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Abstract

Over the past few years, the internet has started taking an ever growing place in our
daily lives to become today the most used communication mean. This amplifies the
need to strengthen the communication security by finding new techniques to protect
the confidentiality of data during transfer and storage. These techniques should also
anticipate the development in quantum computing and the eventual attacks arising from
it.

Cryptography techniques are the basis for security protocols covering most layers of
the communication system except for the physical layer. Physical layer security tech-
niques rely on different principles than cryptography. Indeed, physical layer security
exploits the specific nature of the used physical medium to protect data confidentiality
while cryptography techniques rely on the computational complexity of mathematical
problems.

This thesis on wireless communication security is divided into two parts. In the first
part of this work, we focus on lattice-based public-key cryptography which is among the
most promising techniques for the post-quantum cryptography systems. In particular, we
focus on the Goldreich-Goldwasser-Halevi (GGH) cryptosystem which has been widely
developed due to its simple encryption and decryption procedures. Despite many existing
GGH improvements, its huge public key size remains its main drawback, which prevents
the system from being used in practice. In order to overcome this drawback, we propose
a new GGH cryptosystem using generalized low density lattices. Indeed, we show that
this new GGH reduces the key size by one order of magnitude. In addition, we show
that the key generation complexity as well as those of the encryption and decryption
phases are significantly decreased. The security of this new GGH system is highlighted
through a security analysis that reviews all known attacks on GGH systems. This allows
us to conclude that our scheme does not add any new vulnerability as compared with
the existing GGH schemes.
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iv ABSTRACT

In the second part of this work, we study the security of multi-user cache-aided
wiretap broadcast channels (BCs) against an external eavesdropper under two secrecy
constraints: individual secrecy constraint and joint secrecy constraint. The former re-
quires the messages to be individually secured from the intruder; whereas the latter
requires the messages to be jointly secured. For both constraints, we derive lower and
upper bounds on the secure capacity-memory tradeoff of the K-user (K ≥ 2) wiretap
erasure broadcast channel where Kw receivers are weak and have cache memories of
equal size, and Ks receivers are strong and have no cache. The lower bounds exhibit
that cache memories provide larger gains under a secrecy constraint than without such a
constraint. Moreover, we propose different joint cache-channel coding schemes achieving
these lower bounds. These schemes simultaneously exploit the cache contents and the
channel statistics and leverage on storing secret keys, independent of cached data, in
the weak receivers’ caches under joint secret constraint only. For comparison, we com-
pute lower bounds achieved following the best separate cache-channel coding scheme for
the two-user scenario and prove that the joint design yields significant gains over the
separation-based design. To justify our choice of cache distribution, we also compute
lower and upper bounds on the secure capacity-memory tradeoff for the two-user sce-
nario with equal cache distribution for both receivers and show that for a large set of
parameters the capacity-memory tradeoff is larger when only the weaker receiver has
cache memory than when this cache memory is split equally among both receivers. For
the joint secrecy setup, we also compare with the case of two-sided asymmetric cache
assignment using joint cache-channel coding schemes for the two-user scenarios. This
cache assignment is beneficial only when the erasure probabilities of both receivers are
close. The gain comes from allocating to strong receivers a small cache memory allowing
them at least to store secret keys.
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Résumé détaillé de la thèse

De nos jours, la place que l’Internet occupe dans notre vie s’accroit de manière significa-
tive. Par ailleurs, l’Internet est utilisé pour envoyer et stocker des données privées telles
que les informations personnelles, les dossiers médicaux, etc. Cependant, en raison sa
nature ouverte et globalisée, l’Internet est exposé à toutes sortes d’attaques qui devien-
nent actuellement de plus en plus sophistiquées. Pour cette raison, le renforcement de la
sécurité des systèmes de communications devient une nécessité. Plus précisément, c’est
la confidentialité des données transmises qu’il est nécessaire de garantir. En outre, le
développement des ordinateurs quantiques et les nouvelles attaques qui en découleront
nécessitent des techniques de sécurité post-quantiques.

Ce besoin de sécurité a poussé les chercheurs à considérer les couches du système
de communication jusqu’alors non sécurisées comme la couche physique. De plus, la
sécurité couche physique ne s’appuyant pas sur la résolution de problèmes mathématiques
complexes mais sur l’exploitation des caractéristiques du canal de transmission, le gain
de sécurité offert n’est pas corrélé à celui offert par les mécanismes classiques de sécurité.

Un autre aspect à prendre en considération est la non homogénéité de l’utilisation de
l’Internet au cours de la journée. Récemment, les techniques de caching ont été proposées
pour équilibrer le débit Internet transmis au cours de le journée. Les techniques de
caching offrant le meilleur débit sont appliquées au niveau de la couche physique mais
ne considèrent aucune problématique de sécurité.

Cette thèse explore deux techniques complémentaires permettant d’assurer la confi-
dentialité des données transmises sur des liens sans-fils. Dans la première partie de ce
travail, nous nous concentrons sur la cryptographie à clé publique basée sur les réseaux
de points, qui est l’une des techniques les plus prometteuses de cryptographie post-
quantique. Dans la seconde partie de ce travail, nous étudions la sécurité au niveau
de la couche physique des systèmes de communication dans lesquels les utilisateurs ont
accès à des mémoires de caches.
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Dans ce travail, le chapitre 1 est dédié à l’exploration de l’état de l’art relatif aux deux
aspects de sécurité étudiés. Le chapitre 2 présente le premier résultat de cette thèse: un
nouveau système GGH qui utilise les réseaux de points “generalized low density” GLD.
Nous commençons par présenter le premier système GGH et ses améliorations. Ensuite,
nous présentons notre nouveau système et nous étudions sa sécurité et sa complexité en
comparant avec les systèmes existants.

La seconde partie du travail, relative au caching, est présentée dans les chapitre 3 et
4, qui considèrent respectivement la sécurité individuelle et la sécurité jointe. Nous com-
mençons par considérer le cas de deux utilisateurs. Nous dérivons des bornes supérieures
et inférieures du compromis sécurisé capacité-mémoire en considérant différentes dis-
tributions de cache. Nous proposons des schémas de codage permettant d’atteindre
nos bornes inférieures. Nous comparons les différents bornes obtenues pour mettre en
évidences les meilleures distributions de cache et schémas de codage. Finalement, nous
étendons nos résultats pour le cas de K utilisateurs.

Chapitre 1: Sécurité des systèmes de communication

La protection des données contre l’espionnage peut être appliquée sur différentes couches
du système OSI. Les approches de sécurités appliquées sur les couches deux à sept se
basent sur des primitives cryptographiques, tel que AES. Ces schémas se basent sur des
problèmes mathématiques complexes ou bien des programmes de clés complexes. Donc,
leur sécurité résulte du fait que l’espion a des capacités de calcul limitées.

D’autre part, la sécurité de la première couche, la couche physique, n’utilise pas
les primitives cryptographique. Contrairement aux techniques cryptographique qui sont
inconscient de la nature physique du canal de transmission, la sécurité couche physique
exploite les caractéristiques de ce canal, tel que le bruit et les interférences, pour protéger
la confidentialité des données transmises. Cette sécurité n’impose aucune contrainte sur
la capacité de calcul des espions. Cette indépendance entre la sécurité au niveau de la
couche physique et la cryptographie peut idéalement être exploitée pour créer un système
de sécurité plus renforcé.

Dans cette thèse, nous nous intéressons à la cryptographie et à la sécurité couche
physique dans les systèmes de transmission sans fil. Du point de vue cryptographie, nous
nous concentrons sur les techniques basées sur les réseaux de points et nous étudions un
schéma composé d’un émetteur, un récepteur et un espion. Du point de vue sécurité
couche physique, nous considérons le schéma de caching avec un émetteur, plusieurs
récepteurs et un espions et où les récepteurs ont accès à des mémoires caches. Nous
présentons ici l’état de l’art lié au deux thématiques étudiées.
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Cryptographie basée sur les réseaux de points

Les systèmes de cryptographie basés sur les réseaux de points sont des systèmes à
clé publique basés sur des problèmes difficiles à résoudre dans ces réseaux. Ces cryp-
tosystèmes ont attiré l’attention des chercheurs car ils sont supposés robustes contre les
attaques d’ordinateurs quantiques. En 1996, Ajtai a proposé le premier cryptosystème
de ce type, nommé Ajtai-Dwork (AD) [39]. Cependant, l’intérêt de ce système est prin-
cipalement théorique et ne peut pas être utilisé en pratique.

Inspiré par AD, plusieurs systèmes ont été proposés comme Goldreich-Goldwasser-
Halevi (GGH) [1] et NTRU [40]. GGH est une alternative plus pratique du système AD.
La sécurité du GGH est basée sur le problème du vecteur le plus proche (CVP) dans les
réseaux de points. D’autre part, NTRU est un cryptosystème à clé publique basé sur les
anneaux. Il peut être vu comme un problème de CVP ou de SVP.

En 2005, Regev a introduit le problème de “learning with errors (LWE)” [41]. Il
a proposé un système basé sur LWE qui est équivalent à un problème de décodage
d’un code linéaire aléatoire. Plusieurs schémas de cryptages ont été conçus basés sur le
problème LWE (eg. [42, 43]).

Parmi ces systèmes, GGH est le seul dans lequel on gère explicitement les réseaux de
points. Mais malgré ces caractéristiques intéressantes et les efforts pour son amélioration
[7, 3], l’inconvénient majeur du GGH reste la taille très grande de sa clé publique. Dans
cette thèse, nous résolvons ce problème en remplaçant les réseaux de points aléatoires
du GGH par des réseaux de points à faible densité, plus précisément les réseaux GLD.

Sécurité basé sur la théorie d’information

Wyner a introduit le concept de sécurité couche physique qui exploite l’aléa du bruit dans
les canaux de transmission pour sécuriser [45]. Il a modélisé le canal wiretap avec un
émetteur, un récepteur et un espion qui écoute la transmission. Il a introduit la notion
de capacité de secret qui correspond au débit maximal de transmission garantissant
un décodage fiable au récepteur légitime tout en empêchant l’espion d’avoir aucune
information du message. Dans son schéma, le canal de l’espion doit être dégradé par
rapport à celui du récepteur légitime afin d’avoir une capacité de secret positive. Wyner
a proposé de coder les bits d’informations avec des bits aléatoires afin d’atteindre cette
capacité. Après la découverte de Wyner, la détermination de cette capacité de secret a
été intensivement traité pour différentes classes de canaux tel que canal à effacement,
canal Gaussien et canal à diffusion [47].

Récemment, les problèmes de sécurité ont commencé a être exploré dans les scénarios
de caching. Le concept du caching est de stocker des données dans des mémoires cache à
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coté des utilisateurs préalablement à la communication dans le but d’augmenter le débit
de transmission. En effet, le trafic dans les systèmes de communication varie en fonction
du temps. On a des périodes dans la journée pendant lesquels le réseau est fortement
utilisé, induisant des délais de transmissions, et d’autres périodes pendant lesquels il
est à peine utilisé. L’idée est de profiter de ces dernières pour stocker les données dans
les mémoires caches. Ensuite, quand les utilisateurs demandent des fichiers pendant les
périodes de congestion, une partie de leurs fichiers est déjà présente dans leur mémoire
et il suffit de leur transmettre la partie manquante. Donc, la communication est divisée
en deux phases: la phase de caching et la phase de transmission.

Maddah-Ali et Niesen ont introduit le premier schéma de codage de cache qui a
permis d’ajouter un gain de cache au delà du gain évident provenant de la présence
locale d’une partie des fichiers [10]. Ensuite, Saeedi, Timo, et Wigger ont montré que ce
gain peut être encore augmenté en appliquant un codage joint de cache et canal [97, 9].
En d’autres termes, dans ce dernier, le codeur et décodeur exploitent simultanément le
contenu du cache et les statistiques du canal. Ils ont proposé un schéma de codage joint
qu’ils ont nommé le codage piggyback.

L’aspect de sécurité de ces systèmes a été adressé ultérieurement et des codes de
caching sécurisés ont été proposés en [89, 90, 91]. Dans ces schémas, la sécurité profite
du fait que l’espion n’a pas accès aux mémoires caches dans lesquels des clés secrètes sont
sauvegardées dans la phase de caching et utilisées dans la phase de transmission. Cepen-
dant, ces travaux ne considèrent pas le canal de transmission et se concentrent seulement
sur le design de codeur/décodeurs de cache. Mais, cette approche a été montrée sous-
optimale pour le scénario sans contrainte de sécurité [97, 9]. Pour cela, dans ce travail,
nous explorons la sécurité des systèmes de caching au niveau de la couche physique.

Chapitre 2: Schéma de cryptographie basé sur les réseau de
points GLD

Dans cette partie, nous analysons l’utilisation des réseaux de points à faible densité
appelés generalized low density (GLD) dans le cryptosystème Goldreich-Goldwasser-
Halevi (GGH). Nous nous sommes intéressés aux GLD grâce à leur faible complexité de
génération du réseau et de décodage, ce qui constitue un facteur très important pour
les systèmes de cryptographie, manquant dans les systèmes GGH existant. Notre but
est de diminuer la complexité du système GGH pour qu’il devienne un candidat pour
remplacer les systèmes de cryptage à clé publique traditionnels. Nous montrons que
cette réduction en complexité ne réduit pas la sécurité du système.
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Schéma GGH et ses améliorations

Dans le système GGH original [1], la clé privée R est une bonne base d’un réseau de
point Λ de dimension n, défini par R =

√
nI + Q, où I est la matrice d’identité et Q

est une matrice aléatoire dont les éléments sont choisis dans l’intervalle {−4, . . . , 4}. La
clé publique B est une mauvaise base du même réseau de point Λ. B est générée en
appliquant des combinaisons linéaires sur les vecteurs de base de la clé privée R. Pour
crypter un message m ∈ Zn, m est multiplié par la clé publique B pour générer x, qui
est un point du réseau Λ. Ensuite, x est sécurisé en lui additionnant un vecteur de bruit
e de dimension n qui est choisi aléatoirement dans l’ensemble {−σ, σ}n. Le texte chiffré
obtenu est

c = mB + e = x + e. (1)

Pour décrypter le texte chiffré et obtenir le message, il suffit de calculer

m = bcR−1eRB−1. (2)

Ce système peut être facilement cassé pour les petites dimensions à cause de la forme
particulière du bruit utilisé [2]. Et pour les grandes dimensions, la taille de clé du GGH
devient très grande et donc le système devient inutilisable en pratique.

Dans le but de surmonter les inconvénients du GGH original, plusieurs améliorations
ont été proposées. Une amélioration intéressante a été proposée par Micciancio qui a
suggéré de choisir le bruit e uniformément dans l’intervalle [−σ, σ]. Le choix de bruit
uniforme a rendu ce système robuste contre l’attaque de Nguyen [2]. De plus, Micciancio
a proposé de choisir pour la clé publique la base ayant la forme Hermite normal form
(HNF). En fait, on dit qu’une base M est en HNF si elle est triangulaire inférieure
vérifiant les conditions suivantes : mi,j = 0 ∀ i < j,, mi,i > 0 ∀ i, et 0 ≤ mi,j <
mj,j ∀ i > j. Il a prouvé que cette forme de matrice réduit la taille de la clé de
O(n3log2(n)) à O(n2log2(n)). Cependant, son système a des désavantages. En effet, la
procédure de génération de la clé publique est très lente et sa procédure de décodage est
aussi lente et instable. Ce système, donc, n’est pas non plus utilisable en pratique.

Récemment, Hooshmad et Aref ont proposé de remplacer les réseaux de points
aléatoires utilisés dans les cryptosystèmes GGH par des réseaux de points à faible den-
sité, notamment les low density lattice codes (LDLC) [3]. Dans leur schéma, ils ont suivi
la proposition de Micciancio et ont choisi de prendre la matrice génératrice du LDLC
qui est en HNF comme clé publique. Par contre, ils ont choisi de générer leur vecteur
de bruit suivant une distribution gaussienne de moyenne nulle et de variance σ2, qui
est choisi proche de la borne de Poltyrev [4]. L’utilisation des LDLC a permis de fixer
le problème de décryptage puisqu’ils utilisent un décodage itératif qui offre des perfor-
mances proches de l’optimal mais à faible complexité. Mais l’inconvénient de ce système
est le fait que les LDLC sont des réseaux de points réels, ce qui augmente la complexité
de génération de la matrice HNF.
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Réseaux de points GLD

Les réseaux de points GLD sont des réseaux entiers définis dans Zn et ils ont des matrices
de parité de faible densité [5]. Ils sont décodés à l’aide du décodage itératif qui est de
faible complexité permettant l’utilisation facile de ces réseaux à grande dimensions.

Un réseau de point GLD de dimension n est généré suivant la construction A à partir
d’un code linéaire GLD CGLD[n, k] de longueur n et dimension k, de la façon suivante:

Λ = CGLD + pZn, (3)

où p est un nombre premier.

Dans cette construction, on commence par considérer un code élémentaire linéaire
C0[n0, k0] défini sur le corps fini Fp de matrice de parité HC0 . On génère un deuxième
code C1 obtenue comme la somme directe de L copies de C0, de matrice de parité

HC1 =

 HC0 . . . 0
...

. . .
...

0 . . . HC0

 . (4)

Ensuite, on génère le code GLD CGLD[n, k], défini par CGLD =
J⋂
j=1

πj(C1) =

J⋂
j=1

πj(C
⊕L
0 ), où π1 = id et π2, . . . , πJ sont J permutations de {1, 2, . . . , n} telles

que πj(x1, x2, . . . , xn) = (xπj(1), xπj(2), . . . , xπj(n)). On trouve la forme systématique
HC,syst = [I|−Bt] de la matrice de parité HC du code GLD en utilisant l’élimination de
Gauss. Ensuite, la matrice génératrice du code est donnée par GC = [B|I]. Finalement,
suivant la construction A (3), la matrice génératrice de Λ, qui est de forme HNF, est
donnée par

GΛ =

[
pI 0
B I

]
. (5)

Schéma de cryptographie basé sur les GLD

Alice m ⊗GΛ

x ⊕e

Cryptage

c
décodeur GLD

HΛ

Décryptage

m̂ Bob

Figure 1: Cryptosystème GGH basé sur les GLD
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Notre schéma de cryptographie basé sur les GLD est décrit dans Figure 1. Dans ce
système, la clé privée est la matrice de parité HC du code GLD et la clé publique
est la matrice génératrice GΛ du réseau de point. La dimension choisie du réseau est
n ≈ 1000. Le bruit e est choisi uniformément dans un intervalle [−A,A] où A est la valeur
maximale tolérée par le décodage itératif du réseau GLD. Cette valeur peut être définie
théoriquement par A <

√
3p2(1−R)/(2πe). Nous avons aussi calculé expérimentalement

la valeur de A pour différents codes élémentaires C0. Quelques exemples sont montrés
dans Tableau 1.

Table 1: Valeur de A pour une dimension n ≈ 1000.

C0 p n A

C0[3, 2] 17 999 2

C0[3, 2] 29 999 3

C0[8, 6] 53 1000 2

Analyse de sécurité

Nous analysons la robustesse de notre système contre les attaques connues appliquées à
ce genre de cryptosystèmes.

Attaque par force brute

Dans cette attaque, l’espion essaye de trouver la clé privée en essayant toutes les possi-
bilités. Donc, la complexité de cette attaque dépend du nombre de clés possibles qui est
dans notre cas

n!× (J − 1) ∼
√

2πn
(n
e

)n
, (6)

où l’approximation suit la formule de Stirling. Puisque ce nombre est exponentiel en n,
l’attaque n’est pas faisable pour une dimension n = 1000.

Attaque de décodage

Dans cette attaque l’espion essaye de décrypter le texte chiffré et de retrouver le texte
clair, ce qui est équivalent à trouver le point du réseau le plus proche du texte chiffré.
L’espion commence par réduire la base publique du réseau pour trouver une base plus
orthogonale dans laquelle le décodage est plus efficace. Pour cela, il applique une des
deux techniques de réduction de bases suivantes: Lenstra-Lenstra-Lovász (LLL) ou Block
Korkine-Zolotarev (BKZ). Ensuite, il applique un des deux algorithmes de décodage de
Babai [6] suivants: round-off algorithm ou nearest plane algorithm.
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Dimension du réseau n
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Figure 2: Orthogonality defect de la clé publique avec et sans reduction pour C0(8, 6)17.

Le succès ou l’échec de ces attaques dépendent de deux facteurs: l’orthogonalité de
la base du réseau et le vecteur de bruit. En fait, si la base utilisée pour le décodage n’est
pas orthogonale et si le vecteur de bruit est suffisamment grand, le décodage ne peut
qu’échouer. Pour mesurer l’orthogonalité de la base, nous utilisons l’orthogonality defect
défini par [1]

OD(GΛ) =

∏n
i=1 ‖gi‖
|det(GΛ)|

. (7)

OD(GΛ) = 1 si la base est orthogonale. Plus OD(GΛ) est grand, plus la base est
loin de l’orthogonalité et plus le décodage est difficile, voire impossible. Nous avons
conduit des simulations pour calculer OD(GΛ) pour des réseaux GLD générés à partir
du code élémentaire C0(8, 6)17 avant et après l’application de méthodes de réduction.
Les résultats sont montrés dans Figure 2 avec une échelle logarithmique en fonction de
la dimension n. Nous remarquons que le OD(GΛ) reste très grand, et donc la base reste
mauvaise, même après réduction.

Le deuxième facteur qui peut faire échouer cette attaque est le vecteur de bruit.
Nous avons aussi tourné des simulations d’attaques en appliquant les deux algorithmes
de réduction et les deux algorithmes de décodage et en considérant les réseaux de points
et les valeurs de bruit correspondant du Tableau 1. Dans chacun des cas, le décryptage
ne donnait pas le bon résultat. Nous déduisons que le bruit considéré est suffisant pour
sécuriser notre système contre les attaques de décodage.

xxii
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Analyse de complexité

Nous examinons la taille de notre clé publique, la complexité de sa génération et la
complexité de décryptage et nous nous comparons aux systèmes GGH précédents.

Taille de la clé publique

L’espace nécessaire pour stocker la clé publique du GLD est de k × (n − k) × log2(p)
bits. Tableau 2 présente la taille de clé publique pour plusieurs exemples de codes
élémentaires. On voit que pour une dimension de réseau n ≈ 1000, la taille de la clé est
autour de 100 KBs. La taille de clé du GGH original en dimension n = 400 est de 2.3
MBs [7]. La taille de clé du système de Micciancio en dimension n = 800 est de 1 MB
[8]. Donc, nous pouvons clairement conclure que notre système basé sur les réseaux de
points réduit dix fois la taille de clé.

Table 2: Taille de la clé publique pour n ≈ 1000.

C0 p n Taille (KBs)

C0[3, 2] 17 999 110.66

C0[8, 6] 17 1000 124.74

C0[8, 6] 53 1000 174.8

C0[16, 12] 17 992 122.75

Génération de la clé

Dans notre schéma, la clé publique est en HNF mais elle est générée en utilisant la
réduction de Gauss. Dans Micciancio et dans le système basé sur LDLC, la clé est générée
en utilisant un des algorithmes de génération de HNF. Pour comparer la complexité de
génération de clé de notre système avec les précédent, nous avons tourné des simulations
sur un Intel i5 3320M (2.6 GHz). Nous avons trouvé que pour une dimension n ≈ 1000,
le génération de clé pour le système de Micciancio prend 5 heures, celle du GGH original
prend 10 minutes, alors que pour le GLD, cela ne prend que quelques secondes.

Décryptage

Le décodage itératif des GLD offre des performances qui s’approchent du décodage ML
tout en ayant une faible complexité. Les algorithmes de décodage utilisés dans les
systèmes GGH précédents sont moins efficaces et plus compliqués. Par exemple, pour
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une dimension n = 1000, le temps de décodage des GLD varie de quelques ms à quelques
secondes (selon le code C0 choisi), tandis que celui de Micciancio est autour de 2 minutes.

Chapitre 3: Sécurité individuelle pour le caching

Dans ce chapitre, nous étudions la sécurité des systèmes de communications où les
récepteurs ont accès à des mémoires caches en imposant la contrainte de sécurité in-
dividuelle.

Définition du problème

Nous considérons un canal wiretap de diffusion (BC) avec un émetteur, K récepteurs et
un espion. Il est modélisé par un canal BC à effacement par blocs sans mémoire, ayant
pour alphabet d’entrée X := {0, 1}F , où F est un entier positif. L’alphabet de sortie
Y := X ∪ ∆ est le même pour tous les utilisateurs et l’espion. ∆ indique l’effacement
d’un bloc à la réception.

Les K récepteurs sont divisés en deux groupes. Le premier groupe Kw := {1, . . . ,Kw}
est formé par Kw récepteurs faibles qui ont de mauvais canaux. Le deuxième groupe
Ks := {Kw + 1, . . . ,K} est formé par Ks = K − Kw récepteurs forts qui ont de
bons canaux. Nous supposons que les trois probabilités d’effacement δw, δs et δz aux
récepteurs faibles, récepteurs forts et l’espion, respectivement, vérifient 0 ≤ δs ≤ δw ≤
δz ≤ 1.

Nous supposons aussi que chaque récepteur faible a accès à une mémoire de cache
de taille nM bits, tandis que les récepteurs forts n’ont pas de cache. L’émetteur a accès
à une librarie de D > K messages indépendants W1, . . . ,WD de débit Rs ≥ 0 chacun.
Soit D := {1, . . . , D}. Pour d ∈ D, chaque message Wd est uniformément distribué sur
l’ensemble

{
1, . . . , b2nRsc

}
, où n est la longueur du block transmis.

Chaque récepteur k ∈ K := {1, . . . ,K} demande un seul message Wdk de la librairie.
Nous notons par dk ∈ D la demande d’un récepteur et par d := {d1, . . . , dK} ∈ DK
le vecteur de demande de tous les récepteurs. La communication est effectuée en deux
phases: la phase de caching dans laquelle des fragments de messages sont stockés dans
les mémoires caches et la phase de transmission dans laquelle les messages demandés
sont transmis au récepteurs.

Durant la phase de caching, le vecteur de demande d n’est pas encore connu.
Donc, le contenu du cache Vi pour chaque récepteur faible i ∈ Kw est une fonc-
tion de toute la librairie Vi := gi(W1, . . . ,WD), pour une certaine fonction de caching

gi :
{

1, . . . , b2nRsc
}D → V et un alphabet de cache V :=

{
1, . . . , b2nMc

}
.
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Avant la phase de transmission, d est communiqué à l’émetteur et aux récepteurs
légitimes. Selon d, l’émetteur transmet Xn := fd(W1, . . . ,WD), pour une certaine

fonction fd :
{

1, . . . , b2nRsc
}D → X n.

Chaque récepteur faible i ∈ Kw utilise son vecteur reçu Y n
i et le contenu de son

cache Vi pour décoder Ŵi := ϕi,d(Y n
i , Vi), pour une certaine fonction ϕi,d : Yn × V →{

1, . . . , b2nRsc
}

. Chaque récepteur fort j ∈ Ks utilise seulement son vecteur reçu Y n
j

pour décoder Ŵj := ϕj,d(Y n
j ), pour une certaine fonction ϕj,d : Yn →

{
1, . . . , b2nRsc

}
.

Une paire débit-mémoire (Rs,M) est atteinte en sécurité, en vérifiant la contrainte
de sécurité individuelle, si pour chaque ε > 0 et longueur de bloc n suffisamment large,
il existe des fonctions de caching, codage, et décodage telles que

PWorst
e := max

d∈DK
P
[ K⋃
k=1

{
Ŵk 6= Wdk

}]
≤ ε, et

1

n
I(Wdk ;Zn) < ε, ∀k ∈ K. (8)

Pour chaque taille de mémoire cacheM, nous définissons le compromis sécurisé entre
capacité et mémoire Cs(M) comme la borne supérieure de tous les débits Rs tel que la
paire (Rs,M) qui peuvent être atteints en sécurité:

Cs(M) := sup
{
Rs : (Rs,M) atteint en sécurité

}
. (9)

Bornes supérieure et inférieure pour le scénario avec deux récepteurs
et cache pour le récepteur faible

Nous considérons le scénario avec un utilisateur faible et un utilisateur fort où l’utilisateur
faible seulement a accès à une mémoire cache de taille M.

La borne supérieure du compromis sécurisé capacité-mémoire Cs(M) pour ce scénario
est donnée par:

Cs(M) ≤ (δz − δ1)F +M, (10a)

Cs(M) ≤ (δz − δ2)F, (10b)

Cs(M) ≤ (1− δ1)(1− δ2)

2− δ1 − δ2
F +

M
D
. (10c)

La borne inférieure du compromis sécurisé capacité-mémoire Cs(M) est formée par
les débits Rs vérifiant:

Rs ≤ (δz − δ2)F, (11a)

Rs ≤
(1− δ2)(δz − δ2)

1 + δz − 2δ2
F +

1− δ2

1 + δz − 2δ2

M
D
, (11b)
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Rs ≤
(1− δ1)(δz − δ2)

1− δ1 + δz − δ2
F +

M
D
, (11c)

Rs ≤
(δz − δ1)(δz − δ2)

2δz − δ1 − δ2
F +

D(δz − δ2) + (δz − δ1)

2δz − δ1 − δ2

M
D
, (11d)

Rs ≤
δz − δ2

2
F +

D

2

M
D
, (11e)

Rs ≤
D

D + 1
(δz − δ2)F +

D

D + 1

M
D
. (11f)

Schéma de codage qui atteint cette borne inférieure

Cette borne inférieure est atteinte par le schéma de codage joint combinant le codage de
cache et le codage canal, décrit ci-dessous:

Préparations: Pour chaque d ∈ D, on divise le message Wd en deux sous-messages,

tels que Wd =
[
W

(0)
d ,W

(1)
d

]
, de débits R(0) et R(1), respectivement. Le débit total de Wd

est Rs = R(0) +R(1). Si R(0) > (D − 2)R(1), on divise W
(0)
d en deux sous-messages, tels

que W
(0)
d =

[
W

(0,1)
d ,W

(0,2)
d

]
, de débits (D−2)R(1) et R(0)−(D−2)R(1), respectivement.

Sinon, W
(0,1)
d = W

(0)
d est de débit R(0) et W

(0,2)
d est de débit nul.

Génération du codebook piggyback: On génère codebook C1 ayant Γ1 := b2nR(0)c ·
b2nR(1)c · b2nR′c mots de code de longueur αn. Il est généré en choisissant chaque
élément de chaque mot de code aléatoirement et indépendamment suivant une distri-
bution Bernoulli-1/2. C1 est partitionné en b2nR(0)c · b2nR(1)c blocs, contenant chacun

b2nR′c mots de codes. Ces blocs sont arrangés en une matrice ayant b2nR(0)c lignes et

b2nR(1)c colonnes, comme on voit dans Figure 3 où chaque carré représente un bloc. Le
bloc dans la ligne w̃1 et la colonne w̃2 est noté par C1(w̃1, w̃2).

Phase de caching: On sauvegarde W
(1)
1 , . . . ,W

(1)
D dans la mémoire cache du

récepteur 1. Cela est faisable si: R(1) ≤ MD .

Phase de transmission: La transmission est divisée en deux périodes de longueurs
αn et (1− α)n, pour α ∈ [0, 1].

Durant la première période, l’émetteur envoie le message W
(0)
d1

au récepteur 1 et le

message W
(1)
d2

au récepteur 2. Il choisit aléatoirement un ensemble d’indices ι, tels que{
j1, j2, . . . , jι

}
∈
(
D \ {d1, d2}

)
, où ι = max

{
1, dR(0)/R(1)e

}
et génère

WXOR := W
(0,1)
d1

⊕
[
W

(1)
j1
,W

(1)
j2
, . . . ,W

(1)
jι

]
. (12)

Ensuite, il choisit aléatoirement un indice J1 de
[
1 : b2nR′c

]
et envoie le mot de code
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W̃1

1

2

...

b2nR(0)c

W̃2

1 2 . . . b2nR(1)c
b2nR′c

Figure 3: Codebook piggyback sécurisé C1.

numéro J1 du codebook C1

(
W̃1, W̃2 = W

(1)
d2

)
, où W̃1 :=

[
WXOR,W

(0,2)
d1

]
.

Durant la deuxième période, l’émetteur envoie le message W
(0)
d2

au récepteur 2 en
utilisant un code wiretap.

Décodage au récepteur 1: Récepteur 1 récupère le message W
(1)
d1

de sa mémoire cache

et décode seulement le message W
(0)
d1

en se basant sur son vecteur reçu dans la première

phase yαn1 et sa mémoire cache V1. Connaissant W
(1)
d1

, il réduit sa recherche à la colonne

correspondante et donc, aux mots de code dans C1(W̃2 = W
(1)
d2

) ∈ C1.

Décodage au récepteur 2: Récepteur 2 n’a pas de mémoire cache et doit donc décoder
les deux phases de transmissions en se basant seulement sur son vecteur reçu yn2 et en
considérant tous les mots de codes des codebooks.

Analyse: Les deux récepteurs décodent leurs messages avec une probabilité d’erreur
négligeable si

R(0) +R′ ≤ α(1− δ1)F, (13a)

Rs +R′ ≤ α(1− δ2)F, (13b)

R(0) +R′′ ≤ (1− α)(1− δ2)F. (13c)

De plus, la contrainte de sécurité individuelle est respectée si

(D − 1)R(1) +R′ ≥ α(1− δz)F, (14a)

R(0) +R′ ≥ α(1− δz)F, (14b)

R′′ ≥ (1− α)(1− δz)F. (14c)
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En combinant ces contraintes et en éliminant R′, R′′ et α, on obtient la borne
inférieure dans 11.

Borne inférieure obtenue par schéma de codage cache-canal séparé

Pour montrer l’importance d’un schéma de codage cache-canal joint, nous calculons
une borne inférieure du compromis capacité-mémoire obtenue par le meilleur schéma
de codage cache-canal séparé connu, qu’on note Cs,Sep(M). La borne inférieure de
Cs,Sep(M) est formée par les débits Rs,Sep vérifiant:

Rs,Sep ≤ (δz − δ2)F, (15a)

Rs,Sep ≤ (1− δ1)(δz − δ2)

1 + δz − δ1 − δ2
F +

δz − δ2

1 + δz − δ1 − δ2

M
D
, (15b)

Rs,Sep ≤ (δz − δ1)(δz − δ2)

2δz − δ1 − δ2
F +

(δz − δ2)
[
(D − 1)(1− δz) + (δz − δ1)

]
(1− δ1)(2δz − δ1 − δ2)

M
D
. (15c)

Bornes supérieure et inférieure pour le scénario avec deux récepteurs
ayant des mémoires de cache égales

Pour montrer l’intérêt de notre choix d’affectation de cache pour le récepteur faible, nous
étudions aussi le cas où la mémoire de cache disponible est divisée également entre les
deux utilisateurs. Dans ce cas, chaque récepteur a donc accès à une mémoire de taille
M/2. On note par Cs,Sym(M) le compromis sécurisé capacité-mémoire dans ce cas.

La borne supérieure du compromis sécurisé capacité-mémoire Cs,Sym(M) est donnée
par:

Cs,Sym(M) ≤ (δz − δ1)F +
M
2
, (16a)

Cs,Sym(M) ≤ (1− δ1)F +
M
2D

, (16b)

Cs,Sym(M) ≤ (1− δ1)(1− δ2)

2− δ1 − δ2
F +

M
D
. (16c)

La borne inférieure du compromis sécurisé capacité-mémoire Cs,Sym(M) est formée
par les Rs,Sym vérifiant:

Rs,Sym ≤ 2(1− δ1)F, (17a)

Rs,Sym ≤ (1− δ1)(1− δ2)

2− δ1 − δ2
F +

3− 2δ1 − δ2

2(2− δ1 − δ2)

M
D
, (17b)

Rs,Sym ≤ (δz − δ1)(δz − δ2)

2δz − δ1 − δ2
F +

[
(δz − δ1)(δz − δ2)(3− 2δ1 − δ2)

2(1− δ1)(1− δ2)(2δz − δ1 − δ2)

xxviii
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+
D(1− δz)

[
(1− δ1)(δz − δ1) + (1− δ2)(δz − δ2)

]
2(1− δ1)(1− δ2)(2δz − δ1 − δ2)

]
M
D
. (17c)

Discussion et résultats numériques

Figure 4 montre nos bornes supérieure et inférieure du compromis sécurisé capacité-
mémoire Cs(M), celle du cas non sécurisé C(M) [9] et la borne inférieure obtenu avec
le schéma de codage cache-canal séparé. Nous observons les points suivants:

• Pour une mémoire cache M≤M1 = D(1−δz)(δz−δ2)
(D−1)(1+δz−δ1−δ2) , notre codage cache-canal

joint atteint le débit suivant:

Rs = R0 +

[
δz − δ2

2δz − δ1 − δ2
+

δz − δ1

D(2δz − δ1 − δ2)

]
M. (18)

Nous remarquons que pour des mémoires de petites tailles, la pente de Cs(M) ne
diminue pas rapidement avec D, contrairement au cas non sécurisé où la pente est
fonction de 1

D [9, Corollary 7.1]. Nous pouvons déduire que, quandM est petit, le
caching est plus avantageux dans le scénario avec contrainte de sécurité. Cela est
dû au fait que dans ce cas, la mémoire est utilisée non seulement pour augmenter
l’efficacité mais aussi pour sécuriser, ce qui augmente le gain du caching.

M
F ·D

Cs(M)
F

, C(M)
F

0

0.8

0.6

0.4

0.2

0.60.40.2

Borne sup Cs(M)

Borne inf Cs(M)

Borne inf Cs,Sep(M)

Borne sup C(M)

Borne inf C(M)

Figure 4: Bornes inférieures et supérieures de C(M)/Cs(M) pour K = 2, δ1 = 0.7,
δ2 = 0.2, δz = 0.8, F = 5, et D = 5.

• Pour une mémoire

M≥M3 = F ·max

{
D

(δz − δ2)2

1− δ2
, (δz − δ2)

}
, (19)

le compromis sécurisé capacité-mémoire est Cs(M) = (δz − δ2)F . Cette capacité
correspond à la capacité du récepteur 2 en l’absence du récepteur 1.
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• Nos bornes sont très proches pour tous les paramètres et sont exactes pour des
tailles de M≥M3, définie en (19).

• Notre schéma joint de codage cache-canal atteint une borne inférieure meilleure
que celle atteinte par le schéma séparé. Cela est vrai pour tous les paramètres de
canal et toutes les tailles de mémoires cache.

Figure 5 compare les bornes supérieures et inférieures pour le cas où l’utilisateur
faible a toute la mémoire cache avec le cas où la mémoire est divisée également entre les
deux utilisateurs. Nous constatons que:

• Quand M est petit, la borne inférieure de Cs(M) est meilleure que celle pour le
cas du cache symétrique pour les deux utilisateurs Cs,Sym(M). Cela est vrai pour
tous les paramètres de canal.

• QuandM est grand, si la différence entre les canaux du récepteur faible et fort est
grande, il est plus avantageux que la mémoire cache soit pour l’utilisateur faible.
Mais, si δ1 et δ2 ont des valeurs proches, Cs,Sym(M) dépasse Cs(M).

M
F ·D

Cs(M)
F

,
Cs,Sym(M)

F

0

0.6

0.4

0.2

0.60.40.2

M
F ·D

Cs(M)
F

,
Cs,Sym(M)

F

0

0.4

0.3

0.2

0.1

0.30.20.1

Borne inf
Cs(M)
Borne sup
Cs(M)

Borne inf
Cs,Sym(M)
Borne sup
Cs,Sym(M)

Figure 5: Bornes inférieures et supérieures de Cs(M)/Cs,Sym(M) pour K = 2, D = 5,
δ1 = 0.7, δz = 0.8. Dans la figure à gauche δ2 = 0.2 et dans la figure à droite δ2 = 0.5.

Bornes supérieures et inférieures pour le scénario avec K récepteurs

Nous considérons le cas général avec Kw récepteurs faibles et Ks récepteurs forts. Les
récepteurs faibles seulement ont accès à des mémoires caches de taille M. La borne

supérieure du compromis sécurisé capacité-mémoire C
(K)
s (M) est donnée par:

C(K)
s (M) ≤ F (δz − δw) +M, (20a)

C(K)
s (M) ≤ F

δz − δs
Ks

, (20b)
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C(K)
s (M) ≤ F

(
i

1− δw
+

Ks

1− δs

)−1

+
iM
D

, i ∈ {1, . . . ,Kw}. (20c)

Pour la borne inférieure, nous considérons les cinq paires débit-mémoire suivantes:

• R
(K)
0 :=

( Kw

δz − δw
+

Ks

δz − δs

)−1
F, M(K)

0 := 0; (21a)

• R
(K)
3 :=

(δz − δs)
Ks

F, M(K)
3 :=

DKw(δz − δs)2

Ks

[
Ks(1− δz) +Kw(δz − δs)

]F ; (21b)

• R
(K)
4 :=

(δz − δs)
Ks

F, M(K)
4 := D

(δz − δs)
Ks

F ; (21c)

Si Ks(1− δz)− (D −Kw)(δw − δs) ≤ 0,

• R
(K)
1 :=

2(1− δw)(δz − δs)
[
(D −Kw)(1− δw) +Kw(1− δz)

]
F

β1
, (21d)

M(K)
1 :=

2D(1− δw)(δz − δs)(1− δz)F
β1

; (21e)

• R
(K)
2 :=

2(1− δw)(δz − δs)
[
Ks(1− δw) +Kw(δw − δs)

]
F

β2
, (21f)

M(K)
2 :=

2D(1− δw)(δz − δs)(δw − δs)F
β2

; (21g)

Sinon, si Ks(1− δz)− (D −Kw)(δw − δs) > 0,

• R
(K)
1 :=

2(1− δw)(δz − δs)
[
Ks(δz − δw) +D(δw − δs)

]
F

β3
, (21h)

M(K)
1 :=

2D(1− δw)(δz − δs)(δw − δs)F
β3

; (21i)

• R
(K)
2 :=

2(1− δw)(δz − δs)
[
(D −K)(1− δw) +Kw(1− δz − δw + δs)

]
F

β4
, (21j)

M(K)
2 :=

2D(1− δw)(δz − δs)(1− δz − δw + δs)F

β4
; (21k)

où

β1 = 2Kw(D −Kw)(1− δw)(δz − δs) +Kw(Kw − 1)(1− δz)(δz − δs)
+ 2Ks(D −Kw)(1− δw)2,

β2 = 2KsKw(1− δw)(δz − δs) +Kw(Kw − 1)(δw − δs)(δz − δs) + 2K2
s (1− δw)2,

β3 = 2KwKs(1− δw)(δz − δs) +Kw(Kw − 1)(δw − δs)(δz − δs)
+ 2Ks(1− δw)

[
Ks(δz − δw) + (D −Kw)(δw − δs)

]
,
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β4 = 2Kw(D −K)(1− δw)(δz − δs) +Kw(Kw − 1)(δz − δs)(1− δz − δw + δs)

+ 2(1− δw)
[
Ks(D −K)(1− δw) +KwKs(1− δz)−Kw(D −Kw)(δw − δs)

]
.

La borne inférieure du compromis sécurisé capacité-mémoire C
(K)
s (M) est donnée

par:

C(K)
s (M) ≥ upper hull

{
(R

(K)
` ,M(K)

` ) : ` ∈ {0, . . . , 4}
}
. (22)

Figure 6 montre ces bornes pour un exemple avec K = 20 récepteurs.

M
F ·D

C
(K)
s (M)
F

0

0.1

0.2

0.05 0.1 0.15

Borne inf C
(K)
s (M)

Borne sup C
(K)
s (M)

Figure 6: Bornes inférieure et supérieure de C
(K)
s (M) pour δw = 0.7, δs = 0.2, δz = 0.8,

F = 5, D = 30, Kw = 5 et Ks = 15.

Chapitre 4: Sécurité jointe pour le caching

Dans ce chapitre, nous considérons le même modèle de canal que dans le chapitre
précédent mais avec une contrainte de sécurité plus forte, qui est la contrainte de sécurité
jointe. Cette contrainte impose que l’espion ne doit savoir aucune information à propos
de tous les messages de la librairie conjointement à partir de son vecteur reçu Zn:

lim
n→∞

1

n
I(W1, . . . ,WD;Zn) < ε. (23)

Afin de satisfaire cette contrainte, l’émetteur a accès à un générateur d’aléa θ, défini
sur un alphabet Θ. Cela induit un changement aux fonctions de caching et codage
définies dans le chapitre précédent. Le contenu de la mémoire cache de chaque récepteur
faible i ∈ Kw devient Vi := gi(W1, . . . ,WD, θ), pour une certaine fonction de caching

gi :
{

1, . . . , b2nRsc
}D × Θ → V. De plus, l’émetteur produit le vecteur à transmettre

Xn := fd(W1, . . . ,WD, θ), pour une certaine fonction de codage fd :
{

1, . . . , b2nRsc
}D×

Θ→ X n.
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Bornes supérieure et inférieure pour le scénario avec deux récepteurs
et cache pour le récepteur faible

Dans cette section, nous considérons le scénario avec un utilisateur faible et un utilisateur
fort où l’utilisateur faible seulement a accès à une mémoire cache de taille M.

La borne supérieure du compromis sécurisé capacité-mémoire Cs(M) est donnée par:

Cs(M) ≤ (δz − δ1)(δz − δ2)

2δz − δ1 − δ2
F +

δz − δ2

2δz − δ1 − δ2
M, (24a)

Cs(M) ≤ (1− δ1)(1− δ2)

2− δ1 − δ2
F +

M
D
, (24b)

Cs(M) ≤ (δz − δ2)F. (24c)

Pour la borne inférieure, nous considérons les six paires débit-mémoire suivantes:

• R0 :=
(δz − δ1)(δz − δ2)

2δz − δ1 − δ2
F, M0 := 0; (25a)

• R1 :=
(1− δ1)(δz − δ2)

1 + δz − δ1 − δ2
F, M1 :=

(1− δz)(δz − δ2)

1 + δz − δ1 − δ2
F ; (25b)

• R2 := (1− δ2) min

{
δz − δ1

1− δ1
,

1− δ1

2− δ1 − δ2

}
F, M2 := (1− δz)F ; (25c)

• R3 :=
(1− δ2)(δz − δ2)

1 + δz − δ1 − δ2
F, M3 :=

(δz − δ2)
[
(δ1 − δ2)D + (1− δz)

]
1 + δz − δ1 − δ2

F ; (25d)

• R4 := (δz − δ2)F, M4 :=
(δz − δ2)

[
(δz − δ2)D + (1− δz)

]
1− δ2

F ; (25e)

• R5 := (δz − δ2)F, M5 := D(δz − δ2)F. (25f)

La borne inférieure du compromis sécurisé capacité-mémoire Cs(M) est donnée par:

Cs(M) ≥ upper hull
{

(R`,M`) : ` = 0, . . . , 5
}
. (26)

Il suffit de prouver que les paires (R`,M`) sont atteignables et la preuve du upper
convex hull suit par des arguments de partage de mémoire et temps comme dans [10].
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Schéma de codage atteignant (R1,M1)

On divise la phase de transmission en deux périodes de longueurs αn et (1− α)n, pour
α = δz−δs

1+δz−δw−δs . On génère aléatoirement une clé K1 de débit α(1 − δz)F et on la
sauvegarde dans la mémoire cache du récepteur 1. Dans la première période, l’émetteur
envoie le message Wd1 au récepteur 1 en utilisant un code wiretap avec clé secrète K1

[11, (22.7)]. Dans la deuxième période, l’émetteur envoie le message Wd2 au récepteur 2
en utilisant un code wiretap sans clé secrète.

Schéma de codage atteignant (R2,M2)

On divise la phase de transmission en deux périodes de longueurs αn et (1− α)n, pour

α = max
{

0, (1−δs)(δz−δw)−(1−δz)(1−δw)
(δz−δw)(2−δw−δs)

}
. On divise chaque message Wd, pour d ∈ D, en

deux sous-messages Wd = [W
(0)
d ,W⊕d ] de débits α(1 − δw)F et (1 − α)(1 − δz)F . On

génère deux clés aléatoires K1 et K2 de débits α(1− δz)F et (1− α)(1− δz)F et on les
sauvegarde dans la mémoire cache du récepteur 1. Dans la première période, l’émetteur

envoie le message W
(0)
d1

au récepteur 1 en utilisant un code wiretap avec clé secrète K1.

Pour la communication dans la deuxième période, on génère un codebook de superpo-
sition avec un centre cloud ayant 2n(1−α)(1−δz)F mots de code, et avec chaque codebook
satellite contenant 2nR2 mots de code. L’émetteur code W⊕d1 ⊕K2 dans le centre cloud

et Wd2 dans le satellite. Récepteur 1 décode seulement le message W⊕d1 ⊕K2 tandis que
récepteur 2 décode les deux messages.

Schéma de codage atteignant (R3,M3)

Soit α = δz−δs
1+δz−δw−δs . On divise chaque message Wd, pour d ∈ D, en trois sous-messages

Wd = [W
(0)
d ,W

(1)
d ,W⊕d ] de débits α(δz − δw)F , α(δw − δs)F et α(1 − δz)F . On génère

une clé aléatoire K1 de débit α(1− δz)F . On sauvegarde K1 et W
(1)
1 , . . . ,W

(1)
D dans la

mémoire cache du récepteur 1.

On génère un piggyback codebook C1 formé de b2nα(δz−δ1)F c · b2nα(δ1−δ2)F c blocs
ayant b2nα(1−δz)F c mots de codes chacun. Ces blocs sont arrangés en une matrice de
b2nα(δz−δ1)F c lignes b2nα(δ1−δ2)F c colonnes. La phase de transmission est divisée en deux
périodes de longueurs αn et (1 − α)n. Dans la première période, l’émetteur transmet

les messages W
(0)
d1

et W⊕d1 au récepteur 1 et W
(1)
d2

au récepteur 2. Il envoie donc le mot

de code correspondant à WXOR = W⊕d1 ⊕K1 du bloc C1(W
(0)
d1
,W

(1)
d2

). Dans la deuxième

période, il transmet le message W
(0),⊕
d2

= [W
(0)
d2
,W⊕d2 ] au récepteur 2 en utilisant un code

wiretap.
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Schéma de codage atteignant (R4,M4)

On applique le même schéma de codage décrit pour (R3,M3) avec les changements

suivant: on annule le débit de W
(0)
d , on change le débit de W

(1)
d à R(1) = α(δz − δ2)F et

on choisit α(1− δz)F ≤ (1− α)(δz − δ2)F .

Bornes supérieure et inférieure pour le scénario avec deux récepteurs
ayant des mémoires de cache égales

Comme dans le chapitre précédent, nous étudions le cas où la mémoire de cache
disponible est divisée également entre les deux utilisateurs. La borne supérieure du
compromis sécurisé capacité-mémoire Cs,Sym(M) est donnée par:

Cs,Sym(M) ≤ (δz − δ1)(δz − δ2)

2δz − δ1 − δ2
F +

M
2
, (27a)

Cs,Sym(M) ≤ (1− δ1)F +
M
2D

, (27b)

Cs,Sym(M) ≤ (1− δ1)(1− δ2)

2− δ1 − δ2
F +

M
D
. (27c)

Pour la borne inférieure, nous considérons les trois paires débit-mémoire suivantes:

• R0,Sym :=
(δz − δ1)(δz − δ2)

2δz − δ1 − δ2
F, M0,Sym := 0; (28a)

• R1,Sym :=
(1− δ1)(1− δ2)

2− δ1 − δ2
F, M1,Sym :=

2(1− δz)(1− δ2)

2− δ1 − δ2
F ; (28b)

• R2,Sym := min
{

2(1− δ1)F, (1− δ2)F
}
, (28c)

M2,Sym := min

{
2
[
(1− δz) +D(1− δ1)

]
F,

2(1− δ2)
[
2(1− δz) +D(1− δ2)

]
2(1− δ1) + (1− δ2)

F

}
. (28d)

La borne inférieure du compromis sécurisé capacité-mémoire Cs,Sym(M) est donnée
par:

Cs,Sym(M) ≥ upper hull
{

(R`,Sym,M`,Sym) : ` = 0, 1, 2
}
. (29)
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Bornes supérieure et inférieure pour le scénario avec deux récepteurs
avec des mémoires caches non égales

Dans cette partie, nous étudions une distribution de cache pour les deux utilisateurs
qui tient compte de leurs canaux. Récepteur 1 a accès à une mémoire de taille MR1 et
récepteur 2 a accès à une mémoire de taille MR2 , tel que MR1 +MR2 =M.

La borne supérieure du compromis sécurisé capacité-mémoire Cs,Asym(M) est donnée
par:

Cs,Asym(M) ≤ (δz − δ1)(δz − δ2)

2δz − δ1 − δ2
F +

δz − δ2

2δz − δ1 − δ2
M, (30a)

Cs,Asym(M) ≤ 1

2
(δz − δ2)F +

M
2
, (30b)

Cs,Asym(M) ≤ (1− δ1)(1− δ2)

2− δ1 − δ2
F +

M
D
, (30c)

Cs,Asym(M) ≤ (2− δ1 − δ2)

2
F +

M
2D

. (30d)

Pour la borne inférieure, nous considérons les cinq paires débit-mémoire suivantes:

• R0,Asym :=
(δz − δ1)(δz − δ2)

2δz − δ1 − δ2
F, M0,Asym := 0; (31a)

• R1,Asym :=
(1− δ1)(δz − δ2)

1 + δz − δ1 − δ2
F, M1,Asym :=

(1− δz)(δz − δ2)

1 + δz − δ1 − δ2
F ; (31b)

• R2,Asym :=
(1− δ1)(1− δ2)

2− δ1 − δ2
F, M2,Asym := (1− δz)F ; (31c)

• R3,Asym :=
(1− δ2)2

2− δ1 − δ2
F, (31d)

M3,Asym :=

[
(1− δz) +

D(1− δ2)(δ1 − δ2)

2− δ1 − δ2

]
F ; (31e)

• R4,Asym :=

[
(2δz − δ1 − δ2) +

1− δz
2

]
F, (31f)

M4,Asym :=
[
D(2δz − δ1 − δ2) + (1− δz)

]
F ; (31g)

La borne inférieure du compromis sécurisé capacité-mémoire Cs,Asym(M) est donnée
par:

Cs,Asym(M) ≥ upper hull
{

(R`,Asym,M`,Asym) : ` = 0, . . . , 4
}
. (32)

Comme dans la preuve de (11), il suffit de prouver que les paires (R`,Asym,M`,Asym)
sont atteignables. (R1,Asym,M1,Asym) est similaire à (R1,M1).
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Schéma de codage atteignant (R2,Asym,M2,Asym)

On divise la phase de transmission en deux périodes de longueurs αn et (1− α)n, pour
α = δz−δs

1+δz−δw−δs . On génère deux clés aléatoires K1 et K2 de débits α(1 − δz)F et
(1−α)(1−δz)F . Pour i ∈ {1, 2}, on sauvegarde Ki dans la mémoire cache du récepteur i.
Dans chaque période i ∈ {1, 2}, l’émetteur envoie le message Wdi au récepteur i en
utilisant un code wiretap avec clé secrète Ki.

Schéma de codage atteignant (R3,Asym,M3,Asym)

Cette paire est obtenue suivant un schéma similaire à (R3,M3) sauf que dans ce cas,
on génère une deuxième clé K2 de débit (1 − α)(1 − δz)F et on la sauvegarde dans la

mémoire cache du récepteur 2. Elle est utilisée pour sécuriser les messages W
(0)
d2

et W⊕d2
transmis au récepteur 2 pendant la deuxième période.

Schéma de codage atteignant (R4,Asym,M4,Asym)

On divise chaque message Wd, d ∈ D, en trois sous-messages: Wd = [W
(0)
d ,W

(1)
d ,W⊕d ],

tel que R(0) = (δz − δ1)F , R(1) = (δz − δ2)F et R⊕ = (1−δz)F
2 . Ensuite, on génère deux

clés aléatoires K1 et K2 de débit (1−δz)F
2 chacun. On sauvegarde K1 et W

(1)
1 , . . . ,W

(1)
D

dans la mémoire du récepteur 1 et on sauvegarde K2 et W
(0)
1 , . . . ,W

(0)
D dans la mémoire

du récepteur 2.

On génère un piggyback codebook C1 formé de b2n(δz−δ1)F c · b2n(δz−δ2)F c blocs con-
tenant chacun b2n(1−δz)F c mots de codes. Ces blocs sont arrangés en une matrice ayant
b2n(δz−δ1)F c lignes et b2n(δz−δ2)F c colonnes. Dans la phase de transmission, l’émetteur

envoie le mot de code représentant WXOR = [W⊕d1⊕K1,W
⊕
d2
⊕K2] du bloc C1(W

(0)
d1
,W

(1)
d2

).

Discussion et résultats numériques

Figure 7 montre nos bornes supérieures et inférieures du compromis Cs(M) pour la
contrainte de sécurité jointe. Elle compare aussi avec les bornes du chapitre précédent.
Nous pouvons voir que la contrainte jointe qui apporte une sécurité plus forte n’induit
qu’une petite perte de débit.

Pour la sécurité jointe, nos bornes sont exactes pour les petites et grandes mémoires
caches. Pour une grande mémoire cache M ≥ M4, où M4 est défini dans (25e), nous
avons Cs(M) = (δz − δ2)F . Pour une petite mémoire cacheM≤M1, oùM1 est défini
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dans (25b), nous avons:

Cs(M) =
(δz − δ1)(δz − δ2)

2δz − δ1 − δ2
F +

δz − δ2

2δz − δ1 − δ2
M. (33)

Quand la mémoire est petite, nous l’utilisons pour seulement sauvegarder des clés secrète.
Cela induit une croissance rapide de Cs(M) puisque les clés sont utiles quelles que soient
les demandes des utilisateurs.

M
F ·D

Cs(M)
F

0

0.4

0.2

0.50.40.30.20.1

Borne inf Cs(M)
constrainte jointe

Borne sup Cs(M)
constrainte jointe

Borne inf Cs(M)
constrainte individuelle
Borne sup Cs(M)
constrainte individuelle

Figure 7: Bornes inférieures et supérieures de Cs(M) pour les contraintes de sécurité
jointes et individuelles pour K = 2, δ1 = 0.7, δ2 = 0.3, δz = 0.8, F = 5 et D = 5.

M
F ·D

Cs(M)
F

,
Cs,Sym(M)

F
,
Cs,Asym(M)

F

0

0.4

0.2

0.30.20.1

Borne inf Cs(M)

Borne sup Cs(M)

Borne inf Cs,Sym(M)

Borne sup Cs,Sym(M)

Borne inf Cs,Asym(M)

Borne sup Cs,Asym(M)

Figure 8: Bornes inférieures et supérieures de Cs(M)/Cs,Sym(M)/Cs,Asym(M) pour
K = 2, δ1 = 0.7, δ2 = 0.5, δz = 0.8, F = 5 et D = 5.

Figure 8 compare les bornes obtenues pour les différentes distributions de cache con-
sidérées. Nous remarquons que pour une mémoire totale petite, il est toujours préférable
d’allouer celle-ci à l’utilisateur faible. Pour des mémoires de tailles moyennes, nous
voyons que dans la plupart des cas, allouer la mémoire à l’utilisateur faible est plus avan-
tageux que de la répartir également entre les deux utilisateurs. Nous voyons aussi que
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répartir la mémoire d’une façon asymétrique est le meilleur choix puisque, contrairement
à l’allocation unilatérale, cela permet à l’utilisateur fort de sécuriser sa transmission.

Bornes supérieure et inférieure pour le scénario avec K récepteurs

Nous considérons le cas général avec Kw récepteurs faibles et Ks récepteurs forts. Les
récepteurs faibles seulement ont accès à des mémoires caches de taille M. La borne

supérieure du compromis sécurisé capacité-mémoire C
(K)
s (M) est donnée par:

C(K)
s (M) ≤ δz − δs

Ks
F, (34a)

C(K)
s (M) ≤

(
j

1− δw
+

Ks

1− δs

)−1

F +
jM
D

, j ∈ {1, . . . ,Kw}, (34b)

C(K)
s (M) ≤ max

αi∈[0,1]
min

{αi(δz − δw) + (1− αi)(δz − δs)
i+Ks

F +
i

i+Ks
M,

αi
δz − δw

i
F +M

}
, i ∈ {1, . . . ,Kw}. (34c)

Pour la borne inférieure, nous considérons les six paires débit-mémoire suivantes:

• R
(K)
0 :=

( Kw

δz − δw
+

Ks

δz − δs

)−1
F, M(K)

0 := 0; (35a)

• R
(K)
1 :=

(1− δw)(δz − δs)F
Kw(δz − δs) +Ks(1− δw)

, M(K)
1 :=

(1− δz)(δz − δs)F
Kw(δz − δs) +Ks(1− δw)

; (35b)

• R
(K)
2 := min

{(1− δs)(δz − δw)

Ks(1− δw)
,

(1− δs)(1− δw)

Kw(1− δs) +Ks(1− δw)

}
F, (35c)

M(K)
2 :=

(1− δz)
Kw

F ; (35d)

• R
(K)
3 :=

2(1− δw)(δz − δs)
[
Ks(1− δw) +Kw(δw − δs)

]
F

Kw(δz − δs)
[
(Kw − 1)(δw − δs)+2Ks(1− δw)

]
+2K2

s (1− δw)2
, (35e)

M(K)
3 :=

2D(δz − δs)(1− δw)(δw − δs)F
Kw(δz − δs)

[
(Kw − 1)(δw − δs)+2Ks(1− δw)

]
+2K2

s (1− δw)2

+
2(δz − δs)(1− δz)

[
(Kw − 1)(δw − δs) +Ks(1− δw)

]
F

Kw(δz − δs)
[
(Kw − 1)(δw − δs)+2Ks(1− δw)

]
+2K2

s (1− δw)2
. (35f)

• R
(K)
4 :=

(δz − δs)
Ks

F, M(K)
4 :=

Ks(δz − δs)(1− δz) +DKw(δz − δs)2

Ks

[
Ks(1− δz) +Kw(δz − δs)

] F ; (35g)

• R
(K)
5 :=

(δz − δs)
Ks

F, M(K)
5 := D

(δz − δs)
Ks

F. (35h)
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La borne inférieure du compromis sécurisé capacité-mémoire C
(K)
s (M) est donnée

par:

C(K)
s (M) ≥ upper hull

{
(R

(K)
` ,M(K)

` ) : ` ∈ {0, . . . , 5}
}
. (36)

Conclusion

Dans cette thèse, nous avons étudié deux méthodes de sécurité pour les transmissions
sans fil. Dans la première partie de ce travail, nous avons proposé une amélioration au
cryptosystème GGH en utilisant les réseaux de points GLD. Cela a réduit la complexité
de ce système tout en garantissant sa sécurité. En effet, nous avons réduit de 10 fois la
taille de la clé publique et de 1300 fois la complexité de génération de la clé. De plus, le
décodage itératif des GLD est plus efficace que les algorithmes précédemment utilisés.

Dans la seconde partie de ce travail, nous avons étudié la sécurité des canaux de
diffusion multi-utilisateur, ayant accès à des mémoires de caches, en présence d’un espion.
Nous avons considéré les deux contraintes de sécurité individuelle et jointe. Nous avons
considéré le scénario avec K ≥ 2 récepteurs, parmi lesquels Kw récepteurs sont faibles et
ont accès à des mémoires de caches de même taille, etKs récepteurs sont forts et n’ont pas
accès à des mémoires de cache. Nous avons dérivé des bornes supérieures et inférieures du
compromis sécurisé capacité-mémoire en considérant différentes distributions de cache.
Pour chaque contrainte, nous avons proposé des schémas de codage cache-canal joints qui
atteignent les bornes inférieures, dont nous avons montré la pertinence en les comparant
avec des schémas de codage séparé. De plus, pour K = 2, nous avons étudié une
distribution symétrique de cache pour les deux utilisateurs ainsi qu’une distribution
bilatérale asymétrique. Nous avons trouvé que la distribution symétrique est la plus
mauvaise dans la plupart des cas. Pour les petites mémoires de cache, la distribution
unilatérale est la meilleure. Pour des mémoires de cache plus grandes, la distribution
bilatérale qui prend en considération les canaux des utilisateurs est le meilleur choix.
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Introduction

The place that the Internet takes in our everyday lives is significantly growing over
the years. In Europe, the proportion of households with Internet access increased from
30% to 84% over the last 10 years, according to the International Telegraph Union
(ITU) [12]. The fact that the Internet has become the main communication medium
becomes apparent if one considers throughput numbers. For instance, a recent Cisco
study revealed that the global traffic reached 1.1 ZB per year in the end of 2016 and is
expected to reach 2.3 ZB per year by the end of 2020 [13].

Accordingly, people get accustomed to use the Internet for more various purposes
with less consideration for the privacy of the data they are exposing. Indeed, personal
data is being daily exposed online through the Internet while achieving some critical
private activities such as paying bills, banking and completing governmental processes.
In addition, the Internet is also regularly being used as a mean to transmit personal data
towards remote servers in order to perform secure storage, controlled sharing, among
wider types of operations that are getting allowed by cloud-based computing power and
storage means.

However, the Internet is highly vulnerable because of its open and global nature.
Attacks carried out through the Internet are becoming more numerous and more so-
phisticated. The Identity Theft Resource Center reports show that 980 reported data
breaches of companies and governmental agencies records occurred in 2016 in the US
only [14]. These breaches exposed the personal data of millions of people including their
names, addresses, credit card numbers, social security numbers, medical records and
many other private information. At global level, Symantec reports that half a billion
personal records were stolen or lost worldwide in 2015, including 78 million medical
patient records [15].

There is therefore an urgent need to strengthen the Internet security. Among the
security properties, there is a special need to enforce confidentiality of personal data
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while they are transmitted. Data security protocols are used for that purpose. However,
due to advances in quantum computing technology, new attacks are about to emerge that
will require changes in these protocol designs. Hence, post-quantum security solutions
are being extensively studied. Yet, current post-quantum cryptography algorithms are
too heavy to be usable, mainly because of their huge key sizes compared to classical
cryptosystems.

This problem is further aggravated if one considers the device constraints. Indeed,
devices with low processing power, low memory space and low transmission throughput
will have to transmit secure data in the near future, over an Internet exposed to quantum
computer threats. This emphasizes the necessity for low complexity and small key size
post-quantum algorithms.

The need to enforce the Internet security urged researches to explore beyond the
existing notions of security and consider unsecured layers of the communication sys-
tem. A promising technique suggests to combine security protocols with physical layer
security. This new type of security improves the system robustness against quantum
computer attacks since it is not based on complex computational problems as in clas-
sical cryptography. Instead, physical layer security makes use of the characteristics of
the transmission channel to ensure its secrecy unlike traditional cryptography where the
physical channel is never considered. Thus, applying physical layer security techniques
with higher layers security protocols provides a new layer of security uncorrelated with
the others and greatly increases the overall system security.

Besides security related problems, another aspect of future networks that has to be
taken into consideration is the way the Internet usage pattern is evolving. Cisco study
also shows that the Internet traffic during peak times is increasing much faster than the
average Internet traffic. Indeed, traffic during the busiest hour of the day increased by
51% in 2015 while average traffic only increased by 29% during the same period. This
calls for solutions, beyond the classical ones which increase the network throughput in
general, in order to moderate the network usage during high traffic periods by taking
advantage of stiller periods.

Recently, caching emerged as a promising technique to balance the network load
between peak and off-peak periods. Its concept relies on pre-storing data during periods
when the network is barely used and benefiting from this data during high network traffic
times. Caching methods are currently used on the application layer of the communication
systems. However, recent studies show that caching can be more beneficial if its design
considers also the particular medium over which the transmission will occur. These
studies did not consider physical layer security aspects of caching systems. Thus, security
solutions for caching systems taking into account the physical transmission layer have
yet to be explored.

The objective of this thesis is to study new security solutions for confidentiality of
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data transmission. In a first phase, we focus on post-quantum cryptography solutions
and in particular, lattice-based cryptography. Our aim is to design a lattice-based cryp-
tosystem with a reduced key size that can be actually used in practice. In a second
phase, we study physical layer secrecy of cache-aided communication systems. In these
systems, security can be provided by exploiting both the nature of the transmission
channel and the users’ cache memories.

In this manuscript, Chapter 1 is dedicated to review the state of the art related to
these two security aspects. We start by introducing post-quantum cryptography and in
particular, lattice-based and code-based cryptography in Section 1.1. We then explore
the advances in physical layer security and especially in cache-aided transmission systems
in Section 1.2.

As a first part of the report, Chapter 2 presents our first thesis result which is a
new GGH lattice-based cryptosystem using generalized low density lattices. First, we
describe in detail the original GGH scheme and discuss its advantages and disadvantages
in Section 2.1 and we review GGH-based improved schemes and discuss their drawbacks
in Section 2.2. We then present in Section 2.3 our proposed public-key cryptography
scheme based on generalized low density lattices. To demonstrate the robustness of our
scheme, we carry out security analysis of all the known attacks against the GGH schemes
and prove their failure against our proposed system. Our results are validated by some
experimental results and are presented in Section 2.4. In Section 2.5, the advantage of
our cryptosystem is emphasized by a complexity study and simulation results showing
the effectiveness of the new scheme compared to existing ones.

The second part of the thesis report is devoted to securing cache-aided networks
in Chapters 3 and 4 under different secrecy constraints. In Chapter 3, we study the
security of the cache-aided packet-erasure broadcast channels under an individual secrecy
constraint. We start by formally defining our problem in Section 3.1. Then, we present
in Section 3.2 our joint cache-channel coding scheme and compute the lower bound on
the secure capacity-memory tradeoff for the two-user scenario with cache only at the
weaker of both receivers. The corresponding upper bound is proved in Section 3.3. To
justify our choice for cache assignment, we compute the lower and upper bounds on the
secure capacity-memory tradeoff for the two-user scenario under a symmetrical cache
distribution in Sections 3.4 and 3.5. In Section 3.6, we compute the securely achievable
lower bound using a separate cache-channel coding approach for the two-receiver case
under one-sided cache assignment with the aim of emphasizing the profit of our joint
coding scheme. In Section 3.7, we discuss and compare all of the bounds obtained in
the previous sections. Finally, we extend our results to the K-receiver scenario and
compute the general lower and upper bounds on the secure capacity-memory tradeoff in
Sections 3.8 and 3.9.

In Chapter 4, we consider the joint secrecy constraint for the same scenario studied
in the previous chapter. In Section 4.1, we present the modifications of the problem
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definition imposed by the new constraint. Then, for the two-receiver one-sided cache
assignment, we present and prove a lower bound on the secure capacity-memory tradeoff
in Section 4.2 and compute the corresponding upper bound in Section 4.3. We devote
Sections 4.4 and 4.5 to the symmetric cache assignment case where we demonstrate its
lower and upper bounds. After that, we study the case of asymmetric two-sided cache
distribution and give lower and upper bounds on the secure capacity-memory tradeoff
in Sections 4.6 and 4.7 respectively. We dedicate Section 4.8 to the interpretation and
comparison of the obtained bounds. In the previous sections, we consider the special
case with two receivers. We study the general case with K receivers with cache at weak
receivers only and provide lower and upper bounds on the generalized secure capacity-
memory tradeoff in Sections 4.9 and 4.10, respectively.

Finally, we summarize the results of this work and present some future research
perspectives in a general conclusion.
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Chapter 1

Security in Communication
Systems

As the need to strengthen the internet security increases, new techniques have to be
developed to protect the confidentiality of data during transfer and storage. These tech-
niques should also anticipate the development in quantum computing and the eventual
attacks that will arise from this evolution.

Before delving into details on the specific security schemes that we study in this thesis,
we find it interesting to position them relative to other security approaches within the
communication system.

Protecting data security against eavesdroppers can be done at various layers of the
classical open systems interconnection (OSI) model. Figure 1.1 depicts the seven layers
of the OSI model with some examples of security approaches applied at each of the
layers. According to the OSI model, transmitted data go through encapsulation and en-
coding operations as they travel down the sender communication stack. Symmetrically,
data are decapsulated and decoded upon reception, traveling upward the receiver com-
munication stack. In parallel with encapsulation/decapsulation and encoding/decoding,
ciphering/deciphering operations may be applied.

Applicative security solutions are used to secure traffic relative to a specific appli-
cation only. Moving downward the OSI model, security solutions become applicable to
a greater number of applications. Reaching the network layer, the Internet protocol
security (IPsec) can be used to secure any IP packet. In addition, the network layer is
the last layer where end-to-end protocols can be applied. Indeed, data link layer, which
consists of the media access control (MAC) and logical link control (LLC) sub-layers,
provides node-to-node data transfer between two nodes that are directly connected to
each other. Finally, at the physical layer, data are encoded and modulated before being
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Figure 1.1: Communication security in the OSI model.

transmitted over the physical channel.

The security approaches employed at layers two to seven rely on cryptographic
schemes. For example, the AES symmetric cryptosystem can be used in almost all
protocol examples provided within Figure 1.1. These schemes ensure data security by
means of complex mathematical problems or by reliance on complex key schedules. Thus,
their security arises from the fact that the attacker has limited computational capacity.

On the other hand, physical layer security does not employ cryptosystems. While
cryptography techniques are insensitive to the physical nature of the transmission chan-
nel, physical layer security exploits the characteristics of the wireless medium, such
as multi-path fading and interference, to protect the confidential information against
eavesdropping and other attacks. Since these security techniques do not make the same
assumptions on the attacker as those relying on cryptographic primitives, they can be
used to reinforce security of the higher communication layers.

Note that data security consists of confidentiality, integrity and availability proper-
ties. In this thesis, we focus on the confidentiality property only. Unless stated other-
wise, we use the term “security” to refer to this confidentiality property as in most of
the physical layer security literature.
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Figure 1.2: Cryptography scheme.
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...

Figure 1.3: Caching scenario.

In this thesis, we will explore both cryptography and physical layer security of wire-
less communications. From a cryptographic perspective, we will study the scheme in
Figure 1.2 where Alice wants to communicate a message, called plaintext, to Bob. She
encrypts the plaintext with the public key generating the ciphertext to be transmitted.
Upon message reception, Bob decrypts the ciphertext using its private key and obtains
the plaintext. The ciphertext is also received by Eve who is eavesdropping the commu-
nication. However, Eve does not have access to the private key and thus, applies attack
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algorithms that may allow her to decrypt without the private key and retrieve some
confidential information. The main goal here is to design an encryption method that
guarantees a failed decryption to Eve using any known attack algorithm.

From a physical layer security perspective, we will study the caching scenario depicted
in Figure 1.3. In this scheme, the transmitter conveys messages to multiple users through
a broadcast channel. Legitimate receivers have access to cache memories where messages
can be pre-stored. Some receivers have good channels and others have worse channels.
The broadcasted message is also received by an eavesdropper who does not have any
cache memory and has the most degraded channel. The purpose here is to code the
messages in a way to be decoded reliably by the legitimate receivers while being perfectly
secured from the intruder.

1.1 Cryptography

Cryptography is the art of hiding information using a secret key. A plaintext, which is
understood by everybody, is encrypted using an encryption key into an unreadable form
called ciphertext. Only those who have access to the decryption key can decrypt the
ciphertext and extract the message. The fundamental purpose of cryptography is to allow
two people to exchange information through a channel in a way that the transmitted
messages cannot be understood by any intruder listening to their communication.

Alice
M

Encryption

Public key

C
Decryption

Private key

M
Bob

Eve

Figure 1.4: Public-key cryptography.

The process of designing cryptography systems involves three phases. First, cryp-
tographers design schemes that they believe to be secure. Then, cryptanalysts try to
break these schemes. Finally, the fastest of the unbroken schemes are chosen to be
implemented and used in practice.

Cryptographic systems can be grouped into two main categories: private-key ciphers
and public-key ciphers. In private-key cryptography, also called symmetric-key cryptog-
raphy, the same private key is used for both encryption and decryption. Conversely,
public-key cryptosystems use asymmetric algorithms where a public key serves for en-
cryption and another private key serves for decryption. The public key is known to
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everyone whereas the private key is possessed only by the legitimate receiver.

Nowadays, public-key encryption schemes are mainly based on three hard math-
ematical problems: the integer factorization problem, the discrete logarithm problem
and the elliptic-curve discrete logarithm problem. No attack algorithm can solve these
problems using a classical computer. However, Shor presented in [16] a quantum algo-
rithm for integer factorization that runs in polynomial time making today’s public-key
cryptosystems easily breakable by a powerful quantum computer.

Most cryptography protocols that are adopted today to protect the Internet rely
on public-key schemes, such as RSA and DSA. They are therefore proved to be broken
by quantum computers according to Shor’s algorithm. The day the construction of
a powerful quantum computer succeeds, all of these protocols will be broken and the
Internet will no longer be secure. Even though these computers do not exist today,
cryptographers have to start preparing for this new era.

Quantum attacks do not present the same danger to symmetric cryptography algo-
rithms. In fact, Grover designed another quantum algorithm that finds the input to a
black box function based on its outputs [17]. However, it does not speed up attacks on
symmetric ciphers as much as Shor’s algorithm does on asymmetric ones. Therefore,
doubling the key size of symmetric cryptography algorithms is enough to protect them
against quantum computer attacks.

These facts directed the attention of cryptographers towards the design of post-
quantum asymmetric cryptosystems secure against quantum algorithms attacks. Four
categories of public-key ciphers are believed to resist against Shor’s algorithms: mul-
tivariate quadratic equations cryptography, hash-based cryptography, code-based cryp-
tography and lattice-based cryptography. We explore in Sections 1.1.1 and 1.1.2 the last
two fields that are of interest to us in this thesis.

1.1.1 Code-based cryptography

Code-based cryptography systems are public-key encryption schemes that use error cor-
rection codes. McEliece developed the first code-based scheme using binary irreducible
Goppa codes [18]. Encryption and decryption of this scheme are fast and efficient. How-
ever, it is not used in practice because of its large public and private keys sizes. The
McEliece cryptosystem remains unbroken till today and it is believed to remain secure
against attacks by quantum computers. It is described as follows:

• System parameters:

- n : Length of the code.

- t : Number of errors that the code can correct.
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• Key generation: Generate the following matrices

- G : k × n generator matrix of a binary irreducible Goppa code C(n, k) of
length n, dimension k and can correct t errors.

- P : n× n randomly chosen permutation matrix.

- S : k × k randomly chosen non-singular matrix.

• Public key: (G′, t) where G′ = SGP .

• Private key: (G,S, P ).

• Encryption: Compute the ciphertext c as follows

c = mG′ + e, (1.1)

where m is the message of length k and e is an error vector of length n and weight
t.

• Decryption: To decrypt the ciphertext, start by computing

cP−1 = mSG+ eP−1. (1.2)

Then, apply the decoding algorithm of the code C to eliminate the erroneous part
eP−1 and obtain mSG. Finally, find m as

m = (mSG)G−1S−1. (1.3)

A variant of the McEliece system is the Niederreiter cryptosystem [19]. Niederreiter
proposed to encode the message into the error vector instead of representing it as a
codeword. Originally, Niederreiter scheme was proposed with generalized Reed-Solomon
codes (GRS) but these codes were proven to be insecure [20]. However, when designed
with binary Goppa codes, Niederreiter has the same security as the McEliece system
[21].

McEliece’s main limitation is the size of its public key which is considerably larger
than that of today’s used publi-key encryption scheme, such as RSA. An interesting
suggestion was to replace Goppa codes with low-density parity-check (LDPC) codes to
overcome this drawback [22]. In fact, LDPC codes have sparse parity-check matrices
with a storage size that increases linearly with the code length n [23]. However, this
sparsity induces a vulnerability on the security of the system and hence cannot be
exploited. To prevent this weakness, neither the public code nor its dual code should
be too sparse. Yet by loosing the sparsity, the reduction in the key size is also lost. An
alternative solution was to employ quasi-cyclic LDPC (QC-LDPC) codes, whose parity
check matrices can be described by a single row of them and to increase their density
resulting in quasi-cyclic moderate-density parity-check (QC-MDPC) codes [23].
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Other codes were also investigated with the same aim of reducing the key size. Some
examples of these codes are: Reed-Muller codes [24], Gabidulin codes [25] and BCH codes
[26]. Many of these codes were broken, e.g. [27, 20]. The generalization of McEliece
system with non-binary Goppa codes was also studied, e.g. [28],[29], and attacks on
these systems were examined [30].

The most secure system remains the original McEliece based on Goppa codes. How-
ever, it is not secure against chosen-ciphertext attacks [31, 32]. In this attack, the
attacker can enter one or more known ciphertexts into the system and obtain the result-
ing plaintext. Then, from these results he can attempt to recover the secret key used
for decryption. Many works focused on the design of McEliece systems secure against
adaptive chosen-ciphertext attack (CCA2), e.g. [33, 34, 35, 36].

1.1.2 Lattice-based cryptography

In this section, we introduce lattice codes and review the main results in lattice-based
cryptography.

1.1.2.1 Lattice preliminaries

A real n-dimensional lattice Λ is a discrete subgroup of the Euclidean space Rn. Λ can
be represented by a set of n linearly independent vectors b1, . . . ,bn in Rn, called basis
vectors. The matrix

B = [b1, . . . ,bn]T ∈ Rn×n, (1.4)

having the basis vectors as rows is called a generator matrix for the lattice. Thus, the
lattice is obtained by taking all integral linear combinations of the basis vectors

Λ = {λ = xB : x ∈ Zn}. (1.5)

Note that a lattice basis is not unique. There is an infinite number of bases for the same
lattice but there exists only one basis that is of Hermite normal form (HNF).

A basis H is in Hermite normal form if it satisfies the following conditions:

1. H is lower-triangular , i.e. hi,j = 0 ∀ i < j.

2. hi,i > 0 ∀ i.

3. 0 ≤ hi,j < hj,j ∀ i > j.
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For every basis B of Λ, there exists a unimodular matrix U that, multiplied by B,
generates the HNF form matrix H, as follows

H = UB. (1.6)

The orthogonality of a basisB can be evaluated by its orthogonality defect. As introduced
by Schnor in [37], it is the product of the basis vector lengths divided by the matrix
determinant, defined as

OD(B) =

∏n
i=1 ||bi||
|det(B)|

, (1.7)

where ||bi|| is the Euclidean norm of the i’th row in B.

If OD(B) = 1, this means that B is an orthogonal basis of Λ. Conversely, when B is a
bad basis, its OD(B) is high.

The n-dimensional space can be divided into an infinite number of similar regions,
such that each copy of the region contains only one lattice point. This region is called
fundamental region of the lattice. Its volume is denoted by the fundamental volume and
is equal to the square of the determinant of B

vol(Λ) = (det(B))2. (1.8)

The fundamental region of a lattice is not unique but its fundamental volume is. An
example of a fundamental region is the fundamental parallelotope which consists of the
points

θ1b1 + · · ·+ θnbn (0 ≤ θi < 1). (1.9)

It is clear that the fundamental parallelotope’s form depends on the choice of the lattice
basis.

1.1.2.2 Lattice-based cryptography schemes

Lattice-based cryptography systems are public-key systems based on some hard lat-
tice problems. Lattices were first used in cryptanalysis to break various cryptographic
schemes. In 1996, Ajtai showed a connection between the average-case complexity and
the worst-case complexity of some lattice problems [38]. This discovery opened the door
for a different use of lattices in cryptography. From this point, lattices were greatly
studied in the design of cryptosystems.

Lattice-based cryptosystems are believed to remain secure against quantum comput-
ers and hence they received a wide attention from the cryptography community. The
first lattice-based cryptography scheme is the Ajtai-Dwork (AD) cryptosystem [39]. The
security of AD is related to the hardness of the shortest vector problem (SVP). SVP
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refers to the computation of a vector u in a lattice Λ, defined by a basis B, with mini-
mum non-zero Euclidean length min{ ‖u‖ ; u ∈ Λ,u 6= 0}. However, AD is mainly of
theoretical interest and far from being a practical cryptosystem.

Many ciphers were inspired from the AD system, such as Goldreich-Goldwasser-
Halevi cryptosystem (GGH) [1] and NTRU cryptosystem [40]. The GGH scheme was
proposed in [1] as a much more practical lattice-based alternative than the AD cryp-
tosystem. GGH can be seen as the lattice-based analog of the McEliece cryptosystem,
which uses linear codes for encryption [18]. GGH security relies on the hardness of the
closest vector problem (CVP) in a lattice, which consists in finding the vector u ∈ Λ
that minimizes the distance to a given vector v ∈ Rn. On the other hand, NTRU is a
ring-based public-key cryptosystem whose encryption functions are designed using con-
volution polynomial rings and elementary probability theory. It can be interpreted as a
SVP or CVP instance.

In 2005, Regev introduced the learning with errors (LWE) problem and proposed
an LWE-based public-key cryptosystem that can be viewed as a decoding problem from
a random linear code [41]. Later, multiple public-key encryption schemes were also
proposed based on LWE (eg. [42, 43]).

Among these schemes, GGH is the only one that works explicitly with lattices. De-
spite some interesting properties and some efforts to improve it [7, 3], the drawback of
GGH lattice-based cryptosystem remains the huge size of its public key. In this thesis,
we propose to solve this issue by replacing random lattices used so far in GGH with
structured low density lattices such as generalized low density (GLD) lattices. GLD
lattices, GGH cryptosystems and the proposed GLD lattice-based GGH cryptosystem
are the main focus of Chapter 2.

In the next section, we present physical layer security and the principal results in
this domain. We also discuss in more detail security of the caching scenario on which
we focus in the second part of this thesis.

1.2 Information-theoretic security

In 1949, Shannon introduced the principle of measuring the secrecy level of a communi-
cation system by a quantitative value [44]. He considered the model depicted in Figure
1.5 where a transmitter, Alice, wants to convey messages to a legitimate receiver, Bob,
through a perfect channel, while an eavesdropper, Eve, is wiretapping the communi-
cation. He supposed that Eve also observes an error-free copy of all the transmitted
messages.

He defined the notion of perfect secrecy which is achieved if the eavesdropper’s equiv-
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Figure 1.5: Shannon’s model.

ocation of the message remains the same with and without the knowledge of its received
vector

H(M |Z) = H(M). (1.10)

This is equivalent to having zero mutual information between the source message and
the eavesdropper’s received vector

I(M ;Z) = 0. (1.11)

In his considered model, this perfect secrecy is achieved if the transmitted codeword is
statistically independent of the message. It can be guaranteed by means of a one-time
pad where the message is secured using a secret key known only by the transmitter and
the legitimate receiver, and the key is used only once. For instance, the codeword can
be computed as the binary addition (XOR) of the message and the secret key. However,
the problem is that, since each key cannot be used more than once, the transmitter
and the legitimate receiver have to store long sequences of random keys and share them
over a secure channel. That caused information-theoretic security to be regarded as a
theoretical concept unfeasible in practice.

In 1975, Wyner was the first to introduce the concept of creating security by ex-
ploiting the randomness of the noise present in all communication systems [45], which
is known today as physical layer security. He considered the channel model depicted in
Figure 1.6 which he called the wiretap channel. In this model, Alice conveys messages
to Bob through a discrete memoryless channel (DMS). Eve observes the communication
through a second discrete memoryless channel. The channel between Alice and Eve is
called the wiretap channel and is considered to be degraded with respect to the main
channel.

Wyner also introduced the notion of secrecy capacity as the maximal transmission
rate that ensures a reliable decoding for Bob while preventing Eve from finding any
information about the messages. It is equal to the difference between the capacity of the
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Figure 1.6: The wiretap channel.

channel between Alice and Bob and that of the channel between Alice and Eve

Cs = max
pX

I(X;Y |Z) = max
pX

[
I(X;Y )− I(X;Z)

]
, (1.12)

where, X is the channel input, Y is the channel output at the legitimate receiver, Z
is the channel output at the eavesdropper and pX is the probability distribution of the
channel inputs X.

Wyner proposed to use coset codes to encode the information bits with some random
bits to achieve the secrecy capacity. The rate of the random bits should be at least equal
to the eavesdropper channel capacity in order to sink it in total ambiguity.

Moreover, since the notion of perfect secrecy is too strict, two other secrecy notions
were defined: strong secrecy condition [46] and weak secrecy condition [45]. The strong
secrecy condition requires that the information leaked to the eavesdropper vanishes as
the blocklength n of the codeword goes to infinity

lim
n→∞

I(M ;Zn) = 0. (1.13)

The weak secrecy condition is less stringent. It requires that the rate of the information
leaked to the eavesdropper vanishes as n goes to infinity

lim
n→∞

1

n
I(M ;Zn) = 0. (1.14)

1.2.1 Main results in physical layer security

After Wyner’s discovery, determining this secrecy capacity has been addressed exten-
sively and has led to a plethora of information-theoretical results for many classes of
channels such as erasure, Gaussian, MIMO, broadcast, interference and relay channels
(see [47] and references therein). The Gaussian wiretap channel was introduced in [48]
and was then investigated in different scenarios [49, 50, 51]. Secure communications
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over fading channels were also investigated [52, 53, 54]. The point-to-point scenario
was extended to multi-user systems for different channels, e.g. multiple access channel
[55, 56, 57], broadcast channel [58, 59, 60, 61] and relay channel [62, 63, 64].

In order to achieve this secrecy capacity, practical wiretap codes were designed based
on the application of classic and modern coding techniques [65, 66]. First approaches
considered capacity-achieving graph-based codes such as LDPC codes [67] and extended
their applications for secrecy [68]. Then, some researches examined secrecy rate using
structured nested lattice codes for wiretap coding [69, 70, 71]. Polar codes were also
considered as secrecy achieving codes for some wiretap channels [72, 73, 74]. Physical
layer security issues were also studied based on network coding theory in [75].

Secrecy capacities of multiple antenna channels were extensively studied. The main
challenge in securing multiple-input multiple-output (MIMO) channels is that the wire-
tap MIMO channel is not degraded in general. Secret communications in MIMO channels
where multiple antennas are used for transmission and reception were first studied by
Hero in [76]. He introduced two constraints, called low probability of intercept and low
probability of detection, and studied them in different scenarios where the transmitter,
the legitimate receiver and the eavesdropper are either informed or uninformed about
their channel states. The secrecy capacity of the single-input multiple-output (SIMO)
wiretap channel where the eavesdropper has more than one antenna was analyzed in
[77]. The secrecy capacity of the multiple-input single-output (MISO) wiretap channel
was also investigated when the eavesdropper has a single antenna [78, 51] or multiple
antennas [79, 80]. These studies were then generalized to the MIMO channel with single
or multiple eavesdropper antennas [81, 82, 83, 84].

Secure communication over broadcast channels with receivers side information was
also considerably investigated. In these channels, a legitimate receiver is given access
to messages of other legitimate receivers as side information. This side information
along with some random binning are used to secure the broadcasted messages. It is
assumed that the eavesdropper does not have access to any side information. Security
in these channels was studied under weak individual secrecy constraints [85, 86, 87] or
weak joint secrecy constraint [87, 88]. Individual (respectively joint) secrecy constraint
imposes that the messages should be individually (respectively jointly) secured from the
eavesdropper.

Recently, security issues have started to be explored from an information-theoretic
angle in caching systems. Caching is the process of storing data in local memories close to
the users with the aim of reducing network congestion. Security in caching takes advan-
tage of the fact that the eavesdropper does not have access to the users’ cache memories.
Secure caching codes have been designed in [89, 90, 91] without considering transmission
channels. The employed security techniques are inspired from Shannon’s one-time-pad
scheme [44]. Hence, secure caching remains an interesting domain unexplored from a
physical layer perceptive.
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In the following section, we introduce cache-aided communication systems and review
some secure coding methods designed for these systems.

1.2.2 Secrecy in caching scenario

Traffic in communication systems varies as a function of the time of the day resulting
in periods where network congestion is high, causing packet loss, delivery delays and
unsatisfied users, and other periods where the network is barely used. Lately, caching
has emerged as a promising technique to reduce the network load and latency in such
dense wireless networks. The main idea of caching is to benefit from the low network
traffic periods to pre-store popular content in cache memories distributed across users.
Then, when users request specific files during periods of peak-traffic, they are served
partly from their cache memories and partly from the server, reducing thus the network
load.

In such scenarios, communication is divided into two phases: the caching phase and
the delivery phase. The caching phase occurs during the off-peak periods of the network.
In this phase, fragments of popular contents are stored in users’ cache memories or
on nearby servers. The delivery phase occurs during the peak-traffic periods of the
network. In this phase, the servers convey to the users their demanded files. The
technical challenge in these networks is that in the caching phase the servers do not
know exactly which files the receivers will demand during the delivery phase. They are
thus obliged to store information about all possibly requested files, namely the library,
in the receivers’ cache memories.

First attempts to investigate the caching problem focused either on optimizing the
cache content for a fixed delivery method or on optimizing the delivery phase for a fixed
cache content and fixed users’ demands. In the former case, the focus was directed
towards studying the statistics of the users’ demands in order to identify the most
popular files [92, 93, 94]; whereas in the latter case, the delivery problem was studied
with the aim of reducing the transmission rate while ensuring users’ capacity to decode
their requested files [95, 96]. In both cases, a caching gain is obtained since users can
be locally served whenever they demand files present in their cache memories. These
caching techniques were later referred to as uncoded caching schemes and their gain was
called the local caching gain.

Afterwards, Maddah-Ali and Niesen showed in their seminal work [10] that the de-
livery (high-traffic) communication can benefit from the cache memories more than the
obvious local caching gain arising from locally retrieving parts of the requested files.
They assumed that the delivery phase takes place over an error-free broadcast channel
(BC) and that all the receivers have equal cache sizes. The additional gain, termed global
caching gain, is obtained through carefully designing the cached contents and applying
a new coded caching scheme where the transmitter can simultaneously serve multiple

Sarah Kamel 17



CHAPTER 1. SECURITY IN COMMUNICATION SYSTEMS

receivers.

Saeedi, Timo, and Wigger showed in [97, 9] that further global caching gain can be
achieved by means of their new piggyback coding scheme, when the delivery phase is
modeled as a packet-erasure BC and different receivers have different channel strengths.
Piggyback coding is a joint cache-channel coding scheme where the encoder and the
decoders simultaneously exploit the cache contents and the channel statistics. This is in
contrast to separate cache-channel coding as in [10] where the cache encoder/decoders
depend only on the cache content and the channel encoder/decoders depend only on the
receivers’ channel statistics, and thus are designed separately.

A different line of research has addressed security issues in cache-aided BCs [89,
90]. In [89], an external eavesdropper is not allowed to learn any information about
the messages. More precisely, a joint secrecy constraint, where the eavesdropper is
not allowed to learn anything about the entire library, is considered. A noiseless BC
for all legitimate receivers as well as for the eavesdropper is studied. Moreover, it is
assumed that all legitimate receivers have cache memories of equal size, while the external
eavesdropper does not have access to these caches. In the caching phase, random keys
are stored in addition to the cached messages in users’ cache memories. In the delivery
phase, the stored keys are used to secure the transmitted messages in the form of a
one-time pad scheme.

In [90], the security between users themselves without an external eavesdropper is
studied. As in [89], it is assumed that delivery communication takes place over a noise-
free BC, and that all legitimate receivers have the same cache memory size. The same
joint secrecy constraint is imposed, however in this scheme, any legitimate receiver also
acts as an eavesdropper. It is thus not allowed to learn anything about the files requested
by the other receivers from its cache content or the broadcasted message. Therefore,
uncoded fragments of the messages cannot be stored in users’ caches and it is proposed
to cache random keys and combinations of the messages XORed with random keys. In
the delivery phase, messages (or combination of messages) XORed with some random
keys are transmitted in a way that each message is decoded only by its intended receiver.

Moreover, security in device to device cache-aided networks was studied in [91] where
the transmission between the users is secured from an external eavesdropper. The prob-
lem of secure caching using maximum distance separable (MDS) codes at the wireless
edge in heterogeneous networks was also addressed in [98, 99].

All of the previously described works assume a separate cache-channel coding ap-
proach as in [10], and focus only on the design of the cache encoder and decoders while
considering that the BC is a noise-free pipe from the transmitter to all receivers. How-
ever, this approach was shown in [97, 9] to be highly sub-optimal when there is no secrecy
constraint. In this thesis, we investigate security in cache-aided networks from physical
layer security perspective in Chapters 3 and 4.
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1.3 Conclusion

In this chapter, we have introduced two important aspects of communications security,
namely post-quantum cryptography and physical layer security, that will help to secure
future networks. We have reviewed the state of the art of these two domains. This
analysis have led us to identify a promising post-quantum cryptography solution, which
is GGH cryptosystem. However, this cryptosystem suffers from drawbacks preventing
its practical use. In the Chapter 2, we propose to improve GGH cryptosystem in a way
to eliminate its disadvantages.

Regarding physical layer security, our state of the art analysis highlighted the need to
study security in cache-aided networks by jointly considering the communication channel
and the cache design in order to optimize the secure transmission rate. In Chapters 3
and 4, we investigate communication in cache-aided networks under individual and joint
secrecy constraints, respectively.
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Chapter 2

GLD Lattice-Based Cryptosystem

Inspired by LDPC and MDPC code-based cryptography, we investigate in this chapter
the use of generalized low density lattices in the GGH cryptosystem. GLD lattices caught
our attention because of their low complexity lattice generation and decoding which is
a major factor in defining the practicality of cryptography systems and a weak point
in the previous GGH schemes. Our main goal is to reduce the complexity of the GGH
cryptosystem making it a candidate to replace the traditional public-key encryption
schemes while verifying that this reduction in complexity does not affect the security of
the scheme.

In the sequel, we start by reviewing some existing versions of GGH systems related
to our work. Then, we introduce GLD lattices and describe our GLD lattice-based
cryptosystem. Finally, we analyze the security and complexity of the proposed scheme
and provide experimental results.

2.1 Original GGH scheme

The Goldreich-Goldwasser-Halevi cryptosystem stemmed from the lattice closest vector
problem and was proposed originally in [1]. The authors took advantage of the fact that
it is easy to generate a random vector close to a lattice point; however, it is hard to find
the lattice point which is the closest to this random vector. This is the main idea on
which is based the GGH trapdoor function.

Lattice-based GGH scheme uses also the lattice properties of having an infinite num-
ber of bases and generating easily a lattice point using any basis of the lattice. However,
after adding a noise to the lattice point and obtaining a “close-to-lattice” point, only a
near orthogonal basis can be used to recover the initial lattice point. Thus, the GGH
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private key is chosen as a good orthogonal basis allowing simple recovery of the en-
crypted message. For the public key, a bad non-orthogonal basis is chosen rendering the
decryption by any attacker nearly impossible. The badness of the basis is measured by
its orthogonality defect, defined in (1.7).

In fact, in the original GGH cryptosystem, the private key R, which is a good basis
of an n-dimensional random lattice Λ, is an n × n non-singular integer matrix defined
by

R =
√
nI +Q, (2.1)

where I is the identity matrix and Q is a random matrix with elements uniformly chosen
from the set {−4, . . . , 4}. The public key B is a bad basis of the same lattice Λ, hence, it is
also an n×n integer matrix. B is generated by transforming the good basis of the lattice
into a bad one. It can be obtained by applying some elementary linear combinations
on the basis vectors of the private key R. In order to encrypt a message m ∈ Zn, m
is multiplied by the public basis B generating a lattice point x. Then, x is secured by
adding an n-dimensional error vector e chosen uniformly from the set {−A,A}n. The
ciphertext c is given by

c = mB + e

= x + e.
(2.2)

To decrypt the ciphertext c, it is first multiplied by the inverse of the private basis
R−1 since it is the good basis capable of canceling the error vector. Once the noise is
removed, the result is multiplied by R and then by the inverse of the public basis used
for encryption to recover the message m as

m = bcR−1eRB−1. (2.3)

The value of A was defined by studying the decryption errors at the legitimate
receiver. Indeed, a decryption error occurs if beR−1e 6= 0̄. The authors in [1] considered
two possible noise definitions. The first one allows zero error probability by taking
A < 1/(2ρ) where ρ is the maximal L1 norm of the columns of R−1. In the second one, a
threshold on the error probability is fixed and the maximal A is computed with respect
to this threshold. The second method relaxes the constraint on the error probability
yielding a higher A value in order to have better security.

Advantages: The most appealing property in the GGH scheme is its low complexity
encryption and decryption procedures in comparison with other cryptographic systems,
for instance RSA and ElGamal encryption schemes. Indeed, its encryption time increases
linearly with the key size. This makes the GGH lattice-based scheme interesting and
deserving further studies.

Disadvantages: The major flaw in this scheme is the particular form of the noise
which makes the system vulnerable and hence, easily breakable by the embedding attack
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[2]. Indeed, the elements of the noise vector e are chosen from two exact values ±A.
Nguyen showed in [2] that for this noise distribution, the CVP is reduced to a simpler
CVP instance for which the noise vector is much smaller e′ ∈ {−1/2, 1/2}. By exploiting
this weakness, he was able to break four of the five challenges published by the GGH
authors from dimension n = 200 until n = 350. The only challenge that remained
unbroken was for dimension n = 400, where the key size is 2 MB. Nguyen concluded
that GGH requires working in high lattice dimensions to be secure. However, for high
dimensions, the GGH has a huge public key size. Therefore, major improvements were
needed on the original GGH cryptosystem in order for it to be considered as a serious
alternative to the existing public-key cryptosystems.

2.2 GGH improvements

Despite Nguyen’s conclusion on the practicality of the GGH system, its fast encryption
procedure kept it an interesting scheme. Many GGH-based improvements were proposed
in order to overcome the original GGH drawbacks. These works, on one side, focused
on reducing the public key size resulting in new designs of public lattice bases. On the
other side, they aimed at improving GGH security by proposing new methods of noise
generation.

2.2.1 Micciancio’s scheme

In [7], Micciancio applied some changes to both aspects, public key generation and noise
vector choice. He considered two encoding methods. In the first method, the message
is encoded in the lattice point and the noise vector is chosen uniformly from an interval
[−A,A] whereas in the second one, the lattice point is chosen at random and the message
is embedded in the error vector. Since Nguyen’s embedding attack relies on the fact that
the noise entries have all the same absolute value, the uniform noise provides the GGH
scheme with the necessary robustness against this attack. Note that the first method is
analog to the McEliece cryptosystem and the second one is analog to the Niederreiter
system which is a variant of McEliece.

For the public key, Micciancio proposed to use the HNF lattice basis. He proved that
this HNF basis reduces the public key size while guaranteeing, at least, the same security
level as the original GGH [7]. Indeed, from a complexity perspective, he showed that
the lower triangular form of the HNF matrix induces a reduction in the key storage size
from O(n3log2(n)) to O(n2log2(n)). And from a security perspective, since for a lattice
Λ there exists only one basis in the form of an HNF matrix, the HNF public key does
not give any information about the private key from which it was generated. Moreover,
HNF is a bad basis with high orthogonality defect. Thus, using the HNF for the public
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key can only improve the security of the scheme.

Advantages: The decrease in the public key size induced by the HNF matrix makes
the GGH system more likely to be used in practice. Moreover, the uniform noise allows
to overcome the GGH weakness to the embedding attack.

Disadvantages: The security and efficiency of Micciancio’s cryptosystem were ana-
lyzed by Ludwig in [8]. He highlighted the main disadvantages of Micciancio’s system.
On one hand, the decryption is slow and suffers from instability since it employs Babai’s
nearest plane algorithm. On the other hand, the public key generation process has
high running time for the proposed lattice dimensions due to the non-existence of low-
complexity algorithms for computing the HNF matrix.

Moreover, in Ludwig’s results [8], the public keys turned out to have larger size
than in Micciancio’s experiments. Ludwig also found that the minimal dimension for
which the system is secure in practice is around 800, whereas Micciancio presumed this
dimension to be 500. All these findings [8] led to conclude that Micciancio’s cryptosystem
is still far from being practical.

2.2.2 LDLC scheme

Recently, Hooshmand and Aref suggested to replace random lattices by latin square low
density lattice codes (LDLC) [3]. They chose these lattices because they can be decoded
by means of an iterative low complexity decoding algorithm. To generate their private
key, they start by defining a set of generating sequence

H = {h1, h2, . . . , hd}, (2.4)

with d rational elements, such that 1 ≥ h1 ≥ h2 ≥ . . . ≥ hd ≥ 0. d is the degree of
the parity check matrix H of the lattice, i.e. the number of non-zero elements in each
column and each row of H. Then, they generate a set of d indices

P = {p1, p2, . . . , pd}, (2.5)

such that 1 ≤ pi ≤ n,∀i ∈ {1, . . . , d}. H and P are used to generate the n × n parity
check matrix H of the used LDLC and they are chosen in a way to obtain |det(H) = 1|.
The private generator matrix is then computed as G = H−1. The public key G′ is
defined as the HNF of the LDLC generator matrix G following Micciancio’s proposition.
The encryption procedure of the LDLC scheme is similar to the previous schemes except
for the choice of the error vector e. It follows a Gaussian distribution with zero mean
and variance σ2 upper bounded by the Poltyrev limit σ2 < 1/(2πe) [4].

Advantages: Introducing low density lattices in GGH scheme helps fixing the cipher-
text decryption problem. Indeed, the decoding of random lattices uses Babai’s algo-
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rithms which are sub-optimal lattice decoding algorithms. On the contrary, iterative
decoding algorithms offer faster and close to optimal decoding.

Disadvantages: The main problem of this system is that the used LDLCs are ra-
tional lattices, which induces many drawbacks. First, the public key size is still very
large because rational HNF matrices are employed. Second, the complexity of the HNF
algorithm is further increased in this scheme. This is due to the fact that HNF cannot
be applied on rational numbers and has to be applied on integer numbers. Thus, an ad-
ditional procedure is applied before and after the HNF algorithm to transform rational
numbers into integers and transforms them back at the end.

2.2.3 Other GGH improvements

Based on Micciancio’s system, [100] focused on proposing a larger noise vector e to obtain
a harder CVP problem. In fact, the original GGH defines e such that its product by the
inverse of the private key generates a null vector, i.e. beR−1e = 0. In [100], the error
vector e has (n− k) coordinates chosen from a set of integers I1 = {−s, . . . ,−1, 1, . . . s}
and the remaining k from a second set of integers I2 = {−h, h} with h > s. In this way,
the product beR−1e results in (n− k) zero elements and k elements with value {±1}.

beR−1e = (v1, . . . , vn), (2.6)

where

vi =

{
0 for (n− k) values of i,

±1 for k values of i.
(2.7)

It was stated in [100] that this larger error vector fixes the GGH flaws showed by
Nguyen [2]. However, it was shown in [101] that the GGH version of [100] has the
same behavior as the original GGH and its security can be improved by optimizing the
parameters s and h defining the sets I1 and I2. The complexity and the key size of this
GGH version [101] were studied in [102] and the use of polynomial rings was proposed.

Another independent attempt to reduce the public-key size of the GGH scheme using
polynomial representations was proposed in [103] but then broken in [104].

2.3 GLD lattice-based cryptosystem

Motivated by the benefits of low density lattices and to overcome the drawbacks of the
LDLC-based scheme, we propose in the sequel to use the generalized low density lattices
to design an improved version of GGH cryptosystem. In this section, we start first by
introducing the construction of GLD lattices. We then present our GLD lattice-based
cryptosystem.
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2.3.1 GLD lattices

GLD lattices were proposed by Boutros et al. in [5]. They are integer lattices in Zn
and have sparse parity-check matrices. These properties enable low complexity iterative
decoding, hence allowing the codes to be used in dimensions up to 1 million. It was
shown that these lattices achieve asymptotically Poltyrev limit [4].

GLD lattices can be generated using construction A from linear GLD codes
CGLD[n, k] with length n and dimension k as follows

Λ = CGLD + pZn, (2.8)

where n is the lattice dimension and p is a prime number.

This construction considers an elementary small linear code C0[n0, k0] defined over
the finite field Fp. Denote by HC0 the parity-check matrix of C0. A second code C1 is
generated as the direct sum of L copies of C0

C1 = C⊕L0 . (2.9)

The parity-check matrix of C1 is given by

HC1 =


HC0 0 . . . 0

0 HC0 . . . 0
...

...
. . .

...
0 0 . . . HC0

 . (2.10)

Now, let π1 = id and π2, . . . , πJ be J permutations of {1, 2, . . . , n}. A GLD code
CGLD[n, k] is defined as

CGLD =
J⋂
j=1

πj(C1) =
J⋂
j=1

πj(C
⊕L
0 ), (2.11)

where πj(x1, x2, . . . , xn) = (xπj(1), xπj(2), . . . , xπj(n)).

The matrix HC of the GLD code is a non-square matrix obtained as

HC =


HC1

π2(HC1)
...

πJ(HC1)

 . (2.12)

Note that HC has n− k = JL(n0 − k0) rows and n = Ln0 columns.
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In order to define the generator matrix GC of the GLD code, the systematic form
of the parity-check matrix HC is computed using the Gaussian elimination algorithm.
HC,syst has the following form

HC,syst = [ I | −Bt ]. (2.13)

Then, the k × n generator matrix of the code is defined by

GC = [ B | I ], (2.14)

Based on construction A (2.8), the generator matrix of Λ is given by

GΛ =

[
pI 0
B I

]
. (2.15)

B is a dense matrix whose elements belong to the finite field Fp. We can see that GΛ

is a lower triangular matrix. Its column elements are modulo the diagonal elements.
Therefore, GΛ is in Hermite normal form.

Remark 2.1. For our experiments, we fix the number of permutations to J = 2. How-
ever, a bigger value can be used with a slight increase in the system’s complexity.

2.3.2 Proposed public-key scheme

Alice m ⊗GΛ

x ⊕e

Encryption

c
GLD decoder

HC

Decryption

m̂ Bob

Figure 2.1: GLD-based GGH cryptosystem

Our GLD-based GGH cryptosystem, depicted in Figure 2.1, is described as follows:

• The private key is the parity-check matrix HC of a GLD code. The non-zero
elements of H are chosen from the field Fp \ {0} where p is a prime number.

Note that, to store the private key, it is enough to save the parity-check matrix H0

of the elementary code and the (J − 1) random permutations π2, . . . , πJ .

• The public key is the generator matrix GΛ of the GLD lattice which is an HNF
matrix.
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• To encrypt a message m ∈ Zn, m is multiplied by the public key GΛ and an error
vector e is added to obtain the ciphertext

c = mGΛ + e (2.16)

= x + e.

The noise vector e is a random noise chosen uniformly from an interval [−A,A].

• To decrypt c and recover the message m, the GLD iterative decoding is applied.

2.3.2.1 Choice of the noise interval [−A,A]

In our scheme, we consider the uniform noise proposed by Micciancio since it is enough
to ensure the system’s security. The value of A defines the interval from which the noise
elements are chosen. This value should not exceed the maximal noise variance for which
the iterative decoder succeeds. On the other hand, it should be large enough to create
sufficient ambiguity to prevent the attacker from decrypting the message.

We first start by finding the maximal value A tolerated by the GLD lattices decoder.
It depends on the parameters, n0, k0 and p of the elementary code C0. We describe how
to compute A theoretically and experimentally.

Theoretical definition: The Poltyrev limit of the noise variance expressed as function
of the parameters of the GLD lattices is defined as

σ2
Polt =

vol(Λ)2/n

2πe
=
p

2(n−k)
n

2πe
=
p2(1−R)

2πe
, (2.17)

where R is the rate of the GLD code CGLD.

GLD lattices can be decoded with a negligible decoding error probability if the noise
variance is smaller than the Poltyrev limit. Let b be a real noise value chosen uniformly
from the interval B = [−A,A]. For large n, the variance of the noise b is given by

σ2
b =

A∫
−A

1

2A
b2db =

A2

3
. (2.18)

This variance and thus the noise interval, should satisfy

nσ2
b < nσ2

Polt ⇒ A2 < 3
p2(1−R)

2πe
. (2.19)

Therefore, we choose the noise B = [−A,A] for a certain GLD by taking the maximal
value of A that satisfies (2.19).
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Experimental results: We also determine experimentally the maximum noise interval
tolerated by the iterative decoding for different elementary codes C0 with different n0,
k0 and p. The results of this experimentation are shown in Table 2.1. As we will see
later, these A values are sufficient to ensure the security of our encryption scheme.

Table 2.1: Maximal value A defining the noise interval for lattice dimension n ≈ 1000.

C0 p n A

C0[3, 2] 11 999 1

C0[3, 2] 17 999 2

C0[3, 2] 29 999 3

C0[8, 6] 17 1000 1

C0[8, 6] 53 1000 2

2.3.2.2 Choice of the lattice dimension n

In our scheme, we consider GLD lattices with dimension n ≈ 1000. This choice is
inspired by previous works and based on the security analysis of the proposed GLD
lattice-based GGH cryptosystem that we conducted. In the following sections, we prove
through experimental results that our system is both secure and practical for this di-
mension.

2.4 Security analysis

In this section, the security of our proposed scheme is studied from three perspectives.
First, we investigate the complexity of the exhaustive attack to recover the private key.
Then, we analyze the decoding attacks to decrypt the transmitted ciphertext. Finally,
we discuss the dual code attack to find the private matrix.

2.4.1 Brute-force attack

The most naive attack that can be applied is the brute-force attack. In this attack, the
eavesdropper attempts to find the private key by exhaustively testing all the possibilities.
Hence, the complexity of this attack depends on the number of private keys that are
likely to be used.

In our case, the search space of the private key depends on the number of possible
matrices HC . Recall that HC is generated by the concatenation of HC⊕L0

with (J − 1)
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of its permuted versions. The number of possible versions is n! since they are generated
by permuting the n columns of HC⊕L0

. Therefore, the search space for the private key is

n!× (J − 1). (2.20)

The formula is dominated by n!, which can be approximated using Stirling’s formula
into

n! ∼
√

2πn
(n
e

)n
. (2.21)

Since it is exponential in n, then for n ≥ 1000, the search space becomes huge, making
this attack unfeasible.

2.4.2 Decoding attacks

In the decoding attacks, the eavesdropper aims at decrypting the ciphertext, which is
equivalent to finding the closest lattice vector to this ciphertext. In fact, the GGH system
is essentially a closest vector problem instance which makes the decoding attacks the
most obvious attacks on such cryptosystems. These approaches to attack GGH apply
Babai’s algorithms [6], namely round-off and nearest plane algorithms, resulting in the
well-known round-off attack and nearest plane attack.

The performance of these attacks can be improved by applying bases reduction tech-
niques, typically Lenstra-Lenstra-Lovász (LLL) and Block Korkine-Zolotarev (BKZ),
before running the decoding algorithms.

2.4.2.1 The round-off attack

The round-off attack [6] consists in multiplying the ciphertext c by the inverse of the
public basis G−1

Λ which results in a noisy message as follows:

cG−1
Λ = m + eG−1

Λ . (2.22)

By rounding this result, the message m can be found only if beG−1
Λ e = 0. Thus, the

feasibility of this attack depends mainly on the orthogonality of the public basis GΛ and
the variance of the noise e.

2.4.2.2 The nearest plane attack

The nearest plane attack [6] is an improvement of the round-off attack that uses a better
approximation for the CVP. The idea is to find the nearest lattice point by considering
one dimension after the other. For every basis vector gi, i = 1, . . . , n, the nearest plane
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algorithm finds the closest hyperplane to the ciphertext c. It starts by finding the integer
multiple kn of gn that minimizes the distance to the hyperplane spanned by the basis
vectors {g1, . . . ,gn−1} by projecting c − kngn, kn ∈ Z, onto this (n − 1)-dimensional
hyperplane. Then, the algorithm proceeds recursively until dimension 1. Finally, the
lattice vector is obtained by the sum of all vectors kigi.

Various improvements of the nearest plane attack have been proposed to increase
its success probability. Some applied basis reduction procedures to the remaining basis
vectors at each level of the recursion. Others considered more than one basis vector in
each level of the recursion or examined more than one closest hyperplane.

Note that both Round-off attack and nearest plane attacks can be seen as Zero-
forcing (ZF) and ZF-decision feedback equalizer (ZF-DFE) decoders, respectively. These
decoders are known to be sub-optimal for lattice decoding. Though they have low com-
plexity, they are prone to error propagation that can degrade considerably the perfor-
mance for high dimensions.

2.4.2.3 Lattice reductions

Lattice reduction approaches are applied to generate good basis with short, nearly or-
thogonal vectors. They can reduce the decoding errors and thus improve the decryption.
In high dimensions, these techniques need a huge running time to provide a shorter basis.
Yet, they may fail to produce this basis rendering the decryption unfeasible.

Indeed, the LLL algorithm succeeds to generate a reduced basis for small dimensions.
For high dimensions, BKZ, which is an improved variant of LLL, needs to be used. While
LLL operates on each basis vector alone, BKZ works on blocks of t basis vectors. The
complexity of BKZ algorithm is O(n3tt+o(t) +n4) [8]. For small t, BKZ will not result in
a reduced basis for high dimensions. Increasing t will increase the complexity and cannot
guarantee a good basis. In our scheme, we consider lattices of dimension n ≈ 1000. For
this dimension, t should be very large to increase the probability of obtaining a good
basis making the BKZ reduction algorithm impractical.

2.4.2.4 Discussion and experimental results

The success of the previously described decoding attacks depends on two factors: the
lattice public basis and the noise vector.

a - Public basis: After applying the reduction algorithms, if the resulting basis is
quasi-orthogonal these attacks will be able to decrypt the ciphertext and recover the
message. Conversely, if the reduction fails, the attacks have to be applied on a bad
basis, and thus, the decryption will certainly fail. Therefore, to strengthen the system’s
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security, the public key should be a lattice basis as bad as possible with large dimension
in order to prevent reduction success.

In our scheme, the generator matrix GΛ is in HNF. To evaluate its orthogonality, we
compute the orthogonality defect of GΛ as

OD(GΛ) =

∏n
i=1 ‖gi‖
|det(GΛ)|

, (2.23)

where ‖gi‖ is the Euclidean norm of the i’th row in GΛ. Since GΛ is given by construction
A in (2.15), the first (n− k) rows have norm p and the determinant is det(GΛ) = pn−k,
then

OD(GΛ) =
pn−k

∏n
i=n−k+1 ‖gi‖
pn−k

=
n∏

i=n−k+1

‖gi‖

=

n∏
i=n−k+1

√
1 + ‖bi‖2,

where ‖bi‖ is the Euclidean norm of the i’th row in B.

B is a dense matrix with elements in the finite field Fp. Thus, ‖bi‖2 � 1 ⇒ ‖gi‖ �√
2, yielding an orthogonality defect OD(GΛ) � (

√
2)k � 1, showing hence that GΛ is

a bad basis.

We have carried out some experiments to confirm this result. Table 2.2 presents
the average length of the basis vectors and the orthogonality defect of GΛ in dimension
n ≈ 1000 for different elementary codes C0. These values indicate that for this dimension,
the orthogonality defect ranges approximately from O(10500) to O(101000). Figure 2.2
presents the OD(GΛ) in logarithmic scale as function of the GLD lattice dimension n
for the elementary code C0(8, 6)17. The curves are illustrated for the initial GLD public
basis as well as the reduced bases by LLL and BKZ for several block sizes t. We can
see that OD(GΛ) increases significantly with the dimension. Thus, applying either basis
reduction is not efficient and cannot yield reduced basis. We also notice that increasing
the block size for the BKZ algorithm from t = 20 to t = 40 does not improve the
reduction while it increases considerably its running time.

b - Noise vector: The second factor that can lead to decryption failure is the added
noise vector e. If e is small, the noisy point will not be translated far from the lattice
point, which makes the decoding easier. Many methods were proposed to define the
error vector and improve the security of the original GGH by defeating its attacks.
In [7], Micciancio proposed to use a random noise uniformly chosen from an interval
[−A,A]. In [3], Hooshmand et al. suggested to choose a Gaussian noise N (0, σ2), where
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Table 2.2: Average value of the norm of gi and the orthogonality defect of GΛ for lattice
dimension n ≈ 1000.

C0 p n k ‖gi‖ OD(GΛ)

C0[3, 2] 11 999 333 39.9 O(10531)

C0[3, 2] 17 999 333 63.2 O(10598)

C0[3, 2] 29 999 333 109.8 O(10678)

C0[8, 6] 17 1000 500 116.8 O(101034)

C0[8, 6] 53 1000 500 365.3 O(101281)

C0[16, 12] 17 992 496 145, 6 O(101073)

the variance σ2 is bounded by Poltyrev limit σ2 < 1/(2πe). In [100], a larger noise vector
was generated by selecting its elements from two different sets as described in (2.7).

GLD lattices were first proposed for channel coding and their performance was stud-
ied for a Gaussian channel with noise variance close to the Poltyrev limit. However,
this does not prevent us from using these codes with any other noise distribution. In
our GLD lattice-based scheme, we consider a uniform noise in [−A,A]. As mentioned
in Section 2.3.2.1, A should not exceed the maximal noise value for which the iterative
decoder succeeds. At the same time, it should be large enough to prevent the attacker
from decrypting the message.

The maximal noise values A with the corresponding elementary codes C0 were iden-
tified in Table 2.1. Considering these values, we have run both the round-off and nearest
plane decoding attacks, in dimension n ≈ 1000, in an attempt to decrypt ciphertexts
obtained as c = mGΛ + e for e ∈ [−A,A]. Before running these decoding algorithms,
we have reduced GΛ using LLL and BKZ with different block sizes. For each code C0

of Table 2.1 and its corresponding A, the decryption attempt fails regardless of the
attack scheme and reduction method. We can therefore conclude that these A values
are sufficient to ensure the security of our scheme against previous decoding attacks in
dimension n ≈ 1000.

2.4.3 Dual code attacks

Dual code attacks are dangerous attacks applied on code-based cryptography systems
using low density parity-check (LDPC) codes. These attacks exploit the low density
property of the LDPC parity-check matrix H that corresponds to the generator matrix
of the dual code. The main idea is to search for low weight codewords belonging to the
dual code and recover H. One solution to avoid such attacks consists in increasing the
density of the parity check-matrices. In this case, the resulting codes are called moderate
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Figure 2.2: Public key orthogonality defect w/wo reduction for C0(8, 6)17.

density parity-check (MDPC) codes [105].

Similarly, the robustness of the GLD lattice-based scheme against these attacks de-
pends on the density of the lattice. This parameter can be managed by the selection
of C0. To improve the security of our scheme, the density of the considered lattices
should be increased by taking a code C0 of higher length n0 and working in a larger
finite field Fp. At the same time, this density should not exceed a given value which
enables successful iterative decoding. The codes C0[8, 6]17 and C0[16, 12]17 satisfy this
double requirement.

2.5 Complexity analysis

For the complexity analysis of our scheme, we will examine three key features, namely
the public key size, the public key generation and the decryption and compare them to
previous GGH schemes.

2.5.1 Public key size

Recall that the GLD lattice generator matrix has the following form

GΛ =

[
pI 0
B I

]
.
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We can notice that only part B of GΛ needs to be stored. It is a k× (n−k) matrix with
elements smaller than p by construction. Hence, the space needed to store this matrix
is

k × (n− k)× log2(p) bits. (2.24)

Hence, for a fixed lattice dimension, the key size depends on the elementary code’s
parameters and the finite field over which it is defined. In order to analyze the GLD pub-
lic key complexity, we consider some examples of GLD lattices Λ of dimension n ≈ 1000
and we compute their key size.

As a first example, let Λ be generated from the elementary code C0 of length n0 = 3
and dimension k0 = 2 defined over the field F11. This elementary lattice is given by

Λ0 = [3, 2]11 + 11Z3. (2.25)

Then, the generated GLD lattice Λ is of dimension n = n0L = 3L. The matrix B in this
case has k = 333 rows and n− k = 666 columns. Thus, the necessary space to store B
is 333× 666× log2(11) = 93.7 KBs.

In Table 2.3, we present the key size for other examples of elementary codes.

Table 2.3: Public key size for lattice dimension n ≈ 1000.

C0 p n Key size (KBs)

C0[3, 2] 17 999 110.66

C0[3, 2] 29 999 131.52

C0[8, 6] 17 1000 124.74

C0[8, 6] 53 1000 174.8

C0[16, 12] 17 992 122.75

We can see that for the considered lattice dimension, the key size is always in the
order of 100 KBs. Even for very large p values, the key size does not attain 200 KBs.

For the previously described GGH based schemes, upper bounds were derived on the
key size of the original GGH and Micciancio cryptosystems [7]. Indeed, the size of the
GGH public key is O(n2 log2(det(Λ))) bits since the matrix has n2 elements and they
are bounded by the determinant of the lattice Λ. For the choice of GGH’s private basis
R =

√
nI +Q, described previously in Section 2.1, the determinant can be estimated by

applying Hadamard inequality as

det(Λ) ≤ 2O(n log2(n)) bits, (2.26)

thus, the size of the public key is upper bounded by

O(n3 log2(n)) bits. (2.27)
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In Micciancio’s cryptosystem, the public basis B is in HNF form. So, each column can
be represented using log2(det(Λ)) bits. Hence, the public key has size of

O(n log2(det(Λ))) = O(n2 log2(n)) bits, (2.28)

since the same private key is used as in the GGH system.

In [3], the size of the public key is claimed to be O(n2). However, this estimation
is not justified in their paper. In addition, LDLCs have real generator matrices for the
private and public keys. Thus, their public key size depends on the precision used to
represent the real elements and should be defined accordingly.

The estimations of the public key sizes for the GGH cryptosystem and its improve-
ments are summarized in Table 2.4.

Table 2.4: Public key size estimate for GGH-based cryptosystems.

Cryptosystem Public key size (bits)

GGH O(n3 log2(n))

Micciancio O(n2 log2(n))

LDLC O(n2)

GLD k × (n− k)× log2(p)

Micciancio’s experimental results showed that the public key size in dimension
n = 400 is 2.3 MBs for GGH and 140 KBs for his system [7]. In [8], Ludvig also
computed the public key size of Micciancio’s scheme and found that its size in dimen-
sion n = 800 is 1 MB. In our scheme, the key can be represented in dimension n ≈ 1000
by approximately 100 KBs. Therefore, we can clearly state that the GLD lattice-based
cryptosystem reduces at least by a factor of 10 the size of the public key.

2.5.2 Key generation

In the proposed GLD lattice-based cryptosystem, the public key is the HNF generator
matrix of the GLD lattice. In order to compute this matrix, we apply the Gaussian
elimination algorithm to represent the GLD code’s parity-check matrix in its systematic
form HC,syst. Therefore, the key generation complexity is mainly due to the Gaussian
elimination algorithm. This time complexity is in the order of O(nmω−1) for an m× n
matrix with m ≤ n and ω < 2.38 the exponent of matrix multiplication [106]. In our
case, this reduces to O(n× (n− k)ω−1) < O(n3).

In Micciancio’s system [7], the main problem is the complexity of the HNF algorithm
that generates the public key. In fact, there exist different algorithms for generating HNF
matrices. The most basic algorithm for generating HNF matrices perfoms a polynomial
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number of arithmetic operations but has exponential space complexity due to the ex-
ponential increase of its matrix elements during the execution. Many improvements
were proposed aiming to reduce the space complexity but resulted in increasing the
running time. The most space efficient algorithm was designed in [107] with running
time O(n5 log2(M)) where M is the bound on the matrix entries. Therefore, it can be
concluded that the public key generation in our case is at least O(n2) times faster than
Micciancio’s system.

Moreover, in [3], the LDLC-based cryptosystem used rational lattices. Thus, before
proceeding to HNF, the rational matrix should be transformed into an integer matrix
by multiplying its elements by the common denominator. This process increases the
running time needed to generate the public key. Hence, for the LDLC-based proposition,
generating public key increases the complexity compared to Micciancio’s system, and our
proposed scheme.

In order to compare the key generation running time of our GLD lattice-based scheme
with those of the GGH and Micciancio systems, we experimentally measured the duration
of these operations on an Intel i5 3320M (2.6 GHz) platform. The results are presented in
Figure 2.3 for dimensions smaller than 1000. For n ≈ 1000, Miccianco’s key generation
procedure lasts more than 5 hours and for the GGH system, it is around 10 minutes. On
the contrary, our GLD scheme allows to generate the public key in the order of seconds
as we can see in Table 2.5 for different elementary GLD codes.

Table 2.5: Public key generation running time of the GLD cryptosystem for lattice
dimension n ≈ 1000.

C0 p n Running time (s)

C0[3, 2] 11 999 1.07

C0[3, 2] 17 999 1.17

C0[3, 2] 29 999 1.25

C0[8, 6] 17 1000 7.95

C0[8, 6] 53 1000 8.99

C0[16, 12] 17 992 13.95

2.5.3 Decryption

As mentioned in [108], GLD lattices are suitable for iterative decoding. In fact, the
parity-check matrices HC of the GLD code can be associated with a Tanner graph with
n variable nodes and LJ check nodes. A variable node xj , j = 1, . . . , n, represents a
lattice coordinate and a check node represents one copy of the elementary code C0 or
equivalently the elementary lattice Λ0. An edge connects a variable node xj and a check
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Figure 2.3: Key generation running time for GGH, Micciancio and GLD cryptosystem.

node C0 if the corresponding position in the parity check matrix HC has a non zero
element. Since in our GLD construction all variable nodes have degree J = 2, the graph
can be converted into a simple generalized Tanner graph with L check nodes on the
right and L check nodes on the left each with degree n0, as represented in Figure 2.4.
The total number of edges n = n0L represents the lattice dimension thus, one lattice
coordinate is assigned to one graph edge.

LC0

LC0

LC0

Λ⊕L0

L check nodes

n0

L C0

L C0

L C0

Λ⊕L0

L check nodes

Matching defined by π

...
...

Figure 2.4: Generalized Tanner graph of GLD lattices.

Iterative decoding of GLD lattices is done via message passing along edges of the
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generalized Tanner graph. Messages are computed locally by a check node using a
soft-input soft-output decoder. This soft decoding is made via the forward-backward
algorithm on the syndrome trellis that has p(n0−k0+1) transitions where (n0 − k0 + 1)
is small [109]. For instance, for the codes C0 in Table 2.2, its maximal value is 5.
Then, these messages are sent to the n0 neighboring check nodes. The complexity
of the iterative message passing is linear in the lattice dimension n and is given by
O(n · t · p(n0−k0+1)) where t is the number of iterations.

The LDLCs are also suitable for iterative decoding that is linear in the dimension
n but the constant term multiplying n in O(·) is higher [110]. In fact, in this decoder,
the messages computed and passed by the check nodes are continuous Gaussian prob-
ability distribution functions (pdfs). These real functions are sampled and quantized
into discrete vectors which increases the complexity of the decoding. In addition, the
number of pdfs grows exponentially with the number of iterations. In order to limit
the Gaussians number to M values, other algorithms were proposed in [111, 112]. How-
ever, these algorithms add a new complexity related to the Gaussian mixture reduction
procedure applied at each iteration. Therefore, this decoding procedure results in high
computational complexity and large storage requirements. Choosing a low value of M
can reduce the complexity but at the expense of significant performance degradation.
Unlike LDLC decoding, GLD iterative decoding exchanges a fixed number p of discrete
messages regardless of the number of iterations. Therefore, we can conclude that GLD
iterative decoding is less complex than LDLC decoding.

For Micciancio’s cryptosystem, Babai’s nearest plane algorithm is applied to compute
the closest lattice vector to the noisy ciphertext. This sub-optimal algorithm should be
repeated many times to return the closest lattice point. In order to decrypt correctly
without running the algorithm for a long time, the precision used to represent real
numbers should be high but this induces large storage requirements. It was shown by
simulations that this decryption procedure is very slow in high dimensions [8]. Con-
versely, GLD iterative decoding provides a performance close to the optimal decoding
while keeping the complexity at a very low level.

Table 2.6: Decryption time of the GLD cryptosystem for lattice dimension n ≈ 1000.

C0 p n Decryption time

C0[3, 2] 11 999 17 ms

C0[3, 2] 17 999 0.13 s

C0[3, 2] 29 999 0.4 s

C0[8, 6] 17 1000 2.3 s

C0[8, 6] 53 1000 53 s

By conducting another experiment on the time needed to decrypt one ciphertext, we
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have observed that Micciancio scheme requires 2 minutes for n ≈ 1000. For the GLD
system, this time varies depending on C0 as shown in Table 2.6.

We can deduce that, in addition to offering better performance, the GLD decryption
algorithm is also faster than Micciancio’s decryption algorithm.

2.6 Conclusion

We have proposed a new GGH cryptosystem based on GLD lattices [5]. In this scheme,
the private key is the parity-check matrix HC of the GLD code and the public key
is the lattice generator matrix GΛ which can be obtained by construction A and has a
Hermite normal form. We have shown through analysis and experimental results that our
cryptosystem reduces significantly the complexity compared to previous GGH schemes
while guarantying the same level of security.

Indeed, a large reduction in the key size is induced by the HNF form of the public key
GΛ. The public key in dimension n ≈ 1000 is represented using 100 KBs approximately,
which is one order of magnitude smaller than the public keys of the existing GGH
schemes. In addition, the public key is in HNF form by design; hence, no HNF algorithms
are applied, which reduces the complexity of the key generation phase making it 1300
times faster than Micciancio and LDLC systems. Finally, the iterative decoding of the
GLD lattices offers performance close to the optimal decoding algorithms while operating
at low complexity.
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Chapter 3

Individual Secrecy in Caching
Scenario

In this chapter, we address security in cache-aided communication systems. We consider
a wiretap erasure broadcast channel with one transmitter, K ≥ 2 receivers and one
eavesdropper. We partition the set of receivers into Kw weak receivers and Ks strong
receivers, and assume that only the weak receivers have equal cache memories of size
M. In this communication scenario, the eavesdropper can intercept the transmitted
messages. We require that this transmission be secured under an individual secrecy
constraint, i.e. the eavesdropper cannot learn any information about any of the messages
individually. However, it is allowed to learn, for example, the XOR of two messages.

We propose a new secure coding scheme and a new information-theoretic converse
for the wiretap erasure BC with cache memory at only the weaker receivers. Our secure
coding scheme extends the piggyback coding in [97, 9] to a wiretap scenario. The so
obtained secure piggyback coding is a joint cache-channel coding scheme where the design
of the encoder and decoders simultaneously exploits the cache content and the channel
statistics. Most previous works [10, 89, 90] assume a separate cache-channel architecture
(both under secrecy constraints and in the standard model), and focus only on the design
of the cache encoder and decoders while assuming that the BC is a noise-free pipe from
the transmitter to all receivers. This approach was shown to be highly suboptimal when
there is no secrecy constraint [97, 9]; the same is proved here in the presence of such a
constraint.

For more clarity, we present first our results for the two-user scenario with one weak
receiver and one strong receiver. To study the effect of the secrecy constraint on the
capacity-memory tradeoff, we compare our lower and upper bounds with the bounds
obtained using also a joint cache-channel coding scheme but in the standard scenario
without any secrecy constraint [9]. We also present lower and upper bounds on the secure
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capacity-memory tradeoff when both receivers have cache memories of equal size. We
study the effect of the cache memory assignment on the secure capacity memory-tradeoff.
Moreover, we compare our joint cache-channel coding with the separate cache-channel
scheme. Finally, we extend our results to the scenario with K receivers.

3.1 Problem definition

3.1.1 Channel model

We consider a wiretap broadcast channel with a single transmitter, K receivers and
one eavesdropper, as shown in Figure 3.1. We model this channel by a memoryless
packet-erasure BC with input alphabet

X := {0, 1}F (3.1)

and the same output alphabet at all receivers and the eavesdropper

Y := X ∪∆. (3.2)

Here, F is a fixed positive integer, and an input symbol x ∈ X is an F -bit packet. The
output erasure symbol ∆ indicates the loss of a packet at the receiver. Hence, each
receiver k ∈ K := {1, . . . ,K} observes yk = ∆ with a probability δk ≥ 0, and it observes
yk = x with probability 1 − δk. The marginal transition laws of this BC channel are
described by

P[Yk = yk|X = x] =


1− δk if yk = x
δk if yk = ∆ , ∀ k.
0 otherwise

(3.3)

The K receivers are partitioned into two sets. The first set

Kw := {1, . . . ,Kw} (3.4)

is formed by Kw weak receivers which have bad channels. The second set

Ks := {Kw + 1, . . . ,K} (3.5)

is formed by Ks = K −Kw strong receivers which have good channels.

We assume that the erasure probabilities of the receivers’ channels and the eaves-
dropper are fixed to

δk =


δw if k ∈ Kw
δs if k ∈ Ks
δz if k = Eavesdropper,

(3.6)
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Figure 3.1: Packet-erasure BC with K legitimate receivers and an eavesdropper. The
Kw weaker receivers have cache memories of size M.

and verify

0 ≤ δs ≤ δw ≤ δz ≤ 1. (3.7)

Thus, the eavesdropper has statistically the worst channel and the weak receivers
have worse channels than the strong ones.

Moreover, we consider that every weak receiver has access to a local cache memory
of size nM bits, while the stronger receivers have no cache memory.

3.1.2 Message library and receiver demands

The transmitter can access a library of D > K independent messages

W1, . . . ,WD (3.8)

of rate Rs ≥ 0 each. Let

D := {1, . . . , D}. (3.9)

For d ∈ D, every message Wd is uniformly distributed over the set
{

1, . . . , b2nRsc
}

, where
n is the transmission blocklength.
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Every receiver k ∈ K := {1, . . . ,K} demands exactly one message Wdk from the
library. We denote the demand of receiver k by dk ∈ D, and the demand vector of all
receivers by

d := {d1, . . . , dK} ∈ DK . (3.10)

The communication takes place in two phases: the caching phase where the trans-
mitter sends caching information to be stored in weak receivers’ cache memories and
the delivery phase where the demanded messages Wdk , for k ∈ K, are conveyed to the
receivers.

3.1.3 Caching phase

During the caching phase, the demand vector d is unknown to the transmitter and the
receivers. Thus, the cache content Vi of every weak receiver i ∈ Kw will be a function of
the entire library:

Vi := gi(W1, . . . ,WD), i ∈ Kw (3.11)

for some caching function

gi :
{

1, . . . , b2nRsc
}D → V (3.12)

and cache memory alphabet
V :=

{
1, . . . , b2nMc

}
. (3.13)

Since the caching phase occurs during low-network traffic periods, we assume that
the transmission of the cache content is done via an error-free and erasure-free link.
Thus, each weak receiver i ∈ Kw stores Vi in its cache memory.

3.1.4 Delivery phase

Prior to the delivery phase, the demand vector d is learned by the transmitter and
the legitimate receivers. We can assume that the communication of the demand vector
requires zero communication rate since it takes only K ·

⌈
log(D)

⌉
bits to describe d.

Based on the demand vector, the transmitter sends

Xn := fd(W1, . . . ,WD), (3.14)

for some function
fd :

{
1, . . . , b2nRsc

}D → X n. (3.15)

All the receivers attempt to decode their demanded messages based on the observed
outputs Y n

k , k ∈ K. Every weak receiver i ∈ Kw uses its observed vector Y n
i and its
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cache content Vi to decode

Ŵi := ϕi,d(Y n
i , Vi), i ∈ Kw (3.16)

for some function
ϕi,d : Yn × V →

{
1, . . . , b2nRsc

}
. (3.17)

Every strong receiver j ∈ Ks uses its observed vector Y n
j to decode

Ŵj := ϕj,d(Y n
j ), j ∈ Ks (3.18)

for some function
ϕj,d : Yn →

{
1, . . . , b2nRsc

}
. (3.19)

3.1.5 Secure capacity-memory tradeoff

A decoding error occurs whenever Ŵk 6= Wdk , for k ∈ K. We consider the worst-case
probability of error over all feasible demand vectors

PWorst
e := max

d∈DK
P
[ K⋃
k=1

{
Ŵk 6= Wdk

}]
. (3.20)

We aim to secure the communication over the BC channel from the eavesdropper
and we consider in this chapter the individual secrecy constraints defined as follows:

Definition 3.1. The communication is considered secure under an individual secrecy
constraint if the eavesdropper’s channel outputs Zn during the delivery phase provide
no information about any of the demanded messages individually:

lim
n→∞

1

n
I(Wd1 ;Zn) < ε,

lim
n→∞

1

n
I(Wd2 ;Zn) < ε,

...

lim
n→∞

1

n
I(Wdk ;Zn) < ε.

(3.21)

Definition 3.2. A rate-memory pair (Rs,M) is securely achievable if for every ε > 0 and
sufficiently large blocklength n, there exist caching, encoding, and decoding functions as
in (3.12), (3.15), (3.17) and (3.19) so that

PWorst
e ≤ ε, (3.22)

and
1

n
I(Wdk ;Zn) < ε, ∀k ∈ K. (3.23)
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Therefore, we define the secure capacity-memory tradeoff as follows.

Definition 3.3. For a cache memory size M, the secure capacity-memory tradeoff
Cs(M) is the supremum of all rates Rs so that the pair (Rs,M) is securely achiev-
able:

Cs(M) := sup
{
Rs : (Rs,M) securely achievable

}
. (3.24)

This secure capacity-memory tradeoff Cs(M) is unknown even for the case when
there is no cache, i.e. when M = 0. We delimit Cs(M) by computing lower and upper
bounds on its values.

3.2 Secure joint cache-channel coding scheme under one-
sided cache assignment for the two-user scenario

In this section, we consider the wiretap BC channel with only one weak receiver and
one strong receiver. The weak receiver is provided with a cache memory of sizeM. The
scenario is illustrated in Figure 3.2. We propose a secure joint cache-channel coding
scheme and compute the lower bound on the secure capacity-memory tradeoff Cs(M)
for the two-receiver scenario under one-sided cache assignment. During the delivery
phase, our joint cache-channel coding is based on piggyback coding [9]. We will see that
this coding increases the transmission rate by piggybacking parts of the strong receiver
message on the message intended for the weak receiver.

Library

W1,W2, . . . ,WD

TX

Xn

Packet-Erasure Broadcast Channel

Y n
1 Y n

2 Zn

RX1 RX2 Eavesdropper

Ŵ1 Ŵ2

M

Figure 3.2: Packet-erasure BC with two legitimate receivers and an eavesdropper. Re-
ceiver 1 has cache memory of size M.
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The lower bound on the secure capacity-memory tradeoff Cs(M) is stated in the
following theorem:

Theorem 3.1 (Lower Bound on Cs(M)). A rate-memory pair (Rs,M) is securely
achievable over the two-user wiretap erasure BC with cache memory M only at the
weak receiver using a joint cache-channel coding scheme, if it satisfies the following six
conditions:

Rs ≤ (δz − δ2)F, (3.25a)

Rs ≤
(1− δ2)(δz − δ2)

1 + δz − 2δ2
F +

1− δ2

1 + δz − 2δ2

M
D
, (3.25b)

Rs ≤
(1− δ1)(δz − δ2)

1− δ1 + δz − δ2
F +

M
D
, (3.25c)

Rs ≤
(δz − δ1)(δz − δ2)

2δz − δ1 − δ2
F +

D(δz − δ2) + (δz − δ1)

2δz − δ1 − δ2

M
D
, (3.25d)

Rs ≤
δz − δ2

2
F +

D

2

M
D
, (3.25e)

Rs ≤
D

D + 1
(δz − δ2)F +

D

D + 1

M
D
. (3.25f)

Thus, any Rs satisfying (3.25) forms a lower bound on Cs(M).

Proof. We derive the proof of this theorem in the next subsections by describing the
joint cache-channel coding that can achieve this lower bound.

Remark 3.1. The scenario which is of most interest to us is when receiver 2 is sufficiently
stronger than receiver 1. In this case, constraints (3.25e) and (3.25f) are not active and
the lower bound is defined only by (3.25a)–(3.25d).

3.2.1 Message splitting

For each d ∈ D, split the message Wd into two sub-messages, such that

Wd =
[
W

(0)
d ,W

(1)
d

]
, (3.26)

with rates R(0) and R(1), respectively. The total rate of Wd is

Rs = R(0) +R(1). (3.27)

If R(0) > (D − 2)R(1), divide W
(0)
d into two further sub-messages, such that

W
(0)
d =

[
W

(0,1)
d ,W

(0,2)
d

]
, (3.28)

with rates (D − 2)R(1) and R(0) − (D − 2)R(1), respectively. Otherwise, W
(0,1)
d = W

(0)
d

has rate R(0) and W
(0,2)
d has zero rate.
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3.2.2 Codebook generation

Generate two codebooks that will be used later to securely encode the messages before
their transmission. The first one is a piggyback codebook and the second one is a regular
wiretap codebook.

Generate the first codebook C1 with

Γ1 := b2nR(0)c · b2nR(1)c · b2nR′c (3.29)

codewords of length αn,

C1 :=
{
X

(αn)
1 (l1)

}Γ1

l1=1
. (3.30)

by drawing each entry of each codeword at random according to a Bernoulli-1/2 distri-
bution independently of all other entries.

The codebook C1 is partitioned into b2nR(0)c · b2nR(1)c subcodebooks (bins) each with

b2nR′c codewords. The subcodebooks are arranged into an array with b2nR(0)c rows and

b2nR(1)c columns, as depicted in Figure 3.3 where each square represents a subcodebook.
The subcodebook in row w̃1 and column w̃2 is denoted C1(w̃1, w̃2).

W̃1

1

2

...

b2nR(0)c

W̃2

1 2 . . . b2nR(1)c
b2nR′c

Figure 3.3: Secure piggyback codebook C1 where each dot symbolizes a codeword. Sub-
codebooks (bins) C1(w̃1, w̃2) are depicted by the squares, each containing b2nR′c code-
words.

Then, generate the second codebook C2 with

Γ2 := b2nR(1)c · b2nR′′c (3.31)

codewords of length (1− α)n,

C2 :=
{
X

((1−α)n)
2 (l2)

}Γ2

l2=1
, (3.32)
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1 2 . . . b2nR(0)c
W̃b2nR′′c

Figure 3.4: Wiretap codebook C2 where each dot symbolizes a codeword. Subcodebooks
C2(w̃) are depicted by the squares, each containing b2nR′′c codewords.

C2 is also generated by drawing each entry of each codeword at random according to a
Bernoulli-1/2 distribution independently of all the other entries.

We assume that both codebooks C1 and C2 are revealed to the transmitter, both
receivers and the eavesdropper.

3.2.3 Caching phase

For each d ∈ D, store W
(1)
d in the cache memory of receiver 1. Thus, the cache content

V1 of receiver 1 is

V1 =
{
W

(1)
1 ,W

(1)
2 , . . . ,W

(1)
D

}
. (3.33)

This is feasible whenever the cache memory size of receiver 1 is larger than the size of

the D sub-messages W
(1)
d :

R(1) ≤ M
D
. (3.34)

3.2.4 Delivery phase

The delivery phase is divided into two periods of lengths αn and (1 − α)n, for some
α ∈ [0, 1].

During the first period, the transmitter conveys message W
(0)
d1

to receiver 1 and

message W
(1)
d2

to receiver 2.

It randomly chooses a set of ι indices such that{
j1, j2, . . . , jι

}
∈
(
D \ {d1, d2}

)
, (3.35)

Those indices serve to select the messages from receiver 1’s cache that will be XORed with

the transmitted message W
(0)
d1

. Thus, if R(0) ≤ R(1), ι = 1 and only a part of the chosen

message W
(1)
djι

is used in the XOR operation. Otherwise, if R(1) < R(0) ≤ (D − 2)R(1),

then it needs ι = dR(0)/R(1)e.
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Now, if the messages in the cache are not enough to cover the whole message W
(0)
d1

,

i.e. if R(0) > (D−2)R(1), it XORs only the part W
(0,1)
d1

of W
(0)
d1

with the (D−2) messages

from the cache memory and it secures the remaining part W
(0,2)
d1

by the binning. Thus,
ι is defined by

ι := max

{
1,min

{⌈
R(0)

R(1)

⌉
, (D − 2)

}}
. (3.36)

Afterwards, the transmitter forms

WXOR := W
(0,1)
d1

⊕
[
W

(1)
j1
,W

(1)
j2
, . . . ,W

(1)
jι

]
. (3.37)

It then uses the secure piggyback codebook C1 in Figure 3.3. Specifically, it picks an
index J1 uniformly at random from

[
1 : b2nR′c

]
and transmits the

J1-th codeword of subcodebook C1

(
W̃1, W̃2 = W

(1)
d2

)
(3.38)

where
W̃1 :=

[
WXOR,W

(0,2)
d1

]
. (3.39)

During the second period, the transmitter conveys message W
(0)
d2

to receiver 2 using
the wiretap codebook C2. Specifically, it picks an index J2 uniformly at random from[
1 : b2nR′′c

]
, and transmits the

J2-th codeword of subcodebook C2

(
W̃ = W

(0)
d2

)
. (3.40)

3.2.5 Decoding at receiver 1

Receiver 1 demands the message Wd1 . But since W
(1)
d1

is stored in its cache memory, it

only needs to decode message W
(0)
d1

based on its observed outputs yαn1 in the first phase

and its cache memory V1. To decode W
(0)
d1

, it performs the following steps:

1. It retrieves the message W
(1)
d2

from its cache memory.

2. It forms the column-subcodebook C1(W̃2 = W
(1)
d2

) ∈ C1 that contains all the code-
words that represent the retrieved message:

C1(W
(1)
d2

) :=
{
X

(αn)
1 (l1|W (1)

d2
)
}
l1∈Γ1(W

(1)
d2

)
, (3.41)

where Γ1(W
(1)
d2

) is a subset of Γ1 of cardinality b2nR(0)c · b2nR′c. C1(W
(1)
d2

) cor-

responds to the subcodebook in column W
(1)
d2

of the secure piggyback codebook
depicted in Figure 3.3.
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3. It finds ˆ̃w1 by restricting its attention to this column-subcodebook C1(W
(1)
d2

). It

looks for a unique l1 ∈ Γ1(W
(1)
d2

) so that x
(αn)
1 (l1|W (1)

d2
) is jointly typical with its

observed outputs yαn1 :(
x

(αn)
1 (l1|W (1)

d2
), yαn1

)
∈ T (αn)

ε

(
pX · pY1|X

)
, (3.42)

where pX stands for the Bernoulli-1/2 distribution, pY1|X stands for the channel

law to receiver 1, and T (αn)
ε stands for the typical set [11].

If the desired unique index l1 exists, it finds the bin C1( ˆ̃w1,W
(1)
d2

) containing l1.

Then, the value of ˆ̃w1 is determined as the row index of the C1( ˆ̃w1,W
(1)
d2

).

Otherwise, if the unique index does not exit, receiver 1 declares a decoding error.

4. If ˆ̃w1 is found in the previous step, receiver 1 splits it as follows

ˆ̃w1 =
[
ŵXOR, ŵ

(0,2)
d1

]
. (3.43)

Then, it retrieves messages W
(1)
j1
,W

(1)
j2
, . . . ,W

(1)
jι

from its cache memory and forms

ŵ
(0,1)
d1

= ŵXOR ⊕
[
W

(1)
j1
,W

(1)
j2
, . . . ,W

(1)
jι

]
. (3.44)

It finally retrieves W
(1)
d1

from its cache memory and declares its decoded message

ŵ1 =
[
ŵ

(0,1)
d1

, ŵ
(0,2)
d1

,W
(1)
d1

]
. (3.45)

3.2.6 Decoding at receiver 2

Receiver 2 does not have any cache memory and hence, it decodes both transmission

periods using its observed outputs only. It decodes W
(1)
d2

based on its outputs yαn2 in the

first period, and it decodes W
(0)
d2

based on its outputs y
(1−α)n
2 in the second period. It

proceeds as follows:

1. To decode W
(1)
d2

, it considers the whole codebook C1. It looks for a unique l1 ∈ Γ1

such that x
(αn)
1 (l1) is jointly typical with its observed outputs yαn2 :(

x
(αn)
1 (l1), yαn2

)
∈ T (αn)

ε

(
pX · pY2|X

)
, (3.46)

where pX stands for the Bernoulli-1/2 distribution and pY2|X stands for the channel
law to receiver 2.

If the desired unique index l1 exists, receiver 2 finds the bin C1( ˆ̃w1, ŵ
(1)
d2

) containing

l1 and it determines the value of ŵ
(1)
d2

as the column index of this bin. Otherwise,
receiver 2 declares a decoding error.
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2. To decode W
(0)
d2

, it considers the codebook C2. It looks for a unique l2 ∈ Γ2 such

that x
((1−α)n)
2 (l2) is jointly typical with its observed outputs y

(1−α)n
2 :(

x
((1−α)n)
2 (l2), y

(1−α)n
2

)
∈ T (αn)

ε

(
pX · pY2|X

)
. (3.47)

If the desired unique index l2 exists, receiver 2 finds the bin C2(ŵ
(0)
d2

) containing l2

and it determines the value of ŵ
(0)
d2

as the index of this bin. Otherwise, receiver 2
declares a decoding error.

3. If the decoding of both periods succeeds, receiver 2 declares its decoded message

ŵ2 =
[
ŵ

(0)
d2
, ŵ

(1)
d2

]
. (3.48)

3.2.7 Analysis of the error probability

As seen in Section 3.2.5, receiver 1 decodes only the first transmission period and its

decoding is restricted to the column-subcodebook C1(W
(1)
d2

). Hence, the probability of
error at receiver 1 averaged over the codebooks C1, C2, the channel realizations, and the
messages,

PWorst
e,1 −−−→

n→∞
0,

if the following condition is satisfied:

R(0) +R′ ≤ α(1− δ1)F. (3.49)

Receiver 2 decodes both transmission periods without the help of any cache memory.
Thus, the probability of error at receiver 2, averaged over the codebooks C1, C2, the
channel realizations, and the messages,

PWorst
e,2 −−−→

n→∞
0,

if the following two conditions are satisfied:

Rs +R′ ≤ α(1− δ2)F, (3.50a)

R(0) +R′′ ≤ (1− α)(1− δ2)F. (3.50b)

3.2.8 Analysis of the information leakage

In this section, we analyze the individual secrecy of each transmitted message Wd1 and
Wd2 .
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Secrecy of receiver 1’s message Wd1 :

For the secrecy of the message Wd1 , we derive the mutual information between Wd1

and the received vector Zn at the eavesdropper knowing the codebooks C1 and C2 as
follows

I(Wd1 ;Zn|C1, C2) = I
(
W

(0,1)
d1

,W
(0,2)
d1

,W
(1)
d1

;Zn|C1, C2

)
(a)
= I

(
W

(0)
d1,1

,W
(0,2)
d1

;Zαn|C1

)
= I
(
W

(0,1)
d1

;Zαn|W (0,2)
d1

, C1

)
+ I
(
W

(0,2)
d1

;Zαn|C1

)
, (3.51)

where (a) holds because W
(1)
d1

is in the cache memory of receiver 1 and it is not sent over
the channel. Furthermore,

I(W
(0,1)
d1

;Zαn|W (0,2)
d1

, C1) ≤ I
(
W

(0,1)
d1

;Zαn,WXOR,W
(0,2)
d1
|C1

)
(a)
= I

(
W

(0,1)
d1

;WXOR,W
(0,2)
d1
|C1

)
(b)
= 0, (3.52)

where (a) holds because of the Markov chain W
(0,1)
d1

→ (WXOR,W
(0,2)
d1

) → Zn; and (b)

holds because W
(0,1)
d1

is independent of the pair
(
WXOR,W

(0,2)
d1

)
.

The secrecy of W
(0,2)
d1

is proved as follows

I(W
(0,2)
d1

;Zαn|C1) = H(W
(0,2)
d1
|C1)−H(W

(0,2)
d1
|Zαn, C1)

= n
[
R(0) − (D − 2)R(1)

]
−H(W

(0,2)
d1

, L1|Zαn, C1) +H(L1|Zαn,W (0,2)
d1

, C1)

(a)
= n

[
R(0) − (D − 2)R(1)

]
−H(L1|Zαn, C1) +H(L1|Zαn,W (0,2)

d1
, C1)

= n
[
R(0) − (D − 2)R(1)

]
−H(L1|C1) + I(L1;Zαn|C1) +H(L1|Zαn,W (0,2)

d1
, C1)

= n
[
R(0) − (D − 2)R(1)

]
− n

[
R(0) +R(1) +R′

]
+ I(L1;Zαn|C1)

+H(L1|Zαn,W (0,2)
d1

, C1)

(b)
= −n

[
(D − 1)R(1) +R′

]
+ I(Xαn

1 , L1;Zαn|C1) +H(L1|Zαn,W (0,2)
d1

, C1)

(c)

≤ −n
[
(D − 1)R(1) +R′

]
+ I(Xαn

1 , L1, C1;Zαn) +H(L1|Zαn,W (0,2)
d1

, C1)

(d)

≤ −n
[
(D − 1)R(1) +R′

]
+ I(Xαn

1 ;Zαn) +H(L1|Zαn,W (0,2)
d1

, C1)

(e)

≤ −n
[
(D − 1)R(1) +R′

]
+ αnI(X1;Z) +H(L1|Zαn,W (0,2)

d1
, C1),

= −n
[
(D − 1)R(1) +R′

]
+ αn(1− δz)F +H(L1|Zαn,W (0,2)

d1
, C1), (3.53)
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where (a) holds because the message W
(0,2)
d1

is a function of the index L1; (b) holds
because Xαn

1 is a function of L1 and C1; (c) holds because

I(Xαn
1 , L1;Zαn|C1) = I(Xαn

1 , L1, C1;Zαn)− I(C1;Zαn)

and I(C1;Zαn) ≥ 0; (d) holds because of the Markov chain (L1, C1)→ Xαn
1 → Zαn; and

(e) holds because by construction p(xαn1 , zαn) =
αn∏
i=1

pXZ(x1,i, zi).

In order to satisfy the individual secrecy constraint

lim
n→∞

1

n
I(W

(0,2)
d1

;Zαn|C1) ≤ δ(ε),

for some function δ(ε) −−−→
n→∞

0, we need

lim
n→∞

1

n
H(L1|Zαn,W (0,2)

d1
, C1) ≤ (D − 1)R(1) +R′ − α(1− δz)F + δ(ε). (3.54)

Lemma 3.1. (3.54) holds for some function δ(ε) −−−→
n→∞

0 if

(D − 1)R(1) +R′ ≥ α(1− δz)F. (3.55)

Proof. The proof of Lemma 3.1 is given in the appendix.

Note that the condition in Lemma 3.1 is relevant only in case R(0) > (D − 2)R(1).

Secrecy of receiver 2’s message Wd2 :

Following the same steps, we can prove the secrecy of message Wd2 . We can show
that

lim
n→∞

1

n
I(W

(0)
d2

;Zn|C1, C2)→ 0

whenever
R(0) +R′ ≥ α(1− δz)F, (3.56)

and

lim
n→∞

1

n
I(W

(1)
d2

;Zn|C1, C2)→ 0

whenever
R′′ ≥ (1− α)(1− δz)F. (3.57)

We can state finally that under constraints (3.34), (3.49), (3.50) and (3.55)–(3.57),
when averaged over the random choice of the codebooks C1 and C2, the probabilities of
error tend to zero and the information leakage constraints are satisfied. There must thus
exist at least one choice of C1 and C2 with these properties.
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3.2.9 Securely achievable rate-memory tuples

We consider all the constraints (3.34), (3.49), (3.50) and (3.55)–(3.57) of our scheme and
compute the securely achievable transmission rate Rs as function of the cache memory
size M, as follows:

R(1) ≤ M
D
, (3.58a)

R(0) +R′ ≤ α(1− δ1)F, (3.58b)

Rs +R′ ≤ α(1− δ2)F, (3.58c)

R(0) +R′′ ≤ (1− α)(1− δ2)F, (3.58d)

R(0) +R′ ≥ α(1− δz)F, (3.58e)

(D − 1)R(1) +R′ > α(1− δz)F, (3.58f)

R′′ ≥ (1− α)(1− δz)F. (3.58g)

Since R′ ≥ 0 and R′′ ≥ 0, we apply the Fourier-Motzkin elimination to remove R′

and R′′ and obtain:

R(1) ≤ M
D
, (3.59a)

R(0) ≤ α(1− δ1)F, (3.59b)

Rs ≤ α(1− δ2)F, (3.59c)

1− δz ≤ 1− δ1, (3.59d)

R(0) − (D − 1)R(1) ≤ α(δz − δ1)F, (3.59e)

R(1) ≤ α(δz − δ2)F, (3.59f)

Rs − (D − 1)R(1) ≤ α(δz − δ2)F, (3.59g)

R(0) ≤ (1− α)(1− δ2)F, (3.59h)

R(0) ≤ (1− α)(δz − δ2)F. (3.59i)

Notice that the bound in (3.59i) is tighter than that of (3.59h). Hence, we can
remove condition (3.59h) without any effect on the result. Moreover, constraint (3.59d)
is always valid since by definition δz ≥ δ1. We replace R(0) by Rs − R(1) and remove
R(1) using Fourier-Motzkin elimination since 0 ≤ R(1) ≤ R. We obtain:

Rs ≤ α(1− δ1)F +
M
D
, (3.60a)

Rs ≤ α(1− δ2)F, (3.60b)

Rs ≤ α(δz − δ1)F +D
M
D
, (3.60c)
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Rs ≤ α(δz − δ2)F + (D − 1)
M
D
, (3.60d)

Rs ≤ (1− α)(δz − δ2)F +
M
D
, (3.60e)

Rs ≤ α(1− δ1 + δz − δ2)F, (3.60f)

Rs ≤ α
[
D(δz − δ2) + (δz − δ1)

]
F, (3.60g)

Rs ≤ αD(δz − δ2)F, (3.60h)

Rs ≤ (δz − δ2)F. (3.60i)

Finally, since 0 ≤ α ≤ 1, we apply Fourier-Motzkin elimination one last time to
remove α and we get:

Rs ≤ (1− δ1)F +
M
D
, (3.61a)

Rs ≤ (1− δ2)F, (3.61b)

Rs ≤ (δz − δ1)F +D
M
D
, (3.61c)

Rs ≤ (δz − δ2)F + (D − 1)
M
D
, (3.61d)

Rs ≤ (δz − δ2)F +
M
D
, (3.61e)

Rs ≤ (1− δ1 + δz − δ2)F, (3.61f)

Rs ≤
[
D(δz − δ2) + (δz − δ1)

]
F, (3.61g)

Rs ≤ D(δz − δ2)F, (3.61h)

Rs ≤ (δz − δ2)F, (3.61i)

Rs ≤
(1− δ1)(δz − δ2)

1− δ1 + δz − δ2
F +

M
D
, (3.61j)

Rs ≤
(1− δ2)(δz − δ2)

1 + δz − 2δ2
F +

1− δ2

1 + δz − 2δ2

M
D
, (3.61k)

Rs ≤
(δz − δ1)(δz − δ2)

2δz − δ1 − δ2
F +

D(δz − δ2) + (δz − δ1)

2δz − δ1 − δ2

M
D
, (3.61l)

Rs ≤
δz − δ2

2
F +

D

2

M
D
, (3.61m)

Rs ≤
(δz − δ2)(1− δ1 + δz − δ2)

1− δ1 + 2δz − 2δ2
F +

1− δ1 + δz − δ2

1− δ1 + 2δz − 2δ2

M
D
, (3.61n)

Rs ≤
(δz − δ2)

[
D(δz − δ2) + (δz − δ1)

]
(D + 1)(δz − δ2) + (δz − δ1)

F +
D(δz − δ2) + (δz − δ1)

(D + 1)(δz − δ2) + (δz − δ1)

M
D
, (3.61o)

Rs ≤
D

D + 1

[
(δz − δ2)F +

M
D

]
. (3.61p)

Notice that (3.61i) is tighter than (3.61b), (3.61d), (3.61e), (3.61f),(3.61g) and
(3.61h). Moreover, (3.61p) is tighter than (3.61o); (3.61k) is tighter than (3.61n); (3.61j)
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is tighter than (3.61a); and (3.61l) is tighter than (3.61c). We can remove all the loose
constraints without affecting the result. We conclude that the rate-memory tuples se-
curely achievable by our joint cache-channel coding scheme satisfy the constraints given
in Theorem 3.1.

3.3 Upper bound on the secure capacity-memory trade-
off under one-sided cache assignment for the two-user
scenario

In this section, we provide the upper bound on the secure capacity-memory tradeoff
Cs(M) for the two-receiver channel under one-sided cache assignment. This upper bound
is stated in the following theorem:

Theorem 3.2 (Upper Bound on Cs(M)). The secure capacity-memory tradeoff Cs(M)
of the two-user wiretap erasure BC with cache memory M only at the weaker receiver
satisfies the following three conditions:

Cs(M) ≤ (δz − δ1)F +M, (3.62a)

Cs(M) ≤ (δz − δ2)F, (3.62b)

Cs(M) ≤ (1− δ1)(1− δ2)

2− δ1 − δ2
F +

M
D
. (3.62c)

3.3.1 Proof of the upper bound

Constraint (3.62c) follows from [9, Theorem 9] and by ignoring the secrecy con-
straints (3.21).

Constraint (3.62a) is proved as follows. For each blocklength n, we fix caching,
encoding and decoding functions as in (3.12), (3.15), (3.17) and (3.19), so that both the
probability of worst-case error and the secrecy leakage satisfy:

PWorst
e −−−→

n→∞
0 and

1

n
I(Wdk ;Zn) −−−→

n→∞
0, for k ∈ {1, 2},

where PWorst
e is defined in (3.20).

By Fano’s inequality, there exists a sequence of real numbers {εn}∞n=1 with

εn
n
−−−→
n→∞

0,

so that
H(Wd1 |Y n

1 , V1) ≤ εn
2
. (3.63)
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Thus,

nRs = H(Wd1)

= H(Wd1 |Zn) + I(Wd1 ;Zn)

≤ H(Wd1 |Zn) +
εn
2

≤ I(Wd1 ;Y n
1 , V1)− I(Wd1 ;Zn) +H(Wd1 |Y n

1 , V1) +
εn
2

≤ I(Wd1 ;Y n
1 , V1)− I(Wd1 ;Zn) + εn

≤ I(Wd1 ;Y n
1 |V1)− I(Wd1 ;Zn|V1) + I(Wd1 ;V1|Zn) + εn

(a)
=

n∑
i=1

[
I(Wd1 ;Y1,i|V1, Y

i−1
1 )− I(Wd1 ;Zi|V1, Z

n
i+1)

]
+ nM+ εn

(b)
=

n∑
i=1

[
I(Wd1 ;Y1,i|V1, Y

i−1
1 )− I(Wd1 ;Zi|V1, Z

n
i+1)

]
+ nM+ εn

+
n∑
i=1

[
I(Zni+1;Y1,i|Y i−1

1 , V1,Wd1)− I(Y i−1
1 ;Zi|Zni+1, V1,Wd1)

]
=

n∑
i=1

[
I(Wd1 , Z

n
i+1;Y1,i|V1, Y

i−1
1 )− I(Wd1 , Y

i−1
1 ;Zi|V1, Z

n
i+1)

]
+ nM+ εn

(c)
=

n∑
i=1

[
I(Wd1 , Z

n
i+1;Y1,i|V1, Y

i−1
1 )− I(Wd1 , Y

i−1
1 ;Zi|V1, Z

n
i+1)

]
+ nM+ εn

−
n∑
i=1

[
I(Zni+1;Y1,i|Y i−1

1 , V1)− I(Y i−1
1 ;Zi|Zni+1, V1)

]
=

n∑
i=1

[
I(Wd1 ;Y1,i|V1, Y

i−1
1 , Zni+1)− I(Wd1 ;Zi|V1, Y

i−1
1 , Zni+1)

]
+ nM+ εn

(d)

≤
n∑
i=1

[
I(Wd1 ;Y1,i|V1, Y

i−1
1 , Zni+1)− I(Wd1 ;Zi|V1, Y

i−1
1 , Zni+1)

]
+ nM+ εn

+
n∑
i=1

[
I(V1, Y

i−1
1 , Zni+1;Y1,i)− I(V1, Y

i−1
1 , Zni+1;Zi)

]
=

n∑
i=1

[
I(Wd1 , V1, Y

i−1
1 , Zni+1;Y1,i)− I(Wd1 , V1, Y

i−1
1 , Zni+1;Zi)

]
+ nM+ εn

(e)

≤
n∑
i=1

[
I(Wd1 , V1, Y

i−1
1 , Zni+1;Y1,i)− I(Wd1 , V1, Y

i−1
1 , Zni+1;Zi)

]
+ nM+ εn

+
n∑
i=1

[
I(Xi;Y1,i|Wd1 , V1, Y

i−1
1 , Zni+1)− I(Xi;Zi|Wd1 , V, Y

i−1
1 , Zni+1)

]
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=
n∑
i=1

[
I(Xi,Wd1 , V1, Y

i−1
1 , Zni+1;Y1,i)− I(Xi,Wd1 , V1, Y

i−1
1 , Zni+1;Zi)

]
+ nM+ εn

(f)
=

n∑
i=1

[
I(Xi;Y1,i)− I(Xi;Zi)

]
+ nM+ εn, (3.64)

where (a) holds because I(Wd1 ;V1|Zn) is limited by the entropy of V1 which cannot
exceed nM; (b) and (c) follow by the chain rule of mutual information and by applying
Csiszar’s sum-identity [11, pp. 25]; (d) and (e) hold because the eavesdropper is degraded
with respect to receiver 1; and (f) holds because of the Markov chain

(V1,Wd1 , Y
i−1

1 , Zni+1)→ Xi → (Y1,i, Zi).

Dividing by n, we get

Rs ≤
n∑
i=1

1

n

[
I(Xi;Y1,i)− I(Xi;Zi)

]
+M+

εn
n
. (3.65)

Then, we define a random variable Q uniform over {1, . . . , n} and independent of all the
previously defined random variables. Also, we define the following random variables:

X := XQ, (3.66)

Y1 := Y1,Q, (3.67)

Z := ZQ. (3.68)

We can now rewrite the above inequality as

Rs ≤
n∑
q=1

Pr{Q = q}
[
I(Xq;Y1,q|Q = q)− I(Xq;Zq|Q = q)

]
+M+

εn
n

≤ I(X;Y1|Q)− I(X;Z|Q) +M+
εn
n
. (3.69)

When n→∞, Rs is achievable if there exists a pmf pQX that satisfies (3.69):

Rs ≤ max
pQX

[
I(X;Y1|Q)− I(X;Z|Q)

]
+M

= max
pQX

[
(1− δ1)H(X|Q)− (1− δz)H(X|Q)

]
+M

= max
pQX

[
(δz − δ1)H(X|Q)

]
+M

(a)
= (δz − δ1)F +M, (3.70)

where (a) holds because the maximum is achieved for Q = ∅ and X uniform over
{1, . . . , 2F }.

Constraint (3.62b) can be proved along similar lines, when index 1 is replaced by
index 2; cache content V1 by a constant, and thus, cache memory size M by 0.
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3.4 Lower bound on the secure capacity-memory tradeoff
under symmetric cache assignment for the two-user
scenario

With the purpose of highlighting the interest of one-sided cache assignment, we study, in
this section, the same wiretap BC channel model but with a symmetric cache assignment
among users. We consider one weak receiver and one strong receiver and we assume that
the total cache memory M is split equally among both receivers, irrespective of their
channel statistics. Hence, each receiver gets a cache memory of size M/2, as shown in
Figure 3.5. We compute the lower bound on the securely achievable capacity-memory
tradeoff for this scenario.

Library

W1,W2, . . . ,WD

TX

Xn

Packet-Erasure Broadcast Channel

Y n
1 Y n

2 Zn

RX1 RX2 EavesdropperM
2

M
2

Ŵ1 Ŵ2

Figure 3.5: Packet-erasure BC with two legitimate receivers and an eavesdropper. Both
receivers have equal cache memory of size M2 .

We denote by Cs,Sym(M) the secure capacity-memory tradeoff for symmetric cache
assignment in analogy to the secure capacity-memory tradeoff Cs(M) for one-sided cache
memory given in Definition 3.3. The lower bound on Cs,Sym(M) is stated in the following
proposition:

Proposition 3.1 (Lower Bound on Cs,Sym(M)). A rate-pair (Rs,Sym,M) is securely
achievable over the two-user wiretap erasure BC with symmetric cache assignment M/2
at both receivers, if it satisfies the following three conditions:

Rs,Sym ≤ 2(1− δ1)F, (3.71a)

Rs,Sym ≤ (1− δ1)(1− δ2)

2− δ1 − δ2
F +

3− 2δ1 − δ2

2(2− δ1 − δ2)

M
D
, (3.71b)
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Rs,Sym ≤ (δz − δ1)(δz − δ2)

2δz − δ1 − δ2
F +

[
(δz − δ1)(δz − δ2)(3− 2δ1 − δ2)

2(1− δ1)(1− δ2)(2δz − δ1 − δ2)

+
D(1− δz)

[
(1− δ1)(δz − δ1) + (1− δ2)(δz − δ2)

]
2(1− δ1)(1− δ2)(2δz − δ1 − δ2)

]
M
D
. (3.71c)

Thus, any Rs,Sym satisfying (3.71) forms a lower bound on Cs,Sym(M).

Proof. We derive the proof of this proposition in the next subsections by describing the
coded caching scheme that can achieve this lower bound.

3.4.1 Message splitting

For d ∈ [1 : D], split every message Wd into three sub-messages, such that

Wd =
[
W

(0)
d ,W

(1)
d ,W

(2)
d

]
, (3.72)

with rates R(0), R(1)

2 , and R(1)

2 , respectively. The total rate of Wd is

Rs,Sym = R(0) +R(1). (3.73)

If R(0) > (D − 2)R
(1)

2 , divide W
(0)
d into two further parts, such that

W
(0)
d =

[
W

(0,1)
d ,W

(0,2)
d

]
, (3.74)

with rates (D − 2)R
(1)

2 and R(0) − (D − 2)R
(1)

2 , respectively. Otherwise, W
(0,1)
d = W

(0)
d

has rate R(0) and W
(0,2)
d has zero rate.

3.4.2 Caching phase

Store sub-messages {W (k)
d }

D
d=1 in cache memory Vk, k ∈ {1, 2}. The cache contents of

receivers 1 and 2 are

V1 =
{
W

(1)
1 ,W

(1)
2 , . . . ,W

(1)
D

}
and V2 =

{
W

(2)
1 ,W

(2)
2 , . . . ,W

(2)
D

}
. (3.75)

Therefore, R(1) should satisfy

R(1) ≤ M
D
. (3.76)
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3.4.3 Delivery phase

If R(0) > (D − 2)R
(1)

2 , the delivery phase takes place in five periods, otherwise it takes
only three periods to transmit. For ` = 1, . . . , 5, let α`n be the length of period `, such

that 0 ≤ α` ≤ 1 and
∑5

`=1 α` = 1. If R(0) ≤ (D − 2)R
(1)

2 , α4 and α5 are null.

In the first and second periods, the transmitter randomly chooses a set of

ι := max

{
1,min

{⌈
2R(0)

R(1)

⌉
, (D − 2)

}}
(3.77)

indices {j1, j2, . . . , jι} ∈ (D \ {d1, d2}) and forms

Wk,XOR := W
(0,1)
dk

⊕
[
W

(k)
j1
,W

(k)
j2
, . . . ,W

(k)
jι

]
, k ∈ {1, 2}. (3.78)

It uses an optimal regular (non-wiretap) code to send W1,XOR to receiver 1 in period 1
and W2,XOR to receiver 2 in period 2. For each k ∈ {1, 2}, receiver k first decodes the

XOR message Wk,XOR and, with its cache content, it reconstructs the desired W
(0,1)
dk

.

In period 3, the transmitter sends the common message

WXOR = W
(2)
d1
⊕W (1)

d2
, (3.79)

to both receivers using an optimal regular code. Each receiver k, k ∈ {1, 2}, decodes
the XOR message WXOR and, with its cache content, it reconstructs the desired sub-

message W
(3−k)
dk

.

In period 4, the transmitter sends message W
(0,2)
d1

to receiver 1 and in period 5, it

sends message W
(0,2)
d2

to receiver 2 using optimal wiretap codes.

3.4.4 Analysis of the error probability

According to the defined delivery phase, receiver 1 decodes period 1, 3 and 4 and re-
ceiver 2 decodes period 2, 3 and 5. Hence, their error probabilities averaged over the
codebooks C1, C2, the channel realizations, and the messages,

PWorst
e,1 −−−→

n→∞
0 and PWorst

e,2 −−−→
n→∞

0,

if the following six conditions are satisfied:

min

{
R(0),

D − 2

2
R(1)

}
≤ α1(1− δ1)F, (3.80a)
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min

{
R(0),

D − 2

2
R(1)

}
≤ α2(1− δ2)F, (3.80b)

R(1)

2
≤ α3(1− δ1)F, (3.80c)

R(1)

2
≤ α3(1− δ2)F, (3.80d)

max

{
0, R(0) − D − 2

2
R(1)

}
+R′ ≤ α4(1− δ1)F, (3.80e)

max

{
0, R(0) − D − 2

2
R(1)

}
+R′′ ≤ α5(1− δ2)F. (3.80f)

3.4.5 Analysis of the information leakage

If R(0) ≤ (D−2)R
(1)

2 , all the sent messages are secured by the XOR operation. Otherwise,
phases 4 and 5 are secured by means of a random binning. In the later case, the security
conditions in (3.21) are satisfied whenever

R′ ≥ α4(1− δz)F, (3.81a)

R′′ ≥ α5(1− δz)F. (3.81b)

Combining constraints (3.76), (3.80) and (3.81) yields the securely achievable rate-
memory tuples for the symmetric caching case defined in Proposition 3.1.

3.5 Upper bound on the secure capacity-memory tradeoff
under symmetric cache assignment for the two-user
scenario

The upper bound on the secure capacity-memory tradeoff Cs,Sym(M) under symmetric
cache assignment is stated in the following proposition:

Proposition 3.2 (Upper Bound on Cs,Sym(M)). The secure capacity-memory tradeoff
Cs,Sym(M) of the two-user wiretap erasure BC with symmetric cache memory M/2 at
both receivers satisfies the following three conditions:

Cs,Sym(M) ≤ (δz − δ1)F +
M
2
, (3.82a)

Cs,Sym(M) ≤ (1− δ1)F +
M
2D

, (3.82b)

Cs,Sym(M) ≤ (1− δ1)(1− δ2)

2− δ1 − δ2
F +

M
D
. (3.82c)
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Proof. Constraints (3.82b) and (3.82c) follow from [9, Theorem 9] and by ignoring the
secrecy constraints in (3.21). The proof of constraint (3.82a) is analogous to that of
(3.62a) in Section 3.3.

3.6 Separate cache-channel coding under one-sided cache
assignment for the two-user scenario

In order to emphasize the strength of the joint cache-channel coding approach, we char-
acterize in this section the rates that are securely achievable under the separate cache-
channel coding approach. In the separate scheme, the encoder consists of a cache-encoder
that does not depend on the channel statistics followed by a channel encoder that does
not depend on the cache content. In addition, the decoder consists of a channel decoder
followed by a cache decoder that are subject to similar restrictions, as depicted in Figure
3.6. For comparison purposes, we consider the same scenario as in Section 3.2 where the
total cache memory M is given to the weak receiver 1, while the strong receiver 2 has
no cache memory.

W1

W2...
WD

Cache

Encoder

Channel

Encoder

Xn Packet

Erasure

BC

Y n
1

Y n
2

Zn

Channel
Decoder 1

Channel
Decoder 2

Eve
Decoder

Cache
Decoder 1

M

Ŵ2

Ŵ1

Figure 3.6: Separate cache-channel coding architecture.

The lower bound achieved by the best separate cache-channel coding scheme is stated
in the following proposition:

Proposition 3.3 (Lower Bound on Cs,Sep(M)). A rate-memory pair (Rs,Sep,M) is
securely achievable over the two-user wiretap erasure BC with cache memory M only
at the weak receiver using a separate cache-channel coding scheme, if it satisfies the
following three conditions:

Rs,Sep ≤ (δz − δ2)F, (3.83a)

Rs,Sep ≤ (1− δ1)(δz − δ2)

1 + δz − δ1 − δ2
F +

δz − δ2

1 + δz − δ1 − δ2

M
D
, (3.83b)
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Rs,Sep ≤ (δz − δ1)(δz − δ2)

2δz − δ1 − δ2
F +

(δz − δ2)
[
(D − 1)(1− δz) + (δz − δ1)

]
(1− δ1)(2δz − δ1 − δ2)

M
D
. (3.83c)

Thus, any Rs,Sep satisfying (3.25) forms a lower bound on Cs,Sep(M).

Proof. We derive the proof of this proposition in the next subsections by describing the
separate cache-channel coding that can achieve this lower bound.

3.6.1 Message splitting

As in Section 3.2.1, split every message Wd, d ∈ D, into three sub-messages, such that

Wd =
[
W

(0,1)
d ,W

(0,2)
d ,W

(1)
d

]
, (3.84)

with rates min{R(0), (D − 2)R(1)}, max{0, R(0) − (D − 2)R(1)} and R(1), respectively.
The total rate of Wd is

Rs,Sep = R(0) +R(1). (3.85)

3.6.2 Caching phase

The caching phase is similar to the case of joint cache-channel coding in Section 3.2.3.

Here, we also store {W (1)
d }

D
d=1 in cache memory of receiver 1. Hence, the cache content

V1 is given in (3.33) and R(1) has to satisfy (3.34).

3.6.3 Delivery phase

Let α1, α2 and α3 be three values chosen from the interval [0, 1], such that

α1 + α2 + α3 = 1.

If R(0) > (D−2)R(1), the delivery phase takes place in three periods of lengths α1n, α2n
and α3n respectively. Otherwise, we fix α2 = 0 and it takes two periods to transmit.

In the first period, the transmitter conveys message W
(0,1)
d1

to receiver 1. It randomly

chooses a set of ι indices j1, j2, . . . , jι ∈
(
D \ {d1, d2}

)
, where ι is defined in (3.36). It

uses then these indices to select ι messages from receiver 1’s cache and generate a key

K1 of the same length as message W
(0,1)
d1

as:

K1 =
[
W

(1)
j1
,W

(1)
j2
, . . . ,W

(1)
jι

]
, (3.86)
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Then, it sends W
(0,1)
d1

using a wiretap code with secret key K1 [113],[11, (22.7)].

In the second period, the transmitter conveys W
(0,2)
d1

to receiver 1 using a wiretap
code with random binning of rate R′.

In the third period, it conveys message Wd2 to receiver 2 using a wiretap code with
random binning of rate R′′.

3.6.4 Analysis of the probability of error

Receiver 1 decodes periods 1 and 2 and receiver 2 decodes period 3. Hence, their prob-
abilities of error averaged over the codebooks C1, C2, the channel realizations, and the
messages,

PWorst
e,1 −−−→

n→∞
0 and PWorst

e,2 −−−→
n→∞

0,

if the following three conditions are satisfied:

min

{
R(0),

D − 2

2
R(1)

}
≤ α1(1− δ1)F, (3.87a)

max

{
0, R(0) − D − 2

2
R(1)

}
+R′ ≤ α2(1− δ1)F, (3.87b)

Rs,Sep +R′′ ≤ α3(1− δ2)F. (3.87c)

3.6.5 Analysis of the information leakage

The message W
(0,1)
d1

sent to receiver 1 is secured by the key K1. If R(0) > (D − 2)R(1),

the message W
(0,2)
d1

is secured by means of random binning whenever

R′ ≥ α2(1− δz)F, (3.88)

and the message Wd2 is similarly secured whenever

R′′ ≥ α3(1− δz)F. (3.89)

Combining constraints (3.33) and (3.87)–(3.89) yields the securely achievable rate-
memory tuples using the separate cache-channel coding under asymmetric cache assign-
ment defined in Proposition 3.3.
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3.7 Discussion and numerical results

In the sequel, we discuss our derived bounds in Sections 3.2 and 3.3 and compare them
to the bounds proposed in [9] for the scenario without secrecy. We also compare these
bounds to the ones derived for the symmetric cache assignment and the separate cache
channel coding in Sections 3.4, 3.5 and 3.6, respectively.

We assume that receiver 2 is much stronger than receiver 1.

3.7.1 Impact of the secrecy constraint

In Figures 3.7 and 3.8, we compare the upper and lower bounds on the capacity-memory
tradeoffs Cs(M) and C(M) with and without secrecy constraints.

Based on the lower and upper bounds on Cs(M) defined in Theorems 3.1 and 3.2,
and comparing them with the bound without secrecy [9], we can conclude the following:

• Secure capacity without caching:
When no cache memory exists at the receivers, i.e. at M = 0, the best lower
bound on Cs(M = 0) can be obtained from Theorem 3.1 as

Cs(M = 0) ≥ R0 :=
(δz − δ1)(δz − δ2)

2δz − δ1 − δ2
F. (3.90)

The right-hand side R0 coincides with the secrecy capacity of the two-user wiretap
BC without caching when the individual secrecy constraints in (3.21) are replaced
by the stronger joint secrecy constraint [114]

lim
n→∞

1

n
I(Wd1 ,Wd2 ;Zn) = 0. (3.91)

• Small cache memories regime:
For cache memories M below a given threshold M1,

M≤M1 =
D(1− δz)(δz − δ2)

(D − 1)(1 + δz − δ1 − δ2)
, (3.92)

our joint cache-channel coding scheme achieves rates

Rs = R0 +

[
δz − δ2

2δz − δ1 − δ2
+

δz − δ1

D(2δz − δ1 − δ2)

]
M. (3.93)

For small cache memories, the slope of the secure capacity-memory tradeoff Cs(M)
decreases negligibly with the library size D. In fact, the slope is given by the sum
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of the two terms in brackets in (3.93), where the first term is constant and the
second one decreases with D. This is different in a scenario without secrecy, where
the slope is at most 1

D [9, Corollary 7.1]. Therefore, caching is more useful in a
wiretap-communication scenario than in a standard scenario. The reason is that
the cache memory does not only render the transmission more efficient, but also
more secure (for example by means of a one-time pad) adding thus an additional
gain, namely the secrecy gain, to the case without secrecy.

M
F ·D

Cs(M)
F

, C(M)
F

0

0.8

0.6

0.4

0.2

0.60.40.2

LB on Cs(M)

UB on Cs(M)

LB on C(M)

UB on C(M)

(R1,M1)

(R2,M2)
(R3,M3)

Figure 3.7: Lower and upper bounds on the capacity-memory tradeoffs C(M)/Cs(M)
wo/w secrecy constraint for the two-user wiretap erasure BC with erasure probabilities
δ1 = 0.7, δ2 = 0.2, δz = 0.8, F = 5, and for library size D = 5.

M
F ·D

Cs(M)
F

, C(M)
F
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0.8

0.6

0.4

0.2

0.60.40.2

LB on Cs(M)
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LB on C(M)
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Figure 3.8: Lower and upper bounds on the capacity-memory tradeoffs C(M)/Cs(M)
wo/w secrecy constraint for the two-user wiretap erasure BC with erasure probabilities
δ1 = 0.7, δ2 = 0.2, δz = 0.8, F = 5, and for library size D = 30.

• Intermediate regime:
In this regime, two changes in the slope of the lower bound on Cs(M) occur at
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points (R1,M1) and (R2,M2).

– (R1,M1):
When the cache memory M =M1, the securely achievable rate is

R1 =

[
(1− δ1)(δz − δ2)

1 + δz − δ1 − δ2
+

(1− δz)(δz − δ2)

(D − 1)(1 + δz − δ1 − δ2)

]
F. (3.94)

At this point, the slope of Cs(M) decreases to 1
D . This change in the slope

occurs when the secrecy gain saturates. Recall that, the first transmission
period of our coding scheme is secured partly by the random binning of rate
R′ and partly by the WXOR message which plays the role of a one time-pad
key. When the cache memory is small, it is entirely exploited in our scheme:

message W
(1)
d1

is used to increase the efficiency, message W
(1)
d2

serves for effi-
ciency and security and the rest are XORed with the transmitted message to
improve the security. Thus, the rate of WXOR increases with the size of M,
decreasing with it the rate needed for random binning. At (R1,M1), WXOR

attains the capacity of the eavesdropper’s channel, the secrecy gain saturates
and the increase in cache memory is only used to improve the system’s effi-
ciency. Hence, the slope of the Cs(M) becomes 1

D as in the standard scenario
without secrecy.

– (R2,M2):

(R2,M2) =

(
(1− δ2)(δz − δ2)

1 + δz − δ1 − δ2
F,
D(δz − δ2)(δ1 − δ2)

1 + δz − δ1 − δ2
F

)
. (3.95)

At this point, the total rate of the transmitted messages attains the capacity of
receiver 2’s channel in both transmission periods. Within this rate, messages
conveyed to receiver 1 attain also its channel capacity. After this point, the
increase in the cache memory size is used in the first period to decrease the
rate of messages meant for receiver 1 and replace them with messages for
receiver 2.

• Saturation regime:
At this point, the maximal secure rate is achieved. In fact, since the strong receiver
has no cache memory, the secure capacity-memory tradeoff Cs(M) is limited to
(δz− δ2)F . It can be trivially achieved when the weak receiver can store the entire
library in its cache memory, i.e. when M = DF (δz − δs). In our scheme, this
saturation capacity is achieved for a cache memory smaller than DF (δz − δs), as
we see in the following corollary.

Corollary 3.1. The capacity-memory tradeoff Cs(M) of the two-user wiretap era-
sure BC with cache memory M at the weaker receiver achieves

Cs(M) = (δz − δ2)F, (3.96)
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when

M≥M3 = F ·max

{
D

(δz − δ2)2

1− δ2
, (δz − δ2)

}
. (3.97)

Proof. Under condition (3.97), constraints (3.25b)–(3.25f) are less stringent than
constraint (3.25a).

Note that in the scenario without secrecy, the maximal capacity is (1− δ2)F . This
explains the difference between the bounds on Cs(M) and C(M) that we see in
Figures 3.7 and 3.8.

• We also notice in Figures 3.7 and 3.8 that our lower and upper bounds are very
close for many parameters. However, they seem to coincide only for large cache
memories M≥M3, defined in (3.97).

Note that the observations stated above are not specific only to the considered ex-
ample and are true for all channel parameters.

3.7.2 Impact of cache assignment

In Figures 3.9 and 3.10, we compare the capacity-memory tradeoff for one-sided and
symmetric cache assignments.

Based on the lower and upper bounds on Cs(M) defined in Theorems 3.1 and 3.2,
and comparing them with the bound in Propositions 3.1 and 3.2, we can observe the
following:

• For M = 0, both schemes achieve the same rate R0 in (3.90).

• For small cache memories, our joint cache-channel coding scheme for one-sided
cache assignment improves over the best possible coding scheme for symmetric
cache assignment.

• For large cache memories, when the difference of channel capacities between the
weak and strong receivers is large, one-sided cache assignment is more efficient.
Nevertheless, when δ1 and δ2 are close, the secure capacity-memory tradeoff is
larger under a symmetric cache assignment than under a one-sided cache assign-
ment. The reason is that in the former case the cache contents can be used to
secure the communication to both receivers and thus, the capacity of receiver 2
can attain F (1− δ2).
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Figure 3.9: Lower and upper bounds on the secure capacity-memory tradeoffs
Cs(M)/Cs,Sym(M) for the two-user wiretap erasure BC with erasure probabilities
δ1 = 0.7, δ2 = 0.2, δz = 0.8, F = 5, and library size D = 5.
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Figure 3.10: Lower and upper bounds on the secure capacity-memory tradeoffs
Cs(M)/Cs,Sym(M) for the two-user wiretap erasure BC with erasure probabilities
δ1 = 0.7, δ2 = 0.5, δz = 0.8, F = 5, and library size D = 5.

3.7.3 Impact of joint cache-channel coding

In Figure 3.11, we compare the lower bounds obtained by means of the joint and separate
cache-channel coding schemes. From the lower bounds in Theorem 3.1 and Proposition
3.3, we can observe the following:

• Without cache memory, M = 0, both schemes achieve the same rate R0 in (3.90).

• As in the case without secrecy [9], our joint cache-channel coding scheme achieves
significantly larger rate-memory tradeoff than the equivalent separate cache-
channel coding scheme for all channel parameters and cache memory sizes.
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Figure 3.11: Lower and upper bounds on the secure capacity-memory tradeoffs
Cs(M)/Cs,Sep(M) for the two-user wiretap erasure BC with erasure probabilities
δ1 = 0.7, δ2 = 0.2, δz = 0.8, F = 5, and library size D = 5.

3.8 General lower bound on the secure capacity-memory
tradeoff

In this section, we consider the general scheme, depicted in Figure 3.1, with Kw weak
receivers and Ks strong receivers. Only the weak receivers are provided with cache
memories of size M. For this scheme, we compute the general lower bound on the

secure capacity-memory tradeoff C
(K)
s (M).

Consider the following five rate-memory pairs:

• R
(K)
0 :=

( Kw

δz − δw
+

Ks

δz − δs

)−1
F, (3.98a)

M(K)
0 := 0; (3.98b)

• R
(K)
3 :=

(δz − δs)
Ks

F, (3.98c)

M(K)
3 :=

DKw(δz − δs)2

Ks

[
Ks(1− δz) +Kw(δz − δs)

]F ; (3.98d)

• R
(K)
4 :=

(δz − δs)
Ks

F, (3.98e)

M(K)
4 := D

(δz − δs)
Ks

F ; (3.98f)

If Ks(1− δz)− (D −Kw)(δw − δs) ≤ 0,

• R
(K)
1 :=

2(1− δw)(δz − δs)
[
(D −Kw)(1− δw) +Kw(1− δz)

]
F

β1
, (3.98g)
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M(K)
1 :=

2D(1− δw)(δz − δs)(1− δz)F
β1

; (3.98h)

• R
(K)
2 :=

2(1− δw)(δz − δs)
[
Ks(1− δw) +Kw(δw − δs)

]
F

β2
, (3.98i)

M(K)
2 :=

2D(1− δw)(δz − δs)(δw − δs)F
β2

; (3.98j)

Otherwise, if Ks(1− δz)− (D −Kw)(δw − δs) > 0,

• R
(K)
1 :=

2(1− δw)(δz − δs)
[
Ks(δz − δw) +D(δw − δs)

]
F

β3
, (3.98k)

M(K)
1 :=

2D(1− δw)(δz − δs)(δw − δs)F
β3

; (3.98l)

• R
(K)
2 :=

2(1− δw)(δz − δs)
[
(D −K)(1− δw) +Kw(1− δz − δw + δs)

]
F

β4
,(3.98m)

M(K)
2 :=

2D(1− δw)(δz − δs)(1− δz − δw + δs)F

β4
; (3.98n)

where

β1 = 2Kw(D −Kw)(1− δw)(δz − δs) +Kw(Kw − 1)(1− δz)(δz − δs)
+ 2Ks(D −Kw)(1− δw)2, (3.99a)

β2 = 2KsKw(1− δw)(δz − δs) +Kw(Kw − 1)(δw − δs)(δz − δs) + 2K2
s (1− δw)2,

(3.99b)

β3 = 2KwKs(1− δw)(δz − δs) +Kw(Kw − 1)(δw − δs)(δz − δs)
+ 2Ks(1− δw)

[
Ks(δz − δw) + (D −Kw)(δw − δs)

]
, (3.99c)

β4 = 2Kw(D −K)(1− δw)(δz − δs) +Kw(Kw − 1)(δz − δs)(1− δz − δw + δs)

+ 2(1− δw)
[
Ks(D −K)(1− δw) +KwKs(1− δz)−Kw(D −Kw)(δw − δs)

]
.

(3.99d)

Theorem 3.3 (Lower Bound on C
(K)
s (M)). The upper convex hull of the five rate-

memory pairs
{

(R
(K)
` ,M(K)

` ) : ` ∈ {0, . . . , 4}
}

in (3.98) lower bounds the secure
capacity-memory tradeoff of the K-receiver channel with Kw weak receivers and Ks

strong receivers with cache memories only at the weak receivers:

C(K)
s (M) ≥ upper hull

{
(R

(K)
` ,M(K)

` ), ` ∈ {0, . . . , 4}
}
. (3.100)

Proof. It suffices to prove the achievability of the six rate-memory pairs {(R`,M`) : ` =
0, . . . , 5}. The achievability of the upper convex hull follows by time/memory sharing
arguments as in [10].
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Remark 3.2. When there is no cache, i.e.,M = 0, the secure capacity-memory tradeoff
Cs(M) was determined in [114] as:

Cs(M) =

(
K∑
k=1

1

δz − δk

)−1

F, (3.101)

showing the achievability of the pair (R
(K)
0 ,M(K)

0 ).

Remark 3.3. For the achievability of (R
(K)
4 ,M(K)

4 ), since the strong receivers have no

cache memories, the secure capacity-memory tradeoff C
(K)
s (M) cannot exceed (δz−δ2)F

Ks
.

It is trivially achieved when the weak receivers can store the entire library in their cache
memories, i.e. for M = D (δz−δs)F

Ks
.

Remark 3.4. Since the weak receivers can always choose to ignore parts of their cache
memories, the secure capacity-memory tradeoff is monotonically non-decreasing and thus
if for some M̃ the maximum (δz−δ2)F

Ks
is achieved, it is also achieved for all M≥ M̃:

Cs(M̃) =
(δz − δ2)F

Ks
⇒ Cs(M) =

(δz − δ2)F

Ks
, ∀M ≥ M̃.

The achievability of the remaining rate-memory pairs is outlined in the following
subsections.

3.8.1 Scheme achieving rate-memory pair (R
(K)
1 ,M(K)

1 )

• If Ks(1− δz)− (D −Kw)(δw − δs) ≤ 0, apply the following scheme:

Preparations: Let α1, α2, α3 ∈ [0, 1], such that α1 + α2 + α3 = 1. For d ∈ D, split
each message into two sub-messages, such that

Wd =
[
W

(0)
d ,W

(1)
d

]
, (3.102)

with rates

R(0) =
α2F (1− δw)

Kw
and R(1) =

α2F (1− δz)
(D −Kw)

. (3.103)

Then, split every sub-message W
(1)
d into Kw sub-messages

W
(1)
d =

{
W

(1)
d,i : i ∈ Kw

}
, (3.104)

of rate R(1)

Kw
each.
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If R(0) > (D −K)R(1)/Kw, divide every sub-message W
(0)
d into two further sub-

messages, such that

W
(0)
d =

[
W

(0,1)
d ,W

(0,2)
d

]
, (3.105)

with rates (D−K)R(1)/Kw and R(0)− (D−K)R(1)/Kw, respectively. Otherwise,

W
(0,1)
d = W

(0)
d has rate R(0) and W

(0,2)
d has zero rate.

Caching phase: For every weak receiver i ∈ Kw, store the cache content

Vi =
{
W

(1)
d,i : d ∈ {1, . . . , D}

}
. (3.106)

Thus, the cache memory size is

M(K)
1 = D

R(1)

Kw
. (3.107)

Delivery phase: The delivery phase is divided into three sub-phases of lengths α1n,
α2n and α3n.

In the first sub-phase, the transmitter conveys message W
(1)
di

to every weak receiver

i ∈ Kw by time-sharing over
(
Kw
2

)
periods. In each period, it sends W

(1)
di1 ,i2

⊕W (1)
di2 ,i1

to receivers i1 and i2.

In the second sub-phase, the transmitter conveys message W
(0)
di

to every weak

receiver i ∈ Kw and message W
(1)
dj

to every strong receiver j ∈ Ks by time-sharing
over Kw periods. For each period, it generates a piggyback codebook C with
b2nR(0)c · b2nKsR(1)/Kwc subcodebooks C

(
W̃1, W̃2

)
with one codeword each.

For each period, it chooses a set of indices {j1, . . . , jι} ∈ D \ d, where

ι := max

{
1,min

{⌈
KwR

(0)

R(1)

⌉
, (D −K)

}}
, (3.108)

and generates

WXOR,i = W
(0,1)
di

⊕
[
W

(1)
dj1 ,i

, . . . ,W
(1)
djι ,i

]
. (3.109)

Then, it transmits the codeword of C
(
W̃1, W̃2

)
for W̃1 =

[
WXOR,i,W

(0,2)
di

]
and

W̃2 =
{
W

(1)
dj ,i

: j ∈ Ks
}

.

In the third sub-phase, the transmitter conveys message W
(0)
dj

to every strong

receiver j ∈ Ks by time-sharing over Ks periods. In each period, it sends W
(0)
dj

to
receiver j using a wiretap code.

Analysis: Only the weak receivers decode the first transmission sub-phase. Thus,
it is reliably decoded if(

Kw
2

)
R(1)

Kw

F (1− δw)
≤ α1 ⇒

Kw−1
2 R(1)

F (1− δw)
≤ α1. (3.110)
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Only the strong receivers decode the third transmission sub-phase. Thus, it is
reliably decoded if

KsR
(0)

F (δz − δs)
≤ α3. (3.111)

Every weak receiver i ∈ Kw decodes only message W
(0)
di

transmitted in the sec-
ond sub-phase, whereas every strong receiver j ∈ Ks decodes all the transmitted
messages. Thus, the second sub-phase is reliably decoded whenever

max

{
KwR

(0)

F (1− δw)
,
KwR

(0) +KsR
(1)

F (1− δs)

}
≤ α2. (3.112)

Moreover, the messages conveyed in the first sub-phase are secured by the XOR
operation and the messages conveyed in the third sub-phase are secured by the
random binning. In the second sub-phase, the messages are secure because
(D − Kw)R(1) = α2(1− δz)F .

Maximizing constraints (3.110), (3.111) and (3.112) achieves the rate-memory pair

(R
(K)
1 ,M(K)

1 ) in (3.98g) and (3.98h), for

α1 =
Kw(Kw − 1)(1− δz)(δz − δs)

β1
, (3.113a)

α2 =
2Kw(D −Kw)(1− δw)(δz − δs)

β1
, (3.113b)

α3 =
2Ks(D −Kw)(1− δw)2

β1
, (3.113c)

where β1 is defined in (3.99a).

• Otherwise, if Ks(1− δz)− (D −Kw)(δw − δs) > 0, apply the following scheme:

Preparations: Let α1, α2, α3 ∈ [0, 1], such that α1 + α2 + α3 = 1. Let

R′ =
α2F

[
Ks(1− δz)− (D −Kw)(δw − δs)

]
KwKs

. (3.114)

The messages are split similarly to the previous case but with a change in the
message rates. In this case,

R(0) =
α2F (1− δw)

Kw
−R′ and R(1) =

α2F (δw − δs)
Ks

. (3.115)

Caching phase: The caching phase is also similar to the previous case.

Delivery phase: The delivery phase is divided into three sub-phases of lengths
α1n, α2n and α3n. The first and third sub-phases are similar to the previous case.
However, the second one is different.
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In the second sub-phase, the transmitter conveys message W
(0)
di

to every weak

receiver i ∈ Kw and message W
(1)
dj

to every strong receiver j ∈ Ks by time-sharing
over Kw periods. For each period, it generates a piggyback codebook C with
b2nR(0)c · b2nKsR(1)/Kwc subcodebooks C

(
W̃1, W̃2

)
. Each subcodebook has b2nR′c

codewords.

For each period, it chooses a set of indices {j1, . . . , jι} ∈ D\d, where ι is defined in
(3.108), and generates WXOR,i as in (3.109). Then, it picks an index J1,i uniformly
at random from

[
1 : b2nR′c

]
, and transmits the

J1,i-th codeword of the subcodebook C
(
W̃1, W̃2

)
, (3.116)

for W̃1 =
[
WXOR,i,W

(0,2)
di

]
and W̃2 =

{
W

(1)
dj ,i

: j ∈ Ks
}

.

Analysis: Since the first and third sub-phases do not change, the same condi-
tions (3.110) and (3.111) should be satisfied in order to ensure reliable decoding
in these phases.

As for the second sub-phase, it is reliably decoded whenever

max

{
Kw

(
R(0) +R′

)
F (1− δw)

,
Kw

(
R(0) +R′

)
+KsR

(1)

F (1− δs)

}
≤ α2. (3.117)

Maximizing constraints (3.110), (3.111) and (3.117) achieves the rate-memory pair

(R
(K)
1 ,M(K)

1 ) in (3.98k) and (3.98l), for

α1 =
Kw(Kw − 1)(δw − δs)(δz − δs)

β3
, (3.118a)

α2 =
2KwKs(1− δw)(δz − δs)

β3
, (3.118b)

α3 =
2Ks(1− δw)

[
Ks(δz − δw) + (D −Kw)(δw − δs)

]
β3

, (3.118c)

where β3 is defined in (3.99c).

3.8.2 Scheme achieving rate-memory pair (R
(K)
2 ,M(K)

2 )

• If Ks(1− δz)− (D −Kw)(δw − δs) ≤ 0, apply the same scheme as in the first case
of Section 3.8.1 but with a change in the messages rates:

R(0) =
α2F (1− δw)

Kw
and R(1) =

α2F (δw − δs)
Ks

. (3.119)

Maximizing the rate achieves the rate-memory pair (R
(K)
2 ,M(K)

2 ) in (3.98i) and
(3.98j), for

α1 =
Kw(Kw − 1)(δw − δs)(δz − δs)

β2
, (3.120a)
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α2 =
2KsKw(1− δw)(δz − δs)

β2
, (3.120b)

α3 =
2K2

s (1− δw)2

β2
, (3.120c)

where β2 is defined in (3.99b).

• Otherwise, if Ks(1− δz)− (D −Kw)(δw − δs) > 0, apply the following scheme:

Preparations: Let α1, α2, α3 ∈ [0, 1], such that α1 + α2 + α3 = 1. For d ∈ D, split
each message into three sub-messages, such that

Wd =
[
W

(0)
d ,W

(1)
d ,W

(2)
d

]
, (3.121)

with rates

R(0) =
α2F (1− δw)

Kw
, (3.122a)

R(1) =
α2F (δw − δs)

Ks
, (3.122b)

R(2) =
α2F

[
Ks(1− δz)− (D −Kw)(δw − δs)

]
Ks(D −K)

. (3.122c)

Then, split every sub-message W
(1)
d and W

(2)
d into Kw sub-messages

W
(1)
d =

{
W

(1)
d,i : i ∈ Kw

}
and W

(2)
d =

{
W

(2)
d,i : i ∈ Kw

}
, (3.123)

of rates R(1)

Kw
and R(2)

Kw
, respectively.

If R(0) > (D −K)R(1)/Kw, divide every sub-message W
(0)
d into two further sub-

messages, such that

W
(0)
d =

[
W

(0,1)
d ,W

(0,2)
d

]
, (3.124)

with rates (D−K)R(1)/Kw and R(0)− (D−K)R(1)/Kw, respectively. Otherwise,

W
(0,1)
d = W

(0)
d has rate R(0) and W

(0,2)
d has zero rate.

Caching phase: For every weak receiver i ∈ Kw, store the cache content

Vi =
{
W

(1)
d,i : d ∈ {1, . . . , D}

} ⋃ {
W

(2)
d,i : d ∈ {1, . . . , D}

}
. (3.125)

Thus, the cache memory size is

M(K)
2 = D

R(1) +R(2)

Kw
. (3.126)

Delivery phase: The delivery phase is divided into three sub-phases of lengths α1n,
α2n and α3n.
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In the first sub-phase, the transmitter conveys messages W
(1)
di

and W
(2)
di

to every

weak receiver i ∈ Kw by time-sharing over
(
Kw
2

)
periods. In each period, it sends

W
(1)
di1 ,i2

⊕W (1)
di2 ,i1

and W
(2)
di1 ,i2

⊕W (2)
di2 ,i1

to receivers i1 and i2.

In the second sub-phase, the transmitter conveys message W
(0)
di

to every weak

receiver i ∈ Kw and message W
(1)
dj

to every strong receiver j ∈ Ks by time-sharing
over Kw periods. For each period, it generates a piggyback codebook C with
b2nKsR(1)/Kwc subcodebooks C

(
W̃
)

with b2nR(0)c codewords each.

For each period, it chooses a set of indices {j1, . . . , jι} ∈ D \ d, where

ι := max

{
1,min

{⌈
KwR

(0)

R(1) +R(2)

⌉
, (D −K)

}}
, (3.127)

and generates

WXOR,i = W
(0,1)
di

⊕
[
W

(1)
dj1 ,i

, . . . ,W
(1)
djι ,i

,W
(2)
dj1 ,i

, . . . ,W
(2)
djι ,i

]
. (3.128)

Then, it generates Wi =
[
WXOR,i,W

(0,2)
di

]
and transmits the Wi-th codeword of

the subcodebook C
(
W̃
)
, with W̃ =

{
W

(1)
dj ,i

: j ∈ Ks
}

.

In the third sub-phase, the transmitter conveys messages W
(0)
dj

and W
(2)
dj

to every
strong receiver j ∈ Ks by time-sharing over Ks periods. In each period, it sends

W
(0)
dj

and W
(2)
dj

to receiver j using a wiretap code without secret key.

Analysis: Only the weak receivers decode the first transmission sub-phase. Thus,
it is reliably decoded if(

Kw
2

)
R(1)+R(2)

Kw

F (1− δw)
≤ α1 ⇒

Kw−1
2

(
R(1) +R(2)

)
F (1− δw)

≤ α1. (3.129)

Only the strong receivers decode the third transmission sub-phase. Thus, it is
reliably decoded if

Ks

(
R(0) +R(2)

)
F (δz − δs)

≤ α3. (3.130)

Every weak receiver i ∈ Kw decodes only message W
(0)
di

transmitted in the sec-
ond sub-phase, whereas every strong receiver j ∈ Ks decodes all the transmitted
messages. Thus, the second sub-phase is reliably decoded whenever

max

{
KwR

(0)

F (1− δw)
,
KwR

(0) +KsR
(1)

F (1− δs)

}
≤ α2. (3.131)
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Maximizing constraints (3.129), (3.130) and (3.131) achieves the rate-memory pair

(R
(K)
2 ,M(K)

2 ) in (3.98m) and (3.98n), for

α1 =
Kw(Kw − 1)(δz − δs)(1− δz − δw + δs)

β4
, (3.132a)

α2 =
2Kw(D −K)(1− δw)(δz − δs)

β4
, (3.132b)

α3 =
2(1− δw)

[
Ks(D −K)(1− δw) +KwKs(1− δz)−Kw(D −Kw)(δw − δs)

]
β4

,

(3.132c)

where β4 is defined in (3.99d).

3.8.3 Scheme achieving rate-memory pair (R
(K)
3 ,M(K)

3 )

Preparations: Let α ∈ [0, 1]. For d ∈ D, split each message into two sub-messages, such
that

Wd =
[
W

(0)
d ,W

(1)
d

]
, (3.133)

with rates

R(0) =
αF (1− δz)

Kw
and R(1) =

αF (δz − δs)
Ks

. (3.134)

Caching phase: For every weak receiver i ∈ Kw, store the D-tuple W
(1)
1 , . . . ,W

(1)
D . Thus,

the cache memory size is

M(K)
3 = DR(1). (3.135)

Delivery phase: The delivery phase is divided into two sub-phases of lengths αn and
(1− α)n.

In the first sub-phase, the transmitter conveys message W
(0)
di

to every weak receiver

i ∈ Kw and message W
(1)
dj

to every strong receiver j ∈ Ks following a similar scheme as
the second sub-phase in Section 3.8.2.

In the second sub-phase, the transmitter conveys message W
(0)
dj

to every strong re-

ceiver j ∈ Ks by time sharing over Ks periods. In each period, it sends W
(0)
dj

to receiver
j using a wiretap code.

Analysis: Every weak receiver i ∈ Kw decodes reliably its message W
(0)
di

conveyed in the

first transmission sub-phase since R(0) rate is smaller than its channel capacity.
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Strong receivers also decode reliably the first transmission sub-phase. They decode
the second transmission sub-phase reliably whenever

R(0) =
α(1− δz)F

Kw
≤ (1− α)(δz − δs)F

Ks
, (3.136)

which is maximized for

α =
Kw(δz − δs)

Kw(δz − δs) +Ks(1− δz)
, (3.137)

giving the rate-memory pair (R
(K)
3 ,M(K)

3 ) in (3.98c) and (3.98d).

3.9 General upper bound on the secure capacity-memory
tradeoff

In this section, we provide the upper bound on the secure capacity-memory tradeoff
of the more general setup with Kw weak receivers and Ks strong receivers where the
Kw weak receivers have cache memories of size M. This upper bound is stated in the
following theorem:

Theorem 3.4 (Upper Bound on C
(K)
s (M)). The secure capacity-memory tradeoff

C
(K)
s (M) of the K-receiver channel with Kw weak receivers and Ks strong receivers

with cache memories only at the weak receivers is upper bounded by the following Kw+2
conditions:

C(K)
s (M) ≤ F (δz − δw) +M, (3.138a)

C(K)
s (M) ≤ F

δz − δs
Ks

, (3.138b)

C(K)
s (M) ≤ F

(
i

1− δw
+

Ks

1− δs

)−1

+
iM
D

, i ∈ {1, . . . ,Kw}. (3.138c)

Proof. The proof of constraint (3.138a) is similar to that of (3.62a) in Section 3.3.
(3.138b) holds because strong receivers have no cache and their capacity cannot be larger
than in the absence of weak receivers. Constraint (3.138a) follows from [9, Theorem 9]
by ignoring the secrecy constraint.

3.10 Examples

We illustrate in Figure 3.12 and 3.13 the lower and upper bounds derived for the general
setup assuming a total of K = 20 users, a library size D = 30 and different channel
parameters.
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M
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UB on C
(K)
s (M)

Figure 3.12: Lower and upper bounds on the secure capacity-memory tradeoff C
(K)
s (M)

under individual secrecy constraint for the K-user wiretap erasure BC with δw = 0.7,
δs = 0.2, δz = 0.8, F = 5, D = 30, Kw = 5 and Ks = 15.

M
F ·D

C
(K)
s (M)
F

0
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LB on C
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Figure 3.13: Lower and upper bounds on the secure capacity-memory tradeoff C
(K)
s (M)

under individual secrecy constraint for the K-user wiretap erasure BC with δw = 0.4,
δs = 0.2, δz = 0.8, F = 5, D = 30, Kw = 5 and Ks = 15.

3.11 Conclusion

In this chapter, we have derived lower and upper bounds on the securely achievable
capacity-memory tradeoff of the two-user wiretap packet-erasure BC where the weaker
receiver has a cache memory and where the eavesdropper is not allowed to learn any
information about each of the delivered messages individually. The corresponding lower
and upper bounds on the secure capacity-memory tradeoff are close for most scenarios
and coincide when the weak receiver’s cache memory exceeds a certain size. We have
thus established the exact secure capacity-memory tradeoff for cache memory sizes above
this threshold.
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The lower bound under our secrecy constraint exhibits that cache memories provide
larger gains than in the standard scenario without any secrecy constraints [9]. The
reason being that the cache content can not only help to improve the communication
rate, but also to make it more secure, for example, by means of a one-time pad.

For comparison, we have derived the lower bound on the secure capacity-memory
tradeoff obtained by the best separate cache-channel coding scheme. We have found
that the benefits of the cache memories are much more important when applying a joint
cache-channel coding scheme that simultaneously leverages on the cache contents and
the channel statistics.

Moreover, we have presented lower and upper bounds on the secure capacity-memory
tradeoff when both receivers have cache memories of equal size. These bounds show
that for a large range of parameters, the capacity-memory tradeoff is larger when all
the cache memory is allocated to the weaker receiver instead of allocating half of it to
each receiver. However, in contrast to the scenario without secrecy constraint, there
exist situations where one receiver is weaker, but it is still better to allocate the cache
memory symmetrically. The reason seems to be that a receiver can benefit from the cache
memory at another receiver to increase its transmission rate, but it can only exploit its
own cache memory to make it secure.

Finally, we have also computed the generalized lower and upper bounds for the
general K-user scenario.
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Chapter 4

Joint Secrecy in Caching Scenario

In this chapter, we consider the same cache-aided wiretap erasure BC as Chapter 3
under a joint secrecy constraint. We establish lower and upper bounds on the securely
achievable capacity-memory tradeoff. To obtain the lower bound, we propose four dif-
ferent secure coding schemes that build on sophisticatedly combining wiretap coding,
superposition coding and piggyback coding with random secret keys. Those keys are
independent of all the data and are stored in the receivers’ caches. The necessity for
secret keys stems from the joint-secrecy constraint and had already been observed in
[89, 90]. In such setups, the eavesdropper has no access to cache memories and is not
allowed to learn anything about the set of all possible receivers’ messages. In the previ-
ous chapter, we were able to use cached data as “secret keys” because only an individual
secrecy-constraint had to be satisfied.

For the remaining of the chapter, we start by deriving our bounds and describing our
coding schemes for the case of K = 2 users. We compare these bounds with the ones
derived in Chapter 3 with the individual secrecy constraint. We also derive the lower
and upper bounds on the secure capacity-memory tradeoff for the two-user scenario
under a joint secrecy constraint with symmetric cache assignment and with asymmetric
two-sided cache assignment. We compare these bounds with our scheme and determine
the impact of the cache distribution on the secure capacity. Finally, we generalize our
results for the K-user scenario.

4.1 Problem definition

We consider the same channel model described in Section 3.1 with a stronger joint secrecy
constraint, i.e. we assume that the communication is secure if the eavesdropper does
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not learn any information about the library messages from its outputs Zn:

lim
n→∞

1

n
I(W1, . . . ,WD;Zn) < ε. (4.1)

In order to satisfy this secrecy constraint, the transmitter is given access to a source
of randomness θ in addition to its access to the message library. θ is defined over some
alphabet Θ. As a result, the caching and encoding functions are changed accordingly.

The caching content Vi at each weak receiver i ∈ Kw becomes

Vi := gi(W1, . . . ,WD, θ), i ∈ Kw (4.2)

for some caching function

gi :
{

1, . . . , b2nRsc
}D ×Θ→ V. (4.3)

The transmitter will produce its channel inputs as

Xn := fd(W1, . . . ,WD, θ), (4.4)

for some encoding function

fd :
{

1, . . . , b2nRsc
}D ×Θ→ X n. (4.5)

Finally, the securely achievable rate-memory pairs are defined as follows.

Definition 4.1. A rate-memory pair (Rs,M) is securely achievable if for every ε > 0 and
sufficiently large blocklength n, there exist caching, encoding, and decoding functions as
in (4.3), (4.5), (3.17) and (3.19) so that

PWorst
e ≤ ε and

1

n
I(W1, . . . ,WD;Zn) < ε. (4.6)

4.2 Lower bound on the secure capacity-memory trade-
off under one-sided cache assignment for the two-user
scenario

In this section, we consider only one weak and one strong receiver with erasure proba-
bilities δ1 and δ2, respectively. We give the lower bound on the secure capacity-memory
tradeoff Cs(M) as defined in Definition 3.3 and prove its achievability.

Consider the six rate-memory pairs:

• R0 :=
(δz − δ1)(δz − δ2)

2δz − δ1 − δ2
F, (4.7a)
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M0 := 0; (4.7b)

• R1 :=
(1− δ1)(δz − δ2)

1 + δz − δ1 − δ2
F, (4.7c)

M1 :=
(1− δz)(δz − δ2)

1 + δz − δ1 − δ2
F ; (4.7d)

• R2 := (1− δ2) min

{
δz − δ1

1− δ1
,

1− δ1

2− δ1 − δ2

}
F, (4.7e)

M2 := (1− δz)F ; (4.7f)

• R3 :=
(1− δ2)(δz − δ2)

1 + δz − δ1 − δ2
F, (4.7g)

M3 :=
(δz − δ2)

[
(δ1 − δ2)D + (1− δz)

]
1 + δz − δ1 − δ2

F ; (4.7h)

• R4 := (δz − δ2)F, (4.7i)

M4 :=
(δz − δ2)

[
(δz − δ2)D + (1− δz)

]
1− δ2

F ; (4.7j)

• R5 := (δz − δ2)F, (4.7k)

M5 := D(δz − δ2)F. (4.7l)

Theorem 4.1 (Lower Bound on Cs(M)). The upper convex hull of the six rate-memory
pairs

{
(R`,M`); ` ∈ {0, 1, . . . , 5}

}
in (4.7) lower bounds the secure capacity-memory

tradeoff under one-sided cache assignment:

Cs(M) ≥ upper hull
{

(R`,M`) : ` = 0, . . . , 5
}
. (4.8)

Proof. It suffices to prove the achievability of the six rate-memory pairs {(R`,M`) : ` =
0, . . . , 5}. The achievability of the upper convex hull follows by time/memory sharing
arguments as in [10].

The achievability of the pairs (R0,M0) and (R5,M5) follows from Remarks 3.2 and
3.3, respectively.

The achievability of the remaining rate-memory pairs is outlined in the next subsec-
tions.

Remark 4.1. For all M≥M5, the securely achievable capacity is Cs(M) = R5. This
can be deduced from Remark 3.4.
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4.2.1 Scheme achieving rate-memory pair (R1,M1)

Preparations: Let α ∈ [0, 1]. Generate a random key K1 of rate α(1− δz)F .

Caching phase: Store K1 in receiver 1’s cache memory. Thus, the cache memory size is

M1 = α(1− δz)F. (4.9)

Delivery phase: The delivery phase is divided into two periods of lengths αn and (1−α)n.
In the first period, the transmitter sends Wd1 to receiver 1 using a wiretap code with
secret key K1 [113],[11, (22.7)]. In the second period, the transmitter sends Wd2 to
receiver 2 using a wiretap code without secret key.

Analysis: Receiver 1 decodes message Wd1 sent in the first transmission period. The
total decoded rate should not exceed its capacity, hence

R1 ≤ α(1− δ1)F. (4.10)

Receiver 2 decodes Wd2 conveyed in the second transmission period. It can reliably
decode its message if its rate satisfies,

R1 ≤ (1− α)(δz − δ2)F. (4.11)

Thus, R1 is maximized when (4.10) and (4.11) are equal. The equality is obtained when

α =
δz − δ2

1 + δz − δ1 − δ2
. (4.12)

Replacing α by its value in (4.10) and (4.9) gives the rate-memory pair (R1,M1) in
(4.7c) and (4.7d).

Moreover, considering a key’s rate larger than the channel capacity at the eavesdrop-
per guarantees the security of the transmitted message.

4.2.2 Scheme achieving rate-memory pair (R2,M2)

Preparations: Let α ∈ [0, 1] and γ ∈ [0, 1]. For d ∈ D, split each message Wd into two
sub-messages, such that

Wd =
[
W

(0)
d ,W⊕d

]
,

with rates R(0) = α(1− δ1)F , R⊕ = (1− α)(1− δz)F , respectively.

Then, generate two random keys K1 and K2 of rates α(1− δz)F and (1− α)(1− δz)F .
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Caching phase: Store K1 and K2 in receiver 1’s cache. Thus, the cache memory size is

M2 = (1− δz)F. (4.13)

Delivery phase: The delivery phase is divided into two periods of lengths αn and (1−α)n.

In the first period, the transmitter sends message W
(0)
d1

to receiver 1 using a wiretap code
with secret key K1.

For the communication in the second period, generate a superposition codebook
with a cloud center that contains 2n(1−α)(1−δz)F codewords, and with each of the satellite
codebooks containing 2nR2 codewords. The transmitter encodes W⊕d1⊕K2 into the cloud
center and Wd2 into the satellite.

Analysis: Receiver 1 decodes the first transmission period and only message W⊕d1 ⊕K2

from the second one. Hence, receiver 1 decodes reliably its messages whenever

R2 ≤ α(1− δ1)F + (1− α)(1− δ1)F × (1− γ). (4.14)

Receiver 2 decodes only the second transmission period. It decodes reliably its messages
whenever

R2 ≤ (1− α)(1− δ2)F × γ. (4.15)

From the second transmission period, receiver 1 decodes only message W⊕d1 ⊕K2 from
the cloud center, thus R⊕ should satisfy

R⊕ = (1− α)(1− δz)F ≤ (1− α)(1− δ1)F × (1− γ). (4.16)

Equality in (4.16) is obtained for

γ =
δz − δ1

1− δ1
. (4.17)

For this γ value, conditions (4.14) and (4.15) become

R2 ≤ α(1− δ1) + (1− α)(1− δz)F, (4.18a)

R2 ≤ (1− α)
(δz − δ1)(1− δ2)

1− δ1
F. (4.18b)

If (1− δz)(1− δ1) ≤ (1− δ2)(δz − δ1), equality of (4.18a) and (4.18b) is achieved for

α =
(1− δ2)(δz − δ1)− (1− δz)(1− δ1)

(δz − δ1)(2− δ1 − δ2)
, (4.19)

yielding a rate

R2 =
(1− δ1)(1− δ2)

2− δ1 − δ2
F. (4.20)
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Otherwise, (4.18b) gives a smaller R2 than (4.18a) ∀ α ∈ [0, 1] and the maximal rate,
achieved for α = 0, is

R2 = F
(δz − δ1)(1− δ2)

1− δ1
. (4.21)

Secrecy of the proposed scheme can be proved by following the steps in Section 3.2.8,
where in the proof of Lemma 3.1 we use the fact that the entire superposition codebook
contains 2n(1−α)(1−δz)F codewords that are compatible with a given satellite message
Wd2 .

Combining (4.13), (4.20) and (4.21) gives the desired rate-memory pair (R2,M2) in
(4.7e) and (4.7f).

4.2.3 Scheme achieving rate-memory pair (R3,M3)

Preparations: Let α ∈ [0, 1]. For d ∈ D, split each message Wd into three sub-messages,
such that

Wd =
[
W

(0)
d ,W

(1)
d ,W⊕d

]
, (4.22)

with rates R(0) = α(δz − δ1)F , R(1) = α(δ1 − δ2)F and R⊕ = α(1− δz)F , respectively.

Then, generate a random key K1 of rate α(1− δz)F .

Generate a piggyback codebook C1 with Γ1 := b2nα(1−δz)F c · b2nα(δz−δ1)F c ·
b2nα(δ1−δ2)F c codewords of length αn,

C1 :=
{
X

(αn)
1 (l1)

}Γ1

l1=1
, (4.23)

by drawing each entry of each codeword at random according to a Bernoulli-1/2 distri-
bution independently of all the other entries.

The codebook is partitioned into b2nα(δz−δ1)F c · b2nα(δ1−δ2)F c subcodebooks (bins)
each with b2nα(1−δz)F c codewords. The subcodebooks are arranged into an array with
b2nα(δz−δ1)F c rows and b2nα(δ1−δ2)F c columns.

Caching phase: Store K1 and the D-tuple W
(1)
1 , . . . ,W

(1)
D in receiver 1’s cache. Thus,

the cache memory size is

M3 = α(1− δz)F +D · α(δ1 − δ2)F. (4.24)

Delivery phase: The delivery phase is divided into two periods of lengths αn and (1−α)n.

In the first period, the transmitter conveys messages W
(0)
d1

and W⊕d1 to receiver 1 and W
(1)
d2

to receiver 2. It generates WXOR = W⊕d1 ⊕K1 and transmits the WXOR-th codeword of
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the subcodebook C1(W
(0)
d1
,W

(1)
d2

) over the channel. In the second period, it sends message

W
(0),⊕
d2

= [W
(0)
d2
,W⊕d2 ] to receiver 2 using a wiretap code without secret key.

Decoding at receiver 1: Receiver 1 retrieves message W
(1)
d2

from its cache memory,
and considers its outputs yαn1 from the first period. It looks for a unique index-pair

(ŵXOR, ŵ
(0)
d1

) ∈
[
1 : b2nα(1−δz)F c

]
×
[
1 : b2nα(δz−δ1)F c

]
so that the ŵXOR-th codeword

in subcodebook C1(ŵ
(0)
d1
,W

(1)
d2

), which we denote by x
(αn)
1

(
ŵXOR, ŵ

(0)
d1
,W

(1)
d2

)
, is jointly

typical with its observed outputs:(
x

(αn)
1

(
ŵXOR, ŵ

(0)
d1
,W

(1)
d2

)
, yαn1

)
∈ T (αn)

ε

(
pX · pY1|X

)
, (4.25)

where pX stands for the Bernoulli-1/2 distribution, pY1|X the channel law to receiver 1,

and T (αn)
ε the typical set [11].

If the desired unique pair of indexes (ŵXOR, ŵ
(0)
d1

) does not exist, receiver 1 declares
an error. Otherwise, if the pair exists, receiver 1 retrieves the key K1 from its cache
memory and generates

ŵ⊕d1 = ŵXOR ⊕K1. (4.26)

It finally retrieves W
(1)
d1

from its cache memory and declares the tuple

ŵ1 =
(
ŵ⊕d1 , ŵ

(0)
d1
,W

(1)
d1

)
. (4.27)

Decoding at receiver 2: Receiver 2 decodes W
(1)
d2

based on its outputs yαn2 in the first

period, and it decodes W
(0),⊕
d2

based on its outputs y
(1−α)n
2 in the second period.

It looks for a unique triple (ŵXOR, ŵ
(0)
d1
, ŵ

(1)
d2

) so that(
x

(αn)
1

(
ŵXOR, ŵ

(0)
d1
, ŵ

(1)
d2

)
, yαn2

)
∈ T (αn)

ε

(
pX · pY2|X

)
. (4.28)

Then, it looks for a unique pair (ŵ
(0),⊕
d2

, l) such that(
x

((1−α)n)
2

(
ŵ

(0),⊕
d2

, l
)
, y

(1−α)n
2

)
∈ T ((1−α)n)

ε

(
pX · pY2|X

)
. (4.29)

If the desired triple and pair exist, receiver 2 declares

ŵ2 =
(
ŵ

(0)
d2
, ŵ

(1)
d2
, ŵ⊕d2

)
. (4.30)

Otherwise it declares an error.

Analysis: Receiver 1 reliably decodes W
(0)
d1

and W⊕d1 conveyed in the first transmission
period whenever

R(0) +R⊕ = R3 −R(1) ≤ α(1− δ1)F ⇒ R3 ≤ α(1− δ2)F. (4.31)

Sarah Kamel 91



CHAPTER 4. JOINT SECRECY IN CACHING SCENARIO

Receiver 2 reliably decodes both transmission periods whenever

R3 +R(0) +R⊕ ≤ α(1− δ2)F + (1− α)(δz − δ2)F

⇒ R3 ≤ α(δ1 − δ2)F + (1− α)(δz − δ2)F. (4.32)

Equality of (4.31) and (4.32) is obtained for

α =
δz − δ2

1 + δz − δ1 − δ2
. (4.33)

For this α value, the rate-memory pair (R3,M3) in (4.7g) and (4.7h) is achievable.

4.2.4 Scheme achieving rate-memory pair (R4,M4)

We apply the same coding scheme described for (R3,M3) with the following changes:

we cancel the rate of W
(0)
d , i.e. R(0) = 0 and change W

(1)
d rate to R(1) = α(δz − δ2)F .

We keep R⊕ = α(1− δz)F . In this case, the cache memory becomes

M4 = α(1− δz)F +D · α(δz − δ2)F. (4.34)

Receiver 1 reliably decodes the message W⊕d1 of rate R⊕ < α(1 − δ1)F . Receiver 2

decodes the first transmission phase without error since R⊕+R(1) = α(1− δ2)F . As for
the second phase, the rate of W⊕d should satisfy

α(1− δz)F ≤ (1− α)(δz − δ2)F. (4.35)

Thus, the value of α that maximizes the transmission rate is

α =
δz − δ2

1− δ2
, (4.36)

giving the rate-memory pair (R4,M4) in (4.7i) and (4.7j).

4.3 Upper bound on the secure capacity-memory trade-
off under one-sided cache assignment for the two-user
scenario

In this section, we derive the upper bound on the secure capacity-memory tradeoff for
the two-receiver channel. This upper bound is stated in the following theorem:
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Theorem 4.2 (Upper Bound on Cs(M)). The secure capacity-memory tradeoff Cs(M)
of the two-user wiretap erasure BC with cache memory M only at the weaker receiver
under the joint secrecy constraint is upper bounded by the following three conditions:

Cs(M) ≤ (δz − δ1)(δz − δ2)

2δz − δ1 − δ2
F +

δz − δ2

2δz − δ1 − δ2
M, (4.37a)

Cs(M) ≤ (1− δ1)(1− δ2)

2− δ1 − δ2
F +

M
D
, (4.37b)

Cs(M) ≤ (δz − δ2)F. (4.37c)

4.3.1 Proof of the upper bound

Bound (4.37b) follows from [9] and by ignoring the secrecy constraint. Bound (4.37c)
holds because receiver 2 has no cache, and its rate cannot be larger than in the absence
of receiver 1.

Bound (4.37a) is proved as follows. For each blocklength n, we fix caching, encoding
and decoding functions as in (4.3), (4.5), (3.17) and (3.19) so that both the probability
of worst-case error and the secrecy leakage satisfy:

PWorst
e −−−→

n→∞
0 and

1

n
I(W1, . . . ,WD;Zn) −−−→

n→∞
0.

By Fano’s inequality, there exists a sequence of real numbers {εn}∞n=1 with

εn
n
−−−→
n→∞

0,

so that
H(Wd1 |Y n

1 , V1) ≤ εn
2
. (4.38)

Thus,

nRs = H(Wd1) = H(Wd1 |Zn) + I(Wd1 ;Zn)

≤ H(Wd1 |Zn) +
εn
2

≤ I(Wd1 ;Y n
1 , V1)− I(Wd1 ;Zn) +H(Wd1 |Y n

1 , V1) +
εn
2

≤ I(Wd1 ;Y n
1 , V1)− I(Wd1 ;Zn) + εn

≤ I(Wd1 ;Y n
1 |V1)− I(Wd1 ;Zn|V1) + I(Wd1 ;V1|Zn) + εn

(a)
=

n∑
i=1

[
I(Wd1 ;Y1,i|V1, Y

i−1
1 , Zni+1)− I(Wd1 ;Zi|V1, Y

i−1
1 , Zni+1)

]
+ I(Wd1 ;V1|Zn) + εn

(b)

≤
n∑
i=1

[
I(Wd1 ;Y1,i|V1, Y

i−1
1 , Zni+1)− I(Wd1 ;Zi|V1, Y

i−1
1 , Zni+1)

]
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+
n∑
i=1

[
I(V1, Y

i−1
1 , Zni+1;Y1,i)− I(V1, Y

i−1
1 , Zni+1;Zi)

]
+ I(Wd1 ;V1|Zn) + εn

(c)

≤
n∑
i=1

[
I(Wd1 , V1, Y

i−1
1 , Zni+1;Y1,i)− I(Wd1 , V1, Y

i−1
1 , Zni+1;Zi)

]
+ I(Wd1 ;V1|Zn) + εn

+
n∑
i=1

[
I(Y i−1

2 ;Y1,i|Wd1 , V1, Y
i−1

1 , Zni+1)− I(Y i−1
2 ;Zi|Wd1 , V1, Y

i−1
1 , Zni+1)

]
(d)

≤
n∑
i=1

[
I(Wd1 , V1, Y

i−1
1 , Y i−1

2 , Zni+1;Y1,i)− I(Wd1 , V1, Y
i−1

1 , Y i−1
2 , Zni+1;Zi)

]
+ nM+ εn

(e)

≤
n∑
i=1

[
I(Wd1 , V1, Y

i−1
2 , Zni+1;Y1,i)− I(Wd1 , V1, Y

i−1
2 , Zni+1;Zi)

]
+ nM+ εn, (4.39)

where (a) follows by the chain rule of mutual information and by applying Csiszar’s
sum-identity [11, p. 25]; (b) and (c) hold because the eavesdropper is degraded with
respect to receiver 1 and thus, for each i ∈ {1, . . . , n}:

I(V1, Y
i−1

1 , Zni+1;Y1,i)− I(V1, Y
i−1

1 , Zni+1;Zi) ≥ 0;

and
I(Y i−1

2 ;Y1,i|Wd1 , V1, Y
i−1

1 , Zni+1)− I(Y i−1
2 ;Zi|Wd1 , V1, Y

i−1
1 , Zni+1) ≥ 0;

(d) holds because I(Wd1 ;V1|Zn) is limited by the entropy of V1 which cannot exceed
nM; and finally (e) holds because receiver 1 is degraded with respect to receiver 2 and
thus the following Markov chain holds:

(V1,Wd1 , Z
n
i+1, Y1,i, Zi)→ Y i−1

2 → Y i−1
1 .

Let Q be a random variable uniform over {1, . . . , n} and independent of all previously
defined random variables. We define the random variables

Y1 := Y1,Q, (4.40)

Z := ZQ, (4.41)

U1 := (Wd1 , V1, Y
Q−1

2 , ZnQ+1). (4.42)

Dividing by n, we can rewrite constraint (4.39) as

Rs ≤ I(U1;Y1|Q)− I(U1;Z|Q) +M+
εn
n
. (4.43)

Accounting for receiver 2, we derive in a similar way:

2nRs = H(Wd1 ,Wd2)

= H(Wd1 ,Wd2 |Zn) + I(Wd1 ,Wd2 ;Zn)
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≤ H(Wd1 ,Wd2 |Zn) +
εn
2

(a)

≤ I(Wd1 ;Y n
1 , V1) + I(Wd2 ;Y n

2 , V1|Wd1)− I(Wd1 ,Wd2 ;Zn) + εn
(b)
= I(Wd1 ;Y n

1 , V1)− I(Wd1 ;Zn) + I(Wd2 ;Y n
2 , V1|Wd1)− I(Wd2 ;Zn|Wd1) + εn

= I(Wd1 ;Y n
1 |V1)− I(Wd1 ;Zn|V1) + I(Wd1 ;V1|Zn) + I(Wd2 ;Y n

2 |V1,Wd1)

− I(Wd2 ;Zn|V1,Wd1) + I(Wd2 ;V1|Zn,Wd1) + εn
(c)
= I(Wd1 ;Y n

1 |V1)− I(Wd1 ;Zn|V1) + I(Wd2 ;Y n
2 |V1,Wd1)

− I(Wd2 ;Zn|V1,Wd1) + nM+ εn, (4.44)

where (a) follows by Fano’s inequality and the chain rule of mutual information; (b)
follows from the chain rule of mutual information; and (c) holds because

I(Wd1 ;V1|Zn) + I(Wd2 ;V1|Zn,Wd1) = I(Wd2 ,Wd1 ;V1|Zn) ≤ nM

since I(Wd2 ,Wd1 ;V1|Zn) is limited by the entropy of V1 which cannot exceed nM.

Dividing by n, (4.44) becomes

2Rs ≤
1

n

[
I(Wd1 ;Y n

1 |V1)− I(Wd1 ;Zn|V1)
]

+M

+
1

n

[
I(Wd2 ;Y n

2 |V1,Wd1)− I(Wd2 ;Zn|V1,Wd1)
]

+
εn
n
, (4.45)

and following (4.39)–(4.42), we can prove that

1

n

[
I(Wd1 ;Y n

1 |V1)− I(Wd1 ;Zn|V1)
]
≤ I(U1;Y1|Q)− I(U1;Z|Q). (4.46)

and

1

n

[
I(Wd2 ;Y n

2 |V1,Wd1)− I(Wd2 ;Zn|V1,Wd1)
]

(a)
=

1

n

n∑
i=1

[
I(Wd2 ;Y2,i|V1,Wd1 , Y

i−1
2 , Zni+1)− I(Wd2 ;Zi|V1,Wd1 , Y

i−1
2 , Zni+1)

]
(b)

≤ 1

n

n∑
i=1

[
I(Wd2 ;Y2,i|V1,Wd1 , Y

i−1
2 , Zni+1)− I(Wd2 ;Zi|V1,Wd1 , Y

i−1
2 , Zni+1)

]
+

1

n

n∑
i=1

[
I(Xi;Y2,i|V1,Wd1 ,Wd2 , Y

i−1
2 , Zni+1)− I(Xi;Zi|V1,Wd1 ,Wd2 , Y

i−1
2 , Zni+1)

]
=

1

n

n∑
i=1

[
I(Wd2 , Xi;Y2,i|V1,Wd1 , Y

i−1
2 , Zni+1)− I(Wd2 , Xi;Zi|V1,Wd1 , Y

i−1
2 , Zni+1)

]
(c)
= I(X;Y2|Q,U1)− I(X;Z|Q,U1), (4.47)
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where (a) follows by the chain rule of mutual information and by applying Csiszar’s
sum-identity; (b) hold because the eavesdropper is degraded with respect to receiver 2;
and (c) follows from the Markov chain:

Wd2 → Xi → (Y2,i, Zi). (4.48)

We define then the random variables:

X := XQ, (4.49)

Y2 := Y2,Q. (4.50)

Combining (4.45), (4.46) and (4.47) gives

2Rs ≤ I(U1;Y1|Q)− I(U1;Z|Q) + I(X;Y2|Q,U1)− I(X;Z|Q,U1) +M+
εn
n
. (4.51)

Let n→∞. We derive constraint (4.43) and (4.51) for the erasure BC as follows:

Rs ≤ I(U1;Y1|Q)− I(U1;Z|Q) +M
= I(U1, X;Y1|Q)− I(X;Y1|U1, Q)− I(U1, X;Z|Q) + I(X;Z|U1, Q) +M
(a)
= I(X;Y1|Q)− I(X;Y1|U1, Q)− I(X;Z|Q) + I(X;Z|U1, Q) +M
= (δz − δ1)

[
H(X|Q)−H(X|U1, Q)

]
+M

(a)
= (δz − δ1)(β − α) +M, (4.52)

where (a) holds because of the Markov chain U1 → X → (Z, Y1) and (b) follows by
defining α := H(X|U1, Q) and β := H(X|Q), such that 0 ≤ β ≤ α ≤ F .

Rs ≤
1

2

[
I(U1;Y1|Q)− I(U1;Z|Q) + I(X;Y2|Q,U1)− I(X;Z|Q,U1) +M

]
≤ 1

2

[
(δz − δ1)

[
H(X|Q)−H(X|U1, Q)

]
+ (δz − δ2)H(X|U1, Q) +M

]
=

1

2

[
(δz − δ1)(β − α) + (δz − δ2)α+M

]
. (4.53)

If Rs is securely achievable, there exist α and β satisfying (4.52) and (4.53). Since both
constraints increase with β, β = F is optimal. This is obtained by choosing Q = ∅ and
X uniform over {1, . . . , 2F }. Optimizing the minimum of bounds (4.52) and (4.53) over
α ∈ [0, F ] gives the desired bound (4.37a) in Theorem 4.2.

4.4 Lower bound on the secure capacity-memory tradeoff
under symmetric cache assignment for the two-user
scenario

As in the previous chapter, here we also study the symmetric cache assignment for the
two-user wiretap BC channel under a joint secrecy constraint. We compute the lower
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bound on Cs,Sym(M) when each receiver has a cache memory of size M/2.

Consider the three rate-memory pairs:

• R0,Sym :=
(δz − δ1)(δz − δ2)

2δz − δ1 − δ2
F, (4.54a)

M0,Sym := 0; (4.54b)

• R1,Sym :=
(1− δ1)(1− δ2)

2− δ1 − δ2
F, (4.54c)

M1,Sym :=
2(1− δz)(1− δ2)

2− δ1 − δ2
F ; (4.54d)

• R2,Sym := min
{

2(1− δ1)F, (1− δ2)F
}
, (4.54e)

M2,Sym := min

{
2
[
(1− δz) +D(1− δ1)

]
F,

2(1− δ2)
[
2(1− δz) +D(1− δ2)

]
2(1− δ1) + (1− δ2)

F

}
. (4.54f)

Proposition 4.1 (Lower Bound on Cs,Sym(M)). The upper convex hull of the three
rate-memory pairs

{
(R`,Sym,M`,Sym); ` ∈ {0, 1, 2}

}
in (4.54) lower bounds the secure

capacity-memory tradeoff under symmetric cache assignment:

Cs,Sym(M) ≥ upper hull
{

(R`,Sym,M`,Sym) : ` = 0, 1, 2
}
. (4.55)

Proof. As in proof of Theorem 4.1, it suffices to prove the achievability of the three rate-
memory pairs {(R`,M`) : ` = 0, 1, 2}. At M0,Sym, R0,Sym = R0 since there is no cache.
We prove the achievability of the two remaining points in the following subsections.

Remark 4.2. Since both receivers can store messages in their cache memories, an
increase of M in cache memory size implies at least an increase of M2D in the achievable
rate. Hence,

if (Rs,M) is achievable ⇒
(
Rs +

M′ −M
2D

,M′
)

is achievable.

Therefore, for M >M2,Sym,

RSym = R2,Sym +
M−M2,Sym

2D
. (4.56)
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4.4.1 Scheme achieving rate-memory pair (R1,Sym,M1,Sym)

Preparations: Let α ∈ [0, 1]. Generate two random keys K1 and K2 of rate α(1− δz)F
each.

Caching phase: Store K1 in receiver 1’s cache memory and K2 in receiver 2’s cache
memory. Thus, the total cache memory size is

M1,Sym = 2α(1− δz)F. (4.57)

Delivery phase: The delivery phase is divided into two periods of lengths αn and (1−α)n.
In the first period, the transmitter sends Wd1 to receiver 1 using a wiretap code with
secret key K1 and in the second period, it sends Wd2 to receiver 2 using a wiretap code
with secret key K2.

Analysis: Both receivers reliably decode their messages whenever

R1,Sym ≤ α(1− δ1)F, (4.58a)

R1,Sym ≤ (1− α)(1− δ2)F. (4.58b)

Thus, R1,Sym is maximized and the rate-memory pair (R1,Sym,M1,Sym) in (4.54c) and
(4.54d) is obtained when

α =
1− δ2

2− δ1 − δ2
. (4.59)

4.4.2 Scheme achieving rate-memory pair (R2,Sym,M2,Sym)

Preparations: Let 0 ≤ α1, α2 ≤ 1, such that α1 +α2 = 1. For d ∈ D, split every message
into three sub-messages, such that

Wd =
[
W

(0)
d ,W

(1)
d ,W

(2)
d

]
,

with rates R(0), R(1)

2 and R(1)

2 , respectively.

Moreover, generate three random keys K1, K2 and K3 of rates α1(1− δz)F , α1(1− δz)F
and (1− α1 − α2)(1− δz)F , respectively.

Caching phase: Store K1, K3 and the D-tuple W
(1)
1 , . . . ,W

(1)
D in receiver 1’s cache and

K2, K3 and the D-tuple W
(2)
1 , . . . ,W

(2)
D in receiver 2’s cache. Hence, the total cache

memory size is

M2,Sym = 2(1− α2)(1− δz)F +DR(1). (4.60)
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Delivery phase: The delivery phase is divided into three periods of lengths α1n, α2n and

(1− α1 − α2)n. In the first period, the transmitter conveys message W
(0)
d1

to receiver 1

using a wiretap code with secret key K1. In the second period, it conveys message W
(0)
d2

to receiver 2 using a wiretap code with secret key K2. In the third period, it sends

W
(2)
d1
⊕W (1)

d2
using a wiretap code with secret key K3.

Analysis: Receiver 1 decodes periods 1 and 3 and receiver 2 decodes periods 2 and 3.
Periods 1 and 2 are decoded reliably if

R(0) = min
{
α1(1− δ1), α2(1− δ2)

}
F, (4.61)

which is maximized for

α2 =
1− δ1

1− δ2
α1. (4.62)

The third period is reliably decoded whenever

R(1)

2
= min

{
(1− α1 − α2)(1− δ1), (1− α1 − α2)(1− δ2)

}
F

= (1− α1 − α2)(1− δ1)F. (4.63)

The maximal rate in (4.54e) is obtained for

α1 = max

{
0,

(1− δ2)
[
2(1− δ1)− (1− δ2)

]
(1− δ1)

[
2(1− δ1) + (1− δ2)

]} . (4.64)

Combining (4.60), (4.62), (4.63) and (4.64) gives the desired cache memory in (4.54f).

4.5 Upper bound on the secure capacity-memory tradeoff
under symmetric cache assignment for the two-user
scenario

The upper bound on the secure capacity memory tradeoff Cs,Sym(M) under symmetric
cache assignment is stated in the following proposition:

Proposition 4.2 (Upper Bound on Cs,Sym(M)). The secure capacity-memory tradeoff
Cs,Sym(M) of the two-user wiretap erasure BC with cache size M/2 at both receivers
under the joint secrecy constraint is upper bounded by the following three conditions:

Cs,Sym(M) ≤ (δz − δ1)(δz − δ2)

2δz − δ1 − δ2
F +

M
2
, (4.65a)

Cs,Sym(M) ≤ (1− δ1)F +
M
2D

, (4.65b)

Cs,Sym(M) ≤ (1− δ1)(1− δ2)

2− δ1 − δ2
F +

M
D
. (4.65c)
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Proof. Constraint (4.65a) is obtained following the same steps as in the proof of (4.37a).
Constraints (4.65b) and (4.65c) follow from [9] by ignoring the secrecy constraint.

4.6 Lower bound on the secure capacity-memory tradeoff
under two-sided asymmetric cache assignment for the
two-user scenario

In this section, we study a cache distribution between the one-sided cache assignment and
the symmetric cache distribution. We consider the same two-user wiretap BC model with
a total cache memoryM. Receiver 1 and 2 have access to a cache memory of sizeMR1

and MR2 , respectively, such that MR1 +MR2 = M. We choose the cache memories
MR1 and MR2 based on the channel statistics of both users. We compute the lower
and upper bounds on the secure capacity-memory tradeoff Cs,Asym(M) for this cache
distribution.

Consider the five rate-memory pairs:

• R0,Asym :=
(δz − δ1)(δz − δ2)

2δz − δ1 − δ2
F, (4.66a)

M0,Asym := 0; (4.66b)

• R1,Asym :=
(1− δ1)(δz − δ2)

1 + δz − δ1 − δ2
F, (4.66c)

M1,Asym :=
(1− δz)(δz − δ2)

1 + δz − δ1 − δ2
F ; (4.66d)

• R2,Asym :=
(1− δ1)(1− δ2)

2− δ1 − δ2
F, (4.66e)

M2,Asym := (1− δz)F ; (4.66f)

• R3,Asym :=
(1− δ2)2

2− δ1 − δ2
F, (4.66g)

M3,Asym :=

[
(1− δz) +

D(1− δ2)(δ1 − δ2)

2− δ1 − δ2

]
F ; (4.66h)

• R4,Asym :=

[
(2δz − δ1 − δ2) +

1− δz
2

]
F, (4.66i)

M4,Asym :=
[
D(2δz − δ1 − δ2) + (1− δz)

]
F ; (4.66j)
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Proposition 4.3 (Lower Bound on Cs,Asym(M)). The upper convex hull of the five
rate-memory pairs

{
(R`,Asym,M`,Asym); ` ∈ {0, 1, . . . , 4}

}
in (4.66) lower bounds the

secure capacity-memory tradeoff under two-sided asymmetric cache assignment:

Cs,Asym(M) ≥ upper hull
{

(R`,Asym,M`,Asym) : ` = 0, . . . , 4
}
. (4.67)

Proof. As in proof of Theorem 4.1, it suffices to prove the achievability of the five rate-
memory pairs {(R`,M`) : ` = 0, . . . , 4}. At M0,Asym, R0,Asym = R0 since there is no
cache. (R1,Asym,M1,Asym) is similar to the first pair (R1,M1) of Section 4.2 since it is
obtained by taking MR1 =M and MR2 = 0 and following the same analysis.

We prove the achievability of the remaining points in the following subsections.

Remark 4.3. After (R4,Asym,M4,Asym), the lower bound keeps increasing with a slope
1

2D . This can be deduced from Remark 4.2

4.6.1 Scheme achieving rate-memory pair (R2,Asym,M2,Asym)

Preparations: Let α ∈ [0, 1]. Generate two random keys K1 and K2 of rates α(1− δz)F
and (1− α)(1− δz)F , respectively.

Caching phase: Store K1 in the cache memory of receiver 1 and K2 in the cache of
receiver 2. Thus, the total cache memory size is

M2,Asym = (1− δz)F.

Delivery phase: The delivery phase is divided into two periods of lengths αn and (1−α)n,
respectively. In the first period, the transmitter conveys message Wd1 to receiver 1 using
wiretap code with secret key K1. In the second period, it conveys message Wd2 to
receiver 2 using wiretap code with secret key K2.

Analysis: Both receivers decode reliably whenever

R2,Asym ≤ α(1− δ1)F, (4.68a)

R2,Asym ≤ (1− α)(1− δ2)F. (4.68b)

The maximal rate in (4.66e) is obtained for

α =
1− δ2

2− δ1 − δ2
. (4.69)
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4.6.2 Scheme achieving rate-memory pair (R3,Asym,M3,Asym)

This pair is obtained by following a similar analysis to the one in Section 4.2.3. The
only difference is that we generate a second key K2 of rate (1 − α)(1 − δz)F and store

it in receiver 2’s cache. This key is used to secure messages W
(0)
d2

and W⊕d2 conveyed to
receiver 2 in the second period.

In this case, the total cache memory size is

M3,Asym = F (1− δz) +D · αF (δ1 − δ2). (4.70)

and the transmission rate should satisfy

R3,Asym ≤ α(1− δ2)F, (4.71)

R3,Asym ≤ (1− α)(1− δ2)F + α(δ1 − δ2)F. (4.72)

The rate is maximized for

α =
1− δ2

2− δ1 − δ2
, (4.73)

giving the rate memory pair (R3,Asym,M3,Asym) in (4.66g) and (4.66h).

4.6.3 Scheme achieving rate-memory pair (R4,Asym,M4,Asym)

Preparations: For d ∈ D, split each message Wd into three sub-messages, such that

Wd =
[
W

(0)
d ,W

(1)
d ,W⊕d

]
, (4.74)

with rates R(0) = (δz − δ1)F , R(1) = (δz − δ2)F and R⊕ = (1−δz)F
2 , respectively. Thus,

the total rate is

R4,Asym = (2δz − δ1 − δ2)F +
1− δz

2
F.

Then, generate two random keys K1 and K2 of rate (1−δz)F
2 each.

Moreover, generate a piggyback codebook C1 with Γ1 := b2n(1−δz)F c · b2n(δz−δ1)F c ·
b2n(δz−δ2)F c codewords of length n,

C1 :=
{
X

(n)
1 (l1)

}Γ1

l1=1
, (4.75)

by drawing each entry of each codeword at random according to a Bernoulli-1/2 distri-
bution independently of all other entries.

The codebook is partitioned into b2n(δz−δ1)F c · b2n(δz−δ2)F c subcodebooks (bins)
each with b2n(1−δz)F c codewords. The subcodebooks are arranged into an array with
b2n(δz−δ1)F c rows and b2n(δz−δ2)F c columns.
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Caching phase: We store K1 and the D-tuple W
(1)
1 , . . . ,W

(1)
D in receiver 1’s cache.

Moreover, we store K2 and the D-tuple W
(0)
1 , . . . ,W

(0)
D in receiver 2’s cache. Thus, the

total cache memory size is

M4,Asym = (1− δz)F +D(2δz − δ1 − δ2)F. (4.76)

Delivery phase: The transmitter uses the piggyback codebook C1 to encode messages

W
(0)
d1

and W⊕d1 to receiver 1 and messages W
(1)
d2

and W⊕d2 to receiver 2. It generates

WXOR =
[
W⊕d1 ⊕K1,W

⊕
d2
⊕K2

]
,

and transmits the WXOR-th codeword of the subcodebook C1(W
(0)
d1
,W

(1)
d2

) over the chan-
nel.

Analysis: Receiver 1 reliably decodes messages WXOR and W
(0)
d1

since their total rate

is (1 − δ1)F . Receiver 2 also decodes reliably messages WXOR and W
(1)
d2

of total rate
(1−δ2)F . Thus, the pair (R4,Asym,M4,Asym) in (4.66i) and (4.66j) is securely achievable.

4.7 Upper bound on the secure capacity-memory tradeoff
under two-sided asymmetric cache assignment for the
two-user scenario

The upper bound on the secure capacity memory tradeoff Cs,Sym(M) under two-sided
asymmetric cache assignment is stated in the following proposition:

Proposition 4.4 (Upper Bound on Cs,Asym(M)). The secure capacity-memory tradeoff
Cs,Asym(M) of the two-user wiretap erasure BC with cache size MR1 at receiver 1 and
MR2 at receiver 2, such that MR1 +MR2 = M, under the joint secrecy constraint is
upper bounded by the following four conditions:

Cs,Asym(M) ≤ (δz − δ1)(δz − δ2)

2δz − δ1 − δ2
F +

δz − δ2

2δz − δ1 − δ2
M, (4.77a)

Cs,Asym(M) ≤ 1

2
(δz − δ2)F +

M
2
, (4.77b)

Cs,Asym(M) ≤ (1− δ1)(1− δ2)

2− δ1 − δ2
F +

M
D
, (4.77c)

Cs,Asym(M) ≤ (2− δ1 − δ2)

2
F +

M
2D

. (4.77d)

Proof. Constraints (4.77a) and (4.77b) are obtained following the same proof of (4.37a).
Constraints (4.77c) and (4.77d) follow from [9] by ignoring the secrecy constraint.
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4.8 Discussion and numerical results

4.8.1 Discussion on the obtained bounds

Figure 4.1 shows lower and upper bounds on the capacity-memory tradeoff Cs(M) for
a specific example.

From Theorem 4.2, upper bound (4.37a) is tight when the cache memory is small
and upper bound (4.37c) is tight when the cache memory is sufficiently large. From
Theorems 4.1 and 4.2, we can see that our lower and upper bounds coincide for small
and large cache memory regimes.

Corollary 4.1. When the cache memory is small:

Cs(M) =
(δz − δ1)(δz − δ2)

2δz − δ1 − δ2
F +

δz − δ2

2δz − δ1 − δ2
M, 0 ≤M ≤M1, (4.78)

where M1 is defined in (4.7d).

Corollary 4.2. When the cache memory is large:

Cs(M) = (δz − δ2)F, M≥M4, (4.79)

where M4 is defined in (4.7j).

M
F ·D

Cs(M)
F

0

0.6

0.4

0.2

0.60.40.2

LB on Cs(M)

UB on Cs(M)

Figure 4.1: Lower and upper bounds on the secure capacity-memory tradeoff Cs(M)
under joint secrecy constraint for the two-user wiretap erasure BC with erasure proba-
bilities δ1 = 0.7, δ2 = 0.2, δz = 0.8, F = 5, and library size D = 15.

We observe from Corollary 4.1 and Figure 4.1 that for small cache memories, the
rate-memory pairs (R0,M0), (R1,M1), and (R2,M2) determine the performance of our
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lower bound in Theorem 4.1. The first point takes no cache memories. We achieve the
other two points by storing only random keys in the cache memory, but no data. We
thus conclude that for small cache memories it is not worth caching data, but only secret
keys. The reason is that each piece of data will be useful for only a subset of all possible
user demands, whereas a secret key serves with any demand. This also explains why
in the regime of small M, the secure capacity-memory tradeoff Cs(M) can grow as a
factor times M, irrespective of the library size D. For larger values of M, it grows at
most like M/D.

4.8.2 Impact of the joint secrecy constraint

We compare our bounds in Theorems 4.1 and 4.2 with the lower and upper bounds on the
secure capacity-memory tradeoff under the individual secrecy constraint (see Chapter 3,
Theorems 3.1 and 3.2).

M
F ·D

Cs(M)
F

0

0.4

0.2

0.50.40.30.20.1

LB on Cs(M) for
joint constraint

UB on Cs(M) for
joint constraint

LB on Cs(M) for
individual constraint
UB on Cs(M) for
individual constraint

Figure 4.2: Lower and upper bounds on the secure capacity-memory tradeoff Cs(M)
under joint and individual secrecy constraints for the two-user wiretap erasure BC with
erasure probabilities δ1 = 0.7, δ2 = 0.3, δz = 0.8, F = 5, and library size D = 5.

Figure 4.2 shows that the upper bound on the capacity-memory tradeoff under an
individual secrecy constraint is higher only for small cache memory regime and it co-
incides with the one under a joint constraint for large cache memories. This is trivial
because in our upper bound’s proof, we neglected the secrecy constraints for large cache
memories.

We also observe that the lower bound under an individual secrecy constraint is higher
than under a joint constraint for all parameters of M. Therefore, we conclude that the
additional security imposes loss in the transmission rate.
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4.8.3 Impact of the cache assignment

Figures 4.3 and 4.4 depict the lower and upper bounds on the capacity memory tradeoffs
for the different cases of cache assignment.

M
F ·D

Cs(M)
F

,
Cs,Sym(M)

F
Cs,Asym(M)

F

0

0.6

0.4

0.2

0.60.40.2

LB on Cs(M)

UB on Cs(M)

LB on Cs,Sym(M)

UB on Cs,Sym(M)

LB on Cs,Asym(M)

UB on Cs,Asym(M)

Figure 4.3: Lower and upper bounds on the secure capacity-memory tradeoffs
Cs(M)/Cs,Sym(M)/Cs,Asym(M) for the two-user wiretap erasure BC with erasure prob-
abilities δ1 = 0.7, δ2 = 0.2, δz = 0.8, F = 5, and library size D = 5.

M
F ·D

Cs(M)
F

,
Cs,Sym(M)

F
Cs,Asym(M)

F

0

0.4

0.2

0.30.20.1

LB on Cs(M)

UB on Cs(M)

LB on Cs,Sym(M)

UB on Cs,Sym(M)

LB on Cs,Asym(M)

UB on Cs,Asym(M)

Figure 4.4: Lower and upper bounds on the secure capacity-memory tradeoffs
Cs(M)/Cs,Sym(M)/Cs,Asym(M) for the two-user wiretap erasure BC with erasure prob-
abilities δ1 = 0.7, δ2 = 0.5, δz = 0.8, F = 5 and library size D = 5.
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By comparing Theorems 4.1 and 4.2 with Propositions 4.1 and 4.2, we observe that
in the regime of small cache memory, our coding scheme for cache only at the weak
receiver has a slope, namely δz−δs

2δz−δw−δs , much steeper than the best possible coding

scheme assuming that each receiver has the same cache memory size M2 . In fact, by
(4.65), the capacity in the latter case is upper bounded by 1

2 . So, for small cache memory
regime, allocating all the cache memory to the weaker receiver results in a significantly
higher performance than allocating the available cache memory equally between the two
receivers.

We now compare Theorems 4.1 and 4.2 with Propositions 4.3 and 4.4. For the two-
sided asymmetric cache assignment, the upper bound on Cs,Asym(M) coincides with that
of Cs(M) in the one-sided cache assignment case for

M≤ (1− δ2)(δz − δ2)− (1− δ1)(1− δz)
2− δ1 − δ2

F.

However, the lower bound Cs,Asym(M) is better for the two-sided asymmetric cache
assignment when storing only keys in the strong receiver’s cache memory. This indicates
that for the wiretap BC scenario, it is better to allocate a small cache memory even
to the strong receiver to secure its communication. This is in contrast to the scenario
without secrecy where no gain can be obtained from assigning cache memories to strong
receiver.

For large cache memories, depending on the channel parameters, the bounds for
equal cache sizes are sometimes higher than the bounds for cache only at receiver 1.
However, distributing the cache asymmetrically to both receivers is always better than
assigning it only to receiver 1. This is due to the fact that the capacity for the one-sided
cache assignment saturates when the strong receiver does not have any cache memory;
whereas the capacity for the two-sided cache assignment continues to increase with the
memory size.

Moreover, since asymmetric cache distribution takes into consideration the channel
parameters, it is always better than having symmetric caches regardless of the channel
parameters and total cache sizes.

4.9 General lower bound on the secure capacity-memory
tradeoff

We extend the results in Sections 4.2 and 4.3 to the general setup with Kw weak receivers
and Ks strong receivers.
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Consider the following six rate-memory pairs:

• R
(K)
0 :=

( Kw

δz − δw
+

Ks

δz − δs

)−1
F, (4.80a)

M(K)
0 := 0; (4.80b)

• R
(K)
1 :=

(1− δw)(δz − δs)
Kw(δz − δs) +Ks(1− δw)

F, (4.80c)

M(K)
1 :=

(1− δz)(δz − δs)
Kw(δz − δs) +Ks(1− δw)

F ; (4.80d)

• R
(K)
2 := min

{(1− δs)(δz − δw)

Ks(1− δw)
,

(1− δs)(1− δw)

Kw(1− δs) +Ks(1− δw)

}
F, (4.80e)

M(K)
2 :=

(1− δz)
Kw

F ; (4.80f)

• R
(K)
3 :=

2(1− δw)(δz − δs)
[
Ks(1− δw) +Kw(δw − δs)

]
F

Kw(δz − δs)
[
(Kw − 1)(δw − δs)+2Ks(1− δw)

]
+2K2

s (1− δw)2
,(4.80g)

M(K)
3 :=

2D(δz − δs)(1− δw)(δw − δs)F
Kw(δz − δs)

[
(Kw − 1)(δw − δs)+2Ks(1− δw)

]
+2K2

s (1− δw)2

+
2(δz − δs)(1− δz)

[
(Kw − 1)(δw − δs) +Ks(1− δw)

]
F

Kw(δz − δs)
[
(Kw − 1)(δw − δs)+2Ks(1− δw)

]
+2K2

s (1− δw)2
. (4.80h)

• R
(K)
4 :=

(δz − δs)
Ks

F, (4.80i)

M(K)
4 :=

Ks(δz − δs)(1− δz) +DKw(δz − δs)2

Ks

[
Ks(1− δz) +Kw(δz − δs)

] F ; (4.80j)

• R
(K)
5 :=

(δz − δs)
Ks

F, (4.80k)

M(K)
5 := D

(δz − δs)
Ks

F. (4.80l)

Theorem 4.3 (Lower Bound on C
(K)
s (M)). The upper convex hull of the six rate-

memory pairs
{

(R
(K)
` ,M(K)

` ) : ` ∈ {0, . . . , 5}
}

in (4.80) lower bounds the secure
capacity-memory tradeoff of the K-receiver channel with Kw weak receivers and Ks

strong receivers with cache memories only at the weak receivers:

C(K)
s (M) ≥ upper hull

{
(R

(K)
` ,M(K)

` ), ` ∈ {0, . . . , 5}
}
. (4.81)
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Proof. As in proof of Theorem 4.1, it suffices to prove the achievability of the six rate-

memory pairs {(R(K)
` ,M(K)

` ) : ` = 0, . . . , 5}. The achievability of the pairs (R
(K)
0 ,M(K)

0 )

and (R
(K)
5 ,M(K)

5 ) can be proved following the same analysis for (R0,M0) and (R5,M5).

The achievability of the remaining rate-memory pairs is outlined in the following
subsections.

Remark 4.4. For all M ≥ M(K)
5 , the securely achievable capacity is Cs(M) = R

(K)
5 .

This can be deduced from Remark 3.4.

4.9.1 Scheme achieving rate-memory pair (R
(K)
1 ,M(K)

1 )

Preparations: Let α ∈ [0, 1]. For each weak receiver i ∈ Kw, generate a random key Ki of

rate α (1−δz)F
Kw

by drawing each entry randomly according to a Bernoulli-1/2 distribution
independently of all other entries.

Caching phase: For each i ∈ Kw, store Ki in the cache memory of receiver i, hence,

M(K)
1 =

α(1− δz)F
Kw

. (4.82)

Delivery phase: The delivery phase is divided into K periods such that the first Kw

periods have length αn
Kw

and the last Ks periods have length (1−α)n
Ks

. In each period
i ∈ Kw, the transmitter sends Wdi to receiver i using a wiretap code with secret key Ki.
In each period j ∈ Ks, it sends Wdj to receiver j using a wiretap code without secret
key.

Analysis: Every weak receiver i ∈ Kw decodes its message reliably whenever

R
(K)
1 ≤ α(1− δw)F

Kw
. (4.83)

Every strong receiver j ∈ Ks decodes its message reliably whenever

R
(K)
1 ≤ (1− α)(δz − δs)F

Ks
. (4.84)

Thus, the achievable rate is

R
(K)
1 = max

α∈[0,1]
min

{
α

(1− δw)F

Kw
, (1− α)

(δz − δs)F
Ks

}
, (4.85)

which is maximized for

α =
Kw(δz − δs)

Kw(δz − δs) +Ks(1− δw)
, (4.86)

generating the rate-memory pairs (R
(K)
1 ,M(K)

1 ) in (4.80c) and (4.80d).
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4.9.2 Scheme achieving rate-memory pair (R
(K)
2 ,M(K)

2 )

Preparations: Let α ∈ [0, 1]. For d ∈ D, split each message into two sub-messages, such
that

Wd =
[
W

(0)
d ,W⊕d

]
,

with rates R(0) = α(1−δw)F
Kw

and R⊕ = (1−α)(1−δz)F
Kw

, respectively.

For each weak receiver i ∈ Kw, generate one random key Ki,1 of rate α(1−δz)F
Kw

and

Ks random keys K
(j)
i,2 , j ∈ Ks, of rate (1−α)(1−δz)F

KwKs
each. The keys are generated by

drawing each entry randomly according to a Bernoulli-1/2 distribution independently of
all other entries.

Caching phase: For each i ∈ Kw, store in receiver i’s cache the following

Vi = Ki,1

⋃ {
K

(j)
i,2 , ∀j ∈ Ks

}
. (4.87)

Hence, the cache memory size is

M(K)
2 =

(1− δz)F
Kw

. (4.88)

Delivery phase: The delivery phase is divided into K periods such that the first Kw

periods have length αn
Kw

each and the last Ks periods have length (1−α)n
Ks

each.

In the first Kw periods, the transmitter conveys messages W
(0)
di

to the weak receivers.

In each period i ∈ Kw, the transmitter sends message W
(0)
di

to receiver i using a wiretap
code with secret key Ki,1.

In the last Ks periods, the transmitter conveys messages W⊕di to the weak receivers
and messages Wdj to the strong receivers. Each period j ∈ {Kw + 1, . . . ,K} is fur-

ther divided into Kw sub-periods. Each message Wdj is split into Kw parts W
(i)
dj

,

i = {1, . . . ,Kw} and each message W⊕di is split into Ks parts W
⊕,(j)
di

, j = {1, . . . ,Ks}.
For each sub-period i of the period j, generate a superposition codebook with a cloud
center that contains 2n(1−α)(1−δz)F/(KsKw) codewords, and with each of the satellite code-

books containing 2nR
(K)
2 /Kw codewords. The transmitter encodes W

⊕,(j)
di

⊕K(j)
i,2 into the

cloud center and W
(i)
dj

into the satellite. Receiver i decodes only message W⊕di ⊕ K
(j)
i,2 .

Receiver j decodes both messages W⊕di ⊕K
(j)
i,2 and W

(i)
dj

.

Analysis: Every weak receiver i ∈ Kw decodes reliably if

R
(K)
2 ≤ α(1− δw)F

Kw
+ (1− α)

(1− δz)F
Kw

(4.89)
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=
(1− δz)F

Kw
+ α

(δz − δw)F

Kw
. (4.90)

Moreover, every strong receiver j ∈ Ks decodes reliably if

R
(K)
2 ≤ (1− α)

(1− δs)(δz − δw)F

Ks(1− δw)
. (4.91)

Thus, the achievable rate is

R
(K)
2 ≤ max

α∈[0,1]
min

{
(1− δz)F

Kw
+ α

(δz − δw)F

Kw
, (1− α)

(1− δs)(δz − δw)F

Ks(1− δw)

}
, (4.92)

which is maximized for

α = max

{
0,
Kw(1− δs)(δz − δw)−Ks(1− δz)(1− δw)

(δz − δw)[Ks(1− δw) +Kw(1− δs)]

}
, (4.93)

generating the rate-memory pair (R
(K)
2 ,M(K)

2 ) in (4.80e) and (4.80f).

4.9.3 Scheme achieving rate-memory pair (R
(K)
3 ,M(K)

3 )

Preparations: Let α1, α2, α3 ∈ [0, 1], such that α1 + α2 + α3 = 1. For d ∈ D, split each
message into three sub-messages, such that

Wd =
[
W

(0)
d ,W

(1)
d ,W⊕d

]
with rates R(0) = α2(δz−δw)F

Kw
, R(1) = 2α1Ks(1−δw)F

Kw(Kw−1) and R⊕ = α2(1−δz)F
Kw

, respectively.

Then, split every sub-message W
(1)
d into Kw sub-messages

W
(1)
d =

{
W

(1)
d,i : i ∈ Kw

}
,

of rate R(1)

Kw
each.

For each i ∈ Kw, generate a random key K
(0)
i of rate R⊕ by drawing each entry

randomly according to a Bernoulli-1/2 distribution independently of all other entries.

Similarly, generate
(
Kw
2

)
random keys of rate 1−δz

1−δw ·
R(1)

Kw
:

K(1) =
{
K

(1)
{i1,i2} : {i1, i2} ⊆ {1, . . . ,Kw}

}
. (4.94)

Caching phase: For every weak receiver i ∈ Kw, store the cache content

Vi =
{
W

(1)
d,i : d ∈ {1, . . . , D}

}⋃{
K

(1)
{i1,i2} : i ∈ {i1, i2}

}⋃
K

(0)
i . (4.95)
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Thus, the cache memory size is

M(K)
3 = D

R(1)

Kw
+ (Kw − 1)

1− δz
1− δw

R(1)

Kw
+R⊕. (4.96)

Delivery phase: The delivery phase is divided into three sub-phases of lengths α1n, α2n
and α3n.

In the first sub-phase, the transmitter conveys messages W
(1)
di

for every weak receiver

i ∈ Kw by time-sharing over
(
Kw
2

)
periods. In each period, it sends W

(1)
di1 ,i2

⊕W (1)
di2 ,i1

to

receivers i1 and i2 using a wiretap code with secret key K
(1)
{i1,i2}.

In the second sub-phase, the transmitter conveys messages W
(0)
di

and W⊕di for every

weak receiver i ∈ Kw and message W
(1)
dj

for every strong receiver j ∈ Ks by time-sharing
over Kw periods. For each of the periods, it generates a piggyback codebook C with

b2nR(0)c · b2nKsR(1)/Kwc subcodebooks C
(
W

(0)
d ,W

(1)
Ks

)
. Each subcodebook has b2nR⊕c

codewords. It generates then WXOR = W⊕di ⊕K
(0)
i and transmits the WXOR-th codeword

of the codebook C
(
W

(0)
di
,W

(1)
Ks

)
, where W

(1)
Ks

= {W (1)
dj ,i

: j ∈ Ks}.

In the third sub-phase, the transmitter conveys messages W
(0),⊕
dj

= [W
(0)
dj
,W⊕dj ] for

every strong receiver j ∈ Ks by time-sharing over Ks periods. In each of the periods, it

sends W
(0),⊕
dj

to receiver j using a wiretap code without secret key.

Analysis: Weak receivers only decode the first transmission period. Thus, it is reliably
decoded if (

Kw
2

)
R(1)

Kw

F (1− δw)
≤ α1 ⇒

Kw−1
2 R(1)

F (1− δw)
≤ α1. (4.97)

The third transmission period is reliably decoded only by strong receivers if

Ks

(
R(0) +R⊕

)
F (δz − δs)

≤ α3. (4.98)

Every weak receiver i ∈ Kw decodes only messages W
(0)
di

and W⊕di transmitted in the sec-
ond period; whereas every strong receiver j ∈ Ks decodes all the transmitted messages.
Thus, the second period is reliably decoded whenever

max

{
Kw

(
R(0) +R⊕

)
F (1− δw)

,
Kw

(
R(0) +R⊕

)
+KsR

(1)

F (1− δs)

}
≤ α2. (4.99)

The above inequality is maximized by equalizing both terms in the maximization yielding

R(1) =
Kw(δw − δs)

Kw(δw − δs) +Ks(1− δw)
R

(K)
3 , (4.100a)
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R(0) +R⊕ =
Ks(1− δw)

Kw(δw − δs) +Ks(1− δw)
R

(K)
3 . (4.100b)

Combining (4.97)–(4.100) gives the rate R
(K)
3 in (4.80g) and the corresponding values:

α1 =
Kw(Kw − 1)(δw − δs)(δz − δs)

β
, (4.101a)

α2 =
2KwKs(1− δw)(δz − δs)

β
, (4.101b)

α3 =
2K2

s (1− δw)2

β
, (4.101c)

where

β = Kw(Kw − 1)(δw − δs)(δz − δs) + 2KwKs(1− δw)(δz − δs) + 2K2
s (1− δw)2. (4.102)

The cache memory size M(K)
3 is obtained as in (4.80h).

4.9.4 Scheme achieving rate-memory pair (R
(K)
4 ,M(K)

4 )

Preparations: Let α ∈ [0, 1]. For d ∈ D, split each message into two sub-messages, such
that

Wd =
[
W⊕d ,W

(1)
d

]
, (4.103)

with rates R⊕ = αF (1−δz)
Kw

and R(1) = αF (δz−δs)
Ks

, respectively.

Then, split every sub-message W
(1)
d into Kw sub-messages

W
(1)
d =

{
W

(1)
d,i : i ∈ Kw

}
,

of rate R(1)

Kw
each.

For each i ∈ Kw, generate a random key Ki of rate R⊕ by drawing each entry
randomly according to a Bernoulli-1/2 distribution independently of all other entries.

Caching phase: For every weak receiver i ∈ Kw, storeKi and theD-tupleW
(1)
1 , . . . ,W

(1)
D .

Thus, the cache memory size is

M(K)
4 = R⊕ +DR(1) = αF

[
(1− δz)
Kw

+
D(δz − δs)

Ks

]
. (4.104)

Delivery phase: The delivery phase is divided into two sub-phases of lengths αn and
(1− α)n.
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In the first sub-phase, the transmitter conveys messages W⊕di to every weak receiver

i ∈ Kw and messages W
(1)
dj

to every strong receiver j ∈ Ks by time sharing over Kw pe-

riods. For each of the periods, it generates a piggyback codebook C with b2nKsR(1)/Kwc
subcodebooks C

(
W̃
)
. Each subcodebook has b2nR⊕c codewords. It generates then

WXOR = W⊕di ⊕Ki and transmits the WXOR-th codeword of the codebook C
(
W̃
)
, where

W̃ = {W (1)
dj ,i

: j ∈ Ks}.

In the second sub-phase, the transmitter conveys messages W⊕dj to every strong re-
ceiver j ∈ Ks by time sharing over Ks periods using wiretap codes without secret key.

Analysis: Weak receivers decode reliably message W⊕di conveyed in the first transmission
sub-phase since R⊕ is smaller than their channel capacity.

Strong receivers also decode reliably the first transmission sub-phase. They decode the
transmission sub-phase reliably if

R⊕ =
α(1− δz)F

Kw
≤ (1− α)(δz − δs)F

Ks
, (4.105)

which is maximized for

α =
Kw(δz − δs)

Kw(δz − δs) +Ks(1− δz)
, (4.106)

giving the rate-memory pair (R
(K)
4 ,M(K)

4 ) in (4.80i) and (4.80j).

4.10 General upper bound on the secure capacity-memory
tradeoff

In this section, we provide the upper bound on the secure capacity-memory tradeoff of
the general setup with Kw weak receivers and Ks strong receivers. This upper bound is
stated in the following theorem:

Theorem 4.4 (Upper Bound on C
(K)
s (M)). The secure capacity-memory tradeoff

C
(K)
s (M) of the K-receiver channel with Kw weak receivers and Ks strong receivers with

cache memories only at the weak receivers is upper bounded by the following 2Kw + 1
conditions:

C(K)
s (M) ≤ δz − δs

Ks
F, (4.107a)

C(K)
s (M) ≤

(
j

1− δw
+

Ks

1− δs

)−1

F +
jM
D

, j ∈ {1, . . . ,Kw}, (4.107b)

C(K)
s (M) ≤ max

αi∈[0,1]
min

{
αi(δz − δw) + (1− αi)(δz − δs)

i+Ks
F +

i

i+Ks
M,
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αi
δz − δw

i
F +M

}
, i ∈ {1, . . . ,Kw}. (4.107c)

4.10.1 Proof of the general upper bound

Bound (4.107b) follows from [9] and by ignoring the secrecy constraint. Bound (4.107a)
holds because the strong receivers have no cache, and their rate cannot be larger than
in the absence of weak receivers.

Bound (4.107c) is proved as follows. For each blocklength n, we fix encoding, caching,
and decoding functions as in (4.5), (4.3), (3.17) and (3.19) so that both the probability
of worst-case error and the secrecy leakage satisfy:

PWorst
e −−−→

n→∞
0 and

1

n
I(W1, . . . ,WD;Zn) −−−→

n→∞
0.

By Fano’s inequality and because conditioning can only reduce entropy, there exists a
sequence of real numbers {εn}∞n=1 with

εn
n
−−−→
n→∞

0,

such that 

H(Wd1 |Y n
1 , V1) ≤ εn

2k
,

H(Wd2 |Y n
2 , V1, V2,Wd1) ≤ εn

2k
,

...

H(Wdk |Y
n
k , V1, . . . , Vk,Wd1 , . . . ,Wdk−1

) ≤ εn
2k
.

We proved in Section 4.3 that the first inequality implies the following constraint

Rs ≤ I(U1;Y1|Q)− I(U1;Z|Q) +M1. (4.108)

Accounting for receivers 1, . . . , k among the K receivers, we derive:

kRs ≤
1

n
H(Wd1 , . . . ,Wdk)

=
1

n
H(Wd1 , . . . ,Wdk |Z

n) +
1

n
I(Wd1 , . . . ,Wdk ;Zn)

≤ 1

n
H(Wd1 , . . . ,Wdk |Z

n) +
εn
2n

(a)

≤ 1

n

[
H(Wd1) +H(Wd2 |Wd1) + . . .+H(Wdk |Wdk−1

, . . . ,Wd1)

− I(Wd1 , . . . ,Wdk ;Zn)
]

+
εn
2n
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(b)

≤ 1

n

[
I(Wd1 ;Y n

1 , V1) + I(Wd2 ;Y n
2 , V1, V2|Wd1) + . . .

+ I(Wdk ;Y n
k , V1, . . . , Vk|Wd1 , . . . ,Wdk−1

)− I(Wd1 , . . . ,Wdk ;Zn)
]

+
εn
n

(c)
=

1

n

[
I(Wd1 ;Y n

1 , V1)− I(Wd1 ;Zn)
]

+
1

n

k∑
`=2

[
I(Wd` ;Y

n
` , V1, . . . , V`|Wd1 , . . . ,Wd`−1

)− I(Wd` ;Z
n|Wd1 , . . . ,Wd`−1

)
]

+
εn
n

=
1

n

[
I(Wd1 ;Y n

1 |V1)− I(Wd1 ;Zn|V1) + I(Wd1 ;V1|Zn)
]

+
1

n

k∑
`=2

[
I(Wd` ;Y

n
` |V1, . . . , V`,Wd1 , . . . ,Wd`−1

)

− I(Wd` ;Z
n|V1, . . . , V`,Wd1 , . . . ,Wd`−1

)

+ I(Wd` ;V1, . . . , V`|Wd1 , . . . ,Wd`−1
, Zn)

]
+
εn
n
, (4.109)

where (a) follows from the chain rule of mutual information; (b) follows from Fano’s
inequality; and (c) follows from the chain rule of mutual information.

In a similar way to (4.43), we can prove that

1

n

[
I(Wd1 ;Y n

1 |V1)− I(Wd1 ;Zn|V1)
]
≤ I(U1;Y1|Q)− I(U1;Z|Q). (4.110)

Then, we prove that for each ` ∈ {1, . . . , k}, the following set of inequalities hold:

I(Wd` ;Y
n
` |V1, . . . , V`,Wd1 , . . . ,Wd`−1

)− I(Wd` ;Z
n|V1, . . . , V`,Wd1 , . . . ,W`−1)

(a)
=

n∑
i=1

[
I(Wd` ;Y`,i|V1, . . . , V`,Wd1 , . . . ,Wd`−1

, Y i−1
` , Zni+1)

− I(Wd` ;Zi|V1, . . . , V`,Wd1 , . . . ,Wd`−1
, Y i−1

` , Zni+1)
]

(b)
=

n∑
i=1

[
I(Wd` ;Y`,i|V1, . . . , V`,Wd1 , . . . ,Wd`−1

, Y i−1
2 , . . . , Y i−1

` , Zni+1)

− I(Wd` ;Zi|V1, . . . , V`,Wd1 , . . . ,Wd`−1
, Y i−1

2 , . . . , Y i−1
` , Zni+1)

]
(c)

≤
n∑
i=1

[
I(Wd` ;Y`,i|V1, . . . , V`,Wd1 , . . . ,Wd`−1

, Y i−1
2 , . . . , Y i−1

` , Zni+1)

− I(Wd` ;Zi|V1, . . . , V`,Wd1 , . . . ,Wd`−1
, Y i−1

2 , . . . , Y i−1
` , Zni+1)

]
+

n∑
i=1

[
I(V`;Y`,i|V1, . . . , V`−1,Wd1 , . . . ,Wd`−1

, Y i−1
2 , . . . , Y i−1

` , Zni+1)

− I(V`;Zi|V1, . . . , V`−1,Wd1 , . . . ,Wd`−1
, Y i−1

2 , . . . , Y i−1
` , Zni+1)

]
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(d)

≤
n∑
i=1

[
I(Wd` , V`;Y`,i|V1, . . . , V`−1,Wd1 , . . . ,Wd`−1

, Y i−1
2 , . . . , Y i−1

` , Zni+1)

− I(Wd` , V`;Zi|V1, . . . , V`−1,Wd1 , . . . ,Wd`−1
, Y i−1

2 , . . . , Y i−1
` , Zni+1)

]
+

n∑
i=1

[
I(Y i−1

`+1 ;Y`,i|V1, . . . , V`,Wd1 , . . . ,Wd` , Y
i−1

2 , . . . , Y i−1
` , Zni+1)

− I(Y i−1
`+1 ;Zi|V1, . . . , V`,Wd1 , . . . ,Wd` , Y

i−1
2 , . . . , Y i−1

` , Zni+1)
]

=

n∑
i=1

[
I(Wd` , V`, Y

i−1
`+1 ;Y`,i|V1, . . . , V`−1,Wd1 , . . . ,Wd`−1

, Y i−1
2 , . . . , Y i−1

` , Zni+1)

− I(Wd` , V`, Y
i−1
`+1 ;Zi|V1, . . . , V`−1,Wd1 , . . . ,Wd`−1

, Y i−1
2 , . . . , Y i−1

` , Zni+1)
]
,

(4.111)

where (a) follows from the chain rule of mutual information and by applying Csiszar’s
sum-identity; (b) because receivers 1, . . . , ` − 1 are degraded with respect to receiver `,
and so the following Markov chain holds:

(Wd` ;Y`,i|V1, . . . , Vk,Wd1 , . . . ,Wd`−1
, Zni+1)→ Y i−1

` → (Y i−1
1 , . . . , Y i−1

` ); (4.112)

and (c) and (d) hold because the eavesdropper is degraded with respect to receiver `,
implying the following Markov chain:

(V1, . . . , V`,Wd1 , . . . ,Wd` , Y
i−1

2 , . . . , Y i−1
`+1 , Z

n
i+1)→ Y`,i → Zi. (4.113)

We define for each k ∈ {2, . . . ,K} the random variables

Yk := Yk,Q (4.114)

Uk := (Wdk , Vk, Y
Q−1
k+1 , Uk−1). (4.115)

Dividing by n, we can rewrite constraint (4.111) as

1

n

[
I(W`;Y

n
` |V1, . . . , V`,Wd1 , . . . ,Wd`−1

)− I(W`;Z
n|V1, . . . , V`,Wd1 , . . . ,Wd`−1

)
]

≤
k∑
`=2

I(U`;Y`|U`−1, Q)− I(U`;Z|U`−1, Q). (4.116)

Finally, we bound the following sum:

I(Wd1 ;V1|Zn) +

k∑
`=2

I(Wd` ;V1, . . . , V`|Wd1 , . . . ,Wd` , Z
n)

≤ I(Wd1 ;V1 . . . , Vk|Zn) +

k∑
`=2

I(Wd` ;V1, . . . , Vk|Wd1 , . . . ,Wd` , Z
n)
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= I(Wd1 , . . . ,Wdk ;V1, . . . , Vk|Zn)

≤ n
k∑
`=1

M`. (4.117)

Taking into consideration constraints (4.110), (4.116) and (4.117), we can rewrite
constraint (4.109) as:

kRs ≤ I(U1;Y1|Q)− I(U1;Z|Q) +
k∑
`=1

M` + εn

+
k∑
`=2

[
I(U`;Y`|U`−1, Q)− I(U`;Z|U`−1, Q)

]
. (4.118)

Let n→∞, from constraints (4.108) and (4.118), we conclude that if a rate-memory
tuple (Rs,M1, . . . ,MK) is securely-achievable (under the joint secrecy condition), then
there exist auxiliaries (U1, U2, . . . , UK , Q) so that for each realization of Q = q the
following Markov chain holds:

U1 → U2 → · · · → UK → X → YK → YK−1 → · · ·Y1 → Z (4.119)

and so that the following K inequalities are satisfied:

Rs < I(U1;Y1|Q)− I(U1;Z|Q) +M1; (4.120a)

and for k ∈ {2, . . . ,K}:

kRs ≤ I(U1;Y1|Q)−I(U,1;Z|Q)+
k∑
`=2

I(U`;Y`|U`−1, Q)−I(U`;Z|Q)+
k∑
`=1

M`. (4.120b)

For the erasure BC, it is not hard to show that the weakest constraints are obtained by
choosing U1, . . . , UK Bernoulli random variables and Q a constant.

So, constraints (4.120) become

Rs ≤ α1(δz − δ1) +M1, (4.121a)

Rs ≤
1

k

k∑
`=1

[
α`(δz − δ`) +M`

]
, ∀k ∈ {1, . . . ,K} (4.121b)

for a tuple α1, . . . , αK ≥ 0 summing up to 1.

Let i be the number of weak receivers among the k considered ones, and j = k − i
be the number of strong receivers. We can rewrite constraints (4.121) as follows:

Rs ≤ max
αi∈[0,1]

min

{
αi
i

(δz − δw) +M,
1

i+ j

[
αi(δz − δw) + (1− αi)(δz − δs) + iM

]}
,
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4.11. EXAMPLES

∀k ∈ {1, . . . ,K}, k = i+ j. (4.122)

We notice that for i = Ks, (4.122) generates a constraint tighter than for i < Ks.
Thus, we can remove all constraints for i < Ks without affecting the result and we retain
only the Kw constraints in (4.107c).

4.11 Examples

M
F ·D

C
(K)
s (M)
F

0

0.1

0.2

0.05 0.1 0.15

LB on C
(K)
s (M) for

joint constraint

UB on C
(K)
s (M) for

joint constraint

LB on C
(K)
s (M) for

individual constraint

UB on C
(K)
s (M) for

individual constraint

Figure 4.5: Lower and upper bounds on the secure capacity-memory tradeoff C
(K)
s (M)

under individual and joint secrecy constraints for the K-user wiretap erasure BC with
δw = 0.7, δs = 0.2, δz = 0.8, F = 5, D = 30, Kw = 5 and Ks = 15.

M
F ·D

C
(K)
s (M)
F

0
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0.60.40.2

LB on C
(K)
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UB on C
(K)
s (M) for

joint constraint

LB on C
(K)
s (M) for

individual constraint

UB on C
(K)
s (M) for

individual constraint

Figure 4.6: Lower and upper bounds on the secure capacity-memory tradeoff C
(K)
s (M)

under individual and joint secrecy constraints for the K-user wiretap erasure BC with
δw = 0.7, δs = 0.2, δz = 0.8, F = 5, D = 30, Kw = 15 and Ks = 5.
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We illustrate in Figure 4.5 and 4.6 the lower and upper bounds derived for the general
setup under individual and joint secrecy constraints assuming a total of K = 20 users
and different choices of Kw and Ks. We can see that the lower bounds under both
secrecy constraints are close.

4.12 Conclusion

In this chapter, we have derived lower and upper bounds on the secure capacity-memory
tradeoff of the two-user wiretap packet-erasure BC with cache memory only at the weaker
receiver under a joint secrecy constraint. Our bounds match for small and large cache
memories. For small cache memory regime, they achieve optimality when only storing
secret keys in the caches, but no data. The reason being that a cached secret key serves
in securing any possible user’s demand, whereas cached data serves only for a subset
of demands. As a consequence, in the low cache memory regime, the capacity-memory
tradeoff grows proportionally with the cache memory size, irrespective of the number of
possible messages in the library.

For comparison, we have provided lower and upper bounds for the two-user scenario
on the secure capacity-memory tradeoff under a joint secrecy constraint when both
receivers have equal cache size. We observe that in the regime of small cache memory, it
is highly beneficial to allocate all the available cache to the weaker receiver compared to
allocating the cache memory uniformly across receivers. In fact, in our proposed coding
schemes, the data and secret keys cached at the weak receivers are also used to secure
the communication to the stronger receivers and to make it more efficient. This situation
can however be reversed for larger cache sizes depending on the channel parameters.

Moreover, we have studied the two-user scenario with an asymmetric cache distribu-
tion for both receivers depending on their channel capacities. We have computed lower
and upper bounds on the secure capacity-memory tradeoff in this case showing that
this cache assignment is always better than the symmetric distribution. However, it is
beneficial compared to the one-sided cache distribution only when both receivers have
close erasure probabilities. In fact, in the two-sided distribution, a small cache memory
can be allocated to strong receivers allowing them to secure their messages, removing
thus the need for a random binning.

We have also compared with the bounds derived in the previous chapter under an
individual secrecy constraint. The results reveal that the loss in performance due to the
stronger secrecy constraint is small.

Finally, we have extended the results to K users, where Kw receivers are weak and
have cache memories of equal size, and Ks receivers are strong and have no cache.
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Conclusion

In this thesis, we have considered two lines of research in communication security. We
have started by studying lattice-based cryptosystems. We have suggested improving the
GGH scheme to make it an efficient post-quantum cryptography candidate. Then, we
have investigated physical layer security in cache-aided wiretap broadcast channels.

In the first part of this thesis, we have proposed an improvement to the lattice-based
GGH cryptosystem using generalized low density lattices. While guarantying the same
level of security, our cryptosystem significantly reduces the complexity compared with
previous GGH schemes. In fact, the specific form of the lattice generator matrix GΛ in-
duces a huge reduction in the key size. In dimension n ≈ 1000, the key can be represented
by approximately 100 KBs whereas the key size of previous GGH systems was in the
order of MBs. Moreover, since GΛ is by design in HNF, the complexity of the public key
generation reduces by 1300 times compared to Micciancio and LDLC systems. Finally,
the GLD lattice iterative decoding offers a better performance than Babai’s algorithms
and decreases the decryption complexity compared to LDLCs iterative decoding.

Next steps will consist in investigating other noise models. While uniform noise was
considered in this study, further work will be needed to define the best noise distribution
in our lattice-based system, through deeper theoretical and experimental studies of the
error vector. Moreover, the dual code attack needs further in-depth study to determine
the optimal density for GLD lattices and the best elementary codes to be employed.

In the second part of this thesis, we have focused on securing multi-user packet-
erasure broadcast channels against eavesdropping attacks. Our scheme consists of a
transmitter, K receivers and an eavesdropper. Among the K receivers, Kw are weak
receivers and are provided with cache memories of size M each; whereas the remaining
Ks are strong receivers and have no cache. We have considered two secrecy constraints:
the individual constraint where each message should be individually secured from the
eavesdropper and the joint constraint where all the messages are jointly secured against
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CONCLUSION

the eavesdropper. We have computed lower and upper bounds on the secure capacity-
memory tradeoff Cs(M) for both constraints. For each secrecy condition, we have pro-
posed a joint cache-channel coding scheme that can achieve the lower bound on Cs(M).
We have found that the individual secrecy constraint allows for a better capacity-memory
tradeoff, while the joint secrecy constraint is more interesting from a security point of
view.

To motivate our choice of cache distribution, we have provided lower and upper
bounds on the secure capacity-memory tradeoff for the symmetric cache distribution
for the two-user case and for both constraints. For the joint secrecy constraint, we
have also computed bounds with an asymmetric cache distribution at both receivers
depending on their channel states. We have compared the different cache distribution
and have concluded that, for most cache memory sizes and channel parameters, cache
only at weak receiver is the most beneficial case. Moreover, the pertinence of the joint
cache-channel coding scheme is proved when compared with the best separate cache-
channel coding scheme for the two-user case. This comparison clearly showed that our
joint cache-channel coding achieves better lower bounds for all cache memory sizes and
channel parameters for both secrecy constraints.

For future work, it would be interesting to replace our theoretical joint cache-channel
coding approach with a practical coding scheme. In this purpose, the design of nested
lattice coding schemes could be investigated. It would be also interesting to consider
the case where the eavesdropper does not have the most degraded channel. In this case,
the cache memory can still help to secure the messages for the receiver with the worst
channel.

On a more general level, it would also be worth exploring the ways physical layer
security and upper layer security could interact. These security schemes could benefit
from each other especially to strengthen the overall system security. For instance, shared
secret keys needed for network layer security protocols can be established at the physical
layer by exploiting the channel characteristics. Symmetrically, network layer could se-
curely convey secret keys to be used later in cache-aided transmissions. A well-optimized
combination between physical layer security and network layer security could actually
help building an efficient, secure and easily implementable system.
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Appendix: Proof of Lemma 3.1

We bound H(L1|Zαn,W (0)
d1,2

, C1) for every w
(0,2)
d1

. For a given codebook C1, let C1(w
(0,2)
d1

)

be the subcodebook of C1 that contains all the codewords that are compatible with w
(0,2)
d1

:

C1(w
(0,2)
d1

) :=
{
x

(αn)
1 (l1|w(0,2)

d1
)
}
l1∈Γ1(w

(0,2)
d1

)
(4.123)

where Γ1(w
(0,2)
d1

) is a subset of Γ1 defined in (3.29) such that |Γ1(w
(0,2)
d1

)| = b2n(D−2)R(1)c·
b2nR(1)c · b2nR′c. Define for each l1 ∈ [1 : Γ′1] and for each sequence zαn ∈ T (αn)

ε (pZ), the
set:

NC1(l1, z
αn) :=

∣∣∣{l̃1 6= l1 :
(
x

(αn)
1 (l̃1|w(0,2)

d1
), zαn

)
∈ T (αn)

ε (pXpZ|X)
}∣∣∣, (4.124)

where pZ|X stands for the channel law to the eavesdropper.

We are interested in the expectation and the variance of NC1(l1, z
αn) over the choices

of the index l1, the sequence zαn, and the random code construction.

Lemma 4.1. The desired expectation and variance satisfy

EC1,l1,zαn
[
NC1(l1, z

αn)
]
≥ 2n((D−1)R(1)+R′−αI(X1;Z)−δ(ε)−εn), (4.125)

EC1,l1,zαn
[
NC1(l1, z

αn)
]
≤ 2n((D−1)R(1)+R′−αI(X1;Z)+δ(ε)−εn) (4.126)

and
Var(NC1(l1, z

αn)) ≤ 2n((D−1)R(1)+R′−αI(X1;Z)+δ(ε)−εn), (4.127)

where εn tends to 0 as n→∞.

Proof. The upper bound on the expectation of NC1(l1, z
αn) is computed as follows

EC1,l1,zαn
[
NC1(l1, z

αn)
]

= El1

[
EC1,zαn

[
NC1(l1, z

αn)|l1
]]
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= El1

[
EC1,zαn

[ ∑
l′1 6=l1

1
(x

(αn)
1 (l′1|w

(0,2)
d1

),zαn)∈T (αn)
ε (pXpZ|X)

]]
(a)
= El1

[ ∑
l′1 6=l1

EC1,zαn
[
1

(x
(αn)
1 (l′1|w

(0,2)
d1

),zαn)∈T (αn)
ε (pXpZ|X)

]]
(b)
= El1

[ ∑
l′1 6=l1

Pr
[
(x

(αn)
1 (l′1|w

(0,2)
d1

), zαn) ∈ T (αn)
ε (pXpZ|X)

]]
(c)

≤ El1

[ ∑
l′1 6=l1

2−αn(I(X1;Z)−δ(ε))
]

= (2n[(D−1)R(1)+R′] − 1)2−αn(I(X1;Z)−δ(ε))

= 2n[(D−1)R(1)+R′−αI(X1;Z)+δ(ε)−εn], (4.128)

where (a) holds because of the total law of expectations; (b) holds because E[1A] =
Pr(A); and (c) holds because of the upper bound of the joint typicality lemma.

The lower bound on the expectation follows the same proof except for the step (c)
where we should use the lower bound of the joint typicality lemma to get the desired
result.

As for the variance,

Var(NC1(l1, z
αn)) = EC1,l1,zαn

[(
NC1(l1, z

αn)
)2]− (EC1,l1,zαn

[
NC1(l1, z

αn)
])2

≤ EC1,l1,zαn
[(
NC1(l1, z

αn)
)2]− 22n[(D−1)R(1)+R′−αI(X1;Z)+δ(ε)−εn],

(4.129)

Now, let us bound the first term

EC1,l1,zαn
[(
NC1(l1, z

αn)
)2]

= El1

[
EC1,zαn

[(
NC1(l1, z

αn)|l1
)2]]

= El1

[
EC1,zαn

[ ∑
l′1 6=l1

1
(x

(αn)
1 (l′1|w

(0,2)
d1

),zαn)∈T (αn)
ε (pXZ)

∑
l′′1 6=l1

1
(x

(αn)
1 (l′′1 |w

(0,2)
d1

),zαn)∈T (αn)
ε (pXZ)

]]
= El1

[ ∑
l′1 6=l1

∑
l′′1 6=l1

EC1,zαn
[
1

(x
(αn)
1 (l′1|w

(0,2)
d1

),zαn)∈T (αn)
ε (pXZ)

1
(x

(αn)
1 (l′′1 |w

(0,2)
d1

),zαn)∈T (αn)
ε (pXZ)

]]
= El1

[ ∑
l′1 6=l1

∑
l′′1 6=l1
l′′1 6=l′1

EC1,zαn
[
1

(x
(αn)
1 (l′1|w

(0,2)
d1

),zαn)∈T (αn)
ε (pXZ)

1
(x

(αn)
1 (l′′1 |w

(0,2)
d1

),zαn)∈T (αn)
ε (pXZ)

]]

+ El1

[ ∑
l′1 6=l1

EC1,zαn
[(
1

(x
(αn)
1 (l′1|w

(0,2)
d1

),zαn)∈T (αn)
ε (pXZ)

)2]]
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(a)
= El1

[ ∑
l′1 6=l1

EC1,zαn
[
1

(x
(αn)
1 (l′1|w

(0,2)
d1

),zαn)∈T (αn)
ε (pXZ)

]]
× El1

[ ∑
l′′1 6=l1
l′′1 6=l′1

EC1,zαn
[
1

(x
(αn)
1 (l′′1 |w

(0,2)
d1

),zαn)∈T (αn)
ε (pXZ)

]]

+ El1

[ ∑
l′1 6=l1

EC1,zαn
[
1

(x
(αn)
1 (l′1|w

(0,2)
d1

),zαn)∈T (αn)
ε (pXZ)

]]
≤ 22n[(D−1)R(1)+R′−αI(X1;Z)+δ(ε)−εn] + 2n[(D−1)R(1)+R′−αI(X1;Z)+δ(ε)−εn], (4.130)

where (a) holds because E[AB] = E[A] E[B] if A and B are independent, and
E[(1A)2] = E[1A].

Finally, by combining (4.129) and (4.130), we get the desired upper bound in (4.127).

We define the random process

EC1(l1, z
αn) =

{
NC1(l1, z

αn) ≥ 2n((D−1)R(1)+R′−αI(X1;Z)+δ(ε)−εn/2)+1
}
. (4.131)

It represents the case when NC1(l1, z
αn) exceeds the upper bound on its expected value.

The probability of this process is

Pr{EC1(l1, z
αn)}

= Pr
{
NC1(l1, z

αn) ≥ 2n((D−1)R(1)+R′−αI(X1;Z)+δ(ε)−εn/2)+1
}

= Pr
{
NC1(l1, z

αn) ≥ 2× 2n((D−1)R(1)+R′−αI(X1;Z)+δ(ε)−εn/2)
}

(a)

≤ Pr
{
NC1(l1, z

αn) ≥ EC1,L1,Zαn

[
NC1(l1, z

αn)
]

+ 2n((D−1)R(1)+R′−αI(X1;Z)+δ(ε)−εn/2)
}

≤ Pr
{∣∣∣NC1(l1, z

αn)− EC1,L1,Zαn

[
NC1(l1, z

αn)
]∣∣∣ ≥ 2n((D−1)R(1)+R′−αI(X1;Z)+δ(ε)−εn/2)

}
(b)

≤ Var(NC1(l1, z
αn))

22n((D−1)R(1)+R′−αI(X1;Z)+δ(ε)−εn/2)
. (4.132)

where (a) holds because of (4.126); and (b) holds because of the Chebyshev inequality
Pr(|V − µ| ≥ kσ) ≤ 1

k2
where V is a random variable of mean µ and variance σ2 and

k is a constant. Hence, from (4.127) and (4.132), we conclude that, for every message

w
(0,2)
d1

, if (D − 1)R(1) +R′ − αI(X1;Z) ≥ 0 then Pr{EC1(l1, z
αn)} → 0 as n→∞.

Furthermore, for a given codebook C1 and for every message w
(0,2)
d1

, we define the set:

NC1 :=
∣∣∣{l̃1 6= L1 :

(
x

(αn)
1 (l̃1|w(0,2)

d1
), Zαn

)
∈ T (αn)

ε (pXpZ|X)
}∣∣∣, (4.133)
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and the random process

EC1 = {NC1 ≥ 2n((D−1)R(1)+R′−αI(X1;Z)+δ(ε)−εn/2)+1}. (4.134)

In addition, define the indicator random variable E(w
(0,2)
d1

) = 1 if(
X

(αn)
1 (l̃1|w(0,2)

d1
), Zαn

)
/∈ T (n)

ε (pXpZ|X) or the event EC1 occurs, and E(w
(0,2)
d1

) = 0

otherwise. In other words, E(w
(0,2)
d1

) = 1 describes the case when the eavesdropper

cannot decode the message x
(0,2)
d1

. It occurs when the received Zαn is not jointly

typical with the sent X
(αn)
1 or the number of l̃1 in the subcodebook C1(w

(0,2)
d1

) that

give a X
(αn)
1 (l̃1|w(0,2)

d1
) jointly typical with Zαn is equivalent to their number in other

subcodebooks C1(W
(0,2)
d1

6= w
(0,2)
d1

). The union of events bound gives

Pr
{
E(w

(0,2)
d1

) = 1
}
≤ Pr

{
(X

(αn)
1 (L1|w(0,2)

d1
), Zαn) /∈ T (αn)

ε (pXpZ|X)
}

+ Pr
{
EC1
}
.

(4.135)

We bound the term Pr{EC1},

Pr{EC1} ≤
∑

zαn∈T (αn)
ε (pZ)

p(zαn) Pr{EC1 |Zαn = zαn}

=
∑

zαn∈T (αn)
ε (pZ)

∑
l1

p(zαn)p(l1|zαn) Pr{EC1 |Zαn = zαn, L1 = l1}

=
∑

zn∈T (αn)
ε (pZ)

∑
l1

p(zαn)p(l1|zαn) Pr{EC1(l1, z
αn)}. (4.136)

If (D − 1)R(1) + R′ − αI(X1;Z) ≥ 0, Pr{EC1(l1, z
αn)} → 0 as n → ∞ , and

consequently Pr{EC1} → 0 as n → ∞. In addition, by the law of large numbers,

Pr{(Xαn
1 (L1|w(0,2)

d1
), Zαn) /∈ T (αn)

ε (pXpZ|X)} → 0 as n → ∞. We can conclude that,

Pr{E(w
(0,2)
d1

) = 1} → 0 as n→∞.

Therefore, the upper bound on the equivocation term becomes

H(L1|Zαn,W (0,2)
d1

= w
(0,2)
d1

, C1)

≤ 1 +H(L1|Zαn,W (0,2)
d1

= w
(0,2)
d1

, E(w
(0,2)
d1

) = 1, C1) Pr{E(w
(0,2)
d1

) = 1}

+H(L1|Zαn,W (0,2)
d1

= w
(0,2)
d1

, E(w
(0,2)
d1

) = 0, C1) Pr{E(w
(0,2)
d1

) = 0}

≤ 1 + n((D − 1)R(1) +R′) Pr{E(w
(0,2)
d1

) = 1}

+H(L1|Zαn,W (0,2)
d1

= w
(0,2)
d1

, E(w
(0,2)
d1

) = 0, C1)

(a)

≤ 1 + n((D − 1)R(1) +R′) Pr{E(w
(0,2)
d1

) = 1}
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+ log2(2n((D−1)R(1)+R′−αI(X1;Z)+δ(ε)−εn/2)+1), (4.137)

where (a) holds because H(X) ≤ log2(|X|).

Finally, since Pr{E(w
(0,2)
d1

) = 1} → 0 as n → ∞ if (D − 1)R(1) + R′ − αI(X1;Z) ≥ 0,
then

lim sup
n→∞

1

n
H(L1|Zαn,W (0,2)

d1
= w

(0,2)
d1

, C1)

≤ 1

n
+ (D − 1)R(1) +R′ − αI(X1;Z) + δ(ε)− εn

2
+

1

n

≤ (D − 1)R(1) +R′ − αI(X1;Z) + δ′(ε). (4.138)
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CEA LIST and Télécom-ParisTech, France

2012− 2013 M.Sc. in Digital Communication Systems
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