L. .. ,

, 117 6.2 Transition entre critère en énergie et critère en contrainte, p.117

. .. , 118 6.2.2 Transition en fonction du rapport d'aspect, p.121

.. .. Conclusion,

R. Palmer and R. , The economic effects of fracture in the United States, vol.647, 1983.

A. Zeghloul, Concepts fondamentaux de la mécanique de la rupture, DEA Mécanique-Matériaux-Structures-Procédés, 2003.

C. Henry, P. Pusey, and . Howard, An historical view of mechanical failure prevention technology. Sound and Vibration, p.11, 2008.

L. Ted and . Anderson, Fracture mechanics : fundamentals and applications, 2017.

. Surjya-kumar-maiti, Fracture mechanics : fundamentals and applications, 2015.

A. F. Norman and . Smith, The failure of the bouzey dam in 1895, 2017.

J. Leblond and P. Germain, Mécanique de la rupture fragile et ductile. Hermès science publications, 2003.
DOI : 10.1016/s1251-8069(98)80033-x

L. Bauvineau, Approche locale de la rupture ductile : application a un acier carbone-mangahnese, EMP, 1996.

A. Frank and . Mcclintock, A criterion for ductile fracture by the growth of holes, Journal of applied mechanics, vol.35, issue.2, pp.363-371, 1968.

J. Rice and D. M. Tracey, On the ductile enlargement of voids in triaxial stress fields, Journal of the Mechanics and Physics of Solids, vol.17, issue.3, pp.201-217, 1969.

. Arthur-l-gurson, Continuum theory of ductile rupture by void nucleation and growth : Part i-yield criteria and flow rules for porous ductile media, Journal of engineering materials and technology, vol.99, issue.1, pp.2-15, 1977.

V. Tvergaard, Influence of voids on shear band instabilities under plane strain conditions, International Journal of fracture, vol.17, issue.4, pp.389-407, 1981.

V. Tvergaard and A. Needleman, Analysis of the cup-cone fracture in a round tensile bar, Acta metallurgica, vol.32, issue.1, pp.157-169, 1984.

G. Rousselier, Finite deformation constitutive relations including ductile fracture damage. Three-dimensional constitutive relations and ductile fracture, pp.83-18477
DOI : 10.1016/b978-1-4832-8440-8.50105-8

URL : https://hal.archives-ouvertes.fr/hal-02060680

. Amsterdam, , pp.331-355, 1981.

J. Leblond, G. Perrin, and J. Devaux, An improved gurson-type model for hardenable ductile metals, European journal of mechanics. A. Solids, vol.14, issue.4, pp.499-527, 1995.

G. Perrin, Contribution à l'étude théorique et numérique de la rupture ductile des métaux, 1992.

. Wj-macquorn-rankine, On the stability of loose earth, Proceedings of the Royal Society of London, pp.185-187, 1856.

C. Augustin-de-coulomb, Essai sur une application des règles de maximis & minimis à quelques problèmes de statique

H. Tresca, Mémoire sure Ðécoulement des corpes solides soumis á de fortes pressions, Comptes Rendus Acad. Sci, p.1864

M. R-von, Mechanik der plastischen formänderung von kristallen, ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, vol.8, issue.3, pp.161-185, 1928.

C. Daniel, W. Drucker, and . Prager, Soil mechanics and plastic analysis or limit design, Quarterly of applied mathematics, vol.10, issue.2, pp.157-165, 1952.

I. Nelson, L. Melvin, and . Baron, Investigation of ground shock effects in nonlinear hysteretic media. report 1. development of mathematical material models, 1968.

C. E. Inglis, Stresses in a plate due to the presence of cracks and sharp corners. Transactions of the institute of naval architects, vol.55, pp.193-198, 1913.

A. Alan, M. Griffith, and . Eng, Vi. the phenomena of rupture and flow in solids, Phil. Trans. R. Soc. Lond. A, vol.221, pp.163-198, 1921.

. Gr-irwin, Fracture dynamics, fracturing of metals. american society of metals, 1948.

. Gr-irwin, Fracture in handbuch der physik, 1958.

L. Max and . Williams, The bending stress distribution at the base of a stationary crack, Journal of applied mechanics, vol.28, issue.1, pp.78-82, 1961.

R. George, J. A. Irwin, and . Kies, Critical energy rate analysis of fracture strength. Spie Milestone series MS, vol.137, pp.136-141, 1997.

. Gr-irwin, Handbuch der physik. Bd, vol.6, pp.551-590, 1958.

. George-r-irwin, Analysis of stresses and strains near the end of a crack traversing a plate, J. appl. Mech, 1957.

. Donald-s-dugdale, Yielding of steel sheets containing slits, Journal of the Mechanics and Physics of Solids, vol.8, issue.2, pp.100-104, 1960.

B. Grigory-isaakovich, The mathematical theory of equilibrium cracks in brittle fracture, Advances in applied mechanics, vol.7, pp.55-129, 1962.

A. Hillerborg, M. Modéer, and P. Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement and concrete research, vol.6, issue.6, pp.773-781, 1976.

P. Zdenek and . Bazant, Instability, ductility, and size effect in strain-softening concrete, ASCE J Eng Mech Div, vol.102, issue.2, pp.331-344, 1976.

L. Cedolin, P. Zden?k, and . Ba?ant, Effect of finite element choice in blunt crack band analysis, Computer Methods in Applied Mechanics and Engineering, vol.24, issue.3, pp.305-316, 1980.

P. Zden?k and . Ba?ant, Size effect in blunt fracture : concrete, rock, metal, Journal of Engineering Mechanics, vol.110, issue.4, pp.518-535, 1984.

R. Mueller and . Maugin, On material forces and finite element discretizations. Computational mechanics, vol.29, pp.52-60, 2002.
DOI : 10.1007/s00466-002-0322-2

S. Flouriot, S. Forest, G. Cailletaud, L. Köster, . Rémy et al., Strain localization at the crack tip in single crystal ct specimens under monotonous loading : 3d finite element analyses and application to nickel-base superalloys, International journal of fracture, vol.124, issue.1-2, pp.43-77, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00165951

N. Garth, . Wells, and . Sluys, A new method for modelling cohesive cracks using finite elements, International Journal for Numerical Methods in Engineering, vol.50, issue.12, pp.2667-2682, 2001.

N. Moës, J. Dolbow, and T. Belytschko, A finite element method for crack growth without remeshing, International journal for numerical methods in engineering, vol.46, issue.1, pp.131-150, 1999.

J. Dolbow, N. Moës, and T. Belytschko, An extended finite element method for modeling crack growth with frictional contact, Computer methods in applied Mechanics and engineering, vol.190, pp.6825-6846, 2001.
DOI : 10.1016/s0045-7825(01)00260-2

URL : https://hal.archives-ouvertes.fr/hal-01461932

T. Menouillard, J. Rethore, A. Combescure, and H. Bung, Efficient explicit time stepping for the extended finite element method (x-fem), International Journal for Numerical Methods in Engineering, vol.68, issue.9, pp.911-939, 2006.
DOI : 10.1002/nme.1718

URL : https://hal.archives-ouvertes.fr/hal-00938641

A. Benoit-prabel, A. Combescure, S. Gravouil, and . Marie, Level set xfem non-matching meshes : application to dynamic crack propagation in elastic-plastic media, International Journal for Numerical Methods in Engineering, vol.69, issue.8, pp.1553-1569, 2007.

. Ca-duarte, . Hamzeh, W. W. Tj-liszka, and . Tworzydlo, A generalized finite element method for the simulation of three-dimensional dynamic crack propagation, Computer Methods in Applied Mechanics and Engineering, vol.190, pp.2227-2262, 2001.

N. Moës and T. Belytschko, X-fem, de nouvelles frontières pour les éléments finis, vol.11, pp.305-318, 2002.

N. Moës, A. Gravouil, and T. Belytschko, Non-planar 3d crack growth by the extended finite element and level sets-part i : Mechanical model, International Journal for Numerical Methods in Engineering, vol.53, issue.11, pp.2549-2568, 2002.

A. Gravouil, N. Moës, and T. Belytschko, Non-planar 3d crack growth by the extended finite element and level sets-part ii : Level set update, International Journal for Numerical Methods in Engineering, vol.53, issue.11, pp.2569-2586, 2002.
DOI : 10.1002/nme.430

URL : https://hal.archives-ouvertes.fr/hal-01007111

N. Moës and T. Belytschko, Extended finite element method for cohesive crack growth, Engineering fracture mechanics, vol.69, issue.7, pp.813-833, 2002.

A. Fasano and M. Primicerio, Free boundary problems : theory and applications, vol.2, 1983.

. Langer, Models of pattern formation in first-order phase transitions, Directions in Condensed Matter Physics : Memorial Volume in Honor of Shang-Keng Ma, pp.165-186, 1986.

A. Gilles, J. Francfort, and . Marigo, Revisiting brittle fracture as an energy minimization problem, Journal of the Mechanics and Physics of Solids, vol.46, issue.8, pp.1319-1342, 1998.

L. Ambrosio and V. M. Tortorelli, Approximation of functional depending on jumps by elliptic functional via t-convergence, Communications on Pure and Applied Mathematics, vol.43, issue.8, pp.999-1036, 1990.

B. Bourdin, A. Gilles, J. Francfort, and . Marigo, Numerical experiments in revisited brittle fracture, Journal of the Mechanics and Physics of Solids, vol.48, issue.4, pp.797-826, 2000.
DOI : 10.1016/s0022-5096(99)00028-9

C. Miehe, M. Hofacker, and F. Welschinger, A phase field model for rate-independent crack propagation : Robust algorithmic implementation based on operator splits, Computer Methods in Applied Mechanics and Engineering, vol.199, pp.2765-2778, 2010.

J. Tt-nguyen, M. Yvonnet, C. Bornert, K. Chateau, . Sab et al., On the choice of parameters in the phase field method for simulating crack initiation with experimental validation, International Journal of Fracture, vol.197, issue.2, pp.213-226, 2016.

K. Pham, H. Amor, J. Marigo, and C. Maurini, Gradient damage models and their use to approximate brittle fracture, International Journal of Damage Mechanics, vol.20, issue.4, pp.618-652, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00549530

E. Lorentz, A nonlocal damage model for plain concrete consistent with cohesive fracture, International Journal of Fracture, vol.207, issue.2, pp.123-159, 2017.

J. , Y. Wu, and V. Nguyen, A length scale insensitive phase-field damage model for brittle fracture, Journal of the Mechanics and Physics of Solids, 2018.

. Vv-novozhilov, On a necessary and sufficient criterion for brittle strength : Pmm vol, Journal of Applied Mathematics and Mechanics, vol.33, issue.2, pp.201-210, 1969.

A. Seweryn, Brittle fracture criterion for structures with sharp notches, Engineering Fracture Mechanics, vol.47, issue.5, pp.673-681, 1994.

Z. Hashin, Finite thermoelastic fracture criterion with application to laminate cracking analysis, Journal of the Mechanics and Physics of Solids, vol.44, issue.7, pp.1129-1145, 1996.

D. Leguillon, Strength or toughness ? a criterion for crack onset at a notch, European Journal of Mechanics-A/Solids, vol.21, issue.1, pp.61-72, 2002.

A. Parvizi, J. E. Garrett, and . Bailey, Constrained cracking in glass fibre-reinforced epoxy cross-ply laminates, Journal of Materials Science, vol.13, issue.1, pp.195-201, 1978.

D. Leguillon, Calcul du taux de restitution de l'énergie au voisinage d'une singularité. Comptes rendus de l'Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l'univers, Sciences de la Terre, vol.309, issue.10, pp.945-950, 1989.

J. Li and . Zhang, A criterion study for non-singular stress concentrations in brittle or quasi-brittle materials, Engineering fracture mechanics, vol.73, issue.4, pp.505-523, 2006.

X. B. Zhang and . Li, A failure criterion for brittle and quasi-brittle materials under any level of stress concentration, Engineering Fracture Mechanics, vol.75, issue.17, pp.4925-4932, 2008.

. Wilfred-f-van-gunsteren, J. C. Herman, and . Berendsen, Computer simulation of molecular dynamics : methodology, applications, and perspectives in chemistry, Angewandte Chemie International Edition in English, vol.29, issue.9, pp.992-1023, 1990.

E. Joos and . Dieter-zeh, The emergence of classical properties through interaction with the environment, Zeitschrift für Physik B Condensed Matter, vol.59, issue.2, pp.223-243, 1985.

C. Chipot, Les méthodes numériques de la dynamique moléculaire, Nancy : UMR, vol.7565, 2003.

C. Dennis, D. Rapaport, and . Rapaport, The art of molecular dynamics simulation, 2004.

T. Bj-alder and . Wainwright, Phase transition for a hard sphere system, The Journal of chemical physics, vol.27, issue.5, pp.1208-1209, 1957.

J. Berni, T. Alder, and . Wainwright, Studies in molecular dynamics. i. general method, The Journal of Chemical Physics, vol.31, issue.2, pp.459-466, 1959.

. Bj-alder and . Wainwright, Studies in molecular dynamics. ii. behavior of a small number of elastic spheres, The Journal of Chemical Physics, vol.33, issue.5, pp.1439-1451, 1960.

A. Rahman, Correlations in the motion of atoms in liquid argon, Physical Review, vol.136, issue.2A, p.405, 1964.

A. Rahman, H. Frank, and . Stillinger, Molecular dynamics study of liquid water, The Journal of Chemical Physics, vol.55, issue.7, pp.3336-3359, 1971.

D. Frenkel and B. Smit, Understanding molecular simulation : from algorithms to applications, vol.1, 2001.

M. Born and . Th-von-kármán, On fluctuations in spatial grids, Physikalische Zeitschrift, vol.13, p.18, 1912.

P. Michael, D. J. Allen, and . Tildesley, Computer simulation of liquids, 2017.

P. Paul and . Ewald, Die berechnung optischer und elektrostatischer gitterpotentiale, Annalen der physik, vol.369, issue.3, pp.253-287, 1921.

L. Woodcock, Isothermal molecular dynamics calculations for liquid salts, Chemical Physics Letters, vol.10, issue.3, pp.257-261, 1971.

N. Sh¯-uichi, A molecular dynamics method for simulations in the canonical ensemble, Molecular physics, vol.52, issue.2, pp.255-268, 1984.

S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, The Journal of chemical physics, vol.81, issue.1, pp.511-519, 1984.

G. William and . Hoover, Canonical dynamics : equilibrium phase-space distributions, Physical review A, vol.31, issue.3, p.1695, 1985.

J. Denis, B. L. Evans, and . Holian, The nose-hoover thermostat, The Journal of chemical physics, vol.83, issue.8, pp.4069-4074, 1985.

H. Philippe and . Hünenberger, Thermostat algorithms for molecular dynamics simulations, Advanced computer simulation, pp.105-149, 2005.

. Victor-rühle, Berendsen and nose-hoover thermostats, Am. J. Phys, 2007.

J. Glenn, . Martyna, J. Douglas, M. Tobias, and . Klein, Constant pressure molecular dynamics algorithms, The Journal of Chemical Physics, vol.101, issue.5, pp.4177-4189, 1994.

M. Griebel and . Hamaekers, Molecular dynamics simulations of the mechanical properties of polyethylene-carbon nanotube composites, Handbook of Theoretical and Computational Nanotechnology, vol.9, pp.409-454, 2005.

J. Mark-e-tuckerman, R. Alejandre, A. L. López-rendón, G. J. Jochim, and . Martyna, A liouville-operator derived measure-preserving integrator for molecular dynamics simulations in the isothermal-isobaric ensemble, Journal of Physics A : Mathematical and General, vol.39, issue.19, p.5629, 2006.

L. Verlet, Computer" experiments" on classical fluids. i. thermodynamical properties of lennard-jones molecules, Physical review, vol.159, issue.1, p.98, 1967.

P. Debye, Zur theorie der spezifischen wärmen, Annalen der Physik, vol.344, issue.14, pp.789-839, 1912.

B. Anthony and . Costa, Introduction à la modélisation moléculaire. Formation Continue CNRS, 2003.

S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, Journal of computational physics, vol.117, issue.1, pp.1-19, 1995.

C. Anthony and .. B. , LAMMPS-HESSIAN" Package Version, 2016.

A. Mf, Materials selection in mechanical design. pergamonpress, 1992.

L. Brochard, S. Souguir, and K. Sab, Scaling of brittle failure : strength versus toughness, International Journal of Fracture, vol.210, issue.1-2, pp.153-166, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01744161

R. Thomson, solid state physics, vol.39, 1986.

. Leonid-i-slepyan, Models and phenomena in fracture mechanics. foundations of engineering mechanics, 2002.

M. Marder and S. Gross, Origin of crack tip instabilities, Journal of the Mechanics and Physics of Solids, vol.43, issue.1, pp.1-48, 1995.
DOI : 10.1016/0022-5096(94)00060-i

URL : http://arxiv.org/pdf/chao-dyn/9410009v1.pdf

R. Thomson, . Zhou, V. K. Ae-carlsson, and . Tewary, Lattice imperfections studied by use of lattice green's functions, Physical Review B, vol.46, issue.17, p.10613, 1992.
DOI : 10.1103/physrevb.46.10613

L. Pechenik, H. Levine, and D. Kessler, Steady-state mode i cracks in a viscoelastic triangular lattice, Journal of the Mechanics and Physics of Solids, vol.50, issue.3, pp.583-613, 2002.

L. Brochard, G. Hantal, H. Laubie, F. Ulm, and R. Pellenq, Capturing material toughness by molecular simulation : accounting for large yielding effects and limits, International Journal of Fracture, vol.194, issue.2, pp.149-167, 2015.
DOI : 10.1007/s10704-015-0045-y

URL : https://hal.archives-ouvertes.fr/hal-01274102

L. Brochard, G. Ignacio, K. Tejada, and . Sab, From yield to fracture, failure initiation captured by molecular simulation, Journal of the Mechanics and Physics of Solids, vol.95, pp.632-646, 2016.
DOI : 10.1016/j.jmps.2016.05.005

URL : https://hal.archives-ouvertes.fr/hal-01686201

. Bl-karihaloo, M. Wang, and . Grzybowski, Doubly periodic arrays of bridged cracks and short fibre-reinforced cementitious composites, Journal of the Mechanics and Physics of Solids, vol.44, issue.10, pp.1565-1586, 1996.

M. Philip and . Morse, Diatomic molecules according to the wave mechanics. ii. vibrational levels, Physical Review, vol.34, issue.1, p.57, 1929.

S. Kostya, A. K. Novoselov, S. V. Geim, D. A. Morozov, Y. Jiang et al., Electric field effect in atomically thin carbon films, science, vol.306, issue.5696, pp.666-669, 2004.

J. Fernández-rossier, L. Palacios, and . Brey, Electronic structure of gated graphene and graphene ribbons, Physical Review B, vol.75, issue.20, p.205441, 2007.

H. Zhang, T. Zhou, G. Xie, J. Cao, and Z. Yang, Thermal transport in folded zigzag and armchair graphene nanoribbons, Applied Physics Letters, vol.104, issue.24, p.241908, 2014.

K. F. Mak, Y. Matthew, Y. Sfeir, C. H. Wu, J. A. Lui et al., Measurement of the optical conductivity of graphene, Physical review letters, vol.101, issue.19, p.196405, 2008.

G. Cao, Atomistic studies of mechanical properties of graphene, Polymers, vol.6, issue.9, pp.2404-2432, 2014.

. Ks-novoselov, Nobel lecture : Graphene : Materials in the flatland, Reviews of Modern Physics, vol.83, issue.3, p.837, 2011.

C. Chen, S. Rosenblatt, I. Kirill, W. Bolotin, P. Kalb et al., Performance of monolayer graphene nanomechanical resonators with electrical readout, Nature nanotechnology, vol.4, issue.12, p.861, 2009.

M. Jeremy-t-robinson, . Zalalutdinov, W. Jeffrey, E. S. Baldwin, Z. Snow et al., Wafer-scale reduced graphene oxide films for nanomechanical devices, Nano letters, vol.8, issue.10, pp.3441-3445, 2008.

S. Bunch, M. Arend, . Van-der-zande, S. Scott, I. W. Verbridge et al., Electromechanical resonators from graphene sheets, Science, vol.315, issue.5811, pp.490-493, 2007.
DOI : 10.1126/science.1136836

A. Reserbat-plantey, L. Marty, O. Arcizet, N. Bendiab, and V. Bouchiat, A local optical probe for measuring motion and stress in a nanoelectromechanical system, Nature nanotechnology, vol.7, issue.3, p.151, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00700006

S. Stankovich, A. Dmitriy, . Dikin, H. B. Geoffrey, K. M. Dommett et al., Graphene-based composite materials, nature, vol.442, issue.7100, p.282, 2006.

T. Ramanathan, . Abdala, . Stankovich, . Da-dikin, . Herrera-alonso et al., Functionalized graphene sheets for polymer nanocomposites, Nature nanotechnology, vol.3, issue.6, p.327, 2008.

J. Mohammed-a-rafiee, I. Rafiee, Z. Srivastava, H. Wang, Z. Song et al., Fracture and fatigue in graphene nanocomposites, small, vol.6, issue.2, pp.179-183, 2010.

V. Eswaraiah, K. Balasubramaniam, and S. Ramaprabhu, One-pot synthesis of conducting graphene-polymer composites and their strain sensing application, Nanoscale, vol.4, issue.4, pp.1258-1262, 2012.

C. Lee, X. Wei, W. Jeffrey, J. Kysar, and . Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. science, vol.321, pp.385-388, 2008.

P. Zhang, L. Ma, F. Fan, Z. Zeng, C. Peng et al., Fracture toughness of graphene, Nature communications, vol.5, p.3782, 2014.

T. Zhang, X. Li, and H. Gao, Fracture of graphene : a review, International Journal of Fracture, vol.196, issue.1-2, pp.1-31, 2015.

J. R. Klepaczko and G. Pluvinage, Ténacité d'aciers de construction à différentes tempé-ratures et vitesse de chargement, Le Journal de Physique Colloques, vol.46, issue.C5, pp.5-145, 1985.
DOI : 10.1051/jphyscol:1985519

W. Donald and . Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Physical review B, vol.42, issue.15, p.9458, 1990.

J. Steven, A. B. Stuart, J. A. Tutein, and . Harrison, A reactive potential for hydrocarbons with intermolecular interactions, The Journal of chemical physics, vol.112, issue.14, pp.6472-6486, 2000.

R. G-rajasekaran, A. Kumar, and . Parashar, Tersoff potential with improved accuracy for simulating graphene in molecular dynamics environment, Materials Research Express, vol.3, issue.3, p.35011, 2016.

K. E. Benjamin-d-jensen, G. M. Wise, and . Odegard, Simulation of the elastic and ultimate tensile properties of diamond, graphene, carbon nanotubes, and amorphous carbon using a revised reaxff parametrization, The Journal of Physical Chemistry A, vol.119, issue.37, pp.9710-9721, 2015.

T. Belytschko, . Xiao, R. S. Schatz, and . Ruoff, Atomistic simulations of nanotube fracture, Physical Review B, vol.65, issue.23, p.235430, 2002.

J. H. Los and . Fasolino, Intrinsic long-range bond-order potential for carbon : Performance in monte carlo simulations of graphitization, Physical Review B, vol.68, issue.2, p.24107, 2003.

W. Donald, O. A. Brenner, J. A. Shenderova, . Harrison, J. Steven et al., A second-generation reactive empirical bond order (rebo) potential energy expression for hydrocarbons, Journal of Physics : Condensed Matter, vol.14, issue.4, p.783, 2002.

. Gc-abell, Empirical chemical pseudopotential theory of molecular and metallic bonding, Physical Review B, vol.31, issue.10, p.6184, 1985.

Z. Ni, H. Bu, M. Zou, H. Yi, K. Bi et al., Anisotropic mechanical properties of graphene sheets from molecular dynamics, Physica B : Condensed Matter, vol.405, issue.5, pp.1301-1306, 2010.

F. Liu, P. Ming, and J. Li, Ab initio calculation of ideal strength and phonon instability of graphene under tension, Physical Review B, vol.76, issue.6, p.64120, 2007.

E. Konstantinova, O. Sócrates, P. Dantas, and . Barone, Electronic and elastic properties of two-dimensional carbon planes, Physical Review B, vol.74, issue.3, p.35417, 2006.

H. Zhao and . Min, Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension, Nano letters, vol.9, issue.8, pp.3012-3015, 2009.

X. Wei, B. Fragneaud, C. A. Marianetti, and J. W. Kysar, Nonlinear elastic behavior of graphene : Ab initio calculations to continuum description, Physical Review B, vol.80, issue.20, p.205407, 2009.

G. Van-lier, C. Van-alsenoy, V. Van-doren, and P. Geerlings, Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene, Chemical Physics Letters, vol.326, issue.1-2, pp.181-185, 2000.

G. E. Konstantin-n-kudin, B. I. Scuseria, and . Yakobson, C 2 f, bn, and c nanoshell elasticity from ab initio computations, Physical Review B, vol.64, issue.23, p.235406, 2001.

A. Chris, . Marianetti, G. Hannah, and . Yevick, Failure mechanisms of graphene under tension, Physical review letters, vol.105, issue.24, p.245502, 2010.

J. Lee, D. Yoon, and H. Cheong, Estimation of young's modulus of graphene by raman spectroscopy, Nano letters, vol.12, issue.9, pp.4444-4448, 2012.

E. Cadelano, P. L. Palla, S. Giordano, and L. Colombo, Nonlinear elasticity of monolayer graphene, Physical review letters, vol.102, issue.23, p.235502, 2009.

B. Wenxing, Z. Changchun, and C. Wanzhao, Simulation of young's modulus of single-walled carbon nanotubes by molecular dynamics, Physica B : Condensed Matter, vol.352, issue.1-4, pp.156-163, 2004.

Q. Lu and R. Huang, Nonlinear mechanics of single-atomic-layer graphene sheets, International Journal of Applied Mechanics, vol.1, issue.03, pp.443-467, 2009.

Q. Lu, W. Gao, and R. Huang, Atomistic simulation and continuum modeling of graphene nanoribbons under uniaxial tension. Modelling and Simulation in, Materials Science and Engineering, vol.19, issue.5, p.54006, 2011.

Y. Zheng, N. Wei, Z. Fan, L. Xu, and Z. Huang, Mechanical properties of grafold : a demonstration of strengthened graphene, Nanotechnology, vol.22, issue.40, p.405701, 2011.

Q. Pei, Y. Zhang, B. Vivek, and . Shenoy, Mechanical properties of methyl functionalized graphene : a molecular dynamics study, Nanotechnology, vol.21, issue.11, p.115709, 2010.

. Yy-zhang, . Pei, and . Wang, Mechanical properties of graphynes under tension : a molecular dynamics study, Applied Physics Letters, vol.101, issue.8, p.81909, 2012.

. Qx-pei, V. B. Zhang, and . Shenoy, A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene, Carbon, vol.48, issue.3, pp.898-904, 2010.

T. Chang and H. Gao, Size-dependent elastic properties of a singlewalled carbon nanotube via a molecular mechanics model, Journal of the Mechanics and Physics of Solids, vol.51, issue.6, pp.1059-1074, 2003.

M. Michele and R. Marco, Prediction of young's modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling, Composites Science and Technology, vol.66, issue.11, pp.1597-1605, 2006.

M. Jacob, . Wernik, A. Shaker, and . Meguid, Atomistic-based continuum modeling of the nonlinear behavior of carbon nanotubes, Acta Mechanica, vol.212, issue.1-2, pp.167-179, 2010.

. Cd-reddy, K. M. Rajendran, and . Liew, Equilibrium configuration and continuum elastic properties of finite sized graphene, Nanotechnology, vol.17, issue.3, p.864, 2006.

K. E. Benjamin-d-jensen, G. M. Wise, and . Odegard, The effect of time step, thermostat, and strain rate on reaxff simulations of mechanical failure in diamond, graphene, and carbon nanotube, Journal of computational chemistry, vol.36, issue.21, pp.1587-1596, 2015.

. Kv-zakharchenko, A. Mi-katsnelson, and . Fasolino, Finite temperature lattice properties of graphene beyond the quasiharmonic approximation, Physical review letters, vol.102, issue.4, p.46808, 2009.

B. Zhang, L. Mei, and H. Xiao, Nanofracture in graphene under complex mechanical stresses, Applied Physics Letters, vol.101, issue.12, p.121915, 2012.

A. Omeltchenko, J. Yu, K. Rajiv, P. Kalia, and . Vashishta, Crack front propagation and fracture in a graphite sheet : a molecular-dynamics study on parallel computers, Physical review letters, vol.78, issue.11, p.2148, 1997.

J. Han, D. Sohn, W. Woo, and D. Kim, Molecular dynamics study of fracture toughness and trans-intergranular transition in bi-crystalline graphene, Computational Materials Science, vol.129, pp.323-331, 2017.

. Man-dewapriya, . Rajapakse, and . Phani, Atomistic and continuum modelling of temperature-dependent fracture of graphene, International Journal of Fracture, vol.187, issue.2, pp.199-212, 2014.

S. Zhang, T. Zhu, and T. Belytschko, Atomistic and multiscale analyses of brittle fracture in crystal lattices, Physical Review B, vol.76, issue.9, p.94114, 2007.

M. Xu, A. Tabarraei, T. Jeffrey, J. Paci, T. Oswald et al., A coupled quantum/continuum mechanics study of graphene fracture, International journal of fracture, vol.173, issue.2, pp.163-173, 2012.

. Hill, A general theory of uniqueness and stability in elastic-plastic solids, Journal of the Mechanics and Physics of Solids, vol.6, issue.3, pp.236-249, 1958.

N. Triantafyllidis and . Bardenhagen, The influence of scale size on the stability of periodic solids and the role of associated higher order gradient continuum models, Journal of the Mechanics and Physics of Solids, vol.44, issue.11, pp.1891-1928, 1996.

J. Hadamard, U. N. Lecons-sur, . Propagation, and . Ondes, , 1903.

Y. Tracy and . Thomas, Plastic Flow and Fracture in Solids by Tracy Y Thomas, vol.2, 1961.

R. Hill, Acceleration waves in solids, Journal of the Mechanics and Physics of Solids, vol.10, issue.1, pp.1-16, 1962.

J. Mandel, Conditions de stabilité et postulat de drucker, Rheology and Soil Mechanics/Rhéologie et Mécanique des Sols, pp.58-68, 1966.

S. Bardenhagen and N. Triantafyllidis, Derivation of higher order gradient continuum theories in 2, 3-d non-linear elasticity from periodic lattice models, Journal of the Mechanics and Physics of Solids, vol.42, issue.1, pp.111-139, 1994.

C. Elias and . Aifantis, On the microstructural origin of certain inelastic models, Journal of Engineering Materials and technology, vol.106, issue.4, pp.326-330, 1984.

D. Bernard and . Coleman, Necking and drawing in polymeric fibers under tension. Archive for Rational Mechanics and Analysis, vol.83, pp.115-137, 1983.

N. Triantafyllidis, C. Elias, and . Aifantis, A gradient approach to localization of deformation. i. hyperelastic materials, Journal of Elasticity, vol.16, issue.3, pp.225-237, 1986.

N. Triantafyllidis and R. Peek, On stability and the worst imperfection shape in solids with nearly simultaneous eigenmodes, International Journal of Solids and Structures, vol.29, issue.18, pp.2281-2299, 1992.

N. Triantafyllidis, C. William, and . Schnaidt, Comparison of microscopic and macroscopic instabilities in a class of two-dimensional periodic composites, Journal of the Mechanics and Physics of Solids, vol.41, issue.9, pp.1533-1565, 1993.

A. Menzel and P. Steinmann, A theoretical and computational framework for anisotropic continuum damage mechanics at large strains, International Journal of Solids and Structures, vol.38, issue.52, pp.9505-9523, 2001.

A. Askar, Lattice dynamical foundations of continuum theories : elasticity, piezoelectricity, viscoelasticity, plasticity, 1985.

. Isaak-abramovich-kunin, Elastic media with microstructure I : one-dimensional models, vol.26, 2012.

R. David-mindlin, Second gradient of strain and surface-tension in linear elasticity, International Journal of Solids and Structures, vol.1, issue.4, pp.417-438, 1965.

. Ra-toupin and . Gazis, Surface effects and initial stress in continuum and lattice models of elastic crystals, Lattice Dynamics, pp.597-605, 1965.

M. Born and K. Huang, Dynamical theory of crystal lattices, 1954.

J. Weiner, Statistical mechanics of elasticity. Courier Corporation, 2012.

F. Milstein and R. Hill, Theoretical properties of cubic crystals at arbitrary pressure-i. density and bulk modulus, Journal of the Mechanics and Physics of Solids, vol.25, issue.6, pp.457-477, 1977.

F. Milstein and R. Hill, Theoretical properties of cubic crystals at arbitrary pressure-ii. shear moduli, Journal of the Mechanics and Physics of Solids, vol.26, issue.4, pp.213-239, 1978.

F. Milstein and R. Hill, Theoretical properties of cubic crystals at arbitrary pressure-iii. stability, Journal of the Mechanics and Physics of Solids, vol.27, issue.3, pp.255-279, 1979.

N. Triantafyllidis and . Bardenhagen, On higher order gradient continuum theories in 1-d nonlinear elasticity. derivation from and comparison to the corresponding discrete models, Journal of Elasticity, vol.33, issue.3, pp.259-293, 1993.

N. Triantafyllidis and . Schraad, Onset of failure in aluminum honeycombs under general in-plane loading, Journal of the Mechanics and Physics of Solids, vol.46, issue.6, pp.1089-1124, 1998.

C. Combescure, P. Henry, and R. Elliott, Post-bifurcation and stability of a finitely strained hexagonal honeycomb subjected to equi-biaxial in-plane loading, International Journal of Solids and Structures, vol.88, pp.296-318, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01647871

T. Kitamura, Y. Umeno, and N. Tsuji, Analytical evaluation of unstable deformation criterion of atomic structure and its application to nanostructure, Computational Materials Science, vol.29, issue.4, pp.499-510, 2004.

V. Dailidonis, V. Ilyin, P. Mishra, and I. Procaccia, Consequences of disorder on the stability of amorphous solids, Physical Review B, vol.92, issue.9, p.94105, 2015.

M. Jw and C. R. Krenn, The internal stability of an elastic solid, Philosophical Magazine A, vol.80, issue.12, pp.2827-2840, 2000.

V. Dailidonis, V. Ilyin, P. Mishra, and I. Procaccia, Mechanical properties and plasticity of a model glass loaded under stress control, Physical Review E, vol.90, issue.5, p.52402, 2014.

L. Dennis, D. J. Malandro, and . Lacks, Relationships of shear-induced changes in the potential energy landscape to the mechanical properties of ductile glasses, The Journal of chemical physics, vol.110, issue.9, pp.4593-4601, 1999.

G. Gagnon, J. Patton, and D. J. Lacks, Energy landscape view of fracture and avalanches in disordered materials, Physical Review E, vol.64, issue.5, p.51508, 2001.

R. Desmorat, F. Gatuingt, and F. Ragueneau, Nonlocal anisotropic damage model and related computational aspects for quasi-brittle materials, Engineering Fracture Mechanics, vol.74, issue.10, pp.1539-1560, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00994382

M. Genet, L. Marcin, and P. Ladeveze, On structural computations until fracture based on an anisotropic and unilateral damage theory, International Journal of Damage Mechanics, vol.23, issue.4, pp.483-506, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00851003

P. Zden?k, Y. Ba?ant, and . Xi, Statistical size effect in quasi-brittle structures : Ii. nonlocal theory, Journal of engineering Mechanics, vol.117, issue.11, pp.2623-2640, 1991.

P. Zden?k and . Ba?ant, Scaling theory for quasibrittle structural failure, Proceedings of the National Academy of Sciences, vol.101, issue.37, pp.13400-13407, 2004.

P. Zden?k, J. Ba?ant, M. Z. Le, and . Bazant, Scaling of strength and lifetime probability distributions of quasibrittle structures based on atomistic fracture mechanics, Proceedings of the National Academy of Sciences, vol.106, issue.28, pp.11484-11489, 2009.

P. Zden?k, S. Ba?ant, and . Pang, Activation energy based extreme value statistics and size effect in brittle and quasibrittle fracture, Journal of the Mechanics and Physics of Solids, vol.55, issue.1, pp.91-131, 2007.

J. Le, P. Zden?k, M. Z. Ba?ant, and . Bazant, Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures : I. strength, static crack growth, lifetime and scaling, Journal of the Mechanics and Physics of Solids, vol.59, issue.7, pp.1291-1321, 2011.

. Sn-zhurkov, Kinetic concept of the strength of solids, International Journal of Fracture, vol.26, issue.4, pp.295-307, 1984.

S. Arrhenius, Über die reaktionsgeschwindigkeit bei der inversion von rohrzucker durch säuren, Zeitschrift für physikalische Chemie, vol.4, pp.226-248, 1889.

. As-argon, Plastic deformation in metallic glasses, Acta metallurgica, vol.27, issue.1, pp.47-58, 1979.

W. L. Johnson and K. Samwer, A universal criterion for plastic yielding of metallic glasses with a (t/t g) 2/3 temperature dependence, Physical review letters, vol.95, issue.19, p.195501, 2005.

A. Christopher, . Schuh, C. Todd, U. Hufnagel, and . Ramamurty, Mechanical behavior of amorphous alloys, Acta Materialia, vol.55, issue.12, pp.4067-4109, 2007.

R. Dasgupta, A. Joy, I. Hentschel, and . Procaccia, Derivation of the johnson-samwer t 2/3 temperature dependence of the yield strain in metallic glasses, Physical Review B, vol.87, issue.2, p.20101, 2013.

T. Zhu, J. Li, A. Samanta, A. Leach, and K. Gall, Temperature and strain-rate dependence of surface dislocation nucleation, Physical Review Letters, vol.100, issue.2, p.25502, 2008.

C. Wei, K. Cho, and D. Srivastava, Tensile strength of carbon nanotubes under realistic temperature and strain rate, Physical Review B, vol.67, issue.11, p.115407, 2003.

T. Dumitrica, M. Hua, and B. I. Yakobson, Symmetry-, time-, and temperature-dependent strength of carbon nanotubes, Proceedings of the National Academy of Sciences, vol.103, issue.16, pp.6105-6109, 2006.

A. N. Va-petrov and . Orlov, Contribution of thermal fluctuations to the scattering and the gauge effect of longevity, International Journal of Fracture, vol.11, issue.5, pp.881-886, 1975.

. Va-petrov, N. Ao, and . Orlov, Statistical kinetics of thermally activated fracture, International Journal of Fracture, vol.12, issue.2, pp.231-238, 1976.

A. Carpinteri, Scaling laws and renormalization groups for strength and toughness of disordered materials, International Journal of solids and structures, vol.31, issue.3, pp.291-302, 1994.

A. Carpinteri and N. Pugno, Are scaling laws on strength of solids related to mechanics or to geometry ?, Nature materials, vol.4, issue.6, p.421, 2005.

P. Zden?k and . Ba?ant, Scaling laws in mechanics of failure, Journal of Engineering Mechanics, vol.119, issue.9, pp.1828-1844, 1993.

P. Zdenek, E. Bazant, and . Chen, Scaling of structural failure, Applied Mechanics Reviews, vol.50, issue.10, pp.593-627, 1997.

A. I. Slutsker, Atomic-level fluctuation mechanism of the fracture of solids (computer simulation studies), Physics of the Solid State, vol.47, issue.5, pp.801-811, 2005.

F. Legoll, M. Luskin, and R. Moeckel, Non-ergodicity of the nosé-hoover thermostatted harmonic oscillator. Archive for rational mechanics and analysis, vol.184, pp.449-463, 2007.

N. Levy and . James-r-rice, Local heating by plastic deformation at a crack tip, 1968.

T. Alan, . Zehnder, J. Ares, and . Rosakis, On the temperature distribution at the vicinity of dynamically propagating cracks in 4340 steel, Journal of the Mechanics and Physics of Solids, vol.39, issue.3, pp.385-415, 1991.

M. Katharine, R. H. Flores, and . Dauskardt, Enhanced toughness due to stable crack tip damage zones in bulk metallic glass, Scripta materialia, vol.41, issue.9, pp.937-943, 1999.

L. Ponson, D. Bonamy, and L. Barbier, Cleaved surface of i-al pd mn quasicrystals : Influence of the local temperature elevation at the crack tip on the fracture surface roughness, Physical Review B, vol.74, issue.18, p.184205, 2006.

G. Wang, X. H. Chan, W. H. Xu, and . Wang, Instability of crack propagation in brittle bulk metallic glass, Acta Materialia, vol.56, issue.19, pp.5845-5860, 2008.

. Jh-los, . Zakharchenko, A. Mi-katsnelson, and . Fasolino, Melting temperature of graphene, Physical Review B, vol.91, issue.4, p.45415, 2015.

A. Kostyantin-v-zakharchenko, . Fasolino, M. I. Jh-los, and . Katsnelson, Melting of graphene : from two to one dimension, Journal of Physics : Condensed Matter, vol.23, issue.20, p.202202, 2011.

H. Yazdani and K. Hatami, Failure criterion for graphene in biaxial loading -a molecular dynamics study. Modelling and Simulation in, Materials Science and Engineering, vol.23, issue.6, p.65004, 2015.

H. Zhao, Temperature and strain-rate dependent fracture strength of graphene, Journal of Applied Physics, vol.108, issue.6, p.64321, 2010.

. Man-dewapriya, R. Srikantha-phani, and . Rajapakse, Influence of temperature and free edges on the mechanical properties of graphene. Modelling and Simulation in, Materials Science and Engineering, vol.21, issue.6, p.65017, 2013.

A. Mattoni, L. Colombo, and F. Cleri, Atomic scale origin of crack resistance in brittle fracture, Physical review letters, vol.95, issue.11, p.115501, 2005.

T. Zhang, X. Li, S. Kadkhodaei, and H. Gao, Flaw insensitive fracture in nanocrystalline graphene, Nano letters, vol.12, issue.9, pp.4605-4610, 2012.

J. Hanqing-yin, F. Qi, T. Fan, B. Zhu, Y. Wang et al., Griffith criterion for brittle fracture in graphene, Nano letters, vol.15, issue.3, pp.1918-1924, 2015.

Y. Son, L. Marvin, S. Cohen, and . Louie, Energy gaps in graphene nanoribbons, Physical review letters, vol.97, issue.21, p.216803, 2006.

A. Kyle, J. W. Ritter, and . Lyding, The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons, Nature materials, vol.8, issue.3, p.235, 2009.

. Vb-shenoy, . Reddy, Y. W. Ramasubramaniam, and . Zhang, Edge-stress-induced warping of graphene sheets and nanoribbons, Physical review letters, vol.101, issue.24, p.245501, 2008.

. Cd-reddy, . Ramasubramaniam, Y. Vb-shenoy, and . Zhang, Edge elastic properties of defect-free single-layer graphene sheets, Applied Physics Letters, vol.94, issue.10, p.101904, 2009.

Q. Lu and R. Huang, Excess energy and deformation along free edges of graphene nanoribbons, Physical Review B, vol.81, issue.15, p.155410, 2010.

Q. Lu and R. Huang, Effect of edge structures on elastic modulus and fracture of graphene nanoribbons under uniaxial tension, 2010.

C. Jannik, A. K. Meyer, . Geim, K. S. Mikhail-i-katsnelson, T. J. Novoselov et al., The structure of suspended graphene sheets, Nature, vol.446, issue.7131, p.60, 2007.

D. Kramer and J. Weissmüller, A note on surface stress and surface tension and their interrelation via shuttleworth's equation and the lippmann equation, Surface Science, vol.601, issue.14, pp.3042-3051, 2007.

R. Shuttleworth, The surface tension of solids, Proceedings of the physical society. Section A, vol.63, issue.5, p.444, 1950.

C. Robert and . Cammarata, Surface and interface stress effects in thin films, Progress in surface science, vol.46, issue.1, pp.1-38, 1994.

V. Ksenia, . Bets, and . Boris-i-yakobson, Spontaneous twist and intrinsic instabilities of pristine graphene nanoribbons, Nano Research, vol.2, issue.2, pp.161-166, 2009.

B. Huang, M. Liu, N. Su, J. Wu, W. Duan et al., Quantum manifestations of graphene edge stress and edge instability : A firstprinciples study, Physical review letters, vol.102, issue.16, p.166404, 2009.

S. Jun, Density-functional study of edge stress in graphene, Physical Review B, vol.78, issue.7, p.73405, 2008.

N. Hadda, F. Nicot, L. Sibille, F. Radjai, A. Tordesillas et al., A multiscale description of failure in granular materials, AIP Conference Proceedings, vol.1542, pp.585-588, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00843276

D. Eugene and . Shchukin, Physical-chemical mechanics in the studies of peter a. rehbinder and his school, Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol.149, issue.1-3, pp.529-537, 1999.