L. Sancey, V. Motto-ros, B. Busser, S. Kotb, J. Benoit et al., Laser spectrometry for multielemental imaging of biological tissues, Scientific Reports, vol.4, p.6065, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01071458

M. A. Le-gros, G. Mcdermott, and C. A. Larabell, X-ray tomography of whole cells, Current Opinion in Structural Biology, vol.15, issue.5, pp.593-600, 2005.

G. Mcdermott, M. A. Le-gros, C. G. Knoechel, M. Uchida, and C. A. Larabell, Soft x-ray tomography and cryogenic light microscopy: The cool combination in cellular imaging, Trends in Cell Biology, vol.19, issue.11, pp.1587-595, 2009.

C. A. Larabell and K. A. Nugent, Imaging cellular architecture with xrays, Current Opinion in Structural Biology, vol.20, issue.5, pp.623-631, 2010.

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, A compound refractive lens for focusing high-energy X-rays, Nature, vol.384, pp.49-51, 1996.

A. Nanotools-inc,

P. W. Wachulak, A. Torrisi, A. Bartnik, D. Adjei, J. Kostecki et al., Desktop water window microscope using a double-stream gas puff target source, Appl. Phys. B, vol.118, pp.573-578, 2015.

L. Bregoli, D. Movia, J. D. Gavigan-imedio, J. Lysaght, J. Reynolds et al., Nanomedicine applied to translational oncology: A future perspective on cancer treatment, Nanomedicine: Nanotechnology, Biology and Medicine, vol.12, issue.1, pp.81-103, 2016.

J. F. Hainfeld, D. N. Slatkin, and H. M. Smilowitz, The use of gold nanoparticles to enhance radiotherapy in mice, Physics in Medicine and Biology, vol.49, issue.18, 2004.

G. R. Reddy, M. S. Bhojani, P. Mcconville, J. Moody, B. A. Moffat et al., Vascular targeted nanoparticles for imaging and treatment of brain tumors, Clinical Cancer Research, vol.12, issue.22, pp.6677-6686, 2006.

L. Sancey, F. Lux, S. Kotb, S. Roux, S. Dufort et al., The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy, vol.87, pp.1-15, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01286747

S. Kotb, A. Detappe, F. Lux, F. Appaix, E. L. Barbier et al., Gadolinium-Based Nanoparticles and Radiation Therapy for Multiple Brain Melanoma Metastases: Proof of Concept before Phase I Trial, Theranostics, vol.6, issue.3, pp.418-427, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01266945

M. F. Kircher, U. Mahmood, R. S. King, M. F. Kircher, U. Mahmood et al., A Multimodal Nanoparticle for Preoperative Magnetic Resonance Imaging and Intraoperative Optical Brain Tumor Delineation Advances in Brief A Multimodal Nanoparticle for Preoperative Magnetic Resonance Imaging and Intraoperative Optical Brain Tumor Delinea, Cancer Research, vol.63, issue.23, pp.8122-8125, 2003.

B. Chertok, B. A. Moffat, A. E. David, F. Yu, C. Bergemann et al., Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors, Biomaterials, vol.29, issue.4, pp.487-496, 2008.

H. Lee, Z. Li, K. Chen, A. R. Hsu, C. Xu et al., PET/MRI Dual-Modality Tumor Imaging Using Arginine-Glycine-Aspartic (RGD)-Conjugated Radiolabeled Iron Oxide Nanoparticles, Journal of Nuclear Medicine, vol.49, issue.8, pp.1371-1379, 2008.

V. Motto-ros, L. Sancey, X. C. Wang, Q. L. Ma, F. Lux et al., Mapping nanoparticles injected into a biological tissue using laser-induced breakdown spectroscopy, Spectrochimica Acta -Part B Atomic Spectroscopy, vol.87, pp.168-174, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00968550

J. Panyam, S. K. Sahoo, S. Prabha, T. Bargar, and V. Labhasetwar, Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(D,L-lactide-co-glycolide) nanoparticles, International Journal of Pharmaceutics, vol.262, issue.1-2, pp.1-11, 2003.

X. Huang, X. Teng, D. Chen, F. Tang, and J. He, The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function, Biomaterials, vol.31, issue.3, pp.438-448, 2010.

L. Sancey, S. Kotb, C. Truillet, F. Appaix, A. Marais et al., Longterm in Vivo clearance of gadolinium-based AGuIX nanoparticles and their biocompatibility after systemic injection, ACS Nano, vol.9, issue.3, pp.2477-2488, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01207383

A. Bravin, P. Coan, and P. Suortti, X-ray phase-contrast imaging: From pre-clinical applications towards clinics, Physics in Medicine and Biology, vol.58, issue.1, 2013.

S. Williams, X. Zhang, C. Jacobsen, D. L. Kirz, J. A. et al., Measurements of wet metaphase chromosomes in the scanning transmission X-ray microscope, Journal of Microscopy, vol.170, issue.2, pp.155-165, 1993.

P. M. Bennett, G. F. Foster, C. J. Buckey, and R. E. Burge, The effect of soft X-radiation on myofibrils, Journal of Microscopy, vol.172, issue.2, pp.109-119, 1993.

R. Ng, , vol.117, 2006.

R. Magnin, F. Rabusseau, F. Salabartan, S. Mriaux, J. Aubry et al., Magnetic resonance-guided motorized transcranial ultrasound system for blood-brain barrier permeabilization along arbitrary trajectories in rodents, Journal of Therapeutic Ultrasound, vol.3, issue.22, 2015.
URL : https://hal.archives-ouvertes.fr/cea-02043280

D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications, 1999.

A. C. Kak and S. Malcolm, Principles of Computerized Tomographic Imaging, Society of Industrial and Applied Mathematics, vol.7, 2001.

J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and Recent Advances, 2003.

S. Fourmaux, S. Corde, K. T. Phuoc, P. Lassonde, G. Lebrun et al., Single shot phase contrast imaging using laser-produced betatron x-ray beams, Optics Letters, vol.36, issue.13, pp.2426-2428, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01164270

J. Wenz, S. Schleede, K. Khrennikov, M. Bech, P. Thibault et al., Quantitative x-ray phase-contrast microtomography from a compact laser-driven betatron source, Nature Communications, vol.6, issue.7568, 2015.

A. Döpp, L. Hehn, J. Götzfried, J. Wenz, M. Gilljohann et al., Quick x-ray microtomography using a laser-driven betatron source, Optica, vol.5, issue.2, pp.199-203, 2018.

J. Götzfried, A. Döpp, M. Gilljohann, H. Ding, S. Schindler et al., Research towards high-repetition rate laser-driven X-ray sources for imaging applications, Nuclear Inst. and Methods in Physics Research, 2018.

F. Zernike, How i discovered phase contrast, Science, vol.121, issue.3141, p.14, 1955.

D. Gabor, A new microscopic principle, Nature, vol.161, issue.777, p.14, 1948.

U. Bonse and M. Hart, An x-ray interferometer, Applied Physics Letters, vol.6, issue.8, p.14, 1965.

A. Szöke, X-ray and electron holography using a local reference beam, AIP Conference Proceedings, vol.147, issue.361, p.14, 1986.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, On the possibilities of x-ray phase contrast by coherent high-energy synchrotron radiation, Review of Scientific Instruments, vol.66, issue.12, pp.5486-5492, 1995.

S. W. Wilkins, Phase-contrast imaging using polychromatic hard x-rays, Nature, vol.384, pp.335-343, 1996.

T. Weitkamp, D. Haas, D. Wegrzynek, and A. Rack, ANKAphase: Software for single-distance phase retrieval from inline X-ray phase-contrast radiographs, Journal of Synchrotron Radiation, vol.18, issue.4, pp.617-629, 2011.

S. C. Mayo, A. W. Stevenson, and S. W. Wilkins, In-Line Phase Contrast X-ray Imaging and Tomography for Material Science, Materials, vol.5, p.15, 2012.

, HDF5

E. Forster, K. Goetz, and P. Zaumseil, Double crystal diffractometry for the characterization of targets for laser fusion experiments, Krist. Tech, vol.15, p.16, 1980.

T. J. Davis, T. E. Gureyev, D. Gao, and S. Wilkins, X-ray image contrast from a simple phase-object, Phys. Rev.Lett, vol.74, pp.3173-3176, 1995.

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni et al., X-ray phase imaging with a grating interferometer, Optics Express, vol.13, issue.16, p.16, 2005.

F. Pfeiffer, O. Bunk, C. David, M. Bech, G. L. Duc et al., High-resolution brain tumor visualization using threedimensional x-ray phase contrast tomography, Physics in Medicine and Biology, vol.52, issue.23, pp.6923-6930, 2007.

A. Olivo and R. Speller, A coded-aperture technique allowing X-ray phase contrast imaging with laboratory sources, Phys. Rev.Lett, vol.91, p.16, 2007.

G. Schmahl, D. Rudolph, G. Schneider, P. Guttman, and B. Niemann, Phase Contrast X-ray microscopy studies, Optik, vol.97, p.16, 1994.

D. Sayre and H. N. Chapman, X-ray microscopy, Acta. Cryst, vol.51, pp.237-252, 1995.

P. C. Diemoz, C. K. Hagen, M. Endrizzi, and A. Olivo, Sensitivity of laboratory based implementations of edge illumination X-ray phase-contrast imaging, Applied Physics Letters, vol.103, issue.24, p.16, 2013.

G. R. Myers, T. E. Gureyev, D. M. Paganin, and S. C. Mayo, The binary dissector: phase contrast tomography of two-and three-material objects from few projections, Optic Express, vol.16, issue.14, p.10736, 2008.

M. R. Teague, Deterministic phase retrieval: a Green's function solution, Journal of the Optical Society of America, vol.73, issue.11, p.1434, 1983.

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object, Journal of Microscopy, vol.206, issue.1, pp.33-40, 2002.

J. Moosmann, R. Hofmann, and T. Baumbach, Single-distance phase retrieval at large phase shifts, Optics Express, vol.19, issue.13, p.20, 2011.

M. A. Beltran, D. M. Paganin, K. K. Siu, A. Fouras, S. B. Hooper et al., Interface-specific x-ray phase retrieval tomography of complex biological organs, Phys. Med. Biol, vol.56, pp.7353-7369, 2011.

A. Pogany, D. Gao, and S. W. Wilkins, Contrast and resolution in imaging with a microfocus x-ray source, Review of Scientific Instruments, vol.68, issue.7, p.2774, 1997.

F. Brun, L. Massimi, M. Fratini, D. Dreossi, F. Billé et al., SYRMEP Tomo Project: a graphical user interface for customizing CT reconstruction workflows, Advanced Structural and Chemical Imaging, vol.3, issue.1, p.4, 2017.

W. Van-aarle, W. J. Palenstijn, J. De, T. Beenhouwer, S. Altantzis et al., The ASTRA Toolbox: A platform for advanced algorithm development in electron tomography, Ultramicroscopy, vol.157, p.25, 2015.

, HDF5

F. De-carlo, D. Gürsoy, F. Marone, M. Rivers, D. Y. Parkinson et al., Scientific data exchange: A schema for HDF5-based storage of raw and analyzed data, Journal of Synchrotron Radiation, vol.21, issue.6, pp.1224-1230, 2014.

F. E. Boas and D. Fleischmann, CT artifacts: Causes and reduction techniques, Imaging Med, vol.4, issue.2, p.26, 2012.

V. Van-nieuwenhove, J. De, F. Beenhouwer, L. De-carlo, F. Mancini et al., Dynamic intensity normalization using eigen flat fields in Xray imaging, Optics Express, vol.23, issue.21, p.26, 2015.

N. T. Vo, M. Drakopoulos, R. C. Atwood, and C. Reinhard, Reliable method for calculating the center of rotation in parallel-beam tomography, Optics Express, vol.22, issue.16, p.26, 2014.

C. Raven, Numerical removal of ring artifacts in microtomography, Review of Scientific Instruments, vol.69, issue.8, p.27, 1998.

M. Boin and A. Haibel, Compensation of ring artefacts in synchrotron tomographic images, Optics Express, vol.14, issue.25, p.27, 2006.

B. Münch, P. Trtik, F. Marone, and M. Stampanoni, Stripe and ring artifact removal with combined wavelet Fourier filtering, Optic Express, vol.17, issue.10, p.27, 2009.

M. Oimoen, An effective filter for removal of production artifacts in US Geological Survey 7.5-minute digital elevation models, the Fourteenth International Conference on Applied, p.27, 2000.

P. Gilbert, Iterative methods for the three-dimensional reconstruction of an object from projections, Journal of Theoretical Biology, vol.36, issue.1, pp.105-117, 1972.

A. H. Andersen and A. C. Kak, Simultaneous Algebraic Reconstruction Technique (SART): A superior implementation of the ART algorithm, Ultrasonic Imaging, vol.6, issue.1, pp.81-94, 1984.

J. A. Scales, Tomographic inversion via the conjugate gradient method, Geophysics, vol.52, issue.2, pp.179-185, 1987.

J. Miao, F. Förster, and O. Levi, Equally sloped tomography with oversampling reconstruction, Phys. Rev. B-Condensed Matter and Materials Physics, vol.72, issue.5, p.52103, 2005.

D. M. Pelt and K. J. Batenburg, Improving Filtered Backprojection Reconstruction by Data-Dependent Filtering, IEEE Transactions on Image Processing, vol.23, issue.11, pp.4750-4762, 2014.

L. A. Shepp and B. Logan, The Fourier Reconstruction of a Head Section, IEEE Transactions on Nuclear Science, vol.21, issue.3, pp.21-43, 1974.

J. Schindelin, Fiji: an open-source platform for biological-image analysis, Nature Methods, vol.9, issue.7, pp.676-682, 2012.

M. S. Nixon and A. S. Aguado, Feature Extraction and Image Processing, p.31, 2008.

B. Preim and D. Bartz, The Morgan Kaufmann series in computer graphics, Visualization in Medicine: Theory, Algorithms, and Applications, vol.38, pp.137-152, 2007.

B. Preim and D. Bartz, The Morgan Kaufmann series in computer graphics, Visualization in Medicine: Theory, Algorithms, and Applications, vol.38, pp.261-263, 2007.

K. , Y. Win, and S. S. Feng, Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer BIBLIOGRAPHY drugs, Biomaterials, vol.26, issue.15, pp.2713-2722, 2005.

T. D. Rane and A. M. Armani, Two-photon microscopy analysis of gold nanoparticle uptake in 3D cell spheroids, PLoS ONE, vol.11, issue.12, pp.1-13, 2016.

H. Lin, S. P. Centeno, L. Su, B. Kenens, S. Rocha et al., Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy, Chemphyschem, vol.13, issue.4, p.42, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00781639

P. Bon, N. Bourg, S. Lécart, S. Monneret, E. Fort et al., Three-dimensional nanometre localization of nanoparticles to enhance super-resolution microscopy, Nature Communications, vol.6, issue.7764, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01182402

Y. Gimenez, B. Busser, F. Trichard, A. Kulesza, J. M. Laurent et al., 3D Imaging of Nanoparticle Distribution in Biological Tissue by Laser-Induced Breakdown Spectroscopy, Scientific Reports, vol.6, pp.1-9, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01405764

A. Vogel and V. Venugopalan, Mechanisms of Pulsed Laser Ablation of Biological Tissues, Chem. Rev, vol.103, issue.2, pp.577-644, 2003.

M. Fratini, I. Bukreeva, G. Campi, F. Brun, G. Tromba et al., Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord, Scientific reports, vol.5, p.8514, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01572861

B. R. Pinzer, M. Cacquevel, P. Modregger, S. A. Mcdonald, J. C. Bensadoun et al., Imaging brain amyloid deposition using grating-based differential phase contrast tomography, NeuroImage, vol.61, issue.4, pp.1336-1346, 2012.

A. Mignot, C. Truillet, F. Lux, L. Sancey, C. Louis et al., A top-down synthesis route to ultrasmall multifunctional Gd-based silica nanoparticles for theranostic applications, Chemistry -A European Journal, vol.19, issue.19, pp.6122-6136, 2013.

F. Lux, A. Mignot, P. Mowat, C. Louis, S. Dufort et al., Ultrasmall rigid particles as multimodal probes for medical applications, Angewandte Chemie -International Edition, vol.50, issue.51, pp.12299-12303, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00673713

E. Porret, L. Sancey, A. Martn-serrano, M. I. Montaez, R. Seeman et al.,

X. L. Coll and . Guével, Hydrophobicity of gold nanoclusters influences their interactions with biological barriers, Chemistry of Materials, vol.29, issue.17, pp.7497-7506, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02059298

X. L. Guevel, M. Henry, V. Motto-ros, E. Longo, M. I. Montanez et al., Elemental and optical imaging evaluation of zwitterionic gold nanoclusters in glioblastoma mouse models, Nanoscale, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01945685

&. Beamline,

A. Mittone, I. Manakov, L. Broche, C. Jarnias, P. Coan et al., Characterization of a sCMOS-based high-resolution imaging system, Journal of Synchrotron Radiation, vol.24, issue.6, pp.1226-1236, 2017.

W. S. Cho, M. Cho, J. Jeong, M. Choi, B. S. Han et al., Size-dependent tissue kinetics of PEGcoated gold nanoparticles, Toxicology and Applied Pharmacology, vol.245, issue.1, pp.116-123, 2010.

S. Dufort, L. Sancey, and J. L. Coll, Physico-chemical parameters that govern nanoparticles fate also dictate rules for their molecular evolution, Advanced Drug Delivery Reviews, vol.64, issue.2, p.44, 2012.

S. Han, J. Lee, K. Ahn, Y. Kim, J. Kim et al., Size-dependent clearance of gold nanoparticles from lungs of Sprague-Dawley rats after short-term inhalation exposure, Arch. Toxicol, vol.89, issue.7, pp.1083-1094, 2015.

J. Bridot, A. Faure, S. Laurent, C. Rivì-ere, C. Billotey et al., Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging, Journal of the American Chemical Society, vol.129, issue.16, pp.5076-5084, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00313780

D. Kryza, J. Taleb, M. Janier, L. Marmuse, I. Miladi et al., Biodistribution study of nanometric hybrid gadolinium oxide particles as a multimodal spect/mr/optical imaging and theragnostic agent, Bioconjugate Chemistry, vol.22, issue.6, pp.1145-1152, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00673880

I. Miladi, G. L. Duc, D. Kryza, A. Berniard, P. Mowat et al., Biodistribution of ultra small gadolinium-based nanoparticles as theranostic agent: Application to brain tumors, Journal of Biomaterials Applications, vol.28, issue.3, pp.385-394
URL : https://hal.archives-ouvertes.fr/hal-01020860

A. Bianchi, S. Dufort, F. Lux, A. Courtois, O. Tillement et al., Quantitative biodistribution and pharmacokinetics of multimodal gadolinium-based nanoparticles for lungs using ultrashort te mri, Magma, vol.27, issue.4, p.44, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01279126

R. R. Arvizo, O. R. Miranda, D. F. Moyano, C. A. Walden, K. Giri et al., Modulating Pharmacokinetics, Tumor Uptake and Biodistribution by Engineered Nanoparticles, PLOS ONE, vol.6, issue.9, p.47, 2011.

H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer et al., Renal clearance of quantum dots, Nature Biotechnology, vol.25, p.47, 2007.

J. Liu, M. Yu, C. Zhou, and J. Zheng, Renal clearable inorganic nanoparticles: a new frontier of bionanotechnology, Materials Today, vol.16, issue.12, p.47, 2013.

X. Zhang, Z. Luo, J. Chen, S. Song, X. Yuan et al., Ultrasmall Glutathione-Protected Gold Nanoclusters as Next Generation Radiotherapy Sensitizers with High Tumor Uptake and High Renal Clearance, Scientific Reports, vol.5, issue.8869, p.47, 2015.

E. Longo, A. Bravin, F. Brun, I. Bukreeva, A. Cedola et al., 3d map of theranostic nanoparticles distribution in mice brain and liver by means of x-ray phase contrast tomography, Journal of Instrumentation, vol.13, issue.1, p.47, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01774166

E. Sadauskas, H. Wallin, M. Stoltenberg, U. Vogel, P. Doering et al., Kupffer cells are central in the removal of nanoparticles from the organism, Particle and Fibre Toxicology, vol.4, issue.10, p.48, 2007.

E. Longo, A. Bravin, F. Brun, I. Bukreeva, A. Cedola et al., 3d imaging of theranostic nanoparticles in mice organs by means of x-ray phase contrast tomography, Proc.SPIE, vol.10573, pp.10573-10577, 2018.

A. Jemal, M. J. Thun, L. A. Ries, H. L. Howe, H. K. Weir et al., Annual report to the nation on the status of cancer, 19752005, featuring trends in lung cancer, tobacco use, and tobacco control, Journal of the National Cancer Institute, vol.100, issue.23, pp.1672-1694, 2008.

S. Dufort, A. Bianchi, M. Henry, F. Lux, G. L. Duc et al., Nebulized gadolinium-based nanoparticles: A theranostic approach for lung tumor imaging and radiosensitization, Small, vol.11, issue.2, pp.215-221, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01115895

N. R. Labiris and M. B. Dolovich, Pulmonary drug delivery. part ii: The role of inhalant delivery devices and drug formulations in therapeutic effectiveness of aerosolized medications, British Journal of Clinical Pharmacology, vol.56, issue.6, p.55, 2003.

C. Storti, V. L. Noci, M. Sommariva, E. Tagliabue, A. Balsari et al., Aerosol delivery in the treatment of lung cancer, Current Cancer Drug Targets, vol.15, issue.7, pp.604-612, 2015.

J. F. Hainfeld, F. A. Dilmanian, D. N. Slatkin, and H. M. Smilowitz, Radiotherapy enhancement with gold nanoparticles, Journal of Pharmacy and Pharmacology, vol.60, issue.8, pp.977-985, 2008.

M. Chang, A. Shiau, Y. Chen, C. Chang, H. H. Chen et al., Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice, Cancer Science, vol.99, issue.7, pp.1479-1484, 2008.

E. Porcel, S. Liehn, H. Remita, N. Usami, K. Kobayashi et al., Platinum nanoparticles: a promising material for future cancer therapy?, Nanotechnology, vol.21, issue.8, p.85103, 2010.

J. Li, Y. Wang, R. Liang, X. An, K. Wang et al., Recent advances in targeted nanoparticles drug delivery to melanoma, Nanomedicine: Nanotechnology, Biology, and Medicine, vol.11, issue.3, pp.769-794, 2015.

J. Zakrzewski, L. Geraghty, and A. Rose, Clinical variables and primary tumor characteristics predictive of the development of melanoma brain metastasis and post-brain metastasis survival, vol.117, pp.1711-1720, 2012.

A. Sandru, S. Voinea, E. Panaitescu, and A. Blidaru, Survival rates of patients with malignant melanoma, Journal of Medicine and Life, vol.7, issue.4, pp.572-576, 2014.

W. Partdrige, The blood-brain barrier: bottlneck in brain drug development, vol.2, pp.3-14, 2005.

P. , Postoperative radiotherapy in the treatment of single metastases to the brain: A randomized trial, JAMA, vol.280, pp.1485-1489, 1998.

M. P. Mehta, P. Rodrigus, C. H. Terhaard, A. Rao, J. Suh et al., Survival and neurologic outcomes in a randomized trial of motexafin gadolinium and whole-brain radiation therapy in brain metastases, Journal of Clinical Oncology, vol.21, issue.13, pp.2529-2536, 2003.

P. M. Foreman, B. E. Jackson, K. P. Singh, A. K. Romeo, B. L. Guthrie et al., Postoperative radiosurgery for the treatment of metastatic brain tumor: Evaluation of local failure and leptomeningeal disease, Journal of Clinical Neuroscience, vol.49, pp.48-55, 2018.

B. J. Blyth and P. J. Sykes, Radiation-Induced Bystander Effects: What Are They, and How Relevant Are They to Human Radiation Exposures?, Radiation Research, vol.176, issue.2, p.59, 2011.

H. Xin, X. Sha, X. Jiang, W. Zhang, L. Chen et al., Antiglioblastoma efficacy and safety of paclitaxel-loading Angiopep-conjugated dual targeting PEG-PCL nanoparticles, Biomaterials, vol.33, issue.32, p.59, 2012.

Y. Cheng, R. A. Morshed, B. Auffinger, A. L. Tobias, and M. S. Lesniak, Multifunctional nanoparticles for brain tumor imaging and therapy, Advanced Drug Delivery Reviews, vol.66, pp.42-57, 2014.

Y. Zheng and L. Sanche, Gold Nanoparticles Enhance DNA Damage Induced by Anti-cancer Drugs and Radiation, Radiation Research, vol.172, issue.1, pp.114-119, 2009.

R. I. Berbeco, H. Korideck, W. Ngwa, R. Kumar, J. Patel et al., DNA Damage Enhancement from Gold Nanoparticles for Clinical MV Photon Beams, Radiation Research, vol.178, issue.6, pp.604-608, 2012.

C. Sicard-roselli, E. Brun, M. Gilles, G. Baldacchino, C. Kelsey et al., A new mechanism for hydroxyl radical production in irradiated nanoparticle solutions, Small, vol.10, issue.16, pp.3338-3346, 2014.

P. Mowat, A. Mignot, W. Rima, F. Lux, O. Tillement et al., In Vitro Radiosensitizing Effects of Ultrasmall Gadolinium Based Particles on Tumour Cells, Journal of Nanoscience and Nanotechnology, vol.11, issue.9, pp.7833-7839, 2011.

M. Luchette, H. Korideck, M. Makrigiorgos, O. Tillement, and R. Berbeco, Radiation dose enhancement of gadolinium-based AGuIX nanoparticles on HeLa cells, Nanomedicine: Nanotechnology, Biology, and Medicine, vol.10, issue.8, p.59, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01115659

I. Miladi, M. T. Aloy, E. Armandy, P. Mowat, D. Kryza et al., Combining ultrasmall gadolinium-based nanoparticles with photon irradiation overcomes radioresistance of head and neck squamous cell carcinoma, Nanomedicine: Nanotechnology, Biology, and Medicine, vol.11, issue.1, pp.247-257, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01053787

H. Yoo, E. Jung, H. S. Gwak, S. H. Shin, and S. H. Lee, Surgical outcomes of hemorrhagic metastatic brain tumors, Cancer Research and Treatment, vol.43, issue.2, p.67, 2011.

D. Rigel, J. Russak, and R. Friedman, The evolution of melanoma dignosis: 25 years beyond the ABCDs, Ca Cancer J Clin, vol.60, p.73, 2010.

B. Bandarchi, L. Ma, R. Navab, A. Seth, and G. Rasty, From Melanocyte to Metastatic Malignant Melanoma, Dermatology Research and Practice, vol.2010, issue.583748, p.73, 2010.

J. He, N. Wang, H. Tsurui, M. Kato, M. Iida et al., Noninvasive, label-free, three-dimensional imaging of melanoma with confocal photothermal microscopy: Differentiate malignant melanoma from benign tumor tissue, Scientific Reports, vol.6, issue.30209, p.73, 2016.

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, Pump-Probe Imaging Differentiates Melanoma from Melanocytic Nevi, Science Translational Medicine, vol.3, issue.71, p.73, 2011.

B. Zitová and J. Flusser, Image registration methods: A survey, Image and Vision Computing, vol.21, issue.11, p.76, 2003.

G. Chinga and K. Syverud, Quantification of paper mass distributions within local picking areas, Nordic Pulp and Paper Research Journal, vol.22, issue.04, p.76, 2007.

H. Braak and K. D. Tredici, The preclinical phase of the pathological process underlying sporadic Alzheimer's disease, Brain, vol.138, issue.10, pp.2814-2833, 2015.

A. Coimbra, D. S. Williams, and E. Hostetler, The role of MRI and PET/ SPECT in Alzheimer's disease, Journal of Neuroscience, vol.6, issue.6, pp.629-647, 2006.

L. Mosconi, V. Berti, L. Glodzik, A. Pupi, S. D. Santi et al., Pre-Clinical Detection of Alzheimer's Disease Using FDG-PET, with or without Amyloid Imaging, Journal of Alzheimer's disease, vol.20, issue.3, pp.843-854, 2010.

A. Petiet, M. Santin, A. Bertrand, C. J. Wiggins, F. Petit et al., Gadolinium-staining reveals amyloid plaques in the brain of Alzheimer's transgenic mice, Neurobiology of Aging, vol.33, issue.8, pp.1533-1544, 2012.

M. Plissonneau, J. Pansieri, L. Heinrich-balard, J. Morfin, N. Stranskyheilkron et al., Gd-nanoparticles functionalization with specific peptides for -amyloid plaques targeting, Journal of Nanobiotechnology, vol.60, issue.14, p.86, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01356748

J. F. Jordao, E. Thvenot, K. M. Coultes, T. Scarcelli, Y. Weng et al., Amyloidplaque reduction, endogenous antibody delivery and glial activation by braintargeted, transcranial focused ultrasound, Experimental Neurology, vol.248, p.86, 2013.

J. H. Viles, Metal ions and amyloid fiber formation in neurodegenerative diseases. Copper, zinc and iron in Alzheimer's, Parkinson's and prion diseases, Coordination Chemistry Reviews, vol.256, pp.2271-2284, 2012.

H. Rositi, V. Hubert, L. Weber, E. Ong, L. P. Berner et al., High throughput three-dimensional imaging of myelin fibers in the whole mouse brain
URL : https://hal.archives-ouvertes.fr/hal-01744991

, Dedicated Microsymposium 2 (UDM2) ESRF user meeting 2017 -Quantitative coherent X-ray diffraction imaging, p.89, 2017.

H. Oakley, S. Cole, S. Logan, E. Maus, P. Shao et al., Intraneuronal betaamyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation, Journal of Neuroscience, vol.26, pp.10129-10140, 2006.

S. Jawhar, A. Trawicka, C. Jenneckens, T. Bayer, and O. Wirths, Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal AB aggregation in the 5XFAD mouse model of Alzheimer's disease, Neurobiology of Aging, vol.30, issue.1, pp.196-225, 2012.

T. Dickson and J. Vickers, The morphological phenotype of -amyloid plaques and associated neuritic changes in Alzheimer's disease, Neuroscience, vol.105, issue.1, pp.99-107, 2001.

M. D. Meadowcroft, J. R. Connor, M. B. Smith, and Q. X. Yang, Magnetic resonance imaging and histological analysis of beta-amyloid plaques in both human alzheimer's disease and app/ps1 transgenic mice, Journal of magnetic resonance imaging: JMRI, vol.29, issue.5, pp.997-1007, 2009.

M. W. Bourassa, A. C. Leskovjan, R. V. Tappero, E. R. Farquhar, C. A. Colton et al., Elevated copper in the amyloid plaques and iron in the cortex are observed in mouse models of alzheimer's disease that exhibit neurodegeneration, Biomedical spectroscopy and imaging, vol.2, issue.2, p.96, 2013.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging, p.99, 1988.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, Light Field Microscopy, ACM Transactions on Graphics -Proc. SIGGRAPH, vol.25, issue.3, p.825, 2006.

N. Viganò, H. D. Sarkissian, C. Herzog, O. De-la-rochefoucauld, R. Van-liere et al., Tomographic approach for the quantitative scene reconstruction from light field images, Opt. Express, vol.26, issue.18, p.99, 2018.

G. Lippmann, ´ Epreuves réversibles donnant la sensation du relief, J. Phys

, Theor. Appl, vol.7, issue.1, pp.821-825, 1908.

H. Ives, Parallax Panoramagrams Made With a Large Diameter Lens, Journal of the Optical Society of America, vol.20, issue.6, pp.332-340, 1930.

E. H. Adelson and J. R. Bergen, The plenoptic function and the elements of early vision, Computational Models of Visual Processing, vol.101, p.100, 1991.

E. H. Adelson and J. Y. Wang, Single Lens Stereo with a Plenoptic Camera, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.14, issue.2, pp.99-106, 1992.

M. Levoy and P. Hanrahan, Light field rendering, Proceedings of the 23rd annual conference on Computer graphics and interactive techniques -SIG-GRAPH '96, vol.101, p.100, 1996.

A. Gershun, The light field, J. Math. and Physics, vol.18, pp.51-151, 1936.

A. Isaksen, L. Mcmillan, and S. J. Gortler, Dynamically reparameterized light fields, Proceedings of the 27th annual conference on Computer graphics and interactive techniques -SIGGRAPH '00, pp.297-306, 2000.

M. Levoy, B. Chen, V. Vaish, M. Horowitz, I. Mcdowall et al., Synthetic aperture confocal imaging, ACM Transactions on Graphics, vol.23, p.825, 2004.

R. Ng, Fourier slice photography, ACM SIGGRAPH 2005 Papers on -SIGGRAPH '05, vol.100, p.735, 2005.

, Lytro

A. Lumsdaine and T. Georgiev, The Focused Plenoptic Camera, 2009 IEEE International Conference on Computational Photography (ICCP), vol.106, p.100, 2009.

, Adobe, vol.100

, Raytrix

E. Y. Lam, Computational photography with plenoptic camera and light field capture: tutorial, Journal of the Optical Society of America A, vol.32, issue.11, p.825, 2015.

S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, The Lumigraph, Siggraph, vol.101, pp.43-54, 1996.

T. Georgiev and A. Lumsdaine, Reducing Plenoptic Camera Artefacts, COMPUTER GRAPHICS forum, vol.29, issue.6, p.106, 2010.

, ImagineOptic, p.112

R. Ramamoorthi and P. Hanrahan, On the relationship between radiance and irradiance: determining the illumination from images of a convex Lambertian object, Journal of the Optical Society of America A, vol.18, pp.2448-2459, 2001.

L. Stroebel, J. Compton, J. Current, and R. Zakia, Photographic Materials and Processes, vol.122, 1986.

M. A. Le-gros, G. Mcdermott, B. P. Cinquin, E. A. Smith, M. Do et al., Biological soft x-ray tomography on beamline 2.1 at the advanced light source, Journal of microscopy, vol.21, issue.6, pp.1370-1377, 2014.

C. A. Larabell, T. L. Gros, and M. A. Pollard, X-ray tomography generates 3-d reconstructions of the yeast, saccharomyces cerevisiae, at 60-nm resolution, Molecular Biology of the Cell, vol.15, issue.3, p.134, 2004.

E. A. Smith, B. P. Cinquin, G. Mcdermott, M. A. Le-gros, D. Y. Parkinson et al., Correlative microscopy methods that maximize specimen fidelity and data completeness, and improve molecular localization capabilities, Journal of Structural Biology, vol.184, issue.1, pp.12-20, 2013.

W. Chao, P. Fischer, T. Tyliszczak, S. Rekawa, E. Anderson et al., Real space soft x-ray imaging at 10 nm spatial resolution, vol.20, p.134, 2012.

J. Kirz, C. Jacobsen, and M. Howells, Soft x-ray microscopes and their biological applications, Quarterly Reviews of Biophysics, vol.28, issue.1, pp.33-130, 1995.

H. N. Chapman, C. Jacobsen, and S. Williams, A characterisation of darkfield imaging of colloidal gold labels in a scanning transmission x-ray microscope, Ultramicroscopy, vol.62, issue.3, p.135, 1996.

W. Meyer-llse, D. Hamamoto, A. Nair, S. Lelivre, G. Denbeaux et al., High resolution protein localization using soft x-ray microscopy, Journal of microscopy, vol.201, issue.3, pp.395-403, 2001.

S. Suehiro, H. Miyaji, and H. Hayashi, Refractive lens for X-ray focus, Nature, vol.352, p.136, 1991.

A. G. Michette, No X-ray lens, Nature, vol.353, p.136, 1991.

B. X. Yang, Fresnel and refractive lenses for X-ray, Nucl. Instrum. Methods A, vol.328, p.136, 1993.

, Ray Data Booklet/Section 4.MULTILAYERS AND CRYSTALS, p.138

M. Ishino and O. Yoda, Fabrication of multilayer mirrors consisting of oxide and nitride layers for continual use across the k-absorption edge of carbon, Applied Optics, vol.43, issue.9, p.138, 2004.

W. Chao, J. Kim, S. Rekawa, P. Fischer, and E. H. Anderson, Demonstration of 12 nm Resolution Fresnel Zone Plate Lens based Soft X-ray Microscopy, Optics Express, vol.17, issue.20, pp.17669-17677, 2009.

, X-Ray Data Booklet/Section 4.4 ZONE PLATES, p.141

P. W. Wachulak, A. Torrisi, A. Bartnik, H. Fiedorowicz, T. Feigl et al., A compact, quasi-monochromatic laserplasma EUV source based on a double-stream gas-puff target at 13.8 nm wavelength, Appl. Phys. B, vol.100, issue.3, p.141, 2010.

K. W. Kim, Y. Kwon, K. Y. Nam, J. H. Lim, K. G. Kim et al., Compact soft x-ray transmission microscopy with sub-50 nm spatial resolutiion, Phys. Med. Biol, vol.51, issue.6, p.141, 2006.

P. A. Takman, G. A. Stollberg, G. A. Johansson, A. Holmberg, M. Lindblom et al., High-resolution compact X-ray microscopy, Journal of Microscopy, vol.226, issue.2, p.141, 2007.

G. A. Johansson, A. Holmberg, H. M. Hertz, and M. Berglund, Design and performance of a laser-plasma-based compact soft x-ray microscope, Review of Scientific Instruments, vol.73, issue.3, p.141, 2002.

, Thales, p.142

, ATTOTECH, p.142

&. Luxel, , p.142

, Princeton Instruments

H. Labriet, C. Nemoz, M. Renier, P. Berkvens, T. Brochard et al., Significant dose reduction using synchrotron radiation computed tomography: first clinical case and application to high resolution ct exams, Scientific Reports, vol.8, issue.12491, p.156, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02082768