, processus d'oxydation et aux défauts d'implantation, localisée de part et d'autre de l'interface zone implantée / zone non implantée (cf, vol.128

C. Dans-ce, en milieu primaire simulé (et deutéré) des REP à 320 °C ont été réalisés sur l'ensemble des matériaux de l'étude (acier inoxydable austénitique 316L) : le matériau de référence, les matériaux implantés JANNuS et IPNL ainsi que le matériau grenaillé. Ces essais visaient dans un premier temps à caractériser les couches d'oxyde formées sur les différents matériaux au cours de leur oxydation en milieu primaire. Dans un second temps, ces essais avaient pour objectif d

, Pour commencer, des caractérisations par MEB, MET et EDX des couches d'oxyde formées sur les matériaux de référence, implantés aux ions et grenaillé après oxydation en milieu primaire simulé à RÉFÉRENCES

R. Gérard and C. Pokor, Internal Components: Design and Main Ageing Mechanisms », présenté à Soteria -Training Symposium on irradiation effects in structural materials for nuclear reactors, pp.17-2012

J. Noirot, Le comportement des combustibles UO2 et MOX en réacteur ». CEA, p.2012

H. Coriou, L. Grall, Y. L. Gall, and E. S. Vettier, « Corrosion fissurante sous contrainte de l'Inconel dans l'eau à haute température », présenté à 3ème colloque annuel de métallurgie, 1959.

T. P. Hoar, Stress-Corrosion Cracking, vol.19, pp.331-338, 1963.

K. Sieradzki and R. Newman, « Stress-Corrosion Cracking, J. Phys. Chem. Solids, vol.48, issue.11, p.11011113, 1987.

R. Rebak and Z. Szklarskasmialowska, « The mechanism of stress corrosion cracking of alloy 600 in high temperature water, Corros. Sci, vol.38, issue.6, p.971988, 1996.

K. Arioka, T. Miyamoto, T. Yamada, and M. Aoki, Crack Initiation of TT690 and Carbon Steel, p.2014

P. M. Scott, « An overview of internal oxidation as a possible explanation of intergranular stress corrosion cracking of alloy 600 in PWRS », présenté à 9th international conference on environmental degradation of materials in nuclear power systems-water reactors, p.312, 1999.

P. Andresen and F. Ford, « Life prediction by mechanistic modeling and system monitoring of environmental cracking of iron and nickel-alloys in aqueous systems, Mater. Sci. Eng, vol.103, issue.1, p.167184, 1988.

G. S. Was, Fundamentals of radiation Materials science, Metals and alloys, 2007.

P. Scott, A review of irradiation assisted stress corrosion cracking, J. Nucl. Mater, vol.211, issue.2, p.101122, 1994.

G. Pironet, A. Heuzé, O. Goltrant, and R. Cauvin, Expertise des vis de liaison cloison-renfort de la centrale de Tihange 1 », présenté à Fontevraud IV : Contribution des expertises sur matériaux à la résolution des problèmes rencontrés dans les réacteurs à eau pressurisée, vol.1, p.195206, 1998.

G. S. Was, Y. Ashida, and P. L. Andresen, « Irradiation-assisted stress corrosion cracking, Corros. Rev, vol.29, p.749, 2011.

S. M. Bruemmer, E. P. Simonen, P. M. Scott, P. L. Andresen, G. S. Was et al., « Radiation-induced material changes and susceptibility to intergranular failure of light-waterreactor core internals, J. Nucl. Mater, vol.274, p.299314, 1999.

G. Furutani, N. Nakajima, T. Konishi, and M. Kodama, « Stress corrosion cracking on irradiated 316 stainless steel », J. Nucl. Mater, vol.288, issue.23, p.179186, 2001.

K. Arioka, Y. Kaneshima, T. Yamada, and T. Terachi, « Influence of Boric Acid, Hydrogen Concentration and Grain Boundary Carbide on IGSCC Behaviors of SUS 316 under PWR Primary Water, présenté à 11th International Conference on Environmental Degradation of Materials in Nuclear Systems, p.1828, 2003.

P. L. Andresen and T. M. Angeliu, « Evaluation of the role of hydrogen in SCC in hot water, 1997.

M. Dumerval, S. Perrin, L. Marchetti, M. Tabarant, F. Jomard et al., « Hydrogen absorption associated with the corrosion mechanism of 316L stainless steels in primary medium of Pressurized Water Reactor (PWR), Corros. Sci, vol.85, p.251257, 2014.

M. , Effet des défauts d'implantation sur la corrosion des aciers inoxydables austénitiques en milieu primaire des réacteurs à eau pressurisée, 2014.

C. Hurley, Kinetic study of hydrogen-material interactions in nickel base alloy 600 and stainless steel 316L through coupled experimental and numerical analysis, 2015.

C. Hurley, F. Martin, L. Marchetti, J. Chêne, C. Blanc et al., « Numerical modeling of thermal desorption mass spectroscopy (TDS) for the study of hydrogen diffusion and trapping interactions in metals, Int. J. Hydrog. Energy, vol.40, issue.8, p.34023414, 2015.

A. Mcnabb and P. K. Foster, « A new analysis of the diffusion of hydrogen in iron and ferritic steels, Trans. Metall. Soc. AIME, vol.227, p.618627, 1963.

X. Doligez, . Energie, and . Du-futur, Défis et enjeux de la recherche, p.2014

N. Yoshida, « Microstructure formation and its role on yield strength in {AISI} 316 {SS} irradiated by fission and fusion neutrons », J. Nucl. Mater, vol.174, issue.2-3, p.220228, 1990.

C. Pokor, Y. Brechet, P. Dubuisson, J. Massoud, and A. Barbu, « Irradiation damage in 304 and 316 stainless steels: experimental investigation and modeling. Part I: Evolution of the microstructure », J. Nucl. Mater, vol.326, issue.1, p.1929, 2004.
DOI : 10.1016/j.jnucmat.2003.12.008

D. J. Edwards, E. P. Simonen, and E. S. , Bruemmer, « Evolution of fine-scale defects in stainless steels neutron-irradiated at 275 °C », J. Nucl. Mater, vol.317, issue.1, p.1331, 2003.

K. Fukuya, K. Fujii, H. Nishioka, and Y. Kitsunai, « Evolution of microstructure and microchemistry in cold-worked 316 stainless steels under PWR irradiation, J. Nucl. Sci. Technol, vol.43, issue.2, pp.159-173, 2006.

P. J. Maziasz and C. J. Mchargue, « Microstructural evolution in annealed austenitic steels during neutron irradiation, Int. Mater. Rev, vol.32, issue.1, p.190219, 1987.
DOI : 10.1179/095066087790150331

P. J. Maziasz, « Overview of microstructural evolution in neutron-irradiated austenitic stainless steels », J. Nucl. Mater, vol.205, p.118145, 1993.

P. J. Maziasz, « Temperature dependence of the dislocation microstructure of {PCA} austenitic stainless steel irradiated in {ORR} spectrally-tailored experiments », J. Nucl. Mater, p.701705, 1992.

S. J. Zinkle, P. J. Maziasz, and R. E. Stoller, « Dose dependence of the microstructural evolution in neutron-irradiated austenitic stainless steel, J. Nucl. Mater, vol.206, issue.2-3, p.266286, 1993.

T. R. Allen, J. I. Cole, C. L. Trybus, D. L. Porter, H. Tsai et al., « The effect of dose rate on the response of austenitic stainless steels to neutron radiation, J. Nucl. Mater, vol.348, issue.2, p.148164, 2006.

T. Okita, T. Sato, N. Sekimura, F. A. Garner, and L. R. Greenwood, « The primary origin of dose rate effects on microstructural evolution of austenitic alloys during neutron irradiation », J. Nucl. Mater, p.322326, 2002.

P. R. Okamoto and L. E. Rehn, « Radiation-induced segregation in binary and ternary alloys, J. Nucl. Mater, vol.83, issue.1, p.223, 1979.

T. R. Allen, J. T. Busby, G. S. Was, and E. A. Kenik, « On the mechanism of radiation-induced segregation in austenitic Fe-Cr-Ni alloys », J. Nucl. Mater, vol.255, issue.1, p.4458, 1998.

T. R. Allen and G. S. Was, « Modeling radiation-induced segregation in austenitic Fe-Cr-Ni alloys, Acta Mater, vol.46, issue.10, p.36793691, 1998.

G. S. Was and P. L. Andresen, « Stress corrosion cracking behavior of alloys in aggressive nuclear reactor core environments, Corrosion, vol.63, issue.1, pp.19-45, 2007.

A. Jenssen, L. G. Ljungberg, J. Walmsley, and E. S. Fisher, « Importance of molybdenum on irradiation-assisted stress corrosion cracking in austenitic stainless steels, Corrosion, vol.54, issue.1, p.4860, 1998.

E. A. Kenik and K. Hojou, « Radiation-induced segregation in FFTF-irradiated austenitic stainless steels », J. Nucl. Mater, vol.191, p.13311335, 1992.

Y. Dong, B. H. Sencer, F. A. Garner, and E. A. Marquis, « Microchemical and microstructural evolution of AISI 304 stainless steel irradiated in EBR-II at PWR-relevant dpa rates, J. Nucl. Mater, vol.467, issue.2, p.692702, 2015.

K. Fujii and K. Fukuya, « Irradiation-induced microchemical changes in highly irradiated 316 stainless steel », J. Nucl. Mater, vol.469, p.8288, 2016.

T. Shoji, S. Suzuki, and K. S. Raja, « Current status and future of IASCC research, J. Nucl. Mater, vol.258, pp.241-251, 1998.

D. J. Edwards, E. P. Simonen, F. A. Garner, L. R. Greenwood, B. M. Oliver et al., Bruemmer, « Influence of irradiation temperature and dose gradients on the microstructural evolution in neutron-irradiated 316SS », J. Nucl. Mater, vol.317, issue.1, p.3245, 2003.

N. Hashimoto, E. Wakai, and J. P. Robertson, « Relationship between hardening and damage structure in austenitic stainless steel 316LN irradiated at low temperature in the {HFIR} », J. Nucl. Mater, vol.273, issue.1, p.95101, 1999.

G. M. Bond, B. H. Sencer, F. A. Garner, M. L. Hamilton, T. R. Allen et al., « Void swelling of annealed 304 stainless steel at 370-385c and pwr-relevant displacement rates, présenté à Ninth international Symposium on Environmental Degradation of Materials in Nuclear Power Systems -Water Reactors, p.10451050, 1999.

Y. Isobe, M. Sagisaka, F. A. Garner, S. Fujita, and T. Okita, « Precipitate evolution in low-nickel austenitic stainless steels during neutron irradiation at very low dose rates », J. Nucl. Mater, p.661665, 2009.

J. Gan and G. S. Was, « Microstructure evolution in austenitic Fe-Cr-Ni alloys irradiated with protons: comparison with neutron-irradiated microstructures, J. Nucl. Mater, vol.297, issue.2, pp.161-175, 2001.

G. S. Was, J. T. Busby, T. Allen, E. A. Kenik, A. Jensson et al., « Emulation of neutron irradiation effects with protons: validation of principle, J. Nucl. Mater, vol.300, issue.2, pp.198-216, 2002.

Z. Jiao and G. S. Was, « Precipitate behavior in self-ion irradiated stainless steels at high doses, J. Nucl. Mater, vol.449, issue.13, p.200206, 2014.

D. Chen, K. Murakami, K. Dohi, K. Nishida, N. Soneda et al., « Depth distribution of Frank loop defects formed in ion-irradiated stainless steel and its dependence on Si addition, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At, vol.365, p.503508, 2015.

J. Gupta, J. Hure, B. Tanguy, L. Laffont, M. Lafont et al., « Evaluation of stress corrosion cracking of irradiated 304L stainless steel in {PWR} environment using heavy ion irradiation, J. Nucl. Mater, vol.476, p.8292, 2016.

T. Miura, K. Fujii, H. Nishioka, and K. Fukuya, « Effects of hydrogen on interaction between dislocations and radiation-induced defects in austenitic stainless steels, J. Nucl. Mater, vol.442, pp.735-739, 2013.

A. Etienne, M. Hernandez-mayoral, C. Genevois, B. Radiguet, and P. Pareige, « Dislocation loop evolution under ion irradiation in austenitic stainless steels, J. Nucl. Mater, vol.400, issue.1, p.5663, 2010.

M. and L. Millier, Austenitic stainless steels under irradiation : microstructure evolution and the initiation of irradiation assisted stress corrosion cracking in PWR environment », Theses, 2014.

J. Gupta, « Intergranular stress corrosion cracking of ion irradiated 304L stainless steel in PWR environment, 2016.

A. Etienne, « Study of irradiation and nanostructuration effects in austenitic stainless steels, 2009.

D. Lister, R. Davidson, and E. E. Mcalpine, « The mechanism and kinetics of corrosion product release from stainless-steel in lithiated high-temperature water, Corros. Sci, vol.27, issue.2, p.113140, 1987.

B. Stellwag, The mechanism of oxide film formation on austenitic stainless steels in high temperature water, vol.40, p.337370, 1998.

T. Terachi, K. Fujii, and K. Arioka, « Microstructural Characterization of SCC Crack Tip and Oxide Film for SUS 316 Stainless Steel in Simulated PWR Primary Water at 320°C », J. Nucl. Sci. Technol, vol.42, issue.2, p.225232, 2005.

S. Lozano-perez, D. W. Saxey, T. Yamada, and T. Terachi, Atom-probe tomography characterization of the oxidation of stainless steel, vol.62, p.855858, 2010.

R. Soulas, M. Cheynet, E. Rauch, T. Neisius, L. Legras et al., « TEM investigations of the oxide layers formed on a 316L alloy in simulated PWR environment, J. Mater. Sci, vol.48, issue.7, p.2861, 2013.

S. Perrin, L. Marchetti, C. Duhamel, M. Sennour, and F. Jomard, Influence of Irradiation on the Oxide Film Formed on 316 L Stainless Steel in PWR Primary Water, vol.80, p.623633, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00931257

G. Han, Z. Lu, X. Ru, J. Chen, Q. Xiao et al., « Improving the oxidation resistance of 316L stainless steel in simulated pressurized water reactor primary water by electropolishing treatment », J. Nucl. Mater, vol.467, issue.1, p.194204, 2015.

S. E. Ziemniak, M. Hanson, and P. C. Sander, « Electropolishing effects on corrosion behavior of 304 stainless steel in high temperature, Corros. Sci, vol.50, issue.9, p.24652477, 2008.

S. Lozano-perez, T. Yamada, T. Terachi, M. Schroeder, C. A. English et al., « Multi-scale characterization of stress corrosion cracking of coldworked stainless steels and the influence of Cr content, ACTA Mater, vol.57, pp.5361-5381, 2009.

K. Kruska, S. Lozano-perez, D. W. Saxey, T. Terachi, T. Yamada et al., « 3D atomprobe characterization of stress and cold-work in stress corrosion cracking of 304 stainless steel, 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, The Atrium, p.939946, 2011.

K. Kruska, S. Lozano-perez, D. W. Saxey, T. Terachi, T. Yamada et al., Nanoscale characterisation of grain boundary oxidation in cold-worked stainless steels, vol.63, p.225233, 2012.

J. Robertson, « The mechanism of high temperature aqueous corrosion of stainless steels, Corros. Sci, vol.32, p.443465, 1991.

R. Winkler, F. Huttner, F. Michel, and . Kraftwerkstech, , p.527, 1989.

T. Terachi, T. Yamada, T. Miyamoto, K. Arioka, and K. Fukuyai, « Corrosion Behavior of Stainless Steels in Simulated PWR Primary Water -Effect of Chromium Content in Alloys and Dissolved Hydrogen », J. Nucl. Sci. Technol, vol.45, issue.10, p.975984, 2008.

L. Marchetti, Corrosion généralisée des alliages à base nickel en milieu aqueux à haute température : apport à la compréhension des mécanismes, 2007.

M. Dumerval, S. Perrin, L. Marchetti, M. Sennour, F. Jomard et al., Effect of implantation defects on the corrosion of 316L stainless steels in primary medium of pressurized water reactors, Corros. Sci, vol.107, p.18, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01306847

F. Jambon, L. Marchetti, F. Jomard, and J. Chêne, « Mechanism of hydrogen absorption during the exposure of alloy 600-like single-crystals to {PWR} primary simulated media, J. Nucl. Mater, vol.414, issue.3, p.386392, 2011.

F. Jambon, L. Marchetti, F. Jomard, and J. Chêne, « Characterisation of oxygen and hydrogen migration through oxide scales formed on nickel-base alloys in PWR primary medium conditions, Solid State Ion, vol.231, p.6973, 2013.

L. Dong, Q. Peng, Z. Zhang, T. Shoji, E. Han et al., Effect of dissolved hydrogen on corrosion of 316NG stainless steel in high temperature water, Nucl. Eng. Des, vol.295, p.403414, 2015.

P. Berge, C. Ribon, and P. S. Paul, Effect of Hydrogen on the Corrosion of Steels In High Temperature Water, vol.33, p.173178, 1977.

S. Lozano-perez, K. Kruska, I. Iyengar, T. Terachi, and T. Yamada, The role of cold work and applied stress on surface oxidation of 304 stainless steel, vol.56, p.7885, 2012.

Y. Guo, E. Han, and J. Wang, Effects of surface states on the oxidation behavior of 316LN stainless steel in high temperature pressurized water, vol.66, p.670680, 2015.

F. Giraudeau, Hydrogen in pressurized reactors, 1999.

A. T. Paxton and I. H. Katzarov, Quantum and isotope effects on hydrogen diffusion, trapping and escape in iron, Acta Mater, vol.103, p.7176, 2016.
DOI : 10.1016/j.actamat.2015.09.054

URL : https://doi.org/10.1016/j.actamat.2015.09.054

R. C. Frank, R. W. Lee, and R. L. Williams, « Ratio of the Diffusion Coefficients for the Diffusion of Hydrogen and Deuterium in Steel, J. Appl. Phys, vol.29, issue.6, p.898900, 1958.

E. Serra, G. Benamati, and O. V. Ogorodnikova, « Hydrogen isotopes transport parameters in fusion reactor materials, J. Nucl. Mater, vol.255, issue.2, p.105115, 1998.
DOI : 10.1016/s0022-3115(98)00038-5

J. Chêne and F. Martin, « Isotopic tracing of hydrogen transport and trapping in nuclear materials, Philos. Trans. R. Soc. Math. Phys. Eng. Sci, vol.375, 2017.

F. Jambon, L. Marchetti, M. Sennour, F. Jomard, and J. Chêne, « SIMS and TEM investigation of hydrogen trapping on implantation defects in a nickel-based superalloy », J. Nucl. Mater, vol.466, p.120133, 2015.

F. Jambon, « Mécanismes d'absorption d'hydrogène et intéractions hydrogène-défauts : implications en corrosion sous contrainte des alliages à base nickel en milieu primaire des réacteurs à eau pressurisée, 2012.

J. Bockris, J. Mcbreen, and L. Nanis, « Hydrogen evolution kinetics and hydrogen entry into airon, J. Electrochem. Soc, vol.112, issue.10, p.1025, 1965.
DOI : 10.1149/1.2423335

C. Montella, « EIS study of hydrogen insertion under restricted diffusion conditions -I. Two-step insertion reaction, J. Electroanal. Chem, vol.497, p.317, 2001.
DOI : 10.1016/s0022-0728(00)00421-6

N. Amokrane, C. Gabrielli, E. Ostermann, and H. Perrot, « Investigation of hydrogen adsorptionabsorption on iron by EIS, Electrochimica Acta, vol.53, issue.2, p.700709, 2007.
DOI : 10.1016/j.electacta.2007.07.047

A. Turnbull, « Modeling of environment assisted cracking, Corros. Sci, vol.34, issue.6, pp.921-960, 1993.

N. Amokrane, Study of the adsorption and the absorption of hydrogen forms by electrochemical way on various metals, 2007.
URL : https://hal.archives-ouvertes.fr/tel-01358691

P. Tison, Influence de l'hydrogène sur le comportement des métaux, 1984.

J. Austin and T. Elleman, « Tritium diffusion in 304-stainless and 316-stainless steels in temperature-range 25 to 222 degrees C », J. Nucl. Mater, vol.43, issue.2, p.119, 1972.
DOI : 10.1016/0022-3115(72)90145-6

T. Dieudonne, L. Marchetti, F. Jomard, M. Weryz, J. Chene et al., « SIMS analysis of deuterium absorption and diffusion in austenitic Fe-Mn-C steels, Diffusion in Materials -DIMAT 2011, vol.10, p.477, 2012.

J. Yao and J. Cahoon, « Experimental studies of grain-boundary diffusion of hydrogen in metals, Acta Metall. Mater, vol.39, issue.1, p.119126, 1991.

K. Ono and M. Meshii, « Hydrogen detrapping from grain-boundaries and dislocations in highpurity iron, Acta Metall. Mater, vol.40, issue.6, p.13571364, 1992.
DOI : 10.1016/0956-7151(92)90436-i

A. Oudriss, J. Creus, J. Bouhattate, E. Conforto, C. Berziou et al., « Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel, Acta Mater, vol.60, p.68146828, 2012.

A. Oudriss, J. Creus, J. Bouhattate, C. Savall, B. Peraudeau et al., « The diffusion and trapping of hydrogen along the grain boundaries in polycrystalline nickel, Scr. Mater, vol.66, issue.1, p.3740, 2012.

K. S. Forcey, D. K. Ross, J. C. Simpson, and D. S. Evans, « Hydrogen transport and solubility in 316L and 1.4914 steels for fusion reactor applications, J. Nucl. Mater, vol.160, issue.2, p.117, 1988.
DOI : 10.1016/0022-3115(88)90038-4

D. M. Grant, D. L. Cummings, and D. A. Blackburn, « Hydrogen in 316 steel -diffusion, permeation and surface reaction », J. Nucl. Mater, vol.152, issue.2, p.139145, 1988.

R. A. Oriani, « The diffusion and trapping of hydrogen in steel, Acta Metall, vol.18, issue.1, p.147157, 1970.

W. Choo and J. Lee, « Thermal-analysis of trapped hydrogen in pure iron, Metall. Trans. -Phys. Metall. Mater. Sci, vol.13, issue.1, p.135140, 1982.

A. M. Brass and J. Chene, « Influence of deformation on the hydrogen behavior in iron and nickel base alloys: a review of experimental data, Mater. Sci. Eng. A, vol.242, issue.1, p.210221, 1998.

F. Lecoester, J. Chêne, and E. D. Noel, « Hydrogen embrittlement of the Ni-base Alloy 600 correlated with hydrogen transport by dislocations, Mater. Sci. Eng. A, vol.262, issue.1, pp.173-183, 1999.

J. P. Chateau, D. Delafosse, and T. Magnin, « Numerical simulations of hydrogen-dislocation interactions in fcc stainless steels.: part I: hydrogen-dislocation interactions in bulk crystals, Acta Mater, vol.50, issue.6, p.15071522, 2002.

W. A. Counts, C. Wolverton, and R. Gibala, « First-principles energetics of hydrogen traps in ?-Fe: Point defects, Acta Mater, vol.58, issue.14, p.47304741, 2010.

D. Connétable, Y. Wang, and D. Tanguy, « Segregation of hydrogen to defects in nickel using firstprinciples calculations: The case of self-interstitials and cavities, J. Alloys Compd, vol.614, p.211220, 2014.

Y. Fukai, Y. Shizuku, and Y. Kurokawa, « Superabundant vacancy formation in Ni-H alloys, J. Alloys Compd, vol.329, issue.1, p.195201, 2001.

Y. Fukai, « Superabundant vacancies formed in metal-hydrogen alloys, Phys. Scr, vol.103, p.1114, 2003.

T. Kasuya and M. Fuji, « Diffusion with multiple kinds of trapping sites, J. Appl. Phys, vol.83, issue.6, p.30393048, 1998.

G. Pressouyre, « Trap theory of hydrogen embrittlement, Acta Metall, vol.28, issue.7, pp.895-911, 1980.

L. S. Darken and R. P. Smith, « Behavior of Hydrogen in steel during and after immersion in acid, Corrosion, vol.5, p.116, 1949.

R. Kirchheim and . Solubility, diffusivity and trapping of hydrogen in dilute alloys. Deformed and amorphous metals-II, Acta Metall, vol.30, issue.6, p.10691078, 1982.

Y. Yagodzinskyy, O. Todoshchenko, S. Papula, and H. Hanninen, « Hydrogen Solubility and Diffusion in Austenitic Stainless Steels Studied with Thermal Desorption Spectroscopy, Steel Res. Int, vol.82, issue.1, p.2025, 2011.

G. S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys, 2007.

A. Renault, J. Malaplate, C. Pokor, and P. Gavoille, « TEM and EFTEM characterization of solution annealed 304L stainless steel irradiated in PHENIX, up to 36dpa and at 390°C », J. Nucl. Mater, vol.421, issue.1, p.124131, 2012.

L. Beck, Y. Serruys, S. Miro, P. Trocellier, E. Bordas et al., Bachiller-Perea, « Ion irradiation and radiation effect characterization at the JANNUS-Saclay triple beam facility, J. Mater. Res, vol.30, issue.9, pp.1183-1194, 2015.

J. F. Ziegler, J. P. Biersack, and M. D. Ziegler, SRIM -The Stopping and Range of Ions in Matter, 2008.

R. E. Stoller, M. B. Toloczko, G. S. Was, A. G. Certain, S. Dwaraknath et al., « On the use of SRIM for computing radiation damage exposure, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At, vol.310, p.7580, 2013.

C. M. Abreu, M. J. Cristóbal, X. R. Novoa, G. Pena, M. C. Perez et al., Modifications of the stainless steels passive film induced by cerium implantation, vol.158, pp.582-587, 2002.

A. H. Krom and A. Bakker, « Hydrogen trapping models in steel, Metall. Mater. Trans. B, vol.31, issue.6, pp.1475-1482, 2000.

P. J. Barrie, « The mathematical origins of the kinetic compensation effect: 1. the effect of random experimental errors, Phys Chem Chem Phys, vol.14, issue.1, p.318326, 2012.

S. M. Myers, W. R. Wampler, and F. Besenbacher, Trapping and surface recombination of ionimplanted deuterium in stainless steel, J. Appl. Phys, vol.56, issue.6, p.15611571, 1984.

E. Hayward, R. Hayward, and C. Fu, « Predicting distinct regimes of hydrogen behavior at nanocavities in metals, J. Nucl. Mater, vol.476, p.3644, 2016.

A. Brass, J. Chêne, and L. Coudreuse, « Fragilisation des aciers par l'hydrogène : mécanismes », Tech. Ing. Corros. Vieil. Phénom. Mécanismes, 2000.

E. Hayward and C. Fu, « Interplay between hydrogen and vacancies in $\ensuremath\alpha$-Fe, Phys Rev B, vol.87, p.174103, 2013.

D. Brimbal, S. Miro, V. Castro, S. Poissonnet, P. Trocellier et al., « Application of Raman spectroscopy to the study of hydrogen in an ion irradiated oxide-dispersion strengthened Fe-12Cr steel », J. Nucl. Mater, vol.447, issue.1, p.179182, 2014.

H. H. Johnson, Kinetics of hydrogen trapping at voids, vol.23, pp.1703-1706, 1989.

K. Mortensen, F. Besenbacher, I. Stensgaard, and W. R. Wampler, « Deuterium on the Ni(111) surface: An adsorption-position determination by transmission channeling, Surf. Sci, vol.205, issue.3, p.433446, 1988.

J. Benziger and R. J. Madix, « The effects of carbon, oxygen, sulfur and potassium adlayers on CO and H2 adsorption on Fe(100), Surf. Sci, vol.94, issue.1, p.119153, 1980.

K. Christmann, Interaction of Hydrogen with Solid-Surfaces », Surf. Sci. Rep, vol.9, issue.13, p.1163, 1988.

K. Christmann, « Some general aspects of hydrogen chemisorption on metal surfaces, Prog. Surf. Sci, vol.48, issue.1, p.1526, 1995.

K. D. Rendulic, A. Winkler, and H. P. Steinrück, « The role of surface defects in the adsorption and sesorption of hydrogen on Ni(111) », Surf. Sci, vol.185, issue.3, p.469478, 1987.

R. L. Palmer, J. N. Smith, H. Saltsburg, and D. R. O'keefe, « Measurements of the Reflection, Adsorption, and Desorption of Gases from Smooth Metal Surfaces, J. Chem. Phys, vol.53, issue.5, p.16661676, 1970.

H. Yang and J. L. Whitten, Dissociative adsorption of H2 on Ni(111), vol.98, p.50395049, 1993.

K. Christmann, O. Schober, G. Ertl, and M. Neumann, « Adsorption of hydrogen on nickel single crystal surfaces, J. Chem. Phys, vol.60, issue.11, p.45284540, 1974.

M. Wilde and K. Fukutani, « Penetration mechanisms of surface-adsorbed hydrogen atoms into bulk metals: Experiment and model, Phys Rev B, vol.78, issue.11, p.115411, 2008.

T. Perng and C. J. Altstetter, « Effects of deformation on hydrogen permeation in austenitic stainless steels, Acta Metall, vol.34, issue.9, p.17711781, 1986.

J. Töpfer, S. Aggarwal, and R. Dieckmann, « Point defects and cation tracer diffusion in (CrxFe1 ? x)3 ? ?O4 spinels, Solid State Ion, vol.81, issue.3, p.251266, 1995.

R. Soulas, Crystallographic effects on the early stages of 316L austenitic stainless steel oxidation », Theses, 2012.