A. Achtziger, M. Hubert, P. Kenning, G. Raab, and L. Reisch, Debt out of control: The links between self-control, compulsive buying, and real debts, In: Journal of Economic Psychology, vol.49, pp.141-149, 2015.

E. Acuña and C. Rodriguez, The Treatment of Missing Values and its Effect on Classifier Accuracy, Classification, Clustering, and Data Mining Applications, pp.639-647, 1995.

C. Charu, Y. Aggarwal, J. Philip, J. Han, and . Wang, A Framework for Clustering Evolving Data Streams, Proceedings 2003 VLDB Conference, pp.81-92, 2003.

R. Agrawal, T. Imielinski, and A. Swami, Database mining: A performance perspective, In: IEEE transactions on knowledge and data engineering, vol.5, pp.914-925, 1993.

F. Amir and . Atiya, Bankruptcy prediction for credit risk using neural networks: a survey and new results, IEEE Neural Networks Council, vol.12, pp.929-935, 2001.

C. Richard, R. M. Atkinson, and . Shiffrin, Human memory: A proposed system and its control processes1, Psychology of learning and motivation, vol.2, pp.89-195, 1968.

D. Alan, G. Baddeley, and . Hitch, Working memory, In: Psychology of learning and motivation, vol.8, pp.47-89, 1974.

M. Baena, -. Garcia, J. D. Campo-avila, R. Fidalgo, A. Bifet et al., Early Drift Detection Method, 4th ECML PKDD International Workshop on Knowledge Discovery from Data Streams, pp.77-86, 2006.

E. Gustavo, M. C. Batista, and . Monard, A study of k-nearest neighbour as an imputation method, In: Frontiers in Artificial Intelligence and Applications, vol.87, pp.251-260, 2002.

G. E. Batista, R. C. Prati, and M. C. Monard, A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data, In: ACM SIGKDD Explorations Newsletter -Special issue on learning from imbalanced datasets, vol.6, pp.20-29, 2004.

A. Beygelzimer, S. Kale, and H. Luo, Optimal and Adaptive Algorithms for Online Boosting, In: Sustainable Energy, Grids and Networks, vol.7, pp.70-79, 2015.

A. Bifet, E. Frank, G. Holmes, and B. Pfahringer, Ensembles of Restricted Hoeffding Trees, In: ACM Transactions on Intelligent Systems and Technology, vol.3, issue.2, pp.1-20, 2012.

A. Bifet and R. Gavaldà, Learning from TimeChanging Data with Adaptive Windowing, Proceedings of the 2007 SIAM International Conference on Data Mining, pp.443-448, 2007.

A. Bifet and R. Gavaldà, Adaptive Learning from Evolving Data Streams, 8th International Symposium on Intelligent Data Analysis, pp.249-260, 2009.

A. Bifet, R. Gavalda, G. Holmes, and B. Pfahringer, Machine Learning for Data Streams with Practical Examples in MOA, 2018.

A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, Moa: Massive online analysis, In: Journal of Machine Learning Research, vol.11, pp.1601-1604, 2010.

A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, DATA STREAM MINING A Practical Approach, 2011.

A. Bifet, G. Holmes, and B. Pfahringer, In: Joint European conference on machine learning and knowledge discovery in databases, pp.135-150, 2010.

A. Bifet, B. Pfahringer, J. Read, and G. Holmes, Efficient data stream classification via probabilistic adaptive windows, Proceedings of the 28th annual ACM symposium on applied computing, pp.801-806, 2013.

M. Christopher and . Bishop, Pattern Recognition and Machine Learning, 2006.

J. H. Leo-breiman, R. A. Friedman, C. J. Olshen, and . Stone, Classification and Regression Trees, 1984.

L. Breiman, D. Wolpert, P. Chan, and S. Stolfo, Pasting Small Votes for Classification in Large Databases and On-Line, In: Machine Learning, vol.36, pp.85-103, 1999.

G. Brown, A. Pocock, M. Zhao, and M. Lujan, Conditional Likelihood Maximisation: A Unifying Framework for Mutual Information Feature Selection, In: Journal of Machine Learning Research, vol.13, pp.27-66, 2012.

S. Canbas, A. Cabuk, and S. Kilic, Prediction of commercial bank failure via multivariate statistical analysis of financial structures: The Turkish case, European Journal of Operational Research, vol.166, pp.528-546, 2005.

R. Caruana and A. Niculescu-mizil, An empirical comparison of supervised learning algorithms, Proceedings of the 23rd international conference on Machine learning C, pp.161-168, 2006.

V. Nitesh, K. W. Chawla, L. O. Bowyer, W. P. Hall, and . Kegelmeyer, SMOTE: Synthetic minority oversampling technique, In: Journal of Artificial Intelligence Research, vol.16, pp.321-357, 2002.

P. Cl, C. Chen, and . Zhang, Data-intensive applications, challenges, techniques and technologies: A survey on Big Data, In: Information Sciences, vol.275, pp.314-347, 2014.

T. Chen and C. Guestrin, XGBoost: A Scalable Tree Boosting System, Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD '16, pp.785-794, 2016.

A. Chmelar, Household Debt and the European Crisis, European Credit Research Institute, vol.13, 2013.

, The over-indebtedness of European households: updated mapping of the situation, nature and causes, effects and initiatives for alleviating its impact, 2013.

K. Crammer, O. Dekel, J. Keshet, S. Shalevshwartz, and Y. Singer, Online Passive-Aggressive Algorithms, In: Journal of Machine Learning Research, vol.7, pp.551-585, 2006.

. Philip-dawid, Present position and potential developments: Some personal views: Statistical theory: The prequential approach, In: Journal of the Royal Statistical Society. Series A, pp.278-292, 1984.

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, In: Journal of the Royal Statistical Society Series B Methodological, vol.39, pp.1-38, 1977.

T. G. Dietterich, Ensemble Methods in Machine Learning, pp.1-15, 2000.

P. Domingos and G. Hulten, Mining High-speed Data Streams, Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD '00, pp.71-80, 2000.
DOI : 10.1145/347090.347107

O. Richard, P. E. Duda, D. G. Hart, and . Stork, , 2012.

S. Pavlos, P. G. Efraimidis, and . Spirakis, Weighted random sampling with a reservoir, In: Information Processing Letters, vol.97, issue.5, pp.181-185, 2006.

T. Fawcett, An introduction to ROC analysis, In: Pattern Recognition Letters, vol.27, pp.861-874, 2006.
DOI : 10.1016/j.patrec.2005.10.010

F. Fessant and S. Midenet, Self-organising map for data imputation and correction in surveys, 2002.

F. Fleuret, Fast Binary Feature Selection with Conditional Mutual Information, In: Journal of Machine Learning Research, vol.5, pp.1531-1555, 2004.

N. Fondeville, ?. Erhan, T. Ozdemir, and . Ward, Overindebtedness New evidence from the EU-SILC special module, 2010.

E. Frank, G. Holmes, and R. Kirkby, Racing committees for large datasets, In: Discovery Science, pp.153-164, 2002.
DOI : 10.1007/3-540-36182-0_15

URL : https://researchcommons.waikato.ac.nz/bitstream/10289/39/1/content.pdf

Y. Freund, Boosting a weak learning algorithm by majority, In: Information and computation, vol.121, pp.256-285, 1995.

Y. Freund and R. E. Schapire, A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting, In: Journal of Computer and System Sciences, pp.119-139, 1997.

J. Friedman, T. Hastie, and R. Tibshirani, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2009.

D. Fudenberg and E. Maskin, The Folk Theorem in Repeated Games with Discounting or with Incomplete Information, In: Econometrica, vol.54, issue.3, p.533, 1986.

J. Gama and P. Kosina, Recurrent concepts in data streams classification, In: Knowledge and Information Systems, vol.40, pp.489-507, 2014.

J. Gama, P. Medas, G. Castillo, and P. Rodrigues, Learning with Drift Detection, pp.286-295, 2004.
DOI : 10.1007/978-3-540-28645-5_29

J. Gama, R. Sebastião, and P. P. Rodrigues, On evaluating stream learning algorithms, In: Machine Learning, vol.90, pp.317-346, 2013.
DOI : 10.1007/s10994-012-5320-9

URL : https://link.springer.com/content/pdf/10.1007%2Fs10994-012-5320-9.pdf

J. Gama, A. Indr-?-e-?liobait-?-e, M. Bifet, A. Pechenizkiy, and . Bouchachia, A survey on concept drift adaptation, In: ACM Computing Surveys, vol.46, pp.1-37, 2014.

J. Gathergood, Self-control, financial literacy and consumer over-indebtedness, In: Journal of Economic Psychology, vol.33, pp.590-602, 2012.
DOI : 10.1016/j.joep.2011.11.006

URL : https://doi.org/10.1016/j.joep.2011.11.006

P. Geurts, D. Ernst, and L. Wehenkel, Extremely randomized trees, Machine Learning, vol.63, pp.3-42, 2006.
DOI : 10.1007/s10994-006-6226-1

URL : https://hal.archives-ouvertes.fr/hal-00341932

B. Gianni, N. Dourmashkin, M. Rossi, and Y. Yin, Consumer Over-indebtedness in the EU: Measurement and Characteristics, In: Journal of Economic Studies, vol.34, issue.2, 2007.

M. Heitor, A. Gomes, J. Bifet, J. P. Read, F. Barddal et al., Adaptive random forests for evolving data stream classification, Machine Learning, vol.106, p.15730565, 2017.

I. Guyon and A. Elisseeff, An Introduction to Variable and Feature Selection, In: Journal of Machine Learning Research (JMLR), vol.3, issue.3, pp.1157-1182, 2003.

I. Guyon, J. Li, T. Mader, P. A. Pletscher, G. Schneider et al., Competitive baseline methods set new standards for the NIPS 2003 feature selection benchmark, In: Pattern Recognition Letters, vol.28, pp.1438-1444, 2007.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann et al., The WEKA Data Mining Software: An Update, In: SIGKDD Explor. Newsl, vol.11, issue.1, pp.10-18, 2009.

H. Han, W. Wang, and B. Mao, Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning, Advances in intelligent computing, vol.17, pp.878-887, 2005.

H. He and E. A. Garcia, Learning from imbalanced data, IEEE Transactions on Knowledge and Data Engineering, vol.21, pp.1263-1284, 2009.

S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural computation 9, vol.8, pp.1735-1780, 1997.

J. Honaker, G. King, and M. Blackwell, Amelia II: A Program for Missing Data, In: Journal of Statistical Software, vol.45, pp.1-47, 2011.

C. Horváth, O. B. Büttner, N. Belei, and F. Ad?güzel, Balancing the balance: Self-control mechanisms and compulsive buying, In: Journal of Economic Psychology, vol.49, pp.120-132, 2015.

Z. Huang, H. Chen, C. Hsu, W. Chen, and S. Wu, Credit rating analysis with support vector machines and neural networks: a market comparative study, In: Decision Support Systems, vol.37, pp.543-558, 2004.

G. Hulten, L. Spencer, and P. Domingos, Mining time-changing data streams, Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pp.97-106, 2001.

E. Ikonomovska, J. Gama, and S. D?eroski, Learning model trees from evolving data streams, Data mining and knowledge discovery, vol.23, pp.128-168, 2011.

J. Young-hun, J. Goetz, and A. Tewari, Online Multiclass Boosting, Advances in Neural Information Processing Systems, pp.919-928, 2017.

D. Kahneman, Thinking, fast and slow, 2011.

B. Kamleitner, E. Hoelzl, and E. Kirchler, Credit use: Psychological perspectives on a multifaceted phenomenon, pp.1-27, 2012.

P. Kang, Locally linear reconstruction based missing value imputation for supervised learning, In: Neurocomputing, vol.118, pp.65-78, 2013.

G. King, J. Honaker, A. Joseph, and K. Scheve, Analyzing Incomplete Political Science Data, In: American Political Science Review, vol.85, pp.49-69, 2001.

N. Kourtellis, G. De-francisci, A. Morales, A. Bifet, and . Murdopo, VHT: Vertical hoeffding tree, IEEE, pp.915-922, 2016.

A. Ladas, E. Ferguson, J. Garibaldi, and U. Aickelin, A Data Mining framework to model Consumer Indebtedness with Psychological Factors, IEEE International Conference of Data Mining: The Seventh International Workshop on Domain Driven Data Mining, 2014.

V. Quoc, M. Le, R. Ranzato, M. Monga, K. Devin et al., Building High-level Features Using Large Scale Unsupervised Learning, Proceedings of the 29th International Coference on International Conference on Machine Learning, pp.507-514, 2012.

M. Lee and W. Pedrycz, The Fuzzy C-means Algorithm with Fuzzy P-mode Prototypes for Clustering Objects Having Mixed Features, In: Fuzzy Sets Syst, vol.160, 2009.
DOI : 10.1016/j.fss.2009.06.015

D. Li, J. Deogun, W. Spaulding, and B. Shuart, Towards Missing Data Imputation: A Study of Fuzzy K-means Clustering Method, Rough Sets and Current Trends in Computing: 4th International Conference, 2004.

H. Berlin, , pp.573-579, 2004.

J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino et al., Feature Selection: A Data Perspective, In: Journal of Machine Learning Research, pp.1-73, 2016.
DOI : 10.1145/3136625

URL : http://arxiv.org/pdf/1601.07996

J. A. Roderick, . Little, and . Donald-b-rubin, Statistical analysis with missing data, 2002.

Y. Xu, J. Liu, Z. Wu, and . Zhou, Exploratory under-sampling for class-imbalance learning, Proceedings -IEEE International Conference on Data Mining, ICDM, pp.965-969, 2006.

V. Losing, B. Hammer, and H. Wersing, KNN classifier with self adjusting memory for heterogeneous concept drift, Proceedings -IEEE International Conference on Data Mining, ICDM, vol.1, p.15504786, 2017.
DOI : 10.1109/icdm.2016.0040

URL : https://pub.uni-bielefeld.de/download/2907622/2907623/Drift.pdf

M. Maier, M. Hein, and U. V. Luxburg, Optimal construction of k-nearest-neighbor graphs for identifying noisy clusters, In: Theoretical Computer Science, vol.410, pp.1749-1764, 2009.

J. H. Min and Y. Lee, Bankruptcy Prediction Using Support Vector Machine with Optimal Choice of Kernel Function Parameters, In: Expert Syst. Appl, vol.28, issue.4, pp.603-614, 2005.

J. Sung-hwan-min, I. Lee, and . Han, Hybrid genetic algorithms and support vector machines for bankruptcy prediction, In: Expert Systems with Applications, vol.31, issue.3, pp.652-660, 2006.

L. L. Minku and X. Yao, DDD: A new ensemble approach for dealing with concept drift, IEEE Transactions on Knowledge and Data Engineering, vol.24, pp.619-633, 2012.
DOI : 10.1109/tkde.2011.58

URL : http://www.cs.bham.ac.uk/%7Exin/papers/MinkuYao2011TKDE.pdf

J. Montiel, A. Bifet, and T. Abdessalem, Predicting over-indebtedness on batch and streaming data, 2017 IEEE International Conference on Big Data, pp.1504-1513, 2017.
DOI : 10.1109/bigdata.2017.8258084

J. Montiel, A. Bifet, V. Losing, J. Read, and T. Abdessalem, Learning Fast and Slow: A Unified Batch/Stream Framework, 2018 IEEE International Conference on Big Data, pp.1065-1072, 2018.
DOI : 10.1109/bigdata.2018.8622222

J. Montiel, R. Mitchell, E. Frank, B. Pfahringer, T. Abdessalem et al., Adaptive XGBoost for Evolving Data Streams, 2018.

J. Montiel, J. Read, A. Bifet, and T. Abdessalem, A Hybrid Framework for Scalable Model-based Imputation, p.137, 2018.

J. Montiel, J. Read, A. Bifet, and T. Abdessalem, Scalable Model-Based Cascaded Imputation of Missing Data, Advances in Knowledge Discovery and Data Mining -22nd Pacific-Asia Conference, pp.64-76, 2018.
DOI : 10.1007/978-3-319-93040-4_6

J. Montiel, J. Read, A. Bifet, and T. Abdessalem, Scikit-Multiflow: A Multi-output Streaming Framework, In: Journal of Machine Learning Research, vol.19, pp.1-5, 2018.

J. Daniel, A. Mundfrom, and . Whitcomb, Imputing Missing Values: The Effect on the Accuracy of Classification, 1998.

F. Maryam-m-najafabadi, . Villanustre, M. Taghi, N. Khoshgoftaar, R. Seliya et al., Deep learning applications and challenges in big data analytics, In: Journal of Big Data, vol.2, issue.1, p.1, 2015.

J. Manuel-otero-lópez and E. Villardefrancos, Compulsive buying and life aspirations: An analysis of intrinsic and extrinsic goals, Personality and Individual Differences, vol.76, pp.166-170, 2015.

C. Nikunj, S. Oza, and . Russell, Online Bagging and Boosting, Eighth International Workshop on Artificial Intelligence and Statistics, pp.105-112, 2001.

S. Ewan and . Page, Continuous inspection schemes, pp.100-115

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikitlearn: Machine learning in Python, In: Journal of machine learning research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

R. Polikar, Ensemble based systems in decision making, IEEE Circuits and Systems Magazine, vol.6, issue.3, pp.21-44, 2006.

R. Polikar, L. Udpa, S. Satish, V. Udpa, and . Honavar, Learn++: An incremental learning algorithm for supervised neural networks, IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, vol.31, pp.497-508, 2001.
DOI : 10.1109/5326.983933

URL : http://www.cs.iastate.edu/~honavar/Papers/ieeetnnrobi.pdf

Y. Qin, S. Zhang, X. Zhu, J. Zhang, and C. Zhang, {POP} algorithm: Kernel-based imputation to treat missing values in knowledge discovery from databases, In: Expert Systems with Applications, vol.36, pp.957-4174, 2009.
DOI : 10.1016/j.eswa.2008.01.059

J. Racine and Q. Li, Nonparametric estimation of regression functions with both categorical and continuous data, In: Journal of Econometrics, vol.119, pp.304-4076, 2004.

M. Md-geaur-rahman and . Islam, Missing value imputation using decision trees and decision forests by splitting and merging records: Two novel techniques, In: KnowledgeBased Systems, vol.53, p.9507051, 2013.

M. Md-geaur-rahman and . Islam, Missing value imputation using a fuzzy clustering-based EM approach, In: Knowledge and Information Systems, pp.389-422, 2015.

B. Raoult-texier, Study of Paths Leading to Overindebtedness, Banque de France, 2014.

P. , R. Kumar, and V. Ravi, Bankruptcy prediction in banks and firms via statistical and intelligent techniques -A review, European Journal of Operational Research, vol.180, pp.1-28, 2007.

J. Read, A. Bifet, B. Pfahringer, and G. Holmes, Batch-incremental versus instance-incremental learning in dynamic and evolving data, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp.313-323, 2012.
DOI : 10.1007/978-3-642-34156-4_29

J. Read, B. Pfahringer, G. Holmes, and E. Frank, Classifier Chains for Multi-label Classification, pp.254-269, 2009.
DOI : 10.1007/s10994-011-5256-5

URL : http://www.cs.waikato.ac.nz/~eibe/pubs/chains.pdf

J. Read, P. Reutemann, B. Pfahringer, and G. Holmes, MEKA: A Multi-label/Multi-target Extension to Weka, In: Journal of Machine Learning Research, vol.17, 2016.

T. B. Michael-b-richman, I. Trafalis, and . Adrianto, Missing data imputation through machine learning algorithms, In: Artificial Intelligence Methods in the Environmental Sciences, pp.153-169, 2009.

M. Scholz and R. Klinkenberg, Boosting Classifiers for Drifting Concepts, In: Intelligent Data Analysis, vol.11, issue.1, pp.1-40, 2007.
DOI : 10.3233/ida-2007-11102

URL : https://eldorado.tu-dortmund.de/bitstream/2003/22236/1/tr06-06.pdf

K. Shin, T. Soo-lee, and H. Kim, An application of support vector machines in bankruptcy prediction model, In: Expert Systems with Applications, vol.28, pp.127-135, 2005.

K. Shin and Y. Lee, A genetic algorithm application in bankruptcy prediction modeling, In: Expert Systems with Applications, vol.23, pp.321-328, 2002.
DOI : 10.1016/s0957-4174(02)00051-9

A. Siddiqa, I. Hashem, I. Yaqoob, M. Marjani, S. Shamshirband et al., A survey of big data management: Taxonomy and state-of-the-art, In: Journal of Network and Computer Applications, vol.71, pp.151-166, 2016.

B. Stone, R. Vasquez, and M. , Indicators of personal financial debt using a multi-disciplinary behavioral model, In: Journal of Economic Psychology, vol.27, issue.4, pp.543-556, 2006.

N. Street and Y. Kim, A streaming ensemble algorithm (SEA) for large-scale classification, Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pp.377-382, 2001.
DOI : 10.1145/502512.502568

X. Su, R. Greiner, M. Taghi, A. Khoshgoftaar, and . Napolitano, Using Classifier-Based Nominal Imputation to Improve Machine Learning, Advances in Knowledge Discovery and Data Mining, Pt I: 15th Pacific-Asia Conference, vol.6634, pp.124-135, 2011.
DOI : 10.1007/978-3-642-20841-6_11

URL : http://papersdb.cs.ualberta.ca/~papersdb/uploaded_files/1052/paper_2011_pakdd.pdf

C. Tsai, Feature selection in bankruptcy prediction, vol.22, pp.120-127, 2009.
DOI : 10.1016/j.knosys.2008.08.002

C. Tsai and J. Wu, Using Neural Network Ensembles for Bankruptcy Prediction and Credit Scoring, In: Expert Syst. Appl, vol.34, issue.4, pp.2639-2649, 2008.

T. Vasiloudis, F. Beligianni, and G. Morales, BoostVHT, Proceedings of the 2017 ACM on Conference on Information and Knowledge Management -CIKM '17, pp.899-908, 2017.
DOI : 10.1145/3132847.3132974

J. S. Vitter, Random sampling with a reservoir, In: ACM Transactions on Mathematical Software, vol.11, pp.37-57, 1985.
DOI : 10.1145/3147.3165

URL : http://www.cs.umd.edu/~samir/498/vitter.pdf

H. Wang, W. Fan, P. S. Yu, and J. Han, Mining concept-drifting data streams using ensemble classifiers, Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining -KDD '03, vol.42, p.226, 2003.
DOI : 10.1145/956750.956778

L. Wang and D. M. Fu, Estimation of missing values using a weighted k-nearest neighbors algorithm, Proceedings -2009 International Conference on Environmental Science and Information Application Technology, pp.660-663, 2009.

Y. Howard-hua and J. Moody, Data Visualization and Feature Selection: New Algorithms for Nongaussian Data, Advances in Neural Information Processing Systems, vol.12, pp.687-693, 1999.

C. Zhang, Y. Qin, X. Zhu, J. Zhang, and S. Zhang, Clustering-based missing value imputation for data preprocessing, In: Industrial Informatics, pp.1081-1086, 2006.
DOI : 10.1109/indin.2006.275767

J. Zhang and I. Mani, kNN Approach to Unbalanced Data Distributions: A Case Study involving Information Extraction, Workshop on Learning from Imbalanced Datasets II ICML, pp.42-48, 2003.

X. Zhu, S. Zhang, Z. Jin, Z. Zhang, and Z. Xu, Missing value estimation for mixed-attribute data sets, IEEE Transactions on Knowledge and Data Engineering, vol.23, pp.110-121, 2011.
DOI : 10.1109/tkde.2010.99

, Cover image designed by starline / Freepik. Fast and Slow Machine Learning, 2018.