
can build a model, but once available, they typically generate more
complex and accurate models.

While storing a complete data stream is impractical, current trends
in (cheap) data storage [27, 111] provide the means to store large
subsets of the stream. In fact, big data sets for batch learning are
usually generated by collecting data over time. In this scenario, where
data is continuously arriving, we propose a framework composed of
stream and batch learners.

This unified approach is similar to the model proposed by Nobel
Prize in Economics laureate Daniel Kahneman in his best-selling book
Thinking, Fast and Slow [67] to describe the mechanisms behind human
decision-making. The central thesis of this book is a dichotomy be-
tween two modes of thought: System 1 is fast, instinctive and emotional;
System 2 is slower, more deliberative, and more logical. Equivalent
systems for Machine Learning, are outlined in Table 5.1.

Table 5.1: The Fast and Slow systems for machine learning.

FAST SYSTEM SLOW SYSTEM

Cheap (mem., time) Expensive (mem., time)

Always ready Trains on large batches

Robust to drifts, adapts Complex and robust models

Focus on the present Generalizes the larger scheme

The rest of the chapter is organized as follows: Section 5.1 gives a
brief overview of the working memory model and its application in
machine learning. Section 5.2 describes the Fast and Slow Learning

framework and its application on classification. Section 5.3 outlines
the experimental evaluation. In Section 5.4 we discuss our test results.

5.1 from psychology to machine learning

In Psychology, the Atkinson-Shiffrin model [6] describes the human
memory as composed of three elements: Sensory Memory, Long-Term
memory and Short-Term memory. Contrary to the Atkinson-Shiffrin
model that describes the Short Term Memory as a static store, the
working memory model proposed by Baddeley and Hitch in the semi-
nal work [7], describes the Short Term Memory as dynamic process.
According to this working memory model, a Central Executive con-
trols the actions of the other components and serves as a supervisory
system that becomes involved when cognitive processes go astray.
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The Long-Term — Short-Term memory model (LTM-STM) has been
used in the field of machine learning in an attempt to replicate the way
in which the human brain works. This model is found in the Long Short
Term Memory networks (LSTM) [60], a well known type of recurrent
neural network which is known to perform, for many tasks, better than
the standard version. A couple of drift-aware ensembles, also work
under the LTM-STM model. The Two-Layer System presented in [47] is
composed of a learning layer (Layer 1), where a model is learned for
the original problem, and a control layer (Layer 2) that monitors the
learning process of the first layer. In the second layer, a drift detection
mechanism is used to identify regions of stable concepts which are
stored in a pool of long-memory models. Similarly, the Self Adjusting
Memory (SAM) model [79] builds an ensemble with models targeting
current or former concepts. SAM is built using two memories: STM
for the current concept, and the LTM to retain information about past
concepts. A cleaning process is in charge of controlling the size of the
STM while keeping the information in the LTM consistent with the
information in the STM.

5.2 fast and slow learning framework

In this chapter, we introduce the Fast and Slow Learning (FSL)
framework. Similarly to [47] and [79], we approach learning as a
combination of two systems: Fast and Slow. Moreover, we consider
learning as a continuous task where batch and stream learning co-exist.
The Fast system, consists of a stream model M f which is continuously
updated over time. The Slow system consists of a sequence of batch
models {Ms1 , Ms2 , . . . , Msn} that are replaced as they become obsolete
and a data buffer that stores most recent data for training. Under this
schema, Fast and Slow learners complement each other: The Fast

learner, incrementally trained as data becomes available, provides
predictions consistent with the current concept and adapts quickly to
concept drift. Whereas the Slow learner first collects a large amount
of data to generate complex models, which are potentially superior in
the presence of stable concepts. An overview of the FSL framework is
available in Figure 5.1.

5.2.1 Fast and Slow Classifier

In the following, we describe an application of the FSL framework
for classification, the Fast and Slow Classifier (FSC). In the FSC,
the internal models in the Fast and Slow systems correspond to
classification models. Consider a continuous stream of data A =

{(~xi, yi)}|i = 1, . . . , t where i represents the current time and t → ∞.
~xi is a feature vector and yi the corresponding target class such that
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Figure 5.1: Fast and Slow Learning framework overview.

yi ∈ {C1, C2, . . . , Ck}. A Fast (stream) model M f is trained on single
instances as they arrive. A Slow (batch) model Ms is trained using the
data buffer B = {(~xi, yi)}|i = b− n + 1, . . . , b} such that B contains
the last n samples in A with respect to a given point in time b.

STREAM : train f (M f , (~xi, yi)) (5.1)

BATCH : trains(Ms, B) (5.2)

The objective is to accurately predict the class of the current feature
~xt, as its label is presumed to be initially unknown. The predicted label
of a model M is denoted as ŷ. As soon as the true label y gets revealed
the performance P is measured according to some loss function `.

P(M) = `(y, ŷ) (5.3)

Performance of stream models is measured using prequential evalua-
tion, where an instance’s class is predicted before using it for training.
This is, for the i-th instance:

ŷi = Mi−1(~xi) (5.4)

train f (Mi−1, (~xi, yi)) (5.5)

FSC works in two modes, outlined in Figure 5.2, where Fast and
Slow systems perform slightly different tasks:

• Single mode: Corresponds to the beginning of the stream, from
i = 0 until Ms is trained (provides predictions). In this mode,
only the Fast system is active and FSC effectively performs as a
stream classifier, whereas the Slow system stores incoming data
into its buffer B← (~xi, yi), and triggers the training of Ms when
the buffer reaches its limit.
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Figure 5.2: FSC operation. In single-mode, the Fast model is used for predic-
tion while Slow is buffering the data. In dual-mode, both models
predict each sample but only one is selected based on their recent
performance. Slow models are replaced in presence of concept
drift.

• Dual mode: Begins once training of Ms is complete. From this
point, FSC tracks the performance of M f and Ms and selects the
one with best (current) performance Pt over most recent data.
Data buffering in B continues in a sliding window fashion, if
concept drift occurs the data in the buffer is used to train new
batch models. Upon entering into dual mode, FSC remains in that
mode.

Notice that when we refer to Ms as slow, we refer to the training
time as well as the time required for data collection. Since data arrives
on time intervals ∆t, the time for the Slow classifier to be ready to
predict is:

idle time = (∆t× n) + time(train(Ms)), (5.6)

where n is the number of samples. The worst case scenario is when
data arrives at slow rates (large ∆t) and training time is high, for
example a complex deep neural network with hundreds of layers.

5.2.1.1 Training Batch learners on Data Streams

If concept changes in the stream, Ms becomes obsolete and has to be
replaced by a new model trained on the current concept. We propose
a strategy to track Ms performance and trigger the training of new
models automatically. FSC uses the ADWIN [13] change detector to
track changes in the performance of Ms. ADWIN keeps one dynamic
size window that grows when there is no change and shrinks other-
wise. If the difference between the means of two possible adjacent
sub-windows exceeds a delta depending on a predefined confidence
parameter δ then a change is detected and the dynamic window re-
duces its size. As soon as ADWIN detects a change, the training of
new models is triggered.

FSC uses the buffer B to train and evaluate new models. B is split
into two adjacent sets Btrain and Btest where |Btrain| � |Btest|, keeping
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the data arrival order so Btest contains the last samples from the stream.
In addition to training a model on Btrain, FSC trains K candidate
models on different samplings of Btrain, in order to improve the chances
of training an optimal model. FSC applies three different sampling
strategies:

• Probabilistic Adaptive Window (PAW) [19], keeps in logarithmic
memory a sample of items W, giving more weight to newer
items but maintaining some older items. Each new item i is
stored into W then for each j element in W, a random number r
in (0, 1) is obtained, then j is removed from W if r > 2−1/|W|.

• Reservoir Sampling (RS) [118], samples R random items from
a stream (without replacement) and is equally biased towards
old items and new items. For a sample size R with i items seen
so far, the chance of any item to be chosen is R/i. For the next
item, a chosen item has a probability to remain of R/(i + 1) and
a new item has a probability of R/(i + 1) to be kept.

• Weighted Reservoir Sampling (WRS)[37]. Samples from a
weighted distribution where each items has a corresponding
weight in the stream. A key value ki is assigned to each item i
in the stream, by ki = u1/wi

i , where wi is the weight of the item
and ui is a random number in (0, 1). Finally, the R items with
largest keys ki are kept. FSC assigns weights to instances in Btrain
based on their arrival order, with larger weights given to newer
instances.

Once all candidate models (Ms′1,··· ,K+1
) are trained, FSC uses Btest to

compare their performance against Ms. FSC picks between the top
candidate Ms′top

and the current model Ms based on their performance:

Ms =

Ms, if P(Ms) > P(Ms′top
)

Ms′top
, otherwise

(5.7)

5.2.1.2 Model selection

During dual mode operation, FSC applies the prequential method to
evaluate the performance Pt of M f and Ms at time t to identify the
current top performer. Then, FSC yields predictions from the current
top performer for the next n instances. Similar to humans, FSC uses
the Fast system by default. Thus predictions from FSC are given by:

FSC(~̂x) =

M f (~̂x), if Pt(M f ) ≥ Pt(Ms)

Ms(~̂x), otherwise
(5.8)
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One way to measure performance is using sliding windows such
that only last n samples are taken into account. Let yW and ŷW be
the true and predicted classes in the window W, then the prequential
error at time t is

Et(W) = `t(yW , ŷW) (5.9)

A consequence of excluding older samples is that measurements can
vary considerably between consecutive windows, which translates in
more transitions between M f and Ms.

An alternative to sliding windows are fading factors [49], which are
faster and memory-less. This method decreases the influence of older
samples on the measurement as the stream progresses. Computing the
loss function ` for each sample, the prequential error at time t using
fading factors is estimated by

Et = St/Bt

St = `(yt, ŷt) + (α× St−1)

Bt = 1 + (α× Bt−1)

(5.10)

Where α ∈ R : 0 � α ≤ 1 is the forgetting factor. In Section 5.3,
we show how using fading factors effectively reduces the number of
Fast-Slow model transitions while keeping the performance of FSC
optimal.

We propose two main variants of FSC based on the method used to
measure performance. In the following, we refer as FSC to the variant
that measures performance over sliding windows, while FSC f f uses
fading factors.

A third option is to consider the model selection as an instance of
an infinitely repeated game, where a player j (M f , Ms) receives a stage-
game payoff ut

j period-by-period. In the average discounted criterion [46],
the discount factor δ ∈ R : 0 < δ < 1 indicates how patient is a player.
The assumption is for each player to maximize a weighted sum of per-
period payoffs, where later periods weight less than earlier periods.
The average discounted value is calculated as

(1− δ)
∞

∑
t=0

δtut
j (5.11)

In our experiments, we apply discount to evaluation measurements
using sliding windows by setting ut

j = Et
j(W). This option is more

conservative, resulting in a substantial drop in the number of model
transitions. A possible application for this option is the case where
one of the models is intended only as a fallback alternative, a kind of
safety net for classification performance.
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5.3 experimental evaluation

We are interested in the task of classification in presence of concept
drift. In order to thoroughly evaluate FSC, we select data sets from
a variety of domains, for both binary and multi-class problems, see
Table 5.2. We use 7 synthetic data sets and 5 real-worlds data sets. The
synthetic data sets include different types of drift, including: abrupt
(concept changes suddenly), gradual (concept changes slowly over a
region where past and new concepts are present) and incremental-fast
(there exist multiple intermediate concepts).

agrawal Based on the Agrawal generator [3], represents a data
stream with 6 nominal and 3 numerical features. Different functions
map instances into two different classes. 3 abrupt drifts are simulated
for AGRa and 3 gradual drifts for AGRg.

hyper A stream with fast incremental drifts where a d-dimensional
hyperplane changes position and orientation. Obtained from a random
hyperplane generator [64].

mixed drift A combination of 3 streams: Interchanging RBF, Mov-
ing Squares and Transient Chessboard. Contains incremental, abrupt
and virtual drifts.

sea A data stream with 3 numerical features where only 2 attributes
are related to the target class. Created using the SEA generator [113].
3 abrupt drifts are simulated for SEAa and 3 gradual drifts for SEAg.

Table 5.2: Data sets. [Type] S: synthetic data; R: real world data. [Drifts]
A: abrupt, G: gradual; I f : incremental fast.

# instances # features # classes Type Drift

AGRa 1000000 9 2 S A

AGRg 1000000 9 2 S G

HYPER f 1000000 10 2 S I f

MDRIFTa 600000 2 10 S A

SEAa 1000000 3 2 S A

SEAg 1000000 3 2 S G

TCHESSa 200000 2 8 S A

AIRL 539383 7 2 R -

COVTYPE 581012 54 7 R -

ELEC 45312 6 2 R -

POKER 829201 10 10 R -

WEATHER 18159 8 2 R -
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transient chessboard A stream with abrupt drifts designed to
penalize algorithms that discard older concepts. Data is generated by
randomly selecting squares in a chessboard.

airlines Real-world data containing information from commercial
flights scheduled departures within the US. The objective is to predict
if a flight will be delayed.

electricity Data from the Australian New South Wales electricity
market where prices are not fixed but change based on offer and
demand. The 2 target classes represent changes in the price (up or
down).

cover type This data set contains data collected over time by
the US Forest Service. Classes correspond to cover type in forest on
squares of 30×30 meters.

poker Randomly drawn poker hands [13]. Drift is introduced by
sorting hands by rank and suit.

weather Contains weather information collected between 1949

and 1999 in Bellevue, Nebraska. The objective is to predict if it will
rain or not on a given date.

For further details, we refer the reader to [54] for AGRAWAL, HY-
PER and SEA, and to [79] for MIXED DRIFT and TRANSIENT CHESS-
BOARD.

We configure FSC using Hoeffding Trees (HT) [35] as M f and eX-
treme Gradient Boosting (XGB) [28] as Ms. In this section we use the
labels Fast and Slow to refer to M f and Ms respectively. Using this
configuration, we aim to show that FSC is an effective collaboration
strategy for learning from evolving data streams. Given that neither
HT nor XGB have an explicit mechanism to handle drifts, robustness
in performance on drift zones can be reasonably attributed to the drift
detection mechanism in FSC which triggers the creation of new Slow

models. In our tests, we assume the training time for Slow models to
be smaller than the time ∆t between incoming samples, see Eq. 5.6.
This means that Ms is ready to predict from instance n + 1. The size
of the buffer B is set n = 10000 for all data sets except for the smaller
ones (ELEC and WEATHER) where n = 5000. The size of the window
W to compare Slow models is set to 200 samples, the same number
of samples used to periodically compare Fast vs Slow performance
and perform model selection. For sampling the data in Btrain, we set
the window size in PAW equal to |Btrain| (remember that the actual
sample size is dynamic) where |Btrain| = |B| − |Btest| = 9800. Two dif-
ferent sample sizes, corresponding to 50% and 75% of Btrain are used
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for reservoir sampling (RS50, RS75) and weighted reservoir sampling
(WRS50, WRS75), Finally, we set the confidence δ = 0.002 for ADWIN
and the forgetting factor α = 0.999 for fading factors. We perform two
main tests:

1. Compare FSC against the performance of Fast and Slow over
the stream, this is, measure the impact in performance from
the collaboration between models. During single mode operation,
only the Fast model is active, thus FSC defaults to this model
for predictions and performance is the same. Once Slow is
trained, FSC enters into dual mode and further model trainings
are triggered by the drift detector. It is important to notice that
Fast and FSC cover the entire stream while Slow only covers
part of it. We compare performance for the models during both
modes.

2. Compare FSC and FSC f f against other learning methods: Pas-
sive Aggressive Classifier (PAC) [31], an incremental learning
method that modifies its prediction mechanism in response to
feedback from current performance. The Perceptron Classifier
(PRCP). Hoeffding Adaptive Trees (HAT) [14], which updates
the tree structure in response to drift changes. And Self Adjust-
ing Memory (SAM) [79], described in Section 5.1. It is important
to note that HAT and SAM are methods designed to handle
concept drift.

FSC is implemented using scikit-multiflow [89], a stream learning
framework in Python (described in Chapter 7). Tests are performed
using the implementations of PAC and PRCP in scikit-learn [95], the
Python implementation of XGB and the implementations of HT, HAT
and SAM from scikit-multiflow. All classification methods are set to
default parameters. To measure performance, we use accuracy for
binary classification and kappa statistics for multi-class classification.

5.4 results

An example of Fast and Slow models working independently is
shown in Figure 5.3. Test results for the Fast and Slow models corre-
spond to HT and XGB respectively. Plots in Fig. 5.4, 5.5 show model
performance over time (top), the currently selected model indicating
the source (Fast or Slow) of predictions yield by FSC (middle) and the
drift detection flag (bottom). Due to space limitation not all plots are
shown.

Results for FSC are summarized in Table 5.3 and 5.4, divided de-
pending on the operation mode (single+dual, dual) in which they where
measured. Results indicate that FSC performs better than Fast for all
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Figure 5.3: Fast (orange) and Slow (blue) models sliding accuracy on AGRg
which contains 3 gradual drifts at the 25%, 50% and 75% marks.

data sets across the entire stream (single+dual). On the other hand, FSC
performs better than Fast and Slow during dual mode in most cases. It
should be noted that when we say that FSC performs better we refer
to the optimal integration of predictions from Fast and Slow models.
We report performance in terms of accuracy and kappa statistics but is
important to note that the main performance indicator used by FSC is
accuracy for binary streams and kappa statistics for multi-class streams.

Table 5.3: Test results (mean accuracy) for FSC using sliding windows for
performance tracking and model selection. Numbers in bold are
top values. Values in single+dual are the average performance of
Fast and FSC for the whole stream. Type indicates if the stream is
B:Binary or M:Multi-class. Main performance indicator is accuracy
for binary streams and kappa for multi-class.

Accuracy

single+dual dual mode

Type Fast FSC Slow Fast FSC

AGRa B 90.07 91.23 86.97 90.04 91.22

AGRg B 80.79 89.05 85.95 80.67 89.01

HYPER f B 78.76 84.73 84.49 78.70 84.72

MDRIFTa M 44.95 53.54 52.08 44.77 53.50

SEAa B 86.43 88.41 88.37 86.43 88.43

SEAg B 86.43 88.09 88.06 86.43 88.11

TCHESSa M 68.89 95.66 98.35 69.76 97.96

synth avg 76.62 84.39 83.47 76.69 84.71

AIRL B 63.81 65.15 63.95 63.86 65.23

COVTYPE M 82.33 83.23 77.75 82.73 83.64

ELEC B 77.88 77.96 76.06 77.12 77.24

POKER M 74.15 89.07 88.30 74.24 89.33

WEATHER B 73.97 76.16 77.19 74.10 76.66

real avg 74.43 78.31 76.65 74.41 78.42

overall avg 75.71 81.86 80.63 75.74 82.09
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Table 5.4: Test results (mean kappa) for FSC using sliding windows for
performance tracking and model selection. Numbers in bold are
top values. Values in single+dual are the average performance of
Fast and FSC for the whole stream. Type indicates if the stream is
B:Binary or M:Multi-class. Main performance indicator is accuracy
for binary streams and kappa for multi-class.

Kappa

single+dual dual mode

Type Fast FSC Slow Fast FSC

AGRa B 78.62 81.01 73.86 78.57 80.99

AGRg B 61.02 76.82 70.40 60.79 76.76

HYPER f B 57.43 69.37 68.87 57.28 69.34

MDRIFTa M 35.71 45.29 43.66 35.48 45.22

SEAa B 71.10 75.23 75.14 71.11 75.29

SEAg B 71.08 74.58 74.51 71.09 74.63

TCHESSa M 50.11 78.75 84.46 50.89 81.07

synth avg 60.72 71.58 70.13 60.74 71.90

AIRL B 12.67 16.51 17.75 12.79 16.70

COVTYPE M 59.19 60.70 47.35 59.47 61.00

ELEC B 51.68 52.26 49.21 50.54 51.25

POKER M 32.95 76.54 79.29 33.16 77.29

WEATHER B 31.98 38.96 41.91 32.65 40.79

real avg 37.69 48.99 47.10 37.72 49.41

overall avg 51.13 62.17 60.53 51.15 62.53

In AGRa (Figure 5.4a) and AGRg (Figure 5.4b) we can distinguish the
regions where drifts are simulated and their impact on the classifiers.
In both cases, the Slow system reacts faster than Fast due to the
change detection mechanism that triggers the training of new batch
models. In AGRa, the Slow system recovers quickly after the second
drift but it is not able to train an optimal model for the concept and
FSC chooses Fast. This is corrected later as a new drift is detected
(around the 700K mark). In AGRg, Fast takes longer to adapt since the
concept drift is gradual. In this case, we see two clear regions after the
second and third drifts where FSC opts for the Slow model.

A more complex scenario is seen in COVTYPE (Figure 5.4e), where
FSC constantly changes between Fast and Slow with only small
regions dominated by one model. Despite this, we notice that FSC
yields predictions from the current top performer, resulting in an
overall improvement. In ELEC (Figure 5.4f), model selection is easier
to observe given the smaller size of the stream. In these cases we see
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Figure 5.4: Current (sliding) performance over the last 200 instances for FSC
(green) vs Fast (orange) vs Slow (blue). Below each plot are
the flags corresponding to model selection and drift detection.
Accuracy is shown for binary classification and kappa statistics for
multi-class classification.

that FSC benefits from continuously picking predictions from both
Fast and Slow models.

The results from HYPER f (Figure 5.4c) are interesting since they
exemplify the case where one of the classifiers becomes superior.
Fast performance drops around the middle of the stream and FSC
defaults to Slow to provide predictions. This finding has important
implications, it highlights the scenario where a batch model is a better
predictor for a stream, but requires time to become optimal. The first
half of the stream can be considered as a kind of tuning phase where
FSC yields predictions from Fast and Slow. When an optimal Slow

model is trained FSC defaults to it. We have successfully trained an
optimal batch model for the stream while keeping the requirement of
providing predictions at any time.

As previously indicated, TCHESSa (Figure 5.4d) is designed to
handicap classifiers that favour new concepts over old ones. Abrupt
and frequent drifts are challenging for Fast which starts with very low
performance and takes most of the stream to perform better although
still below Slow. On the other hand, Slow performs consistently better
despite sudden (and very short) drops due to the nature of the stream.
This results further strengthens the hypothesis that batch and stream
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Table 5.5: Average ratio of Slow model selection per sampling strategy. Buffer
corresponds to using all instances in the buffer (no sampling).

Buffer PAW RS50 RS75 WRS50 WRS75

AGRa 0.00 4.00 14.00 6.00 34.00 42.00

AGRg 0.00 7.27 16.36 9.09 18.18 49.09

HYPER f 1.67 3.33 3.33 1.67 3.33 86.67

MDRIFTa 0.00 2.75 0.00 2.75 0.92 93.58

SEAa 6.67 20.00 6.67 6.67 20.00 40.00

SEAg 5.26 0.00 5.26 10.53 10.53 68.42

TCHESSa 0.00 12.50 0.00 25.00 0.00 62.50

AIRL 1.56 1.56 12.50 7.81 12.50 64.06

COVTYPE 0.75 1.50 2.26 3.01 3.76 88.72

ELEC 3.70 0.00 14.81 3.70 11.11 66.67

POKER 0.90 1.19 3.28 5.97 7.46 81.19

WEATHER 20.00 0.00 0.00 0.00 20.00 60.00

average 3.38 4.51 6.54 6.85 11.82 66.91

models can positively interact and shows how we can effectively apply
a batch model into the stream learning setup.

It is important to notice that the proposed mechanisms in charge
of creating new Slow models is effective on most cases, enabling
the positive interaction between Fast and Slow. The average ratio of
selected candidate Slow models per sampling strategy is displayed in
Table 5.5. We observe that WRS75 is the sampling strategy that results
in more optimal Slow models, followed by WRS50.

In Figure 5.5 we see that using fading factors to measure perfor-
mance reduces the number of translations between Fast and Slow

models. Although the impact on overall performance is marginal with
gains < 1% on FSC f f over FSC, the usage of fading factors represents
a good compromise between performance, number of model transi-
tions and resources. Due to space limitations we only show plots for
selected data sets.

In AGRg, Figure 5.5a, we see a significant drop in the number of
model transitions in regions where one of the models starts show-
ing better performance around the 300K and 550K marks. Another
interesting example is HYPER f , Figure 5.5b, as previously discussed,
Slow is the overall top performer for the second half of the stream.
Using sliding windows we still see some model transitions whose
impact on performance is presumably marginal, Figure 5.4c. These
transitions are not observed (after the middle mark) using fading
factors, in this case FSC yields predictions from Slow for the rest
of the stream. As expected, COVTYPE in Figure 5.5c remains as a
complex case where both models interact continuously. However, we
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Figure 5.5: Current (sliding) performance of FSC f f with fading factors
(green) vs Fast (orange) vs Slow (blue). Notice that using fading
factors results in less transitions between models.

see an overall reduction in the number of model transitions without
compromising performance. Finally, although in ELEC fading factors
reduces performance, the difference is marginal. This can be attributed
to the small size of the stream and the reduced number of model
transitions. Consequently FSC sometimes misses the mark on the top
performer for incoming samples. A possible solution for small streams
is to reduce the evaluation window size (200 samples in our tests)
used to track performance of both models.
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Figure 5.6: Model selection based on different performance measurement cri-
teria. Top: Sliding window. Middle: Fading factors. Bottom: Sliding
windows with discount.
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Table 5.6: Test results (mean accuracy) for FSC and FSC f f against stand
alone stream methods. Numbers in bold are top values. Type
indicates if the stream is B:Binary or M:Multi-class.

Accuracy

Type FSC FSC f f PAC PRCP HT HAT SAM

AGRa B 91.23 91.35 54.83 55.55 90.07 80.67 68.62

AGRg B 89.05 89.10 54.22 54.90 80.79 79.19 68.89

HYPER f B 84.73 84.83 81.89 82.53 78.76 86.89 86.97

MDRIFTa M 53.54 53.20 38.00 17.28 44.95 45.47 86.66

SEAa B 88.41 88.48 70.82 74.93 86.43 82.68 87.60

SEAg B 88.09 88.18 70.73 74.85 86.43 82.47 87.29

TCHESSa M 95.66 96.03 57.58 57.60 68.89 32.26 93.76

synth avg 84.39 84.45 61.15 59.66 76.62 60.80 82.83

AIRL B 65.15 65.30 58.12 57.55 63.81 60.80 60.47

COVTYPE M 83.23 83.72 95.32 94.59 82.33 93.99 95.12

ELEC B 77.96 77.83 85.95 85.83 77.88 87.44 79.89

POKER M 89.09 88.01 77.98 77.06 74.15 69.91 81.84

WEATHER B 76.16 76.30 68.06 68.05 73.97 69.29 78.10

real avg 78.32 78.23 77.09 76.62 74.43 76.29 79.08

overall avg 81.86 81.86 67.79 66.73 75.71 72.59 81.27

We show the difference in the number of model transitions between
Fast and Slow models in Figure 5.6. Plots correspond to HYPER f
(Figure 5.6a) and ELEC (Figure 5.6b) and outline the difference in
the number of transitions when using sliding windows (top), fading
factors (middle) and sliding windows with discount (bottom). Given
the small size of ELEC, it serves as a good example to observe the
impact of using different strategies to select the top performer. In the
case of HYPER f , we see that after half the stream FSC f f defaults to
the Slow model which performs consistently better. In general, we
observe that the number of transitions is greater when using sliding
windows and smaller when applying discount. Fading factors is placed
in the middle, representing a good compromise between number of
transitions and performance. This behavior is consistent across all the
data sets used in our tests. On the other hand, test results show that
the discount strategy represents a very conservative approach. In most
of our tests this results in under-performance with respect to the other
two strategies, which can be reasonably attributed to the reduced
number of transitions between Fast and Slow models. However, we
believe that this is a valid option in some cases, e.g. if one of the models
is expected to work as a fallback option to protect against drops in
performance due to concept drifts. By using a conservative approach
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Table 5.7: Test results (mean kappa) for FSC and FSC f f against stand alone
stream methods. Numbers in bold are top values. Type indicates
if the stream is B:Binary or M:Multi-class.

Kappa

Type FSC FSC f f PAC PRCP HT HAT SAM

AGRa B 81.01 81.24 9.31 10.84 78.62 61.23 36.18

AGRg B 76.82 76.93 8.08 9.52 61.02 58.29 32.67

HYPER f B 69.37 69.57 63.78 65.05 57.43 73.77 73.94

MDRIFTa M 45.29 44.87 11.66 7.32 35.71 39.16 85.07

SEAa B 75.23 75.39 39.96 47.81 71.10 63.53 73.85

SEAg B 74.58 74.77 39.77 41.31 71.08 63.09 73.19

TCHESSa M 78.75 79.39 51.52 51.55 50.11 22.56 92.87

synth avg 71.58 71.74 32.01 33.34 60.72 54.52 66.82

AIRL B 16.51 16.73 15.18 14.08 12.67 19.62 18.61

COVTYPE M 60.70 62.24 92.48 91.31 59.19 90.33 92.17

ELEC B 52.26 51.89 71.24 70.99 51.68 74.18 58.61

POKER M 80.35 78.37 60.91 59.35 32.95 46.15 66.92

WEATHER B 38.96 39.19 25.81 25.86 31.98 30.05 44.88

real avg 49.76 49.68 53.12 52.32 37.69 52.07 56.24

overall avg 62.49 62.55 40.81 41.25 51.13 53.50 62.41

we ensure that a different model is selected only if it represents the
best approach in the long term.

Test results displayed in Table 5.6 and Table 5.7 show how FSC and
FSC f f stand against established stream methods. The objective is to
show that the Fast and Slow Classifier is an effective leveraging
strategy where a stream model (HT) collaborates with a batch model
(XGB), thus we consider the performance of HT as the baseline in our
tests.

First, we observe that both FSC and FSC f f outperform the baseline,
in average FSC f f is slightly better than FSC in terms of kappa and
performs equally in terms of accuracy. Although differences in perfor-
mance are marginal, we consider that FSC f f has the upper hand given
that fading factors are cheaper to maintain and result in less model
transitions.

We see that PAC and PRCP are the overall worts performers, both
below the baseline. This can be justified in part by their lack of support
for concept drift. However, it is important to point that PAC is the
top performer for COVTYPE. Interestingly, although HAT shows good
performance in some data sets, in average performs closely (−3.13%
accuracy, +2.37% kappa) to the baseline despite the fact that it includes
a drift detection mechanism. SAM on the other hand, consistently
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performs above the baseline (+5.56% accuracy, +11.28% kappa). Thus,
it is relevant to analyze how FSC stands out against SAM.

Experimental results confirm that FSC f f leverages the performance
of a stand alone stream model (HT) by means of a batch model (XGB).
We see that FSC f f outperforms other incremental learners for most
data sets and in average performs slightly above SAM.

It is important to remind the reader that we explicitly use methods
that are not designed to handle drift (HT and XGB) as base models
for FSC f f . This is because the objective of our tests is to show how
the proposed framework performs in the presence of concept drift
by means of the positive collaboration between stream and batch
models. It is expected that, in actual applications, the proper batch
and stream models will be used to configure FSC based on the type
of data, available resources and other problem-specific requirements.
This is why FSC is designed to be model-agnostic.

Based on test results we conclude that FSC f f represents a good
compromise in terms of resources, model transitions and overall per-
formance. The variety in our data sets outlines different scenarios
where the Fast and Slow Classifier can effectively handle the in-
teraction of Fast and Slow models as well as the regions where the
default usage of only one of the models is the best option.



6 A DA P T I V E X G B O O S T

The eXtreme Gradient Boosting (XGBoost or XGB) algorithm is a pop-
ular method for supervised learning tasks. XGB is an ensemble learner
based on boosting that uses decision trees as weak learners. During
training, new weak learners are added to the ensemble in order to min-
imize the objective function. Different to other boosting techniques,
the complexity of the trees is also considered when adding weak
learners: trees with lower complexity are desired. The wide-spread
use of XGB in the machine learning community can be attributed to
multiple factors: it has shown state-of-the-art performance in super-
vised learning tasks including classification and regressions, models
are somewhat easy to interpret, is scalable to large datasets and, as
an open source project, is available on multiple platforms. Also im-
portant, XGB provides (among other options) the flexibility to define
the objective function to minimize. Although configuring the multi-
ple hyper-parameters in XGB can be challenging, if done properly, it
represents an advantage over other state-of-the-art methods.

An emerging approach to machine learning comes in the form of
learning from evolving data streams. It provides an attractive alterna-
tive to traditional batch learning in multiple scenarios. An example
is fraud detection for online banking operations, where training is
performed on massive amounts of data. In this case, consideration of
runtime is critical: waiting until the model is trained means that poten-
tial frauds may pass undetected. Another example is the analysis of
communication logs for security, where storing all logs is impractical
(and in most cases unnecessary). The requirement to store all data is
an important limitation of methods that rely on doing multiple passes
over the data.

Stream learning comprises a set of additional challenges to batch
learning. The potentially infinite amount of data means that it is not
practical to store it: stream methods have access to the data only once.
Another important resource is time: stream methods are expected to
process the data on the go given that new data arrives continuously.
Different to batch learning, in stream learning, it is expected that
models are always ready, in other words they can provide predictions
at any moment in time. Finally, a common phenomenon in data
streams, with direct impact on a model’s performance, is the change
in the relationship between features and learning targets, known as
concept drift. Under this scenario, and without proper intervention,
batch methods will fail because they will be trained on outdated data.

79
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In contrast, stream methods continuously update their models and
react to concept drift.

In this chapter we propose an adaptation of the XGB algorithm
suitable to learning from evolving data streams. The proposed method
is an instance of batch-incremental methods for data streams, where
mini-batches of data are used during training. We aim to show how the
proposed method stands in terms of the aforementioned challenges
in stream learning. In our experimental evaluation, we compare the
proposed method against batch-incremental and instance-incremental
methods on data streams with concept drift.

This chapter is organized as follows: The proposed method is intro-
duced in Section Section 6.1. Section 6.2 describes the methodology
for our experiments whereas results are discussed in Section 6.3.

6.1 adapting xgboost to stream learning

In this section, we present an adaptation of the XGB algorithm [28]
suitable for learning from data streams.

6.1.1 Preliminaries

The goal of supervised learning is to predict the responses Y = {yi} :
i ∈ {1, 2, . . . , n} corresponding to a set of feature vectors X = {~xi} :
i ∈ {1, 2, . . . , n}. Ensemble methods yield predictions ŷi corresponding
to a given input ~xi by combining the predictions of all the members of
the ensemble E. In this chapter, we focus on binary classification, that
is, y ∈ {C1, C2}.

In the case of boosting, the ensemble E is created sequentially. In
each iteration k, a new base function fk is selected and added to the
ensemble so that the loss ` of the ensemble is minimized:

`(E) =
K

∑
k=1

`(Y, Ŷ(k−1) + fk(X)) + Ω( fk). (6.1)

Here, K is the number of ensemble members and each fk ∈ F with
F being the space of possible base functions. Commonly, this is the
space of regression trees, so each base function is a step-wise constant
predictor and the ensemble prediction Ŷ, which is simply the sum
of all K base functions, is also step-wise constant. The regularization
parameter Ω penalizes complex functions.

The ensemble is created using forward additive modeling, where
new trees are added one at a time. At step k, the training data is
evaluated on existing members of the ensemble and the corresponding
prediction scores Y(k) are used to drive the creation of new members of
the ensemble. The base functions predictions are combined additively:



6.1 adapting xgboost to stream learning 81

Ŷ(0) = 0

Ŷ(1) = f1(X) = Ŷ(0) + f1(X)

Ŷ(2) = f1(X) + f2(X) = Ŷ(1) + f2(X)

. . .

Ŷ(k) =
K

∑
k=1

fk(X) = Ŷ(k−1) + fk(X)

(6.2)

The final prediction for a sample ŷi is the sum of the predictions for
each tree fk in the ensemble.

ŷi =
K

∑
k=1

ft(xi) (6.3)

6.1.2 Adaptive eXtreme Gradient Boosting

In the batch setting, XGB training is performed using all available data
(X, Y). However, in the stream setting, we receive new data over time,
and this data may be subject to concept drift. A continuous stream
of data can be defined as A = {(~xt, yt)}|t = 1, . . . , T where T → ∞,
~xt is a feature vector, and yt the corresponding target yt. We now
describe a modified version of the XGB algorithm for this scenario,
called Adaptive eXtreme Gradient Boosting (AXGB). AXGB uses
an incremental strategy to create the ensemble. Instead of using the
same data to select each base function fi, it uses sub-samples of data
obtained from non-overlapping (tumbling) windows. More specifically,
as new data samples arrive, they are stored in a buffer w = (~xi, yi) :
i ∈ {1, 2, . . . , W} with size |w| = W samples. Once the buffer is full,
AXGB proceeds to train a single fk. We can rewrite Eq. 6.2 as:

Ŷ(0) = 0

Ŷ(1) = f1(w1) = Ŷ(0) + f1(w1)

Ŷ(2) = f1(w2) + f2(w2) = Ŷ(1) + f2(w2)

. . .

Ŷ(k) =
K

∑
k=1

fk(wk) = Ŷ(k−1) + fk(wk)

(6.4)

The position i of the new base function within the ensemble defines
the way in which this function is obtained. If it is the first member
of the ensemble, f1, then the data in the buffer is used directly. If
i > 1, then the data is passed through the ensemble and the residuals
from the first i− 1 models in the ensemble are used to obtain the new
base function. The ensemble creation strategies for the static and the
incremental setup, described above, are outlined in Figure 6.1.
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(a) Batch
(b) Batch-incremental

Figure 6.1: Ensemble creation strategies. The standard batch approach, Fig-
ure 6.1a, uses all available data to create all the members of the
ensemble. On the other hand, the batch-incremental approach,
Figure 6.1b, uses data windows to incrementally create the mem-
bers of the ensemble as data becomes available.

6.1.3 Ensemble Update

Given that data streams are potentially infinite and may change over
time, learned predictors must be updated continuously. Thus, it is
essential to define a strategy to keep the AXGB ensemble updated
once it is full. In the following, we consider two strategies for this
purpose:

• A push strategy (AXGB[p]), shown in Figure 6.2a, where the
ensemble resembles a queue. New models are added to the
ensemble as they arrive, and once the ensemble is full, older
models are removed from the ensemble to make space.

• A replacement strategy (AXGB[r]), shown in Figure 6.2b, where
older members of the ensemble are replaced with newer ones.

Notice that in both cases we have to wait K iterations to have a
completely new ensemble. However, in AXGB[r], newer models have
a more significant impact on predictions than older ones, while the
reverse is true for AXGB[p].

(a) Push (b) Replace

Figure 6.2: Ensemble creation strategies.
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A requirement in stream learning is that models shall be ready
to provide predictions at any time. Given the incremental nature of
AXGB, if the window (buffer) size W is fixed, the ensemble will require
K ·W samples to create the full ensemble. A negative aspect of this
approach is that performance can be sub-optimal at the beginning of
the stream. To overcome this, AXGB uses a dynamic window size W
that doubles in each iteration from a given minimum window size
Wmin until a maximum window size Wmax is reached. In other words,
it grows exponentially until reaching Wmax. The window size, W(i),
for the ith iteration is defined as:

W(i) = min(Wmin · 2i, Wmax) (6.5)

From Eq. 6.5, we see that the number of iterations i required to
reach the maximum window size is:

i =
⌈

log2

(
Wmax

Wmin

)⌉
(6.6)

Similarly, we see that the number of samples required to create
K models to fill the ensemble is smaller when using the dynamic
window size approach than when using a fixed window size because

K−1

∑
i=0

Wmin · 2i � K ·W. (6.7)

Because we monotonically increase the window size, we see that
both our above updating strategies replace base functions trained on
small windows with newer ones trained on more data.

6.1.4 Handling Concept Drift

A common phenomenon in data streams is that the relationship be-
tween features and targets changes over time. This is known as concept
drift. Although the incremental strategy used by AXGB to create the
ensemble indirectly deals with concept drift—new members of the
ensemble are added based on newer data—it may be too slow to adjust
to rapid drift. Hence, we use ADWIN [13], a popular concept drift
detector, to track changes in the performance of AXGB, as measured
by a performance metric such as classification accuracy. We use sub-
script A to denote ADWIN, therefore the concept-drift-aware version
of AXGB is referred in the following as AXGBA.

To detect change, ADWIN maintains a dynamically sized window
that grows when there is no change and shrinks otherwise. If the
difference in mean performance between two adjacent sub-windows
exceeds a confidence parameter δ, ADWIN will signal that a change
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has occurred and reduce the window size. AXGBA uses the change
detection signal obtained from ADWIN to trigger a mechanism to
update the ensemble. This mechanism works as follows:

1. Reset the size of the window w to the defined minimum size
Wmin. In other words, reset the dynamic window sizing.

2. Train and add new members to the ensemble depending on the
chosen strategy:

a) Push: New ensemble members are pushed into the ensem-
ble while older ones are removed from it. Given that new
models are trained on increasing window sizes, this means
that new models will be added at a faster rate initially;
this effectively works as a flushing strategy to update the
ensemble.

b) Replacement: The index used to replace old members of
the ensemble is reset so that it points to the beginning
of the ensemble. There are two considerations regarding
this approach: First, new ensemble members replace older
ones. Second, new ensemble models are trained without
considering the residuals of old models that were trained
on the older concept.

A comparison of how the ensemble is updated in the different
versions of AXGB is presented in Table 6.1. For this example, the size of
the ensemble is set to |E| = K = 3. We see how new models are added
to the ensemble before and after the ensemble is full. Additionally, we
show how AXGBA proceeds upon detecting concept drift.

Table 6.1: Ensemble creation comparison.

AXGB AXGBA

iteration Push replace Push Replace

1 f1 f1 f1 f1

2 f1, f2 f1, f2 f1, f2 f1, f2

3 f1, f2, f3 f1, f2, f3 f1, f2, f3 f1, f2, f3

4 f2, f3, f4 f4, f2, f3 f2, f3, f4 f4, f2, f3

5 f3, f4, f5 f4, f5, f3 f3, f4, f5 f4, f5, f3

Concept Drift- - Reset w size Reset w size

6 f4, f5, f6 f4, f5, f6 f4, f5, f6 f6, f5, f3
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6.2 experimental evaluation

In this section, we describe the methodology of our tests, which we
classify into the following categories: predictive performance, hyper-
parameter relevance, memory usage / model complexity, and training
time.

1. Predictive performance . Our first set of tests evaluates the
predictive performance of AXGB. For this we use both, synthetic
and real-world data sets. We then proceed to compare AXGB
against other learning methods. This comparison is defined by
the nature of the learning method as follows:

a) Batch-incremental methods. In this type of learning methods,
batches of samples are used to incrementally update the
model. We compare AXGB against a batch-incremental
ensemble created by combining multiple per-batch base
models. New base models are trained independently on dis-
joint batches of data (windows). When the ensemble is full,
older models are replaced with newer ones. Predictions are
formed by majority vote. In order to compare this approach
with AXGB, we use XGB as the base batch-learner to learn
an ensemble for each batch. Thus, our batch-incremental
model is an ensemble of XGB ensembles. We refer to this
batch-incremental method as BXGB. We also consider the
Accuracy-Weighted Ensemble with Decision Tree as the
base batch-learner. We refer to this method as AWE-J48. We
choose this configuration since AWE-J48 is reported as the
top batch-incremental performer in [104], so it serves as a
baseline for batch-incremental methods.

b) Instance-incremental methods. We are also interested in com-
paring AXGB against methods that update their model one
instance at a time. The following instance-incremental meth-
ods are used in our tests: Adaptive Random Forest (ARF),
Hoeffding Adaptive Tree (HAT), Leverage Bagging with
Hoeffding Tree as base learner (LBHT), Oza Bagging with
Hoeffding Tree as base learner (OBHT), Self Adjusting Mem-
ory with kNN (SAMkNN) and the Ensemble of Restricted
Hoeffding Trees (RHT). In [104], LBHT is reported as the
top instance-incremental performer.

2. Hyper-parameter relevance. The XGB algorithm relies on multi-
ple hyper-parameters which can make the model hard to tune for
different problems. In this context, we are interested in analyz-
ing the impact of hyper-parameters in AXGB. For this purpose,
we use a tuning setup where a model is trained on the first
30% of the data stream using different combinations of hyper-
parameters. Then, the best performers during the training phase
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are evaluated on the remaining 70% of the stream. To evalu-
ate the influence of hyper-parameters we compare performance
between AXGB and BXGB methods.

3. Memory usage and model complexity. The potentially infinite
number of samples in data streams requires resources such as
time and memory to be properly managed. We use the total
number of nodes in the ensemble to gain insight into memory
usage and model complexity as AXGB is trained on a stream. We
compare the proposed versions of AXGB against a baseline batch-
model trained using XGB on all the data of the stream. Thus, the
baseline number of nodes in the batch-model is expected to be
larger than the number of nodes in incremental-models which
evolve with the stream. By analyzing memory usage and model
complexity we get insights on the evolution of the model over
time (samples).

4. Training time. Another relevant way to analyze the proposed
method is in terms of training time. We compare the training
time of the different versions of AXGB against XGB, report-
ing results in terms of training time (seconds) and in terms of
throughput (samples per second).

Our implementation of AXGB is based on the official XGB C-API1

on top of scikit-multiflow2 [89] (described in Chapter 7). Tests are per-
formed using the official XGB implementation, the implementations
of ARF, RHT and AWE in MOA [16], and for the rest of the methods,
the implementations available in scikit-multiflow. Default parameters
of the algorithms are used unless otherwise specified.

In the following, we provide a short description of the synthetic
and real world data sets used in our tests. All data sets are publicly
available.

agrawal Based on the Agrawal generator [3], represents a data
stream with six nominal and three numerical features. Different func-
tions map instances into two different classes. Three abrupt drifts are
simulated for AGRa and three gradual drifts for AGRg.

hyper A data stream with fast incremental drifts where a d-
dimensional hyperplane changes position and orientation. Obtained
from a random hyperplane generator [64].

sea A data stream with three numerical features where only two
attributes are related to the target class. Created using the SEA genera-
tor [113]. Three abrupt drifts are simulated for SEAa and three gradual
drifts for SEAg.

1 https://github.com/dmlc/xgboost

2 https://github.com/scikit-multiflow/scikit-multiflow

https://github.com/dmlc/xgboost
https://github.com/scikit-multiflow/scikit-multiflow
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Table 6.2: Data sets. [Type] S: synthetic data; R: real world data. [Drifts]
A: abrupt, G: gradual; I f : incremental fast.

# instances # features # classes Type Drift

AGRa 1000000 9 2 S A

AGRg 1000000 9 2 S G

HYPER f 1000000 10 2 S I f

SEAa 1000000 3 2 S A

SEAg 1000000 3 2 S G

AIRL 539383 7 2 R -

ELEC 45312 6 2 R -

WEATHER 18159 8 2 R -

airlines Real world data containing information from scheduled
departures of commercial flights within the US. The objective is to
predict if a flight will be delayed.

electricity Data from the Australian New South Wales electricity
market where prices are not fixed but change based on supply and
demand. The two target classes represent changes in the price (up or
down).

weather Contains weather information collected between 1949–
1999 in Bellevue, Nebraska. The goal is to predict if it will rain or not
on a given date.

A summary of the characteristics of the above data sets is available
in Table 6.2. For further details on AGRAWAL, HYPER and SEA, we
refer the reader to [54].

6.3 results

The results discussed in this section provide information about pre-
dictive performance, parameter relevance, and resources consumption
(memory and time) for the different versions of AXGB. The sub-
sections follow the order used to described the test categories in
Section 6.2.

6.3.1 Predictive Performance

We evaluate the performance of AXGB against other batch-incremental
methods and against instance-incremental methods. We use prequen-
tial evaluation [32], where predictions are generated for a sample in the
stream before using it to train/update the model. We use classification
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accuracy as the metric in our tests in order to measure performance.
First, we compare the different versions of AXGB (AXGB[p], AXGBA[p],
AXGB[r] and AXGBA[r]) against two batch-incremental methods: BXGB
and AWE-J48. The parameters used to configure these methods are
available in Table 6.3.

Results comparing against batch-incremental methods are available
in Table 6.4. We see that the overall top performer in this test is
AXGBA[r], but it is barely distinguishable from AXGB[r]. Next are the
versions of AXGB using the push strategy. Interestingly, we find that
AWE-J48 performs better than BXGB, which comes last in this test.
This is noteworthy considering that the base learner in AWE-J48 (a
single decision tree) is simpler than the one in BXGB (an ensemble of
trees generated using XGB).

These tests provide insights into the different versions of AXGB. We
see that, in the push-strategy versions (AXGB[p], AXGBA[p]), tracking
performance to detect concept drift (AXGBA[p]) provides a consistent
advantage over the drift-unaware approach (AXGB[p]). The reason for
this is that, as expected, AXGBA[p] reacts faster to changes in perfor-
mance: When a drift is detected, the window size is reset and new
models are quickly added to the ensemble, flushing out older models.
This is not the case for methods using the replace-strategy (AXGB[r],
AXGBA[r]). In this case, we find that performance gains between meth-
ods are marginal (≈ 0.1%). Notice that AXGB[r] is actually slightly
better than AXGBA[r] for most datasets. These results are significant
given the compromise between the computational overhead of tracking
concept drift and the gains in performance. We analyze this trade-off
when discussing results of the timing tests.

The AGRa and AGRg data sets are interesting examples for analysis,
given that the type (abrupt, gradual) and position (25%, 50% and
75%) of concept drifts are known. The impact of concept drift on
all the models considered in our tests can be observed in Figure 6.3
for both data sets. We see a drop in performance after a concept
change. It is worth noting that this drop is larger when change is

Table 6.3: Parameters used for batch-incremental methods.

Parameter AXGB * BXGB AWE-J48

ensemble size 30 30 30

ensemble size (base learner) - 30 -

max window size 1000 1000 1000

min window size 1 - -

max depth 6 6 -

learning rate 0.3 0.3 -
* The same parameter configuration is used for all variations: AXGB[p],

AXGBA[p], AXGB[r] and AXGBA[r].
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Table 6.4: Comparing performance of AXGB vs batch-incremental methods.

Data set AXGB[p] AXGB[r] AXGBA[p] AXGBA[r] BXGB AWE-J48

AGRa 0.919 0.931 0.927 0.927 0.703 0.926

AGRg 0.896 0.907 0.897 0.901 0.710 0.905

AIRL 0.604 0.613 0.611 0.609 0.641 0.599

ELEC 0.718 0.722 0.740 0.752 0.702 0.614

HYPER f 0.822 0.848 0.825 0.848 0.756 0.777

SEAa 0.865 0.875 0.866 0.874 0.856 0.860

SEAg 0.863 0.873 0.863 0.872 0.857 0.860

WEATHER 0.765 0.765 0.767 0.761 0.737 0.712

average 0.807 0.817 0.812 0.818 0.745 0.782
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(a) AGRa data set.
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(b) AGRg data set.

Figure 6.3: Example of the impact of concept drift on the mean performance
of models compared in our tests. The AGRa, Figure 6.3a, and
AGRg, Figure 6.3b, data sets contain drifts at the 25%, 50% and
75% of the stream.

gradual Figure 6.3b, this can be attributed to the transition phase
between concepts. During this period, old and new concepts are
present, thus recovering takes longer and the model’s performance is
negatively impacted.

In Figure 6.4, we observe the behavior of AXGB[r] vs AWE-J48,
AXGBA[r] and BXGB. Consider the abrupt changes in AGRa, Figure 6.4a.
We see that AXGB[r] recovers quickly after the three drifts. Although
there is a sudden drop during the recovery after the first drift (which
is quickly corrected), this is not observed after the other two drifts.
AXGBA[r] is the faster to adapt to the drift, which is expected con-
sidering that ADWIN detects the drift and the ensemble is updated
accordingly. AWE-J48 behaves in a similar fashion to AXGB[r]. Worst
batch-incremental performer for AGRa is BXGB whose performance
drops after the drifts and can not adapt quickly. Additionally, recovery
is only efficient for the third concept, whereas recovery is sub-optimal
for the second and fourth concepts.
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(b) AGRg data set.

Figure 6.4: Performance of AXGB[r] vs AWE-J48, AXGBA[r] and BXGB. Val-
ues marked as current correspond to accuracy on a sliding win-
dow of 200 samples.

In the case of gradual change, Figure 6.4b, the transition phase
between concepts provides evidence on how models adapt in the pres-
ence of two concepts. We see that AXGB[r] and AWE-J48 show similar
performance and adaptability during and after concept changes. In
the case of AXGBA[r], we notice that it is still faster to react to concept
drift, but AXGB[r] is close behind during the transition period. This is
translated into the marginal gains observed for this test. Finally, BXGB
is still the worst performer. This can be attributed to the combination
of concept-drift-unawareness and the slow ensemble update which is
related to the configuration used, Table 6.3. This is further analyzed in
the hyper-parameter relevance test.

Next, we compare AXGB against instance-incremental methods.
Results are shown in Table 6.5. For AXGB, we only show results of
AXGB[r] and AXGBA[r]. We see that the top performer in this test is
ARF, closely followed by RHT. AXGB’s performance is not on par with
that of the top performers, but it is fundamental to note that (i) these
results are consistent with those in [104], where instance-incremental
methods outperform batch-incremental methods, and (ii) both AXGB[r]
and AXGBA[r] are placed in the middle tier between LBHT and OBHT.
HAT and SAMkNN are the worst performers in our tests. We believe
that these findings serve to indicate the potential of extreme gradient
boosting for data streams.
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Table 6.5: Comparing AXGB vs instance-incremental methods.

Dataset AXGB AXGBA ARF HAT LBHT OBHT SAMkNN RHT

AGRa 0.931 0.927 0.939 0.807 0.881 0.915 0.686 0.936

AGRg 0.907 0.901 0.912 0.792 0.858 0.847 0.669 0.911

AIRL 0.613 0.609 0.680 0.608 0.670 0.658 0.605 0.648

ELEC 0.722 0.752 0.855 0.874 0.836 0.794 0.799 0.873

HYPER f 0.848 0.848 0.849 0.869 0.814 0.806 0.870 0.896

SEAa 0.875 0.874 0.897 0.827 0.891 0.869 0.876 0.889

SEAg 0.873 0.872 0.893 0.825 0.889 0.869 0.873 0.885

WEATHER 0.765 0.761 0.791 0.693 0.783 0.749 0.781 0.758

average 0.817 0.818 0.852 0.787 0.828 0.813 0.770 0.850

6.3.2 Hyper-parameter Relevance

As previously mentioned, hyper-parameters play a key role in the
performance of XGB. Thus, we also need to consider their impact
in AXGB. In order to do so, we present results obtained by running
multiple tests on different combinations of key parameters: the max-
imum depth of the trees, the learning rate (eta), the ensemble size,
and the maximum and minimum window size. To cover a wide range
of values for each parameter, we use a grid search based on the grid
parameters specified in Table 6.6. The parameter grid corresponds
to a total of 4× 4× 5× 5× 3 = 1200 combinations. For this test, we
compare the following XGB-based methods: AXGB[p], AXGBA[p] and
BXGB.

For establishing the effect of parameter tuning, the test is split into
two phases: training and optimization on the first 30% of the stream—
using this validation data to evaluate all parameter combinations in
the grid and choosing the best one using prequential evaluation of
classification accuracy—and performance evaluation on the remaining
70% of the stream to establish accuracy of the parameter-optimized
algorithm by evaluating the algorithm with the identified parameter
settings using prequential evaluation on this remaining data. The

Table 6.6: Parameter grid used to evaluate hyper-parameters relevance.

Parameter Values

max depth 1, 5, 10, 15

learning rate 0.01, 0.05, 0.1, 0.5

ensemble size 5, 10, 25, 50, 100

max window size 512, 1024, 2048, 4096, 8192

min window size 4, 8, 16
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Table 6.7: Parameter tuning results.

Ref Tuning Ref Tuning Ref Tuning

Dataset AXGB[p] AXGB[p] AXGBA[p] AXGBA[p] BXGB BXGB

AGRa 0.881 0.927 0.933 0.931 0.727 0.930

AGRg 0.898 0.906 0.902 0.905 0.728 0.909

AIRL 0.616 0.627 0.588 0.628 0.632 0.639

ELEC 0.713 0.736 0.658 0.739 0.631 0.742

HYPER f 0.816 0.873 0.833 0.876 0.754 0.904

SEAa 0.879 0.889 0.881 0.892 0.854 0.890

SEAg 0.877 0.888 0.878 0.889 0.855 0.888

WEATHER 0.755 0.767 0.758 0.765 0.703 0.782

average 0.804 0.827 0.804 0.828 0.736 0.835

ensemble model is trained from scratch in this second phase. This
strategy is limited in the sense that the nature of the validation data,
including concepts drifts, is assumed to be similar to that of the
remaining data, but it provides insight into the importance of hyper-
parameters.

Results from this experiment are available in Table 6.7. Reported
results correspond to measurements obtained with parameter tuning
(Tuning) vs reference results (Ref ) obtained using the hand picked
parameters in Table 6.3, building an ensemble from scratch on the same
70% portion of the stream. The optimized parameter configurations
are listed in Table 6.8.

We can see that optimizing hyper-parameters clearly benefits all
methods. As previously discussed, hyper-parameters can provide an
advantage over other methods. In this case, under-performers are now
on par or above LBHT. Surprisingly, BXGB obtains the largest boost
in performance and is now the method that performs best. When
analyzing the parameter configurations, we see that BXGB favors
smaller values for max window size, learning rate and max depth. The
observed increase in performance can be attributed to the impact of the
hyper-parameters on the base learner in BXGB (batch XGB models):
BXGB is an ensemble of ensembles. Another factor to consider is
the small window sizes. In practice, having smaller windows means
that models are replaced faster as the stream progresses and this can
ameliorate the lack of drift awareness to some degree. It is reasonable
that the same applies to the reduction in the performance gap between
AXGB[p] and AXGBA[p]. In the case of AXGB, we notice that the
learning rate has a consistent impact on performance (lower is better),
followed by max window size and max depth. Finally, these tests reveal
the contrast in the impact of the ensemble size on the two versions
of AXGB. While AXGB[p] benefits from a smaller ensemble size, the
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Table 6.8: Selected parameters in tuning tests.

Dataset
size

ensemble
size

max window
size

min window
rate

learning
depth
max

AXGB[p]

AGRa 10 512 16 0.1 15

AGRg 25 512 16 0.1 15

AIRL 5 512 4 0.1 5

ELEC 5 1024 4 0.1 5

HYPER f 25 512 8 0.1 5

SEAa 25 2048 4 0.05 10

SEAg 25 2048 4 0.05 10

WEATHER 50 512 16 0.1 10

AXGBA[p]

AGRa 25 512 8 0.1 15

AGRg 50 512 4 0.1 15

AIRL 10 512 8 0.1 5

ELEC 100 512 16 0.1 10

HYPER f 50 512 8 0.1 5

SEAa 25 8192 4 0.05 15

SEAg 25 8192 8 0.05 10

WEATHER 50 1024 16 0.1 15

BXGB

AGRa 10 512 - 0.1 10

AGRg 25 512 - 0.05 10

AIRL 5 512 - 0.05 5

ELEC 10 512 - 0.1 1

HYPER f 10 512 - 0.5 1

SEAa 25 1024 - 0.05 10

SEAg 25 1024 - 0.05 15

WEATHER 50 512 - 0.1 5

contrary applies to AXGBA[p]. This supports the intuition that drift-
aware methods can benefit from larger ensembles (to build complex
models) which adapt faster in the presence of drift by triggering the
corresponding ensemble update mechanism. On the other hand, batch-
incremental methods without explicit drift detection mechanisms rely
on their natural ability to adapt, which can be counterproductive with
large ensemble sizes. It is important to note that although BXGB is the
top performer in this test, it is not efficient in terms of resources (time
and memory), which represents a compromise in stream learning
applications where resources are limited.



94 adaptive xgboost

0.2

0.4

0.6

0.8

1.0

Ac
c

AXGB[p]

0.2

0.4

0.6

0.8

1.0

Ac
c

AXGBA[p]

0 1 2 3 4 5 6 7
Instances 1e5

0.2

0.4

0.6

0.8

1.0

Ac
c

BXGB

Manual current
Tuned current

Manual mean
Tuned mean

(a) AGRa data set.

0.2

0.4

0.6

0.8

1.0

Ac
c

AXGB[p]

0.2

0.4

0.6

0.8

1.0

Ac
c

AXGBA[p]

0 1 2 3 4 5 6 7
Instances 1e5

0.2

0.4

0.6

0.8

1.0

Ac
c

BXGB

Manual current
Tuned current

Manual mean
Tuned mean

(b) AGRg data set.

Figure 6.5: Manual selection vs hyper-parameter tuning. Values marked as
current correspond to accuracy measured on a sliding window of
200 samples.

Again, we focus on AGRa and AGRg to further analyze the impact
of hyper-parameters on AXGB[p], AXGBA[p] and BXGB. Results shown
in Figure 6.5 correspond to the performance evaluation on the latter
70% of the stream. On both data sets, two concept drifts are available
on this sub-section. In the case of abrupt drift, Figure 6.5a, we see
that the three models adapt quickly and effectively. As discussed, the
improvement is more evident in the case of BXGB which is now on par
with the rest. Similar results are observed for gradual drift, Figure 6.5b.
In this case we see that AXGB[p] is able to adapt faster during the
concept transition phase. Again, BXGB is the one showing the biggest
improvement.

6.3.3 Memory and Model Complexity

In this section, we analyze memory usage by the proposed methods
during the learning process. For this purpose, we count the number of
nodes in the ensemble, including both leaf nodes and internal nodes
of each tree. This approach also provides some intuition regarding
the model’s complexity. We perform this test on a synthetic data set
with 40 features (only 30 informative) and 5% noise, corresponding
to the Madelon data set as described in [56]. We use 1 million samples
for training and calculate the number of nodes in the ensemble to get
an estimate of the model size. Models are trained using the following
configuration: ensemble size = 30, max window size = 10K, min
window size = 1, learning rate = 0.05, max depth = 6. We measure the
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number of nodes as new members of the ensemble are introduced.
Results for this test are available in Figure 6.6. We use the number of
nodes generated by the XGB algorithm as a reference. It is important
to note that this number is constant since it represents the size of the
model trained on all the data. In Figure 6.6a, we can compare the
number of nodes in the batch model vs the stream models. The same
information is displayed in Figure 6.6a on a different scale to better
visualize the behaviour of stream classifiers across the stream.

In Figure 6.6a, we see that AXGB[p] and AXGB[r] have similar be-
haviour. As the stream progresses, the number of nodes added to the
ensemble increases until reaching a plateau. This is expected since
new models are trained on larger windows of data. The plateau corre-
sponds to the region where the ensemble is complete and old members
of the ensemble are replaced by new members trained on equally large
windows. On the other hand, AXGBA[p] and AXGBA[r] also exhibit an
incremental increase in the number nodes over the stream—at a lower
rate than the AXGB versions—but with some interesting differences.
In AXGBA[p], we see multiple drop points in the nodes count, which
is attributed to the ensemble update mechanism. When drift is de-
tected, the window size is reset and new models are pushed into the
ensemble, in other words, simpler models are quickly introduced into
the ensemble. In contrast, the number of nodes in AXGBA[r] increases
steadily. It is important to remember that, despite the difference in
number of nodes between AXGB[r] and AXGBA[r], the difference in
performance is marginal, as discussed in Section 6.3.1.

We also analyze AXGB by counting the number of models in the
ensemble across the stream, shown in Figure 6.7. Notice that the
number of models reach the maximum value when the ensemble is
full; from that point on, new models replace old ones. As anticipated,
we see that AXGBA[p] fills the ensemble quickly at the beginning of
the stream because concept drift detection triggers the reset of the
window size and speeds up the introduction of new models. AXGB[p]
and AXGB[r] fill the ensemble at a slower rate and finish filling the
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Figure 6.6: Insight into ensemble complexity by number of nodes over the
stream.
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Figure 6.7: Number of ensemble members as the stream is processed.

ensemble before the 200K mark. This is in line with our expectations
given the introduction of new models trained on increasing window
sizes as defined in Eq. 6.5. Finally, AXGBA[r] is the slowest to fill
the ensemble at around the 700K mark. This is expected given that
upon drift detection, AXGBA[r] starts replacing older models at the
beginning of the ensemble.

It is important to mention that additional memory resources are
used by the different AXGB variants given their batch-incremental na-
ture: mini-batches are accumulated in memory before they are used to
fit a tree. In this sense, other things being equal, instance-incremental
methods are more memory efficient. However, these results show that
all versions of AXGB keep the size of the model under control, a
critical feature when facing theoretically infinite data streams.

6.3.4 Training Time

Finally, we measure training time for the different versions of AXGB.
We use as reference the time required to train an XGB model using
the same test configuration as in Section 6.3.3 with the following data
set sizes: 200K, 400K, 600K, 800K and 1M. Results correspond to the
average time after running the experiments 10 times for each data set
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Figure 6.8: Time/throughput test results.
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size and for each classifier. Measurements are shown in Figure 6.8 in
terms of time (seconds) and in Figure 6.8b in terms of throughput
(samples per second). These tests show that the fastest learners are
AXGB[p] and AXGB[r], both showing small change in training time
as the number of instances increases. This is an important feature
given that, along with memory usage, training time plays a key role
in stream learning applications. On the other hand, the drift-aware
versions (AXGBA[p] and AXGBA[r]) have similar behaviour in terms of
time compared to the batch model (XGB) while being slightly slower.
This can be attributed to the overhead from the drift-detection process,
which implies getting predictions for each instance and keeping the
drift detector statistics. Additionally, we see that AXGBA[p] is the
slowest classifier, which might be related to the overhead incurred by
predicting using a larger ensemble, given that the ensemble is quickly
filled (as seen in Figure 6.7).





7 S C I K I T- M U LT I F LO W

Recent years have witnessed the proliferation of Free and Open Source
Software (FOSS) in the research community. Specifically, in the field of
machine learning, researchers have benefited from the availability of
different frameworks that provide tools for faster development, allow
replicability and reproducibility of results and foster collaboration.
Following the FOSS principles, we introduce scikit-multiflow, a Python
framework to implement algorithms and perform experiments in the
field of machine learning on evolving data streams. scikit-multiflow is
inspired in the popular frameworks scikit-learn, MOA and MEKA.

scikit-learn [95] is the most popular open source software machine
learning library for the Python programming language. It features
various classification, regression and clustering algorithms including
support vector machines, random forest, gradient boosting, k-means
and DBSCAN, and is designed to inter-operate with the Python nu-
merical and scientific packages NumPy and SciPy.

MOA [16] is the most popular open source framework for data
stream mining, with a very active growing community. It includes a
collection of machine learning algorithms (classification, regression,
clustering, outlier detection, concept drift detection and recommender
systems) and tools for evaluation. Related to the WEKA project [57],
MOA is also written in Java, while scaling to more demanding prob-
lems.

The MEKA project [106] provides an open source implementation
of methods for multi-label learning and evaluation. In multi-label
classification, the aim is to predict multiple output variables for each
input instance. This different from the ‘standard’ case (binary, or
multi-class classification) which involves only a single target variable.

As a multi-output streaming framework, scikit-multiflow serves as a
bridge between research communities that have flourished around the
aforementioned frameworks, providing a common ground where they
can thrive. scikit-multiflow assists on the democratization of Stream
Learning by bringing this research field closer to the machine learning
community, given the increasing popularity of the Python programing
language. The objective is two-folded: First, fill the void in Python for
a stream learning framework which can also interact with available
tools such as scikit-learn and extend the set of available state-of-the-art
methods on this platform. Second, provide a set of tools to facilitate
the development of stream learning research, an example is [85].

It is important to notice that scikit-multiflow complements scikit-
learn, whose primary focus is batch learning, expanding the set of free
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and open source tools for stream learning. In addition, scikit-multiflow
can be used within Jupyter Notebooks, a popular interface in the data
science community. Special focus in the design of scikit-multiflow is to
make it friendly to new users and familiar to experienced ones.

scikit-multiflow contains stream generators, learning methods (classi-
fication and regression), concept drift detectors and evaluation meth-
ods. Examples of available stream generators are: Agrawal [4], Hy-
perplane [64], Led [21], Mixed [48], Random-RBF, Random-RBF with
drift, Random Tree, SEA [113], SINE [48], STAGGER [48], Waveform,

Table 7.1: Available methods in scikit-multiflow. Methodologies on the left,
and frameworks on the right.
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kNN 3 3 3 3 3 3 [20]

kNN + ADWIN 3 3 3 3 [15]

SAM kNN 3 3 3 3 3 [79]

Hoeffding Tree 3 3 3 3 [35]

Hoeffding Adaptive Tree 3 3 3 3 3 [14]

FIMT-DD 3 3 3 3 3 [65]

Adaptive Random Forest 3 3 3 3 3 [54]

Oza Bagging 3 3 * 3 3 [93]

Leverage Bagging 3 3 3 3 3 [18]

Multi-output Learner 3 3 3 3 * 3 3 3 3 [20]

Classifier Chains 3 3 3 * 3 3 3 [105]

Regressor Chains 3 3 3 * 3 3 3 [105]

SGD 3 3 3 3 3 3 3 [20]

Naive Bayes 3 3 3 3 3 3 [20]

Multi Layer Perceptron 3 3 3 3 3 3 [20]

ADWIN 3 3 3 [13]

DDM 3 3 3 [48]

EDDM 3 3 3 [8]

Page Hinkley 3 3 3 [94]

* Depending on the base learner.
† We have only listed incremental methods for data-streams; MEKA

and scikit-learn have many other batch-learning models available.
MEKA in particular, has many problem-transformation methods
which may be incremental depending on the base learner (it is
able to use those from the MOA framework).
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Multi-label, Regression and concept-drift. Available evaluators cor-
respond to prequential and hold-out evaluations, both supporting
multiple performance metrics for classification (accuracy, kappa coef-
ficient, kappa t, kappa m), multi-output classification (Hamming score,
Hamming loss, exact match, Jaccard index), regression (mean squared
error, mean absolute error) and multi-output regression (average mean
squared error, average mean absolute error, average root mean squared
error). Learning methods and change detectors are listed in Table 7.1.
This table also serves to outline the position of scikit-multiflow with
respect to other open source frameworks.

7.1 architecture

The base class in scikit-multiflow is StreamModel which contains the
following abstract methods to be implemented by its subclasses:

• fit() – Trains a model in a batch fashion. Works as an interface
to batch methods that implement a fit() function such as scikit-
learn methods.
• partial_fit() – Incrementally trains a stream model.
• predict() – Predicts the target’s value in supervised learning

methods.
• predict_proba() – Calculates per-class probabilities in classifica-

tion problems.

Figure 7.1: Class hierarchy within scikit-multiflow. This example shows in-
stances of a StreamModel (HoeffdingTree), a Stream (DataStream)
and a StreamEvaluator (EvaluatePrequenctial).
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3 : X, y_true = next sample

4 : predict(X)
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6 : results = evaluate(y_true, y_predicted)

7 [m samples passed] : update_metrics(last_result)

8 [m samples passed] : update_plot(last_result)

9 : partial_fit(X)

10 : trained model

Figure 7.2: Training and testing a stream model using scikit-multiflow. This
sequence corresponds to prequential evaluation.

A StreamModel object interacts with two other objects: a Stream ob-
ject and (optionally) a StreamEvaluator object. The diagram in Fig-
ure 7.1 shows an example of the class hierarchy within scikit-multiflow.
The Stream object provides a continuous flow of data on request.
The StreamEvaluator performs multiple tasks: queries the stream for
data, trains and tests the model on the incoming data and continu-
ously tracks the model’s performance. The sequence to train a stream
model and track its performance using prequential evaluation in scikit-
multiflow is outlined in Figure 7.2.

7.2 in a nutshell

Here we provide a quick overview of different elements of scikit-
multiflow and how they can be used in the field of stream learning
research. In agreement with the scope of this thesis, we only focus on
stream learning classification and concept drift detection.

7.2.1 Data Streams

Within scikit-multiflow, data is represented by the Stream class. The
most important functionality of the Stream class is to provide new
samples of data on demand. Stream generators are a cheap source of
data, where samples are generated on demand to avoid storing data
physically. There are multiple stream generators in scikit-multiflow and
all of them work in a similar way. The following code snippet shows
how to use a generator within scikit-multiflow.

from skmultiflow.data import AGRAWALGenerator

# 1. Instantiate the stream generator

generator = AGRAWALGenerator()
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generator.prepare_for_use()

# 2. Get data from the stream

X, y = generator.next_sample()

print(X.shape, y.shape)

>>> (1, 9) (1,)

X, y = generator.next_sample(1000)

# Inspect the shape of X and y

print("X: { } , y : { } ".format(X.shape, y.shape))

>>> X: (1000, 9), y: (1000,)

# 3. Check if the stream has more data

generator.has_more_samples()

>>> True

# 4. Restart the stream

generator.restart()

7.2.2 Stream Learning Experiments

In this example, we show how to train a classifier (Hoeffding Tree [35])
on a stream (Waveform) and will measure its performance using
prequential evaluation:

1. Instantiate a stream object. The WaveformGenerator generates by
default samples with 21 numeric attributes and 3 classes, based
on a random differentiation of some base waveforms.

2. Instantiate the Hoeffding Tree classifier. We will use the default
parameters.

3. Setup the evaluator, we will use the EvaluatePrequential class.
Since we are using a generator, we need to specify the max
number of samples to evaluate, max_samples=2000.

4. Run the evaluation. By calling evaluate() method, we pass con-
trol to the evaluator, which will perform the following sub-tasks:

a) Check if there are samples in the stream.

b) Pass the next sample to the classifier.

c) Test the classifier (using predict())

d) Update the classifier (using partial_fit())

The corresponding code snippet to train and test a stream model is
shown bellow:

from skmultiflow.data import WaveformGenerator

from skmultiflow.trees import HoeffdingTree

from skmultiflow.evaluation import EvaluatePrequential
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# 1. Create a stream

stream = WaveformGenerator()

stream.prepare_for_use()

# 2. Instantiate the HoeffdingTree classifier

ht = HoeffdingTree()

# 3. Setup the evaluator

evaluator = EvaluatePrequential(max_samples=20000)

# 4. Run evaluation

evaluator.evaluate(stream=stream,

model=ht,

model_names=[ ’HT’])

scikit-multiflow will report the progress of the evaluation and will
return the evaluation summary:

Prequential Evaluation

Evaluating 1 target(s).

Pre-training on 200 sample(s).

Evaluating...

#################### [100%] [20.80s]

Processed samples: 20000

Mean performance:

HT - Accuracy : 0.7941

HT - Kappa : 0.6915

Additionally, the evaluator objects provides methods to interact
with the metrics from the evaluation when it is finished.

The evaluators in scikit-multiflow support multiple models per eval-
uation, streamlining the comparison of methods, a common task in
research and real-world applications. The following snippet shows
this functionality where the goal is to compare a Hoeffding Tree model
vs a Hoeffding Adaptive Tree [14] model.

from skmultiflow.data import FileStream

from skmultiflow.evaluation import EvaluatePrequential

from skmultiflow.trees import HoeffdingTree

from skmultiflow.trees import HAT

# 1. Load stream data from a file

stream = FileStream("path/elec . csv")
stream.prepare_for_use()

# 2. Create a list of classifiers to compare, in this case

Hoeffding Tree and Hoeffding Adaptive Tree

classifiers = [HoeffdingTree(), HAT()]

# 3. Setup the evaluator, we will use prequential evaluation

eval = EvaluatePrequential(show_plot=True,

metrics=[ ’accuracy ’,
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’kappa’,
’running_time ’,
’model_size ’])

# 4. Run the evaluation

eval.evaluate(stream=stream,

model=classifiers,

model_names=[ ’HT’, ’HAT’])

In this case, since we use the show_plot=True option, in addition
to the evaluation summary we get a dynamic plot of the evaluation
to visualize the behavior of both models over time. The plot for this
example is shown in Figure 7.3.
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Figure 7.3: Comparing multiple models on scikit-multiflow.

7.2.3 Concept Drift Detection

scikit-multiflow provides implementations of multiple state-of-the-art
drift detectors, Table 7.1. The drift detection methods in scikit-multiflow
provide similar functionality, an add_element() method to add new
observations and a detected_change() method to query the flag that
indicates if a drift has been detected or not. Here we show how to use
ADWIN [13]. For this example we use a stream (drift_stream) where
the first half contains a sequence corresponding to a normal distribu-
tion of integers from 0 to 1. From index 999 to 1999 the sequence is a
normal distribution of integers from 0 to 7.

from skmultiflow.drift_detection import ADWIN

# 1. Instantiate the drift detector, in this case ADWIN

adwin = ADWIN()

# 2. Run the detection test

for i in range(drift_stream.size):
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adwin.add_element(drift_stream[i])

if adwin.detected_change():

print( ’Change detected at index { } ’.format(i))
>>> Change detected at index 1023

>>> Change detected at index 1055

>>> Change detected at index 1087

>>> Change detected at index 1151

For this example, we see that the detector sets the drift flag to True

in the transition between the two distributions. During this transi-
tion period the ADWIN drift detector flags 4 changes until the data
distribution is stable.

7.3 development

The scikit-multiflow package is distributed under the BSD License.
Development follows the FOSS principles and encompasses:

• A webpage, https://scikit-multiflow.github.io/, including
documentation and user guide. Both, documentation and user
guide, are living documents that are continuously updated to
reflect the current stage of scikit-multiflow.
• Version control via git. The source code of the package is publicly

available on Github at https://github.com/scikit-multiflow/
scikit-multiflow

• Package deployment and software quality are enforced via con-
tinuous integration and functional testing, https://travis-ci.
org/scikit-multiflow/scikit-multiflow

https://scikit-multiflow.github.io/
https://github.com/scikit-multiflow/scikit-multiflow
https://github.com/scikit-multiflow/scikit-multiflow
https://travis-ci.org/scikit-multiflow/scikit-multiflow
https://travis-ci.org/scikit-multiflow/scikit-multiflow
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8 F U T U R E W O R K A N D
C O N C L U S I O N S

Big data is undoubtedly changing the way in which humanity gen-
erates, processes and understands data. The application of big data
across multiple fields is already impacting millions of lives. At the
front line of the digital revolution we find the field of machine learn-
ing. In this thesis we investigated the overlapping region between two
learning paradigms: batch and stream. In particular, we focused on the
classification problem, an instance of supervised learning. Given that
research is a never ending task in the advancement of humanity, we
list further research directions that stem from our work. Subsequently,
we present the final remarks of this thesis.

8.1 future directions

In the following, we highlight promising research directions and
provide recommendations for future studies.

8.1.1 Over-indebtedness Prediction

In the case of over-indebtedness prediction, it is plausible that in-
creasing the warning time from 6 to 9∼12 months would improve
the chances of recovery. Additionally, quantifying the associated cost
to correct/incorrect predictions would open the path for cost aware
learning techniques. A promising direction is to handle recurrent
trends in financial data which could improve the robustness of the
over-indebtedness warning mechanism.

8.1.2 Missing Data Imputation

A natural extension of our imputation method is its application to data
streams. One possibility is keeping concurrent models for each feature.
However, an important issue are the constraints in stream learning
in terms of resources. Thus, we suggest that further research should
focus on the selection of training data within the cascade. For example,
accounting for the correlation between attributes could reduce the
computational burden from unrelated attributes while maintaining
data interpretability. Similarly, adding an active strategy to control the
number of samples used for training within the cascade could result in
a more efficient approach without sacrificing imputation performance.
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8.1.3 Fast and Slow Learning

We believe that our findings on the feasibility of a unified batch-stream
framework outline an area of opportunity to further investigate ways
to exploit the collaboration between different type of learners. Using
an ensemble instead of single batch models to improve robustness
and a pool of models to keep old models which can be useful in
the presence of recurrent concepts. What’s more, investigating the
integration of batch and stream models rises interesting research
questions, e. g. can we use the predictions from a batch model to boost the
performance of a stream model and vice versa?

8.1.4 Adaptive XGBoost

Finally, regarding our adaptation of XGBoost for evolving data
streams. Further studies which focus on measuring the contribution
of individual weak learners, could enable the improvement of the
strategy to update (or not) the ensemble. More broadly, research onto
automatic parameter tuning could enable research on long-term per-
formance of stream models. Finally, an interesting topic for future
work is an instance-incremental strategy to update individual weak
learners and consequently the ensemble. We believe that our work
will serve as base for future studies on boosting for mining evolving
data streams.

8.2 final remarks

We presented OVI1, a systematic approach to over-indebtedness risk
prediction, a real-world problem with significant implications at per-
sonal, social end economic levels. OVI1 is a data-driven warning
mechanism for inter-bank application within the Groupe BPCE, the sec-
ond largest banking institution in France. We propose a multi-metric
criteria to account for the costs associated to correct/incorrect classifi-
cations given the extreme class-imbalance in the data. Two versions
of the framework are defined: OVI1-batch and OVI1-stream. To the
extent of our knowledge, our work is the first to cast over-indebtedness
prediction as a stream learning problem, overcoming the limitations
of batch models which become obsolete over time as financial markets
evolve. Tests results show that OVI1-batch and OVI1-stream outper-
form the current mechanism used by Groupe BPCE for both single and
multi-metric criteria.

To address the problem of missing data in classification, we pro-
posed CIM, an effective and scalable imputation method. CIM imputes
both numerical and nominal data and mitigates the impact of ‘miss-
ing at random’ and ‘missing completely at random’ data on binary
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and multi-class classification. Test results show that CIM performs
well over a wide range of missing values ratios and does not require
parameter tuning to achieve optimal performance. CIM is scalable to
large data sets, including highly dimensional data sets, a limitation
of established methods such as EMI and kNNI. Additionally, CIM
always succeeds in generating an imputed data set, something that
is not guaranteed by EMI. We also presented a multi-label learning
version of CIM able to impute multiple features at a time. Our works
is the first to approach hybrid (nominal and numerical) data types in
multi-label learning.

We also introduced Fast and Slow Learning, a unified framework
that uses fast (stream) and slow (batch) models concurrently. Our
research shows that considering learning as a continuous task, and
contrary to popular belief, a symbiosis of batch and stream learning
is feasible and can be effective. We showed the applicability of the
proposed framework for classification of streams with concept drift.
Test results on synthetic and real-world data confirm that the Fast

and Slow Classifier leverages stream and batch methods by com-
bining their strengths: a Fast model adapts to changes in the data
and provides predictions based on current concepts, whereas a Slow

model generates complex models considering wider data distributions.
Additionally, a drift detection mechanism serves to trigger automat-
ically the training of new Slow models that are consistent with the
new concept. Furthermore, the Fast and Slow Classifier allows the
introduction of batch methods, other than learning algorithms, into
the stream learning setting. For example, if the stream has missing
data, CIM can be added in a straightforward manner by creating a
batch pipeline [buffering + CIM + training].

Similarly, we proposed AXGB, an adaptation of the extreme gra-
dient boosting algorithm for evolving data streams. The core idea
is the incremental creation and update of the ensemble, i.e. weak
learners are trained on mini-batches of data and then added to the
ensemble. We study variations of the proposed method by consid-
ering two main factors: concept drift awareness and the strategy to
update the ensemble. We test AXGB against instance-incremental and
batch-incremental methods on synthetic and real-world data. Addi-
tionally, we consider a simple batch-incremental approach (BXGB)
where members of the ensemble are full XGB batch models trained on
consecutive mini-batches. From our tests, we conclude that AXGB[r]
(no concept drift awareness and model replacement within the ensem-
ble) represents the best compromise in terms of performance, training
time and memory usage. Another noteworthy finding from our exper-
iments is the good predictive performance of BXGB after parameter
tuning. If resource consumption is a secondary consideration, this
approach may be a worthwhile candidate in practical data stream
mining scenarios, particularly considering that our parameter tuning



112 future work and conclusions

experiments did not investigate optimizing the size of the boosted en-
semble for each mini-batch in BXGB. Overall, despite the limitations of
mini-batch-based data stream mining, and its drawbacks compared to
instance-incremental methods, it appears that XGB-based techniques
are promising candidates for data stream applications. In a similar
way, we believe AXGB might be an interesting alternative to XGB for
certain batch applications given its efficient management of resources
and adaptability.

Finally, we presented scikit-multiflow, a data stream framework in
Python. scikit-multiflow contributes to the democratization of stream
learning by extending the array of open source software available
to researchers and public in general. scikit-multiflow is primarily a
platform for stream learning research, the Fast and Slow Classifier

and AXGB are implemented and evaluated on scikit-multiflow. We are
positive that this open source tool will benefit the research community
and will push forward the field of stream learning.
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Plots in Figure A.1 provide insights on the distribution of missing
values per missingness mechanism.

Attributes

In
st
an

ce
s

(a)

Attributes

In
st
an

ce
s

(b)

Attributes0

20

40

60

80

100

%
 m

iss
in
g

(c)

Attributes

In
st
an

ce
s

(d)

Attributes

In
st
an

ce
s

(e)

Attributes0

20

40

60

80

100

%
 m

iss
in
g

(f )

Figure A.1: Difference between MAR (top) and MCAR (bottom) data distri-
butions. Plots correspond to the same data set (Music) with 5%
missing values. Figures A.1a and A.1d show original position
of missing values (dots). Figures A.1b and A.1e show the up-
dated positions after initial column-wise sorting performed by
CIM. Figures A.1c and A.1f are missing values histograms after
sorting.

Tests results for Imputation-Classification tests, Chapter 4 Sec-
tion 4.3, are shown in Figure A.2 for Logistic Regression and in
Figure A.3 for Random Forest. Plots show performance based on
AUROC for binary data sets and F1-Score for multi-class data sets.
Detailed information is available in Tables A.1, A.2, A.3 and A.4.
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Figure A.2: Performance of classification models based on imputed data vs
baseline. [1/2]
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Figure A.3: Performance of classification models based on imputed data vs
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Table A.1: Classification results. Logistic Regression on MAR data.

Data set Missing CIM-LR CIM-RF Constant EMI kNNI Simple

Adult

5 % 90.45 90.48 90.39 90.13 - 90.46

10 % 90.14 90.23 90.07 89.04 - 90.15

25 % 88.46 88.79 88.22 86.07 - 88.49

50 % 84.70 85.15 84.69 79.23 - 84.76

Census-IKDD

5 % 91.67 91.68 91.35 91.33 - 91.61

10 % 91.24 91.67 91.37 90.94 - 91.59

25 % 90.05 90.20 90.24 88.31 - 90.29

50 % 87.42 88.30 88.26 83.08 - 88.05

Music

5 % 84.87 84.65 84.60 84.87 84.40 84.49

10 % 84.42 84.42 84.10 85.57 85.11 84.54

25 % 84.00 84.19 81.45 - 84.61 83.35

50 % 81.10 82.22 79.03 - 81.01 80.83

Enron

5 % 69.02 69.56 65.92 - - 69.46

10 % 68.66 69.39 59.31 - - 69.46

25 % 64.07 65.31 43.39 - - 65.59

50 % 59.40 59.12 36.77 - - 60.12

Genbase

5 % 100.00 100.00 100.00 - - 100.00

10 % 100.00 100.00 99.99 - - 100.00

25 % 98.45 98.46 99.43 - - 98.42

50 % 91.87 92.02 98.66 - - 92.46

Llog

5 % 81.90 82.97 84.79 - - 83.06

10 % 80.44 81.78 80.80 - - 81.68

25 % 78.95 81.70 80.45 - - 80.45

50 % 72.47 75.29 71.86 - - 72.41

Medical

5 % 99.69 99.71 96.49 - - 99.71

10 % 99.47 99.41 90.81 - - 99.40

25 % 98.78 98.62 82.64 - - 98.53

50 % 85.98 86.23 52.92 - - 85.95

Scene

5 % 95.73 95.79 97.95 98.54 - 95.97

10 % 95.88 95.37 98.49 99.07 - 96.72

25 % 94.01 93.62 97.69 - - 94.95

50 % 89.60 89.75 93.82 94.58 - 92.29

Yeast

5 % 94.00 93.86 93.85 93.87 93.93 93.69

10 % 92.97 92.71 92.95 92.53 92.89 92.65

25 % 88.01 86.90 89.31 86.83 88.10 87.05

50 % 79.29 80.00 83.52 78.51 79.98 78.84

Covtype

5 % 44.95 45.59 44.32 - - 46.69

10 % 44.28 44.75 43.11 - - 45.11

25 % 42.06 41.10 35.06 - - 40.91

50 % 32.70 31.64 26.41 - - 29.30

Note: Binary classification results using ROC AUC except for Covtype
which corresponds to multi-class classification using F1-Score.



cascade imputation 119

Table A.2: Classification results. Logistic Regression on MCAR data.

Data set Missing CIM-LR CIM-RF Constant EMI kNNI Simple

Adult

5 % 90.20 90.35 89.93 89.24 - 90.19

10 % 89.66 89.99 89.35 87.96 - 89.69

25 % 87.99 88.63 87.68 84.57 - 88.13

50 % 84.03 84.78 83.93 77.63 - 84.35

Census-IKDD

5 % 91.29 91.35 90.83 90.40 - 91.08

10 % 90.93 91.05 90.16 89.69 - 90.55

25 % 89.50 89.77 88.53 86.90 - 89.43

50 % 86.14 87.11 85.76 80.89 - 86.49

Music

5 % 84.49 84.83 83.85 86.81 86.01 84.64

10 % 84.34 84.56 82.56 - 86.02 83.92

25 % 83.94 83.72 80.97 - 85.35 83.24

50 % 81.91 82.50 78.05 - 83.05 81.77

Enron

5 % 68.11 68.01 64.56 - - 68.01

10 % 67.39 67.22 54.43 - - 66.06

25 % 64.26 64.63 55.89 - - 63.49

50 % 59.19 61.01 48.05 - - 59.75

Genbase

5 % 99.99 99.99 99.21 - - 99.99

10 % 99.97 99.96 93.99 - - 99.97

25 % 99.48 99.61 74.89 - - 99.59

50 % 96.45 96.31 58.48 - - 96.24

Llog

5 % 80.98 81.85 76.24 - - 81.94

10 % 81.22 81.55 74.19 - - 80.32

25 % 77.64 79.06 68.61 - - 77.22

50 % 71.76 74.11 67.03 - - 74.14

Medical

5 % 99.34 99.34 98.27 - - 99.31

10 % 99.29 99.17 96.46 - - 99.19

25 % 97.86 97.77 86.52 - - 97.78

50 % 94.06 93.86 70.36 - - 94.00

Scene

5 % 97.47 97.26 96.50 - - 96.73

10 % 97.10 96.83 95.18 - - 96.04

25 % 95.67 95.59 91.77 - - 94.12

50 % 93.36 93.57 85.91 - - 91.02

Yeast

5 % 93.40 93.22 93.42 92.99 93.41 92.83

10 % 92.13 91.97 92.57 - 92.16 91.44

25 % 88.96 88.22 89.70 - 88.85 87.54

50 % 82.76 82.41 84.53 - 83.25 82.27

Covtype

5 % 43.59 45.04 38.12 - - 44.55

10 % 43.74 44.08 39.10 46.02 - 44.13

25 % 41.45 42.01 35.93 40.60 - 40.77

50 % 36.35 34.77 31.02 - - 34.05

Note: Binary classification results using ROC AUC except for Covtype
which corresponds to multi-class classification using F1-Score.
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Table A.3: Classification results. Random Forest on MAR data.

Data set Missing CIM-LR CIM-RF Constant EMI kNNI Simple

Adult

5 % 94.05 94.06 94.02 93.97 - 94.03

10 % 93.91 93.95 93.83 93.78 - 93.92

25 % 92.58 92.64 92.51 92.27 - 92.68

50 % 89.84 89.87 90.31 89.20 - 90.12

Census-IKDD

5 % 87.93 87.72 87.45 87.70 87.37 87.42

10 % 87.75 87.57 86.87 87.56 87.32 87.32

25 % 87.13 86.67 86.42 - 86.39 86.35

50 % 85.16 84.52 84.20 - 84.34 84.17

Music

5 % 68.07 67.26 49.23 - - 65.08

10 % 64.92 66.63 45.31 - - 64.44

25 % 59.02 62.01 35.02 - - 58.84

50 % 54.23 49.71 28.95 - - 53.17

Enron

5 % 68.07 67.26 49.23 - - 65.08

10 % 64.92 66.63 45.31 - - 64.44

25 % 59.02 62.01 35.02 - - 58.84

50 % 54.23 49.71 28.95 - - 53.17

Genbase

5 % 100.00 100.00 99.88 - - 100.00

10 % 100.00 100.00 98.93 - - 100.00

25 % 96.78 96.31 97.41 - - 98.35

50 % 85.01 84.15 96.21 - - 92.16

Llog

5 % 85.23 85.89 84.68 - - 81.87

10 % 85.46 83.37 84.00 - - 83.89

25 % 82.06 82.39 75.72 - - 79.41

50 % 76.28 75.99 63.43 - - 71.81

Medical

5 % 99.54 99.59 88.34 - - 99.60

10 % 99.35 99.34 73.14 - - 99.49

25 % 98.90 98.74 58.48 - - 98.84

50 % 79.45 79.16 38.64 - - 83.30

Scene

5 % 93.54 93.52 96.61 97.52 - 94.68

10 % 93.88 93.53 96.26 98.02 - 95.25

25 % 93.11 92.93 94.62 - - 96.15

50 % 91.93 92.20 92.25 98.05 - 95.26

Yeast

5 % 94.98 94.80 94.72 94.90 94.98 94.87

10 % 94.00 93.82 93.75 93.66 94.22 93.96

25 % 89.29 88.25 89.68 88.19 89.50 88.79

50 % 80.23 80.15 84.97 78.81 80.97 80.91

Covtype

5 % 51.13 50.15 55.85 - - 57.53

10 % 48.74 48.10 53.57 - - 54.95

25 % 44.43 42.52 41.09 - - 45.27

50 % 34.76 33.46 30.82 - - 33.24

Note: Binary classification results using ROC AUC except for Covtype
which corresponds to multi-class classification using F1-Score.
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Table A.4: Classification results. Random Forest on MCAR data.

Data set Missing CIM-LR CIM-RF Constant EMI kNNI Simple

Adult

5 % 90.51 90.59 90.42 90.08 - 90.40

10 % 90.07 90.19 90.04 89.20 - 90.02

25 % 88.34 88.57 88.55 86.40 - 88.30

50 % 82.86 83.18 83.93 80.21 - 82.42

Census-IKDD

5 % 93.89 93.91 93.83 93.58 - 93.84

10 % 93.54 93.61 93.45 93.03 - 93.56

25 % 92.30 92.52 92.38 91.21 - 92.62

50 % 89.42 89.80 90.02 86.72 - 90.24

Music

5 % 87.67 87.66 86.99 87.88 87.46 87.23

10 % 87.44 87.39 86.60 - 86.88 87.23

25 % 86.82 86.69 85.36 - 86.20 86.26

50 % 84.46 84.04 81.86 - 83.95 84.59

Enron

5 % 65.13 64.81 56.66 - - 64.48

10 % 64.40 65.80 52.12 - - 64.15

25 % 59.82 62.74 48.79 - - 61.34

50 % 56.36 57.36 51.13 - - 55.50

Genbase

5 % 99.99 99.99 99.60 - - 99.98

10 % 99.92 99.83 96.75 - - 99.86

25 % 98.61 98.10 80.49 - - 99.45

50 % 91.53 90.69 61.19 - - 96.03

Llog

5 % 84.81 83.76 74.15 - - 83.60

10 % 82.48 80.89 66.50 - - 83.16

25 % 77.44 78.07 60.14 - - 76.18

50 % 72.34 74.20 57.88 - - 72.53

Medical

5 % 99.41 99.39 98.80 - - 99.36

10 % 99.32 99.35 97.60 - - 99.35

25 % 98.51 98.42 88.39 - - 98.33

50 % 95.13 95.28 68.05 - - 95.04

Scene

5 % 95.51 95.45 94.54 - - 95.33

10 % 95.21 95.23 93.98 - - 95.06

25 % 94.77 94.87 92.61 - - 94.08

50 % 93.29 94.00 90.04 - - 92.41

Yeast

5 % 94.51 94.31 94.00 94.28 94.47 94.17

10 % 93.51 93.24 92.65 - 93.52 93.00

25 % 89.97 89.36 89.30 - 90.29 89.22

50 % 83.03 82.48 83.38 - 83.93 83.13

Covtype

5 % 61.41 61.44 61.63 - - 61.58

10 % 60.68 60.70 60.86 38.00 - 60.80

25 % 59.14 59.22 59.53 35.69 - 59.28

50 % 56.00 56.04 56.03 - - 56.00

Note: Binary classification results using ROC AUC except for Covtype
which corresponds to multi-class classification using F1-Score.





B R É S U M É E N F R A N Ç A I S

Ces dernières années, nous avons assisté à une révolution numérique
qui a radicalement changé la façon dont nous générons et consommons
des données. En 2016, 90% des données mondiales ont été créées au
cours des deux dernières années et on prévoit que d’ici à 2020 l’univers
numérique atteindra 44 zettabytes1 (44 000 milliards de gigabytes).
Ce nouveau paradigme de données omniprésentes a eu une impact
sur différents secteurs de la société, notamment les administrations
publiques, les soins de santé, les banques et les loisirs, pour n’en
nommer que quelques-uns. En raison de l’ampleur de son potentiel,
les données ont été appelées “le pétrole de l’ère numérique”2.

b.1 défis et opportunités

L’apprentissage automatique n’est pas nouveau, il s’agit en réalité
d’un domaine d’étude bien établi, doté d’un solide bagage scientifique
et technique. Cependant, l’impact perturbateur du Big Data et les
défis qu’il pose ont revigoré le monde de la recherche. En outre, cela
a contribué à faire de l’apprentissage automatique un sujet d’intérêt
majeur pour le grand public. Actuellement, l’une des axes de recherche
les plus actives à l’ère des données omniprésentes est de faciliter la
mise en place de mécanismes permettant l’apprentissage automatique
à grande échelle. Dans ce contexte, il est essentiel que les méthodes
d’apprentissage puissent suivre le rythme des données, non seulement
en termes de volume, mais aussi de la vitesse à laquelle elles sont
générées et traitées, afin d’être utiles à l’homme.

Traditionnellement, le pipeline minimal (collecte de données →
estimation (entraînement) de modèle→ prédiction) est appliqué à des
lots ou batchs de données. Lorsque de nouvelles données deviennent
disponibles, la même séquence est répétée et un nouveau modèle est
généré. Cette approche, connue sous le nom de apprentissage en batch,
s’est révélée efficace dans de nombreuses applications du monde réel.
Cependant, cela représente des compromis importants lors de la ré-
solution de problèmes liés au Big Data. Par exemple, si les données
arrivent à grande vitesse, nous devons exécuter le pipeline complet en-
core et encore pour conserver une séquence de modèles cohérente avec
les données récentes. Comme (en général) aucune connaissance n’est
conservée, nous devons relancer l’ensemble du pipeline, ce qui peut

1 The digital universe in 2020, John Gantz et David Reinsel, IDC, février 2013.
2 The world’s most valuable resource is no longer oil, but data, The Economist, mai 2017.
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représenter un gaspillage considérable de ressources si les données ne
présentent que de petites variations dans le temps. Il est également
difficile de définir la quantité de données à utiliser ou le temps que
nous sommes prêts à attendre tout en maximisant les chances de
générer un modèle optimal.

L’équilibre entre l’investissement en ressources (temps, mémoire,
coûts) et la qualité du modèle est un élément essentiel pour la vi-
abilité d’un algorithme d’apprentissage dans des applications Big
Data réelles. L’apprentissage par flux est le domaine de recherche émer-
gent qui se concentre sur l’apprentissage en continu à partir de flux
de données infinis. Un algorithme d’apprentissage par flux ne voit
qu’une fois les données, modifie son état interne (modèle), puis traite
le prochain échantillon de données en partant du principe que les
anciens échantillons ne sont plus vus. L’apprentissage en continu met
l’accent sur une utilisation efficace des ressources sans compromettre
l’apprentissage. Dans cette thèse, nous nous concentrons sur la région
de chevauchement entre l’apprentissage par batch et par flux.

b.2 open data science

La science des données est un domaine interdisciplinaire émergent
à l’ère numérique qui unit les statistiques, l’analyse des données
et l’apprentissage automatique pour extraire des connaissances et
des informations à partir des données. L’un des principaux contribu-
teurs à l’adoption rapide de la science des données est le mouvement
Open Source. La désignation “open source” est attribuée à quelque
chose que des personnes, autres que l’auteur, peuvent modifier et
partager parce que sa conception est accessible au public. Dans le
contexte du développement de logiciel, il s’agit du méthode utilisé
pour développer des programmes informatiques. La communauté de
l’apprentissage automatique a été bénéficié d’un grand nombre de
frameworks open source centrés sur de multiples sujets et plateformes
(système d’exploitation et langage de programmation). Comme ex-
emples des avantages de la recherche open source, nous pouvons
identifier:

• Recherche reproductible, une partie essentielle du processus
scientifique.

• Développement plus rapide, car les chercheurs peuvent se con-
centrer sur les éléments essentiels de leur travail sans se laisser
détourner des détails techniques.

• Favorise la collaboration, en fournissant une plate-forme com-
mune sur laquelle une communauté peut prospérer.
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• Démocratisation de l’apprentissage automatique en réduisant
l’écart technique des individus non experts.

• Maintenabilité basée sur la communauté et non sur des indi-
vidus ou des groupes isolés.

b.3 contributions

Nous résumons ici les contributions de cette thèse.
Dans le contexte de la prévision de surendettement(Chapter 3):

• Contrairement aux autres approches, nous considérons la prévi-
sion de surendettement comme un problème de classification
multidimensionnelle et fournissons une solution complète pi-
lotée par les données.

• Nous nous concentrons sur le processus de sélection des carac-
téristiques plutôt que sur des caractéristiques spécifiques sélec-
tionnées à la main. Dans la littérature, plusieurs solutions re-
posent sur des ensembles fixes de caractéristiques, en supposant
que: i) Les données de différentes institutions bancaires ont
des distributions similaires. ii) Les caractéristiques de données
sont réplicables. Des suppositions difficiles à réaliser dans des
applications réelles.

• Nous étudions l’impact du déséquilibre extrême de classe. Bien
que l’objectif principal soit d’identifier les personnes à risque,
l’impact de la classification erronée sur les deux classes est
pris en compte. i) Nous appliquons un critère multi-métrique
pour trouver le meilleur compromis entre la performance et
l’équité d’un modèle. ii) Nous discutons des coûts associés à la
classification erronée des instances.

• Pour autant que nous sachions, cette étude est la première à
considérer la prédiction du surendettement comme un prob-
lème d’apprentissage par flux de données. C’est une solution
attrayante, car les modèles de flux s’adaptent aux changements
des données, ce qui constitue un inconvénient de l’apprentissage
par batch traditionnel, car de nouveaux modèles doivent être
générés au fil du temps pour remplacer les modèles obsolètes.

Concernant l’imputation de données manquantes (Chapter 4):

• Nous proposons une nouvelle méthode d’imputation model-
based, efficace et évolutive, qui jette le processus d’imputation
comme un ensemble de tâches de classification ou de régression.
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• Contrairement aux techniques d’imputation bien établies, la
méthode proposée n’est pas restrictive en ce qui concerne le
type de données manquantes, en soutenant: les mécanismes
manquant au hasard et manquant complètement au hasard, données
numériques et nominales, données petites à grande échelle, y
compris les données de grande dimension.

• Nous fournissons une solution pour imputer plusieurs carac-
téristiques de données à la fois via un apprentissage multi-label.
Dans la mesure de nos connaissances, notre approche est la
première à aborder l’apprentissage multi-étiquettes pour les
types de données hybrides, c’est-à-dire qu’il impute les données
numériques et nominales simultanément.

Les contributions de l’apprentissage rapide et lent (Chapter 5) sont
les suivantes:

• Nous proposons une stratégie unifiée d’apprentissage automa-
tique basée sur les apprenants fast (par flux) et slow (par batch).
En considérant l’apprentissage comme une tâche continue, nous
montrons que les méthodes d’apprentissage par batch peuvent
être efficacement adaptées à le cadre du flux dans des conditions
spécifiques.

• Nous montrons l’applicabilité de ce nouveau paradigme en clas-
sification. Les résultats des tests sur des données synthétiques et
réelles confirment que Fast and Slow Classifier exploite les
méthodes de flux et de traitement par batch en combinant leurs
forces: un modèle rapide s’adapte aux modifications des données
et fournit des prévisions basées sur les concepts actuels, tandis
qu’un modèle lent génère des modèles complexes construits sur
des distributions de données plus larges.

• Nous pensons que notre recherche donne un nouveau re-
gard sur la possibilité de solutions hybrides dans lesquelles
l’apprentissage par batch et par flux interagit positivement. Cela
revêt une importance particulière dans les applications réelles
liées aux solutions par batch et dont le passage au cadre de flux
représente un gros compromis.

Pour notre travail sur boosting pour l’apprentissage en flux (Chap-
ter 6), nous listons les contributions suivantes:

• Nous proposons une adaptation de l’algorithme eXtreme Gra-
dient Boosting (XGBoost) pour l’évolution des flux de don-
nées. L’idée centrale est la création et mise-à-jour progressif
de l’ensemble, c’est-à-dire que les apprenants faibles sont formés
sur des mini-batches de données, puis ajoutés à l’ensemble.
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• De plus, nous considérons une approche simple, incrémentielle
par batches, dans laquelle les membres de l’ensemble sont des
modèles XGBoost complets formés sur des mini-batches consé-
cutifs. Si la consommation de ressources est une considération
secondaire, cette approche (après le réglage des paramètres) peut
constituer un candidat intéressant pour une application dans
des scénarios pratiques d’extraction de flux de données.

• Nous effectuons une évaluation approfondie en termes de per-
formances, de pertinence des hyper-paramètres, de mémoire
et de temps d’entraînement. Bien que l’objectif principal soit
d’apprendre des flux de données, nous pensons que notre méth-
ode de flux constitue une alternative intéressante à la version
batch pour certaines applications, en raison de sa gestion efficace
des ressources et de son adaptabilité. De plus, notre évalua-
tion sert de mise à jour des études trouvées dans la littérature
qui comparent les méthodes instance-incrémentielles et batch-
incrémentales.

Finalement, les contributions de notre framework de apprentissage
par flux open source (Chapter 7):

• Nous présentons scikit-multiflow, un framework open source
pour l’apprentissage par flux de données et multi-output en
Python. Le source-code est disponible publiquement et distribué
sous la license BSD 3-Clause.

• scikit-multiflow fournit plusieurs méthodes d’apprentissage,
générateurs de données et évaluateurs à la pointe de la tech-
nologie, pour différents problèmes d’apprentissage par flux,
notamment single-output, multi-output et multi-label.

• scikit-multiflow est conçu comme une plate-forme pour encour-
ager la démocratisation de la recherche sur l’apprentissage par
flux. Par exemple, les méthodes proposées dans Chapter 5

et Chapter 6 sont implémentées sur scikit-multiflow et l’évaluation
correspondante est (dans la plupart des cas) effectuée sur cette
plateforme.
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[41] Nicole Fondeville, Erhan Őzdemir, and Terry Ward. Over-
indebtedness New evidence from the EU-SILC special module. Tech.
rep. European Comission, 2010.

[42] Eibe Frank, Geoffrey Holmes, and Richard Kirkby. “Racing
committees for large datasets.” In: Discovery Science (2002),
pp. 153–164.

[43] Yoav Freund. “Boosting a weak learning algorithm by major-
ity.” In: Information and computation 121.2 (1995), pp. 256–285.

[44] Yoav Freund and Robert E. Schapire. “A Decision-Theoretic
Generalization of On-Line Learning and an Application to
Boosting.” In: Journal of Computer and System Sciences (1997),
pp. 119–139.

[45] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The
Elements of Statistical Learning: Data Mining, Inference, and Pre-
diction. New York, NY: Springer-Verlag New York, 2009.

https://doi.org/http://dx.doi.org/10.2307/2984875
https://arxiv.org/abs/0710.5696v2
https://doi.org/10.1007/3-540-45014-9_1
http://link.springer.com/10.1007/3-540-45014-9%7B%5C_%7D1
http://link.springer.com/10.1007/3-540-45014-9%7B%5C_%7D1
https://doi.org/10.1016/j.ipl.2005.11.003
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1007/s005210200002
https://doi.org/10.1007/s005210200002


bibliography 133

[46] Drew Fudenberg and Eric Maskin. “The Folk Theorem in Re-
peated Games with Discounting or with Incomplete Informa-
tion.” In: Econometrica 54.3 (May 1986), p. 533. issn: 00129682.
doi: 10.2307/1911307.

[47] João Gama and Petr Kosina. “Recurrent concepts in data
streams classification.” In: Knowledge and Information Systems
40.3 (2014), pp. 489–507. doi: 10.1007/s10115-013-0654-6.

[48] João Gama, Pedro Medas, Gladys Castillo, and Pedro Ro-
drigues. “Learning with Drift Detection.” In: (2004), pp. 286–
295. doi: 10.1007/978-3-540-28645-5_29.

[49] João Gama, Raquel Sebastião, and Pedro Pereira Rodrigues.
“On evaluating stream learning algorithms.” In: Machine Learn-
ing 90.3 (2013), pp. 317–346. doi: 10.1007/s10994-012-5320-9.
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Titre : Apprentissage Automatique Rapide et Lent
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Résumé : L’ère du Big Data a révolutionné la manière
dont les données sont créées et traitées. Dans ce
contexte, de nombreux défis se posent, compte tenu
de la quantité énorme de données disponibles qui
doivent être efficacement gérées et traitées afin d’ex-
traire des connaissances. Cette thèse explore la sym-
biose de l’apprentissage en mode batch et en flux, tra-
ditionnellement considérés dans la littérature comme
antagonistes, sur le problème de la classification à
partir de flux de données en évolution.
L’apprentissage en mode batch est une approche bien
établie basée sur une séquence finie : d’abord les
données sont collectées, puis les modèles prédictifs
sont créés, finalement le modèle est appliqué. Par
contre, l’apprentissage par flux considère les données
comme infinies, rendant le problème d’apprentissage
comme une tâche continue (sans fin). De plus, les flux
de données peuvent évoluer dans le temps, ce qui si-
gnifie que la relation entre les caractéristiques et la
réponse correspondante peut changer.
Nous proposons un cadre systématique pour prévoir
le surendettement, un problème du monde réel ayant
des implications importantes dans la société mo-
derne. Les deux versions du mécanisme d’alerte

précoce (batch et flux) surpassent les performances
de base de la solution mise en œuvre par le Groupe
BPCE, la deuxième institution bancaire en France.
De plus, nous introduisons une méthode d’imputa-
tion évolutive basée sur un modèle pour les données
manquantes dans la classification. Cette méthode
présente le problème d’imputation sous la forme d’un
ensemble de tâches de classification / régression
résolues progressivement.
Nous présentons un cadre unifié qui sert de plate-
forme d’apprentissage commune où les méthodes de
traitement par batch et par flux peuvent interagir de
manière positive. Nous montrons que les méthodes
batch peuvent être efficacement formées sur le
réglage du flux dans des conditions spécifiques. Nous
proposons également une adaptation de l’Extreme
Gradient Boosting algorithme aux flux de données en
évolution. La méthode adaptative proposée génère
et met à jour l’ensemble de manière incrémentielle à
l’aide de mini-lots de données. Enfin, nous présentons
scikit-multiflow, un framework open source en Python
qui comble le vide en Python pour une plate-forme de
développement/recherche pour l’apprentissage à par-
tir de flux de données en évolution.

Title : Fast and Slow Machine Learning

Keywords : Data Stream, Classification, Missing Data, Concept Drift

Abstract : The Big Data era has revolutionized the
way in which data is created and processed. In this
context, multiple challenges arise given the massive
amount of data that needs to be efficiently handled
and processed in order to extract knowledge. This the-
sis explores the symbiosis of batch and stream lear-
ning, which are traditionally considered in the litera-
ture as antagonists. We focus on the problem of clas-
sification from evolving data streams.
Batch learning is a well-established approach in ma-
chine learning based on a finite sequence : first data
is collected, then predictive models are created, then
the model is applied. On the other hand, stream lear-
ning considers data as infinite, rendering the learning
problem as a continuous (never-ending) task. Further-
more, data streams can evolve over time, meaning
that the relationship between features and the corres-
ponding response (class in classification) can change.
We propose a systematic framework to predict over-
indebtedness, a real-world problem with significant
implications in modern society. The two versions of
the early warning mechanism (batch and stream) out-

perform the baseline performance of the solution im-
plemented by the Groupe BPCE, the second lar-
gest banking institution in France. Additionally, we
introduce a scalable model-based imputation me-
thod for missing data in classification. This method
casts the imputation problem as a set of classifica-
tion/regression tasks which are solved incrementally.
We present a unified framework that serves as a com-
mon learning platform where batch and stream me-
thods can positively interact. We show that batch me-
thods can be efficiently trained on the stream set-
ting under specific conditions. The proposed hybrid
solution works under the positive interactions bet-
ween batch and stream methods. We also propose
an adaptation of the Extreme Gradient Boosting (XG-
Boost) algorithm for evolving data streams. The pro-
posed adaptive method generates and updates the
ensemble incrementally using mini-batches of data.
Finally, we introduce scikit-multiflow, an open source
framework in Python that fills the gap in Python for a
development/research platform for learning from evol-
ving data streams.

Université Paris-Saclay
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