
HAL Id: tel-02124740
https://pastel.hal.science/tel-02124740

Submitted on 9 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Multi-Scale Spatial General Equilibrium Model
Applied to the USA and France

Laurent Faucheux

To cite this version:
Laurent Faucheux. A Multi-Scale Spatial General Equilibrium Model Applied to the USA and France.
Economics and Finance. Université Paris-Est, 2018. English. �NNT : 2018PESC1160�. �tel-02124740�

https://pastel.hal.science/tel-02124740
https://hal.archives-ouvertes.fr


École doctorale no 528 : École doctorale Ville, Transports et Territoires

THÈSE
pour obtenir le grade de docteur délivré par

Université Paris Est

Spécialité doctorale “Sciences Économiques”

présentée et soutenue publiquement par

Laurent Faucheux

le 20 décembre 2018

A Multi-Scale Spatial General Equilibrium Model
Applied to the USA and France

Directeur de thèse : Jean-Charles Hourcade

Jury
Jacques-François Thisse, Professeur Emérite Président
Stéphane De Cara, Directeur de recherche Rapporteur
Arnaud Diemer, Professeur assistant Rapporteur
Aurélie Méjean, Chargée de recherche Examinateur

Site du Jardin tropical
45 bis av. de la belle Gabrielle
94736 Nogent sur Marne Cedex

UMR 8568 - CIRED



b

Thèse effectuée au sein du Centre International de Recherche sur
l’Environnement et le Développement

Site du Jardin tropical,
45 bis avenue de la Belle Gabrielle,

94736 Nogent sur Marne Cedex (FRANCE)

ii



Aknowledgments

Je remercie Jean-Charles Hourcade de m’avoir intégré à l’équipe du CIRED, ainsi que pour
son aide lors de la production finale de ce document. Je remercie Franck Lecocq de m’avoir
soutenu dans ma volonté de conduire un doctorat en sciences économiques et de pouvoir le
faire dans des conditions sereines. Je remercie Henri Waisman pour l’élan formidable qu’il
m’a donné lors de mon arrivée au CIRED, élan grâce auquel j’ai pu traverser ces années de

thèse avec un objectif précis et sans temps mort. Je remercie Franck Nadaud pour les
centaines d’heures de discussion et de transmission sur les thèmes de l’économie et des

statistiques. Je remercie Cédric Allio pour la remarquable dynamique d’équipe avec laquelle
j’ai pu commencer mes premières années au CIRED. Aussi, le modèle de simulation formalisé
dans ce document n’existerait tout bonnement pas sans lui. Je remercie ma partenaire de vie,
Marion Dupoux, pour son aide permanente durant ces années de thèse, entre autre et très
concrètement quant à la production de ce document. Enfin, je remercie l’équipe du CIRED

pour la bonne ambiance dont j’ai pu bénéficier durant ces années.

iii



Executive summary

The creation of the C40 Cities Climate Leadership group (C40) in 2005 is a noteworthy example
that the urban scale is considered as a major leeway to mitigate CO2 emissions. Neverthe-
less, the adequacy between this recent awareness and the number of modeling tools capable of
quantifying this leeway in a spatially explicit integrated way is still missing. This thesis aims
at bridging this gap. The outcome consists of a model that incorporates general equilibrium
theory with an explicit representation of space at multiple scales. The model is designed as
an autonomous numerical entity connectable to any pre-existing modeling architecture. This
thesis hinges around three chapters, i.e. the presentation of the model, the calibration of the
model and its application to France and the USA.

In the first chapter, we describe our so-called GEMSE model whose aim is to investigate
the interplays between aggregate and local dimensions of economic activity while quantifying
GHG emissions associated to mobility. The model is based on Urban Economics and the New
Economic Geography to model on multiple spatial scales the economic development of urban
areas in interaction.

In the second chapter, we describe the data and calibrate the model by using, for some
parameters, spatial econometric techniques. Notably, we propose a new method to specify the
spatial weight matrix, operationalized by using a numerical tool developed on purpose, namely
PyOKNN, independent of GEMSE. Applied to Greater Paris, the tool identifies in a tangible
way some key elements of its spatial structure, and yields values for the parameters under study
that are similar to those of the literature.

In the third chapter, we run simulations of our model for both France and the USA. We
analyze the baseline case and the impacts of two transport policies on several relevant dimen-
sions for the long-term development of urban areas. The first measure – the decrease in private
vehicle speed limitation – stimulates economic activity in a pro-environmental fashion by con-
tracting GDP in a first phase but then allowing it to reach higher levels, resulting in a positive
sum game. The second measure is the implementation of a CO2 tax to private vehicles whose
collected revenues are used to finance an increase in public transport speeds. The main policy
insight is that setting a price of 100e per tonne of CO2eq represents virtually nothing once
converted per commuter-kilometer and deters only marginally the use of cars. These two meas-
ures, the change in speed limitation or the recycling of the tax, encourage the use of cheaper
and less polluting modes of transport, which induces a low-carbon growth.

Overall, these conclusions call for policy designs that internalize distortive effects, e.g.
changes in mobility habits, the reorientation of demands, unbalances in labor markets via
people’s relocations and firms’ improvements in terms of economies of scale. The results can
rarely be generalized in terms of magnitude from one region to another, which shows the
necessity to consider local specificities as well as the framework within which they interact.
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Résumé en français
La création du groupe C40 Cities Climate Leadership (C40) en 2005 illustre bien le fait que
l’échelle urbaine est dorénavant considérée comme comportant des leviers d’action importants
afin d’atténuer les émissions de CO2. Il n’y a cependant toujours pas adéquation entre cette
prise de conscience et le nombre d’outils de modélisation capables de quantifier cette marge de
manœuvre de manière spatialement explicite et intégrée. Cette thèse vise à combler cette la-
cune. L’objet produit consiste en un modèle d’équilibre général spatialisé et multi-échelle, pensé
de sorte à être relié à toute architecture de modélisation préexistante. Cette thèse s’articule
autour de trois chapitres, i.e. la présentation du modèle, sa calibration et son application à la
France et aux USA.

Dans le premier chapitre, nous décrivons le modèle, baptisé GEMSE, dont l’objectif est
d’étudier les interactions entre les dimensions agrégées et locales de l’activité économique tout
en quantifiant les émissions de GES associées à la mobilité. Le modèle s’appuie sur l’Economie
Urbaine et la Nouvelle Economie Géographique en vue de modéliser sur plusieurs échelles spa-
tiales le développement économique de régions urbanisées en interaction.

Dans le deuxième chapitre, nous décrivons les données et calibrons le modèle en utilisant,
pour certains paramètres, des techniques d’économétrie spatiale. Nous proposons notamment
une méthode pour spécifier la matrice de poids spatial, laquelle méthode est opérationnalisée en
utilisant un outil numérique développé à ces fins, PyOKNN, indépendant de GEMSE. Appliqué
au Grand Paris, l’outil identifie de façon tangible des éléments clés de sa structure spatiale, et
génère pour les paramètres étudiés des valeurs similaires à celles de la littérature.

Dans le troisième chapitre, nous appliquons le modèle à la France et aux Etats-Unis. Nous
y analysons le scénario de référence, puis les impacts de deux politiques de transport. La
première mesure – la baisse des limitation de vitesse des véhicules privés – stimule l’activité
économique de manière pro-environnementale en réduisant le PIB dans un premier temps, mais
en lui permettant ensuite d’atteindre des niveaux plus élevés, aboutissant à un jeu à somme
positive. L’autre mesure simule la mise en place d’une taxe CO2 pour les véhicules privés dont
les recettes servent à financer l’augmentation des vitesses des transports publics. Il en résulte
qu’un prix de 100e par tonne de CO2eq n’a qu’un faible effet incitatif car ne représente presque
rien par kilomètre-voyageur. Ces deux mesures, le changement de norme ou le recyclage de
la taxe, poussent à l’utilisation de modes de transport moins couteux et moins polluants qui
stimule une croissance à plus faible intensité carbone.

Dans l’ensemble, ces conclusions plaident en faveur de politiques qui internalisent les effets
distorsifs, e.g. les changements dans les habitudes de mobilité, la réorientation des demandes,
les déséquilibres du marché du travail via les délocalisations des personnes et des changements
induits en matière d’économies d’échelle externes. Les résultats ne sont dans leur ampleur que
peu généralisables dans l’espace et montrent la nécessité de considérer les spécificités locales et
le cadre dans lequel elles s’insèrent en terme d’interactions.
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Over the past decade, the role of urban areas in climate change mitigation strategies has in-
creasingly been considered. Typical of this new awareness was the creation of the C40 Cities
Climate Leadership Group (C40), a network of cities that share their experiences on ways to
reduce greenhouse gas (GHG) emissions.

Nevertheless, a gap still persists between this diagnosis and the capacity of the modeling
tools used in the Integrated Assessment community to integrate the core characteristics of the
urban issue, that is, its spatial dimension. The main reason for this gap is historical in nature.
The first modeling community involved in the climate affair was this of the energy economists
that built upon their experience in long term prospective tools in the context of the debate
about resources exhaustion and controversies about the nuclear energy. Their leadership was
established by the end of the 90th and, in 1993, Hourcade launched an alert about the necessity
of a dialogue between energy modelers and the specialists of transportation systems (Hourcade,
1993). But only a few efforts were conducted is this direction and a real dialogue started only
very recently, each "modeling tribe" preferring to pursue its initial track (Crassous, 2008).

A typical and recent example of the persistence of this gap is the New Policies Scenario
(NPS) of IEA (2015) produced by the International Energy Agency. This scenario projects
global energy demands by 2040 on the basis of assumed levels of urbanization rates amongst
other indicators of on going trends.1 Even though this modeling approach provides quantitative
insights about the responsibility of urban areas in climate change, it de facto resorts to inter-
scale correlations between macro trends (such as densities, GDP) and urbanization dynamics
(captured at an aggregated level). It thus ignores the existence of the complex2 role played by
space in the dynamics of economic development. Going beyond the use of such correlations
requires the explicit representation of the internal structures and the shapes of urban areas, as
well as their interactions within regional systems and with a world economy under a globaliz-
ation process (Schafer, 2012; Waisman et al., 2013).

Models have been developed so as to overcome the limits of uncontrolled global correlations
but they do so by mobilizing the various sub-fields3 of regional economics in a non-integrated
way. This led to partial policy recommendations with no certainty about their overall con-
sistency, whereas at a theoretical level, each of these subfields relate to considerations that
complement each other. As stated by Thisse (2010), integrating space in economic analyses
relates to (i) the use of a computable general equibrium (CGE) framework to endogenize the
formation of incomes and relative prices, (ii) the realism of the modeled geographical space, the
necessity of being multidimensional, asymmetric and empirically grounded and (iii) the number
of encompassed spatial scales. Otherwise, it is difficult to figure out how spatial forces shape

1That are levels of growth in energy prices, population, economic development and industrialization.
2Which implies relying on computing architectures that can lead to surprising or counter-intuitive conclusions

given the high number of antagonistic effects put at stake.
3Some of these subfields are Spatial Competition theory (Hotelling, 1929), Economic Geography, Urban

Economics (Alonso, 1964), New Economic Geography (Krugman, 1991).
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the so-called Space-economy4 (Isard, 1949) and, a fortiori, what policy or what institutional
change can influence them if they are judged to go in an undesired direction.

An attempt to follow Thisse’s programm

To bridge this gap, we developed a spatial GE model, baptized GE model of the Space-economy
(GEMSE ). GEMSE relies on Thisse’s recommendations and operationalizes the unification of
New Economic Geography (NEG)(Krugman, 1991) and Urban Economics (UE)(Alonso, 1964;
Mills, 1967; Muth, 1969).5 GEMSE generates simulation data from the two UE- and NEG-
related scales by explicitly accounting for the geographical structure of local economies. In
parallel, the two-scale spatial system is influenced by an additional set of exogenous trends
representing the nation’s context – be it macroeconomic, demographic or technological –, con-
stitutive of its third spatial scale, i.e. the global sphere.

GEMSE aims at providing a substitute to the correlation coefficients that are used to figure
out how exogenous signals coming from the global sphere (economy, demography, prices) dis-
tribute among the determinants of the inferior scales. This modeling objective is at the source
of one GEMSE’s distinctive feature: among trends that are representative of the nation’s con-
text, some actually constrain the aggregated results of local scale dynamics. Put differently and
using a neologism, GEMSE is said to microcast baseline-like macro-conditions. This neologism
is defined by analogy with backcasting, in which the past is used in combination with long-term
visions to calculate the drivers of the trajectories linking the present and future states of the
economy. In a microcasting exercise, the local scale stands for the past and the aggregated
results of local scale dynamics stands for the targeted future. This modeling approach allows
us to address questions like: in a given space for all points in time, what are the baseline
underliers linking the evolution of the fuel price, GDP and employment rate? What does it
imply in terms of housing rents, mobility patterns, transport costs, residual income, densities
and GHG emissions? Does the disaggregation process bring to light disparities that are hidden
by using only average values?

The underlying assumption behind this approach is that the spatialization of robust equa-
tions – with socio-economical data differentiated in function of the geographical areas – will
yield a modeling architecture more apt to deliver insights useful for policy debates and sci-
entific discussions because its degree of realism is upgraded by the degree of consistency of the
three scales of the projected system. Talking about long-term projections, the notion of degree
of realism does not suggest degree of probability. It relates to the fact that the material for
economic analysis is made of technically and economically consistent and plausible futures.

4In the following decades, it was decided not to use this expression to avoid confusions with emerging space
technologies, which have led to the second best choice, that is regional economics. See Nijkamp (2013) for an
holistic perspective of the concepts related to regional economics.

5To be precise, citing Mills (1967) and Muth (1969) in addition to Alonso (1964) rather relates to monocentric
Land-Use Theory than to UE.
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Once the "baseline world" is microcasted over the prospective horizon, the model runs in
dual perspective by taking (baseline) microcasted parameters as exogenously-shockable and
releasing macro-conditions into aggregates that are responsive to these shocks. In other words,
in this second modeling stage, GEMSE outputs ascending inter-scales responses with respect
to any (arbitrarily chosen) change in baseline underliers. This second modeling stage allows to
answer for all points in time to questions such as: for a given counterfactual baseline world,
what would be the consequences on GDP, employment rate, avoided cost of imported fossil
fuels and/or income spatial redistribution of, e.g. new investments in transport infrastructure,
changes in legally assigned road speed limits, the implementation of CO2 based motor vehicle
taxes?

In this thesis, this two-stage modeling approach is applied to both USA and France. For the
USA, the model is calibrated over multiple 2010 spatial databases that collect data at the local
scale for 22 major urban agglomerations.6 This is done as well for France over 2008 spatial
databases that collect data at the local scale for its 12 major urban agglomerations.7 This
wealth of information allows for capturing for most of the interaction mechanisms that take
place between the areas of the two countries. Note that other areas’ characteristics of each
nation, not explicitly represented in space, are deduced to comply with national aggregates.
The model also captures the impacts that are expected at a more aggregate scale of the eco-
nomy, e.g. areas’ economic performance, welfare, density, public and private transport sectors
emissions.

The GHGs that are considered by GEMSE are CO2, CH4 and N2O. These gases are con-
verted into CO2-equivalent (CO2eq) following the IPCC (2007)’s computing method, i.e. ac-
counting for their respective global warming potential (GWP).8 The model computes Levasseur
et al. (2010)’s dynamic GWPs to better consider the temporal profile of emissions.9 Indeed,
the model also aims at providing an assessment of mitigation potentials that are offered by
policies with different implementation timings.

6The US agglomerations are Atlanta, Baltimore, Boston, Chicago, Dallas, Denver, Detroit, Houston,
Losangeles, Miami, Minneapolis, Newyork, Philadelphia, Phoenix, Pittsburgh, Portland, Sandiego, Sanfran-
cisco, Sanjose, Seattle, Stlouis and Washington. Note that american urban areas’ maps are available online ac-
cording to the syntax https://gemse.alwaysdata.net/usa/<area-name>, e.g. https://gemse.alwaysdata.
net/usa/newyork.

7The French agglomerations are Bordeaux, Grenoble, Lille, Lyon, Marseille, Montpellier, Nantes, Nice,
Paris, Rennes, Strasbourg and Toulouse. Note that french urban areas’ maps are available online according
to the syntax https://gemse.alwaysdata.net/france/<area-name>, e.g. https://gemse.alwaysdata.net/
france/paris.

8Where GWP is sometime prefixed with the term relative, which outlines the computing method, in which
a horizon-dependent comparison of each gas radiative forcing (absolute GWP) is carried out relatively to CO2.

9The Python library developed and used for the calculation of the GWP is available at https://github.
com/lfaucheux/PyGWP.
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Incorporating CGE theory

While the question of what to do to influence the space-economy is linked to the direct effects
of policy implementation, the question of how to act to do so cannot be disconnected from their
indirect effects, namely the impact of policies on industry, income distribution and employment.
Addressing the question through the prism of economics mainly means being able to capture
most general equilibrium effects, be they purely distributional or related to the expansion or
the contraction of the production frontier (PF).10 The modeling architecture to develop in
order to spatialize a GE is implicitly specified by Thisse (2010), who, instead of soft-linking
compact descriptions of the economy and spatial formalisms, insist on the necessity of their full
entanglement. This intellectual movement is the same as the movement toward hybrid models
approach to couple GE models and engineering-based energy models (Hourcade et al., 2006).
In the case of spatial economics, this hybridization passes through the use of New Economic
Geography (NEG), which intrinsically implies GE theory. Indeed, GE concerns are what makes
Economic Geography New (Krugman, 1998).

As discussed by Simmonds et al. (2013, p.1058), composite modeling11 – which stands
for a programming design in which the processing order of submodels is not result-neutral –
creates problems of consistency or of plausibility, worsened in the case of circularly dependent
variables. Computable GE models are canonically representative of simultaneously interacting
processes, e.g. the circularity of income, which is trivially emphasized when prices must balance
markets. The convergence toward the equilibrium implies the use of modeling wrinkles such
that well-shaped production functions, which comes to assume that over the long-run frictions
of the real world have vanished. Space, and even more in a multi-scale framework, adds new
layers of friction for the convergence of supplies and demands for all goods and services. Yet the
implications of using one or other submodel sequence are rarely discussed in technical reports,12

if ever. Failing that, the computation-intensive approach – implemented in this thesis – that
consists of ensuring the parallel processing of submodels until their convergence (on some key
indicators) is a reliable solution to avoid any disagreement on that matter.

Involving geographical realism

A few monoscale modeling frameworks incorporate GE effects but the realistic representation
of the geographical space is not the norm.

At the scale (implicitly) involved in Urban Economics (UE), i.e. the urban scale, Anas
and Xu (1999) describe a local economy whose differentiation à la Dixit and Stiglitz (1977)
of the product space directly stems from a stylized geographical space. In this specification,
in which the sole asymmetries relate to firms’ and households’ antagonist propensity to ag-

10The expansion of the PF results in different national aggregates while distributional ones do not.
11Composite modeling is similar to "hybrid modeling" in the Integrated Assessment Community.
12For an extensive description of this lack of discussion in the field of energy/climate economy models, see

Lefevre (2016).
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glomerate,13 the GE resolution is equivalent to the search for an optimal spatial organization
of economic activities, without any account being taken of distributional effects.14 Nitzsche
and Tscharaktschiew (2013) simulate transport speeds as an endogenizing key determinant
of the spatial distribution of activities and population, and assess the corresponding impacts
in environmental, safety and economic terms. While in the latter study, speeds are space-
differentiated, the internal structure of the metropolitan area remains stylized. Choi et al.
(2015) simulate the distributional effects on housing market fundamentals of a public income-
neutral fiscal change. There is however no realistic considerations of space in the study given
the linear patterns of the daily trips, completed at a constant speed. Remarkably, Anas and Liu
(2007)’s RELU-TRAN model dynamically describes in a unified theoretical manner a metro-
politan LUTI-based15 space economy, in which the convergence of the system towards a unique
equilibrium has been tested for a realistic set of calibration parameters, be they geographic or
economic.

If we collapse the internal structure of a metropolitan area into a single point,16 we con-
ventionally jump to the field and the scale of analysis of New Economic Geography (NEG).
Because at its early stages the analytic tractability of the spatial processes governing the in-
teractions of areas was a key objective, one NEG’s notable feature is its lack of realism with
respect to the geographical distribution of areas, e.g. distributed in a mono-dimensional world
as in Krugman (1993)’s Racetrack economy17 or in a part of it as in Fujita et al. (1999b)’s
Line economy, as well as in a bi-dimensional world as in Puga (1999)’s side-by-side Equidistant
Economy (EE). Since then, adding more real spaces components to NEG has been thought of as
the main step for future development (Behrens and Thisse, 2007; Fujita and Krugman, 2003).
In this light, Behrens et al. (2007) develop a realistic geographical structure that can be seen as
a bi-dimensional Tree economy, featuring transit and junction points, sole transit points, net-
work edge points, and cycles, while still preserving analytical solvability. Bosker et al. (2007)
numerically test NEG’s theoretical predictions18 against the spatial distribution of European
metropolitan areas, by progressively complexifying Puga (1999)’s EE along the canonical axes
of both geographic and economic mass symmetries. Starting from a bi-dimensional and asym-
metric version of Krugman (1993)’s model, Stelder (2005) takes advantages of the complexity
of the geographical shape of Europe to endogenize locations of the metropolitan areas. He de-

13This propensity is centrifugal for firms via agglomeration economies, while it is centripetal for households
via congestion.

14Indeed, GE agents must be differentiated in one way or another to allow for the study of distributional
effects.

15Recalling that LUTI means Land Use Transport interaction, LUTI-based space here stands for a spatial
structure whose explicitation derives from those of the sectors of housing and transport.

16A point, whose inhabitants’ maximization behaviors are aggregated into a GE agent in interaction with
homologous versions of herself standing in other points of the spatial system.

17Not explicitly named as such in 1993. In the following years, this points setting is called "equidistant circle"
by Brakman et al. (1996), finally ending in Fujita et al. (1999a)’s terminology, i.e. Racetrack economy.

18NEG’s theoretical predictions are related to impacts changes in trade costs and in the mobility of production
factors.
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termines unequivocally the values of the parameters of the underlying mechanisms that explain
its current structure.19 Brakman et al. (2006) also start from an hyper-version of Krugman
(1993)’s model and statistically test NEG predictions related to the "migration-driving power"
of the wage equation across the NUTS2 European regions. Of greater complexity with the use
of non-linear numerical techniques coming from different fields, Sheng et al. (2016) simulate four
Canadian’s regions. They infer each region’s internal dynamic of inner-cities size via Markov
chain whose temporal transition20 matrix is estimated by maximum likelihood. At the top
of the empirical complexity pyramid,21 Mercenier et al. (2016)’s RHOMOLO model simulates
the NUTS2 European regions in a fully asymmetric geographical space. Highly configurable,
RHOMOLO’s solvability can include more than one million equations depending on chosen
options.

Involving multiple spatial scales

Both UE- or NEG-related models rely on exogenous signals coming from upper geographical
scales, be them national, regional or global.22 But it is harder to find modeling approaches in
which these links are explicitly involved.

To bridge this gap, Waisman et al. (2013) develop a multi-scale multi-sectoral multi-regional
modeling framework that operationalizes the unification of UE and NEG over the 74 major
OECD cities. This GE-system of cities in interactions is then coupled with the integrated
assessment model (IAM) IMACLIM-R (Waisman et al., 2012), which endogenizes macroeco-
nomic and physical determinants. Given that this IAM also computes a (deeply detailed) GE,
its consistency with the spatial one is ensured via the numerical correspondence of aggrega-
tes23 that are computed on both sides. Allio (2016) also unifies UE and NEG, and presents
a two-scales monosectoral24 two-region model. This model innovates with realistic descriptive
elements on both NEG and UE sides. On the NEG side, the two production factors, both
mobile à la Tabuchi-Helpman (Murata and Thisse, 2005), formalize a labor market in each
region, whose equilibrium is reached via wages. On the UE side, urban costs sum up over
Land-Use Transport Interaction (LUTI) concerns, whose transport components are grounded
on an explicit consideration of fully endogenous congestion-based transport speeds. Following
Waisman et al. (2013), Allio (2015) operationalizes the exercise on France,25 coupling it with

19USA are also modeled, but considered by the author as potentially less illustrative of the explanatory power
of the model because of its too simple shape, which is indeed not so far from being represented by a rectangle.

20Transition of a city between relative size based groups.
21The numerical complexity of RHOMOLO is justified by its strong operational scope. Indeed, it is the

dynamic spatial general equilibrium model of the European Commission, developed to undertake the ex-ante
impact assessment of EU policies and structural reforms.

22Although contextual to the region we consider, examples of (i) national signals that can be population
growth, labor force growth, investment growth and employment rate, (ii) regional signals, thinking from the
European Union viewpoint, can be regulatory and (iii) global signals can be energy prices or technical progress.

23Namely the total production value, the totally available labor force, the total salary mass and the population.
24Indeed, there is no rural area as a venue of the homogeneous sector.
25He incorporates most of France’s urban spatial structure through its twelve greater metropolitan areas.
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IMACLIM-R.

Objectives of the thesis

The primary objective of this thesis is methodological in nature. As described in Crassous
(2008), the history of energy modeling seems to be the confrontation or juxtaposition of a
very few "modeling tribes" since the seventies. The modeling industry implies indeed high
investment in human capital, in formation and in technical apparatus that cannot be changed
overnight. This is why, to maximize chances for new models to inform policy debates, they
must be graftable as easily as possible to any preexisting modeling architecture,26 making them
be ready-to-use in prospective exercises such as those that are usually produced by big insti-
tutions. Practically, this means that such models must be designed in a nexum fashion, i.e.
they must have as element of their exogenous plug-in interface the most common economic
drivers on which institutional organizations (such as OECD, World Bank, European Commis-
sion) make projections, e.g. GDP, factors productivity, investment growth, technical change,
fuel price, population growth. Once these projections are spatialized, these models should be
switchable to a responsive mode, both to explore the sensitivity of their baseline to other sets
of parameters and the sensitivity of the system to various policy packages.

This is why we developed a multi-scale architecture in which the "for-all-scale" character-
istics of the baseline are derived from the macro projections that are assumed by any other
macroeconomic models. We consider explicitly three elements of representation. First, we
consider the spatial structure of local economies so as to e.g. endogenize urban costs and
delineate GHG emissions from urbanization rates. Second, we consider a unified multi-scale
space economy (Scott and Storper, 2015; Thisse, 2010) to account for the reorganization of
the geography of production and the interactions that take place within and between areas.
Third, we consider the intertwined influences of signals descending from the global sphere to
the local scale and vice-versa, so as to account for e.g. the influence of the fossil fuels cost on
the spatial organization of urban areas and on their inner transport-housing trade-offs (Lampin
et al., 2013; Waymire and Waymire, 1980).

An important effort has been made to calibrate the model on empirical data to make it
applicable to indigenous policy-relevant questions and demonstrate how GEMSE could repre-
sent some progress with respect to WEO reports. From a programming standpoint, we also
integrate as far as possible the critic of Simmonds et al. (2013) regarding the issues raised
by composite (or sequential) modeling in terms "of consistency or of plausibility". To do so,
the sets of variables that are connected by two-way feedback links27 are modeled in a circular

26Modeling architecture whose zero-level version is a set of arbitrarily forcasted trends to which the model
would be connected.

27In computer programming, when one piece of code requires the result from another, but that code needs
the result from the first, this is often called circular reference.
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fashion until convergence.
To summarize, the research objectives are about (i) creating a modeling tool capable of

explicitly consider the geo-economical characteristics of national, regional and local economies,
and endogenizing their interplay, (ii) creating a spatial modeling tool whose architecture will
maximize its chance to be disseminated within the spheres of policy deliberations,28 (iii) re-
sorting to heavy-handed methods when dealing with assessable concerns of plausibility, (iv)
providing a first set of results that show what the model can provide and (v) studying the
consequences of some pro-environmental measures currently discussed in the political sphere.

Structure of the thesis

Chapter 1 presents the static model (or short-run model) and how its initial and terminal
conditions relate to each other to constitute the recursive structure of the long-run modeling
framework. We show how the model is switched from a configuration that determines baseline
trends to a responsive mode that allows for analyzing the consequences of any exogenous shock
performed on any model’s parameter.

Chapter 2 presents the American and French data processed by the model and the calibra-
tion equations. In this chapter, a subsection is devoted to the (spatial) econometric validation
of the budget shares related to housing and transport services in workers expenditures. In
parallel, it also contributes to the theoretical spatial-econometric debate on the appropriate
choice of the spatial weight matrix and makes a new proposal for it.

Chapter 3 operationalizes the model, using it in a first step to microcast and analyze pro-
jected trends of the USA and France metropolitan areas in their respective baseline world.29 In
a second phase, the model is used against baseline trends to carry out analyses that investigate
the GHG abatement potential and the consequences on economic activities of designing trans-
port policies. The choice of the policies is made so as to echo with the current policy questions,
about the consequences of speed reductions in urban areas’ center, and the introduction of a
CO2 price-based tax to finance public transport infrastructure.

Finally, an important component of this thesis, in a pro-transparency stance, is a website
that makes dynamically30 available all data used and generated by GEMSE for each country
considered, each scenario, each variable, each year, each urban area as well as for each of its

28The development of a website that compiles and dynamically displays the results of the model fits into this
strategy.

29Where energy prices, technical progresses, national investments in capital, average national labor force
productivities and gross domestic products (GDP) all jointly redefine the context of their respective urban
system through the prospective horizon.

30The term "dynamically" means that all charts and maps are clickable, configurable and browsable on users’
demands.
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constitutive places.31 Moreover an alpha version documentation of GEMSE as modeling tool
is available online.32

31The website can also be HATEOAS (Hypermedia As Engine of Application State) driven, see e.g. https:
//gemse.alwaysdata.net/france/?wSce=baseline, whereas the term HATEOS simply involves rendering
website-like content with no superfluous interface since it is addressed to remote programs.

32Available at https://gemse.alwaysdata.net/static/gemse/GEMSE_doc_alpha.txt.
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GEMSE investigates interplays between aggregate and local dimensions of economic activity,
which generates populations and firms migration, transportation, transport energy use and
associated GHG emissions (N2O, CO2, CH4). It is based on UE monocentric Land-Use Theory
(MLU) (Alonso, 1964; Mills, 1967; Muth, 1969) and NEG (Fujita et al., 1999b; Krugman,
1991) whose economic determinants underpin at each of these two spatial scales the recursive
disaggregation of "aspatial" trends (energy prices, technical progress, investments, the average
national labor productivity, the national GDP and the national employment rate).

To describe the spatial dimension of urban development pathways, the NEG approach is
applied to a set of conurbations (areas) to describe trade among them, as well as population
migration1 and capital migration.2 As mentioned in the introductory Chapter, NEG models
originally fail to explicitly capture the determinants of intra-area location. This restrains
their empirical validation and limit the policy-relevance of their results. To overcome these
limitations, we introduce two innovative features of crucial importance.

On the one hand, we introduce some empirically adapted3 elements of UE to describe
the internal structure of urban areas, notably the introduction of a specific Central Business
District (CBD) where activity is concentrated and around which workers locate in function of
a housing versus transport costs trade-off. On the other hand, we move beyond traditional
two-areas/two-sectors NEG models to tackle inter-urban localization behaviors in a multi-
areas/multi-sectors context, each of them represented by their main local economic development
drivers (demographic growth, firms and population localization, transport demand, housing
rents) and their underlying long term evolution mechanisms (agglomerations size and density,
transport infrastructures type, individual preferences in terms of transport and housing).

GEMSE is a recursive dynamic model.4 As shown in Figure 1.1, the model initiates the
solving process by (i) taking the terminal states of the previous period, (ii) introducing endo-
and/or exogenous shocks on these states and (iii) using these states as a set of conditions
to be used to initiate the next recursion. In other words, this modeling approach consists of
articulated short-run models that iteratively generate the trajectory of the long-run process.

Sections 1.1 and 1.2 that follow describe the wherefores falling respectively under these
short- and long-run timescales.

1Called "mobile Labor model" in Krugman (1991)’s.
2Called "footloose capital model" in Martin and Rogers (1995)’s.
3Each agglomeration space is conceived as monocentric, but not as axisymmetric nor one-dimensional.
4Type of model that Wilson (1970) refers to as quasi dynamic model.
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Figure 1.1: Schematic representation of quasi dynamic models

1.1 Short-run equilibrium

As illustrated on France in Figure 1.2, a country is envisaged as a set of N+1 areas, with N ag-

Figure 1.2: A country as a set of N + 1 areas

glomerations ( ) and a rural area, z ( ). In the former, land is conceived as a heterogeneous
space for workers and firms produce a number of varieties of a differentiated (manufactured)
goodM under increasing returns to scale. In the rural area, land is conceived as a homogeneous
space, the rural workers are strictly identical and production is made of a homogeneous good
F under constant returns to scale. Whether in rural or urban areas, note that labor force, P ,
means workers, L, within an employment factor.5

5As explained further, the distinction between P and L is anything but innocuous since the dynamics of
migration between the N + 1 areas imply P, while the dynamics of relocation within each of those areas imply
L.
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1.1.1 The Urban Spaces

In each urban agglomeration j, there is an explicit consideration of space. As illustrated
in Figure 1.3 on NewYork, USA, an agglomeration j is envisaged as a monocentric set of

Figure 1.3: A urban area j as a set of Nj places

Nj atomistic spatial units – hereafter referred to indifferently as "places" – each located in a
discrete two-dimensional space. Places in this two-dimensional space are indexed by i ∈ J1;NjK,
scattered around the central business district (CBD), taken as the agglomeration center. In
each agglomeration, three types of agents are operating: nj firms, Pj active employees, and
housing developers. All economic activities take place in the j-CBD, i.e. firms are assumed to
locate in the CBD of the agglomeration.

1.1.1.1 Firms

Manufacturing production uses capital and labor as spatially mobile input factors. Produc-
tion costs differ across agglomerations because of heterogeneous unitary labor requirements,
lj 6= lk, ∀{j, k} ∈ J1;NK, whereas these requirements are identical for all firms of a given
agglomeration j. Employed labor force Lj is a variable factor of production and is subject to
external economies of scale. The unitary labor costs cLj are lower in a larger market, as follows:6

cLj =
lj
nηj
wj (1.1)

nj is the number of firms in j. η > 0 is the elasticity of labor costs to the size of the mar-
ket, which is measured by the number of active firms in area j. Equation (1.1) captures the
improvement of effective productivity permitted by the agglomeration of production through

6As can be noted, we neglected to represent the phase during which the arrival of new workers in a given
firm make the production function exhibiting decreasing returns to scale for a given stock of capital.
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facilitated technology spillover. wj are the wages paid per employee in agglomeration j. Cap-
ital is the fixed factor of production, and, with fixed input requirement κ, the amount Kj of
productive capital in agglomeration j is proportional to the number of domestic firms, nj:

Kj = κnj (1.2)

Let rj be the unitary return of capital Kj. The total cost cqj of producing qj for a firm
settled in agglomeration j is expressed as:

cqj = κrj + cLj qj (1.3)

1.1.1.2 Workers

Utility of workers is differentiated in function of their position in the two-dimensional space of
urban area j. In each place i, workers’ utility uj,i derives from:

(i) the consumption of composite goods, Cj,i – hereafter referred to indifferently as "Cobb-
Douglas good"7 –, resulting from a two-level decision tree as shown in Figure 1.4.

Figure 1.4: Nested-structure of C

where M is a composite index – of the consumption of manufactured goods mk – defined
by a constant-elasticity-of-substitution (CES) function, F represents the consumption of the
traditional good coming from rural area, and β is a constant representing the share of M in
workers’ expenditures of Cobb-Douglas goods. As just outlined, M is actually a subutility
CES function defined over a discrete and countable set of varieties of manufactured goods, mk,
whose (j, i)-demand, mkj,i, reads as the demand of workers living in place i of urban area j for
a variety produced in urban area k. Finally, ε > 1 is the elasticity of substitution among the
varieties of manufactured goods.

(ii) housing services proxied by the consumption of hj,i squared meters:

hj,i =
Hj,i

Lj,i
(1.4)

7Admittedly, qualifying a good of being "Cobb-douglas" is abusive since, strictly speaking, what can be
so-qualified are the consumers’ preferences/tastes or the producers’ technologies relative to the goods that are
aggregated in such way. However, this linguistic liberty is relatively common, even more when the good is
aggregated using a CES specification, see e.g. Bosi et al. (2010, p.13), Behrens and Robert-Nicoud (2011,
p.218), Hungerland (2017, p.33), Ottaviano and Martin (2001, p.951) or Gaspar (2017, p.13).
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Hj,i refers to the overall consumption/supply of squared meters in place i of agglomeration j.
and (iii) transport services proxied by the consumption of aj,i round trips to the center

business district (CBD), measuring the accessibility in i:

aj,i =
T

dj,i
vj,i (1.5)

For a given transport mode, vj,i is the observed speed to reach the CBD. dj,i is the corresponding
traveling distance. T is the stable daily travel time budget of Zahavi and Talvitie (1980),
assumed to be identical throughout the country for the sake of simplicity.

This leads to the utility function uj,i:

uj,i = u0
jC

δc

j,ih
δH

j,i a
δa

j,i (1.6)

with δc = 1− δa − δH , parameters δa and δH respectively referring to the elasticities of utility
with respect to aj,i and hj,i quantities. u0

j captures all the amenities associated with residing
in agglomeration j and is not differentiated across places.

By introducing the disposable income of the workers living in urban area j, Yj – not diffe-
rentiated across places either –, their consumption have to satisfy their budget constraint:

Yj = pzFj,i +
N∑
k=1

nkpkjmkj,i + hj,iRj,i + P a
j,i (1.7)

where pz is the price of the homogeneous good produced in rural area, pkj is the price of a variety
of the manufactured good M coming from agglomeration k. At the level of agglomeration j’s
place i, Rj,i is the average unitary land rent, hj,iRj,i is the housing cost and P a

j,i the (transport
mode-specific) commuting cost. Note that hj,iRj,i + P a

j,i is the "urban cost" incurred by a
worker living at dj,i kilometers from the j-CBD.

Under the double constraint of time T and income Yj, the demands for accessibility and
land are: aj,i = T

dj,i
vj,i

hj,i = δH

1−δa
Yj−Paj,i
Rj,i

(1.8)

For the traditional good and a given variety of the manufactured good, the maximization
of utility under budget constraint leads respectively to the following demands:Fj,i = (1−β)δc

1−δa
Yj−Paj,i
pz

mkj,i = βδc

1−δa

(
Pj
pkj

)ε Yj−Paj,i
Pj

∀k ∈ J1;NK
(1.9)
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where Pj is the price of the CES good in agglomeration j,

Pj =

[
N∑
k=1

nkp
1−ε
kj

] 1
1−ε

(1.10)

1.1.1.3 Income formation

In each urban agglomeration j, the total disposable income, Yj, results from four different
sources, namely: wages paid to workers, wj; dividends from capital invested in the Cobb-
Douglas production, Y K ; incomes from real estate development, Y H

j ; and incomes from trans-
port consumption, Y a

j , as follows:

Yj = wj + Y K + Y H
j + Y a

j (1.11)

Wages derive from a wage-unemployment curve (Blanchflower and Oswald, 1995) and ten-
sions between firms demand Lj and supply Pj of labor force are formalized by:

wj = wminj

(
1− Lj
Pj

)σ
(1.12)

where wminj is the minimum wage in agglomeration j. σ < 0 is the elasticity of wages to the
unemployment rate. We reiterate that Pj is the labor force supply in agglomeration j while Lj
is the labor force effectively employed.

Nationwide total incomes from capital Ỹ K available in the Cobb-Douglas sector are given
by:

Ỹ K = kzrzqz +
N∑
j=1

Kjrj = kzrzqz + ε−1
∑
j

pjnjqj (1.13)

where rj (rz) is the return on capital Kj (kzqz) invested in each agglomeration j (in the rural
area z). For the sake of simplicity, we assume that productive capital is equally possessed
by workers over the whole nation, so that dividends are uniformly redistributed among them.
Thus, each of the Lj (Lz) workers living in agglomeration j (rural area) receives an "aspatial"
income Y K given by:

Y K =
Ỹ K

Lz +
∑N

k=1 Lk
(1.14)

Recalling that hj,iRj,i is the housing cost incurred by a worker located in place i, the total
income generated in the housing sector of agglomeration j is:

Ỹ H
j =

Nj∑
i=1

Lj,ihj,iRj,i (1.15)

For the sake of simplicity, we assume that these incomes are redistributed among local
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workers, as follows:

Y H
j =

Ỹ H
j

Lj
(1.16)

With the same redistribution rule as in eq.(1.16), the representative dividend generated by
the transport sector is:

Y a
j =

Ỹ a
j

Lj
=

∑Nj
i=1 Lj,iP

a
j,i

Lj
(1.17)

1.1.1.4 Transport sector

In each place i of urban agglomeration j, workers have the choice à la Allio (2016) between two
transport modes: public transport (PT) or private vehicle (PV). The PT average speed, vPTj,i ,
is constant regardless of the number of commuting workers, keeping in mind that congestion in
public transport mode does not alter speed (subways, trams, less true for buses). In contrast,
the PV average speed, vPVj,i , depends on the number of workers commuting on the urban road
network, which therefore must be explicitly represented.

First, with occupancy rates of cars that are set to 1, the number of commuting cars is equal
to the number of commuting workers. In closed-form, the Nj × 1 vector of the numbers of cars
in agglomeration j, Λj, is:8

Λj = [Λj,i] = [Lj,iαj,i] (1.18)

where αj,i is the modal share of cars in place i of urban area j.
Second, to model how cars interact, i.e. how they reciprocally influence their speed and

ultimately, how they jointly create traffic jam, we must explicitly model the structure of the
road network. Figure 1.5 provides an example of how a given network structure is considered
numerically in the case of a symbolic agglomeration composed of 3 places A, B and C. The
structure is transcribed by a square matrix, Πj, entrywise specified à la Allio with a percentage
of route travel time in common between a given place and any other place while reaching the
CBD of agglomeration j.

Πj =


A B C

A 1 0.6 0
B 1 1 0
C 0 0 1



Figure 1.5: Example of Πj, given an agglomeration j network structure

In Figure 1.5, we see that: cars commuting from place A share 60% of their travel time with
8Note that Λj could have been named LPVj , so as to be notation-consistent with the parallel use of LPTj .

However, as will be seen later in this section, this would have resulted in a lack of readability when superscripting
LPVj by something else, e.g. LPV

PV

j .
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those commuting from place B; cars commuting from place B share 100% of their travel time
with those commuting from place A and; cars commuting from place C share no travel time
with place A or B and thus have no network effect on those and reciprocally. For the sake of
simplicity, Πj is assumed to be the same whatever the commuting sense.

With such a representation of the road network, it is straightforward to compute the agglo-
meration’s volume of private vehicles, Vj,i, which as i-users takes the same route to commute
to the j-CBD, given by:

Vj,i =

Nj∑
o=1

Λj,oΠj,io ∀i ∈ J1;NjK (1.19)

Private vehicle speeds observed on average along the route from place i to reach the j-CBD are
computed using Geroliminis and Daganzo (2008)’s macroscopic fundamental diagram of traffic
flow that establishes a relation between the number of cars over a given period of time and the
number of cars over a given distance:

vPVj,i =
v0,PV
j,i

1 +
(

Vj,i
Kj,i

)4 (1.20)

v0,PV
j,i is the PV average free speed – with no congestion – and Kj,i is the road network capacity
at a medium congestion state between place i and its j-CBD.

The consideration of the transport mode that is chosen in place i of urban area j leads to
derive a specific accessibility component in the utility, aPVj,i and aPTj,i , as follows:

aPVj,i =
T

dj,i
vPVj,i ; aPTj,i =

T

dj,i
vPTj,i (1.21)

aPVj,i and aTCj,i are the numbers of round trips that a worker can perform given the speed of
her transportation mode, her chosen place i to live in agglomeration j and the time T – not
space-differentiated – she allocates to her mobility. Which leads to formalize uPVj,i and uPTj,i :

uPVj,i = u0
jC

δc

j,ih
δH

j,i a
PV δ

a

j,i ; uPTj,i = u0,PT
j,i u0

jC
δc

j,ih
δH

j,i a
PT δ

a

j,i (1.22)

where u0,PT
j,i is an amenity factor that explains why workers use public transport in places where

the private vehicle’s speed unit is cheaper than that of public transport. This amenity factor
consists of:

u0,PT
j,i =

(
νPVj,i
νPTj,i

)δa (
Yj − P a,PV

j,i

Yj − P a,PT
j,i

)1−δa

(1.23)

where νPVj,i and νPTj,i – instead of their v-like counterpart – stand for the reference speeds whose
ratio internalizes the relative difference between the two modes of transport in terms of speed.
Yj − P a,PV

j,i and Yj − P a,PT
j,i are the residual incomes stemming from the use of each of the two

transport modes, private vehicles and public transport respectively, and whose ratio internalizes
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the relative difference between them on the monetary plan.
The PT commuting costs, P a,PT

j,i , are location-dependent (charging zone) and constant
regardless of the annual browsed pendulum distance, such that

P a,PT
j,i = P a,PT

j,i (1.24)

The private vehicle commuting costs is divided into two parts, one being distance-dependent,
P̂ a,PV , the other distance-constant, P a,PV , as follows:

P a,PV = P a,PV + P̂ a,PV = P a,PV + capaD (1.25)

where ca is the average liter consumption per kilometer, pa the average price per liter and D
the annual distance commuted by a PV-only user.

Thus, the transport budget of a (i-representative) worker living in place i, P a
j,i, is:

P a
j,i = αj,iP

a,PV + (1− αj,i)P a,PT
j,i (1.26)

Recalling that αj,i is the private vehicle modal share.

1.1.1.5 Housing sector

Housing developers have an instantaneous i-specific production function of residential square
meters Hj,i, as follows:

Hj,i =
S

1−γj,i
j,i χ

γj,i
j,i

τH
(1.27)

where γj,i is the return to scale of installed capital specific to place i, which captures all omitted
i-specificities in terms of regulation and of ease of construction. τH is the number of years that
it takes to developers to build Hj,i square meters.9 Following Muth (1961), the only variable
input is the stock of capital installed in place i, χj,i, while Sj,i, the buildable surface, is fixed and
does not influence the profit maximization program of developers. Also, the effective number
of residential floors in place i of agglomeration j, fj,i, consists of a ratio-relationship between
the building land and the stock of square meters available locally, as follows:

fj,i =
Hj,i

Sj,i
(1.28)

9Which is likely to represent many years, given that Hj,i is a quantity related to a whole place, say, a block
of houses, with potentially thousands of people.
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1.1.2 The Rural Space

In rural areas, there is no internal space considerations and land is taken as homogeneous and
adimensional.

1.1.2.1 Firms

Rural firms, whose total number is not explicit, produce the traditional and homogeneous good
under constant returns to scale. Both labor and capital are variable factors of production but
only labor is spatially mobile. Letting rz be the unitary return of capital Kz, the total cost cqz
of producing qz for a firm settled in rural areas is:

cqz = (lzwz + kzrz)qz ; Kz = qzkz (1.29)

1.1.2.2 Workers

The utility of rural workers, uz, derives (i) from synthetic services hz, representative of rural
land-transportation services and (ii) (as for urban workers) from the consumption of "Cobb-
Douglas goods", C, nesting a manufactured good imported from the urban space M and a
traditional good produced locally, F [see Figure 1.4]. Except for land-transportation services,
uz is formalized as its urban counterpart, as follows:

uz = u0
zC

δc

z h
δa+δH

z (1.30)

Since 1− δc = δa + δH , note that income share attributed to rural land-transportation services,
i.e. to hz, equals the sum of the urban shares of income attributed to transport and housing
in urban areas, δa and δH respectively. The idea is to keep the preferences of workers constant
through the entire nation space. As in the urban space, u0

z captures all the amenities associated
with residing in rural area.

Denoting Yz the income of a worker living in the rural area, the consumer has to satisfy the
following budget constraint:

Yz = pzFz +
N∑
k=1

nkpkzmkz + hzRz (1.31)

where Rz is the land-transportation good price. The Lz workers pay for a synthetic good that
aggregates both transport and housing services. Their demand for this good is given by:

hz = (δa + δH)
Yz
Rz

(1.32)
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The maximization of utility under budget constraint leads to the conditions:Fz = (1− β)δc Yz
pz

mkz = βδc(Pz
pk

)ε Yz
Pz
∀k ∈ J1;NK

(1.33)

where Pz is the cost of differentiated good index in the rural area z:

Pz =

[
N∑
k=1

nkp
1−ε
kz

] 1
1−ε

(1.34)

1.1.2.3 Income formation

The total disposable income of a worker living in the rural area results from three different
sources, namely: wages paid to workers, wz; as in agglomerations, dividends from capital
invested in the Cobb-Douglas goods production, Y K ; and dividends from land-transportation
services Y H

z :
Yz = wz + Y K + Y H

z (1.35)

As in the urban space, wages calculations are based on a wage-unemployment curve, so
that tensions between rural demand and supply of labor forces are formalized (Blanchflower
and Oswald, 1995) via

wz = wminz

(
1− Lz
Pz

)σ
(1.36)

where wminz is the minimum wage in the rural area. Pz is the active population in the rural
area z, i.e. the labor supply, and Lz the rural labor force currently employed.

As urban workers, each rural worker holds an identical part of the Cobb-Douglas sector and
receives the same capital-related income Y K given by:

Y K =
Ỹ K

LZ +
∑N

k=1 Lk
(1.37)

We assume that dividends generated by the land-transportation sector, Y H
z , are exclusively

distributed between rural workers:

Y H
z = (δa + δH)Yz (1.38)

1.1.2.4 Land-Transport sector

As already explained, given the non-explicit spatial representation of rural area, housing and
transport services are aggregated into one unique service referred to as land-transportation
service, h. This service is auto-generated by rural workers and its price is indexed on the gross
rural product so that its consumption is kept constant in quantity.
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1.1.3 Regionwide equilibria

First, note that trade is allowed across urban areas, as well as between urban areas and the
rural area. We use the ’iceberg’ form of transport costs associated with trade of the composite
goods (Samuelson, 1952). If one variety of differentiated good is shipped from agglomeration j
to agglomeration k (to the rural area, z), only a fraction τjk – where a priori τjk 6= τkj, ∀ j, k ∈
J1;NK – will reach the destination, the remainder melting during the shipment.

Any unit produced in agglomeration j provides the same revenue independently from the
location where it is sold, so that a variety sold at price pj in its production location j is charged
in consumption location k (the rural area z) at price pjk (pjz), as follows:

pjk = τjkpj ; pjz = τjzpj (1.39)

We assume that the homogeneous good is freely traded across areas, so that:

pzj = pz ∀ j (1.40)

1.1.3.1 Heterogeneous good market equilibrium

The production qj of a firm located in agglomeration j equals the sum of local consumptions
and exports. The market clearance condition then imposes

qj = βδc

(
τjzLz

Yz
Pz

(
Pz
pjz

)ε
+

1

1− δa
N∑
k=1

τjk

Nk∑
i=1

Lk,i
Yk − P a

k,i

Pk

(
Pk
pjk

)ε)

= τjzLz mjz +
N∑
k=1

τjk

Nk∑
i=1

Lk,i mjk,i

(1.41)

where mjk,i is the demand for the variety produced in urban area j of a worker who lives in
place i of urban area k [see eq.(1.9)], mjz is the demand for the variety produced in urban
area j of a worker who lives in rural area [see eq.(1.33)]. Note that each demand is inflated by
an iceberg-melting factor, τj., which shows that the producers of urban area j overproduce in
order to offset the quantities of goods that melt during shipments.

Under Dixit-Stiglitz monopolistic market, firms set their price by assuming a constant
elasticity of substitution (CES), ε > 1, and profit maximization leads to a constant mark-up
on variable cost

pj =
ε

ε− 1
cLj (1.42)

As a consequence of the profit maximization behavior, the j-number of firms is such that profits
are zero, as an equilibrium condition of monopolistic competition. Thus by setting zero profit,
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the return to capital rj at the equilibrium is

rj =
qj
κ

(pj − cLj ) (1.43)

1.1.3.2 Homogeneous good market equilibrium

Market clearing imposes that

qz = (1− β)δc

(
Lz
Yz
pz

+
1

1− δa
N∑
k=1

[
Nk∑
i=1

Lk,i
Yk − P a

k,i

pz

])

= LzFzz +
N∑
k=1

Nk∑
i=1

Lk,iFzk,i

(1.44)

where the first term on the right-hand side is the consumption of goods produced locally and
the second one the total consumption from workers living in urban areas. Perfect competition
implies marginal cost pricing, so that

pz = lzwz + kzrz (1.45)

1.1.3.3 Location choice equilibrium

A la Martin and Rogers (1995), urban firms relocate between urban areas. Firms/capitals
base their migration choice on rate-of-return differentials across all urban areas, i.e. they
have incentive to relocate as long as higher rates of return persist elsewhere, i.e. as long as
{rj > r̂|j ∈ J1;NK} 6= ∅. Put differently, they stop to relocate once they observe that

rj = r̂ ∀ j ∈ J1;NK (1.46)

where rj is the rate of return of firms settled in urban area j.
A la Krugman (1991), active populations (hereafter referred to indifferently as "population",

"people" or labor force supply) base their migration choice on welfare differentials across all
areas, i.e. they have incentive to relocate as long as a higher welfare level exists, i.e. as long
as {Wr > Ŵ |r ∈ J1;N + 1K} 6= ∅. In other words, populations have no incentive to relocate
once they observe that

Wr = Ŵ ∀ r ∈ J1;N + 1K (1.47)

where Wr is the level of welfare of the rth urban or rural area.

1.1.3.4 Labor market equilibrium

In each urban area, Pj denotes the quantity of labor force supplied by the population, i.e.
the active population. In parallel, the quantity of goods that area j’s firms produce implies
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a given level of labor requirement, ljn1−η
j qj, which defines the firms’ demand of labor force at

the labor-market equilibrium, Lj, i.e. the quantity of labor force that is effectively employed
by firms, such that

Lj = ljn
1−η
j qj for Lj ∈ [0;Pj], ∀j ∈ J1;NK (1.48)

In the rural area, total labor requirements for production of the homogeneous good is given
by lzqz, and, as in the urban space, from this demand derives the quantity of labor force that
is effectively employed, Lz, as follows

Lz = lzqz for Lz ∈ [0;Pz] (1.49)

At the interface between the regional and the local scales, each area’s labor market links
the welfare of (active) population to the utility level of workers by an employment factor, Er,
as follows

Lr
Pr
ur = Erur = Wr ∀r ∈ J1;N + 1K (1.50)

Thus, Wr can be seen as an augmented version of ur, related to the people’s concern of losing
and finding a job when/where they move.

1.1.4 Urbanwide equilibria

For any endowment of transport mode in any place i, all must comply with the criterion of
equalization of all utility levels within urban area j, given by:

uPVj,i = uPTj,i = u∗j ∀i ∈ J1;NjK ∧
Nj∑
i=1

Lj,i = Lj ∧ u∗j ∝ uj = Wj
Pj
Lj
∀j ∈ J1;NK (1.51)

Since welfare level (at the NEG-related scale) means utility level (at the UE-related scale)
within a local employment rate factor [see eq.(1.50)], u∗j ∝ uj stands for the fact that u∗j varies
from uj – given when initiating urban solving – so as to get a value reachable by all the places
of the urban area j. Thus, any difference between u∗j and uj defines the impacts at the urban
scale of exogenous and/or endogenous changes in the long-run of GEMSE [see Section 1.2].

Equation (1.51) is ensured ∀i ∈ J1;NjK via a balanced trade-off based on an iterative and
circular meeting between the consumptions of goods, C∗j,i, of square meters (housing services),
h∗j,i, and of round trips (accessibility), a∗j,i. The term circular is of critical importance to de-
scribe the way each GEMSE’s urban system achieves its equilibrium. For example, in a given
place i, changes in the number of residents may affect local and neighboring speeds in a diffe-
rentiated manner and thus not to allow for the homogeneously-driven realization of eq.(1.51).
Equivalently, i-changes in density or in accessibility may translate (via network effects) here
and there into too low or too high residual incomes, which could also prevent the realization
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of eq.(1.51) on the two plans of housing and goods consumptions. In parallel/addition, the
sustainability of eq.(1.51) would be undermined instantaneously if an incentive to modal shift
persists in only one location of the urban system. This would translate into changes in private
vehicle speeds on the one hand and of residual (of transport cost) income on the other hand,
thereby leading to changes in demands and prices of goods and services, finally reorienting the
entire urban system toward a new equilibrium level of utility.

These examples illustrate how critical the spatial distribution of workers, Lj,i∀i ∈ J1;NjK,
and of mobility habits, αj,i∀i ∈ J1;NjK, are in the agglomeration for achieving the urban equili-
brium. Put differently, Lj’s and αj’s components are the degrees of freedom of the equilibrium
and must be those that, when translated into residual incomes and densities – density that is
actually the object at the housing/transport interface – lead to comply with eq.(1.51), such
that

{C∗j,i(L∗j,i, α∗j,i), h∗j,i(L∗j,i, α∗j,i), a∗j,i(L∗j ,α∗j)} = argmax
Cj,i, hj,i, aj,i

L u
j,i(Cj,i, hj,i, aj,i, µ

u
j,i) s.t.(1.51)

(1.52)
where L u

j,i stands for the Lagrangian uj,i-surfunction that incorporates the income constraint
of workers living in place i of agglomeration j and µuj,i is the i-specific infinitesimal change
in the utility level arising from an infinitesimal change in the income constraint. While only
the local number of workers (directly) matters for the demand related to housing and goods,
h∗j,i(L

∗
j,i, α

∗
j,i) and C∗j,i(L

∗
j,i, α

∗
j,i), the existence of (road) network effects [see from eq.(1.18) to

eq.(1.22)] involves to express each local accessibility demand as a function of the two entire
spatial distributions of workers and mobility habits, hence the term of accessibility that is
expressed as a function of vectors, i.e. expressed as a∗j,i(L∗j ,α∗j).

We subsequently expose the numerical system of equations to build so as to provide a urban
area j with a geography that puts it at its equilibrium state, i.e. to provide a urban area j
with L∗j and α∗j .

1.1.4.1 Housing/Transport equilibria

To comply with eq.(1.52), we adapt a computing method that is well-known in urban transport-
ation planning: the four-step (4S) model.10 The four steps that sequence the transportation-
modeling into four basic building blocks are, namely, the steps of: (i) trip generation that
consists of determining the number of commuters from each place i of agglomeration j, (ii)
trip distribution that is about determining each commuter’s destination, (iii) modal choice
and (iv) trip assignment that consists of determining the route taken by commuters to reach
their destination. Steps (ii) and (iv) are asserted structurally by the monocentric and simply-
connected11 nature of urban spaces that are modeled in GEMSE. Thus only the notions (and

10For details see e.g. McNally (2008).
11A terminology that comes from Topology, used abusively to say that the shortest path to reach the CBD

of agglomeration j from any place i is unique.
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their underlying variables) that are implied in Steps (i) and (iii) are invoked to comply with
eq.(1.52).

In GEMSE’s discrete representation of space, complying with eq.(1.52) leads to the use of
discrete optimization techniques. Indeed – as outlined by the coexistence of two modal-choice-
dependent utility functions [see eq.(1.22)] – Lj and αj are characterized over a quantifiable
number of situations from which it is question to start so as to put the overall urban area at
equilibrium. This means breaking the problem stated via eq.(1.52) into three sub-problems
according to which precise condition [see eq.(1.51)] the utility of workers that live in place i
is subject to. In some places, this condition reduces to uPVj,i = u∗j – e.g. places not served
by public transports –, while in others it is rather uPTj,i = u∗j , whereas in some other places
eq.(1.51) is representative without restriction.

To formalize these three sub-problems, define IW
j , I PV

j and I PT
j : three sets such that

IW
j ∪ I PV

j ∪ I PT
j = J1;NjK. These three sets contain the indexes related to places where

workers use, respectively, the two transport modes, only private vehicles and only public trans-
ports. Nothing prevents at most two of these three sets from being empty.

Depending on the transport mode that is chosen by workers, their utility function are spe-
cified differently [see eq.(1.22)]. However, in some places, their indirect specification leads to
deal with sub-determined systems of equations while trying to comply with eq.(1.52). Let’s first
see this on the housing side by seeing how each i-local housing market clearance is achieved.
The clearance of the housing market is achieved via the variation of housing rents per square
meter, i.e. getting Rj,i = R∗j,i, which depends on the sum of all local residual incomes (net of
transport costs), as follows

R∗j,i =


δH

1−δa
Λ∗j,i(Yj−P

a,PV
j,i )

Hj,i
if i ∈ I PV

j

δH

1−δa
Λ∗j,i(Yj−P

a,PV
j,i )+LPT∗j,i (Yj−Pa,PTj,i )

Hj,i
if i ∈ IW

j

δH

1−δa
LPT∗j,i (Yj−Pa,PTj,i )

Hj,i
otherwise (if i ∈ I PT

j )

∀i ∈ J1;NjK (1.53)

We recall that Hj,i is a quantity of supplied square meters coming from the maximization
program of housing developers [see eq.(1.27)]. Considered together, equations (1.102) and
(1.53) show that all workers’ indirect utility levels (are directly functions of these equilibrium
housing rents and) incorporate the mobility habits of other workers living in the same place as
them. At this stage and considering only the housing side, it therefore seems more judicious to
figure u∗j out either through I PV

j -places or through I PT
j -places, i.e. where the determination

of u∗j does not rely on the simultaneous knowledge of Λ∗j,i and LPT∗j,i .
However, it is on the transport side that the choice of finding u∗j (through I PV

j -places or
through I PT

j -places) is constrained. As explained previously, the flows of cars that commute
from I PV

j -places have an influence via (road) network effects on their own level of utility, as
well as on the levels of utility in IW

j -places, i.e. the places that are endowed with a valuable
PV versus PT trade-off. In IW

j -places, complying with eq.(1.51) translates into the use of
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the first principle of Wardrop (1952), whose underlying is an user-optimized Nash equilibrium
reached when no user may lower her transportation cost through unilateral change in mobility
habit. By equalizing indirect workers’ utility derived from public transport with the one derived
from private vehicle [see from eq.(1.101) to eq.(1.107)], we get the following transport-modes-
indifference condition:

vPTj,i
νPTj,i

=
vPVj,i
νPVj,i

∀i ∈ IW
j ⊆ J1;NjK (1.54)

where – as already introduced in eq.(1.23) – (i) νPTj,i stands for the reference speed in public
transport, which may be different from vPTj,i , e.g. a transport policy may have been imple-
mented and (ii) νPVj,i is the reference speed in private vehicle that may also be different from
vPVj,i because of changes in congestion on the road network and/or because of a modification in
speed limitation, νPV0j,i , on which it depends [see eq.(1.20)].

With this greater functional dependence of the urban equilibrium to what happens in I PV
j -

places, the starting point is thus related to figuring out the equilibrium numbers of cars com-
muting from any place i of agglomeration j, Λ∗j,i [see eq.(1.18)], be them emitted by I PV

j -places
or by IW

j -places. To do so, define NPV
j = card(I PV

j ) and ΛPV ∗
j , a NPV

j × 1 vector of the
stock-numbers of cars that stem from I PV

j -places. Then, in combination with Geroliminis and
Daganzo (2008)’s macroscopic fundamental diagram of traffic flow [see eq.(1.20)], turn eq.(1.54)
into the corresponding indifference-preserving flow of indigenous cars,12

Ṽj,i = Kj,i

(
−1 +

v0,PV
j,i νPTj,i
vPTj,i ν

PV
j,i

) 1
4

∀i ∈ IW
j (1.55)

Define NW
j = card(IW

j ) and Ṽ
W

j , a NW
j × 1 vector of the flow-numbers of cars between

IW
j -places and the CBD of urban area j, whose closed-form content is given by eq.(1.55),

i.e. Ṽ
W

j = [Ṽj,i]. The components of Ṽ
W

j then have to be adjusted to take into account the
(non-indigenous-to-IW

j -places) cars that come from I PV
j -places in addition to its own. This

involves carrying out a segmented treatment of impacts that are due to cars coming from the
two types of places, which means dividing the road network of agglomeration j, Πj, into four
sub-networks, i.e. one per type of impacted-impacting pairs of places. The characteristics of
these matrices are listed in Table 1.1. With these sliced versions of Πj, it is straightforward
to downward-adjust Ṽ

W

j by taking non-indigenous I PV
j -cars into account. Let’s denote the

downward adjusted version of Ṽ
W

j by VW∗
j , calculated as follows

VW∗
j = Ṽ

W

j −VPV ∗
j = Ṽ

W

j −Π
(ii)
j ΛPV ∗

j (1.56)

12I insist on the word used here: "indigenous", not "endogenous", which in this context must be understood
as "indigenous to place i of urban area j".
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a Π
(i)
j , square a fortiori, is designed to calculate impacts on the private vehicle speed of users commuting from IW

j -places due
to users commuting from IW

j -places.
b Π

(ii)
j , rectangular a priori, is designed to calculate impacts on the private vehicle speed of users commuting from IW

j -places,
due to users commuting from I PV

j -places.
c Π

(iii)
j , rectangular a priori, is designed to calculate impacts on the private vehicle speed of users commuting from I PV

j -places,
due to users stemming from IW

j -places.
d Π

(iv)
j , square a fortiori, is designed to calculate impacts on the private vehicle speed of users commuting from I PV

j -places
due to users commuting from I PV

j -places.

Table 1.1: Summary table of the sliced versions of Πj

Box 1. Equation (1.56) must be carefully considered since one of its terms is the deepest
fiber of the urban equilibrium, that is ΛPV ∗

j ,a whose number of components and compo-
nents’ values must be determined iteratively. The iterative approach followed to determine
ΛPV ∗
j , i.e. to get ΛPV

j = ΛPV ∗
j , is clarified in Box 2.

aAs clarified shortly, ΛPV
j is a common fiber of Lj and αj .

With these (pro-equilibrium) flow-numbers of IW
j -cars in hand, VW∗

j , still remains to trans-
form them into punctual stocks distributed overall IW

j -places. Indeed, VW∗
j is representative

of all the cars that are "currently" in circulation, regardless of which IW
j -place they come

from. This transformation of circulating flows into residing stocks is done by pre-multiplying
VW∗
j by the inverse of Π

(iv)
j , as follows

ΛW∗
j =

(
Π

(iv)
j

)−1

VW∗
j (1.57)

Define Λ∗j , a Nj × 1 vector that is formed over the components of ΛPV ∗
j and ΛW∗

j , i.e. a vector
whose components are the numbers of cars commuting from any place i of agglomeration j at
equilibrium, such that

Λ∗j,i =


ΛPV ∗
j,̂ı if i = ı̂ ∧ i ∈ I PV

j

ΛW∗
j,̂ı if i = ı̂ ∧ i ∈ IW

j

0 otherwise (if i ∈ I PT
j )

∀i ∈ J1;NjK (1.58)

The knowledge of the spatial distribution of cars in urban area j, Λ∗j,i∀i ∈ J1;NjK, allows us to
determine the spatial distribution of housing rents over the I PV

j -places [see eq.(1.53)], as well
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as that of their speeds, computed as follows

vPV ∗j,i =
v0,PV
j,i

1 +

([
Π

(iii)
j ΛW∗

j +Π
(iv)
j ΛPV ∗

j

]
i

Kj,i

)4 ∀i ∈ I PV
j (1.59)

From now on, we can determine the equilibrium utility level (of equalization), u∗j [as formulated
in eq.(1.102)], where we know all its terms, i.e. in I PV

j -places, which yields

uj,i = u0
j,iu

2
j

(
R∗j,i
)−δH ( T

dj,i
vPV ∗j,i

)δa (
Yj − P a,PV

j,i

)1−δa
= u∗j ∀i ∈ I PV

j (1.60)

The equilibrium numbers of workers who take public transport in place i of urban area j, LPT∗j,i ,
is determined by considering (i) eq.(1.58), (ii) uPTj,i = u∗j with uPTj,i expressed as in eq.(1.105)
and (iii) eq.(1.53) over non-I PV

j -places, which yields

LPT∗j,i =

(
u0
ju

2
ju

0,PT
j,i

u∗j

) 1

δH 1− δa

δH
Hj,i

(
T

dj,i
vPTj,i

) δa

δH
(
Yj − P a,PT

j,i

) δc

δH − Λ∗j,i

(
Yj − P a,PV

j,i

Yj − P a,PT
j,i

)
(1.61)

Box 2. In relation with Box 1, the iterative approach followed until ΛPV
j = ΛPV ∗

j , is
directly based on the components of [Λj,i] [see eq.(1.58)] and of [LPTj,i ] [see eq.(1.61)].
This iterative approach requires to choose between (i) decreasing the size of ΛPV

j by one
element where |Λj,i/L

PT
j,i | exists and exhibits the highest value, or (ii) increasing the size

of ΛPV
j by one element where |LPTj,i /Λj,i| exists and exhibits the highest value. Proceed to

(i) if |Λj,i′/L
PT
j,i′ | is the only one that exists or |Λj,i′/L

PT
j,i′ | > |LPTj,i”/Λj,i”|, otherwise proceed

to (ii).

Finally – and relatively to the 4S model’s steps of (i) trip generation and of (iii) modal choice
–, L∗j and α∗j consist of

L∗j = Λ∗j +LPT∗j and α∗j =
Λ∗j
L∗j

(1.62)

This concludes the presentation of the short-run model.
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1.2 Long-run modeling framework

Before explaining what the modeling framework of long-run consists of, let us summarize the
short-run model. GEMSE disaggregates a national economy into a set of N urban areas (here-
after indifferently referred to as agglomerations or conurbations) plus one unique "aspatialized"
area that is rural, z. Each agglomeration j ∈ J1;NK comprises local housing developers, nj
firms located in the Central Business District (CBD) and Lj workers empirically distributed
within places around it. With (spillover-adjusted) unitary labor requirement lj/nηj paid at wage
wj [see eq.(1.1)] and fixed capital costs with uniform amount per firm κ [see eq.(1.2)], each
urban firm produces qj units of a variety of composite good, M , under variable cost submitted
to external economies of scale working through an elasticity of labor cost with respect to the
size of the market.

In any place13 i ∈ J1;NjK of urban area j, workers both endure and generate urban costs
resulting from services of housing and commuting. Housing costs depend on the aggregated
demand of local workers for housing surface hj,i [see eq.(1.4)] and the level of equilibrium land
rent Rj,i [see eq.(1.53)] that derives from the supplied stock of square meters, Hj,i [see eq.(1.27)].
Urban sprawl is endogenized via a ratio-relationship between the building land and the stock
of square meters supplied locally [see eq.(1.28)] and is considered horizontal as long as the ratio
is smaller than 1.14 Transport costs P a

j,i [see eq.(1.26)] derive from the accessibility demand
aj,i, i.e. the number of round trips a worker can do given the speed of her transport mean,
her chosen place i to live in agglomeration j and the daily travel time T she allocates to her
mobility [see eq.(1.5)].

We refer to the stable daily travel time budget of Zahavi and Talvitie (1980), so that T is
assumed to be identical for all urban workers. Utility maximization under the double constraint
of time T and income Yj gives the local demands for accessibility aj,i, for housing surface hj,i,
for the manufactured good Mj,i and the homogeneous z-specific good Fj,i (imported from the
rural area). At the urban scale, workers’ income includes wages plus dividends from transport
and housing sectors and, at the national scale, dividends from the production of goods [see
eq.(1.11)].

In the rural area z, space is not explicitly represented and the Lz workers are strictly
identical. Firms produce qz units of the homogeneous good, F , under constant returns to
scale with two input factors: the unitary capital and labor requirements, that are kz and lz

respectively [see eq.(1.29)]. Rural workers pay for a good that aggregates both transport and
housing services, hz, whose rent, Rz, varies according to the two growths of local income Yz and
of population Pz. Utility maximization under the simple constraint of income Yz gives local
demand for housing/transport hz, for the manufactured good Mz imported from the urban
space, and the homogeneous good Fz produced locally. As in the rest of the nation, the income

13Note that a ’place’ is the most atomistic spatial unit of GEMSE.
14Note that empirically, this ratio is very often smaller than 1 in peripheral places, which consistently tran-

scribes urban sprawl up to a certain level.
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of rural workers includes wage plus dividends. These dividends come from the equitably owned
production of goods and from the composite local housing/transport sector [see eq.(1.35)].

Trade occurs across agglomerations, as well as between agglomerations and the rural area.
Trade costs related to manufactured goods delivery between areas are represented under an
’iceberg’ formulation à la Samuelson (1952) [see eq.(1.39)], whereas homogeneous goods pro-
duced in the rural area are freely tradable [see eq.(1.40)].

The short-term equilibrium of GEMSE is defined by two sets of conditions, the first being
related to the scale implied to represent interactions between areas, i.e. at the inter -regional
scale, and the second to the intra-area one, i.e. the urban scale.

At the inter-regional scale, market equilibrium for the differentiated good under monopol-
istic competition à la Dixit and Stiglitz (1977) gives the equilibrium quantity qj [eq.(1.41)],
prices pj [eq.(1.42)] and returns to capital rj [eq.(1.43)]. For the homogeneous good under
perfect competition, it gives the equilibrium quantity qz [eq.(1.44)] and prices pz [eq.(1.45)].
For each sector (differentiated in urban areas and homogeneous in rural area), equilibrium
specificities, i.e. quantitities and prices, locally imply a specific firms’ demand of labor forces,
which gives Lj in urban areas [eq.(1.48)] and Lz in rural area [eq.(1.49)]. In each area, the
availability of active populations – supplied labor force – and of workers – demanded labor force
– then jointly determine à la Allio (2016) a local labor market whose equilibrium is reached
via wages [eq.(1.12) (eq.(1.36))]. Note that population’s welfare, only involved at the "NEG"
scale (to compute migratory population flows), therefore means worker’s utility at the urban
scale, within a local employment rate factor [eq.(1.50)].

The second set of short term conditions, related to the urban scale, i.e. the "UE" scale,
comprises an intra-agglomeration equalization of places’ level of utility [eq.(1.51)], ensured via
a balanced trade-off based on the (circularly dependent [see eq.(1.52)]) states of the bi-modal
transport-network-use and of the housing market [from eq.(1.53) to eq.(1.62)]. Note that mul-
tiple equilibria exist at this scale and the model solves equilibrium equations from the shocked
previous equilibrium to the closest one.15

Workers have the choice between two transport modes: public transport (PT) or private
vehicle (PV). The PT average speed, vPTj,i , is constant regardless of the number of commuting
workers, assuming that congestion in public transport does not alter speed. A contrario, the PV
average speed, vPVj,i , depends on road congestion, which requires GEMSE explicitly accounting
for the network structure of the conurbation.

The representation of agglomeration j’s road network structure, denoted by Πj [see Figure
1.5], is necessary to compute the whole volume of commuting cars, Vj [see eq.(1.19)], and all
places’ PV speeds, vPVj,i [see eq.(1.20)]. As exposed analytically in Allio (2016), who uses the
first principle of Wardrop (1952),16 vPVj,i must be such that it generates transport-mode indif-

15The term "closest" must be taken for what it is, i.e., based on the Euclidean norm on Rd, where d stands,
in the local scope of this footnote only, for the number of degrees of freedom of the equilibrium system.

16Whose underlying is a user-optimized Nash equilibrium reached when no user lowers her transportation
cost through unilateral action, i.e. through unilateral change in mobility habits.
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ference [eq.(1.54)], supported in parallel by a housing market clearing that provides each place
i with the exact density that preserves the transport-user-optimized Nash equilibrium on the
one hand and the intra-agglomeration equalization of places utility levels on the other hand
[see eq.(1.52)].

At equilibrium, this computing process gives the localization of workers among the places of
urban area j, Lj,i, their modal share of cars, αj,i, their consumption of round trips aj,i, their re-
sidual income and associated consumption of square meters hj,i and of "Cobb-Douglas" goods
Mβ

j,iF
1−β
j,i . All other meaningful variables that are entailed at this scale are also computed,

such as densities, urban costs (housing rents plus transport budget over the two modes) and,
ultimately, transport-related GHG flows and stocks.

To conclude this summary, remind that the short-run model possesses a different set of
boundary conditions whether it is involved in the (baseline driven) microcasting17 stage or in
the responding stage in which the model may diverge with respect to some (arbitrarily chosen)
changes in microcasted baseline underliers. In what follows, the former stage is referred to as
baseline microcasting or descension/disaggregation stage and the latter to as the microcasted
baseline or ascent/reaggregation stage.

The long-run framework of GEMSE

The long-run modeling framework of GEMSE consists of a set of exogenous temporal trends,
be them descending or ascending, used to inform the short-run model.

In the microcasting stage, trends are descending from the global sphere and are inputed to
the short-run model that disaggregates them. Some of these descending trends simply change
the parameters of the short-run model without involving the addition of degrees of freedom to
its equilibrium system, e.g. energy price, direct investments. Some other descending trends
constrain the values ascending from lower spatial scale – UE- and NEG-related –, thereby
strictly characterizing the microcasting process. Technically, this is carried out at every re-
cursion in two steps: Step-1) the two national aggregates of GDP, Ỹt, and employment rate,
Ẽt, define a year-terminal set of conditions for the subsequent static equilibrium to comply
with and; Step-2) GEMSE microcasts at regional and urban scales, the spatial dynamics that
underpin and lead to these terminal aggregate conditions; all this ensures that the sum or the
average value (over all areas) of each variable equals the value of the corresponding aggregate.

17Recall that by analogy, microcasting does with the upper and lower spatial scales what backcasting does
respectively with future and past times: the lower scale representing the past, and the aggregation of this lower
scale being seen as the desirable future.
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a The yellow-backgrounded frame is specific to the descent/microcasting stage.
b The two green-backgrounded frames are specific to the ascent/microcasted/reaggregation stage.
c All other objects are common to the two stages.

Figure 1.6: Schematic representation of the GEMSE articulation
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In the ascent stage,18 the model runs from the dual perspective. Underliers that have been
microcasted in the descent stage are taken as exogenous whereas macro-constraints are removed
and henceforth become responsive to any change in UE- and/or NEG- related scales. Note that
among aggregates that become free, some can only take values in a functionally-constrained
admissible range. That is the case of the national employment rate and average wage, whose
only possible values derive from the national implicit wage-curve parametrized during the
descent stage.19 The nationwide labor-market is said to be implicit since it has no implications
on agents’ income formation, which is processed at the scale of areas. It is only representative
of a synthetic situation in which a labor market would prevail at the national scale. Technically,
this is carried out in two steps: Step-1) the implicit nationwide wage-unemployment curve define
a year-terminal line of conditions and; Step-2) GEMSE differentiates and reaggregates the
regional and urban scales responses with respect to (arbitrarily chosen) changes in microcasted
baseline underliers. Thus, in this stage of reaggregation, only the gdp, Ỹt, is completely free
while areas’ employment rates and wages are functionally constrained at the level of their
(implicit) national counterpart.

In Figure 1.6 each stage’s respective steps 1) and 2) are illustrated. In this figure, note that
(i) objects with a yellow background are specific to the descent stage, (ii) objects with a green
background are specific to the ascent stage and (iii) all other objects are common to the two
stages.

1.2.1 Step 1 – Exogenous dynamics

What follows holds ∀t ∈ J0; T K, where T stands for the last year of the prospective horizon.

1.2.1.1 Constraining framework

Descent stage

The sum of gross local products over all areas r ∈ J1;N + 1K at year t, where r stands for
all areas including rural, is given by

∑N+1
r=1 Yr,tLr,t. This sum must be such that it "microcasts"

the baseline-scenarized national GDP, Ỹt, as follows:

N+1∑
r=1

Yr,tLr,t = Ỹt (1.63)

We then also ensure the equalization between the aggregate employment rate, Ẽt, and its
microcasted version at the regional scale, given by:

Lt
Pt

= Ẽt (1.64)

18We recall that the ascent stage can also be described as microcasted or reaggregation stage.
19We recall that the descent stage can also be described as microcasting or disaggregation stage.
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where L =
∑N+1

r=1 Lr and P =
∑N+1

r=1 Pr are respectively the national number of workers –
firms’ demand of labor force [see eq.(1.48) and eq.(1.49)] – and the national active population
– population’s supply of labor force. The above condition obliges to add one more degree of
freedom to the equilibrium system. This degree of freedom relates to the (N + 1) minimum
wages, that we vary according to a non-space-differentiated factor, 1 + ∆w˜ t, in such a way that

wminr,t = wminr,t−1(1 + ∆w˜ t) ∀r ∈ J1;N + 1K (1.65)

Note that the addition of this degree of freedom to the equilibrium system – at the level of
minimum wages – is a direct mathematical consequence of driving the system from the top using
baseline-scenarized aggregates. As such, exogenous variations in aggregates Ỹt and Ẽt assert
the expansion/contraction of the PF (production frontier), from which this (undifferentiated
spatial) variation in minimum wages, ∆w˜ t, is the microcasting underlier.

Ascent stage

During the ascent stage, the constraints formulated in eq.(1.63) and eq.(1.64) are removed
and Ỹt and Ẽt thus become endogenous and responsive to shocks that propagate (through the
GE-system) to Yr,t and/or Lr,t. Note however that so as to uniquely determine the solution
of the equilibrium system, eq.(1.65) must still hold. It serves to define the continuous set of
national eligible labor market conditions, i.e. the national implicit labor market. To define the
latter, take all areas minimum wages that have been microcasted at year t during the descent
stage following eq.(1.65) and average them together to obtain the implicit minimum wage at
the national scale, denoted by w˜mint , such that

w˜mint =

∑N+1
r=1 w˜minr,t L˜r,t

L˜t (1.66)

where w˜minr and L˜r are the minimum wages and the numbers of workers respectively, computed
during the microcasting stage. Recall that the equilibria of areas’ labor markets are reached via
the deflation/inflation of their wages, wr [see eq.(1.12) and eq.(1.36)]. To functionally constrain
all areas’ employment rates and wages at the level of their (implicit) national counterpart, we
reverse the wage curve function and ensure the following condition

w˜mint =

∑N+1
r=1 wr,tLr,t

Lt

(
1− Lt
Pt

)−σ
(1.67)

Another element that is specific to the ascent stage, is the apparition by difference of what
can be called a fiscal entity. Indeed, all the transport expenses that are microcasted (during
the descent stage) must still be considered so that for all point in time the inter-scenarios
accounting equation remains balanced. Note that only transportation expenses are considered
this way since the sector is the only one to be autogenerated, i.e. with no explicitly modeled
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market, otherwise this would expose the model’s income circuit to violate the conservation
law. To comply with this law, any inter-scenario difference in transport expenses is computed
at the national level and then redistributed to urban workers. Denote by d[Ỹ a] the country’s
difference in total expenses incurred in transportation services between the ascent/microcasted
stage and the descent/microcasting stage, such that

d[Ỹ a] = Ỹ a − Y a˜ (1.68)

where Ỹ a is the country’s total expense incurred in transport services during the ascent stage
and Y a˜ is its (baseline) microcasted counterpart. We made the choice of injecting d[Ỹ a] in the
country’s income circuit by directly interfering with urban areas’ labor markets. We do so in
a non-differentiated manner across urban areas by ensuring that wages, wj, incorporate the
(so-qualified) labor taxation change, as follows

wj = wminj

(
1− Lj
Pj

)σ
− d[Ỹ a]∑N

j=1 Lj
∀j ∈ J1;NK (1.69)

Note that rural area’s wages are not concerned by the above equation, since rural workers
do not incur urban-like transport costs. Also, this modeling choice is not neutral in terms of
distributive effects within the urban space, since eq.(1.69) exhibits a redistribution rule that
differs from that of transport sector’s dividends, redistributed at the level of each urban area
[see eq.(1.17)].

1.2.1.2 Contextualizing framework

As stated previously, GEMSE also possesses plug-in interfaces that allow for other top-down
signals to change the context of the modeled country without involving adding degrees of
freedom to its equilibrium system.

The annual variation of capital invested both in the manufactured and homogeneous pro-
ductions at year t, ∆K

t , uniformly controls the total stock of capital invested in all areas by
imposing:

1 + ∆K
t =

∑N+1
r=1 Kr,t∑N+1
r=1 Kr,t−1

(1.70)

All area’s unitary labor requirement annually change in an identical manner, according to
∆l
t,

lr,t = lr,t−1(1 + ∆l
t)∀r ∈ J1;N + 1K (1.71)

Commuting-related monetary cost faced by a PV user living in place i of urban area j,
P a,PV
j,i [see eq.(1.25)], also varies according to ∆c

t , ∆p
t and ∆D

t : the variations of, respectively,
the unitary fuel liter consumption per kilometer from vehicles, ca, and the domestic price per
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liter of fuel, pa, as follows:

cat = (1 + ∆c
t)c

a
t−1 ; pat = (1 + ∆p

t )p
a
t−1 (1.72)

Relatively to the interregional trade, note that the matrix of transport costs à la Samuelson
(1952) also varies within an elasticity factor, ∇τ , with respect to ∆c

t∆
p
t , as follows:

τt = τt−1(1 +∇τ∆c
t∆

p
t ) (1.73)

Public transport budgets of workers living in place i of urban area j, P a,PT
j,i [see eq.(1.24)],

also follow an exogenous variation, ∆Pa,PT

t , such that:

P a,PT
j,i,t = (1 + ∆Pa,PT

t )P a,PT
j,i,t−1 ∀{j, i} ∈ J1;NK× J1;NjK (1.74)

Commuting-related temporal cost of mobility, i.e. the stable daily travel time budget of
Zahavi and Talvitie (1980), may change within a factor (1 + ∆T

t ), such that:

Tt = (1 + ∆T
t )Tt−1 (1.75)

To represent the repercussions of the reorientation of investments between the sectors of
transport, of housing and of Cobb-Douglas goods,20 parameters δa and δH [see eq.(1.6)],21 vary
exogenously,22 according to ∆δa

t and ∆δH

t :

δat = (1 + ∆δa

t )δat−1 ; δHt = (1 + ∆δH

t )δHt−1 (1.76)

The share of manufactured goods, M , in workers expenditures of Cobb-Douglas goods, C, does
so as well, following ∆β

t :

βt = (1 + ∆β
t )βt−1 (1.77)

Dually, return on equity stated by the homogeneous sector also varies exogenously, according
to ∆rz

t :
rz,t = (1 + ∆rz

t )rz,t−1 (1.78)

Finally, the labor force growth must reflect the growth of its national counterpart, ∆Pt , such
that:

Pt = (1 + ∆Pt )Pt−1 (1.79)
20Recalling that the Cobb-Douglas good, C, is composed of one CES manufactured, M , and one traditional

coming from rural areas, F [see Figure 1.4].
21Shares of investments allocated to the production on the one hand and consumers’ budget shares on the

other hand are strictly related given the shareholding structure set in GEMSE.
22Recalling that the share of income allocated to the consumption of Cobb-Douglas goods is deduced by

negation of δa + δH .
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1.2.2 Step 2 – Endogenous dynamics

Aggregates identified at step 1 are inequitably distributed according to the degree of heterogen-
eity that is empirically set across agglomerations at the scales of areas and inner places. This
heterogeneity stems from four determinants: (i) the type of available labor force, whose pro-
ductivity, l−1

j , is differentiated across agglomerations via cost reducing spillover à la Brakman
et al. (1996) and Østbye (2010); (ii) urban costs resulting from housing density and the quality
of available modes of transport (e.g. speeds and road capacity); (iii) the local employment rate
and; (iv) amenities of the area.

1.2.2.1 Inter-areas dynamics

Urban firms move towards the agglomerations markets that offer the most attractive rate of
return rj [see eq.(1.46)] (ceteris paribus due to a large home market and/or knowledge spillover,
low employment rate and wages). Identically, populations move towards the agglomerations
that offer the highest population’s welfare Wr ∀r ∈ J1;N + 1K [see eq.(1.47)] (high amenities,
weak urban costs, great home market, high utility, high employment rate).

To capture the determinants of these migrations, two area-specific attractiveness indexes
are built, Anj and APr , which respectively reflect firms’ incentive to settle in the agglomeration
j given its rate of return, and populations’ incentive to migrate in the area r ∀r ∈ J1;N + 1K
given their welfare level. The inter-areas differences in these indexes of attractiveness drive
the decisions of migrations by assuming that the relative variation of the number of firms
(population) in a given urban area j (area r), is an increasing function of its attractiveness
index Anj (APr ).

In technical terms, to get the year-t-terminal number of firms in agglomeration j, nj,t, we
calculate ∆rk,t−1, that is each agglomeration k’s rate of return deviation (from the average over
all agglomerations, rt−1) that has closed the previous year:

rt−1 =

∑N
k=1 rk,t−1nk,t−1∑N

k=1 nk,t−1

; ∆rk,t−1 = −1 +
rk,t−1

rt−1

∀k ∈ J1;NK (1.80)

where nk,t−1 is the year-(t−1)-terminal number of firms in agglomeration k. Based on these N
differentials, the number of firms in agglomeration j at the end of year t is defined as follows:

nj,t = nj,t−1(1 +∇n∆rj,t−1) ∀j ∈ J1;NK (1.81)

∇n can either be seen as an inertia factor or as a migration probability, which relates to the
migration speed of firms between agglomerations. The variation of the sum over the year-
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t numbers of firms is then controlled to comply with the annual variation signal in capital
invested both in manufactured and homogeneous productions, ∆K

t [see eq.(1.70)].
In the same way, to get the year-t-terminal population (labor force supply) available in area
r, Pr,t ∀r ∈ J1;N + 1K, we first calculate ∆Wk,t−1, that is each area k’s welfare level deviation
(from the average over areas, W t−1) and then define Pr,t as follows:

Pr,t = Pr,t−1(1 +∇P∆Wr,t−1) ∀r ∈ J1;N + 1K (1.82)

where as for firms, ∇W relates to the migration speed of populations between areas. The sum
over populations of all areas is then also controlled so as to comply in variation with ∆Pt , [see
eq.(1.79)].

1.2.2.2 Intra-urban areas dynamics

Another endogenous dynamic that annually changes conditions of the statics of GEMSE, is the
housing developers’. In imperfect competition, developers base their maximization program
according to their anticipation of the local housing rents per square meter at year t, that is
R̃j,t. Inspired from the ’neighborhood effects’ literature, R̃j,t is anticipated as resulting on
average from itself in the past, Rj,t−1, and from the past neighboring rents:

R̃j,t = Π̂jRj,t−1 (1.83)

where Π̂j stands for the row-stochastic23 version of Πj [see Figure 1.5] and thus implies the
assumption that rents partially influence each other along the road network involved to reach
the j-CBD. Anticipating imperfectly R̃j,i,t and in pure competition, developers supply square
meters given their Cobb-Douglas production function [see eq.(1.27)] in order to maximize their
anticipated short-term profit perceived in place i at the end of year t, π̃Hj,i,t, which is given by

π̃Hj,i,t = R̃j,i,tH
∗
j,i,t − dχ∗j,i,t−1c

H(1 + rH) (1.84)

where cH is the construction cost per installed unit of capital, which is capitalized at a rH
discount rate (the latter discount rate being specific to the housing sector) due to the one-year
lag between the occurrence of installation costs and the perception of incomes. dχ∗j,i,t−1 is the
argument of maximization and consists of the flow of capital to install at year t− 1 in place i
to get the ideal corresponding stock of square meters, H∗j,i,t, one year later. This flow results
from the ideal H∗j,i,t minus all past years depreciated24 and cumulative flows of square meters,
such that

dχ∗j,i,t−1 = χ∗j,i,t −

(
Hj,i,t−1

S
1−γj,i
j,i

) 1
γj,i

(1− δH) = χ∗j,i,t − χj,i,t−1(1− δH) (1.85)

23The term ’row-stochastic’ refers to a matrix with each row summing to 1.
24Note that depreciation relates to the stock of capital units, not directly to the stock of square meters.
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where δH is the depreciation rate of installed capital. Deconstruction not being allowed, note
that dχ∗j,i,t−1 belongs to [0;∞[ and thus equals 0 when any developer’s maximization program
yields negative flows. Consequently, the newly installed stock of square meters at year t, Hj,i,t,
is such that

Hj,i,t

S
1−γj,i
j,i

= (χj,i,t−1(1− δH))γj,i +
(dχ∗j,i,t−1)γj,i

τH
(1.86)

The short-term profit maximization program possesses an analytic solution, here given by unit
of building land surface,

χ∗j,i,t
Sj,i

=

(
cH(1 + rH)

R̃j,iγj,i(1− δH)γj,i

) 1
−1+γj,i

(1.87)

This concludes the presentation of the long-run modeling framework.
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1.A Determination of demands

All what follows stands ∀{j, i} ∈ (J1;NK ∪ {z})× J1;NjK, where J1;NK∪{z} stands for the set
of indexes related to urban areas plus the rural area z. In order to preserve a general notation
as much as possible, the particularities of the rural area are declined in the course of the model
development. Given that the rural area is an "aspatial" region, the first of these particularities
is that the number of places i therein, Nz, can be thought of as being equal to 1, and can thus
be omitted, i.e. uz,i=1 = uz.

As a first stage of resolution, we have

max
Cj,i,hj,i

uj,i(Cj,i, hj,i, aj,i) = u0
j,iC

δc

j,ih
δH

j,i a
δa

j,i s.t.

Yj ≥ pCCj,i + P a
j,i(aj,i) +Rj,ihj,i

aj,i ≤ T
dj,i
vj,i

 (1.88)

which is equivalent to the maximization of the following utility sur-function

L u
j,i(Cj,i, hj,i, µ

u
j,i) = u0

j,iC
δc

j,ih
δH

j,i a
δa

j,i + µuj,i
(
Yj − pCCj,i − P a

j,i(aj,i)−Rj,ihj,i
)

(1.89)

with aj,i = T
dj,i
vj,i. It follows that max

Cj,i,hj,i,µuj,i

L u
j,i turns into


∂L u

j,i

∂Cj,i
= 0

∂L u
j,i

∂hj,i
= 0

µuj,i 6= 0

⇒ pCCj,i =
δc

δH
Rj,ihj,i = Yj − P a

j,i(aj,i)−Rj,ihj,i ⇔

C∗j,i = δc

1−δa
Yj−Paj,i(aj,i)

pC

h∗j,i = δH

1−δa
Yj−Paj,i(aj,i)

Rj,i

(1.90)
Via setting az = hz and P a

z = 0 for individuals located in rural areas, we get the following
analogous-to-(1.89) Lagrangian

L u
z (Cz, hz, µ

u
z ) = u0

zC
δc

z h
δH+δa

z + µuz ( Yz − pCCz −Rzhz) (1.91)

which is maximized at
∂L u

z

∂Cz
= 0

∂L u
z

∂hz
= 0

µuz 6= 0

⇒ pCCz =
δc

δH
Rzhz = Yz −Rzhz ⇔

C∗z = δc Yz
pC

h∗z =
(
δH + δa

)
Yz
Rz

(1.92)

Then, since Cj,i is a quantity that Cobb-Douglas-aggregates the consumptions (in each place
i of area j) of a manufactured good, Mj,i, and a homogeneous good, Fj,i, a second resolution
stage turns to be as follows

max
Mj,i,Fj,i

(
Mβ

j,iF
1−β
j,i s.t. pCC∗j,i ≥Mj,iPj + Fj,ipz

)
(1.93)
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Or put differently,

max
Mj,i,Fj,i,µCj,i

(
L C
j,i(Mj,i, Fj,i, µ

C
j,i) = Mβ

j,iF
1−β
j,i + µCj,i

(
pCC

∗
j,i −Mj,iPj − Fj,ipz

))
(1.94)

It follows that max
Mj,i,Fj,i,µCj,i

L C
j,i turns into

∂LC
j,i

∂Mj,i
= 0

∂LC
j,i

∂Fj,i
= 0

µCj,i 6= 0

⇒ PjMj,i =
β

1− β
Fj,ipz = pCC

∗
j,i − Fj,ipz

⇔


M∗j,i =

βδc
Yj
Pj

if j = z

β δc

1−δa
Yj−Paj,i(aj,i)

Pj
if j 6= z

F ∗j,i =

(1− β)δc
Yj
pz

if j = z

(1− β) δc

1−δa
Yj−Paj,i(aj,i)

pz
if j 6= z

(1.95)

Finally, since Mj,i is a quantity that CES-aggregates the consumption (in each place i of
area j) of the varieties of the manufactured goods, mkj,i, a third and last resolution stage
consists of choosing the quantity of mkj,i which minimizes the cost of attaining M∗

j,i regardless
of its value, such that:

min
m.j,i

M∗
j,iPj =

N∑
k=1

nkpkjmkj,i s.t. M∗
j,i =

[
N∑
k=1

nk(mkj,i)
ε−1
ε

] ε
ε−1

 (1.96)

Or put differently,

min
m.j,i,µMj,i

LM
j,i (m.j,i, µ

M
j,i) =

N∑
k=1

nkpkjmkj,i + µMj,i

M∗
j,i −

[
N∑
k=1

nk(mkj,i)
γ

] 1
γ

 (1.97)

with γ = (ε−1)/ε for the sake of clarity. From the first order conditions involved by min
m.j,i,µMj,i

LM
j,i ,

it follows that
∂LM

j,i

∂m.j,i

= 0⇒ mlj,i = M∗
j,ip

1
γ−1

lj

[
N∑
k=1

nkp
γ
γ−1

kj

]− 1
γ

(1.98)

from which we can identify the j-price index of CES goods, Pj:

M∗
j,iPj = M∗

j,i

(
N∑
l=1

nlp
γ
γ−1

lj

)(
N∑
k=1

nkp
γ
γ−1

kj

)− 1
γ

= M∗
j,i

(
N∑
k=1

nkp
γ
γ−1

kj

) γ−1
γ

︸ ︷︷ ︸
CES goods
index of

regional price

(1.99)
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which leads to clarify eq.(1.98) as

m∗kj,i =

(
Pj
pkj

) 1
1−γ

M∗
j,i =

βδ
c
(
Pj
pkj

)ε
Yj
Pj

if j = z

βδc

1−δa

(
Pj
pkj

)ε Yj−Paj,i
Pj

if j 6= z
, ∀k ∈ J1;NK (1.100)

Evaluating the urban utility function at its demand solutions, and rearranging, yields:

uj,i = u0
j,i

(
βδc

Pj

)βδc (
(1− β)δc

pz

)(1−β)δc (
δH

Rj,i

)δH (
T

dj,i
vj,i

)δa (Yj − P a
j,i(aj,i)

1− δa

)1−δa

(1.101)

A more concise expression of eq.(1.101) is used in the chapter, rewritten as

uj,i = u0
j,iu

2
jR
−δH
j,i

(
T

dj,i
vj,i

)δa (
Yj − P a

j,i(aj,i)
)1−δa (1.102)

with u2
j =

(
βδc

Pj

)βδc (
(1−β)δc

pz

)(1−β)δc (
δH
)δH ( 1

1−δa
)1−δa

Another form is also used, which consists of rewriting eq.(1.102) as

uj,i = u0
j,iu

2
j

(
H∗j,i
Lj,i

1− δa

δH

)δH (
T

dj,i
vj,i

)δa (
Yj − P a

j,i(aj,i)
)1−δa−δH (1.103)

where H∗j,i
Lj,i

= h∗j,i internalizes in place i of agglomeration j the housing market equilibrium
within the utility function.

1.B Transport modes’ specified utility terms

The utility function is declined into two different versions according to which transport mode
utility-maximizers choose. These two versions are obtained simply by substituting the terms
related to transport cost, P a

j,i(aj,i), speed, vj,i, and amenity term, u0
j,i, for the corresponding

ones. For PV-users, these substitutions, e.g. in eq.(1.103), lead to

uPVj,i = u0,PV
j,i u2

j

(
H∗j,i
Lj,i

1− δa

δH

)δH (
T

dj,i
vPVj,i

)δa (
Yj − P a,PV

j,i

)1−δa−δH
(1.104)

whereas for PT-users those lead to

uPTj,i = u0,PT
j,i u2

j

(
H∗j,i
Lj,i

1− δa

δH

)δH (
T

dj,i
vPTj,i

)δa (
Yj − P a,PT

j,i

)1−δa−δH
(1.105)

where u0,PV
j,i and u0,PT

j,i equal respectively to u0
j and u0

j

(
νPVj,i
νPTj,i

)δa (Yj−Pa,PVj,i

Yj−Pa,PTj,i

)1−δa

[see eq.(1.22)

and eq.(1.23)].
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In the case of workers having the choice between the two modes, the first principle of Ward-
rop (1952) is formalized from the equalization of the two transport modes specific utility func-
tions, specified as in equations (1.104) and (1.105). This yields a transport-modes-indifference
condition, according to which making the choice of one transport mode or the other is equival-
ent, as asserted below for a given place i of urban area j

uPVj,i = uPTj,i ⇒ u0
j

(
vPVj,i

)δa (
Yj − P a,PV

j,i

)1−δa
= u0,PT

j,i

(
vPTj,i

)δa (
Yj − P a,PT

j,i

)1−δa
(1.106)

which reduces to
vPVj,i
vPTj,i

=
νPVj,i
νPTj,i

(1.107)
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1.C Website’s variables descriptions

The large amount of data (used and) generated by the model are available online at ht-
tps://gemse.alwaysdata.net for each country, for each scenario, for each variable, for each year,
for each urban area as well as for each of its constitutive place. The goal is to provide readers
with the possibility to apprehend and graphically check the coherence of the mechanisms that
archetype the theoretical background of GEMSE. The following two tables map the names used
on the website to the names used within this thesis.

Table 1.2: Global scale related variables

webname name description unit

1 CD p index I =
∑N+1
r IrLr∑N+1
r Lr

Nation average cost of
living index, also called
perfect price index.

2 CES elasticity ε

Armington (1969)’s
elasticity of substitution
between heterogeneous

goods.

3 CO2eq price
pCO

eq
2 =

103
∑
m∈{PV,PT} s

m,COeq2 p
m,COeq2
Dm∀j

/dq
m,COeq2
Dm

Nation
transport-mode-weighted
CO2eq social cost per
ton having implicitly

currency in the transport
sector.

($|e)/ton

4 Hsqm tot H =
∑N
j

∑Nj
i H∗j,i

Nation total quantity of
profit maximizing

supplied square meters
over urban areas.

m²

5 L L
Nation number of

workers.

6 L HHI HHIL
Workers related

Herfindahl-Hirschman
Index.

7 L growth ∆L
Nation annual growth of
the number of workers.

8 L pt LPT
Number of workers
commuting in public

transport.

9 L pv Λ

Number of workers
commuting in private

vehicle.

10 T T

Stable travel time budget
of Zahavi and Talvities
(1980) per business day.

min/bday
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11 U u =
∑N+1
r urLr∑N+1
r Lr

Nation average workers
utility.

12 U0 pt u0,PT =
∑N
j u0,PT

j Lj∑N+1
j Lj

Nation average urban
public transport amenity.

13 W W =
∑N+1
r WrPr∑N+1
r Pr

Nation average labor
forces welfare.

14 act per pop ratio sP
Employable share of the

population.

15 av bdays bd

Number of business days
implied to get the annual

number of browsed
kilometers consistent

with data.

16 beta het β

Share of δC attributed to
consumption of

heterogeneous goods.

17 beta hom (1− β)

Share of δC attributed to
consumption of

homogeneous goods.

18 c fuel ca
Average consumption of
liters of fuel per km.

liters/km

19 const surface S =
∑N
j

∑Nj
i Sj,i

Nation total urban
constructible surfaces.

km²

20 delta A δa
Share of income

attributed to mobility
services.

21 delta C δC
Share of income
attributed to

consumption of goods.

22 delta H δH
Share of income

attributed to housing
services.

23 delta HA (δH + δa)

Share of income
attributed to

land/transport services.

24 emp rate Ẽ Nation employment rate.

25 gdp Ỹ
Nation gross domestic

product.
($|e)/year

26 gdp CO2 intensity dqCO
eq
2 /Ỹ

Nation CO2 intensity of
the gross domestic

product.
kg/($|e)/year
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27 gdp HHI HHIỸ
GDP related

Herfindahl-Hirschman
Index.

28 gdp adj F 1 + ∆Ỹ
Nation income average

growth factor.

29 gdp per L Ỹ/L
Nation gross domestic
product per nation

worker.
($|e)/worker/year

30 gup Y∀j =
∑N
j Yj

Nation gross urban
product.

($|e)/year

31 gup HHI HHIY∀j
GUP related

Herfindahl-Hirschman
Index.

32 h budget Y H =
∑N
j

∑Nj
i Lj,ihj,iRj,i

L

Nation average housing
budget over urban areas.

($|e)/worker/year

33 implicit tr speed
unit value

ξkm/min

Nation km/min value
over urban areas.

($|e)/km/min

34 inst cap flow dχ∗ =
∑N
j

∑Nj
i dχ∗j,i

Nation total developers
installed flow of capital.

unit

35 inv K =
∑N+1
r Kr

Nation total capital
invested in the

Cobb-Douglas good
sector.

($|e)

36 inv adj F 1 + ∆K

Signal multiplying areas
investment needed for in
the Cobb-Douglas sector.

37 knowledge spillover η

Ostbye (2010)’s
exogenous spillover
reducing cost à la
Brakman (1996).

38 min wages wmin

Nation minimum
possible wages on

average, i.e. nation wage
curve intercept.

($|e)/worker/year

39 min wages adj F ∆w

Factor adjusting areas
minimum wages, which
redefines labor markets

negociation terms.

40 nb firms n Nation number of firms.

41 nb firms HHI HHIn
Firms related

Herfindahl-Hirschman
Index.

42 nb firms growth ∆K
Nation growth rate of

firms.
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43 p HM Rz

Price of
transport/housing goods

in rural area.
($|e)/unit

44 p fuel pa
Domestic fuel price per

liter.
($|e)/liter

45 pop P/sP Nation population.

46 pop act P
Nation active population
or labor force (unem-
ployed+employed).

47 pop act HHI HHIP
Labor force related

Herfindahl-Hirschman
Index.

48 pop growth ∆P
Nation annual

population growth.

49 production q = qz +
∑N
j njqj

Nation total produced
quantity of

heterogeneous and
homogeneous goods.

unit

50 pt CO2eq flow dqPT,CO
eq
2 =

∑N
j dq

PT,COeq2
j

Urban areas public
transport CO2eq flows.

kg/year

51 pt CO2eq flow per
Lkm

dq
PT,COeq2
DPT = dqPT,CO

eq
2 /DPT

Average consumption of
kilograms of CO2eq

imputed per km browsed
per public transport

user.

kg/pass/year/km

52 pt CO2eq price per
Lkm

p
PT,COeq2
DPT∀j

=∑N
j p

PT,CO
eq
2

j,DPT
dq
PT,CO

eq
2

j

dqPT,CO
eq
2

Nation average CO2eq
social cost imputed per
km browsed per public

transport user.

($|e)/pass/km

53 pt CO2eq stock qPT,CO
eq
2 =

∑N
j q

PT,COeq2
j

Urban areas public
transport CO2eq stocks.

kg

54 pt Lkm
DPT =

bdT
∑N
j

∑Nj
i vPTj,i L

PT
j,i

Nation annual distance
browsed in urban areas
by workers in public

transport.

km/year

55 pt budget Y a,PT =
∑N
j

∑Nj
i LPTj,i P

a,PT
j,i

LPTj

Nation average annual
public transport budget.

($|e)/worker/year

56 pt budget growth ∆Pa,PT
Nation annual public
transport cost growth.

57 pt round trips bda
PT

Nation average number
of back and forths in
public transport.

1/worker/year
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58 pt round trips per
day

aPT =
∑N
j

∑Nj
i aPTj,i Lj,i

Lj

Nation average number
of back and forths per
business day in public

transport.

1/worker/bday

59 pt speed vPT =
∑N
j

∑Nj
i vPTj,i L

PT
j,i

LPTj

Nation average public
transport speed over

urban areas.
km/min

60 pv CO2eq flow dqPV,CO
eq
2 =

∑N
j dq

PV,COeq2
j

Urban areas private
vehicle CO2eq flows.

kg/year

61 pv CO2eq flow per
Lkm

dq
PV,COeq2
DPV = dqPV,CO

eq
2 /DPV

Average consumption of
kilograms of CO2eq

imputed per km browsed
per private vehicle user.

kg/pass/year/km

62 pv CO2eq fshare
sPV,CO

eq
2 =

dqPV,CO
eq
2 /dqCO

eq
2

Nation share of CO2eq
flows per user stemming
from private vehicles.

63 pv CO2eq price per
Lkm

p
PV,COeq2
DPV∀j

=∑N
j p

PV,CO
eq
2

j,DPV
dq
PV,CO

eq
2

j

dqPV,CO
eq
2

Nation average CO2eq
social cost imputed per
km browsed per private

vehicle user.

($|e)/pass/km

64 pv CO2eq rev Y CO
eq
2 =

∑N
j Y

COeq2
j

Nation income generated
by the kilometric CO2eq

tax.
($|e)/year

65 pv CO2eq stock qPV,CO
eq
2 =

∑N
j q

PV,COeq2
j

Urban areas private
vehicle CO2eq stocks.

kg

66 pv Lkm DPV = bdT
∑N
j

∑Nj
i vPVj,i Λj,i

Nation annual distance
browsed in urban areas
by workers in private

vehicle.

km/year

67 pv budget P a,PV
Nation average annual
private vehicle budget.

($|e)/worker/year

68 pv free speed v0,PV =
∑N
j

∑Nj
i v0,PVj,i Λj,i

Λj

Nation average private
vehicle free speed over

urban areas.
km/min

69 pv km per L DPV /Λ

Nation annual distance
browsed in urban areas
per worker in private

vehicle.

km/pass/year

70 pv mshare α = Λ/L
Nation average cars

modal share.

71 pv round trips bda
PV

Nation average
accessibility in private

vehicle.
1/worker/year
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72 pv round trips per
day

aPV =
∑N
j

∑Nj
i aPVj,i Lj,i

Lj

Nation average
accessibility in private

vehicle.
1/worker/bday

73 pv speed vPV =
∑N
j

∑Nj
i vPVj,i Λj,i

Λj

Nation average private
vehicle speed over urban

areas.
km/min

74 real gdp Ỹ/I
Nation real gross
domestic product.

($|e)/year

75 real gdp CO2
intensity

dqCO
eq
2 I/Ỹ

Nation CO2 intensity of
the real gross domestic

product.
kg/unit/year

76 real gdp per L Ỹ/L/I
Real nation gross

domestic product per
nation worker.

units/worker/year

77 real wages w/I
Nation average real

wages.
units/worker/year

78 roads capacity
utilisation

∑N
j

∑Nj
i Lj,i

(ΠjΛj)j,i
Kj,i /Lj

Nation average roads
capacity utilisation rate.

79 roads infra value NPVa

Nation total value of
roads considered in
urban areas between

places and their j-CBD.

($|e)

80 roads infra value
per km

NPVa/d

Roads infrastructures
value per km over all

urban areas.
($|e)/km

81 roads km d =
∑N
j dj

Nation unique kilometers
of roads considered

between places and their
respective j-CBD.

km

82 roads km per mn v = d/t

Nation average travel
speed on roads

considered between
places and their
respective j-CBD.

km/min

83 roads mn t =
∑N
j tj

Nation unique unique
travel time on roads
considered between
places and their
respective j-CBD.

min

84 tau elasticity ∇τ

Oil price to shipment
cost elasticity of tradable

goods.

85 tr CO2eq flow dqCO
eq
2 =

∑N
j dq

COeq2
j

Urban areas CO2eq flows
over modes.

kg/year
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86 tr CO2eq flow HHI HHIdqCO
eq
2

Transport CO2eq
emissions related

Herfindahl-Hirschman
Index..

87 tr CO2eq stock qCO
eq
2 =

∑N
j q

COeq2
j

Urban areas CO2eq
stocks over modes.

kg

88 tr CO2eq stock
HHI

HHIq
CO

eq
2

Transport CO2eq
emissions related

Herfindahl-Hirschman
Index..

89 tr Lkm D = DPV +DPT
Nation (over modes)

average annual browsed
distance by workers.

km/year

90 tr budget Y a =
∑N
j Y

a
j Lj/L

Nation average transport
budget per worker over

modes.
($|e)/worker/year

91 tr fuel exp Y f = capa(DPV +DPT /oPT )

Nation transport
expenditures in liters of

fuel.
($|e)/year

92 tr round trips
a =∑N

j

∑Nj
i Lj,i(αj,ia

PV
j,i +(1−αj,i)aPTj,i )

Lj

Nation average number
of back and forths over

modes.
1/worker/year

93 tr round trips per
day

a/bd

Nation average number
of back and forths per

business day over modes.
1/worker/bday

94 uinv (kzqz +
∑N
j κjnj)/q

Nation total stock of
invested capital per unit

produced in the
Cobb-Douglas good

sector.

($|e)/unit

95 ulr l =
∑N+1
r lrLr/L

Nation average unitary
labor requirement for

production.
workers/unit

96 ulr adj F ∆l

Exogenous signal
multiplying areas unitary

labor requirement.

97 urb L HHI HHILj=1,...,N

Urban workers related
Herfindahl-Hirschman

Index.

98 urb ROE C r =
∑N
j rjnj/n

Nation average urban
return on equity of the

CES-sector.
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99 urb firms spov
ucost

∑N
k=1 n

η
kLk∑N

k=1 Lk

Nation average
knowledge spillover effect
unitary-production-cost

divider.

100 urb firms ucost cLj
Nation average urban

unitary production cost.
($|e)/unit/year

101 urb het production Q∀j =
∑N
j njqj

Nation total produced
quantity of

heterogeneous goods.
unit

102 urb income
∑N
k=1 nkpkqk

Nation total produced
value of heterogeneous

goods.
($|e)/year

103 urb income HHI HHI
∑N
j njpjqj

Firms’ income related
Herfindahl-Hirschman

Index.

104 urb inv per firm κ
Non space-differentiated
fixed input requirement

of capital per firm.
($|e)/firm

105 urb pop act HHI HHIP∀j
Urban labor force related
Herfindahl-Hirschman

Index.

106 urban cost
Y HA =∑N

j

∑Nj
i Lj,i(Y

H
j,i + Y aj,i)/Lj

Nation average urban
cost over urban areas.

($|e)/worker/year

107 wages w =
∑N+1
r wrLr

L Nation average wages. ($|e)/worker/year

108 wages elasticity σ
Wages to unemployment

elasticity.

Table 1.3: Inter-areas scale related variables

webname name description unit

1 CD p index js Ir = Yr
ur

for r = 1, ..., N + 1

All areas cost of living
index, also called perfect

price index.

2 CES p index js

Pr =(∑N
k=1 nkp

1−ε
kr

) 1
1−ε

for r =

1, ..., N + 1

All areas index of the
cost of consuming

manufactured goods.

3 CO2eq price js p
COeq2
j for j = 1, ..., N

All urban areas CO2eq
price per ton.

($|e)/year

4 Hprices psqm js Rj/rH for j = 1, ..., N

All urban areas average
housing prices per square

meter.
($|e)/m²

5 Hrents psqm js Rj for j = 1, ..., N

All urban areas average
annual housing rents per

square meter.
($|e)/year/m²
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6 Hsqm js
hj =

∑Nj
i Lj,ihj,i/Lj for j =

1, ..., N

All urban areas average
(over j-places) housing

demand in
j-agglomeration.

m²/worker

7 Hsqm tot js
H∗j =

∑Nj
i H∗j,i for j =

1, ..., N

All urban areas total
quantity of supplied

square meters.
m²

8 L growth js ∆L
j for j = 1, ..., N

All areas growth of the
number of workers.

9 L js Lj for j = 1, ..., N
All areas number of

workers.

10 L pt js LPTj for j = 1, ..., N

All urban areas numbers
of workers commuting in

public transport.

11 L pv js Λj for j = 1, ..., N

All urban areas numbers
of workers commuting in

private vehicle.

12 L share js sL∀rr for r = 1, ..., N + 1
All areas share of the

nation number of workers.

13 ROE C js rr for r = 1, ..., N + 1
All areas Cobb-Doulgas
sector investment returns.

14 ROE C rank js

All areas attractiveness
rank for firms regarding
local CES-sector returns

on equity.

15 U0 pt js u0,PT
j for j = 1, ..., N

All urban areas average
public transport amenity.

16 U js uj for j = 1, ..., N All areas workers utility.

17 W growth js ∆W
j for j = 1, ..., N

All areas labor forces
welfare growth.

18 W js Wj for j = 1, ..., N
All areas labor forces

welfare.

19 W rank js
All areas labor forces
welfare attractiveness

rank.

20 Y js Yr for r = 1, ..., N + 1
All areas income per

worker.
($|e)/worker/year

21 const surface js
Sj =

∑Nj
i Sj,i for j =

1, ..., N

All urban areas
constructible surfaces.

km²

22 density js
∑Nj
i Pj,i/sP/

∑Nj
i Sj,i for j =

1, ..., N
All urban areas density. pop/km²

23 emp rate js Ej for j = 1, ..., N
All areas employment

rate.
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24 firms net migration
js

dnj for j = 1, ..., N
All areas’ net migration

of firms.

25 gdp js Yr for r = 1, ..., N + 1 All areas gdp. ($|e)/year

26 gdp share js
sỸr = Yr/

∑Nk+1
k Yk for r =

1, ..., N + 1

All areas respective gdp
share.

27 gup CO2 intensity
js

dq
COeq2
j /Ỹj for j = 1, ..., N

All urban areas gross
urban product CO2

intensity.
kg/($|e)/year

28 gup js Yj for j = 1, ..., N
All urban areas gross

urban product.
($|e)/year

29 gup share js
s
Y∀j
j = Yj/

∑Nk
k Yk for j =

1, ..., N

All urban areas respective
share of the nation’s gross

urban product.

30 h budget js
Y Hj =

∑Nj
i Lj,ihj,iRj,i

Lj
for j =

1, ..., N

All urban areas average
housing budget.

($|e)/worker/year

31 iceberg melting
index js

((∑N
k=1 nkτ

1−ε
kr

) 1
1−ε
)
r

for r =

1, ..., N + 1

All areas index of
iceberg-melting.

32 implicit tr speed
unit value js

ξkm/min,j for j = 1, ..., N
All urban areas km/min

value.
($|e)/km/min

33 inst cap flow js
dχ∗j =

∑Nj
i dχ∗j,i for j =

1, ..., N

All urban areas total
developers installed flow

of capital.
unit

34 intra connection js
∑Nj
i (Πj1Nj×1)j,i/Nj for j =

1, ..., N

All urban areas
intraconnection index.

35 inv js Kr for r = 1, ..., N + 1

All areas total capital
invested in the

Cobb-Douglas good
sector.

($|e)

36 min wages js wminr for r = 1, ..., N + 1

All areas minimum
wages, i.e. all areas wage

curve intercepts.
($|e)/worker/year

37 nb firms growth js ∆K
j for j = 1, ..., N

All urban areas growth
rate of the number of

firms.

38 nb firms js nj for j = 1, ..., N
All urban areas number

of firms.

39 nb firms share js
snj = nj/

∑Nk
k nk for j =

1, ..., N

All urban areas nation
share of the number of

firms.

40 nb floors js fj = Hj/Sj for j = 1, ..., N
All urban average number

of residential floors.

41 p js pr for r = 1, ..., N + 1
All areas specific good

price.
($|e)/unit
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42 pass per pt js oPTj = oPT for j = 1, ..., N

All urban areas number
of workers per public

transport.
pass/pt

43 pass per pv js oPVj = oPV for j = 1, ..., N

All urban areas number
of workers per private

vehicle.
pass/pv

44 pop act js Pr for r = 1, ..., N + 1
All areas active
population.

45 pop act share js
sPr = Pr/

∑Nk+1
k Pk for r =

1, ..., N + 1

All areas share of the
nation labor force.

46 pop growth js ∆Pr for r = 1, ..., N + 1
All areas population

growth.

47 production js

for r = 1, ..., N +

1,

nrqr if r 6= z

qr otherwise

All areas total produced
quantity of heterogeneous
and homogeneous goods.

unit

48 productivity js qr/Lr for r = 1, ..., N + 1
All areas labor
productivity.

units/worker

49 pt CO2eq flow js dq
PT,COeq2
j for j = 1, ..., N

All urban areas public
transport CO2eq flows.

kg/year

50 pt CO2eq price per
Lkm js

p
PT,COeq2
j,DPT =

p
COeq2
j 10−3dq

PT,COeq2
DPT for j =

1, ..., N

All urban areas CO2eq
social cost imputed per
km browsed per public

transport user.

($|e)/pass/km

51 pt CO2eq stock js q
PT,COeq2
j for j = 1, ..., N

All urban areas public
transport CO2eq stocks.

kg

52 pt Lkm js
DPTj =

bdT
∑Nj
i vPTj,i L

PT
j,i for j =

1, ..., N

All urban areas annual
distance browsed by
workers in public

transport.

km/year

53 pt budget js

Y a,PTj =∑Nj
i LPTj,i P

a,PT
j,i

LPTj
for j =

1, ..., N

All urban areas average
public transport budget.

($|e)/worker/year

54 pt round trips js bda
PT
j for j = 1, ..., N

All urban areas average
number of back and

forths in public transport.
1/worker/year

55 pt round trips per
day js

aPTj =
∑Nj
i aPTj,i Lj,i

Lj
for j =

1, ..., N

All urban areas average
number of back and

forths per business day in
public transport.

1/worker/bday

56 pt speed js
vPTj =

∑Nj
i vPTj,i L

PT
j,i

LPTj
for j =

1, ..., N

All urban areas average
public transport speed.

km/min

57 pv CO2eq flow js dq
PV,COeq2
j for j = 1, ..., N

All urban areas private
vehicle CO2eq flows.

kg/year

59



58 pv CO2eq price per
Lkm js

p
PV,COeq2
j,DPV =

p
COeq2
j 10−3dq

PV,COeq2
DPV for j =

1, ..., N

All urban areas CO2eq
social cost imputed per
km browsed per private

vehicle user.

($|e)/pass/km

59 pv CO2eq rev js
Y
COeq2
j =

DPVj p
PV,COeq2
j,DPV for j =

1, ..., N

All urban areas income
generated by the

kilometric CO2eq tax.
($|e)/year

60 pv CO2eq stock js q
PV,COeq2
j for j = 1, ..., N

All urban areas private
vehicle CO2eq stocks.

kg

61 pv Lkm js
DPVj =

bdT
∑Nj
i vPVj,i Λj,i for j =

1, ..., N

All urban areas annual
distance browsed by

workers in private vehicle.
km/year

62 pv budget js
Y a,PVj =∑Nj

i Λj,iP
a,PV
j,i

Λj
for j = 1, ..., N

All urban areas average
private vehicle budget.

($|e)/worker/year

63 pv free speed js
v0,PV
j =∑Nj

i v0,PVj,i Λj,i

Λj
for j = 1, ..., N

All urban areas average
private vehicle free speed.

km/min

64 pv mshare js αj = Λj/Lj for j = 1, ..., N

All urban areas average
modal share of private

vehicle.

65 pv round trips js bda
PV
j for j = 1, ..., N

All urban areas average
number of back and

forths in private vehicle.
1/worker/year

66 pv round trips per
day js

aPVj =
∑Nj
i aPVj,i Lj,i

Lj
for j =

1, ..., N

All urban areas average
number of back and

forths per business day in
private vehicle.

1/worker/bday

67 pv speed js
vPVj =

∑Nj
i vPVj,i Λj,i

Λj
for j =

1, ..., N

All urban areas average
private vehicle speed.

km/min

68 real Y js Yr/Ir for r = 1, ..., N + 1
All areas real income per

worker.
units/worker/year

69 real gdp js Yr/Ir for r = 1, ..., N + 1
All areas real gross urban

product.
($|e)/year

70 real gup CO2
intensity js

dq
COeq2
j Ij/Ỹj for j = 1, ..., N

All urban areas real gross
urban product CO2

intensity.
kg/unit/year

71 real gup js Yj/Ij for j = 1, ..., N
All urban areas real gross

urban product.
($|e)/year

72 real wages js wr/Ir for r = 1, ..., N + 1 All areas real wages. units/worker/year

73 roads capacity
utilisation js

∑Nj
i Lj,i

(ΠjΛj)j,i
Kj,i /Lj for j =

1, ..., N

All urban areas roads
capacity utilisation rates.

74 roads infra value js NPVa
j for j = 1, ..., N

All urban areas roads
infrastructures value.

($|e)
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75 roads infra value
per km js

NPVa
j /dj for j = 1, ..., N

All urban areas roads
infrastructures value per

kilometer.
($|e)/km

76 roads km js dj for j = 1, ..., N

All urban areas unique
kilometers of roads

considered between places
and their respective

j-CBD.

km

77 roads km per mn js vj = dj/tj for j = 1, ..., N

All urban areas average
travel speed on roads

considered between places
and their respective

j-CBD.

km/min

78 roads mn js tj for j = 1, ..., N

All urban areas unique
travel time on roads

considered between places
and their respective

j-CBD.

min

79 tr CO2eq flow js dq
COeq2
j for j = 1, ..., N

All urban areas CO2eq
flows over modes.

kg/year

80 tr CO2eq flow
share js

dq
COeq2
j /dqCO

eq
2 for j =

1, ..., N

All urban areas respective
share of nation’s

transport related CO2eq
emissions.

81 tr CO2eq stock js q
COeq2
j for j = 1, ..., N

All urban areas CO2eq
stocks over modes.

kg

82 tr CO2eq stock
share js

q
COeq2
j /qCO

eq
2 for j = 1, ..., N

All urban areas respective
share of nation’s

transport related CO2eq
emissions.

83 tr Lkm js
Dj = DPVj +DPTj for j =

1, ..., N

All urban areas annual
distance browsed by

workers on average (over
modes).

km/year

84 tr budget js
Y aj = (1− αj)Y a,PTj +

αjY
a,PV
j for j = 1, ..., N

All urban areas average
transport budget per
worker over modes.

($|e)/worker/year

85 tr budget tot js Ỹ aj for j = 1, ..., N

All urban areas total
average transport budgets

over modes.
($|e)/year

86 tr fuel exp js
Y fj = capa(DPVj +

DPTj /oPT ) for j = 1, ..., N

All urban areas transport
expenditures in liters of

fuel.
($|e)/year
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87 tr round trips js

aj =∑Nj
i Lj,i(αj,ia

PV
j,i +(1−αj,i)aPTj,i )

Lj
for j =

1, ..., N

All urban areas average
number of back and
forths over modes.

1/worker/year

88 tr round trips per
day js

aj/bd for j = 1, ..., N

All urban areas average
number of back and

forths per business day
over modes.

1/worker/bday

89 uinv js

for r = 1, ..., N +

1,

kr if r 6= z

κrnr/qr otherwise

All areas total capital
invested per produced

unit in the Cobb-Douglas
good sector.

($|e)/unit

90 ulr js lr for r = 1, ..., N + 1

All areas unitary labor
requirement for
production.

workers/unit

91 urb L share js s
L∀j
j for j = 1, ..., N

All urban areas share of
the nation urban number

of workers.

92 urb firms cost js cLj qj for j = 1, ..., N
All urban areas total

production costs per firm.
($|e)/firm/year

93 urb firms income js pjqj

All urban areas income
per firm from the
heteorogeneous
production.

($|e)/firm/year

94 urb firms profits js pjqj/ε for j = 1, ..., N
All urban areas profits

per firm.
($|e)/firm/year

95 urb firms spov
ucost js

nηj for j = 1, ..., N

All urban areas
knowledge spillover effect
unitary-production-cost

divider.

96 urb firms ucost js cLj for j = 1, ..., N
All urban areas unitary

production cost.
($|e)/unit/year

97 urb het firms
production js

qj
All urban areas produced

quantity per firm.
unit

98 urb het production
js

njqj for j = 1, ..., N
All urban areas produced

quantity.
unit

99 urb het production
share js

s
Q∀j
j =

njqj/
∑N
k nkqk for j =

1, ..., N

All urban areas shares of
the nation heterogeneous

produced quantity.

100 urb het spendings
js

βδC/(1− δa)Sj for j =

1, ..., N

All urban areas total
spendings in consumption
of heterogenous goods.

($|e)/year

101 urb hom spendings
js

(1− β)δC/(1− δa)Sj for j =

1, ..., N

All urban areas total
spendings in consumption
of homogeneous goods.

($|e)/year
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102 urb income js njpjqj for j = 1, ..., N

All urban areas income
from the heteorogeneous

production.
($|e)/year

103 urb income share js
njpjqj/

∑N
k nkpkqk for j =

1, ..., N

All urban areas share of
the total produced value
of heterogeneous goods.

104 urb netTr Y js (Yj − Y aj ) for j = 1, ..., N

All urban areas income
net of transport costs per

worker.
($|e)/worker/year

105 urb pop act share
js

s
P∀j
j = Pj/

∑Nk
k Pk for j =

1, ..., N

All urban areas share of
the nation urban labor

force.

106 urb spendings js
Sj =

∑Nj
i (Yj −

P aj,i)Lj,i for j = 1, ..., N

All urban areas total
spendings in consumption

of goods.
($|e)/year

107 urban cost js
Y HAj =

∑Nj
i Lj,i(Y

H
j,i +

Y aj,i)/Lj for j = 1, ..., N
All average urban costs. ($|e)/worker/year

108 wages js wr for r = 1, ..., N + 1 All areas wages.
($|e)/worker/year
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2.1 Data

All data used and generated by GEMSE for each country, each scenario, each variable, each
year and each urban area are available online.1 Note that all data are both presented at the
regional and urban scales.

2.1.1 USA’s and France’s data-related commonalities

Step 1 boundary conditions of each nation urban system, defined by national macroeconomic
projections such as GDP (Ỹ), employment rate (Ẽ) and oil price (pa) are based empirically.
The consumption of fuel liters per km (ca) is considered identical for both the United States
and France, and is taken from the CARBECO database.2 Thus, the two nations follow the
same annual variations in these above aggregates, and only differ from each other by their
initial conditions that are empirically established. Other commonalities relate to:

(i) the source of transport data, such as private vehicle speeds with and without conges-
tion, (respectively vPVj and v0,PV

j ), public transport speeds (vPTj ), percentages matrices of road
travel time in common between places to reach the CBD of their agglomeration (Πj) that have
been bot-scrapped from GoogleMaps ;3

(ii) the source of data concerning the average investment rates of return in the USA and
France (r̄) values that are respectively set to 30% and 15% as it reads in Askenazy and Timbeau
(2003, p.169, Fig.1);

(iii) the value of the elasticity of wages with respect to the log-linearized rate of unemploy-
ment (σ), of −0.1, taken from the econometric study of Blanchflower and Oswald (1995);

(iv) the value of the elasticity of Armington (1969) (ε), of 4, derived from a review of eco-
nometric studies made by McDaniel and Balistreri (2003, p.3-6);4

(v) the value of the elasticity of labor costs with respect to the size of the manufactured
sector (η), of 0.05, chosen at a level comparable to those of studies like Autant-Bernard and
LeSage (2011, p.486, Table 1) or Kaiser (2002, p.26-29, Tables 3-6), i.e. often belonging to
[0, 0.1].5 (vi) the value of the probability of domestic migration of population (∇P) of 2%

stems from the United States Census Bureau’s 2010 State to State migrations tables6 in the case
of the USA and from Brigitte Baccaïni (2007, p.141, Table 1) for France about inter-regions

1Available at https://gemse.alwaysdata.net/.
2Developed and maintained by Franck Nadaud, economist at CIRED-CNRS. Email : nadaud@centre-cired.fr.
3Googlemaps website is available at https://www.google.com/maps.
4This high level of elasticity stands for the market depth of the entire non-homogeneous sector of the economy.

See Rivera-Batiz (1988) for an intuition about the level of elasticity that might be chosen and its economic
meaning.

5Other studies such as Dechezleprêtre et al. (2013, p.45-46, Tables 14-15) give interesting insights about the
quantification of (sectors) knowledge spillovers, but use functional specifications not close enough to ours to be
comparable.

6Available at https://gemse.alwaysdata.net/static/gemse/USA/state_to_state_mig_table_2010.
xls.
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migrations;
(vii) the value of the stable daily travel time budget of Zahavi and Talvitie (1980), set to

110 minutes to ensure that all modeled commuters are able to do at least one daily return trip;
(viii) the value of the annual distance browsed per capita, of 13000km – only used for cal-

ibration purpose –, derives from Federal Highway Administration’s tables in the case of the
USA,7 and from the CARBECO database in the case of France.

Figure 2.1: Iceberg melting cost symmetric matrix of the USA and France

(ix) the approach followed to determine the trade cost matrix (τ ) (Samuelson, 1952), groun-
ded on geographical distances between urban areas. The rural area is set subsequently to twice
the maximum distance and τ is finally obtained by normalizing and exponentiating these dis-
tances.8 Figure 2.1 plots each nation’s trade cost matrix.

(x) the approach followed to determine the stock of capital invested in the good-producing
sector of each area r ∈ J1;NK∪{z} (the Krs), deduced according to its share of national GDP.

2.1.2 American data

In the USA, twenty-two urban areas are explicitly represented. These urban areas are respons-
ible for about 55% of the national GDP (Ỹ). Calibration (in 2010) is based on macroeconomic
and demographic data taken from time series of the United States Census Bureau. The total
number of firms is deduced using the total number of employees and their average number
per firm, set to 16.1, as it reads in Choi and Spletzer (2012, p.1, Fig.1). The annual private
vehicle budget (P a,PV

j ) of $8000 derives from the 2010 edition of the AAA’s ’Your driving cost’
report.9 The annual public transport budget (P a,PT

j ), based on average on a wide range of

7Available at https://www.fhwa.dot.gov/ohim/onh00/bar8.htm.
8The normalization consists of dividing all distances between urban areas by the distance that separates the

rural area from the rest of the system of areas.
9Available at https://gemse.alwaysdata.net/static/gemse/USA/AAA_Your_driving_costs_2010.pdf.
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Figure 2.2: The 22 American agglomerations’ 8785 places (merged census block groups)
considered by GEMSE

differentiated services, is assumed to represent 5% of P a,PV
j .10 The shares of income attributed

to housing and transportation (δH and δa) are respectively set to 30% and 15%, as it reads,
e.g. in U.S. Bureau of Labor Statistics (2013, p.3, Table B) or U.S. Bureau of Labor Statistics
(2012, p.3, Table B).

In the first phase of information collection at the urban scale, each area comprised between
543 (Stlouis) and 4341 (Newyork) places, yielding to a total of 29752 places. These places
actually are census block groups, whose definition come from shapefiles also distributed by the
United States Census Bureau.11 Each census block groups surface and population have been
bot-scrapped from USA.com.12 For computational and mathematical reasons,13 these census
block groups have then been merged to reduce the standard deviation of their surface, as illus-
trated in the case of Newyork in Figure 2.3. Of course, numerical variables have been merged
considering their meaning (i.e. on average by default), e.g. populations and surfaces have been
merged in an additive way. After merging, each agglomeration comprises between 322 and 569

places, yielding to a total of 8785 places, all mapped in Figure 2.2.
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Figure 2.3: Illustration on New-York (private vehicle speed deciles km/min) of the census
block groups merging process

Figure 2.4: The 12 French agglomerations’ 2253 places (communes) considered by GEMSE
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2.1.3 French data

In France, twelve urban areas are explicitly represented. These urban areas are responsible for
about 45% of the national GDP (Ỹ). Calibration (in 2008) is based on macroeconomic and
demographic data that derive from Institut national de la statistique et des études économiques
(INSEE) time series. The total number of firms derives from Calatayud et al. (2011, p.8, Table
1): it consists of the sum over all sectors but in the construction one.14 The annual private
vehicle budget (P a,PV

j ) of 6000e derives from the CARBECO database. The shares of income
attributed to housing and transportation (δH and δa) are respectively set to 25% and 10%, as
it reads e.g. in Guidetti and INSEE (2012, p.3, Table 3) or Morer and INSEE (2015, p.3, Table
4). The latter settings undergo an econometric validation for Paris in Section 2.3.

At the scale of urban areas, the geographical data (each place surface and population) derive
from Institut national de l’information géographique et forestière (IGN)’s shapefiles,15 in which
places superimpose to communes, i.e. cities. For each place, annual public transport budgets
(P a,PT

j ) are supplied by the Commissariat général au Développement durable (CGDD) and
originate from l’Enquête nationale transports et déplacements (ENTD) 2008.16. Each urban
area comprises between 94 (Nantes) and 428 (Paris) places, yielding to a total of 2253 places,
all mapped in Figure 2.4.

2.2 Calibration methods

The phase of calibration that instantiates steps 1 [see Subsection 1.2.1] and 2 [see Subsection
1.2.2] of the GEMSE microcasting process, is divided into three parts: the first part relates
to the national scale, the second relates to the inter-areas scale, i.e. the NEG scale, and the
third one relates to the intra-areas scale, i.e. the UE scale. In the following subsections, the
variables are presented according to a calibration-dependence logical order.

10Although in vector-like bold style and subscripted, the two annual budgets of public and private transport
are actually the same across the country.

11Available at https://www.census.gov/geo/reference/garm.html.
12Available at http://www.usa.com.
13The computational reason refers to the time and the random access memory it takes to run a spatial

equilibrium model that includes 29752 spatial units in network interaction. The mathematical reason refers to
the singularity of some metropolitan areas congestion matrix, which contains census block groups both too close
from each other and too organized in a Manhattan-style network structure so as not to induce strict colinearity
when matrix-wise considered.

14Indeed, the housing sector is distinctly represented in GEMSE [see subsection 1.1.1.5].
15Available at http://professionnels.ign.fr/geofla.
16Available via http://www.statistiques.developpement-durable.gouv.fr/sources-methodes/

enquete-nomenclature/1543/139/enquete-nationale-transports-deplacements-entd-2008.html.
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2.2.1 Supra-areas scale

At this scale, all variables are freely set on the basis of empirical studies [see Section 2.1], except
one variable, namely the share β of manufactured goods (M) in workers expenditures of "Cobb-
Douglas goods".17 Indeed, given GEMSE’s shareholding structure, a too small (too high) β
would result in manufacture (homogeneous) sector dividends being insufficient to justify the
average income configured in the urban (rural) space, thus leading subsequent equilibria [see
from eq.(1.41) to eq.(1.45)] to deal with negative wages (negative price of the homogeneous
good). Hence the following calibration for β at t = 0:

β0 =

∑N
j=1 Ỹuj,0
Ỹ0

(2.1)

where
∑N

j=1 Ỹuj,0 =
∑N

j=1 Yj,0Lj,0 is the gross urban product (GUP) and Ỹ0 is the top-down
GDP that GEMSE microcasts at t = 0 [see eq.(1.63)].18

2.2.2 Inter-areas scale

The calibration of the drivers responsible for the uneven spatial distribution of economic acti-
vities are; (i) the variables characterizing the rural area such as population, employment rate,
average income per worker, the rural unitary labor requirement and wages, the price of the
homogeneous good; (ii) the variables characterizing urban areas such as wages and the price
of each agglomeration-specific heterogeneous good; (iii) the migration dynamic drivers such as
all areas welfare amenity and all urban areas investment returns in the manufactured sector.

Rural variables The calibration of rural variables such as population, employment rate and
the average income per worker is straightforward, involving just to negate the analogous and
data-sourced urban aggregates. The rural labor force Pz,0 is deduced as follows:

Pz,0 = P0 −
N∑
j=1

Pj,0 (2.2)

17Admittedly, qualifying a good of being "Cobb-douglas" is abusive strictly speaking. However, this linguistic
liberty is relatively common, even more when the good is aggregated using a CES specification, see e.g. Bosi
et al. (2010, p.13), Behrens and Robert-Nicoud (2011, p.218), Hungerland (2017, p.33), Ottaviano and Martin
(2001, p.951) or Gaspar (2017, p.13).

18Presently, Yj,0 is deduced from Ỹuj,0 i.e. the GUPs are inputed to GEMSE during the phase of income-
calibration. Thus, Yj is the average income per j-worker, Lj , and not the average income directly taken
from the French or the American data sources, those ones being per capita. With the number of capitas
and the average income per capita denoted respectively by Cj and Ij , note that the following relation holds:
Cj,tIj,t = Yj,tLj,t ∀{j, t} ∈ J1;NK× J0;∞J.
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the rural employment rate, Ez,0:

Ez,0 =
Ẽ0P0 −

∑N
j=1 Lj,0

Pz,0
(2.3)

and the rural average income per worker, Yz,0:

Yz,0 =
(1− β0)Ỹ0

Ez,0Pz,0
(2.4)

where Ẽ0 and P0 are respectively the top-down employment rate [see eq.(1.64)] and the national
labor force [see eq.(1.79)] at t = 0.

The determination of the rural unitary labor requirement for production, lz,0, first implies
to express the total spending devoted to the consumption of goods (homogeneous or manufac-
tured) through the country at t = 0, S0, which is:

S0 = δc0

Lz,0Yz,0 +
1

1− δa0

N∑
j=1

Nj∑
i=1

Lj,i,0(Yj,0 − P a
j,i,0)

 (2.5)

recalling that δc0 is related to the share of Cobb-Douglas goods C in workers’ expenditures, Nj

is the number of places considered in agglomeration j and P a
j,i,0 is the effective transport cost

over the two modes that is endured by workers living in j-agglomeration place i at t = 0 [see
eq.(1.26)]. Once S0 expressed, lz,0 is straightforward to determine:

lz,0 =
Lz,0
qz,0

= Lz,0
pz,0

(1− β0)S0

(2.6)

where (1−β0)S0 and pz,0 respectively stand for the total spending devoted to the consumption
of homogeneous goods through the country and the homogeneous good price at t = 0.

Rural wages are deduced from the income redistribution rule assumed in the economy for
rural workers [see eq.(1.35)]. Subtracting capital income from the total one, leads to deduce
rural wages,19 wz,0, in terms of the other data-sourced and calibrated variables, as follows:

wz,0 =

(
N∑
j

Lj,0

)−1(
δC0 Yz,0L0 −

β0S0

ε
− (1− β0)S0

)
(2.7)

where L0 and ε respectively stand for the total nation number of workers and the Armington
(1969)’s constant elasticity of substitution. Furthermore, still visible despite the rearranging,
note that β0S0

ε
stands for the total profit stemming from the sector of manufactured goods.

The fact that rural firms production is done under constant returns to scale makes the
19The determination of the minimum wages simply stems from the inversion of the wages-curve function [see

eq.(1.12)] and eq.(1.36)].
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return on equity, rz, be per unit of invested capital, kz [see eq.(1.29)], imposing:

kz,t = kz = 1 ∀t ∈ J0; T K (2.8)

The marginal cost pricing rule, implied in perfect competition, thus constitutes the basis
for the calibration of the homogeneous good price at t = 0:

pz,0 = lz,0wz,0 + 1rz,0 = rz,0

(
1− Lz,0wz,0

(1− β0)S0

)−1

(2.9)

Urban variables Wages in urban areas are deduced via the same method used for rural ones,
i.e. by subtracting dividends from the total income and rearranging, which leads to express
wj,0 as follows:

wj,0 =
δC0

1− δa0
Yj,0 +

(
δH0

1− δa0
− 1

)∑Nj
i=1 Lj,i,0P

a
j,i,0

Lj,0
− β0S0/ε− (1− β0)S0 − Lz,0wz,0

L0

(2.10)

To be calibrated, the prices of the heterogeneous goods at t = 0 involve a highly non
linear system whose solutions both (i) balance production capacities and effective demand
[see eq.(1.41)]; and (ii) qualify the situation as profit-maximized [see eq.(1.42)]. The effective
demand of manufactured goods that is asked to a firm settled in the agglomeration j at t = 0,
qj,0, is:

q0,j = δc0β0

((
pjz,0
Pz,0

)1−ε

Lz,0Yz,0

)
+

1

1− δa0

N∑
k=1

((
pjk,0
Pk,0

)1−ε Nk∑
i=1

Lk,i,0(Yk,0 − P a
k,i,0)

)
(2.11)

where pjk,0 (pjz,0) stands for the manufactured good price pj plus a transport cost (Samuelson,
1952) due to the shipment from agglomeration j to agglomeration k (to the rural area, z) [see
eq.(1.39)]. Recalling that Pj,0 and Pz,0 are the regional price indexes of CES goods, respectively
in a urban area j [see eq.(1.10)] and in rural area z [see eq.(1.34)], the system is solved for
p∗j,0 ∀j ∈ J1;NK when:

ε

ε− 1
wj,0Lj,0 = n0,jq0,j(p

∗
j,0) ∀j ∈ J1;NK (2.12)

The equation (2.12) is however still underdetermined, given that each solving argument pj,0 is
in a ratio-relationship with a functional of itself, i.e. via Pj,0 and Pz,0. Aesthetic20 arbitrariness
is therefore involved here to choose the wanted level of price, adding the following constraint
to equation (2.12):

pz,0 =

∑N
j=1 nj,0pj,0∑N
j=1 nj,0

(2.13)

20The aestheticism here consists of having prices of the homogeneous and manufacture goods with similar
scale values.

74



which centers on average the prices of the heterogeneous goods on the homogeneous one.

Migration drivers What drives the migration of population in one area is its differential of
welfare with respect to its deviation from the nation average [see eq.(1.82)]. Thus the amenity
term of any area r, ∀r ∈ J1;N + 1K, that is u0

r (u0
j in urban areas [see eq.(1.6)] and u0

z in
the rural area [see eq.(1.30)]), is calibrated so that its welfare differential leads to a growth
of its population that fits the observed one, that is ∆Pr,0, involved between t = −1 and
t = 0. Thus, the amenity terms of all areas r are deduced by solving the equation below for
u0∗
r ∀r ∈ J1;N + 1K:

∆Pr,0 = −1 +
Pr,0
Pr,−1

= ∇P∆Wr,−1(u0∗
r ) ∀r ∈ J1;N + 1K (2.14)

Note that multiple solution vectors exist. Indeed, since only the relative differences between the
utility levels are significant, the solving of equation (2.14) is done by choosing amenity-terms
scaling factors that are comprised between 1 and 100.21

On the side of production, what drives the migration of firms in one urban area is the differ-
ential of return on equity that is stated therein [see eq.(1.81)]. The method used here consists
of centering the average return of capital over urban areas on the nation one,22 considered as
also being the rural area’s, rz,0. To center all urban areas firms return on equity on rz,0, one
has to determine the corresponding fixed input requirement of capital per firm, κ [see eq.(1.2)],
as follows:

κ =

∑N
k=1 nk,0pk,0qk,0

εrz,0
∑N

k=1 nk,0
=

∑N
k=1 nk,0πk,0

rz,0
∑N

k=1 nk,0
=

π0

rz,0
(2.15)

where π0 stands for the average profit of firms settled in the urban space at t = 0.

2.2.3 Intra-areas scale

At the intra-agglomeration scale, the instantiation of the GEMSE microcasting process involves,
in each j-agglomeration place i, the calibration of variables related to (i) transports, such as
the modal shares of car and the capacities of the roads network; and to (ii) the housing market,
such as the total stock of square meters, the rents per square meter and the production function
specificities of housing developers, i.e. the decreasing return to scale of installed capital.

21This is ensured by using a log-it function like a+ (b− a)/(1 + e−x), which thus constrains the image of the
solving argument, x, to be between a and b.

22Rather than translating arbitrarily each urban area level of profits to induce the wanted flows of migrating
firms, which is a priori impossible with identical firms.

75



Transport Albeit adapted in various ways, the method used to calibrate the modal share of
car in each j-agglomeration place i, is done à la Joly et al. (2002),23 which is itself theoretically
grounded on Zahavi (1979)’s Unified Mechanism of Travel (UMOT) project.24 Hence, in the
case of an exclusive use of each of the two transport modes, the gain in utility level stemming
from the log-linear speed differential in favor of public transports in any j-agglomeration place
i, is formalized as follows:

δa0 ln

(
aPTj,i,0
aPVj,i,0

)
∀i ∈ J1;NjK (2.16)

where aPTj,i,0 (aPVj,i,0) stands for the number of back and forth that a worker can perform in public
transport (private vehicle) at t = 0 given her place i in j-agglomeration [see eq.(1.21)]. In the
same manner, the gain in utility level stemming from the differential in the log-linear residual
incomes in any j-agglomeration place i, is:

(1− δa0)−1 ln

(
Yj,0 − P a,PT

j,i,0

Yj,0 − P a,PV
j,i,0

)
∀i ∈ J1;NjK (2.17)

As stated in Joly et al. (2002), the public transport is beneficial if

(1− δa0)−1 ln

(
Yj,0 − P a,PT

j,i,0

Yj,0 − P a,PV
j,i,0

)
> −δa0 ln

(
aPTj,i,0
aPVj,i,0

)
∀i ∈ J1;NjK (2.18)

Rearranging the inequation (2.18) in terms of zero-centered relative difference, the choice of
using the car is likely to occur when:

Γj,i,0 = −1 +
δa0 ln

(
aPVj,i,0
aPTj,i,0

)
(1− δa0)−1 ln

(
Yj,0−Pa,PTj,i,0

Yj,0−Pa,PVj,i,0

) > 0 ∀i ∈ J1;NjK (2.19)

A logistic function is then used to calibrate the modal share of cars in any j-agglomeration
place i at t = 0, αj,i,0, as follows:

αj,i,0 =
1

1 + e−Γj,i,0
∀i ∈ J1;NjK (2.20)

It is now straightforward to calibrate the roads network capacity25 of the j-agglomeration
in any place i, Kj,i,0, via the inversion of the fundamental diagram of traffic flow [see eq.(1.19)

23See section 5.Détermination du niveau d’équipement du ménage, mainly p.37
24As explained in Joly and Crozet (2006), UMOT is a model developed by Zahavi (1979) for predicting the

mobility of people in urban areas around the two constraints faced by a mobile person: the budgetary and the
time constraints.

25Involved to reach the j-CBD in a pendulum manner.
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and eq.(1.20)], as follows:

Kj,i,0 =

(
−1 +

vPV0j,i,0

vPVj,i,0

)−0.25 Nj∑
o=1

Lj,o,0αj,o,0Πj,io ∀i ∈ J1;NjK (2.21)

Finally, reference speeds denoted by νPVj,i and νPTj,i [see eq.(1.23)], are respectively calibrated
such that νPVj,i = vPVj,i,0 and νPTj,i = vPTj,i,0.

Housing The method used to calibrate the housing rents is, from A to Z, exactly the same
as the one developed by Allio (2015, p.113-114), to whom I refer for more details. The idea
is to compute utility levels and its inner housing/transport trade-off only in the center of the
agglomeration, i.e. in places regarded as located in the j-CBD, wherein housing rents and
transport speeds are both known. Then the assumption according to which the agglomeration
is at its equilibrium state [see eq.(1.51)], allows for determining housing rents in the remaining
agglomeration places. It is then straightforward to determine the total stock of square meters
in each place i, Hj,i,0, since the total spending devoted to housing services and rent are known.

One element that differs is the calibration of the housing developers specificities,26 whose
decreasing return to scale of installed capital is space-differentiated [see eq.(1.27)]. This is done
so to provide housing developers with the ability to maintain the stock of square meters at its
equilibrium state, i.e. to replace the depreciated stock in a situation of stable expected housing
rents. This consists of qualifying as profit-maximized, the replacement of the depreciated stock
of capital, which is effective for γ∗j,i ∀{j, i} ∈ J1;NK× J1;NjK when

Sj,i

(
cH(1 + rH)

R̃j,i,0γ∗j,i(1− δH)γ
∗
j,i

) 1
−1+γ∗

j,i

=

(
Hj,i,0

S
1−γ∗j,i
j,i

) 1
γ∗
j,i

(2.22)

This concludes the calibration of the short-run model.

26Whose dynamic is explained from eq.(1.83) to eq.(1.87).
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2.3 Econometric validation of the budget shares

A large amount of data has been gathered to calibrate GEMSE. Among those, note that hou-
sing rents are however not exogenously inputed at the calibration stage into GEMSE to initiate
simulations, unlike, e.g. travel times. As explained in the housing related paragraph of subsec-
tion 2.2.3, housing rents are endogenerated by GEMSE, be it at the calibration or simulation
stage. The assumption of calibration according to which the agglomeration is at its equilibrium
state [see eq.(1.51)] allows for the deduction of housing rents in the entire urban area by only
extrapolating those in the center.

In this section, observed (private vehicle) travel times in France in Paris are used in con-
junction with observed housing rents to estimate the elasticities of utility with respect to
accessibility, δa, and to housing services, δH . Put differently, we exploit the very nature of
the transport/housing trade-off to estimate these elasticities. The aim is to assess whether the
values of δH and δa that are chosen for France – respectively of 25% and 10% – are economet-
rically valid at the level of Paris. Note that this econometric validation could be declined into
a spatial panel data applied to all urban areas of France and/or the USA. However, inclined
not to resort to any kind of automatic selection techniques on the one hand and given that
the approach that we follow requires careful handling on the other hand,27 we decided to first
concentrate on only one urban area, i.e. Paris.

Furthermore, this section takes part in the theoretical spatial-econometric (SE) debate on
the right choice of the (so-denoted W) spatial weight matrix (Anselin, 2007; Corrado and Fin-
gleton, 2012; Elhorst et al., 2012; Gibbons and Overman, 2012) and makes a new proposal for
it.

The proposal is implemented using a homemade Python library, named PyOKNN. The
sourcecode and documentation are available onlinea and the package is easily installable
via pipb opening a session in your OS shell prompt and typing pip install pyoknn. This
library is though of as a potential extension of another library called PySAL (Anselin and
J. Rey, 2007).c The lag operator is involved within the maximum likelihood estimator
to conduct the estimation of the spatial ARIMA (SARIMA) model, which consists of
the combination of the spatial error model (SEM), the spatial lag model (SAR) and the
spatial moving average (SMA) model. It returns the same coefficients as those of PySAL
when estimating monovariate SAR or SEM models, and allows for the computation of
their multivariate version – where the terms monovariate and multivariate, refer to the
number of parameters involved in spatial filters. Also, the confidence intervals that are
computed in PySAL are analytically derived, while those of our library rely on numerical

27Indeed, as will be explained subsequently, this study deals with the contingent determination of the structure
of autoregression of housing rents.
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hessian approximation and/or spatial bootstrap sampling.
aAvailable at https://github.com/lfaucheux/PyOKNN
bIt is a package management system used to install and manage software packages written in Python.
cSee http://pysal.readthedocs.io/en/latest/.

Subsection 2.3.1 reviews the relevant literature, Subsection 2.3.2 offers the proposal and Sub-
section 2.3.4 applies this proposal to estimate δH and δa and assesses their representativity and
coherence regarding the values that are chosen in Subsection 2.1.1.

2.3.1 Theoretical background

Fingleton (2009) and Corrado and Fingleton (2012) remind the analogies between temporal
and spatial processes, at least when considering their lag operators. In the spatial econometric
(SE) case, the lag operator is always explicitly involved via the use of a n×n matrix W, where
n is the number of interacting positions in the scope of the econometric study only .28

The chosen space can be geographic, economic, social or of any other type. In the temporal
case, which is seen as a space like no other given its inescapable anisotropic nature, the lag
operator is in practice never explicitly considered. Any variable to lag, say, a n × 1 vector
y, is formed over components that are beforehand sorted according to their position on the
timeline.29 This allows the lag-procedure to simply consist of offsetting down these components
by a lag-determined number of rows, say, one row. In matrix terms, this offsetting procedure
would be entirely equivalent to pre-multiplying an unsorted version of y by a boolean n × n
matrix H with 1s indicating the immediate and unilateral proximity between temporal posi-
tions.

The so-structured data generating process (DGP) thus involves H as primarily observed,
i.e. with no restructuring hypothesis or transformation. For each lag, this provides the statisti-
cian with a straightforward parameter space definition, whose knowledge of the exact boundary
is important, both for estimation and inference (Elhorst et al., 2012).

By opposition to the time series (TS) case, specifying W involves a lot of arbitrariness.
Apart from W’s non-nilpotency,30 these hypotheses deal with W’s isotropy (Cressie, 1993)
and finding W’s true entrywise specification through a very large number of competing ones,
be it functional31 or binary. Some famous entrywise specifications are the negative exponential
function (Haggett, 1965), the inverse-distance function (Wilson, 1970), the combined distance-

28Indeed, let’s recall that in the major part of this thesis, nj and n respectively stand for the number of firms
in agglomeration j and in the country of interest. The GEMSE-consistent manner to denote the number of
interacting positions would have been Nj . This is reminded in subsection 2.3.4 when starting to deal with the
application.

29The temporal lag operator illustrated by Corrado and Fingleton (2012) locates the most recent observation
at the bottom of the to-be-lagged vector, e.g. at yn in the case of a n× 1 vector y.

30Which means that there is no permutation of the observational units that would make W triangular, see
Martellosio (2011).

31Whose parameters need to be estimated.
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boundary function (Cliff and Ord, 1973) and the weighted logistic accessibility function (Bodson
and Peeters, 1975).32 Binary weights specifications are either based on the kth-nearest neigh-
bor (knn), on the kth-order of contiguity or on the radial distance. Then, to ensure the unique
definition of any to-be-lagged variable in terms of the other variables of the model, W is scaled
depending on the choice one makes among three competing normalization techniques. The
first one makes W row-stochastic, but does not necessarily preserve its symmetry. The second
one pre- and post-multiplies W by the negative square root of a diagonal matrix reporting
its row-totals (Cliff and Ord, 1973). The last one scales W by its largest characteristic root
(Elhorst, 2001).

But the choice of W and of its transformation is not innocuous. For a maximum likeli-
hood (ML) estimation to be consistent, the estimated spatial model must involve the true W

(Dogan, 2013; Lee, 2004). When dealing with autoregressive disturbances, both estimators ML
and spatial generalized moments (GM) (Anselin, 2011; Arraiz et al., 2010; Drukker et al., 2013;
Kelejian and Prucha, 2010)33 theoretically base their knowledge of unobservable innovations
upon the knowledge of W. When facing endogeneity problems in non-autoregressive specifica-
tions and resorting to, e.g. Kelejian and Prucha (1999)’s generalized moments estimator (GM),
the definition of the exogeneity constrains heavily relies on W, which yields consistent and ef-
ficient estimations for sure, but potentially not with respect to the true DGP. If resorting to
the instrumental variables (IV) method – in which space is conceived as providing ideal instru-
ments (Das et al., 2003; Lee, 2003; Pinkse and Slade, 2010) –, the strength of instruments is
far from being ensured with W in its most common specification, i.e. whose lag consists of
neighbors-averaging. Moreover, as discussed by Gibbons and Overman (2012), the inclusion of
the product of higher powers of the spatial lag operator in the set of instruments is very likely
to lead to a problem of colinearity, which in turn leads to the weaknesses of both identification
and instruments. Finally, when computing LeSage and Pace (2009)’s total direct and indirect
effects, the correctness of the true derivative of the regressand with respect to any spatially
filtered34 variable is a direct result of the correctness of W.

In the following subsection, we propose a specification method for the spatial lag oper-
ator whose properties are as close as possible to that of its time series (TS) counterpart, i.e.
usable as primarily observed without modifications. Nonetheless we follow Pinkse and Slade
(2010, p.105)’s recommendation of developing tools that are not simply extensions of familiar
TS techniques to multiple dimensions. We do so by proposing a specification-method that is
fully grounded on the observation of the empirical characteristics of space, while minimizing as
much as possible the set of hypotheses that are required. As clarified previously, this is from

32Note that inverse-distance and negative exponential functions, as well as the continuum beyond and between
the two, can be unified into the negative exponential of a modified Box-Cox transformation of any non-negative
distance d. Formally, e−γ(min(λ,1)+dλ) with dλ = dλ−1

λ if λ 6= 0 and dλ = ln d otherwise.
33Among who, Arraiz et al. (2010) formalize moment conditions that allow for spatial lags in the dependent

variable, the exogenous variables, and disturbances, the latter being assumed to be based on unknown-form
heteroskedastic innovations.

34The so-called spatial Cochrane-Orcutt style transformation.
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the get-go in the way that W is observed, which is made under hypotheses.

2.3.2 A proposal of lag operator

As Anselin (2010) states, Paelinck and Klaassen (1979) is the first to elaborate five rules de-
signed to guide the formulation of spatial econometric models. With no elusive omission, two
of these rules are (ii) the asymmetry in spatial relations and (v) the explicit modelling of space
(topology) in spatial models.

These rules are actually straightforwardly violated by some entrywise specifications of W.
The negative exponential function, the distances-inverse function or binary weights based on
radial distance are prominent examples. Indeed, when formalizing the spatial relationship
between two given spatial units i and j, these purely distance-based entrywise specifications
fall short of formalizing asymmetric relations for the simple reason that dij = dji is tradition-
ally assumed. Incidentally, preserving this symmetry when making W row-stochastic is seen
as desirable.35

These specifications furthermore constrain the explicit modelling of space upon an arbit-
rarily parameterized functional form. From the positions’ standpoint, this inevitably instills
non-neutral and rigid kernels about the masses of autoregressive effects that flow from them
over their neighbors. Figure 2.5 illustrates this point upon Anselin (1988)’s Columbus, Ohio,36

polygon 25,37 respectively with the distance inverse function, d−γi. , the exponential negative
function, e−γdi. , and the first-order contiguity, c1st

i. . From the point of view of neighbors – over

Figure 2.5: Columbus polygon 25’s (a) normalized weights and (b) mapped distances from it

all positions – these kernels are very likely to be heterogeneous since for each order of proximity,
35This is seen as desirable since having W symmetric also means not having its eigenvalues in the complex

domain, C, which keeps the pro-stationarity parameter space definition entirely included in R.
36This data set is used since it is one of the most famous demonstration data sets in Spatial Econometric.
37The polygon is selected for its central position in the lattice.
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it is uncommon with {(i, j) : wij > 0} to get ρij = ρ as in the TS case, since ρi.
ρ

= wi.∑n
j=1 wij

,
where ρ is a scalar autoregressive parameter and wi. is the i-th row of the weights matrix W.
Note that even flat/uniform kernels may instill non-neutral heterogeneity as long as the num-
bers of neighbors differ from one position to another. If the number of neighbors is identical
across positions, still remains the impossibility to distinguish one order of proximity from the
other. Finally, all entrywise specifications that imply non-binary weights and/or more than
one nonzero weight per row, unlike e.g. a 1-nearest neighbor matrix,38 are concerned by this
problem.

It is worthwhile wondering why autoregressive effects should flow in that so-structured and
smooth manner from polygon 25 over its neighborhood?39 What about decomposing this out-
flow in an atomic fashion, e.g. by considering each order of proximity in separated correlation
structures rather than in one piece? Avoiding this non-neutral kernel is the main raison d’être of
the proposal that follows, baptized k-nearest neighbor only (oknn).

First, denote by D(n) the set of all n×n distance matrices and by D ∈ D(n) a matrix whose
typical element, dij, is the distance from any spatial unit i = 1, . . . , n to any spatial unit
j of the lattice. Second, for each order of autoregression, say, for each k = 1, . . . , n − 1,
denote by Dk an n × n matrix whose typical element dij,k equates dij instead of zero
if dij is the kth smallest distance from the spatial unit i, i.e. dij,k = dij if ri(dij) =

k and dij,k = 0 otherwise, where ri is a function that ranks distances from the spatial unit
i to all units j 6= i. Furthermore, write di.,k for the ith row of Dk, IDk

for the set of
all neighbors that are considered through Dk at rank k and I i,Dk

or Idi.,k for the set of
neighbors of the spatial unit i that are considered through the ith line of Dk at rank k,
where IDk

=
⋃n
i=1 Idi.,k . Note that any n× n distance matrix D ∈ D(n) can be seen as

coordinates that characterize the corresponding lattice by locating it in R
n(n−1)/2

≥0 .a

Assumption 1. There exists a surjective triple
(
R
n(n−1)/2

≥0 ,D,R≥0

)
, i.e. a surjective

function, D, that takes D ∈ D(n) as argument and increases indefinitely in the lattice
irregularity.

Assumption 2. For k = 1, . . . , n− 1, any spatial unit i = 1, . . . , n always has at least 1

kth neighbor no matter how far they find themselves from each other, i.e. card(I i,Dk
) ≥

1 ∀D ∈ D(n). This means that any spatial unit i has exactly one kth neighbor when the
lattice is perfectly irregular, i.e. card(I i,Dk

) −→ 1 as D(D) −→∞.

Proposition 1. For k = 1, . . . , n− 1, card(IDk
) = O (n) as D(D) −→∞.

38Another name of entrywise specification that represents the same object is the binary contiguity matrix of
the first-order restricted to 1 neighbor.

39Tobler’s first law of geography is a the very first answer to this question.
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Proof of Proposition 1. For k = 1, . . . , n−1, by definition IDk
=
⋃n
i=1 I i,Dk

and with
assumption 2, it follows that card(IDk

) = O (n) as D(D) −→∞.

Assumption 3. D is such that card(IDk
) = O (n) for k = 1, . . . , n− 1.

This assumption is mandatory to characterize our proposal of lag operator, whose rational
is the irregularity of the lattice under consideration.

Proposition 2. For k = 1, . . . , n− 1, Dk contains exactly n non-zero elements.

Proof of Proposition 2. From assumptions 2 and 3, it follows that any position i ∈
J1;nK has exactly one kth neighbor for k = 1, . . . , n − 1. Put differently, it follows that
∀i ∈ J1;nK, card(Idi.,k) = 1 for k ∈ J1;nJ. Thus

∑n
i=1 card(Idi.,k) = n.

To ultimately define Wk from Dk for each k = 1, . . . , n − 1, simply replace each Dk’s
nonzero typical element, dij,k, by 1. It follows that the assumption about the diagonal
elements of the Wks is redundant since directly attributable to the distance-matrices
intrinsic zero diagonal elements.

Proposition 3. For k = 1, . . . , n− 1, Wk is row-stochastic.

Proof of Proposition 3. From assumption 2, it follows that any position i ∈ J1;nK
has exactly one kth neighbor for k = 1, . . . , n − 1, i.e. card(Idi.,k) = 1. Thus for
k = 1, . . . , n− 1, Wk has exactly one 1 per row, it is row-stochastic.

Proposition 4. For k = 1, . . . , n− 1, no Wk can be a linear combination of the others.

Proof of Proposition 4. From assumptions 2 and 3, it follows that any position i ∈
J1;nK has exactly n − 1 different neighbors. Put differently, from these two assumptions
it follows that card

⋃n−1
k=1 Iwi.,k

= card({wi.,k : k ∈ J1;nJ}) = n − 1, i.e. a kth neighbor
cannot also be a (k + j)th neighbor, where j ∈ J−k + 1;n − kJ\{0}. Since the (row-)
components of Wk cannot be a linear combination of themselves at different neighborhood
orders, so is Wk.

aWhere n(n−1)
2 is the exact number of degrees of freedom over which a lattice can be uniquely defined,

given that D, as a distance matrix, is intrinsically Hollow and symmetric.

As far as we know, whereas the oknn specification of Wk is the strict spatial counterpart of
the k-order TS lag operator, Hk, it had surprisingly never been proposed. The likely reason
for this fact is the usual assumption of regular lattice, on which the autoregression structure
superimposes.40 Frequently seen as an issue, the irregularity of the lattice is the rational for
this specification. Moreover, in realistic spatial configurations, the lattice regularity is the ex-

40In the regular lattice case, spatial lag operators differ from TS’s by locating more than one neighbor for a
given separating distance.
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ception rather than the rule.

2.3.3 Involving oknn in spatial ARIMA process

The oknn specification for Wk possesses a high level of similarities with its TS counterpart,
previously denoted as Hk, e.g. they are non-normalized since originally row-stochastic, they are
boolean permutation matrix and do not overlap with other lag orders. However, a major dif-
ference persists: the absence of the (linear) algebraic relationship that links lag orders between
them, e.g. to the first one within an integer power transformation such that Hk = (H1)k for
k = 1, ..., n− 1.41 A direct consequence of this is the non-trivial choice of studying high-order
polynomial in k spatial weights matrices Wk for k = 1, ..., n − 1. To illustrate this point,
consider a process with two orders of partial integration in y. In the TS case, the second-order
polynomial has the property that

(
I− ρ1H

1
) (

I− ρ2H
2
)

y =
(
I− ρ1H

1 − ρ2H
2 + ρ1ρ2H

3
)
y.42

A contrario, in the SE case, it is (astronomically) unlikely that W1W2 = W3. As stated by
Elhorst et al. (2012), "a logical implication of this view of modeling spatial dependence [...]
implies that extending the first order model to include more that one spatial weights matrix
requires that we consider the cross product term". However, in that case, what about con-
sidering the (explosive) combinatorial of the cross product with other matrices as well, i.e.
the transposed cross product, the cross product of W1W2 with W1, W2, and so on ?43 The
questions that this poses are not dealt with in this study and remain a topic for future research.

One advantage of the oknn specification is that there is no need when involving only one
lag to consider avoiding singularity or explosive processes by altering the parameter space
definition. For example, if one considers a first order spatial autoregressive process (SAR),
the pro-stationarity parameter space of the underlying autoregression coefficient –expressed
in terms of the minimum and maximum eigenvalues of Wk, respectively ωmin and ωmax – is
]ω−1

min, ωmax[. Note that for row-stochastic matrices one has ω−1
max = 1, but no general result

holds for ω−1
min (Anselin, 1982). However, when in addition to being row-stochastic, the lag

operator is a permutation matrix as in the TS or oknn case, its eigenvalues necessarily lie on
the unit circle,44 which means that one actually has a general result in the oknn case, that is
that ω−1

min ≤ −1. In the case of multiple lags, say, m, the definition of the admissible parameter
space within Rm is less straightforward. As pointed out by Elhorst et al. (2012), the naive
adoption of parameter space restricted such that

∑m
i=1 |ρi| < 1 "proves to be too restrictive".

41Which is the only reason why Wk is k-subscripted while Hk is k-superscripted since the beginning of this
work.

42Putting aside the discussion about testing that ρ1ρ2 + ρ3 = 0.
43Note that in the TS case, the number of possible unique combinations is finite, i.e. it is n, with (H1)

n
= 0n,n

44A permutation matrix can always be expressed as a product of independent rotation matrices with eigen-
values that lie on the unit circle, e2ikπ/n∀k ∈ Z, and thus whose non-imaginary part necessarily lies on the
(rational) segment [−1, 1]. Note that we consider only the real part of eigenvalues since only those influence
spatial filters’ singularity (LeSage and Pace, 2009).
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It is nevertheless far more desirable than the opposite situation in which this naive adoption
would be not restrictive enough. Thus, this is both for the sake of caution and simplicity that
we follow Lee and Liu (2010) and Badinger and Egger (2011) by making the assumption that
the sum of the absolute values of the parameters (involved in the same spatial filter) should be
less than one. Making this assumption also has the positive consequence of ensuring that each
parameter, taken individually, complies with its own one-dimensional space definition.

With a little loss of generality since we neglect k-order polynomials, we put the focus on
k-order spatial processes and we directly transpose in space the three-stage modeling approach
of Box and Jenkins (1976) that consists of (i) identifying and selecting the model,45 (ii) estim-
ating the parameters and (iii) checking the model.

Know however that we do not use the usual TS notation with both nonseasonal and sea-
sonal factors, i.e. ARIMA(p, d, q) × (P,Q,D)s,46. By analogy, we rather denote any model
by using sets of lags, as ARIMA({1, ..., p, P}, {1, ..., d,D}, {1, ..., q, Q}). The reason for this
notation choice is intended to be informative. As explained by Anselin (2002a, p.253-254),
spatial pro-stationarity differences can only be performed partially compared to the TS case.
Indeed, these differences must include autoregressive parameters – thus not implicitly set to 1

as in the TS case – so as to avoid singularities when handling models in their reduced form.
Anselin mentions in addition that, unlike the TS case, any spatial filter estimation must be
carried out jointly with that of the other model parameters. Put in technical terms, this means
that during estimations, the two TS steps of stationarity differencing and model identification
are merged together.

The development that follows is clarified in Section 2.B. We initiate the discussion with the
traditional linear model:

y = Xβ + v (2.23)

with y as a n× 1 vector of observations on the endogenous variable, X as an n× k matrix of
observations on exogenous variables, β as a k×1 vector of coefficients and v as a homoskedastic
and non-autocorrelated n× 1 vector of disturbances, such that E[vv

′
] = σ2

vI.
If the disturbance terms of the model are more forcefully assumed i.i.d. normal with mean

zero, i.e. v|X ∼ N (0, σ2
vI), its multivariate density is

L(v) = (2πσ2)−
n
2 e
− 1

2σ2
v

(v
′
v) (2.24)

The likelihood for y conditional on X is then

L(y|X) = L(v)
∣∣∣∂v
∂y

∣∣∣ (2.25)

45It is interesting to note that this phase may as well easily be thought of as the identification/selection
procedure of the full autocorrelation structure of the variables involved in the data-generating process.

46The terms (p, d, q) and (P,D,Q)s respectively give the orders of the nonseasonal and seasonal parts, where
s is the number of observations in a seasonal cycle, e.g. 12 for monthly series, 4 for quarterly series, 7 for daily
series with day-of-week effects.
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where |(∂v/∂y)| is the absolute value of the determinant formed from the n × n matrix of
partial derivatives of the elements of v with respect to the elements of y.

One may then think that eq.(2.25) should be augmented to entail different types of spatial
effects. Considering these effects can be done through different spatial model specifications,
the most notorious (and elementary) of which are the spatial autoregressive model (SAR), the
spatial error model (SEM), the spatial moving average model (SMA) and different combinations
of those.47 However the way of combining them is not unique. This is why, as mentioned
previously, the chosen combination and its analytic development is driven by the first phase of
identification/selection. We recall that even if the step of pro-stationarity differencing presently
initiates the selection phase – as classically performed in the TS case –, it will always be re-
carried out jointly with the estimation of the other model parameters. This is clarified in the
following respects.

Identifying the order and the structure of differencing

In the TS case, the first step is about making sure that the variables are stationary. In the
SE context, this means assuming that the data-generating process (DGP) can be specified as
a SEM, or less particularly, as a spatial Durbin model (SDM). Indeed, the SEM is a special
case of SDM in which both y and X are assumed to be (partially) identically integrated, i.e.
the difference structure is assumed to be the same on both the exogenous and endogenous
variables (Anselin, 1980; Elhorst and Vega, 2013; Gibbons and Overman, 2012). However,
the declination of the SEM into a SDM within the search of the order of differencing is not
undertaken in this study.48 Moreover, note that this subsection is – for the sake of simplicity –
more about differencing structure than about differencing order. Actually, we chose to restrict
the latter to the binary case of differencing or not differencing. Put differently, we chose to
restrict the latter to contingently consider how relatively high or how absolutely high model’s
variables are over the urban space. Thus, still remains to determine the spatial structure of
this first difference, if any. For the sake of clarity, let first denote

G(γ) =
∑
i ∈ Iγ

γiWi

Γ(γ) = I−G(γ)

yγ = Γ(γ)y

Xγ = Γ(γ)X

Ωγ = σ2
u

(
Γ
′
Γ
)−1

47At the combo-top of which one has the general nesting spatial model (GNS). See Elhorst and Vega (2013,
p.24, Fig.1) for a general-to-specific three-like comparison of different spatial econometric model specifications.
Incidentally, the spatial moving average model is a notable absentee.

48The declination could be performed one step further by considering how a SDM boils down to a spatial lag
(only) of X (SLX) model. Although this is not related to the notion of differencing.
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where Iγ is the set of lag orders that are considered for estimation, γi ∀i ∈ Iγ is the i-th spatial
autoregressive parameter involved in the auto-generation of v, γ is the Card(Iγ) × 1 vector
formed over these autoregressive parameters and Wi is the i-associated n× n spatial oknn-lag
operator.

Henceforth it is assumed that v = G(γ)v + u with u ∼ N (0, σ2
uI) and v ∼ N (0,Ωγ) [see

Subsection 2.B.1 for details]. This leads to rearrange eq.(2.23) as

yγ = Xγβ + u (2.26)

Substituting closed form solutions from the first order conditions for the parameters β and σ2
u

leads eq.(2.25) to be concentrated on γ as follows

L(γ) =

(
2πe

n
u
′
u

)−n
2 ∣∣∣Γ(γ)

∣∣∣ (2.27)

Recalling that eq.(2.27) reduces to eq.(2.25) for Iγ = ∅.

Identifying the numbers of AR or MA terms

One may then have reasons to think that, specified as in eq.(2.26) – or as in eq.(2.23) if
Iγ = ∅ –, one omits observable and/or non-observable characteristics at work in the DGP.
On the one hand, one of those observable characteristics is very likely to be the long-distance
auto-determining nature of the spatially-filtered regressand, yγ . On the other hand, if the
long-distance auto-regressive nature of the error vector is already considered by the SEM spe-
cification, a non-observable characteristic that is likely to remain is its short-distance autocor-
relation. For the sake of clarity relatively to the SAR terms, let denote

Q(ρ) =
∑
i ∈ Iρ

ρiWi

P(ρ) = I−Q(ρ)

yγ,ρ = P(ρ)yγ

where Iρ is the set of lag orders that are considered for estimation, ρi ∀i ∈ Iρ is the i-th spatial
autoregressive parameter involved in the auto-generation of yγ and ρ is the Card(Iρ)×1 vector
formed over these autoregressive parameters.
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Identically for the SMA terms, let denote

L(λ) =
∑
i ∈ Iλ

λiWi

Λ(λ) = I + L(λ)

yγ,ρ,λ = Λ(λ)−1yγ,ρ

Xγ,ρ = Λ(λ)−1Xγ

Ωλ = σ2
rΛΛ

′

Ωγ,ρ,λ = Qcov[yγ ,yγ ]Q
′

+ 2QE[yγr
′
]Λ
′

+ Ωλ

where Iλ is the set of lag orders that are considered for estimation, λi ∀i ∈ Iλ is the i-th
spatial parameter involved in the local auto-regression of residuals and λ is the Card(Iλ) × 1

vector formed over these autoregressive parameters. Note that the MA filter, Λ(λ), is expressed
following Anselin as a positive sum.49

Without loss of generalities, considering simultaneously the SAR and SMA specific terms
while still opting for a SEM(Iγ) is equivalent to suspecting that u entails Q(ρ)yγ + Λ(λ)r

with r ∼ N (0, σ2
rI), u ∼ N (0,Ωγ,ρ,λ) and v ∼ N

(
0,Γ−1Ωγ,ρ,λΓ

−1′
)

[see Subsection 2.B.2
for details]. Note that the inclusion of SAR terms is also related to the identification of the
structure of partial differencing, since it relates to only considering yγ independently from the
other variables of the model. As pointed out by Anselin (2002b, p.254), "this can be interpreted
as a way to clean yγ of the effects of spatial correlation, while maintaining the [...] estimates
for β". This leads to rearrange eq.(2.26) as

yγ,ρ,λ = Xγ,λβ + r (2.28)

and eq.(2.27) to be concentrated on γ, ρ and λ as follows

L(θ) =

(
2πe

n
r
′
r

)−n
2

∣∣∣Γ(γ)
∣∣∣ ∣∣∣P(ρ)

∣∣∣∣∣∣Λ(λ)
∣∣∣ (2.29)

where θ denotes the (Card(Iγ) + Card(Iρ) + Card(Iλ)) × 1 hyperparameter that vertically

stacks γ, ρ and λ, such that θ =
[
γ
′
,ρ
′
,λ
′
]′
.

49Indeed, probably following the convention introduced by Box and Jenkins, it is very common to read
authors who express it exhibiting a minus sign. We prefer the form with a positive sum since it reminds a kind
of truncated Leontief inverse, from which the interpretation in terms of auto-regression order is (subjectively)
direct.
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Dispersion for the parameters

In addition to the statistical inference required during the phase of selection/identification
of the model, we recall the need to conduct inference on the budget shares, δ̂H and δ̂a, that
are set in GEMSE. The estimated values of these parameters derive from the estimated com-
ponents of β̂ – whose functional relations are explicited in subsection 2.3.4.

The models that are subject to selection in the present work are likely to involve a large
number of parameters whose distributions, probably not symmetrical, are cumbersome to derive
analytically. This is why in addition to the (normal-approximation-based) observed confidence
intervals,50 (non-adjusted and adjusted) bootstrap percentile intervals are provided. However,
the existence of fixed spatial weight matrices prohibits the use of traditional bootstrapping
methods.51 So as to compute (normal approximation or percentile-based) confidence inter-
vals for all the parameters, be them derived like the budget shares, we use a special case of
bootstrap method, namely Lin et al. (2007)’s hybrid version of residual-based recursive wild
bootstrap.52 This method is particularly appropriate since it (i) "accounts for fixed spatial
structure and heteroscedasticity of unknown form in the data" and (ii) "can be used for model
identification (pre-test) and diagnostic checking (post-test) of a spatial econometric model".
As mentioned above, non-adjusted percentile intervals as well as bias-corrected and acceler-
ated (BCa) percentile intervals (Efron and Tibshirani, 1993) are provided. An issue-based
summary of the calculation methods of all the intervals that are presented in this work fol-
lows.

Confidence intervals that are based on the observed Fisher information matrix rely on the
symmetry of the distribution of the parameters under question. The (observed) standard
errors and confidence bounds of these parameters, respectively denoted by se[Θ̂]obs and
c[α]obs,Θ

± ,a are computed as

se[Θ̂]obs = diag

[(
−∂ lnLfull

∂2Θ

∣∣∣∣
Θ̂

)−1
]1/2

; c[α]obs,Θ
± = Θ̂±Ψ−1

n−k[α/2]se[Θ̂]obs

where Θ̂ =
[
β̂
′

, θ̂
′

, σ̂2
r

]′
, α is the chosen probability of making type I error and Ψn−k is

the student distribution function with n−k degrees of freedom. To compute the observed
standard errors of δ̂H and δ̂a, one needs to redefine lnLfull in terms of these two parameters

50The term "observed" stands for – as it reads in open-source codes –, the computation of the log-likelihood
Fisher Information matrix evaluated/observed at its estimated maximum.

51Seminally without dependence (Bradley, 1979) or with (nilpotent anisotropic) temporal dependence by
moving blocks (Kunsch, 1989). See Gonçalves and Politis (2011) for a short but very instructive review of
bootstrap methods for TS.

52The way to mimick heteroskedasticity of unknown form is detailed and tested in Davidson and Flachaire
(2008).
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such that (i) δ = f(β), where f is a vector isomorphic function, (ii) Ξ =
[
f−1(δ)

′
,θ
′
, σ2

r

]′
,

(iii) ξ =
[
δ
′
,θ
′
, σ2

r

]′
and (iv) ξ̂ =

[
f(β̂)

′
, θ̂
′

, σ̂2
r

]′
. These observed standard errors and

confidence bounds, respectively denoted by se[Ξ̂]obs and c[α]obs,Ξ
± , are

se[Ξ̂]obs = diag

(−∂ lnLfull (Ξ)

∂2ξ

∣∣∣∣
ξ̂

)−1
1/2

; c[α]obs,Ξ
± = Ξ̂±Ψ−1

n−k[α/2]se[Ξ̂]obs

Unlike the above two approaches, mutually exclusive, confidence intervals that are based
on bootstrap sampling distributions allow for the parallel estimation of the confidence
bounds of β and δ. Define Θ̂

all
as a vector that vertically stacks all the parameters, be

them directly estimated like β or indirectly like δ, such that Θ̂
all

=
[
β̂
′

, δ̂
′

, θ̂
′

, σ̂2
r

]′
. BCa

percentile intervals are used to turn the bootstrap sampling distribution of Θ̂
all

into its
analogous unbiased and constant variance version. The transformation implies two inde-
pendent correction factors, commonly denoted by z and a,b which consider respectively
the bias and the skewness of the bootstrap sampling distribution. z and a are defined as

z = Φ−1

(
1

r

r

#
b

(
Θ̂

all

b < Θ̂
all
))

; a =
1

6

∑n
i=1

(
Θ̂

all

−i −Θall
)3

(∑n
i=1

(
Θ̂

all

−i −Θall
)2
)3/2

where, on the one hand, b, r and Φ respectively stand for the bootstrap replication index,
the total number of replications and the cumulative standard normal distribution function
and, on the other hand, Θ̂

all

−i −Θall is the mean deviation of the ith jackknife estimate
of (the true) Θall. Note that, if any,c oknn matrices involved during the n jackknife
estimation procedures are resampled as well by (i) removing their ith row and column
and (ii) computing the corresponding oknn auto-correlation structure. Finally, define the
correcting percentile (confidence interval) function, c[α]BCa

± , as

c[α]BCa
± = Q

(
Φ

(
z +

z± Φ−1 (α/2)

1− a (z± Φ−1 (α/2))

))
where Q is the empirical quantile function that returns c[α]− or c[α]+ such that, respec-
tively, Pr(Θall < c[α]−) = α/2 or Pr(c[α]+ < Θall) = α/2, depending on whether or not
c[α]± are BCa-based.

Thus, the confidence and percentile intervals that are computed in this work are four in
number, above denoted as c[α]obs,Θ

± , c[α]obs,Ξ
± , c[α]± and c[α]BCa

± . Those will be presented
for each coefficient in table format and referred respectively to as D1, D2, D3 and D4,
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with D standing for (underlying) Distribution. Moreover, note that the definitions of the
(BCa and non-BCa) percentile intervals are declined to be used for hypothesis testing.
The aim is to consider the potential asymmetry of coefficients distributions. To do so, we
first compute the one-sided p-value α∗ that makes c[α∗]− equalize the value tested under
the null, θ̃. Formally,

α∗ = argeq
α∈[0,1]

(
c[α∗]− = θ̃

)
= Pr(θ < θ̃)

We then compute 2 min(α∗, 1−α∗) to get the two-sided p-value associated to the bilateral
version of the test.d

aWhere se and c are denoted by bold lowercase symbols to signal that they have the same dimension
as their (column) vector input, with which they have a direct component-to-component mapping.

bWhere, as for se and c, z and a are denoted by bold lowercase symbols to signal that they have the
same dimension as their (column) vector input, with which they have a direct component-to-component
mapping.

cIndeed, if Iγ ∪ Iρ ∪ Iλ = ∅, eq.(2.28) boils down to eq.(2.23).
dAn interesting discussion about taking twice the minimum as it stands can be found at https:

//stats.stackexchange.com/a/140517. As it reads there, the main justification of this approach is
about complying with the fact that cumulative distribution functions are invariant to order-preserving
transformations.

2.3.4 An application to the metropolitan area of Paris using the specification oknn

First, recall that in the scope of the econometric study only, one denotes the number of place
by n instead of Nj as in the rest of the thesis.53 Then, recall the expression of the indirect
utility function in its private-vehicle specified form, i.e. considering eq.(1.102) with u0

j,i = u0
j ,

that is

uj,i = u0,2
j R−δ

H

j,i

(
T

dj,i
vj,i

)δa (
Yj − P a

j,i(aj,i)
)1−δa

where u0,2
j = u0

ju
2
j . Assuming that the metropolitan area of Paris is at equilibrium, i.e. uParis,i =

uParis ∀i ∈ J1;NParisK, and rearranging the expression to obtain housing rents per square meter
on the LHS returns – one takes j = Paris and omits the index in what follows for the sake of
clarity,

lnRi = β0 + β1 ln (Y − P a
i ) + β2 ln

(
T

ti

)
+ εi (2.30)

with δH = 1/(β1 + β2) and δa = β2/(β1 + β2).

Georeferenced Data

In Figure 2.6, we are shown that the number of places that are considered for the econo-
metric study, 300, is not the one involved in deterministic simulations, 428. The reason of this

53In the major part of this thesis, nj and n respectively stand for the number of firms in agglomeration j and
in the country of interest.
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difference is two-fold: first, it is related to the different position-filters that have been used.
Second, it is due to computation time concerns.

Figure 2.6: The 428 places considered in the simulation (blue) versus the 300 ones considered
in the econometric study.

The 428 places that are considered during the simulation have been subject to the double
filter of income availability on the one hand and of 95% population representativity on the
other hand, which led to the emergence of geographic islands. On the contrary, the places that
are considered in the econometric study are simply the 300 nearest ones to Place de l’Hôtel de
ville.54

The bootstrap resampling process in itself takes time, which is even more true when imple-
menting Lin et al. (2007)’s, whose "main disadvantage is the high computing cost of large matrix
inversion". Regardless of the chosen number of resamplings, SARIMA models are intrinsically
costly to compute. Putting aside the cases of models based on long-distance autoregression

54Wich may have caused the emergence of islands in other spaces, e.g. the plane formed by the two dimensions
of populations and income.
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Figure 2.7: Polynomial Times of n

processes, i.e. SARIMA(Iρ,∅,∅) and/or SARIMA(∅, Iγ ,∅),55 – that involves no n× n mat-
rix inversions –, full SARIMA specifications analogous to that that are performed in TS are
costly in terms of computation because of the MA terms. Indeed the consideration of the
MA coefficients cannot be decoupled from the inversion of their framing n × n spatial filter,
Λ(λ), that is performed as many times as needed by the maximization of the log-likelihood. In
place of the simplex search algorithm (Nelder and Mead, 1965) chosen for the maximization,
techniques such as LeSage (1999, p.59-60)’s lattice logarithmic search could be envisaged when
dealing with little sets of parameters, but has the disadvantage of becoming difficult to handle
as the sets of parameters increase in size.56 To finally justify the choice of 300 for the sample
size, Figure 2.7 illustrates how costly the estimation procedure of a SARIMA({1}, {1}, {1}) is.
We are shown that the time complexities of the input-size, n, and of the number of bootstrap
samples, b, respectively are O (n4) and O (b). b is set to 2000 in this work.

On these bases, we are shown in Figure 2.8 the two geographies of monthly housing rents and
travel times, respectively bot-scrapped from LaCoteImmo57 and GoogleMaps . As can be easily
seen from these two maps, housing rents and travel times both possess an auto-correlation
of the same nature, i.e. following a long-distance process with a positive sign. Considered
together under the (credible) assumption of no spurious relation, the two scatter graphs of
these variables clearly illustrate the housing/transport trade-off given the opposite sign of their
(road-distance supported) trends. The geography of rents - monotonously decreasing from the

55Note that in the case in which the autoregression is in the endogenous variable, Anselin (1988) suggests some
additional tricks to minimize at most the number of objects to compute when maximizing the log-likelihood.

56First, note that the denomination that LeSage (1999) uses for his grid search is "multiple pass grid search"
and second, it is primarily designed to avoid the repeated Jacobian evaluation involved when brute force
maximizing the log-likelihood, be it SAR- or SEM- related thus. By citing this, we simply assume that such a
techniques could also have been used to minimize the number of n×nmatrix inversions needed when maximizing
the log-likelihood of SMA models.

57LaCoteImmo website is available at, e.g. http://www.lacoteimmo.com/prix-de-l-immo/location/
pays/france.htm.
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Figure 2.8: Housing rents, Ri, and Road travel times, ti

center to the periphery – confirms that the choice of representing the metropolitan area of Paris
with a monocentric LUTI-based spatial structure58 is non-abusive, which suggests that the ex-
istence of a unique utility level of (urban) equilibrium covering the whole area is empirically
valid.

In Figure 2.9, one is shown the two geographies of incomes net of transport cost and ac-
cessibility. Income, Y , derives on average59 from income net of personal tax available at the
level of municipalities in 2011, and is taken from Direction Générale des Finances Publiques
(DGFiP)’s database.60 In addition, note that Y is the result of a readjustment performed
on incomes net of personal tax, originally calculated per fiscal household.61 P a

i , computed as
shown in eq.(1.25), is composed of a distance-variable part, that is capa251diT/ti where di is
the road distance between place i and Place de l’Hôtel de ville and 251 stands for the number
of business days used (and assumed constant over the prospective horizon) in GEMSE. ca and
pa are set to their 2011 value, respectively 0.0678liter/km and 1.518e/liter. Table 2.1 reports
the summary statistics of the variables implied in the study, sometimes implicitly as the private
vehicle speeds are. This concludes the presentation of data used in the econometric study.

58Recalling that the only numerical/mathematical objects that embody the spatial structure are the two
geographies of rents and travel times, hence the expression "LUTI-based spatial structure".

59Indeed, the average is considered since GEMSE does not space-differentiate incomes within a given urban
area, hence Yi = Y ∀i = 1, ..., NParis.

60Available at https://gemse.alwaysdata.net/static/gemse/FRANCE/impot_rev_2011.xlsx.
61In INSEE’s 2011-data, income net of personal tax is denoted by RNETFF11, while the number of households

is denoted by NBFF11. This adjustement is also performed so as to comply with the nature of agents that are
described at the urban level in GEMSE. Also recall that incomes that are involved in GEMSE’s calibration are
not directly taken from any database, but come from the spatial disaggregation of the GDP [see eq.(2.1) and
eq.(2.4)].
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Figure 2.9: Residual incomes, Y − P a
i , and Accessibility, T/ti

Table 2.1: Summary statistics

i = 1, ..., 300 Mean St. dev. Min Max

Ri [e/m2/year] 213.49 52.87 123.96 455.94
di [km] 22.10 9.72 0.70 53.60
ti [mins] 28.51 8.34 4.00 48.00
vi [km/h] 44.59 12.43 10.50 72.97
P a
i [e/year] 6000.00 1673.26 1412.89 9819.28
Y − P a

i [e/year] 72160.44 1673.26 68341.16 76747.56
251T/ti [b&f/year] 1123.08 669.44 575.21 6902.50

SARIMA(Iρ, Iγ , Iλ) model (i) Identification

We initiate the model identification with Table 2.2 that presents a first round estimation of
eq.(2.30), with neither spatial components nor modeled residuals autocorrelation.62 Let’s figure
out whether there is a need to explicit the structure of autoregression or/and autocorrelation.

In Figure 2.10, one is shown four maps of SARIMA(∅,∅,∅)’s residuals for different defini-
tion of quantiles, that are, from the upper left to the lower right corner, biciles, terciles, quartiles
and deciles. From this observation, one sees that the autocorrelation of residuals is very likely

62Qualified as unmodeled, or equivalently, as modeled with an n × n identity matrix in lieu of correlation
structure. Recall how important the assumptions of homoscedastic and unautocorrelated residuals are, since
coefficients standard errors (and significance tests) directly inherit their reliability from the non-rejection of
those. Indeed, in the general case (and X considered fixed), recall that se[β̂]2 = diag

[
(X
′
X)−1X

′
Ω̂X(X

′
X)−1

]
where Ω̂ is the (presumably misspecified) square correlation structure of residuals.
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Table 2.2: SARIMA (∅,∅,∅)

Coeff. Dist.a Std. Err. P>|z| [95% C.I.]

β0 -37.5566

D1 3.919830 0.000 −45.2708 −29.8425

D2 . . . .
D3 3.952075 0.000 −45.5031 −29.6167

D4 4.049645 0.000 −45.6052 −29.7309

β1 3.6404

D1 0.357978 0.000 2.9359 4.3449

D2 . . . .
D3 0.360783 0.000 2.9101 4.3689

D4 0.368348 0.000 2.9339 4.3778

β2 0.3133

D1 0.022422 0.000 0.2692 0.3574

D2 . . . .
D3 0.022358 0.000 0.2692 0.3562

D4 0.021910 0.000 0.2684 0.3542

δH 0.2529

D1 . . . .
D2 0.022155 0.000 0.2093 0.2965

D3 0.022840 0.000 0.2148 0.3073

D4 0.023482 0.000 0.2143 0.3064

δa 0.0792

D1 . . . .
D2 0.010986 0.000 0.0576 0.1009

D3 0.011251 0.000 0.0602 0.1057

D4 0.011360 0.000 0.0602 0.1047

σ2
r 0.0146

D1 0.001189 . . .
D2 . . . .
D3 0.001342 . 0.0118 0.0171

D4 0.001350 . 0.0120 0.0173
a C.I.-related objects derive from four types of distribution:
*D1 stands for normal-approximation-based distribution.
*D2 is as D1, but derives from an information matrix expressed in terms of δH and δa.
*D3 stands for bootstrap-based distribution. Associated std. are computed over bootstrap distri-
butions.
*D4 stands for BCa bootstrap-based distribution. Associated std. are deduced by reversing the
symmetry-based C.I. formula.

to be effective in the geographic space, and to follow a short distance process.
When observing biciles, which in this case is a manner to consider high orders of neighbors,

it appears obvious that long-distance pairs of residuals do not follow a random process, but
rather a negative autoregressive one. When considering terciles, which is a way of considering
lower-than biciles related orders of neighbors, the spatial fragmentation occurs more among
greater-than-0.002 (blue) biciles than among others (red), which suggests the existence of non-
constant spatial variance that depends on the groups one forms. When considering quartiles,
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Figure 2.10: SARIMA(∅,∅,∅)-residual’s mapped biciles, terciles, quartiles and deciles.

the most salient fact is that, while the blue space fragments, the red one does not change
that much compared to the previous higher quantiles, i.e. rather than fragmenting, the red
space, as a mountain range, undergoes a water-like surge that makes emerge islands. This
suggests that this space concentrates rather outlying places. When observing deciles, one sees
no long-distance gradient of colors, for example from the center to the periphery, which also
enforces the assumption of the short-distance nature of the residual’s autoregression. Note that
this absence of long-distance trend is a notable difference with that of housing rents (see Map
2.8’s left dial), residual incomes and accessibility (see Map 2.9’s left and right dials) that do
exhibit long-distance trends. This opposition strongly suggests that these three variables are
cointegrated in space and that applying a SEM filter can improve the properties of the vector
of residuals.

Undertaken within the stage of the identification of the differencing structure, Figure 2.11
shows SARIMA(∅,∅,∅)’s residuals plot and full autocorrelogram. Note the space-specific
characteristics of the correlogram. It shows the so-called I of Moran (1950) and C of Geary
(1954) that are associated to each neighbor-order, both transformed to be interterpretable as
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Figure 2.11: SARIMA(∅,∅,∅) residual’s plot and (full) autocorrelogram

the regression coefficients are.63Looking closely at the definitions of I and C, one sees that the
former – as a Pearson-like correlation coefficient – involves deviation from the sample mean
while the latter involves deviations from neighbors values. Put differently, the former is more
a global measure of autocorrelation than the latter.

The residuals plot confirms what was previously suggested regarding the (non-fragmenting)
red space, i.e. this space contains places that instill heteroscedasticity. This is highlighted by
the two hulls of the residuals,64 especially the second one, in which one perceives the strong
influence of some outlying negative deviations. The autocorrelogram in addition shows that
this non-constant variance may also be accompanied by multiple local spatial trends, given the
multiple slow linear decay patterns starting from, e.g. the 1st, 7th, 14th, 19th, 26th and 37th
orders of neighbors.

Figures 2.12 and 2.13 zoom at the 50 first neighbors orders, and juxtapose two versions of
correlogram versions whose difference lays in their abscissa. In these two figures, the (partial
and full) Auto Correlation Function (ACF) plots on the left dial are – as in the TS case –
based on neighbors orders while that on the right dial is based on average inter-distance neigh-
bors.65 This allows us to rephrase the interpretation of the ACF in terms of kilometers in the
one-dimensional space of inter-distances, as follows: there exist multiple local spatial trends
that start from, approximately, 1.8km, 3.8km, 5.5km, 6.5km, 7.7km and 9.3km. What is

63Moran’s I usually ranges from −1 to 1 but is a fortiori not 0-centered, hence I−E[I], where E[I] = −(n−1)−1

is the expected value of I under the null hypothesis of no spatial autocorrelation. Geary’s C usually ranges
from 0 to 2. Values that are below (resp. above) 1 indicate positive (resp. negative) spatial autocorrelation.
Thus, E[C] − C ranges from −1 to 1 and is 0-centered, where E[C] = 1 is the expected value of C under the
null hypothesis of no spatial autocorrelation.

64The first hull is formed over the local extrema, while the second hull is formed over the local extrema of
the first-hull zero-centered extrema.

65Note that in the TS case, this nuance makes no sense since temporal positions are traditionally chosen to
be equidistant.
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Figure 2.12: SARIMA(∅,∅,∅) residual’s full autocorrelogram against orders (left) and
kilometers (right)

Figure 2.13: SARIMA(∅,∅,∅) residual’s partial autocorrelogram against orders (left) and
kilometers (right)

happening there? At order 1 or at km 1.8, wherever one is located in the agglomeration, one is
positioned on the average centroid of the two closest neighbors. Interpreted in terms of travel
times or housing rents, it appears reasonable to think that no clearly perceptible structural
break exists (on average) at such a short distance. Thus, this first neighbor-order is likely to be
representative of the reciprocal short distance effect between places. At order 7 or at km 3.8, if
one takes the 1st arrondissement as a distance origin, one is just before the north-south frontier
of intra-mural Paris. Still at order 7, but this time taking an example outside of intra-mural
Paris, one is very likely to have moved to a new quartile (see Figure 2.10). This suggests that
the 7th neighbor-order may coincide with a structural break both in housing rents and traffic
conditions. The existence of such a structural break is also suggested when taking a look at the
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geographies of housing rents (see Map 2.8’s left dial), residual incomes and accessibility (see
Map 2.9). Indeed, by randomly drawing a place and considering a 3.8km-radius circle around
it, one is likely to get a group of places belonging to the same decile. At order 14 – which in
the TS case would seasonally superimposes to the just-explained 7th order – or at km 5.5, one
is very likely to capture the same sort of information as the one that is captured at order 7 and
whose value-added stems from the irregularity of the lattice. Note that by taking again the 1th
arrondissement as a distance origin, the 14th order delimits the north-south outer-side frontier
of intra-mural Paris. Averaged together, the 7th and the 14th neighbors orders are, remarkably,
equivalent to the km 4.6, which is the real north-south radius of intra-mural Paris. At order
19 (km 6.5) or 26 (km 7.7), the information captured is not that clear and we thus skip these
neighbors order. At order 37 or at km 9.3, one is actually looking at the last significant order
stated by the ACF plot. Remarkably, once again with the 1st arrondissement as a distance
origin, know that 9.3km is the real east-west radius of intra-mural Paris.

Particularly keen not to resort to any kind of automatic selection techniques, it is on these
geographically established fundamentals, that we define the structure of the 1st difference over
lags 7, 14 and 37, i.e. Iγ = {7, 14, 37}, all three representative of the north-south and east-west
dimensions of intra-mural Paris. We justify our choice of defining Iγ as it stands by the signific-
ance of these 3 lags both on the PACF and ACF sides. We then consider the 1st, 4th and 12th
neighbor-orders as a starting point to structure the SMA part of the DGP, i.e. Iλ = {1, 4, 12}.

SARIMA(∅, {7, 14, 37}, {1, 4, 12})-grounded models parameters (ii) Estimation and (iii)
Checking

Figure 2.14 shows the ACF and PACF resulting from the inclusion of these lags in the model.
Based on the interpretation of these two correlograms, multiple possibilities arise. Table 2.3
shows some selective properties of the so-suggested models. Multiple model-specifications may
reasonably well explain the generative process of housing rents, explicited in eq.(2.30). It thus
appears informative to compare their results.

We do not compute the bootstrap intervals of all the models that are enumerated in Table
2.3, only the first three ranked ones. The ranking process is five-dimensional and performed
according to the so-defined lexical order: SH-pv> 5%, BP-pv> 5%, BIC, SH-pv, BP-pv. For
example, the 5d rank of the 1st model is True, True, −443.18, 7.13%, 11.26%. That of the
14th is False, True, −444.91, 3.3%, 17.52%. Note the importance given to the non-rejection
of prediction errors’ normality and residuals homoscedasticity. For the former non-rejection,
this is justified by the Gaussian nature of the maximized (log) likelihood, on which information
criteria rely. The importance given to the latter non-rejection is justified by the simple fact that
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Figure 2.14: SARIMA(∅, {7, 14, 37}, {1, 4, 12}) residual’s full (left), partial autocorrelograms
and residual plot

the reliability of the non-percentile-based standards errors heavily depends on it.66 In what
follows, we first check the properties of these three models, and we then consider especially the
estimated values for δH and δa, whose bootstrap-based density plots are shown in Figure 2.15.

Relatively to model checking, we first refer to the (vertically rotated) left parts of Tables
2.4, 2.5 and 2.6. In those, one can read that all the unit-root tests lead to strongly reject the
null according to which spatial coefficients are equal either to the lower or the upper bound
of their stationary space. But it is not sufficient and one must ensure that all spatial filters
are non-singular. To do so, we then consider the sum of the absolute values of the estimated
coefficients belonging to the same family, i.e. involved in the same spatial filter. It appears
that none of these sums approach 1.

Relatively to housing services, the estimated values for δH – all greater than that of 25%

set in GEMSE for France –, are in accordance with a study realized by Institut national de la
66As already mentioned in a previous footnote, in the general case (and X considered fixed), recall that

se[β̂]2 = diag
[
(X
′
X)−1X

′
Ω̂X(X

′
X)−1

]
where Ω̂ is the (presumably misspecified) square correlation structure

of residuals.
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Table 2.3: SARIMA(∅, {7, 14, 37}, {1, 4, 12})-grounded eligible models

SARIMA Selection criteria Fit criteria Residuals properties
(Iρ, Iγ , Iλ) (P)ACF scorea Rank BIC AIC HQCb lnL MSE R2 BP-pvc SH-pvd

(∅, {2, 7, 14, 34, 37}, {1, 4, 12}) 62.97 1 -443.18 -483.93 -467.62 252.96 0.0114 0.6800 0.1126 0.0713
(∅, {7, 14, 37}, {1, 4, 12}) 64.35 2 -442.61 -475.94 -462.60 246.97 0.0118 0.6826 0.0902 0.0995
({2}, {7, 14, 37}, {1, 4, 12}) 62.23 3 -442.40 -479.44 -464.62 249.72 0.0115 0.6886 0.0897 0.0734
({2}, {7, 14, 34, 37}, {1, 4, 12}) 62.29 4 -441.75 -482.49 -466.19 252.25 0.0113 0.6895 0.1119 0.0569
(∅, {2, 7, 14, 37}, {1, 4, 12}) 64.38 5 -441.33 -478.37 -463.55 249.19 0.0116 0.6815 0.0970 0.0831
({2}, {7, 14, 37}, {1, 4, 12, 33}) 63.70 6 -440.08 -480.82 -464.51 251.41 0.0114 0.6881 0.0990 0.0654
({2}, {7, 14, 37}, {1, 4, 12, 34}) 59.41 7 -439.29 -480.03 -463.73 251.02 0.0114 0.6896 0.0843 0.0546
({33}, {7, 14, 37}, {1, 2, 4, 12}) 64.38 8 -438.21 -478.95 -462.64 250.47 0.0117 0.6924 0.0653 0.0584
({34}, {7, 14, 37}, {1, 2, 4, 12}) 60.14 9 -434.48 -475.22 -458.91 248.61 0.0117 0.6847 0.1355 0.0732
(∅, {7, 14, 37}, {1, 4, 12, 33}) 62.97 10 -431.75 -468.78 -453.96 244.39 0.0121 0.6841 0.0922 0.1149
({33}, {7, 14, 37}, {1, 4, 12}) 58.69 11 -435.76 -472.79 -457.97 246.40 0.0119 0.6904 0.0420 0.0676
(∅, {7, 14, 37}, {1, 2, 4, 12}) 59.41 12 -434.94 -471.98 -457.16 245.99 0.0123 0.6838 0.0298 0.1041
(∅,∅,∅) 48.83 13 -400.38 -411.49 -407.04 208.74 0.0147 0.6872 0.0367 0.1716
({2, 34}, {7, 14, 37}, {1, 4, 12}) 62.94 14 -444.91 -485.65 -469.35 253.83 0.0113 0.6861 0.1752 0.0330
({2, 33}, {7, 14, 37}, {1, 4, 12}) 62.97 15 -441.81 -482.55 -466.24 252.27 0.0113 0.6959 0.0799 0.0323
a (P)ACF score norm-considers the number of non-significant lags in the ACF and in the PACF, #lag(P)ACF

, via (#2
lagACF

+ #2
lagPACF

).5.
b HQC stands for the Hannan-Quinn information criterion (Hannan and Quinn, 1979).
c BP-pv stands for the p-value associated to Breusch and Pagan (1979)’s test statistic whose null hypothesis is model residuals’ homoskedasticity.
d SH-pv stands for the p-value associated to Shapiro and Wilk (1965)’s test statistic whose null hypothesis is prediction errors’ normality.

statistique et des études économiques (INSEE) (Durand, 2012, p.9) with 2008-data. As it reads
in there, "la part du loyer moyen dans le revenu des ménages interrogés s’élève à 34%". When
referring to the (vertically rotated) right parts of Tables 2.4, 2.5 and 2.6, it appears that the
possibility of having 25% as housing budget share is always rejected at a 5% significance level.
However, it appears reasonable to assume that expanding the number of places from 300 to
the one set in GEMSE, 428, would exert an upward pressure on these p-values, since the places
that would be so-considered are very likely to exhibit economic characteristics that would in
turn downward-pressure Paris’s averages (of these economic characteristics) toward France’s.
Relatively to transport services, the level of 10% that is set in GEMSE is remarkably close to
those yielded by the three specifications, all highly significant.
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1st rank, SARIMA(∅, {7, 14, 34, 37}, {1, 4, 12})

δ̂H δ̂a

2nd rank, SARIMA(∅, {7, 14, 37}, {1, 4, 12})

δ̂H δ̂a

3rd rank, SARIMA({2}, {7, 14, 37}, {1, 4, 12})

δ̂H δ̂a

Figure 2.15: Bootstrapped budget shares’ density plots
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2.3.5 Main findings

Three mains findings are presented to conclude this section. The first is related to the simpli-
city of the structural equation that is estimated. The second relates to the estimated values
themselves, similar to what one finds in the literature. The third finding relates to the proposal
of lag operator that is implemented to conduct the validation of the budgets shares that are
set in GEMSE.

The equation used in the study is really simple since only bivariate. It derives from the (in-
direct) utility function employed in GEMSE, rearranged to express housing rents [see eq.(2.30)].
This is a notable difference with the technique that is traditionally employed when dealing with
housing rents or prices, such as hedonic regressions that rely on a (very) large set of character-
istics, rarely publicly or easily available.

This structural equation remarkably yields estimated values for parameters that are similar
to what one finds in the literature regarding France and Paris in particular. Indeed, the values
found in the literature for France [see e.g. Guidetti and INSEE (2012, p.3, Table 3) or Morer
and INSEE (2015, p.3, Table 4)] (and set in GEMSE) of 10% and 25% respectively for δa and
δH are statistically supported in this study on the transportation side, and not so far from being
so on the housing side. For Paris, which differs from the rest of the country on the housing
side, our study remarkably finds (confidence and percentile) intervals that contain almost into
their center the values found in the literature of 34% [see (Durand, 2012, p.9)].

On the theoretical plan, our econometric study generalizes in space an approach tradition-
ally used in time series and presents the strict spatial counterpart of the well-known time-lag
operator, baptized k-nearest neighbor only (oknn). Remarkably, it allows us to identify some
key elements of the spatial structure of Paris, namely its North-South and East-West intra-
mural dimensions. Given that the approach that we develop requires careful handling, it is
only applied to this urban area. Its (automation if feasible and) declination into spatial panel
is a promising area for future research.

2.A Models selected for estimation

The models that have been chosen for estimation on the basis of their characteristics [see Table
2.3] are presented sequentially in what follows.

104



γ̂2 γ̂7 γ̂14

γ̂34 γ̂37 λ̂1

λ̂4 λ̂12 σ̂2

ln L̂

Figure 2.16: SARIMA(∅, {7, 14, 34, 37}, {1, 4, 12})’s (P)ACFs, residual plot and bootstrap-based
density plots of spatial parameters (1st rank)
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Table 2.4: SARIMA (∅, {2, 7, 14, 34, 37}, {1, 4, 12})

Coeff. Dist.a Std. Err. P>|z| [95% C.I.]

β0 -22.9356

D1 4.677358 0.000 −32.1416 −13.7295

D2 . . . .
D3 4.984052 0.000 −32.9913 −13.4897

D4 5.022955 0.000 −33.5484 −13.8588

β1 2.3373

D1 0.420121 0.000 1.5104 3.1641

D2 . . . .
D3 0.448576 0.000 1.4777 3.2423

D4 0.452586 0.000 1.5387 3.3128

β2 0.3085

D1 0.033398 0.000 0.2427 0.3742

D2 . . . .
D3 0.034433 0.000 0.2401 0.3761

D4 0.034243 0.000 0.2396 0.3738

γ2 0.0914

D1 0.050415 0.070 −0.0078 0.1906

D2 . . . .
D3 0.063333 0.185 −0.0533 0.2027

D4 0.060998 0.088 −0.0195 0.2196

γ7 0.1431

D1 0.049822 0.004 0.0451 0.2412

D2 . . . .
D3 0.064895 0.081 −0.0238 0.2410

D4 0.059817 0.019 0.0351 0.2696

γ14 0.1531

D1 0.050293 0.002 0.0541 0.2521

D2 . . . .
D3 0.064489 0.064 −0.0065 0.2510

D4 0.059783 0.014 0.0446 0.2789

γ34 0.1281

D1 0.046504 0.006 0.0366 0.2197

D2 . . . .
D3 0.067534 0.145 −0.0488 0.2242

D4 0.062970 0.039 0.0111 0.2579

γ37 0.1513

D1 0.049874 0.002 0.0532 0.2495

D2 . . . .
D3 0.067472 0.094 −0.0286 0.2453

D4 0.065531 0.024 0.0291 0.2860

λ1 0.2169

D1 0.048663 0.000 0.1211 0.3127

D2 . . . .
D3 0.056515 0.000 0.0960 0.3110

D4 0.057333 0.000 0.1083 0.3331

λ4 0.1343

D1 0.052664 0.011 0.0306 0.2379

D2 . . . .
D3 0.070150 0.114 −0.0311 0.2437

D4 0.069426 0.254 −0.0037 0.2685

λ12 0.0722

D1 0.052539 0.170 −0.0312 0.1756

D2 . . . .
D3 0.073198 0.427 −0.0959 0.1883

D4 0.073365 0.247 −0.0722 0.2154

δH 0.3780

D1 . . . .
D2 0.059715 0.000 0.2604 0.4955

D3 0.070674 0.000 0.2819 0.5541

D4 0.068306 0.000 0.2793 0.5470

δa 0.1166

D1 . . . .
D2 0.022648 0.000 0.0720 0.1612

D3 0.026235 0.000 0.0776 0.1826

D4 0.025519 0.000 0.0755 0.1756

σ2
r 0.0110

D1 0.000913 . . .
D2 . . . .
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a C.I.-related objects derive from four types of distribution:
*D1 stands for normal-approximation-based distribution.
*D2 is as D1, but derives from an information matrix expressed in terms of δH and δa.
*D3 stands for bootstrap-based distribution. Associated std. are computed over bootstrap distributions.
*D4 stands for BCa bootstrap-based distribution. Associated std. are deduced by reversing the symmetry-based C.I. formula.
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See Figure 2.14 for the corresponding (P)ACFs and residual plot.

Figure 2.17: SARIMA(∅, {7, 14, 37}, {1, 4, 12})’s (P)ACFs, residual plot and bootstrap-based
density plots of spatial parameters (2nd rank)
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Table 2.5: SARIMA (∅, {7, 14, 37}, {1, 4, 12})

Coeff. Dist.a Std. Err. P>|z| [95% C.I.]

β0 -26.3143

D1 4.876331 0.000 −35.9117 −16.7170

D2 . . . .
D3 4.627975 0.000 −35.4831 −17.7473

D4 4.617045 0.000 −36.1738 −18.0754

β1 2.6342

D1 0.439771 0.000 1.7686 3.4997

D2 . . . .
D3 0.417639 0.000 1.8658 3.4698

D4 0.412382 0.000 1.8936 3.5101

β2 0.3166

D1 0.030931 0.000 0.2557 0.3775

D2 . . . .
D3 0.030925 0.000 0.2584 0.3776

D4 0.030529 0.000 0.2574 0.3771

γ7 0.1601

D1 0.050056 0.001 0.0616 0.2586

D2 . . . .
D3 0.048355 0.001 0.0586 0.2452

D4 0.047785 0.000 0.0733 0.2606

γ14 0.1817

D1 0.052825 0.001 0.0777 0.2856

D2 . . . .
D3 0.050199 0.000 0.0767 0.2725

D4 0.050028 0.000 0.0897 0.2858

γ37 0.1561

D1 0.051381 0.002 0.0549 0.2572

D2 . . . .
D3 0.051040 0.005 0.0519 0.2449

D4 0.049602 0.005 0.0566 0.2511

λ1 0.1987

D1 0.045590 0.000 0.1090 0.2885

D2 . . . .
D3 0.048764 0.000 0.0999 0.2892

D4 0.048213 0.000 0.1014 0.2904

λ4 0.1385

D1 0.051791 0.007 0.0366 0.2405

D2 . . . .
D3 0.054354 0.016 0.0263 0.2464

D4 0.056146 0.017 0.0249 0.2449

λ12 0.0811

D1 0.052018 0.119 −0.0213 0.1834

D2 . . . .
D3 0.056203 0.150 −0.0290 0.1929

D4 0.057675 0.170 −0.0380 0.1881

δH 0.3389

D1 . . . .
D2 0.049880 0.000 0.2407 0.4371

D3 0.050861 0.000 0.2650 0.4574

D4 0.048467 0.000 0.2618 0.4518

δa 0.1073

D1 . . . .
D2 0.020214 0.000 0.0675 0.1471

D3 0.020579 0.000 0.0759 0.1558

D4 0.020385 0.000 0.0750 0.1550

σ2
r 0.0114

D1 0.000944 . . .
D2 . . . .
D3 0.001151 . 0.0089 0.0134
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a C.I.-related objects derive from four types of distribution:
*D1 stands for normal-approximation-based distribution.
*D2 is as D1, but derives from an information matrix expressed in terms of δH and δa.
*D3 stands for bootstrap-based distribution. Associated std. are computed over bootstrap distributions.
*D4 stands for BCa bootstrap-based distribution. Associated std. are deduced by reversing the symmetry-based C.I. formula.
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Figure 2.18: SARIMA({2}, {7, 14, 37}, {1, 4, 12})’s (P)ACFs, residual plot and bootstrap-based
density plots of spatial parameters (3rd rank)
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Table 2.6: SARIMA ({2}, {7, 14, 37}, {1, 4, 12})

Coeff. Dist.a Std. Err. P>|z| [95% C.I.]

β0 -25.2986

D1 4.525859 0.000 −34.2063 −16.3909

D2 . . . .
D3 4.651981 0.000 −35.3598 −16.7302

D4 4.735276 0.000 −35.5907 −17.0287

β1 2.5071

D1 0.411140 0.000 1.6979 3.3163

D2 . . . .
D3 0.424019 0.000 1.7352 3.4201

D4 0.431791 0.000 1.7654 3.4580

β2 0.2830

D1 0.032517 0.000 0.2190 0.3470

D2 . . . .
D3 0.032544 0.000 0.2226 0.3497

D4 0.032271 0.000 0.2195 0.3460

γ7 0.1612

D1 0.054314 0.003 0.0543 0.2681

D2 . . . .
D3 0.053774 0.011 0.0424 0.2506

D4 0.051831 0.006 0.0580 0.2612

γ14 0.1638

D1 0.057506 0.004 0.0507 0.2770

D2 . . . .
D3 0.055596 0.012 0.0339 0.2547

D4 0.054434 0.003 0.0699 0.2833

γ37 0.0855

D1 0.058350 0.143 −0.0294 0.2003

D2 . . . .
D3 0.057416 0.183 −0.0462 0.1811

D4 0.056600 0.120 −0.0284 0.1935

ρ2 0.1189

D1 0.049549 0.016 0.0214 0.2164

D2 . . . .
D3 0.051456 0.030 0.0142 0.2115

D4 0.050322 0.016 0.0261 0.2234

λ1 0.1621

D1 0.049255 0.001 0.0652 0.2591

D2 . . . .
D3 0.054161 0.003 0.0558 0.2631

D4 0.053734 0.003 0.0575 0.2682

λ4 0.1149

D1 0.054839 0.036 0.0070 0.2229

D2 . . . .
D3 0.062115 0.100 −0.0213 0.2236

D4 0.061811 0.067 −0.0082 0.2341

λ12 0.1015

D1 0.052822 0.055 −0.0024 0.2055

D2 . . . .
D3 0.064349 0.130 −0.0379 0.2175

D4 0.065256 0.113 −0.0321 0.2237

δH 0.3584

D1 . . . .
D2 . . . .
D3 0.057641 0.000 0.2717 0.4938

D4 0.056590 0.000 0.2688 0.4907

δa 0.1014

D1 . . . .
D2 0.011030 0.000 0.0794 0.1228

D3 0.020867 0.000 0.0701 0.1522

D4 0.020605 0.000 0.0684 0.1492

σ2
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D1 0.000920 . . .
D2 . . . .
D3 0.001136 . 0.0087 0.0131

D4 0.001149 . 0.0093 0.0138

P
>
|z
|

C
oe
ff.

D
is
t.
a
H

0
:
.̂

=
−

1.
00
H

0
:
.̂

=
0.

05
H

0
:
.̂

=
0.

12
H

0
:
.̂

=
0.

15
H

0
:
.̂

=
0.

25
H

0
:
.̂

=
0.

35
H

0
:
.̂

=
1.

00

γ
7

D
3

0.
00

00
.

.
.

.
.

0.
00

00

D
4

0.
00

00
.

.
.

.
.

0.
00

00

γ
1
4

D
3

0.
00

00
.

.
.

.
.

0.
00

00

D
4

0.
00

00
.

.
.

.
.

0.
00

00

γ
3
7

D
3

0.
00

00
.

.
.

.
.

0.
00

00

D
4

0.
00

00
.

.
.

.
.

0.
00

00

ρ
2

D
3

0.
00
00

.
.

.
.

.
0.

00
00

D
4

0.
00
00

.
.

.
.

.
0.

00
00

λ
1

D
3

0.
00

00
.

.
.

.
.

0.
00

00

D
4

0.
00

00
.

.
.

.
.

0.
00

00

λ
4

D
3

0.
00

00
.

.
.

.
.

0.
00

00

D
4

0.
00

00
.

.
.

.
.

0.
00

00

λ
1
2

D
3

0.
00

00
.

.
.

.
.

0.
00

00

D
4

0.
00

00
.

.
.

.
.

0.
00

00

δH
D
3

.
.

.
0.

00
00

0.
01

04
0.

85
93

.
D
4

.
.

.
0.

00
00

0.
01

23
0.

89
30

.

δa
D
3

.
0.

00
00

0.
40

78
.

.
.

.
D
4

.
0.

00
00

0.
36

22
.

.
.

.

a C.I.-related objects derive from four types of distribution:
*D1 stands for normal-approximation-based distribution.
*D2 is as D1, but derives from an information matrix expressed in terms of δH and δa.
*D3 stands for bootstrap-based distribution. Associated std. are computed over bootstrap distributions.
*D4 stands for BCa bootstrap-based distribution. Associated std. are deduced by reversing the symmetry-based C.I. formula.
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2.B Models development

This section has a computational scope and shows successively how to compute all the objects
that are involved during the declination of the model from its simplest form into that of a
SARIMA process. Let’s start with the traditional linear model, as presented in eq.(2.23):

y = Xβ + v

Under the assumption of unmodeled correlation structure for v, i.e uncorrelated and homos-
cedastic, its covariance matrix is E[vv

′
] = σ2

vI.

2.B.1 From the linear to the SEM

If one has good reasons to think that the above model should be turned into an autoregressive
process in v, i.e. that one should augment eq.(2.23) into eq.(2.26), one gets the following
system to consider y = Xβ + v

v = G(γ)v + u

which leads to

y = Xβ + G(γ)v + u

= Xβ + G(γ) (y −Xβ) + u

⇔ u = (I−G(γ)) (y −Xβ)

= Γ(γ) (y −Xβ)

⇔ yγ = Xγβ + u

Where the above line is uniquely defined only if Γ(γ) is invertible. If so, and assuming that u

has no explicitly modelled covariance, it follows that that of v now becomes

E[vv
′
] = E[Γ(γ)−1uu

′
Γ(γ)−1′ ]

= σ2
u

(
Γ(γ)

′
Γ(γ)

)−1

= Ωγ

2.B.2 From the SEM to SARIMA

If one then has good reasons to think that the above model should in turn be turned into an
autoregressive process in yγ with a moving average process in u, i.e. that one should augment
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eq.(2.26) into eq.(2.28), the system to consider isyγ = Q(ρ)yγ + Xγβ + u

u = L(λ)r + r

which leads to

yγ = Q(ρ)yγ + Xγβ + L(λ)r + r

⇔ yγ,ρ = Xγβ + Λ(λ)r

If the above equality is uniquely defined, it follows that

r = Λ(λ)−1 (yγ,ρ −Xγβ
)

⇔ yγ,ρ,λ = Xγ,ρβ + r

If one assumes that r has been totally filtered, i.e. E[rr
′
] = σ2

rI, it follows that the covariance
matrices respectively of u and v are

E[uu
′
] = E[

(
Q(ρ)yγ + Λ(λ)r

) (
Q(ρ)yγ + Λ(λ)r

)′
]

= Qcov[yγ ,yγ ]Q
′
+ 2QE[yγr

′
]Λ
′
+ σ2

rΛΛ
′

= Ωγ,ρ,λ

E[vv
′
] = Γ−1Ωγ,ρ,λΓ

−1′
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Chapters 1 and 2 have presented a methodological proposal that, obviously, cannot take
all economic phenomena into account. An important number of functional links are impli-
citly assumed at the initialization stage of the model and then projected constant over the
prospective horizon, e.g. agents’ perceptions and behaviors, CBDs’ position, transport energy
source – fossil fuels –, dynamics of investment such as those in public transit infrastructure
and equipment. Thus, the methodological challenge is that the functional links retained by
the model allow for a sufficiently effective representation of reality to support policy reasoning.
What follows must therefore be regarded as a prototype example of the types of exercise that
can be carried out when using GEMSE.

3.1 Agglomerations and the economy: the baseline case

In this section we describe the aggregate trends and urban trajectories that occur in the baseline
scenario, defined as the continuation of the current economic status in absence of specific urban
policy. These baseline trends then serve as a referential from which all deviations due to policy
implementation are isolated by difference.1 We identify the likely determinants of the differ-
ences exhibited by these deviations between the USA and France. Any temporal trajectory
presented in this section is (dynamically) viewable online for the USA and France by select-
ing in the field called Scenarios.2 Moreover, note that in what follows, USA’s
(France’s) trends and maps are always displayed on figures left (right) dials .3

For each country, we are interested in how urban areas (whose specificities are captured in
the model) react to an identical shock. We thus made the methodological choice of assuming
identical exogenous macroeconomic evolutions: (i) the baseline trends feature a doubling of
each nation’s GDP over the prospective horizon, in parallel with a regular but moderate in-
crease of both labor productivity and capital investment, which are sufficiently high to jointly
ensure a steady increase of economic activity; (ii) each nation’s labor market state unemploy-
ment rates that have been maintained constant since their level in 2015; (iii) the unitary fuel
liter consumption per kilometer from vehicles has a consensual low negative slope over the
period, from 7 liters per 100 kilometers in 2008 to 4.5 in 2050 and; (iv) following Waisman and
Grazi (2013), the domestic price per liter of fuel in the two countries states a positive variation
over the prospective horizon [Figure 3.1],4 whose rather moderate increases are permitted by
an average annual energy efficiency gain of 1.1%, over the first half of the century.

GEMSE provides urbanization trends that are consistent with the evolutions of the aggrega-
1This is equivalent to totally differentiate GEMSE with respect to urban policies.
2Respectively available at http://gemse.alwaysdata.net/usa/ and France http://gemse.alwaysdata.

net/france/.
3See Section 1.C’s tables that make the concordance between the variables of the model and their online

names.
4Admittedly, making the hypothesis of an identical evolution of the price of fuel for the two countries

constitutes a lack of realism on the historical and predictive levels. E.g. USA’s energy prices and growth have
already been, and will continue to be, changed by the increasing exploitation of shale gas.
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Figure 3.1: US ($) and French (e) domestic prices per liter of fuel

tes that are described above. The first determinants of the spatial distribution of these trends
are the levels of amenity, described as the utility derived from simply living in agglomeration j,
the u0

js. Recall that those are calibrated [see Subsection 2.2.2’s eq.(2.14)] so as to yield welfare

µ stands for the sample average.
σ stands for the sample standard deviation.
cv stands for the coefficient of variation. It is computed as σ/µ.

Figure 3.2: Levels of amenity in American and French areas

differentials that lead to growths of areas’ population that fit that that are observed before the
first year of the prospective horizon [see eq.2.14], i.e. each area’s population growth between
t = −1 and t = 0. The levels of amenity that are obtained are shown in Figure 3.2, respectively
for the USA and France.

These levels of amenity are the first signals of attractiveness for population, which are then
tempered by considerations related to urban cost, home market and employment.5 The latter
two considerations – home market and employment – are at the interface of migration de-
cisions of populations and firms, each driven by their location-specific attractiveness index [see
from eq.(1.80) to eq.(1.82)]. Figures 3.3 and 3.4 report the evolution of some of these indexes

5The home market is defined from local firms’ standpoint. For firms, a market is qualified as the "home"
one if most of its products are consumed therein, which consequently allow them to minimize transportation
costs. Note that the so-called home market effect is a direct consequence of modeling firms that produce goods
subject to shipment costs under increasing returns to scale (Krugman, 1980).
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expressed in terms of ranks,6 respectively for population and firms. These two parallel mecha-

Figure 3.3: Population attractiveness ranks of each nation largest urban space, the top three
and rural

nisms of migration jointly determine the spatial distribution of: (i) workers, firms and incomes
across urban areas and; (ii) the dynamics of elements that are constitutive of urban costs – as
captured by temporal changes on average agglomeration density, housing rents, mobility habits
and transport costs.

Figure 3.4: Firms attractiveness ranks of each nation largest urban space and the top three

Degree of centralization of economic activity

Let’s first figure out how the concentration of economic activity behaves over the horizon
in each country. A first approach to do so is by focusing on the trajectories of the urban shares
of each nation’s largest urban space that are related to some sensitive economic indicators.

6Note that only some areas’ evolution (of the variable under consideration) are reported here for the sake of
clarity. Indeed, the illustration of the USA’s 22 (France’s 12) curves in a single chart would complicate legibility.
Note that these charts are available online and that area’s trends can be removed dynamically by clicking on
their name.
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NewYork’s and Paris’s urban shares of workers and of firms are shown in Table 3.1. It appears
that for both population and firms, NewYork and Paris do not exhibit the same temporal
profiles of attractiveness. Even if both possess capital and labor/consumer stocks permitting

Table 3.1: Shares in each nation largest urban space (%)

economies of scale, the strength of their respective attractiveness if far more inert in France
than in the USA. This more inert geography of production in France than in the USA suggests
a less severe competition among France’s urban centers than among USA’s. Recalling that
(spillover-adjusted) unitary labor requirements (ULR), lj/nηj [see eq.(1.1)], are ceteris paribus
reduced in larger markets –,

µ stands for the sample average.
σ stands for the sample standard deviation.
cv stands for the coefficient of variation. It is computed as σ/µ.

Figure 3.5: ULR dividers in the USA and France

Figure 3.5 shows this competition intensity (in terms of knowledge spillover), via all areas
effective ULR dividers, the nηj s. As stated by each nation’s related coefficient of variation, cv,
the nηj s are clearly much closer to each other in the USA than in France, where Paris’s is far
ahead of that of other urban areas.7

Maintaining the same display order of ranking as that of Figure 3.5, Figure 3.6 shows the
relative evolution of each (urban) area’s ULR over the prospective horizon. It confirms the
indisputable Paris-centralized geography of production in France on the one hand and the
(NewYork-) decentralization process that takes place in the USA on the other hand. Indeed, in
addition to benefiting from the highest external economies of scale over the entire prospective
horizon, Paris also experiences the greatest growth in those, which enforces its indisputable

7We recall that in rural area, this divider is implicitly set to 1.
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µ stands for the sample average.
σ stands for the sample standard deviation.
cv stands for the coefficient of variation. It is computed as σ/µ.

Figure 3.6: Variation in ULR dividers in the USA and France (%)

central position within the French production system. In the background, the dynamism of
urban areas such as Rennes, Nantes, Bordeaux and Toulouse influences the relocation of the
gravity center of the production-geography toward the west-southwest of France at the expense
of Lyon, Marseille and Lille. In the USA, NewYork’s dynamism is only ranked 11th from this
"variation" standpoint, notably surrendering to Sunbelt’s urban areas such as SanFrancisco,
SanJose, Houston and Dallas.

In our framework, comparing the ULR dividers actually boils down to studying the spatial
concentration of firms. A common indicator to deal with this sort of consideration is the

Over urban areas, HHIn

Figure 3.7: Firms-number related HHI of the USA and France

Herfindahl-Hirschmann index (HHI), which describes the degree of concentration (of anything)
between k > 1 entities and lies in the interval [1/k, 1].8 Figure 3.7 shows this indicator with
the spatial distribution of firms in the USA and France. In the case of USA – where 1/k =

1/22 ≈ 0.045 –, the indicator starts from a fairly dispersed geography of firms, barely increases
8In the case of k > 1 entities, an HHI equal to 1/k stands for the most even possible distribution between

the k entities, while an HHI equal to 1 stands for a distribution in which one entity concentrates everything.
Note that as put forward by Bosker et al. (2007), "using other more sophisticated measures [of concentration]
does not change our results qualitatively".
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and finally perceptibly operates an inflection before the end of the prospective horizon. In the
case of France – where 1/k = 1/12 ≈ 0.083 –, the indicator starts from an already high level of
concentration and follows a positive and quasi-constant slope until the end of the simulation.

We can conclude differently regarding USA’s and France’s spatial distribution of firms: the
former is on the verge of (re-) spreading across the country while the latter is gaining momentum
around Paris. This explains Table 3.1’s urban shares in active firms of NewYork and Paris that
respectively decrease and increase over the prospective horizon.

Degree of concentration of population

In Figure 3.8, we are however shown that the USA and France are at similar stages relatively
to the dynamic of dispersion of their respective population, i.e. of their respective labor force
supply. The upper dial of this figure deals with an HHI related to the concentration of their
populations over all areas, HHIP , while the lower dial shows the same indicator computed over
urban areas only, HHIPj=1,...,N . When interpreting HHIP and HHIPj=1,...,N together, it appears
that each country’s "rural" share of population restarts to grow around the period 2025-2030.
Put differently, USA’s and France’s geography of people localizations is reconcentrating over
the long term in small urban agglomerations after a long and historical phase of depopulation.
We insist on the fact that this inversion over the long term needs not be strictly interpreted as
a result of migration patterns from urban to "rural" areas, but rather from larger to smaller
urban agglomerations, projected to become attractive.

This decrease in the attractiveness of some of the largest urban areas is one of the con-
sequences of the secular general urban in-migration. To understand the logic behind people’s
dynamic of migration, let’s first consider what drives them: the levels of attractiveness of areas
[see eq.(1.82)]. Remember that this variable summarizes in real terms both the people’s level
of (indirect) utility and their job opportunities [see eq.(1.50)].9 Figure 3.9 shows all areas’
levels of welfare as well as the national attractiveness threshold – i.e. the population-weighted
average over areas, W t – above (or below) which an area sees its in-migration be positive (or
negative). As it reads in Figure 3.9, USA’s and France’s largest urban area, i.e. NewYork
and Paris, are differently positioned relatively to their national attractiveness-threshold. Be-
low this attractiveness-threshold, both NewYork and Paris experience out-migration, which
explains their negative trend reported in Table 3.1’s urban shares of labor force. However,
Paris’s out-migration is moderate since the urban area remains at a very short distance from
the threshold, which in turn does not help to reduce urban costs. On the contrary, NewYork
is distant from the threshold, which exerts a downward pressure on urban costs.

Figure 3.10 shows the variations of these urban costs over the prospective horizon. Fostered
9In this micro-based context, the term real refers to using inverse levels of utility as deflation factors, i.e.

as exact price index. For example of uses, see e.g. Eaton and Kortum (2002, p.1749), Cavailhès et al. (2007,
p.388), Murata and Thisse (2005, p.141) or simply eq.(1.99) that would be the price index in an economy with
only one (heterogeneous) good.
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Over all areas, HHIP

Over urban areas, HHIPj=1,...,N

Figure 3.8: Population related HHI of the USA and France

Figure 3.9: Welfares in the USA and France

by the volatile yet strongly increasing price profile of fuel [see Figure 3.1], potential augmenta-
tions of densities that mechanically follow in-migrations are tempered by the preexisting urban
costs as well as their sensibility. This is confirmed when considering Figures 3.10 and 3.11
together, in which the relation between urban costs and densities is more or less strictly pro-
portional, depending on agglomerations’ empirical characteristics, i.e. their transport network-
structure and infrastructure capacity to dilute congestion (and housing pressure) over modes
and space.

The consequences of these changes in the labor market conditions are not neutral for employ-
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µ stands for the sample average.
σ stands for the sample standard deviation.
cv stands for the coefficient of variation. It is computed as σ/µ.

Figure 3.10: Variation in average urban costs in the USA and France (%)

µ stands for the sample average.
σ stands for the sample standard deviation.

Figure 3.11: Variation in densities in the USA and France (%)

ment rates and wages.10 As shown in Figure 3.12, those metropolitan areas share a downward

Figure 3.12: Employment rates of each nation largest urban space and rural

10We recall that each area’s labor force supply and labor force demand [see eq.(1.48) and eq.(1.49)] jointly
formalize a local labor market whose equilibrium is reached via wages [eq.(1.12) and eq.(1.36)].
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trend of their employment rate over the short term, before a reversal occurs over the long term
when inflows of population from small towns end, which inverts labor market frictions with
net job creation. Thus, GEMSE predicts that big urban centers are likely to experience an
increase of their employment rate around the year 2030 on the sole basis of a dynamic change
in population migrations.

The necessary consideration of the urban scale

The interactions of the consequences of population and firms migrations progressively reveal
new geographies of attractiveness [see Figure 3.3] and competitiveness [see Figure 3.4]. The
magnitude of these consequences depends on the parallel adjustment of the utilization rate of
transport infrastructures to changing local demographic conditions. Put differently, a rising fuel
cost and agglomerations in-migrations do not necessarily lead to higher urban costs, depending
on the capacity of urban areas’ transport infrastructures to dilute congestion over modes and
space.

If one compares the fuel price evolution [see Figure 3.1] over the prospective horizon with
that of each country’s average (over modes and workers) transport budget, shown in Figure
3.13, it is clear that spatial reorganization of economic activity can absorb nearly any fuel price
shock. In the USA, where – as explained previously – the geographies (of population and firms)
are far less locked than in France, it is even more acute. The answer to why there is such a
great difference between the USA’s and France’s profile is tackled in subsection 3.1.2.

Figure 3.13: Average transport budget in the USA and France

The obtention of the profiles shown in Figure 3.13 necessarily relies on some urban areas
being sufficiently equipped in terms of transport infrastructures. These well-equipped urban
areas could become the corner stones of national strategies to absorb (on average) fuel price
shocks. Examples of such urban areas are Houston and Toulouse, where the capacity and
connectivity (to the CBD) of public transport in a given settlement pro-environmentally drives
the modal share of cars [Figure 3.14], transport costs [Figure 3.15] and density [Figure 3.16].
It is worth mentioning that, relatively to other urban areas, these pro-environmental changes
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do not affect that much their internal dynamic since they monopolize the first attractiveness
[Figure 3.3] and competitiveness [Figure 3.4] ranks.

In a policy-relevant perspective, it is interesting to quantify how likely a given urban area

Figure 3.14: Modal share of car of each nation largest urban space and first ranked

Figure 3.15: Transport budgets of each nation largest urban space and first ranked

Figure 3.16: Density of each nation largest urban space and first ranked (hab/km²)
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is to conduce to cost-minimizing and pro-environmental behaviors, given the specificities of its
spatial structure and transport infrastructure.

3.1.1 Transport cost resilience to rising fuel price

In this subsection, we probabilize how transport-costs minimization behaviors occur in each
urban area in presence of an increase in fuel price. For each urban area, the sample needed to
conduct the probabilization is built from local places.

Remember the definition of the average transport cost of a representative worker living
in place i of agglomeration j, P a

j,i [see eq.(1.26)] and of its determinants: (i) the equilibrium
modal share of cars, α∗j,i [see eq.(1.62)], (ii) the equilibrium number of workers who take public
transport, LPT∗j,i [see eq.(1.61)]; (iii) the equilibrium utility level, u∗j [see eq.(1.60)] and; (iv) the
numbers of workers who take the car in the overall agglomeration j, Λ∗j [see eq.(1.58)]. More
formally, the question posed in this subsection is

∀{j, i} ∈ J1;NK× J1;NjK, how likely is P a∗
j,i ∣∣∣P a,PV

α∗j,i

= P a∗
j,i ∣∣∣P a,PV

(
1 + ∆Pa,PV

)
αj,i + dα∗j,i

? (3.1)

where ∆Pa,PV stands for a (scenarized) relative variation in the cost of fuel. Note that ∆Pa,PV 6=
0 stands for the (relative) shock in fuel price. dα∗j,i is the differential in the modal share of
cars and represents the resilience of the transport costs against the rise in fuel cost in place i
of agglomeration j.

Note that addressing eq.(3.1) is not possible without simplifying some urban-scale elements
of representation in GEMSE. Indeed, answering to the problem stated in eq.(3.1) has no interest
if the dα∗j,is that are obtained are not those of a urban area in equilibrium, i.e. if the dα∗j,is
that are obtained are transitory. But it is very unlikely that an urban equilibrium – among
those in the set of all urban equilibria – is concomitant with a situation in which all places
would have operated a modal shift that promotes the resilience of transport costs. However,
this concomitance is possible if the numerical exercise outlined by eq.(3.1) is conducted for one
place at a time. The necessary simplifications are presented in Box 3.

Box 3. When shocking only one place at a time, modal shifts that occur locally (are
likely to) change the overall congestion state of the urban road network. This would
necessarily lead other road-connected places to be moved from their urban equilibrium
state, in turn making transitory the state of the shocked place. One must thus find the
ante-dα∗j,i geography of congestion that, once dα∗j,i is effective, both neutralizes locally the
rise in fuel cost and balances – via network effects [see eq.(1.52)] – the whole urban area.

The second element of representation that is simplified is related to the circular de-
pendence that articulates the triptych {transport, housing, utility level of equalization}
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[see Subsection 1.1.4] and that ultimately leads to the equalization of all utility levels,
characteristic of an urban area at equilibrium. To break this circularity, we chose to sim-
plify the behavior of housing developers – open to discussion, e.g. the determinants of
housing rents and the expectations of developers on future rents –, temporarily assumed
to be different so as to facilitate the present numerical exercise.

Identification of the ante-dα∗j,i geography of mobility

One wants place i’s (transport-cost-immunizing) variation in the number of cars, ∆Λ∗
j,i ,

to return accessibility levels in other places identical to what they are with no i-increase in
fuel cost. This implies adjusting other places’ number of cars so that ∆Λ∗

j,i puts the network
in an identical congestion state between the shocked and the non-shocked situations, at
least with regard to all places but i. The excess of cars on the road network – recalling
that these excesses are negative –, dVj, of which this adjustment is a function, is

dVj = Πj(ej,idΛ∗j,i)

where ej,i is a Nj × 1 vector whose elements all equal 0 except the ith one that is equal
to 1. dΛ∗j,i = ∆Λ∗

j,iΛj,i is the (scalar) differential in the number of cars in place i.
With −i standing for the index of the component that is removed from the vector in
question, define dΛj,−i, a (Nj − 1) × 1 vector whose components compensate for the
variation in the number of cars that occurs in place i in order to keep the same state
of congestion between the shocked post-dα∗j,i situation, and the non-shocked situation.
dΛj,−i is computed as follows

dΛj,−i = (Πj,−i−i)
−1 dVj,−i

where (Πj,−i−i)
−1 allocates/transforms over all places but i, the flow-differentials, dVj,−i,

into stock-differentials, dΛj,−i.
Finally, a geography of accessibility is ceteris paribus dα∗j,i-immunized if the number of
cars in all places but i at equilibrium, Λ̂j,−i, is such that

Λ̂j,−i = Λj,−i − dΛj,−i

The version of Λ̂j,−i over all places, say, Λ∗j , is simply formed over Λ̂j,−i with Λj,i + dΛ∗j,i
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inserted as ith element. It follows that Λ∗j has the following intrinsic property∥∥∥∥∥∥
(

Πj

(
Λ∗j

∣∣∣∣
dΛ∗j,i=0

−Λ∗j

∣∣∣∣
dΛ∗j,i∈R

))
−i

∥∥∥∥∥∥ = 0

Put differently,

Πj,̂ı.

(
Λ∗j

∣∣∣∣
dΛ∗j,i=0

−Λ∗j

∣∣∣∣
dΛ∗j,i∈R

)= 0 if ı̂ 6= i

6= 0 otherwise (if ı̂ = i)

where Πj,̂ı. stands for the ı̂th row of matrix Πj. It follows that the vector of PV-speeds
in all places but i, vPVj,−i, is dα∗j,i-immunized, and so is the utility that derives from it.

Simplification on the housing side

The flow of cars that were coming from place i have been taken off the road and then
disseminated over the whole urban area to maintain the network in an identical state of
congestion. This means that, admittedly, the urban equilibrium is henceforth undermined
in all other (network-connected) places, but in an epsilonic range the higher the number
of places. It is thus assumed – as outlined previously – that housing markets equilibria
adapt to ensure the constancy of the utility level of equalization, u∗j [eq.(1.60)], at its
ante-shocked value. This both concludes the presentation of the analytic framework and
initiates the presentation of the numerical evidences.

Probabilizing eq.(3.1)’s event for ∆Pa,PV = 0.1

In what follows, we present the results that are obtained in 2030 when studying eq.(3.1)
for ∆Pa,PV = 0.1, i.e. for a 10% increase in fuel cost. The results consist of urban areas’
distributions of the dα∗j,i. Note that all urban areas’ distributions were computed and are
available online for the USA and France.11 Normal12 (probability and cumulative) density
functions have been fitted to provide readers with the possibility to model these distributions
in independent numerical exercises.

Figure 3.17 shows these distributions for NewYork, Houston, Paris and Toulouse. In the
upper and lower dials of these figures, we show, respectively, the probability and cumulative

11The two files are in rar format, available at https://gemse.alwaysdata.net/static/gemse/USA/US_
MShifts_dist.rar and https://gemse.alwaysdata.net/static/gemse/FRANCE/FR_MShifts_dist.rar.

12Which should not be the case in view of the (not reported) p-values of each fit to the test of Shapiro-
Wilk – whose null hypothesis is the normality of the tested distribution –, never greater than 1e−10. A more
appropriate approach would be to provide the best fits by testing a range of distributions, selecting the one
associated to the highest p-value (to the most powerful test), and this over samples that may have been cut
beforehand if they significantly have multiple modes.
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a Pr(Ø) is the probability that a worker has no alternative but car.
b Pr(0) is the probability that a worker already takes public transport and is thus not subject to the 10% increase in fuel cost.
c f (x) stands for the PDF fitted from the (population weighted) distribution of the dα∗j,is.
d Φ(z(x)) stands for the complementary error function integrated between its argument, z, and ∞.
e F(x) stands for the CDF fitted from the (population weighted) distribution of the dα∗j,is. Note that when z(x) < 0, F(x) and z(x) actually turn

into 1− F(x) and |z(x)| respectively.

Figure 3.17: Distribution of ∆Pa,PV -resilient modal shifts in 2030
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histograms of dα∗j,i∀i ∈ J1;NjK.13 Two indicators are of first interest in these charts: Pr(Ø)

and Pr(0), respectively the probability that a worker has no alternative but car-driving and
the probability that a worker is not subject to increases in fuel cost because already using
public transports. In NewYork or in Paris, Pr(Ø) is respectively around 0.3% and 1.9%, which
shows that in these two areas, almost everyone has the possibility to react over the very short
term so as to compensate for an increase in fuel price. Put differently, in those two areas, few
people are captive when faced with an increase in fuel price, which would lead them in the
worst-case scenario to (first intra-area and then possibly inter-area) relocate. At the opposite
end, as attested by the fact that Pr(0) = 0 in these two areas, no one is living in places in
which ∆Pa,PV 6= 0 is of no consequence ceteris paribus. This shows that even if weak, a change
in fuel price actually does have an impact wherever people live within NewYork and Paris,
respectively with a pro-resilient modal shift level – from cars to public transport – of around
5.1% and 3.6% on average. On the contrary, in Houston or Toulouse, Pr(Ø) is large, around
7% and 15% respectively, which suggests that these two areas are very likely to experience
non-negligible changes of their spatial distribution of population when faced with changes in
fuel price. That being explained, note that Houston and Toulouse already have places where
∆Pa,PV 6= 0 has no impact ceteris paribus, with respectively around 1% and 2.6% of people who
are only using public transports.

Remark that in all of the above, means, standard deviations and coefficients of variation
– that are displayed in Figure 3.17 – are all the more questionable as Pr(Ø) is great, since
Pr(Ø) cannot be taken into account in the computation of these moment-statistics. One way
of considering Pr(Ø) in relation to these moment-statistics, is by thinking of it as an indicator
of their reliability, i.e. as 1− Pr(Ø).

Figure 3.18 boxplot-summarizes all the characteristics of these 2030-distributions for the
USA and France. Via this figure, we see that urban areas have unequal (∆Pa,PV -resilient)
reactions to an increase in fuel price, with median levels of effort ranging from low to high
by a factor of almost 1.5 in the USA and of almost 3 in France. We have also shown that
America’s most attractive urban area, Houston – whose rank is stable over the prospective
horizon [see Figure 3.3] –, is also the most capable of costlessly absorbing a 10% positive shock
in fuel price. Implicitly, we have also shown that the level of exposure of some urban areas to
sudden increases in fuel price are likely to have costly consequences on their internal dynamic:
a part of these ∆Pa,PV -resilient modal shifts are hardly achievable, which under non-simplifying
assumptions [see Box 3] would lead to losses of real income, in turn translating into an economic
decline of the home market.

13Note that probabilities have been modified so as to reflect places’ population size. The modification is
equivalent to repeating each occurrence a number of times equal to the local number of individuals.
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Figure 3.18: Boxplots of all urban areas distributions of ∆Pa,PV -resilient modal shifts in the
USA and France in 2030

3.1.2 Transport cost under migratory pressure

Another determinant of unitary transport costs is the pressure of migration on mobility habits.
In GEMSE, this pressure means road congestion, lower PV-speeds, a decrease in the real price
associated to public mobility and by extension a decrease in marginal utility derived from
private vehicle. From a policy-relevant perspective, it is interesting to quantify for a given
urban area how migration of population exerts a downward pressure on unitary transport
costs. The numerical framework developed to address this question is explained in Box 4.

Box 4. Recall the definitions of private vehicle speed, vPVj,i [see eq.(1.20)] and of utility
function of workers declined according to the mode of transport they use, uPVj,i and uPTj,i
[see eq.(1.104) and eq.(1.105)]. Formalizing at urban equilibrium the first principle of
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Wardrop (1952) in its discrete and relative form, i.e. −1 + uPTj,i /u
PV
j,i = 0, yields

−1 +

1 +

(∑Nj
o=1 αj,oLj,oΠj,io

Kj,i

)4
δa (

vPTj,i

v0,PV
j,i

νPVj,i
νPTj,i

)δa

= 0 ∀i ∈ J1;NjK

To study in a simple manner how this transport indifference condition behaves under mi-
gratory pressure for any place i of agglomeration j, one increases one place i’s population
at a time, Lj,i, within a (1 + ∆L) factor for any value of modal share. This is done on
average, studying the condition, say, U(αj,i,∆

L), at and around zero, ∀i ∈ J1;NjK.

U(αj,i,∆
L) = − 1 +

(
vPTj,i

v0,PV
j,i

νPVj,i
νPTj,i

)δa

1

Nj

Nj∑
i=1

1 +

(
αj,iLj,i(1 + ∆L) +

∑
o∈J1;NjK\i αj,oLj,oΠj,io

Kj,i

)4
δa

Migratory pressure is represented by a relative variation, ∆L, itself entailed in U that
is zero-centered relatively. This makes all urban areas indifference curves directly com-
parable thereby representable in a single chart [see Figure 3.19]: all urban areas curves
may be future or past versions of each other, whose only difference is their position on
the one-dimensional space of the population sizes, i.e. Lj,i∀{j, i} ∈ J1;NK×J1;NjK on R≥0.

Quantifying urban areas’ transport mode indifference curves

Figure 3.19 shows for the USA and France,14 all urban areas’ sensitivity of the transport mode
trade-off to migratory pressure. This is done ceteris paribus with 2017- and 2030-running
values, numericizing U over {αj,i,∆L} ∈ [0; 1]× [−.2; .2].

In 2017 and 2030, San Jose and Nice have the most sensitive transport mode trade-off to
migration. Indeed in these two areas, the (∆L 6= 0)-consecutive changes of uPTj,i ∀iJ1;NjK are the
largest of their respective nation. It would thus be good from a pro-environmental standpoint
that these areas are also those whose attractiveness is improved, so as to be pressured by
migration and thus to foster the mutualization of transport GHGs emissions. A contrario,
e.g. NewYork and Grenoble are the urban areas that offer the least interesting opportunities in
terms of pro-environmental modal shifts since a population increase in these two areas generates
the smallest increase in utility derived from the use of public transports. To see to what extent

14Two video files showing the annual evolution of these indifference curves for the USA and France
over their prospective horizon are available respectively at https://gemse.alwaysdata.net/static/gemse/
USA/baseline_Proposition2.mp4 and https://gemse.alwaysdata.net/static/gemse/FRANCE/baseline_
Proposition2.mp4.
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Figure 3.19: Weighted average (over places by population) transport modes indifference levels
in the USA and France

these opportunities are de facto seized by migratory dynamics over the prospective horizon,
Figure 3.20 shows the annualized growths of the number of workers of each nation’s urban
areas.

Considering jointly Figures 3.19 and 3.20, we are henceforth capable of explaining why the
USA’s and France’s average (over modes and workers) transport budget exhibit so different
(temporal) profiles [see Figure 3.13]. In the USA, population mainly migrate to urban areas
where private vehicle’s relative attractiveness is easy to deteriorate, which thus promotes the
use of public transport. In France on the contrary, population migrate from this type of areas,
i.e. Nice, Marseille and Lille.
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µ stands for the sample average.
σ stands for the sample standard deviation.
c−v stands for the coefficient of variation computed over negative values. It is computed as σ−/µ−.
c+v stands for the coefficient of variation computed over non-negative values. It is computed as σ+/µ+.

Figure 3.20: Annualized variations in workers in the USA and France

3.2 Agglomerations and the economy under alternative policy scenarios

In this section, we try and demonstrate how the modeling architecture constructed in this thesis
can deliver relevant insights on the impacts of specific policy measures at the urban scale in
view of achieving sustainability goals for the long-term development of urban and metropolitan
areas. Urban activity occurring in the largest urban agglomerations in the USA and France
is associated with environmental concerns, both at the local and global levels in terms of
(air pollution and) GHG emissions. To shed light on what measures improve the sustainable
nature of urban areas in the long-term, we need to assess the pro-environmental nature of
specific transport policies while considering in parallel their consequences on the organization
of economic activity. These consequences are captured by deviations with respect to baseline
trends and thus consist of differentials and relative variations.

Given the large amount of data (used and) generated by the model, we only analyze the main
findings in the following sections. The entire set of data is available online for each country,
for each scenario, for each variable, for each year, for each urban area as well as for each of
its constitutive place. The goal is to provide readers with the possibility to apprehend and
graphically check the coherence of the mechanisms that archetype the theoretical background
of GEMSE.

Box 5. On GEMSE’s website, all policy-scenario’s names are prefixed by abs or rel. These
two prefixes stand for the type of deviation that is computed from baseline trajectories,
respectively, in terms of absolute differences,

d[value] = valuepolicy − valuebau
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or (discrete) relative

∆[value] = −1 +
valuepolicy

valuebau

In what follows, d[value] is referred to as difference while ∆[value] is referred to as
variation.a

aOn the website, note that relative differences, ∆[value], may return (misleading) empty charts or
zero-trajectories if the corresponding baseline values are 0.

3.2.1 Urban transportation measures

In Box 6 we describe the standards (Std) and taxes (Tx ) measures.15

Box 6. TrStd consists of a one-shot 40% decrease in private vehicle speed limitation
(v0,PV
j,i ) implemented in 2017 in the center of all urban areas.a The 40% decrease approx-

imately means, e.g., at most −16km/h in NewYork and −12km/h in Paris. TrStd-related
trajectories are viewable online for the USA and France via the field called Scenarios by
selecting

TrTx consists of a CO2-price-based tax applied only to private vehicles in 2017 in
the two nations.b The sums received are used to finance an increase in public transport
speeds in places characterized by both the 95% lowest public transport speeds and the
95% highest population. Set to 100$/ton in the USA and to 100e/ton in France, the price
is turned into a distance-based tax by considering the CO2eq content of one kilometer,
subject to technical progress over the prospective horizon. TrTx-related trajectories are
viewable online for the USA and France via the field called Scenarios by selecting

15While the first measure is regulatory, the latter measure is market-based.
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aTrStd’s name on the USA or French companion website is Tr I(-0.4o1y)[ALL]. It reads "−40%
over 1 year in all urban areas".

bTrTx’s name on the USA or French companion website is Tr IV(i100.0s0.0o34y)[ALL]. It reads
"initiated at 100$ or e with a 0-rate of evolution – no slop – over 34 years in all urban areas".

TrStd Decreasing private transport speed

TrStd-like measures has fueled the public policy debate for some years now. The reduction
of traffic speeds is known to have positive consequences at the local scale on traffic congestion,
GHG emissions, health, road safety and noise. However, the global scale impact of such a
measure on the geographical distribution of economic activity is rarely considered. GEMSE
is thus employed here to fill this knowledge gap thanks to its capacity to describe interacting
urban areas and to produce global scale results that are based on spatial dynamics captured
at a high level of granularity.

The reduction of speeds in some urban areas may influence migration flows in such a way
that workers16 would actually "bring their congestion charge with them" when migrating. In
this case, the reduction of speeds may yield a zero-sum gain at the national scale in terms of
congestions and/or of GHG abatements (in the transport sector) since in a decrease in these
terms somewhere can be counterbalanced by an increase of the same magnitude elsewhere.

In economic terms, the consequences on growth and employment are likely to be different
from an urban area to another according to whether people’s and firms’ relocation contradict
each other, e.g. firms leave a area while people enter that area. This would locally change labor
market conditions, wages, income formation and ultimately the home market. Thus, let’s see
what GEMSE returns as results when decreasing private speeds limits in all the CBDs in the
USA and France.

Figure 3.21 illustrates for NewYork and Paris the places that are concerned by the reduc-
tions of speed limitations. When this policy is implemented, it directly triggers congestion in
CBDs with the consequence of inducing changes in mobility habits towards public transports.
Aggregated at the national level, this yields a difference in the modal share of cars of around
−1% for the USA and −5% for France, immediately after the implementation of TrStd and
until the end of the prospective horizon.

For the remaining private vehicle users, TrStd has a positive impact on private speeds in
the whole agglomeration by making traffic flows smoother on their daily trips. However, every-
one’s accessibility is necessarily undermined on average since people are forced in the broad
sense to use slower transport modes. It follows that this undermined accessibility modifies local

16Remember that "workers" – labor demand – and population or people – labor supply – are used inter-
changeably. This is because population means workers within an employment rate factor. In the same manner,
recall that the utility is defined at the level of workers and that of people is equal this utility level within an
employment rate factor [see eq.(1.50)].
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Figure 3.21: Places concerned (yellow) in 2017 by the TrStd 40% decrease in free private
vehicle speeds limitation in NewYork and Paris

transport/housing trade-offs and intra-area location decisions in a way that strongly depends
on housing prices.17 If housing prices are low enough, local trade-offs are stabilized and no
migration occurs. Otherwise, the resilience of the urban system if put to the test: people mi-
grate to peripheral places, which respectively pulls private speeds and housing prices upward
and downward in the places they left. This occurs until both remaining and newly-relocated
people’s housing/transport trade-offs underlie an identical utility-level everywhere in the urban
area, i.e. until the urban area is in equilibrium. Thus, if this process of intra-area relocation
can be perfectly performed in such a homogeneous manner across the urban area, no change in
housing price is perceptible at an aggregated level. If this can only be performed imperfectly,
the resilience of the urban system is exceeded and the equilibrium level of utility decreases until
it is achievable by all places.

A decrease in the local level of utility of workers does not necessarily translate into a loss of
attractiveness (of the urban area) since the former is linked to the latter within an employment
rate. For example, an area with a low workers’ utility-level associated to a high employment
rate can underlie an area’s attractiveness equal to that of another area with a high worker’s
utility level associated to a low employment rate. This is ultimately depending on the spe-
cificities of the labor market under consideration that people migrate subsequently to having
(employment-)probabilized the qualities of life in other areas.

As shown in Figure 3.22, Baltimore and Grenoble are two urban areas that homogeneously
provide their people with the possibility to intra-area relocate, which allows the housing sector

17Recalling that prices and rents-like flows are equal within a discount factor. Thus, dealing with housing
prices or rents is actually strictly equivalent.
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to recover a quantity-level of equilibrium comparable to what it was before the implementation
of TrStd, partially in the case of Grenoble.

Figure 3.22: Consequences of TrStd on housing rents in terms of variations in Baltimore and
Grenoble

Figure 3.23: Consequences of TrStd on housing rents in terms of variations in SanJosé and
Marseille

Not all urban areas are endowed with such a capacity to homogeneously dilute shocks in
transport/housing trade-offs through space. To be capable of doing so, the agglomeration must
possess a public transport infrastructure that allows people to decouple their intra-area choice

141



of relocation from their change in mobility habits. Put differently, if people have to relocate
(from places with no public transport connections to places that are well connected) to be able
to modal-shift and that public transport services are confined to a small number of places, this
results into a too slow (short-term) adaptation of the housing market. This is notably what
happens in Marseille as shown in Figure 3.23’s rigth dial, whose variations in housing rents are
not even starting to recover their ante-TrStd levels before the end of the prospective exercise:
some people have left Marseille, which has subsequently downward-adjusted the housing-market
quantity level of equilibrium. In the USA, the situation just described does not exist since all
the urban areas of the country actually possess a geography of public-transport-availability that
coincides to that of the transport/housing trade-offs that are highly-shocked. In Figure 3.23’s
left dial, we have shown SanJosé, which as Marseille exhibits a temporal profile of variations in
housing rents (with respect to the corresponding baseline trend) that does not reabsorb, but
for a different reason from that invoked for Marseille. In SanJosé (and Washington) housing
rents are the highest in the country and, while people do not particularly leave the area, they
tend to relocate less close to the center where rents are lower. These relocations reweight
SanJosé’s average housing rent downward. Different for the USA and France, the dynamics of
inter-areas people’s relocation that are shown in Figure 3.24 over Baltimore, SanJosé, Marseille
and Grenoble, are thus explained.

Figure 3.24: Consequences of TrStd on population shares in terms of variations in the USA
and France

When people – the labor supply – leave a given region, this increases the local employment
rate, increases wages and decreases the profitability of local economic activity. By the same
token, the reduction in local returns on equity (ROE) pushes some firms – the labor demand –
to inter-areas relocate,18 which in turn decreases wages and makes it possible for the ROEs of
the remaining firms to recover a level that cancels the opportunity cost of not relocating. Put
differently, immediately after TrStd is implemented, the long term equilibrium of the nation’s

18We recall that firms cannot relocate within a urban area [see subsection 1.1.1]. Only people can both
relocate between areas and within a given area.
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economy is moved away from its baseline position. The dynamic as well as the spatial distribu-
tion of economic activity, previously at a cruising speed, must reorient themselves, which takes
time. TrStd is thus a mini-crisis that, however, offers a higher potential in terms of future
reachable level of GDP. The major dynamic at play here is that changes in mobility habits
of people, releases income, leads people to relocate, changes the geography of production and
improves external economies of scale. This is what we are shown in Figure 3.25, in which the
USA’s and France’s GDP recover their pre-TrStd level respectively after 9 and 7 years. Note
that it takes more time in the USA than in France because of the degree of competition superior
in the USA than what it is in France, where Paris’s little "black hole" increases the average
speed-resilience of France’s urban system [see Figure 3.5]. Figure 3.26 reports each country’s
dynamics that are related to GHG emissions and GDP’s CO2eq intensity over the prospective
horizon under TrStd. It shows that TrStd stimulates economic activity in a pro-environmental
fashion by first, admittedly, contracting the American and French GDP, but by then allowing
them to reach higher levels, which translates into a non-zero sum game, and this even before
2050.

Figure 3.25: Consequences of TrStd on GDP in terms of differences in the USA ($) and
France (e)

Figure 3.26: Consequences of TrStd on GHG emissions in terms of differences in the USA and
France (kg/year)
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TrTx Financing public speed upgrades by taxing private vehicles’ CO2eq emissions

TrTx is first designed to internalize at national level a share of the total costs of CO2eq emis-
sions by tying them to their private-vehicle-related sources. Second, like TrStd-like measures,
it aims to shock the modal trade-offs by degrading the advantages provided by cars in terms of
flexibility and speed while trying in parallel to capture car drivers by upgrading public speeds.
This policy also has the indirect objective that dovetails with subsection 3.1.1, namely that of
reducing the exposition of economic activity to unpredictable shocks in fuel price. This way,
the potential future (imported) inflation in fuel price is turned into a monitored and domestic
one that can be invested in public infrastructures. In other words, TrTx hedges the American
and French economy against the uncertainty of future energy prices.

The implementation of this policy implies the modeling of a national price of the speed-
unit. Indeed, this policy aims to improve the quality of public infrastructures. Numerically,
this means adding a certain amount of speed units (km/min) here and there by spending the
(CO2eq tax based) budget envelope, legitimately allocated in space. To put a price on speed
units, we use a well known pricing method in finance, the dividend discount model (DDM). The
approach adopted in this pricing technique amounts to computing net-present-value (NPV) of
speed-units by imputing them the total incomes generated in the transport sector. The de-
scription of the pricing approach is given in Box 7.

Box 7. The idea that is described below is about (i) making the inventory of transport
infrastructure in terms of kilometers, travel times and speeds and (ii) imputing all incomes
that are generated in the transport sector to this infrastructure. Note that when public
transport data such as distances and travel times have been collected [see subsection 2.1.1],
they were no distinctions between e.g. buses, subways, tramways, trains, all sequentially
mixed together depending on the (shortest) route proposed by GoogleMaps . This means
that any urban area’s public transport infrastructure only partially superimposes to its
road network. However, for the sake of implicity, we use road networks as proxy to do the
inventories of areas’ public transport infrastructure.

Recall the way that road-network structures are modeled in each urban area j =

1, ..., N , denoted by Πj [see Section 1.1.1.4’s Figure 1.5]. Define dj, a Nj × 1 vector of
distances between each place i and its j-CBD. The total distance on the road-network,
dj, is

dj = ‖(Π−1
j )

′
dj‖1

where ‖.‖1 is the l1-norm operator. Identically, define tj, a Nj × 1 vector of average (over
modes) travel times between each place i and its j-CBD. The total time it takes to browse
the entire road-network, tj, is

tj = ‖(Π−1
j )

′
tj‖1
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On this basis, it is direct to compute the average transport speed one faces on the national
road-network over all urban areas, such that

v =

∑N
j=1 dj∑N
j=1 tj

=
d

t

Then we assume that all income generated by this infrastructure is equal to the total sum
of transport budget in agglomeration j, as follows

Ỹ a =
N∑
j=1

Ỹ a
j

where Ỹ a
j is the total transport cost of workers living in urban area j [see eq.(1.17)].

For the sake of simplicity, we consider this income flow as being representative of all
future income flows generated by the transport sector, i.e. we consider it as a perpetuity.
Resorting to the DDM, it follows that the nation’s NPV of the transport infrastructure,
NPVa, is

NPVa = Ỹ a

∞∑
t=1

(
ya

1 + ra

)t
= Ỹ a

ya
1 + ra − ya

where ra is the discount rate of public investment projects set to 4%,a and ya is the net
return on equity in the transport sector set to that of the heterogeneous sector. It is
now straightforward to price speed supplied by each country’s transport infrastructure,
ξkm/min, as

ξkm/min =
NPVa

v

Since figuring out how such ξkm/min makes sense is anything but obvious, we also carry
out the account assignment of NPVa over nation’s kilometers of infrastructure, as follows

ξkm =
NPVa

d

which is far more easy than ξkm/min to compare given the numerous references that exist
on this matter.b

aAs it reads regarding the USA and France in Guesnerie et al. (2017, p.7).
bAs it reads in e.g. Cazala et al. (2006, p.6) or Global BRT Data (2017), the kilometer of transport

infrastructure is of the order of a million euro or US dollar.

Figure 3.27 shows what the pricing technique (presented above) returns regarding the NPVs
of one kilometer of road in the USA and France, denoted by ξkm. Figure 3.28 does as well
regarding the NPVs associated to one unit of speed (in km/min) in the USA and France,
denoted by ξkm/min. While the values that are shown for ξkm in the USA and France rather
make sense – around a million euros –, this is at first less likely regarding each country’s ξkm/min.
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Nevertheless, even though it might seem unlikely, it is actually quite telling that increasing the
speed of more than half of the population of each country represents such high values. The
number of workers of a given urban area is actually considered by proportioning ξkm/min such
that the j-unitary-cost of speed becomes Lj∑N

k=1 Lk
ξkm/min.

Figure 3.27: NPV of one kilometer of road, ξkm, in the USA and France

Figure 3.28: NPV of one kilometer per minute, ξkm/min, in the USA and France

Implemented in 2017, the tax-revenues (generated by the CO2-price-based tax applied to
private vehicles) are shown in Figure 3.29 for the USA and France, whose yearly total amount
respectively to around 19 billions dollars and 950 millions euros. However, it is hard to tell in
what ways the tax-related component of TrTx supports the main goal of achieving a change in
mobility habits without getting an idea of the disincentive it represents per user per kilometer.
Figure 3.30 shows that setting a price of 100 per ton of CO2eq, be it in dollars or in euros,
actually represents almost nothing once traduced per commuter-kilometer, not even 2 cents or
centimes. It can thus hardly be argued that TrTx’s tax deter from the use of cars.19

Be that as it may, the investment of these tax-revenues are illustrated in Figure 3.31 over
SanDiego and Marseille – selected for their high response to TrTx –, in which we see the public
speed upgrades that are financed by the revenues of the tax. Given that the eligible amount of

19The two charts are identical since the price that is set in dollars or in euros in the same.
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Figure 3.29: Revenues of the tax in the USA and France

Figure 3.30: Translation of 100 $ or e per ton of CO2eq into its car-kilometer-based
counterpart in the USA ($) and France (e)

speed upgrades to which a place is entitled depends on its (public speed) inferiority-distance
from the 95th percentile of the considered urban area, the maps that are shown in Figure 3.31
are indicative of the heterogeneity of public speeds. Regarding Marseille, the lack of transport
services in the northern and eastern places is striking and TrTx is likely to change the deal
there. In SanDiego, the situation is less clear-cut than in Marseille and (as it reads from deciles)
the dispersion of public speeds is weak admittedly, but is the highest compared to other urban
areas of the country.

One direct consequence of TrTx is to induce changes in mobility habits towards the use of
public transports. This occurs in an order of magnitude that matches what is shown in Figure
3.19, whose curves are moved leftward by TrTx. In urban areas such as Marseille and SanDiego,
shown in Figure 3.32, this means respectively a reduction of the average modal share of cars of
about 20% and 3% at the end of the prospective horizon.

This modal shift is exacerbated in Marseille (and Nice) but actually occurs in every urban
area, be it in France or in the USA. TrTx thus releases an important mass of income at the
national scale, which consequently stimulates demand for other types of goods and services.
In the housing sector, this reorientation of income increases housing rents in a differentiated
manner, which in turn also increases urban costs in a differentiated manner, ultimately changing
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Figure 3.31: TrTx-financed speed upgrades in SanDiego and Marseille in 2018

Figure 3.32: Consequences of TrTx on cars modal shares in terms of differences in SanDiego
and Marseille

the geography of attractiveness. As in the case of TrStd, this have direct consequences on
migrations flows, areas’ labor market, ROEs, spillover effects and at the end, the national
geography of production.

Figure 3.33 shows the consequence on the attractiveness of some urban areas. In the USA,
the urban area that benefits the most from this spatial reorganization is NewYork that, both
thanks to its capital and labor/consumer stocks (permitting economies of scale) and to the
ante-TrTx mobility habits of its inhabitant is not that impacted by the implementation of
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Figure 3.33: Consequences of TrTx in terms of differences on population welfare in the USA
and France

the tax, while seeing its home market benefiting in the same time of the massive increases in
residual – of transport costs – income that take place across the country. In France, the urban
area that benefits the most from TrTx is Marseille, for which the policy has a liberating effect by
decreasing more transport costs than increasing housing rents, stimulating accessibility, wages
and employment rates.

As shown in Figures 3.34 and 3.35, by pro-environmentally changing mobility habits and
reducing urban costs on average, TrTx results in lower emissions and higher GDP in a non
negligible order of magnitude.

Figure 3.34: Consequences of TrTx on GDP in terms of variations in the USA and France
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Figure 3.35: Consequences of TrTx on GHG emissions in terms of differences in the USA and
France (kg/year)

3.3 Main findings

Multiple policy-relevant indicators are presented, such as (i) degrees of competition intensity
between urban areas (expressed in terms of knowledge spillover and) that quantify the mag-
nitude of the centralization of economic activity in the USA and France, (ii) future geographies
of people localizations and their concentration between small and large urban areas, (iii) fitted
distributions of the levels of effort required in each urban area to hedge its home market against
external shocks in fuel price and (iv) capacities of urban areas to favor public transports under
migratory pressure. Such indicators show that GEMSE can be used to help decision-makers to
anticipate the consequences of shocks in fuel price on urban areas’ resilience in view of protect-
ing economic activity that may be strategic at the national scale. These indicators also show
that the model can help to anticipate the consequences of migrations of people on urban areas’
transport sector emissions so as to take measures to incentivize individuals to settle in areas
capable of promoting sustainable mobility habits.

Under alternative policy scenarios, the model was applied to study the consequences of two
transport measures that feed the public policy debate for some years now. The first measure
relates to the decrease in private vehicle speed limitation. We conclude that such a policy
stimulates economic activity in a pro-environmental fashion by first contracting GDP but then
allowing it to reach higher levels resulting in a positive sum game. The second measure relates
to the implementation of a CO2-price-based tax applied to private vehicle whose received sums
are used to finance an increase in public transport speeds in some places. We argue that
setting a price of 100 per tonne of CO2eq, be it in dollars or in euros, represents virtually
nothing once converted per commuter-kilometer. Thus, this policy does not deter from the use
of cars. However, the investment of tax revenues in public transport infrastructure does release
an important mass of income at the national scale, ultimately changing the geography of at-
tractiveness and production. Thus, it is not through the tax itself but through the recycling of
the tax that consumers change their behavior. Globally, this policy is both pro-environmental
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and pro-growth by resulting in lower emissions and higher GDP.
Be it regarding the baseline or policy scenarios, the urban-scale-related results can hardly

be generalized and can only be considered on a case-by-case basis, say, in the light of a spe-
cific question asked by a decision-maker. Indeed, urban areas are strongly identified entities
in numerical terms. They are geographically and historically characterized and possess their
own set of inertia that, yet within a same baseline world, lead them to evolve on very differen-
tiated paths. This is how generalizing, e.g., the consequences on people’s transport budgets
of fuel price increases can easily be shown to be inadequate, not to say utterly wrong, if doing
so over differently public-transport-covered areas, say, Houston versus Pittsburgh in the USA
or Toulouse versus Nice in France.20 Moreover, these paths of evolution are dependent since
co-endogenous. This makes urban areas be highly unlikely to converge toward an equiweighted
situation (in terms of whatever one may consider) even though influenced by a same baseline-set
of strengths.21 It naturally follows that this non-generalizability is transmitted to the global
scale. This is why, e.g. the evolution of centralization of economic activity, yet under the
influence of the same baseline-strengths, cannot be neither generalized nor even schematized in
a similar fashion, without, once again, leading to utterly wrong conclusions.22 This is also why
the consequences of a same measure on different urban areas can often be found contradictory,
yielding a whole range of effects (from strongly positive to strongly negative), be that at the
urban or the global scale.23

20To figure this out you can select the baseline scenario and the variable tr budget js in the field called
NEGs.

21Of course if their evolutions are initiated with empirical conditions and that they are unbalanced at each
recursion.

22To figure this out you can select the baseline scenario and, in the field called MACROs, the variable gup HHI
(which stands for the HHI related to the gross urban product) or, to echo the previous example, the variable
tr budget.

23To figure this out at the global scale you can select the abs Tr I(-0.4o1y)[ALL] scenario and the
variable gup HHI in the field called MACROs. To do so at the local scale you can select the abs Tr
IV(i100.0s0.0o34y)[ALL] scenario and the variable tr budget js in the field called NEGs.
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This thesis was motivated by a diagnosis about the drawbacks – for climate policies delib-
erations – of the non-explicit consideration of the spatial dimension in Integrated Assessment
Models (IAMs).24 It relies on two intuitions. The first is that the core theoretical elements of
the New Economic Geography (NEG) and Urban Economy (UE) can be embedded within a
single modeling tool thanks to the progress in computational capabilities. The second is that
the data-intensive nature of the modeling structures suited to operate this integration poses by
itself a problem of readability, transparency and interpretability of the results.

Most prospective models utilized in the field of energy, environment and economy incorpor-
ate an implicit consideration of space. But, they rely on the use of inter-scale correlations to
describe the influences of the urbanization dynamics on macro trends and/or vice-versa. Even
though these approaches provide quantitative insights about the responsibility of urban areas
in climate change, they do not picture the existence of effects at the local scale that potentially
turn out to generate unexpected interactions with significant consequences at the aggregated
level. Given this diagnosis, we aimed to consider space in an explicit and empirical manner
through the representation of the internal structures and shapes of multiple and interacting
urban areas, all constitutive of a national system. This is why we have created a modeling
tool capable of explicitly considering the geo-economical characteristics of national, regional
and local economies in a unified multi-scale architecture (Allio, 2015; Scott and Storper, 2015;
Thisse, 2010).

Our contribution, although primarily methodological in nature, delivers also some substant-
ive insights on the mechanisms at play that are of interest for public deliberations.

Methodological contributions

We first propose a solution to overcome a difficulty pointed out by Simmonds et al. (2013)
about the causal order in which submodels are chained. While this causal order is very likely
to have non trivial effects on modeling results and can lead to biased information for policy
making processes, most models do not explicit these implications.25 For this reason, we created
a solving process that avoids any kind of "chicken-or-the-egg" issue by running submodels in
parallel until their convergence on the indicators that are computed in each submodel. This
has the obvious drawback of requiring higher amount of computational resources (or time)26

but has the advantage of calculating the transitory equilibrium at each point in time without
pre-judging the sequence of the causal chain behind this equilibrium. Like in comparative

24IAMs only have an implicit consideration of space via the geographical divisions that come from the borders
of countries.

25Examples of models that imply composite-modeling techniques and/or do not discuss the implications of
the module-processing order are TIGRIS XL (Zondag and Jong, 2011, p.57, Fig.1) or MOLE (Tikoudis and
Oueslati, 2017, p.9, Fig.1).

26Indeed, under constant computational resource, the required time to perform a complete run of the model
in the case of serially processed submodels is roughly ten times greater for France and fifty times greater for
the USA.
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static analysis, this keeps the door opened for in depth discussions, outside the model, about
the more realistic sequence.

Second, the calibration of the model led us to take part in the theoretical debate in spatial
econometric about the right choice of the weight matrix, whose elements numerically represent
the strength of interaction at work between pairs of positions, e.g. between pairs of municipalit-
ies. We consequently made proposal through the development of a numerical tool independent
from GEMSE, namely, PyOKNN. The rationale behind this proposal lies in the fact that by
opposition to the time-series case, specifying the lag operator (in space) involves a lot of arbit-
rariness that our proposal minimizes at most since it calls for a binary specification exclusively
implied as primarily observed, i.e. with no modifications nor transformations.

A good signal of the reliability of the so-developed numerical tool lies in the fact that it sig-
nificantly identified some interpretable key elements of Paris’s spatial autocorrelation structure.
These interpretable key elements are then revealed as major structural drivers of the spatial-
dependences of which the agglomeration is the arena. Another good signal of the reliability
of the implemented approach lies in the fact that it yielded parameters’ (bias-corrected and
accelerated bootstrap) intervals that broadly contain point-estimates found in the literature.

The third methodological contribution lies obviously in the architecture of GEMSE itself.
The model, "transplantable" as possible to any preexisting modeling architecture,27 provides
the research community with an operational tool that embodies Thisse (2010)’s recommend-
ation of unifying New Economic Geography (NEG) (Krugman, 1991) and Urban Economics
(UE) (Alonso, 1964; Mills, 1967; Muth, 1969).

Substantive contributions

We tried and demonstrated the applicability of the model to contemporaneous political reflec-
tions about the sustainable planning of urban space. The objective was to provide decision-
makers with indicators that incorporate indigenous specificities of space at multiple scales.

Given the multiple scales at which economic variables were considered when performing
simulations, we have shown that GEMSE can be used to provide decision-makers with spatio-
temporal baseline trajectories at various levels of governance. Even though debatable, those
at least have the merit of submitting quantified objects that can be criticized through the
consideration of their fully-indigenous empirical underliers and the introduction of alternative
conjectures about their evolution.

Moreover most of the objects that are modeled at the local scale can easily be questioned
in light of everyone’s everyday life experience,28 which highlights one of the characteristics of

27Modeling architecture whose zero-level version is a set of arbitrarily forecasted trends to which the model
would be plugged.

28Indeed, through the website, readers can see how GEMSE models multiple comprehensible everyday life
information relative to their home city, e.g. public transport and private speeds, housing rents , density, etc...
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GEMSE, i.e. modeling tangible spaces. We then have shown that grounding simulations on
such a granular description of local and interacting economies allows us to make non-trivial
conclusions that are not readily adducible, not to say not addressable, when inferring from the
top with macroeconomic aggregates.

The results obtained though the simulation exercises illustrate these latter points. In the
baseline scenario, we have characterized the USA and France as systems of interacting areas.
Regarding the future degrees of competition intensity between urban areas,29 we have exhib-
ited different behavioral patterns for the two countries: in the USA, this competition intensity
tends to reduce the weight of NewYork, while in France it gains momentum around Paris.
Despite this difference, the USA and France show a similar dynamic of the distribution of their
respective rural and urban population, which portrays a future in which the secular migratory
tendency in favor of large urban areas fade by 2030 for the benefit of smaller agglomerations.
Typically, this finding is not a forecast. It is a prediction given the set of parameters embarked
by the model and, obviously counter-tendencies might emerge to falsify it. But this reversal
of secular trends appears so systematically in our results that we venture to say that this is a
substantive conclusion that deserves further in depth discussion.

Passing down to the local scale, we have probabilized all urban areas’ capacity to absorb
a fuel price shock of 10% only via modal shift providing readers with fitted probability dis-
tributions that are usable in external exercises.30 We have then quantified the sensitivities of
the attractivenesses of urban areas’ public transport to migratory pressures. This quantifica-
tion reveals interestingly two contrasted behavioral patterns in the USA and France: USA’s
(average) transport budget declines over the long-run while France’s increases. This surprising
nationwide divergence obviously result from empirically calibrated complex interactions within
each country’s set of areas, with a net immigration in some agglomerations and net emigrations
in other. But the main reason of this aggregate difference lies in the relation between migra-
tions, the impact of migrations on mobility choices, the cost of transport that is associated to
a specific mobility choice and, finally, the changes in the weights associated to each type of
mobility when computing transport cost on average (both over modes and over urban areas
when reaching the national scale). Having that in mind, the net migration pattern in France
is such that people mainly migrate to urban areas where their mobility habits have almost no
consequences on the mobility habits of the locals, not incentivized to modal-shift from cars to
public transports, hence to reduction of their transport bill. A contrario, in the USA, the net
migration pattern is such that people mainly migrate from this type of urban area or, equival-
ently, migrate to areas in which their arrival create an incentive for the locals to modal-shift in
favor of public transports, which ultimately decreases transport costs on average over modes.

The results that have been obtained by studying the consequences of (two) transport meas-
29Where the term "competition intensity" refers to the degree of dissimilarity of external economies of scale

enjoyed by firms in each urban area.
30For each urban area, the sample needed to conduct the probabilization is built from its places.
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ures provide also policy relevant information. The first measure – the decrease in private
vehicle speed limitation – stimulates economic activity in a pro-environmental fashion by con-
tracting GDP in a first phase but then allowing it to reach higher levels and resulting in a
positive sum game. The major dynamic at play is that changes in mobility habits increase
the income disposable for buying other goods and services, leads people to relocate, changes
the geography of production and finally improves external economies of scale. This suggest
a mechanism through which regulatory instruments are capable of moving upward nations’
production-possibility frontiers by eliminating costly organizational frictions if they release in-
come that becomes available for other socially more profitable uses. The second measure is the
implementation of a CO2 tax to private vehicle whose collected revenues are used to finance
an increase in public transport speeds in some places. The main policy insight is that setting
a price of 100 per tonne of CO2eq – be it in Dollars or Euros – represents virtually nothing
once converted per commuter-kilometer and deters only marginally the use of cars, whereas the
recycling of the tax in public transport infrastructure induces a low-carbon growth. Indeed,
the implementation of a duly recycled carbon tax releases an important mass of income at
the national scale that can be used to change the geography of attractiveness and stimulate
production. In this case, a carbon tax is less interesting as a ”signal” than as a component of
complex policy designs where recycled revenues help to support policies aiming at redirecting
behavioral evolutions.

This calls for more complex policy designs that internalize all distortive effects, e.g. infra-
structure policy and changes in mobility habits, stimulations and reorientations of demands,
unbalances in labor markets via people’s relocations and firms’ improvements in terms of eco-
nomies of scale. It also calls for the full consideration of local specificities since, both in the
baseline or policy scenarios, results can hardly be generalized. One key question here is ob-
viously related to the geographical distribution of policy impacts with effects ranging from
strongly positive to strongly negative depending on the (set of) analysed urban areas.

Limits and future research

The first and major limit of the current version of GEMSE is a too simple shareholding struc-
ture. It makes impossible to study measures related to, say, fiscal switch-overs, e.g. from labor
taxation to green taxation including land-taxation, and to include capital flows. For instance,
in its current form, the only labor market that is explicit is that involved in the so-called
"Cobb-Douglas" sector. Given that this sector is equitably owned by everyone, any reduction
of the burdens on (local) employment turns into nationwide impacts cascading through the
dividend-channel, which is actually anything but realistic. This means that the next version of
the model must actually work through a representation of the income-formation that is based
on empirical and regionalized social-accounting matrices (SAM) rather than on putative na-
tional income circuits. The direct corollary of this complexification is the explicit consideration
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of social classes, dissimilar in respects other than geographical, as it is in current GEMSE’s
form and of their sources of income (wages, rents, dividends, social security).

Forcefully in coherence with the just-described SAM complexification, a future model de-
velopment is the explicit representation of a capital market. This would allow for making
these markets not only outlined through the attractiveness criterion.31 This would also allow
for studying the consequences of measures on existing (or emerging) industry clusters (Porter,
1990).

A second limit of GEMSE’s current version, is that transport of goods and passengers
between areas is only implicitly represented. Indeed, putting aside the realism of the shape of
each nation’s urban-areas system, moves between areas are represented with no consideration
for the heterogeneity of transport mode in terms of quality and availability, as well as regard-
ing their GHGs emissions. Yet, this may have contradictory results from the economical and
environmental standpoint, either directly via the GHG emissions due to inter-region transport-
ation or indirectly via the changes in GHG emissions due to the impacts on the geography of
economic activity.

At the urban scale, the most salient improvement to be made is probably to introduce poly-
centric urban areas. Such an improvement is needed for multiple reasons. A first one is the
possibility of having a more realistic representation of housing markets, which are empirically
far from always exhibiting prices that monotonously decrease from center to periphery. A
second reason is that this would allow to endogenize the emergence of industry clusters within
a single urban area. A last reason is that modeling polycentric urban areas would pave the
way for going beyond unifying – by progressive numerical convergence – the scales of analysis
specific to NEG- and UE- models as operationalized in GEMSE’s current version. It would
be possible to merge these two scales in a single framework where an entire region, say, a
country, could be represented as a giant conurbation whose tissue-discontinuities would only
be explained with mono-scale determinants. Indeed, in such a formalism, all centers of the
giant conurbation would be treated as belonging to the same space as any other center.

Finally, one notable GEMSE’s limit is its lack of consideration of changes in the type of
motorizations. The consequences of modeling new types of vehicles may be of first importance
for studying the transformation of urban shapes or the dynamic of urban sprawl. In the case of
electric vehicles, the cost of browsing one kilometer may be substantially weaker than that of its
fuel counterpart. Areas’ periphery would densify, simultaneously influencing housing markets
via changes in transport/housing tradeoffs. From the environmental standpoint however, such
a consideration is critical to correctly picture the link between mobility and GHGs emissions
in function of nations’ energy mixes.

31Reminding that the attractiveness criterion is defined to endogenize the migrations of firms that move
towards the agglomeration markets that offer the most attractive rate of return.
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An attempt to overcome the ’blackbox’ syndrome

However, all these attempts to overcome GEMSE’s limits might themselves confront the limit
emerging from the transparency problem posed by such a data-intensive model. Indeed, the
often-mentioned drawback of the research based on such complex models is that it is not pos-
sible to share or browse the results in a user-friendly fashion, say, for interrogative readers
who would like to apprehend the coherence of the mechanisms put at stake. In reaction to
this critic and to increase transparency, we have developed a geowebsite – companion to this
thesis document –, which makes available all data used and generated by GEMSE for each
country considered, each scenario, each variable, each year, each urban area as well as for each
of its constitutive place.32 The website can also be HATEOAS- (Hypermedia As Engine of
Application State) driven,33 where the term HATEOAS simply involves rendering website-like
content (in JavaScript Object Notation) with no superfluous interface since it is addressed to
remote programs.

Moreover, this model has been designed to be adopted by the open-source community. It
has been developed in Python in an object-oriented programming fashion by following the
state-of-the-art practices in terms of maintainability and transmission. This is an attempt to
concentrate the modeling efforts related to space and economics within a unique tool, just as
what the C40 initiative on the political side is. In accordance with this, a revised version of
GEMSE will be available at https://github.com/lfaucheux.

The tool developed to implement the new proposal of spatial lag operator and to conduct
the econometric study presented in Section 2.3, PyOKNN, is already available online. The source-
code and documentation are publicly accessible.34 The package can easily be installed via the
notorious system used to manage software packages written in Python, pip, by opening a ses-
sion in your OS shell prompt and typing pip install pyoknn.

Identically, PyGWP, the tool developed to consider the global warming potential (GWP) of
the GHGs that are considered by GEMSE – CO2, CH4 and N2O – and that implements Levas-
seur et al. (2010)’s dynamic GWPs is available online as well. The sourcecode and example
of usage are publicly accessible.35 As for PyOKNN, the installation of PyGWP simply requires to
open a session in your OS shell prompt and to type pip install pygwp.

We are conscious that these attempts will not suffice in removing doubts about the control
of complex integrated assessment models like those evoked by Pindyck (2013). However, they
hopefully demonstrate why and how part of the progresses in computational power could be

32USA’s urban areas are Atlanta, Baltimore, Boston, Chicago, Dallas, Denver, Detroit, Houston, Losangeles,
Miami, Minneapolis, Newyork, Philadelphia, Phoenix, Pittsburgh, Portland, Sandiego, Sanfrancisco, San-
jose, Seattle, Stlouis and Washington and France’s are Bordeaux, Grenoble, Lille, Lyon, Marseille, Mont-
pellier, Nantes, Nice, Paris, Rennes, Strasbourg and Toulouse. Note that urban areas’ maps are avai-
lable online according to the syntax https://gemse.alwaysdata.net/<nation-name>/<area-name>, e.g.
https://gemse.alwaysdata.net/france/paris.

33See e.g. https://gemse.alwaysdata.net/france/?wSce=baseline.
34Available at https://github.com/lfaucheux/PyOKNN.
35Available at https://github.com/lfaucheux/PyGWP.
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http://gemse.alwaysdata.net/france/bbc6d619-3c20-4359-9a92-46f83eacd7ab
http://gemse.alwaysdata.net/france/a81dd988-7b0c-4c5f-a00a-311e56b22914
http://gemse.alwaysdata.net/france/e99ba82f-cb4a-49ab-b620-1be461107a86
http://gemse.alwaysdata.net/france/73c9ed50-40f0-4faf-883e-96b164ba56f2
http://gemse.alwaysdata.net/france/5d8bec9e-67a9-4b03-aee8-4eab8d1808fd
https://gemse.alwaysdata.net/france/paris
https://gemse.alwaysdata.net/france/?wSce=baseline
https://github.com/lfaucheux/PyOKNN
https://github.com/lfaucheux/PyGWP


devoted to improve the transparency of results, and their control by both modeling experts
and by non specialists, so that they can really be of use in policy debates.
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