, Sur la figure 4.15, on représente une image de peau du dos de la main de LC-OCT servant de référence pour l'analyse en spectroscopie Raman. Sur cet échantillon on acquiert cinq spectres à partir de la surface et successivement espacés de 50 µm en profondeur. Le temps d'acquisition était de 2×30 s dans l'épiderme (pour trois premières acquisitions) et 2×60 s dans le derme (pour les deux dernières acquisitions). Les spectres sont corrigés de l'autofluorescence et normalisés sur la raie ?(CH 2 ) vers 1460 cm ?1 . Selon [112], les spectres Raman de l'épiderme et du derme diffèrent de plusieurs manières au niveau des bandes Amide I, Amide III et de la proline. Premièrement, la pic de la raie Amide I vers 1650 cm ?1 semble se décaler vers des nombres d'onde plus élevés lorsque l'on passe de l'épiderme au derme. Dans notre cas, on trouve un décalage d'environ 6 cm ?1 . Ce pic serait causé dans l'épiderme par la structure en hélice-? de la kératine tandis que le collagène de type I en serait à l'origine dans le derme, nous avons cherché à différencier des échantillons à l'aide de la microscopie Raman en fonction de leurs profondeurs. Pour confirmer le résultat il est nécessaire qu'il soit vérifiable directement avec l'image de LC-OCT. Nous avons choisi de tenter de différencier l'épiderme du derme dans un échantillon de peau in vivo avec la microscopie Raman. Ces deux couches présentent l'avantage d'être aisément discernables en LC-OCT. L'épiderme est concentré en cellules, alors qu'elles sont plus éparses dans le derme, vol.112

C. Dans-le-plan, , p.1215

I. Amide and (. ,

, Amide III, ?(CH 2 )

, 3 ) symétrique 1427 CH 2 scissoring 1453 ?(CH) (protéines, lipides) 1464 ?(CH 2 ) (protéines, lipides), p.1656

, Amide I, ?(C=O)

, Les positions approximatives des points analysés par microscopie Raman sont indiquées par les points blancs et les lignes discontinues vertes. (c) Spectre Raman acquis dans l'épiderme à une profondeur de 70 µm. La position de l'analyse est indiquée par une croix jaune dans l'image (b). (d) Spectre Raman acquis dans le derme à une profondeur de 170 µm

P. Burak-Ömür-cakir, C. Adamson, and . Cingi, Epidemiology and Economic Burden of Nonmelanoma Skin Cancer, Facial Plastic Surgery Clinics of North America, vol.20, issue.4, pp.419-422, 2012.

Z. Apalla, A. Lallas, E. Sotiriou, E. Lazaridou, and D. Ioannides, Epidemiological trends in skin cancer, Dermatology Practical & Conceptual, vol.7, issue.2, pp.1-6, 2017.

, Institut National du Cancer. Epidémiologie des cancers cutanés

C. Paul, R. J. Jou, K. J. Feldman, and . Tomecki, UV protection and sunscreens : What to tell patients, Cleveland Clinic Journal of Medicine, vol.79, issue.6, pp.427-436, 2012.

T. Lister, P. A. Wright, and P. H. Chappell, Optical properties of human skin, Journal of Biomedical Optics, vol.17, issue.9, p.909011, 2012.

F. Craig, D. R. Bohren, and . Huffman, Absorption and scattering of light by small particles, 1998.

J. Schäfer, S. C. Lee, and A. Kienle, Calculation of the near fields for the scattering of electromagnetic waves by multiple infinite cylinders at perpendicular incidence, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.113, issue.16, pp.2113-2123, 2012.

J. Schäfer, Implementierung und Anwendung analytischer und numerischer Verfahren zur Lösung der Maxwellgleichungen für die Untersuchung der Lichtausbreitung in biologischem Gewebe, 2011.

M. Minsky, Microscopy apparatus, 1957.

T. Wilson, Resolution and optical sectioning in the confocal microscope, Journal of Microscopy, vol.244, issue.2, pp.113-121, 2011.

A. Federici, Développement de systèmes de microscopie par cohérence optique plein champ étendus spatialement et spectralement, 2015.

R. Gräf, J. Rietdorf, and T. Zimmermann, Live Cell Spinning Disk Microscopy, 2005.

P. Calzavara-pinton, C. Longo, M. Venturini, R. Sala, and G. Pellacani, Reflectance Confocal Microscopy for In Vivo Skin Imaging. Photochemistry and Photobiology, vol.84, pp.1421-1430, 2008.

W. R. Zipfel, R. M. Williams, and W. W. Webb, Nonlinear magic : multiphoton microscopy in the biosciences, Nature Biotechnology, vol.21, issue.11, pp.1369-1377, 2003.

W. Denk, J. H. Strickler, and W. W. Webb, Two-photon laser scanning fluorescence microscopy, Science, vol.248, issue.4951, pp.73-79, 1990.

L. Mostaço-guidolin, N. L. Rosin, and T. Hackett, Imaging collagen in scar tissue : Developments in second harmonic generation microscopy for biomedical applications, International Journal of Molecular Sciences, vol.18, issue.8, 2017.

J. Ogien, Développement de systèmes de microscopie par cohérence optique pour l'imagerie de la peau, 2017.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson et al., Optical coherence tomography. Science, vol.254, issue.5035, pp.1178-81, 1991.

E. A. Swanson, J. A. Izatt, C. P. Lin, J. G. Fujimoto, J. S. Schuman et al., In vivo retinal imaging by optical coherence tomography, Optics Letters, vol.18, issue.21, p.1864, 1993.

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, Intracoronary optical coherence tomography : a comprehensive review clinical and research applications, JACC. Cardiovascular interventions, vol.2, issue.11, pp.1035-1081, 2009.

A. Dubois, O. Levecq, H. Azimani, and A. Davis, Jonas Ogien, David Siret, and Ana&#x0ef ;s Barut. Line-field confocal time-domain optical coherence tomography with dynamic focusing, Optics Express, vol.26, issue.26, p.33534, 2018.

J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, and J. S. Duker, Optical coherence tomography of ocular diseases, 2013.

E. Sattler, R. Kästle, and J. Welzel, Optical coherence tomography in dermatology, Journal of Biomedical Optics, vol.18, issue.6, p.61224, 2013.

C. Desmond, C. Adler, T. Zhou, J. Tsai, Q. Schmitt et al., Three-dimensional endomicroscopy of the human colon using optical coherence tomography, Optics express, vol.17, issue.2, pp.784-96, 2009.

M. Wojtkowski, High-speed optical coherence tomography : basics and applications, Applied Optics, vol.49, issue.16, p.30, 2010.

M. Choma, M. Sarunic, C. Yang, and J. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography, Optics Express, vol.11, issue.18, p.2183, 2003.

L. Schmitz, U. Reinhold, E. Bierhoff, and T. Dirschka, Optical coherence tomography : its role in daily dermatological practice, JDDG : Journal der Deutschen Dermatologischen Gesellschaft, vol.11, issue.6, pp.499-507, 2013.

J. Holmes, Theory and applications of multi-beam OCT, 1st Canterbury Workshop on Optical Coherence Tomography and Adaptive Optics, vol.7139, p.713908, 2008.

R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm, Optics Express, vol.13, issue.26, p.10523, 2005.

A. D. Aguirre, C. Zhou, H. Lee, O. Osman, and J. G. Ahsen, Fujimoto. Optical Coherence Microscopy, 2015.

B. Qi, A. P. Himmer, L. Gordon, X. D. Victor-yang, L. D. Dickensheets et al., Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror, Optics Communications, vol.232, issue.1-6, pp.123-128, 2004.

X. D. Victor, N. Yang, J. Munce, M. L. Pekar, S. Gordon et al., Micromachined array tip for multifocus fiber-based optical coherence tomography, Optics Letters, vol.29, issue.15, p.1754, 2004.

A. D. Aguirre, P. Hsiung, T. H. Ko, I. Hartl, and J. G. Fujimoto, High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging, Optics Letters, vol.28, issue.21, p.2064, 2003.

E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-jalmes, Full-field optical coherence microscopy, Optics Letters, vol.23, issue.4, p.244, 1998.

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre et al., Ultrahigh-resolution full-field optical coherence tomography, Applied Optics, vol.43, issue.14, p.2874, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00533151

B. Pova?ay, A. Unterhuber, B. Hermann, and H. Sattmann, Holger Arthaber, and Wolfgang Drexler. Full-field time-encoded frequency-domain optical coherence tomography, Optics Express, vol.14, issue.17, p.7661, 2006.

A. Dhalla, J. V. Migacz, and J. A. Izatt, Crosstalk rejection in parallel optical coherence tomography using spatially incoherent illumination with partially coherent sources, Optics Letters, vol.35, issue.13, p.2305, 2010.

B. Heise, S. E. Schausberger, S. Häuser, B. Plank, D. Salaberger et al., Full-field optical coherence microscopy with a sub-nanosecond supercontinuum light source for material research, Optical Fiber Technology, vol.18, issue.5, pp.403-410, 2012.

A. Grebenyuk, A. Federici, V. Ryabukho, and A. Dubois, Numerically focused full-field swept-source optical coherence microscopy with low spatial coherence illumination, Applied Optics, vol.53, issue.8, p.1697, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00956673

B. Karamata, P. Lambelet, M. Laubscher, R. P. Salathé, and T. Lasser, Spatially incoherent illumination as a mechanism for cross-talk suppression in wide-field optical coherence tomography, Optics Letters, vol.29, issue.7, p.736, 2004.

B. Laude, A. Martino, B. Drévillon, L. Benattar, and L. Schwartz, Full-field optical coherence tomography with thermal light, Applied Optics, vol.41, issue.31, p.6637, 2002.

A. Dubois, G. Moneron, and C. Boccara, Thermal-light full-field optical coherence tomography in the 1.2 µm wavelength region, Optics Communications, vol.266, issue.2, pp.738-743, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00520541

A. Federici and A. Dubois, Full-field optical coherence microscopy with optimized ultrahigh spatial resolution, Optics Letters, vol.40, issue.22, p.5347, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01294993

J. Ogien and A. Dubois, High-resolution full-field optical coherence microscopy using a broadband light-emitting diode, Optics Express, vol.24, issue.9, p.9922, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01426693

A. Dubois, L. Vabre, A. Boccara, and E. Beaurepaire, High-resolution full-field optical coherence tomography with a Linnik microscope, Applied Optics, vol.41, issue.4, p.805, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00627977

A. Dubois, Focus defect and dispersion mismatch in full-field optical coherence microscopy, Applied Optics, vol.56, issue.9, pp.142-150, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01521643

Y. Coello, B. Xu, T. L. Miller, V. Vadim, M. Lozovoy et al., Groupvelocity dispersion measurements of water, seawater, and ocular components using multiphoton intrapulse interference phase scan, Applied Optics, vol.46, issue.35, p.8394, 2007.

. Refractiveindex and . Info, Refractive index of BK7 -SCHOTT

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. Hu, Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm, Physics in Medicine and Biology, vol.51, issue.6, pp.1479-1489, 2006.

J. A. Izatt, E. A. Swanson, J. G. Fujimoto, M. R. Hee, and G. M. Owen, Optical coherence microscopy in scattering media, Optics Letters, vol.19, issue.8, p.590, 1994.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin et al., High-speed optical coherence domain reflectometry, Optics Letters, vol.17, issue.2, pp.151-153, 1992.

G. Kieran and . Larkin, Efficient nonlinear algorithm for envelope detection in white light interferometry, Journal of the Optical Society of America A, vol.13, issue.4, p.832, 1996.

D. Sacchet, M. Brzezinski, J. Moreau, P. Georges, and A. Duboîs, Motion artifact suppression in full-field optical coherence tomography, Applied optics, vol.49, issue.9, pp.1480-1488, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00520528

S. Labiau, G. David, S. Gigan, and A. C. Boccara, Defocus test and defocus correction in full-field optical coherence tomography, Optics letters, vol.34, issue.10, pp.1576-1584, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00448239

A. Dubois, Handbook of Full-Field Optical Coherence Microscopy : Technology and Applications, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01758479

A. Dubois, Phase-map measurements by interferometry with sinusoidal phase modulation and four integrating buckets, Journal of the Optical Society of America, vol.18, issue.8, pp.1972-1977, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00533180

B. Pova?ay, A. A. Apolonski, A. Unterhuber, B. Hermann, K. Kostadinka et al., Visible light optical coherence tomography, Coherence Domain Optical Methods in Biomedical Science and Clinical Applications VI, vol.4619, pp.90-94, 2002.

J. Yi, Q. Wei, W. Liu, V. Backman, and H. F. Zhang, Visible-light optical coherence tomography for retinal oximetry, Optics Letters, vol.38, issue.11, p.1796, 2013.

J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, Optical-coherence tomography of a dense tissue : Statistics of attenuation and backscattering, Physics in Medicine and Biology, vol.39, issue.10, pp.1705-1720, 1994.

S. Tseng, P. Bargo, A. Durkin, and N. Kollias, Chromophore concentrations, absorption and scattering properties of human skin in-vivo, Optics Express, vol.17, issue.17, p.14599, 2009.

A. Alex, B. Pova?ay, B. Hofer, S. Popov, and C. Glittenberg, Multispectral in vivo three-dimensional optical coherence tomography of human skin, Journal of Biomedical Optics, vol.15, issue.2, p.26025, 2010.

F. Spöler, S. Kray, P. Grychtol, B. Hermes, J. Bornemann et al., Simultaneous dual-band ultra-high resolution optical coherence tomography, Optics Express, vol.15, issue.17, p.10832, 2007.

D. Sacchet, J. Moreau, P. Georges, and A. Dubois, Simultaneous dual-band ultra-high resolution full-field optical coherence tomography, Optics Express, vol.16, issue.24, p.19434, 2008.

P. Cimalla, J. Walther, M. Mehner, M. Cuevas, and E. Koch, Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging, Optics Express, vol.17, issue.22, p.19486, 2009.

A. Federici and A. Dubois, Three-band, 1.9-µm axial resolution full-field optical coherence microscopy over a 530-1700 nm wavelength range using a single camera, Optics letters, vol.39, issue.6, pp.1374-1381, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00956323

G. Gianto, F. Salzenstein, and P. Montgomery, Comparison of envelope detection techniques in coherence scanning interferometry, Applied Optics, vol.55, issue.24, p.6763, 2016.

Y. Chen, S. Huang, A. D. Aguirre, and J. G. Fujimoto, High-resolution line-scanning optical coherence microscopy, Optics Letters, vol.32, issue.14, p.1971, 2007.

W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin et al., Ultrahighresolution full-field optical coherence microscopy using InGaAs camera, Optics Express, vol.14, issue.2, p.726, 2006.

M. , L. Tran, B. J. Powell, and P. Meredith, Chemical and structural disorder in eumelanins : A possible explanation for broadband absorbance, Biophysical Journal, vol.90, issue.3, pp.743-752, 2006.

I. , A. Vitkin, J. Woolsey, B. C. Wilson, and R. Anderson, Optical and thermal characterization of natural (Sepia officinalis) melanin. Photochemistry and photobiology, vol.59, pp.455-62, 1994.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. Anderson, In vivo confocal scanning laser microscopy of human skin : Melanin provides strong contrast, Journal of Investigative Dermatology, vol.104, issue.6, pp.946-952, 1995.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, Speckle in Optical Coherence Tomography, Journal of Biomedical Optics, vol.4, issue.1, p.95, 1999.

M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher, and C. , Hitzenberger. Speckle reduction in optical coherence tomography by frequency compounding, Journal of Biomedical Optics, vol.8, issue.3, p.565, 2003.

C. Magnain, H. Wang, S. Sakad?i?, B. Fischl, and D. A. Boas, En face speckle reduction in optical coherence microscopy by frequency compounding, Optics Letters, vol.41, issue.9, p.1925, 2016.

B. Huang, P. Bu, X. Wang, N. Nan, and X. Guo, Speckle reduction in parallel optical coherence tomography by spatial compounding. Optics and Laser Technology, vol.45, pp.69-73, 2013.

N. Iftimia, B. E. Bouma, and G. J. Tearney, Speckle reduction in optical coherence tomography by "path length encoded" angular compounding, Journal of Biomedical Optics, vol.8, issue.2, p.260, 2003.

H. Wang and A. M. Rollins, Speckle reduction in optical coherence tomography using angular compounding by B-scan Doppler-shift encoding, Journal of Biomedical Optics, vol.14, issue.3, p.30512, 2009.

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh et al., Optical coherence tomography speckle reduction by a partially spatially coherent source, J. Biomed. Opt, vol.10, issue.6, p.64034, 2005.

C. Desmond, T. H. Adler, J. G. Ko, and . Fujimoto, Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter, Optics Letters, vol.29, issue.24, p.2878, 2004.

M. A. Mayer, A. Borsdorf, M. Wagner, J. Hornegger, C. Y. Mardin et al., Wavelet denoising of multiframe optical coherence tomography data, Biomedical Optics Express, vol.3, issue.3, p.572, 2012.

K. Amolins, Y. Zhang, and P. Dare, Wavelet based image fusion techniquesAn introduction, review and comparison, ISPRS Journal of Photogrammetry and Remote Sensing, vol.62, issue.4, pp.249-263, 2007.

M. Misiti, Y. Misiti, G. Oppenheim, and J. Poggi, Wavelets and their applications. ISTE, iste ltd. edition, 2007.

U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris et al., Spectroscopic optical coherence tomography, Optics Letters, vol.25, issue.2, p.111, 2000.

V. M. Kodach, J. Kalkman, D. J. Faber, and T. G. Van-leeuwen, Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm, Biomedical Optics Express, vol.1, issue.1, p.176, 2010.

M. George, M. R. Hale, and . Querry, Optical Constants of Water in the 200-nm to 200-µm Wavelength Region, Applied Optics, vol.12, issue.3, p.555, 1973.

X. Shu, L. Beckmann, and H. F. Zhang, Visible-light optical coherence tomography : a review, Journal of Biomedical Optics, vol.22, issue.12, p.1, 2017.

V. Chandrasekhara and . Raman, A change of wave-length in light scattering, Nature, vol.121, issue.3051, p.619, 1928.

V. Chandrasekhara, K. S. Raman, and . Krishnan, A new type of secondary radiation, Nature, vol.121, issue.3048, pp.501-502, 1928.

C. A. Lieber, K. Shovan, D. L. Majumder, D. D. Ellis, A. Billheimer et al., In vivo nonmelanoma skin cancer diagnosis using Raman microspectroscopy, Lasers in Surgery and Medicine, vol.40, issue.7, pp.461-467, 2008.

E. Brauchle, S. Noor, E. Holtorf, C. Garbe, K. Schenke-layland et al., Raman spectroscopy as an analytical tool for melanoma research, Clinical and Experimental Dermatology, vol.39, issue.5, pp.636-645, 2014.

H. Lui, J. Zhao, D. Mclean, and H. Zeng, Real-time Raman Spectroscopy for In Vivo Skin Cancer Diagnosis, Cancer Research, vol.72, issue.10, pp.2491-2500, 2012.

A. Chetan, H. Patil, D. L. Kirshnamoorthi, . Ellis, G. Ton et al., A clinical instrument for combined raman spectroscopy-optical coherence tomography of skin cancers. Lasers in surgery and medicine, vol.43, pp.143-51, 2011.

J. Klemes, A. Kotzianova, M. Pokorny, P. Mojzes, J. Novak et al., Noninvasive diagnostic system and its opto-mechanical probe for combining confocal Raman spectroscopy and optical coherence tomography, Journal of Biophotonics, vol.10, issue.11, pp.1442-1449, 2017.

J. Peter, G. W. Caspers, G. J. Lucassen, and . Puppels, Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin, Biophysical Journal, vol.85, issue.1, pp.572-580, 2003.

H. Wang, M. D. Anthony, H. Lee, D. I. Lui, H. Mclean et al., A Method for accurate in vivo micro-Raman spectroscopic measurements under guidance of advanced microscopy imaging, Scientific Reports, vol.3, issue.1, p.1890, 2013.

C. N. Banwell and E. M. Mccash, Fundamentals of molecular spectroscopy, 1994.

H. Theodore and . Maiman, Ruby laser systems, 1965.

W. S. Boyle and G. E. Smith, Charge Coupled Semiconductor Devices, Bell System Technical Journal, vol.49, issue.4, pp.587-593, 1970.

T. Dieing, O. Hollricher, and J. Toporski, Confocal Raman Microscopy, Springer Series in Optical Sciences, vol.158, 2011.

A. C. Croce and G. Bottiroli, Autofluorescence spectroscopy and imaging : a tool for biomedical research and diagnosis, European Journal of Histochemistry, vol.58, issue.4, p.2461, 2014.

C. Patil, I. J. Pence, C. Lieber, and A. Mahadevan-jansen, 1064 nm dispersive Raman spectroscopy of tissues with strong near-infrared autofluorescence, Optics letters, vol.39, issue.2, pp.303-309, 2014.

Z. Huang, H. Zeng, I. Hamzavi, D. I. Mclean, and H. Lui, Rapid near-infrared Raman spectroscopy system for real-time in vivo skin measurements, Optics letters, vol.26, issue.22, pp.1782-1786, 2001.

A. Chetan, N. Patil, M. D. Bosschaart, . Keller, G. Ton et al., Combined Raman spectroscopy and optical coherence tomography device for tissue characterization, Optics Letters, vol.33, issue.10, pp.1135-1137, 2008.

. Semrock, Flatness of Dichroic Beamsplitters Affects Focus and Image Quality

C. A. Lieber and A. Mahadevan-jansen, Automated Method for Subtraction of Fluorescence from Biological Raman Spectra, Applied Spectroscopy, vol.57, issue.11, pp.1363-1367, 2003.

J. Zhao, H. Lui, D. I. Mclean, and H. Zeng, Automated Autofluorescence Background Subtraction Algorithm for Biomedical Raman Spectroscopy, Applied Spectroscopy, vol.61, issue.11, pp.1225-1232, 2007.

H. Zeng, H. Lui, Z. Huang, and D. I. Mclean, Multimodal Detection of Tissue Abnormalities Based on Raman and Background Fluorescence Spectroscopy, 2008.

Z. Huang, H. Zeng, I. Hamzavi, A. Alajlan, E. Tan et al., Cutaneous melanin exhibiting fluorescence emission under nearinfrared light excitation, Journal of biomedical optics, vol.11, issue.3, p.34010, 2006.

R. Boitor, K. Kong, D. Shipp, S. Varma, A. Koloydenko et al., Automated multimodal spectral histopathology for quantitative diagnosis of residual tumour during basal cell carcinoma surgery, Hywel Williams, and Ioan Notingher, vol.8, p.5749, 2017.

A. Tfayli, Caractérisation structurale et moléculaire de la peau par microspectroscopies optiques vibrationnelles. Applications au diagnostic précoce des tumeurs cutanées et à l'étude de la diffusion de principes actifs à visée thérapeutique, 2007.

G. Pezzotti, M. Boffelli, D. Miyamori, T. Uemura, Y. Marunaka et al., Raman spectroscopy of human skin : looking for a quantitative algorithm to reliably estimate human age, Journal of Biomedical Optics, vol.20, issue.6, p.65008, 2015.

T. T. Nguyen, C. Gobinet, J. Feru, S. Brassart-pasco, M. Manfait et al., Characterization of type i and IV collagens by Raman microspectroscopy : Identification of spectral markers of the dermo-epidermal junction, Advances in Biomedical Spectroscopy, vol.7, issue.5-6, pp.105-110, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00719311

M. Gniadecka, S. Peter-alshede-philipsen, S. Sigurdsson, O. F. Wessel, D. H. Nielsen et al., Melanoma Diagnosis by Raman Spectroscopy and Neural Networks : Structure Alterations in Proteins and Lipids in Intact Cancer Tissue, vol.122, pp.443-449, 2004.