, Bounds for an optimization problem under coupling constraints via decomposition

.. .. , Discussing the impact of the information constraints, vol.119

.. .. Discussion, 178 10.1.2. Stochastic Dual Dynamic Programming and its weaknesses

. .. Linear-bellman-operators,

. Primal and . .. Sddp, 195 10.4.2. A bound on the inner approximation strategy value, p.208

. Carpentier, we have presented the results of a common work with Pierre Carpentier, Jean-Philippe Chancelier and VincentLecì ere, aiming to apply decomposition algorithms on dams-valley problems, This chapter, 2018.

. Lecì-ere, we have inserted the result of another common work -this time with Pierre Carpentier, Jean-Philippe Chancelier, VincentLecì ere and Arnaud Lenoir -which was submitted in, 2018.

, This chapter was a joint work with Maël Forcier

. Ademe, Risque et optimisation pour le management d'´ energies, 2013.

K. J. Arrow and L. Hurwicz, Decentralization and computation in resource allocation, 1958.

L. Bacaud, C. Lemaréchal, A. Renaud, and C. A. Sagastizábal, Bundle methods in stochastic optimal power management: A disaggregated approach using preconditioner, Computational Optimization and Applications, vol.20, issue.3, pp.227-244, 2001.

P. Bacher, H. Madsen, and H. A. Nielsen, Online short-term solar power forecasting, Solar Energy, vol.83, issue.10, pp.1772-1783, 2009.

R. Baetens and D. Saelens, Modelling uncertainty in district energy simulations by stochastic residential occupant behaviour, Journal of Building Performance Simulation, vol.9, issue.4, pp.431-447, 2016.

V. Bally and G. Pages, A quantization algorithm for solving multidimensional discretetime optimal stopping problems, Bernoulli, vol.9, issue.6, pp.1003-1049, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00104798

K. Barty, P. Carpentier, G. Cohen, and P. Girardeau, Price decomposition in large-scale stochastic optimal control, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00545099

K. Barty, P. Carpentier, and P. Girardeau, Decomposition of large-scale stochastic optimal control problems, RAIRO Operations Research, vol.44, issue.3, pp.167-183, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00362135

K. Barty, J. Roy, and C. Strugarek, A stochastic gradient type algorithm for closed-loop problems, Mathematical Programming, Series A, vol.119, issue.1, pp.51-78, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00983337

R. Baucke, A. Downward, and G. Zakeri, A deterministic algorithm for solving multistage stochastic programming problems, 2017.

H. H. Bauschke and P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01517477

N. Beeker, P. Malisani, and N. Petit, Discrete-time optimal control of electric hot water tank, Symposium on Dynamics and Control of Process Systems, including Biosystems (DYCOPS), 2016.
URL : https://hal.archives-ouvertes.fr/hal-01444280

R. Bellman, Dynamic Programming, 1957.

T. Berthou, Development of building models for load curve forecast and design of energy optimization and load shedding strategies, 2013.
URL : https://hal.archives-ouvertes.fr/pastel-00935434

D. P. Bertsekas, Dynamic programming and optimal control, Athena Scientific Belmont, vol.1, 2005.

D. P. Bertsekas, Dynamic programming and suboptimal control: A survey from ADP to MPC, European Journal of Control, vol.11, issue.4-5, pp.310-334, 2005.

D. P. Bertsekas, Extended monotropic programming and duality, Journal of optimization theory and applications, vol.139, issue.2, pp.209-225, 2008.

D. P. Bertsekas, Dynamic Programming and Optimal Control: Approximate Dynamic Programming, Athena Scientific, 2012.

D. P. Bertsekas and S. E. Shreve, Stochastic Optimal Control: The Discrete-Time Case, Athena Scientific, 1996.

D. P. Bertsekas and J. N. Tsitsiklis, Modélisation des solutions de micro-cogénération en vue de leur intégration optimale au sein des bâtiments, Athena Scientific. Bonabe de Rougé, R, 1996.

J. Borwein and A. S. Lewis, Convex analysis and nonlinear optimization: theory and examples, 2010.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Machine Learning, vol.3, pp.1-122, 2011.

P. Carpentier, J. Chancelier, M. De-lara, and T. Rigaut, Time blocks decomposition of multistage stochastic optimization problem, 2018.

P. Carpentier, J. Chancelier, V. Lecì-ere, and F. Pacaud, Stochastic decomposition applied to large-scale hydro valleys management, European Journal of Operational Research, vol.270, issue.3, pp.1086-1098, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01526775

P. Carpentier, C. Cohen, J. Culioli, R. , and A. , Stochastic optimization of unit commitment: a new decomposition framework, IEEE Transactions on Power Systems, vol.11, issue.2, pp.1067-1073, 1996.

P. Carpentier and G. Cohen, Décomposition-coordination en optimisation déterministe et stochastique, vol.81, 2017.

P. Carpentier, G. Cohen, J. Chancelier, D. Lara, and M. , Stochastic Multi-Stage Optimization, vol.75, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01165572

G. Cohen, Optimization by Decomposition and Coordination: A Unified Approach, IEEE Transactions on Automatic Control, vol.23, pp.222-232, 1978.

G. Cohen, Auxiliary Problem Principle and decomposition of optimization problems, Journal of Optimization Theory and Applications, vol.32, issue.3, pp.277-305, 1980.

G. Cohen, Optimisation des Grands Systèmes. Cours du DEA MMME, 2004.

G. Cohen and J. Culioli, Decomposition Coordination Algorithms for Stochastic Optimization, SIAM Journal on Control and Optimization, vol.28, issue.6, pp.1372-1403, 1990.

G. Cohen and B. Miara, Optimization with an auxiliary constraint and decomposition, SIAM Journal on control and optimization, pp.137-157, 1990.

A. Dallagi, Méthodes particulaires en commande optimale stochastique, 2007.

M. De-lara, P. Carpentier, J. Chancelier, and V. Andlecì-ere, Optimization Methods for the Smart Grid, 2014.

V. L. De-matos, A. B. Philpott, and E. C. Finardi, Improving the performance of stochastic dual dynamic programming, Journal of Computational and Applied Mathematics, vol.290, pp.196-208, 2015.

V. L. De-matos, A. B. Philpott, and E. C. Finardi, Improving the performance of stochastic dual dynamic programming, Journal of Computational and Applied Mathematics, vol.290, pp.196-208, 2015.

C. Dellacherie and P. A. Meyer, Probabilités et potentiel. Hermann, 1975.

I. Dunning, J. Huchette, and M. Lubin, JuMP: A modeling language for mathematical optimization, SIAM Review, vol.59, pp.295-320, 2017.

J. Dupa?ová, N. Gröwe-kuska, and W. Römisch, Scenario reduction in stochastic programming, Mathematical programming, vol.95, issue.3, pp.493-511, 2003.

I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Classics in Applied Mathematics. SIAM, vol.28, 1999.
DOI : 10.1137/1.9781611971088

D. Ernst, M. Glavic, F. Capitanescu, and L. Wehenkel, Reinforcement learning versus model predictive control: a comparison on a power system problem, IEEE Transactions on Systems, Man, and Cybernetics, vol.39, issue.2, pp.517-529, 2009.
DOI : 10.1109/tsmcb.2008.2007630

URL : https://orbi.uliege.be/bitstream/2268/13602/1/ernst-SMC.pdf

C. E. Garcia, D. M. Prett, and M. Morari, Model predictive control: theory and practicea survey, Automatica, vol.25, issue.3, pp.335-348, 1989.

J. C. Gilbert and X. Jonsson, LIBOPT -An environment for testing solvers on heterogeneous collections of problems, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00135013

P. Girardeau, Résolution de grandsprobì emes en optimisation stochastique dynamique, 2010.

P. Girardeau, V. Leclere, and A. B. Philpott, On the convergence of decomposition methods for multistage stochastic convex programs, Mathematics of Operations Research, vol.40, issue.1, pp.130-145, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01208295

V. Guigues, Convergence analysis of sampling-based decomposition methods for risk-averse multistage stochastic convex programs, SIAM Journal on Optimization, vol.26, issue.4, pp.2468-2494, 2016.

V. Guigues, Dual dynamic programing with cut selection: Convergence proof and numerical experiments, European Journal of Operational Research, vol.258, issue.1, pp.47-57, 2017.
DOI : 10.1016/j.ejor.2016.10.047

, Gurobi Optimizer Reference Manual, 2014.

P. Haessig, Dimensionnement et gestion d'un stockage d'´ energie pour l'atténuation des incertitudes de productionéolienneproductionéolienne, 2014.

P. Haessig, H. B. Ahmed, and B. Multon, Energy storage control with aging limitation, PowerTech, pp.1-6, 2015.
DOI : 10.1109/ptc.2015.7232683

URL : https://hal.archives-ouvertes.fr/hal-01147369

H. Heitsch and W. Römisch, Scenario reduction algorithms in stochastic programming, Computational optimization and applications, vol.24, issue.2-3, pp.187-206, 2003.

H. Heitsch and W. Römisch, Scenario tree modelling for multistage stochastic programs, Mathematical Programming, vol.118, pp.371-406, 2009.
DOI : 10.1007/s10107-007-0197-2

H. Heitsch, W. Römisch, and C. Strugarek, Stability of multistage stochastic programs, SIAM Journal on Optimization, vol.17, pp.511-525, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00977507

B. Heymann, J. F. Bonnans, P. Martinon, F. J. Silva, F. Lanas et al., Continuous optimal control approaches to microgrid energy management, Energy Systems, pp.1-19, 2015.
DOI : 10.1007/s12667-016-0228-2

URL : https://hal.archives-ouvertes.fr/hal-01129393

B. Heymann, J. F. Bonnans, F. Silva, and G. Jimenez, A stochastic continuous time model for microgrid energy management, European Control Conference (ECC), pp.2084-2089, 2016.
DOI : 10.1109/ecc.2016.7810599

URL : https://hal.archives-ouvertes.fr/hal-01314078

J. Hiriart-urruty and C. Lemaréchal, Fundamentals of convex analysis, 2012.

T. Homem-de-mello, V. L. De-matos, and E. C. Finardi, Sampling strategies and stopping criteria for stochastic dual dynamic programming: a case study in long-term hydrothermal scheduling, Energy Systems, vol.2, issue.1, pp.1-31, 2011.

M. Houwing, R. R. Negenborn, D. Schutter, and B. , Demand response with micro-CHP systems, Proceedings of the IEEE, vol.99, issue.1, pp.200-213, 2011.
DOI : 10.1109/jproc.2010.2053831

URL : https://repository.tudelft.nl/islandora/object/uuid%3Ab627fce8-e481-4893-a38f-a85a8b597810/datastream/OBJ/download

, Arrêté du 28 décembre 2012 relatif aux caractéristiques thermiques et aux exigences de performancé energétique des bâtiments nouveaux, Journal Officiel, 2013.

P. Kall, S. W. Wallace, and P. Kall, Stochastic programming, 1994.

A. Kargarian, J. Mohammadi, J. Guo, S. Chakrabarti, M. Barati et al., Toward distributed/decentralized DC optimal power flow implementation in future electric power systems, IEEE Transactions on Smart Grid, 2016.

F. Kasten and A. T. Young, Revised optical air mass tables and approximation formula, Applied optics, vol.28, issue.22, pp.4735-4738, 1989.

D. Kuhn, W. Wiesemann, and A. Georghiou, Primal and dual linear decision rules in stochastic and robust optimization, Mathematical Programming, vol.130, issue.1, pp.177-209, 2011.

M. Y. Lamoudi, P. Carpentier, J. Chancelier, A. Lenoir, and F. Pacaud, Exact converging bounds for stochastic dual dynamic programming via fenchel duality, 2012.

A. Lenoir and P. Mahey, A survey on operator splitting and decomposition of convex programs, RAIRO Operations Research, vol.51, issue.1, pp.17-41, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01691690

P. Liu, Y. Fu, and A. Kargarian-marvasti, Multi-stage stochastic optimal operation of energy-efficient building with combined heat and power system, Electric Power Components and Systems, vol.42, issue.3-4, pp.327-338, 2014.

S. Lloyd, Least squares quantization in PCM, IEEE transactions on information theory, vol.28, pp.129-137, 1977.

N. Löhndorf and A. Shapiro, Modeling time-dependent randomness in Stochastic Dual Dynamic Programming, 2017.

M. E. Maceira and J. M. Damazio, Use of PAR(p) model in the stochastic dual dynamic programming optimization scheme used used in the operation planning of the Brazilian hydropower system, Probability in the Engineering and Informational Sciences, vol.20, pp.143-156, 2006.

P. Mahey, J. Koko, and A. Lenoir, Decomposition methods for a spatial model for longterm energy pricing problem, Mathematical Methods of Operations Research, vol.85, issue.1, pp.137-153, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01691705

P. Malisani, Pilotage dynamique de l'´ energie du bâtiment par commande optimale sous contraintes utilisant la pénalisation intérieure, 2012.

M. Mataoui, ContributionsàContributionsà la décomposition etàet`età l'agrégation desprobì emes variationnels, 1990.

S. Mohammadi, S. Soleymani, and B. Mozafari, Scenario-based stochastic operation management of microgrid including wind, photovoltaic, micro-turbine, fuel cell and energy storage devices, International Journal of Electrical Power & Energy Systems, vol.54, pp.525-535, 2014.

J. M. Morales, A. J. Conejo, H. Madsen, P. Pinson, and M. Zugno, Integrating renewables in electricity markets: operational problems, vol.205, 2013.

A. M. Noorian, I. Moradi, and G. A. Kamali, Evaluation of 12 models to estimate hourly diffuse irradiation on inclined surfaces, Renewable energy, vol.33, issue.6, pp.1406-1412, 2008.

F. Oldewurtel, Stochastic model predictive control for energy efficient building climate control, 2011.

F. Oldewurtel, A. Parisio, C. N. Jones, D. Gyalistras, M. Gwerder et al., Use of model predictive control and weather forecasts for energy efficient building climate control, Energy and Buildings, vol.45, pp.15-27, 2012.

D. E. Olivares, C. A. Cañizares, and M. Kazerani, A centralized optimal energy management system for microgrids, Power and Energy Society General Meeting, pp.1-6, 2011.

D. E. Olivares, J. D. Lara, C. A. Cañizares, and M. Kazerani, Stochastic-predictive energy management system for isolated microgrids, IEEE Transactions on Smart Grid, vol.6, issue.6, pp.2681-2693, 2015.

D. E. Olivares, A. Mehrizi-sani, A. H. Etemadi, C. Canizares, R. Iravani et al., Trends in microgrid control, IEEE Transactions on Smart Grid, vol.5, issue.4, pp.1905-1919, 2014.

J. Page, D. Robinson, N. Morel, and J. Scartezzini, A generalised stochastic model for the simulation of occupant presence, Energy and buildings, vol.40, issue.2, pp.83-98, 2008.

K. Paridari, A. Parisio, H. Sandberg, and K. H. Johansson, Robust scheduling of smart appliances in active apartments with user behavior uncertainty, IEEE Transactions on Automation Science and Engineering, vol.13, issue.1, pp.247-259, 2016.

A. Parisio, C. Wiezorek, T. Kyntaja, J. Elo, H. et al., An MPC-based energy management system for multiple residential microgrids, IEEE International Conference on Automation Science and Engineering (CASE), 2015.

M. V. Pereira and L. M. Pinto, Multi-stage stochastic optimization applied to energy planning, Mathematical programming, vol.52, issue.1-3, pp.359-375, 1991.

P. Pflaum, M. Alamir, Y. Lamoudi, and M. , Comparison of a primal and a dual decomposition for distributed MPC in smart districts, 5th IEEE International Conference on Smart Grid Communications, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01022355

G. C. Pflug, A. Pichler, A. Philpott, V. De-matos, and E. Finardi, On solving multistage stochastic programs with coherent risk measures, Operations Research, vol.61, issue.4, pp.957-970, 2013.

A. B. Philpott and V. L. De-matos, Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion, European Journal of Operational Research, vol.218, issue.2, pp.470-483, 2012.

A. B. Philpott and Z. Guan, On the convergence of stochastic dual dynamic programming and related methods, Operations Research Letters, vol.36, issue.4, pp.450-455, 2008.

P. Pinson, T. Baroche, F. Moret, T. Sousa, E. Sorin et al., The emergence of consumer-centric electricity markets, 2018.

L. S. Pontryagin, Mathematical theory of optimal processes, 1962.

W. B. Powell, Approximate Dynamic Programming: Solving the curses of dimensionality, vol.703, 2007.

W. B. Powell, Clearing the jungle of stochastic optimization, pp.109-137, 2014.

M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1994.

R. T. Rockafellar, Integrals which are convex functionals, Pacific Journal of Mathematics, vol.24, issue.3, pp.525-539, 1968.

R. T. Rockafellar, Convex analysis, 1970.

R. T. Rockafellar, Integrals which are convex functionals, II. Pacific Journal of Mathematics, vol.39, issue.2, pp.439-469, 1971.

R. T. Rockafellar, Conjugate duality and optimization, vol.16, 1974.

R. T. Rockafellar and R. J. Wets, Stochastic convex programming: relatively complete recourse and induced feasibility, SIAM Journal on Control and Optimization, vol.14, issue.3, pp.574-589, 1976.

R. T. Rockafellar, R. J. Wets, and .. , Scenarios and policy aggregation in optimization under uncertainty. Mathematics of operations research, vol.16, pp.119-147, 1991.

R. T. Rockafellar, R. J. Wets, and .. , Scenarios and policy aggregation in optimization under uncertainty, Math. Oper. Res, vol.16, issue.1, pp.119-147, 1991.

R. T. Rockafellar, R. J. Wets, and .. , Variational Analysis, 1998.

N. Rujeerapaiboon, K. Schindler, D. Kuhn, and W. Wiesemann, Scenario reduction revisited: Fundamental limits and guarantees, 2017.

A. Ruszczy´nskiruszczy´nski, Decomposition methods in stochastic programming. Mathematical programming, vol.79, pp.333-353, 1997.

A. Ruszczy´nskiruszczy´nski and A. Shapiro, Stochastic Programming, volume 10 of Handbooks in Operations Research and Management Science, 2003.

T. Schütz, R. Streblow, and D. Müller, A comparison of thermal energy storage models for building energy system optimization, Energy and Buildings, vol.93, pp.23-31, 2015.

A. Shapiro, On complexity of multistage stochastic programs, Operations Research Letters, vol.34, pp.1-8, 2006.

A. Shapiro, Analysis of Stochastic Dual Dynamic Programming Method, European Journal of Operational Research, vol.209, pp.63-72, 2011.

A. Shapiro, D. Dentcheva, and A. Ruszczy´nskiruszczy´nski, Lectures on stochastic programming: modeling and theory, 2009.

A. Shapiro, W. Tekaya, J. P. Da-costa, and M. P. Soares, Final report for technical cooperation between georgia institute of technology and ons-operador nacional do sistema elétrico, 2012.

C. Strugarek, Approches variationnelles et autres contributions en optimisation stochastique, 2006.
URL : https://hal.archives-ouvertes.fr/pastel-00001848

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction, vol.1, 1998.

S. Takriti, J. R. Birge, and E. Long, A stochastic model for the unit commitment problem, IEEE Transactions on Power Systems, vol.11, issue.3, pp.1497-1508, 1996.

B. Thomas, Benchmark testing of Micro-CHP units, Applied Thermal Engineering, vol.28, issue.16, pp.2049-2054, 2008.

J. N. Tsitsiklis and B. Van-roy, Feature-based methods for large-scale dynamic programming, Machine Learning, vol.22, pp.59-94, 1996.

W. Van-ackooij, W. De-oliveira, and Y. Song, On regularization with normal solutions in decomposition methods for multistage stochastic programming, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02118762

R. M. Van-slyke and R. Wets, L-shaped linear programs with applications to optimal control and stochastic programming, SIAM Journal on Applied Mathematics, vol.17, issue.4, pp.638-663, 1969.

P. Vezolle, S. Vialle, and X. Warin, Large Scale Experiment and Optimization of a Distributed Stochastic Control Algorithm. Application to Energy Management Problems, International Workshop on Large-Scale Parallel Processing, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00390290

S. W. Wallace and S. Fleten, Stochastic programming models in energy, Handbooks in operations research and management science, vol.10, pp.637-677, 2003.

R. J. Wets, Stochastic programming models: wait-and-see versus here-and-now, Decision Making Under Uncertainty, pp.1-15, 2002.

J. Widén and E. Wäckelgård, A high-resolution stochastic model of domestic activity patterns and electricity demand, Applied Energy, vol.87, issue.6, pp.1880-1892, 2010.

M. Wytock, N. Moehle, and S. Boyd, Dynamic energy management with scenario-based robust MPC, American Control Conference (ACC, pp.2042-2047, 2017.

C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization, ACM Transactions on Mathematical Software (TOMS), vol.23, issue.4, pp.550-560, 1997.

J. Zou, S. Ahmed, and X. A. Sun, Stochastic dual dynamic integer programming, Mathematical Programming, pp.1-42, 2017.