S. Mammano, ;. Jones, and . Dye-;-benafan, )) la réalisation d'actionneurs. Bien que les propriétés de ces actionneurs aientétéétudiéesaientété aientétéétudiées au regard d'une utilisation en façade de bâtiment, ils pourraient aussi trouver leur place dans d'autres applications. Tout d'abord, le matériau a ´ eté modélisé en une dimension pour reproduire le comportement d'un fil AMF. Deux modèles thermomécaniques ontétéontété proposés : un modèle monocristallin simplifié, ` a deux variables internes, 2011.

, Il est possible d'enrichir les modèles proposés, par exemple par l'ajout de la R-phase

, Les modèles développés au cours de cette thèse ont ensuité eté implémentés nu

O. Ammar, N. Haddar, and L. Dieng, Experimental investigation of the pseudoelastic behaviour of niti wires under strain-and stress-controlled cyclic tensile loadings, Intermetallics, p.81, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01682621

L. Anand and M. E. Gurtin, Thermal effects in the superelasticity of crystalline shape-memory materials, Journal of Mechanics Physics of Solids, vol.51, pp.1015-1058, 2003.

M. Ashby, Materials Selection in Mechanical Design, 2004.
URL : https://hal.archives-ouvertes.fr/jpa-00251707

F. Auricchio, A. Reali, and U. Stefanelli, A macroscopic 1d model for shape memory alloys including asymmetric behaviors and transformation-dependent elastic properties, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.17, pp.1631-1637, 2009.
DOI : 10.1016/j.cma.2009.01.019

F. Auricchio, R. L. Taylor, and J. Lubliner, Shape-memory alloys : macromodelling and numerical simulations of the superelastic behavior, Computer Methods in Applied Mechanics and Engineering, vol.146, issue.3, pp.281-312, 1997.

S. Barbarino, E. Saavedra, R. Ajaj, I. Dayyani, and M. Friswell, A review on shape memory alloys with applications to morphing aircraft, Smart Materials and Structures, vol.23, p.63001, 2014.

O. Benafan, R. Noebe, S. Padula, D. Brown, S. Vogel et al., Thermomechanical cycling of a niti shape memory alloy-macroscopic response and microstructural evolution, International Journal of Plasticity, vol.56, pp.99-118, 2014.

D. Bernardini and T. Pence, Models for one-variant shape memory materials based on dissipation functions, International Journal of Non-Linear Mechanics, vol.37, issue.8, pp.1299-1317, 2002.

C. Bertagne, T. Cognata, R. B. Sheth, C. E. Dinsmore, and D. Hartl, Testing and analysis of a morphing radiator concept for thermal control of crewed space vehicles, Applied Thermal Engineering, p.124, 2017.

C. L. Bertagne, J. D. Whitcomb, D. J. Hartl, and L. Erickson, Experimental characterization of a composite morphing radiator prototype in a relevant thermal environment, 25th AIAA/AHS Adaptive Structures Conference, p.1877, 2017.

K. Bhattacharya, Microstructure of Martensite : Why it Forms and how it Gives Rise to the Shape-memory Effect, Oxford Series on Materials Modelling. OUP Oxford, 2003.

C. Bil, K. Massey, and E. J. Abdullah, Wing morphing control with shape memory alloy actuators, Journal of Intelligent Material Systems and Structures, vol.24, issue.7, pp.879-898, 2013.
DOI : 10.1177/1045389x12471866

URL : http://psasir.upm.edu.my/id/eprint/28783/1/Wing%20morphing%20control%20with%20shape%20memory%20alloy%20actuators.pdf

J. G. Boyd and D. C. Lagoudas, A thermodynamical constitutive model for shape memory materials. part i. the monolithic shape memory alloy, International Journal of Plasticity, 1996.
DOI : 10.1016/s0749-6419(96)00031-9

U. Brandi, Lighting Design : Principles, Implementation, Case Studies, vol.10, 2006.

L. Brinson, One-dimensional constitutive behavior of shape memory alloys : Thermomechanical derivation with non-constant material functions and redefined martensite internal variable, Journal of Intelligent Material Systems and Structures, vol.4, issue.2, pp.229-242, 1993.

W. J. Buehler, J. V. Gilfrich, and R. C. Wiley, Effect of Low-Temperature Phase Changes on the Mechanical Properties of Alloys near Composition TiNi, Journal of Applied Physics, vol.34, pp.1475-1477, 1963.

B. Carrier, Influence of water on the short-term and long-term mechanical properties of swelling clays : experiments on self-supporting films and molecular simulations, Theses, 2013.
URL : https://hal.archives-ouvertes.fr/pastel-00960833

B. Chang, J. Shaw, and M. Iadicola, Thermodynamics of shape memory alloy wire : Modeling, experiments, and application, Continuum Mechanics and Thermodynamics, vol.18, issue.1-2, pp.83-118, 2006.

V. Charpentier, P. Hannequart, S. Adriaenssens, O. Baverel, E. Viglino et al., Kinematic amplification strategies in plants and engineering, Smart Materials and Structures, vol.26, p.63002, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01618277

Y. Chemisky, A. Duval, E. Patoor, and T. B. Zineb, Constitutive model for shape memory alloys including phase transformation, martensitic reorientation and twins accommodation, Mechanics of Materials, vol.43, issue.7, pp.361-376, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01769302

C. Churchill, J. Shaw, and M. Iadicola, Tips and tricks for characterizing shape memory alloy wire : Part 4 -thermomechanical coupling, Experimental Techniques, vol.34, pp.63-80, 2010.

R. Cottle, J. Pang, and R. Stone, Cahier des prescriptions techniques no. 3677 -conception des stores vénitiens intégrés entre vitrages non scellés, Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, 1992.

T. W. Duerig and K. Bhattacharya, The influence of the r-phase on the superelastic behavior of niti, Shape Memory and Superelasticity, vol.1, issue.2, pp.153-161, 2015.

T. W. Duerig, A. R. Pelton, and K. Bhattacharya, The measurement and interpretation of transformation temperatures in nitinol, Shape Memory and Superelasticity, vol.3, issue.4, pp.485-498, 2017.

M. Eleuteri, L. Lussardi, and U. Stefanelli, Thermal control of the souza-auricchio model for shape memory alloys, Discrete and Continuous Dynamical Systems. Series S, vol.2, 2013.

K. Erleben, Open source project for numerical methods for linear complementarity problems in physics-based animation, 2011.

F. Falk, Model free energy, mechanics, and thermodynamics of shape memory alloys, 1980.

, Acta Metallurgica, vol.28, issue.12, pp.1773-1780

S. Farrar-nagy, R. Anderson, C. E. Hancock, and P. Reeves, Impacts of shading and glazing combinations on residential energy use in a hot dry climate, 2000.

F. Fiorito, M. Sauchelli, D. Arroyo, M. Pesenti, M. Imperadori et al., Shape morphing solar shadings : a review, Renewable and Sustainable Energy Reviews, vol.55, pp.863-884, 2016.

M. Frémond, Non-Smooth Thermomechanics, Physics and astronomy online library, 2001.

M. Frémond, S. Miyazaki, and I. C. , for Mechanical Sciences, Shape memory alloys / M. Fremond, S. Miyazaki, Courses and lectures -International Centre for Mechanical Sciences, 1996.

M. Frost, P. Sedlák, M. Sippola, and P. Sittner, Thermomechanical model for niti shape memory wires, Smart Materials and Structures, vol.19, issue.9, p.94010, 2010.

S. Govindjee and C. Miehe, A multi-variant martensitic phase transformation model : formulation and numerical implementation, Computer Methods in Applied Mechanics and Engineering, vol.191, pp.215-238, 2001.

M. Gurka, Active hybrid structures made of shape memory alloys and fiber-reinforced composites, 2015.

K. Hackl and R. Heinen, A micromechanical model for pretextured polycrystalline shape-memory alloys including elastic anisotropy, Continuum Mechanics and Thermodynamics, vol.19, issue.8, pp.499-510, 2008.

B. Halphen, . Et-son, and Q. Nguyen, Sur les matériaux standard généralisés, Journal de Mécanique, vol.14, pp.39-63, 1975.

P. Hannequart, M. Peigney, J. Caron, O. Baverel, and E. Viglino, The Potential of Shape Memory Alloys in Deployable Systems -A Design and Experimental Approach, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01591902

X. Huang, G. Ackland, and K. Rabe, Crystal structures and shape-memory behaviour of niti, Nature materials, vol.2, pp.307-318, 2003.

N. Jones and D. Dye, Martensite evolution in a niti shape memory alloy when thermal cycling under an applied load, Intermetallics, vol.19, issue.10, pp.1348-1358, 2011.

A. Kelly, A. P. Stebner, and K. Bhattacharya, A micromechanics-inspired constitutive model for shape-memory alloys that accounts for initiation and saturation of phase transformation, Journal of the Mechanics and Physics of Solids, issue.C, p.97, 2016.

K. Kim and S. Daly, Experimental studies of phase transformation in shape memory alloys, Application of Imaging Techniques to Mechanics of Materials and Structures, vol.4, pp.267-269, 2013.

O. Kuksenok, D. Deb, X. Yong, and A. C. Balazs, Designing biomimetic reactive polymer gels, Materials Today, vol.17, issue.10, pp.486-493, 2014.

D. Lagoudas, Shape Memory Alloys : Modeling and Engineering Applications, Springer ebook collection / Chemistry and Materials Science, 2005.

A. Olander, An electrochemical investigation of solid cadmium-gold alloys, Journal of the American Chemical Society, vol.54, issue.10, pp.3819-3833, 1932.

G. Laplanche, T. Birk, S. Schneider, J. Frenzel, and G. Eggeler, Effect of temperature and texture on the reorientation of martensite variants in niti shape memory alloys, Acta Materialia, vol.127, pp.143-152, 2017.

B. Lester, T. Baxevanis, Y. Chemisky, and D. Lagoudas, Review and Perspectives : Shape Memory Alloy Composite Systems. Acta Mechanica, P, p.60, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01199415

C. Liang and C. Rogers, One-dimensional thermomechanical constitutive relations for shape memory materials, Journal of Intelligent Material Systems and Structures, vol.1, issue.2, pp.207-234, 1990.

S. Malagisi, S. Marfia, E. Sacco, and J. Toti, Modeling of smart concrete beams with shape memory alloy actuators, Engineering Structures, vol.75, pp.63-72, 2014.

S. Marfia and R. Rizzoni, One-dimensional constitutive sma model with two martensite variants : Analytical and numerical solutions, European Journal of Mechanics -A/Solids, vol.40, pp.166-185, 2013.

O. Matsumoto, S. Miyazaki, K. Otsuka, and H. Tamura, Crystallography of martensitic transformation in ti-ni single crystals, Acta Metallurgica, vol.35, issue.8, pp.2137-2144, 1987.

S. Miyazaki, My experience with ti-ni-based and ti-based shape memory alloys. Shape Memory and Superelasticity, p.3, 2017.

M. Jani, J. , M. Leary, A. Subic, and M. Gibson, A review of shape memory alloy research, applications and opportunities. Materials and Design, vol.56, pp.1078-1113, 2014.

F. A. Nae, Y. Matsuzaki, and T. Ikeda, Micromechanical modeling of polycrystalline shape-memory alloys including thermo-mechanical coupling, Smart Materials and Structures, vol.12, issue.1, p.6, 2003.

M. Peigney, J. Seguin, and E. Hervé-luanco, Numerical simulation of shape memory alloys structures using interior-point methods, International Journal of Solids and Structures, vol.48, issue.20, pp.2791-2799, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00875256

A. R. Pelton, J. Dicello, and S. Miyazaki, Optimisation of processing and properties of medical grade nitinol wire, Minimally Invasive Therapy & Allied Technologies, vol.9, pp.107-118, 2000.

B. Reedlunn, S. Daly, L. Hector, P. Zavattieri, and J. Shaw, Tips and tricks for characterizing shape memory wire part 5 : Full-field strain measurement by digital image correlation, Experimental Techniques, vol.37, issue.3, pp.62-78, 2013.

S. Reichert, A. Menges, and D. Correa, Meteorosensitive architecture, Comput. Aided Des, vol.60, issue.C, pp.50-69, 2015.

R. T. Rockafellar, Convex analysis. Princeton, pp.433-446, 1970.

H. Rodrigue, W. Wang, B. Bhandari, M. Han, and S. Ahn, Sma-based smart soft composite structure capable of multiple modes of actuation, Composites Part B : Engineering, vol.82, pp.152-158, 2015.

H. Rodrigue, W. Wang, D. Kim, and S. Ahn, Curved shape memory alloy-based soft actuators and application to soft gripper, Composite Structures, p.176, 2017.

A. Sadjadpour and K. Bhattacharya, A micromechanics inspired constitutive model for shape-memory alloys : the one-dimensional case, Smart Materials and Structures, vol.16, issue.1, p.51, 2007.

G. Sagar and E. Stein, Contributions on the theory and computation of mono-and poly-crystalline cyclic martensitic phase transformations, ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, vol.90, issue.9, pp.655-681, 2010.

S. Mammano, G. Et-dragoni, and E. , Functional fatigue of ni-ti shape memory wires under various loading conditions, International Journal of Fatigue, vol.69, pp.71-83, 2014.

S. Mammano, G. Et-dragoni, and E. , Modelling, simulation and characterization of a linear shape memory actuator with compliant bow-like architecture, Journal of Intelligent Material Systems and Structures, vol.26, issue.6, pp.718-729, 2015.

J. Shaw, C. Churchill, and M. Iadicola, Tips and tricks for characterizing shape memory alloy wire : Part 1-differential scanning calorimetry and basic phenomena, Experimental Techniques, vol.32, issue.5, pp.55-62, 2008.

J. Shaw and S. Kyriakides, On the nucleation and propagation of phase transformation fronts in a niti alloy, 1997.

, Acta Materialia, vol.45, issue.2, pp.683-700

J. A. Shaw and S. Kyriakides, Thermomechanical aspects of niti, Journal of the Mechanics and Physics of Solids, vol.43, issue.8, pp.1243-1281, 1995.

P. Sittner, Y. Liu, and V. Novak, On the origin of Lüders-like deformation of NiTi shape memory alloys, Journal of Mechanics Physics of Solids, vol.53, pp.1719-1746, 2005.

Y. Song, X. Chen, V. Dabade, T. Shield, and R. James, Enhanced reversibility and unusual microstructure of a phase-transforming material, Nature, vol.502, issue.7469, pp.85-88, 2013.

A. C. Souza, E. N. Mamiya, and N. Zouain, Three-dimensional model for solids undergoing stress-induced phase transformations, European Journal of Mechanics -A/Solids, vol.17, issue.5, pp.789-806, 1998.

S. Stupkiewicz and H. Petryk, Modelling of laminated microstructures in stress-induced martensitic transformations, Journal of Mechanics Physics of Solids, vol.50, pp.2303-2331, 2002.

D. Sung, Smart geometries for smart materials : Taming thermobimetal to behave, Journal of Architectural Education, vol.70, pp.96-106, 2016.

M. A. Sutton, J. H. Yan, V. Tiwari, H. W. Schreier, and J. Orteu, The effect of out-of-plane motion on 2D and 3D digital image correlation measurements, Optics and Lasers in Engineering, vol.46, issue.10, pp.746-757, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01644893

K. Tanaka, S. Kobayashi, and Y. Sato, Thermomechanics of transformation pseudoelasticity and shape memory effect in alloys, International Journal of Plasticity, vol.2, issue.1, pp.59-72, 1986.

P. Thamburaja and L. Anand, Polycrystalline shape-memory materials : Effect of crystallographic texture, Journal of the Mechanics and Physics of Solids, vol.49, issue.4, pp.709-737, 2001.

G. Ulpiani, M. Benedettelli, C. Di-perna, and B. Naticchia, Overheating phenomena induced by fully-glazed facades : Investigation of a sick building in italy and assessment of the benefits achieved via model predictive control of the ac system, Solar Energy, vol.157, pp.830-852, 2017.

S. Yang and S. Seelecke, Fe analysis of sma-based bio-inspired bone-joint system, Smart Materials and Structures, vol.18, issue.10, p.104020, 2009.