, Le maillage retenu pour l'éprouvette de comportement sous chargements uniaxiaux, est celui présenté sur la figure 3.1. L'éprouvette est constituée de 10870 éléments et de 94551 degrés de liberté

, Les figures A.2.1.1 et A.2.1.2 présentent les résultats d'un essai de traction sur deux tailles de mailles différentes. La figure A.2.1.1 propose un maillage très petit avec une taille moyenne de maille de 0,4 mm dans la zone utile. L'éprouvette est constituée de 26290 éléments et de 225567 degrés de liberté. La figure A.2.1.2 présente le maillage retenu dans ces travaux avec une taille moyenne de maille de 0,6 mm dans la zone utile, Différentes tailles de mailles ont été testées afin de trouver le maillage permettant des temps de calculs les plus faibles et des résultats les plus précis possibles

, Les deux essais de traction sont réalisés en considérant le gradient comportement mécanique du joint soudé isotrope. L'identification des paramètres utilisés est présentée dans le

, La comparaison des cartes de champs de déformation selon l'axe x des deux figures permet de voir que les niveaux de déformations sont identiques sur l'ensemble de l'éprouvette

. Enfin, on constate qu'une diminution du nombre d'éléments permet un gain de temps de calcul très conséquent sans altérer la précision des résultats

, +((x+z/1.272)-82.499)*0.))**2

, +((x+z/1.272)-81.499)*(30

, (xz/1.272)-91.499)*0.))**2, p.91

, +((x-z/1.272)-92.499)*(-30

T. Warner, Recently-developed aluminium solutions for aerospace applications, Materials Science Forum, pp.1271-1278

T. and L. Jolu, Influence des défauts de soudage sur le comportement plastique et la durée de vie en fatigue de soudures par friction-malaxage d, 2011.

B. Dubost and P. Sainfort, Durcissement par précipitation des alliages d'aluminium

I. J. Polmear, Light Alloys: metallurgy of the Light Metals, Metallurgy and Materials Science Series, pp.15-46

B. Cai, Z. Q. Zheng, D. Q. He, S. C. Li, and H. P. Li, Friction stir weld of 2060 Al-Cu-Li alloy: microstructure and mechanical properties, Journal of Alloys and Compounds, vol.649, pp.19-27

K. S. Prasad, A. A. Gokhale, A. K. Mukhopadhyay, D. Banerjee, and D. B. Goel, On the formation of faceted Al3Zr (beta') precipitates in Al-Li-Cu-Mg-Zr alloys, Acta Materialia, vol.47, pp.2581-2592

S. Richard, Fissuration par fatigue d'alliages d'aluminium au lithium de troisième génération, 2011.

M. Cabibbo, Partial dissolution of strengthening particles induced by equal channel angular pressing in an Al-Li-Cu alloy, Materials characterization, vol.68, pp.7-13

H. K. Hardy and J. M. Silcock, The phase sections at 500 and 350°C of Al rich Al-Cu-Li alloys, Journal of the Institute of Metals, vol.84, pp.423-428

B. Chen, M. F. Guo, J. X. Zheng, K. Y. Zhang, Y. Fan et al., The effect of thermal exposure on the microstructures and mechanical properties of 2198 Al-Li alloy, Advanced Engineering Materials, vol.18, issue.7, pp.1225-1233

T. Dursun and C. Soutis, Recent developments in advanced aircraft aluminium alloys, Materials and Design, vol.56, pp.862-871

N. D. Alexopoulos, E. Migklis, A. Stylianos, and D. P. Myriounis, Fatigue behavior of the aeronautical Al-Li (2198) aluminum alloy under constant amplitude loading, International Journal of Fatigue, vol.56, pp.95-105

W. D. Lockwood, B. Tomaz, and A. P. Reynolds, Mechanical response of friction stir welded AA2024 : experiment and modeling, Materials Science and Engineering A, vol.323, pp.348-353

A. Astarita, A. Squillace, A. Scala, and A. Prisco, On the critical technological issues of friction stir welding T-Joints of dissimilar aluminium alloys, Journal of Materials Engineering and Performance, vol.21, pp.1763-1771

J. Chen, Y. Madi, T. F. Morgeneyer, and J. Besson, Plastic flow and ductile rupture of a 2198
URL : https://hal.archives-ouvertes.fr/hal-00569967

A. Alloy, Computational Materials Science, vol.50, pp.1365-1371

D. Steglich, H. Wafai, and W. Brocks, Anisotropic deformation and damage in aluminium 2198-T8 sheets, International Journal of Damage Mechanics, vol.19, pp.131-152

P. Cavaliere, A. Santis, F. Panella, and A. Squillace, Effect of anisotropy on fatigue properties of 2198 Al-Li plates joined by friction stir welding, Engineering Failure Analysis, vol.16, pp.1856-1865

G. Bussu and P. E. Irving, The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminium joints, International Journal of Fatigue, vol.25, pp.77-88

J. Chen, Ductile Tearing of AA2198 Aluminum-Lithium Sheets for Aeronautic Application, 2011.

R. Hill, A theory of the yielding and plastic flow of anisotropic metals, Proc. Roy. Soc., Series A, pp.193-218

S. Zhang, Characterization of anisotropic yield criterion with biaxial tension test, INSA Rennes, 2014.

F. Bron, J. Besson, and A. Pineau, Ductile rupture in thin sheets of two grades of 2024 aluminium alloy, Materials Science and Engineering A, vol.380, issue.2, pp.356-364

F. Barlat, D. J. Lege, and J. C. Brem, A six-component yield function for anisotropic materials, International Journal of Plasticity, vol.7, pp.693-712

A. P. Karafillis and M. C. Boyce, A general anisotropic yield criterion using bounds and a transformation weighting tensor, Journal of Mechanics and Physics of Solids, vol.41, pp.1859-1886

G. Barbier, Fatigue biaxiale à grand nombre de cycles : étude expérimentale et modèle d'endommagement à deux échelles probabiliste, 2009.

L. M. Kachanov, Time of the rupture process under creep conditions, Izv. Akad. Nauk SSSR, otd. Tekn. Nauk, vol.8, 1958.

Y. N. Rabotnov, Creep problems in structural members, 1969.

J. Lemaitre, Sur la détermination des lois de comportement des matériaux élasto-viscoplastiques, 1971.

J. L. Chaboche, Le concept de contrainte effective appliqué à l'élasticité et à la viscoplasticité en présence d'un endommagement anisotrope, Colloque Int. CNRS 295, Villard de Lans, Martinus Nijhoff Publishers and Editions du CNRS, pp.737-760, 1979.

R. S. Mishra and Z. Y. Ma, Friction stir welding and processing, Materials Science and Engineering R, vol.50, pp.1-78

W. M. Thomas, E. D. Nicholas, S. D. Smith, S. K. Das, and J. G. Kaufman, Proceedings of the TMS 2001 Aluminium Automotive and Joining Sessions, pp.213-2001

C. Fuller, M. Mahoney, M. Calabrese, and L. Micona, Evolution of microstructure and mechanical properties in naturally aged 7050 and 7075 Al friction stir welds, Materials Science and Engineering: A, vol.527, issue.9, pp.2233-2240

S. F. Jurak, Statistical analysis of the mechanical properties of friction stir welded AA2024 and AA2198 aluminum alloys, 2008.

K. Krasnowski, C. Hamilton, and S. Dymek, Influence of the tool shape and weld configuration on microstructure and mechanical properties of the Al 6082 alloy FSW joints, Archives of civil and mechanical engineering, vol.15, pp.133-141

R. Maginness and Z. W. Chen, Formation of weld zones during friction stir welding of aluminium alloys, 5 th International Symposium on Friction Stir Welding -Metz, 2004.

A. Denquin, L. Rolly, C. Rouaud, and D. Allehaux, Étude du soudage FSW de nouveaux alliages haute résistance pour application fuselage, 2006.

Y. S. Sato, H. Takauchi, S. H. Park, and H. Kokawa, Characteristics of the kissingbond in friction stir welded Al alloy 1050, Materials Science and Engineering A, vol.405, pp.333-338

T. Vugrin, M. Schmücker, and G. Staniek, Root flaws of friction stir welds -an electron microscopy study, Symposium on Friction Stir Welding and Processing III, 2005.

Y. E. Ma, Z. C. Xia, R. R. Jiang, and W. Li, Effect of welding parameters on mechanical and fatigue properties of friction stir welded 2198 T8 aluminum-lithium alloy joints, Engineering Fracture Mechanics, vol.114, pp.1-11

P. Dainelli, P. Nennig, A. Ben-attar, G. Framezelle, D. Chauveau et al., Évaluation des possibilités de contrôle qualité en ligne des soudures FSW -France, 2014.

Y. Demmouche, Étude du comportement en fatigue d'assemblages soudés par FSW pour applications aéronautiques, Arts et Métiers ParisTech -2012

H. Robe, Y. Zedan, J. Chen, H. Monajati, E. Feulvarch et al., Microstructural and mechanical characterization of a dissimilar friction stir welded butt joint made of AA2024-T3 and AA2198-T3, Materials Characterization, vol.110, pp.242-251

B. Heinz and B. Skrotzki, Characterization of a friction-stir-welded aluminium alloy 6013, Metallurgical and Materials Transactions B, vol.33, pp.489-498

Y. E. Ma, P. Staron, T. Fischer, and P. E. Irving, Size effects on residual stress and fatigue crack growth in friction stir welded 2195-T8 aluminum, International Journal of Fatigue, vol.33, pp.1417-1425

W. Woo, H. Choo, D. W. Brown, S. C. Vogel, P. K. Liaw et al., Texture analysis of a friction stir processed 6061-T6 aluminum alloy using neutron diffraction, Acta materialia, vol.54, pp.3871-3882

I. Kalemba, S. Dymek, C. Hamilton, and M. Blicharski, Microstructure and mechanical properties of friction stir welded 7136-T76 aluminum alloy, Materials Science and Technology, vol.27, pp.903-908

A. Denquin, D. Allehaux, G. Lapasset, and H. Ostersehlte, Microstructural phenomena of FSW joints ; friction stir welding behaviour of 2098 type alloys and resulting weld properties, 11th International Conference on aluminium alloys, 1939.

C. Bitondo, U. Prisco, A. Squillace, G. Giorleo, P. Buonadonna et al., Frction stir welding of AA2198-T3 butt joints for aeronautical applications, International Journal of Material Forming, vol.3, pp.1079-1082

S. Malarvizhi and V. Balasubramanian, Effect of welding processes on AA2219 aluminium alloy joint properties, Transactions of Nonferrous Metal Society of China, vol.2, pp.962-973

C. Leitao, I. Galvao, R. M. Leal, and D. M. Rodrigues, Determination of local constitutive properties of aluminium friction stir welds using digital image correlation, Materials and Design, vol.33, pp.69-74

P. M. Moreira, A. M. De-jesus, M. A. De-figueiredo, M. Windisch, G. Sinnema et al., Fatigue and fracture behaviour of friction stir welded aluminum-lithium 2195, Theoretical and Applied Fracture Mechanics, vol.60, pp.1-9

A. P. Reynolds and F. Duvall, DIC for determination of weld and base metal constitutive behaviour, 1999.

B. A. Mcwilliams, J. H. Yu, and C. F. Yen, Numerical simulation and experimental characterization of friction stir welding on thick aluminium alloy AA2139-T8 plates, Materials Science and Engineering, vol.585, pp.243-252

S. Liu and Y. Chao, Determination of global mechanical response of friction stir welded plates using local constitutive properties, Modelling Simul. Mater. Sci. Eng, vol.13, pp.1-15

S. Di, X. Yang, G. Luan, and B. Jian, Comparative study on fatigue properties between AA2024-T4 friction stir welds and base materials, vol.435, pp.389-395

X. Zhang, H. Zhang, and R. Bao, Mode I fatigue crack growth behaviour in a welded cruciform joint under biaxial stresses, 13th International Conference on Fracture, 2013.

, ASTM E-466-07: Standard practice for conducting force controlled constant amplitude axial fatigue tests of metallic materials

S. Khan, O. Kintzel, and J. Mosler, Experimental and numerical lifetime assessment of Al 2024 sheet, International Journal of Fatigue, vol.37, pp.112-122

I. Zidane, D. Guines, L. Léotoing, and E. Ragneau, Development of an in-plane biaxial test for forming limit curve (FLC) characterization of metallic sheets, Measurement Science and Technology, vol.21, pp.1-11
URL : https://hal.archives-ouvertes.fr/hal-00981719

V. Bonnand, J. L. Chaboche, P. Gomez, P. Kanouté, and D. Pacou, Investigation of multiaxial fatigue in the context of turboengine disc applications, International Journal of Fatigue, vol.33, pp.1006-1016

D. R. Hayhurst, A biaxial-tension creep-rupture testing machine, Journal of Strain Analysis, vol.8, pp.119-123

D. A. Kelly, Problems in creep testing under biaxial stress systems, Journal of Strain Analysis, vol.11, pp.1-6

G. Ferron and A. Makinde, Design and development of a biaxial strength testing device, Journal of Testing and Evaluation, vol.16, pp.253-256

S. Demmerle and J. Boehler, Optimal design of biaxial tensile cruciform specimens, Journal of the Mechanics and Physics of Solids, vol.41, pp.143-181

W. M. Johnston, D. W. Pollock, and D. S. Dawicke, Biaxial testing of 2195 aluminium lithium alloy using cruciform specimens, NASA Report, pp.2002-211942, 2002.

G. Mesmacque, B. Wu, X. Decoopman, C. Robin, and D. Zakrzewski, Multi axial fatigue in welded components, Fracture of Nano and Engineering Materials and Structures, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00203501

A. Hannon and P. Tiernan, A review of planar biaxial tensile test, Journal of Materials Processing Technology, vol.98, pp.1-13

M. Merklein and M. Biasutti, Development of a biaxial tensile machine for characterization of sheet metals, Journal of Materials Processing Technology, vol.213, pp.939-946

D. E. Green, K. W. Neale, S. R. Macewen, A. Makinde, and R. Perrin, Experimental investigation of the biaxial behaviour of an aluminum sheet, International Journal of Plasticity, vol.20, pp.1677-1706

Y. Hanabusa, H. Takizawa, and T. Kuwabara, Numerical verification of a biaxial tensile test method using a cruciform specimen, Journal of Materials Processing Technology, vol.213, pp.961-970

F. Mathieu, Analyse de la tenue mécanique d'un liner en titane : Apport des mesures de champs cinématiques, 2013.

W. J. Barnett and A. R. Troiano, Crack propagation in the hydrogen-induced brittle fracture of steel, Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, pp.209-486

G. Baudin, Nouvelle méthode de mesure électrique de longueur de fissure, La recherche aérospatiale, vol.4, pp.195-203

D. Lecompte, A. Smits, H. Sol, J. Vantomme, and D. Van-hemelrijck, Mixed numericalexperimental technique for orthotropic parameter identification using biaxial tensile tests on cruciform specimens, International Journal of Solids and Structures, vol.44, pp.1643-1656

M. Fazzini, Développement de méthodes d'intégration des mesures de champs, 2009.

D. L. Chen and M. C. Chaturvedi, Near-threshold fatigue crack growth behavior of 2195 aluminum-lithium-alloy-prediction of crack propagation direction and influence of stress ratio, Metallurgical and Materials Transactions A, vol.31, pp.1531-1541

T. Dorin, Mécanismes de durcissement structural par des précipités anisotropes dans un alliage Al-Cu-Li de troisième génération, 2013.

C. Gao, Z. Zhu, J. Han, and H. Li, Materials Science and Engineering A, vol.639, pp.489-499

H. Qin, H. Zhang, and H. Wu, The evolution of precipitation and microstructure in friction stir welded 2195-T8 Al-Li alloy, Materials Science & Engineering A, vol.626, pp.322-329

N. Hansen, Boundary strengthening over five length scales, Advanced Engineering Materials, vol.7, pp.815-821

R. X. Zheng, X. N. Hao, Y. B. Yuan, Z. W. Wang, K. Ameyama et al., Journal of Alloys and Compounds, vol.576, pp.291-298

R. L. Fleisgher, Solution hardening, Acta Metallurgica, vol.9, pp.996-1000

R. Labusch, A statistical theory of solid solution hardening, Physica Status Solidi B, vol.41, pp.659-669

C. Genevois, Genèse des microstructures lors du soudage par friction malaxage d'alliages d'aluminium de la série 2000 & 5000 et comportement mécanique résultant, 2004.

R. Peierls, The size of a dislocation, Proceedings of the Physical Society, vol.52, pp.34-37

F. R. Nabarro, Dislocations in a simple cubic lattice, Proceedings of Physical Society, vol.59, pp.256-272

J. F. Nie, B. Muddle, and I. J. Polmear, The effect of precipitate shape and orientation on dispersion strengthening in high strength aluminium alloys, Materials Science Forum, vol.217, pp.1257-1262

M. Starink, P. Wang, I. Sinclair, and P. Gregson, Microstructure and strengthening of Al-LiCu-Mg alloys and MMCs: II. Modelling of yield strength, Acta Materiala, vol.47, pp.3855-3868

D. N. Seidman, E. A. Marquis, and D. C. Dunand, Precipitation strengthening at ambient and elevated temperatures oh heat-treatable Al(Sc) alloys, Acta Metallurgica, vol.50, pp.4021-4035
DOI : 10.1016/s1359-6454(02)00201-x

A. Deschamps, Précipitation durcissante dans les matériaux de structure, 2003.

E. Orowan, Discussion symposium on internal stresses in metals and alloys, Institute of Metals, p.451, 1948.

W. Woo, L. Balogh, T. Ungár, H. Choo, and Z. Feng, Grain structure and dislocation density measurements in a friction-stir welded aluminium alloy using X-ray peak profile analysis, Materials Science and Engineering A, vol.498, pp.308-313

J. Huang and A. , Strengthening mechanisms associated with T1 particles in 2 Al-LiCu alloys, Journal of Physics, vol.48, pp.373-383

J. Lemaitre and J. L. Chaboche, Mécanique des matériaux solides, Dunod, 2 e édition, 1996.

J. L. Chaboche, Constitutive equations for cyclic plasticity and cyclic viscoplasticity, International Journal of Fatigue, vol.5, pp.247-302

T. F. Morgeneyer, T. Taillandier-thomas, L. Helfen, T. Baumbach, I. Sinclair et al., In situ 3-D observation of early strain localization during failure of thin Al alloy (2198) sheet, Acta Materialia, vol.69, pp.78-91
URL : https://hal.archives-ouvertes.fr/hal-00952176

A. Darlet, Estimation rapide en surface de la triaxialité des contraintes et de la plasticité : application aux disques et aux aubes de turbine des turboréacteurs, 2014.

E. Bousquet, Durabilité des assemblages soudés par friction stir welding

, Corrélation entre microstructure et sensibilité à la corrosion, 2011.

M. Dhondt, Corrosion sous contrainte intergranulaire du noyau de soudure par FSW de l'alliage Al-Li 2050, 2012.

V. Proton, Caractérisation et compréhension du comportement en corrosion de structures en alliage d'aluminium-cuivre-lithium 2050 assemblées par Friction Stir Welding (FSW), 2012.

K. Van, Sur la résistance à la fatigue des métaux, Sciences Techniques de l'Armement, vol.47, pp.647-722

K. N. Smith, P. Watson, and T. H. Topper, A stress-strain function for the fatigue of metals, Journal of Materials Science, vol.5, pp.767-776

M. W. Brown and K. J. Miller, A theory for fatigue failure under multiaxial stress-strain conditions, Proc. Inst. Mech. Eng, vol.187, pp.745-755
DOI : 10.1243/pime_proc_1973_187_069_02

A. Fatemi and D. F. Socie, A critical plane to multiaxial fatigue damage including out ofphase loading, Fatigue and Fracture Engineering Materials and Structures, vol.11, pp.149-165
DOI : 10.1111/j.1460-2695.1988.tb01169.x

D. Béréziat, I. Herlin, and L. Younes, Méthodes de détection de mouvement adaptées aux images météorologiques, Seizième colloque GRETSI, pp.909-912, 1997.

F. Brémand, M. Cottron, P. Doumalin, J. C. Dupré, A. Germaneau et al., Mesures en mécanique par méthodes optiques, Techniques de l'Ingénieur, 2011.

H. W. Schreier and M. A. Sutton, Systematic errors in Digital Image Correlation due to undermatched subset shape functions, Experimental Mechanics, vol.42, pp.303-310

G. Besnard, F. Hild, and S. Roux, Finite-Element" Displacement Fields Analysis from Digital Images: Application to Portevin-Le Châtelier Bands, vol.46, pp.789-803

P. L. Reu, M. Sutton, Y. Wang, and T. J. Miller, Uncertainty quantification for digital image correlation, Proceedings of the SEM Annual Conference, 2009.

J. C. Dupré, V. Valle, and F. Brémand, Documentation logiciel Corréla, 2003.

J. L. Chaboche, Description thermodynamique et phénoménologique de la viscoplasticité cyclique avec l'endommagement, ONERA ISSN 0078-379X, 1978.

M. F. Ashby and D. R. Jones, Engineering materials 2: an introduction to microstructures, processing and design, p.1986

A. Bastier, Modélisation du soudage d'alliages d'aluminium par friction et malaxage, 2006.

G. Boittin, Expérimentation numérique pour l'aide à la spécification de la microstructure et des propriétés mécaniques d'un superalliage base Ni pour des applications moteurs, 2011.

F. De-geuser, F. Bley, A. Denquin, and A. Deschamps, Mapping the microstructure of a friction-stir welded (FSW) Al-Li-Cu alloy, Journal of Physics: Conference Series, vol.247, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00591220

B. Decreus, A. Deschamps, F. De-geuser, P. Donnadieu, C. Sigli et al., The influence of Cu/Li ratio on precipitation in Al-Cu-Li-x alloys, Acta Materialia, vol.61, pp.2207-2218
URL : https://hal.archives-ouvertes.fr/hal-00838965

D. Ade, Institut Clément Ader, École des Mines Albi-Carmaux

B. Decreus, A. Deschamps, and P. Donnadieu, Understanding the mechanical properties of
URL : https://hal.archives-ouvertes.fr/hal-00674874

A. , Cu alloy in relation with the intra-granular and inter-granular precipitate microstructure, Journal of Physics: Conference Series, vol.240, p.15, 2010.