D. D. Dzombak and F. M. Morel, Surface Complex Modeling, 1990.

M. Borkovec and J. Westall, Solution of the Poisson-Boltzmann Equation for Surface Excesses of Ions in the Diffuse Layer at the Oxide-Electrolyte Interface, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.150, issue.1-2, pp.325-337, 1983.

P. Leroy and A. Revil, A Triple-Layer Model of the Surface Electrochemical Properties of Clay Minerals, Journal of Colloid and Interface Science, vol.270, issue.2, pp.371-380, 2004.

L. Luquot, M. Andreani, P. Gouze, and P. Camps, CO2percolation experiment through chlorite/zeolite-rich sandstone (Pretty Hill Formation -Otway Basin-Australia), Chemical Geology, vol.294, pp.75-88, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00712829

L. Luquot and P. Gouze, Experimental determination of porosity and permeability changes induced by injection of CO2into carbonate rocks, Chemical Geology, vol.265, pp.148-159, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00445277

,

G. J. Moridis, A SET OF SEMIANALYTICAL SOLUTIONS FOR PARAMETER ESTIMATION IN DIFFUSION CELL EXPERIMENTS, Sciences, 1998.

B. M. Nagaraja, H. Abimanyu, K. D. Jung, and K. S. Yoo, Preparation of mesostructured barium sulfate with high surface area by dispersion method and its characterization, Journal of Colloid and Interface Science, vol.316, pp.645-651, 2007.

, Project Opalinus Clay-Safety Report: Demonstration of disposal feasibility for spent fuel, vitrified high-level waste and long-lived intermediate-level waste (Entsorgungsnachweis), 2002.

A. E. Nielsen and O. Sohnel, Nucleation and Growth of Crystals at High Supersaturation, 1969.

, Kristall und Technik, vol.4, pp.17-38

C. Noiriel, Resolving Time-dependent Evolution of Pore-Scale Structure, Permeability and Reactivity using X-ray Microtomography, Reviews in Mineralogy and Geochemistry, vol.80, pp.247-285, 2015.

,

B. D. Parkhurst, C. Appelo, and J. , User's Guide To PHREEQC (version 2) -a Computer Program for Speciation, and Inverse Geochemical Calculations. Exchange Organizational Behavior Teaching Journal D, vol.326, 1999.

J. Poonoosamy, G. Kosakowski, L. R. Van-loon, and U. Mäder, Dissolution-precipitation processes in tank experiments for testing numerical models for reactive transport calculations: Experiments and modelling, Journal of Contaminant Hydrology, vol.177, pp.1-17, 2015.

,

J. H. Potgieter and C. A. Strydom, An investigation into the correlation between different surface area determination techniques applied to various limestone-related compounds, Cement and Concrete Research, vol.26, pp.159-166, 1996.

A. , Dossier 2005 argile -Evaluation de la faisabilité d'un stockage géologique en formation argileuse, 2005.

, Project Opalinus Clay-Safety Report: Demonstration of Disposal Feasibility for Spent Fuel, Vitrified High-Level Waste and Long-Lived Intermediate-Level Waste (Entsorgungsnachweis), 2002.

S. Bachu, Sequestration of CO2 in Geological Media in Response to Climate Change: Road Map for Site Selection Using the Transform of the Geological Space into the CO2 Phase Space

, Energy Convers. Manag, vol.43, issue.1, pp.87-102, 2002.

G. Berthe, S. Savoye, C. Wittebroodt, and J. L. Michelot, Changes in Containment Properties of Claystone Caprocks Induced by Dissolved CO2 seepage, Energy Procedia, vol.4, pp.5314-5319, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00690872

M. Fleury and E. Brosse, Transport in Tight Rocks, Geological Carbon Storage: Subsurface Seals and Caprock Integrity

, American Geophysical Union, vol.238, p.31, 2018.

R. V. Dagnelie, P. Arnoux, J. Enaux, J. Radwan, P. Nerfie et al.,

J. C. Robinet, Perturbation Induced by a Nitrate Plume on Diffusion of Solutes in a Large, Appl. Clay Sci, vol.141, pp.219-226, 2017.

L. De-windt, F. Marsal, E. Tinseau, and D. Pellegrini, Reactive Transport Modeling of
URL : https://hal.archives-ouvertes.fr/hal-00564455

, Geochemical Interactions at a Concrete/Argillite Interface, Tournemire Site (France), Phys. Chem. Earth, vol.33, issue.1, pp.295-305, 2008.

J. Van-brakel and P. M. Heertjes, Analysis of Diffusion in Macroporous Media in Terms of a

. Porosity, Tortuosity and a Constrictivity Factor, Int. J. Heat Mass Transf, vol.17, issue.9, pp.1093-1103, 1974.

S. Savoye, J. Michelot, C. Wittebroodt, and M. V. Altinier, Contribution of the Diffusive Exchange Method to the Characterization of Pore-Water in Consolidated Argillaceous Rocks
URL : https://hal.archives-ouvertes.fr/hal-00378480

. Contam and . Hydrol, , vol.86, pp.87-104, 2006.

D. G. Bokern, K. A. Hunter, and K. M. Mcgrath, Charged Barite -Aqueous Solution Interface: Surface Potential and Atomically Resolved Visualization, Langmuir, vol.19, issue.24, pp.10019-10027, 2003.

J. Poonoosamy, E. Curti, G. Kosakowski, D. Grolimund, L. R. Van-loon et al.,

, Barite Precipitation Following Celestite Dissolution in a Porous Medium: A SEM/BSE and ?

. Xrd/xrf and . Study, Geochim. Cosmochim. Acta, vol.182, pp.131-144, 2016.

M. Prieto, Nucleation and Supersaturation in Porous Media (Revisited). Mineral. Mag

S. Altmann, M. Aertsens, T. Appelo, C. Bruggeman, S. Gaboreau et al., Processes of cation migration in clayrocks : Final Scientific Report of the CatClay European Project HAL Id, 2015.

G. Berthe, S. Savoye, C. Wittebroodt, and J. L. Michelot, Changes in containment properties of claystone caprocks induced by dissolved CO2seepage, Energy Procedia, vol.4, pp.5314-5319, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00690872

D. G. Bokern, K. A. Hunter, and K. M. Mcgrath, Charged Barite -Aqueous Solution Interface: Surface Potential and Atomically Resolved Visualization, Langmuir, vol.19, issue.24, pp.10019-10027, 2003.

A. Chagneau, C. Tournassat, C. I. Steefel, I. C. Bourg, S. Gaboreau et al.,

, Complete restriction of36Cl-diffusion by celestite precipitation in densely compacted illite, Environmental Science and Technology Letters, vol.2, issue.5, pp.139-143

,

J. Crank, The Mathematics of Diffusion, 1975.

M. Descostes, V. Blin, F. Bazer-bachi, P. Meier, B. Grenut et al., , 2008.

, Diffusion of anionic species in Callovo-Oxfordian argillites and Oxfordian limestones, Applied Geochemistry, vol.23, issue.4, pp.655-677

,

S. Didierjean, D. Maillet, and C. Moyne, Analytical solutions of one-dimensional macrodispersion in stratified porous media by the quadrupole method: Convergence to an equivalent homogeneous porous medium, Advances in Water Resources, vol.27, issue.6, pp.657-667, 2004.

,

S. Emmanuel and B. Berkowitz, , 2007.

,

M. A. Glaus, S. Frick, R. Rossé, and L. R. Loon, Comparative study of tracer diffusion of HTO,22Na+and36Cl-in compacted kaolinite, illite and montmorillonite, Geochimica et Cosmochimica Acta, vol.74, issue.7, pp.1999-2010, 2010.

F. González-caballero, M. A. Cabrerizo, J. M. Bruque, and A. Delgado, The zeta potential, 1988.

J. Radwan, D. Hanios, B. ;. Grenut, and . Gif-sur-yvette, Qualification expérimentale de la plate-forme ALLIANCES . 1 ère Partie : Calculs préliminaires, 2006.

L. A. Rijniers, H. P. Huinink, L. Pel, and K. Kopinga, Experimental evidence of crystallization pressure inside porous media, Physical Review Letters, vol.94, issue.7, pp.23-26, 2005.

,

S. Savoye, C. Beaucaire, B. Grenut, and A. Fayette, Impact of the solution ionic strength on strontium diffusion through the Callovo-Oxfordian clayrocks: An experimental and modeling study, Applied Geochemistry, vol.61, pp.41-52, 2015.

S. Savoye, B. Frasca, B. Grenut, and A. Fayette, How mobile is iodide in the CallovoOxfordian claystones under experimental conditions close to the in situ ones, Journal of Contaminant Hydrology, pp.82-92, 2012.

W. Stumm and J. J. Morgan, Aquatic chemistry: chemical equilibria and rates in natural waters, vol.126, 2012.

E. Tertre, S. Savoye, F. Hubert, D. Prêt, T. Dabat et al., no pumping in effect," so that the reaction front is much larger (Figure 10C). The simulation is very sensitive to the value of supersaturation: indeed, for supersaturation SI=0.6, the system fails to reach this saturation so that no precipitation occurs at all (not shown). Finally, the simulations without supersaturation effect led to similar evolution of calcium and sulfate concentration evolution in precipitation zone, Environmental Science and Technology, vol.52, issue.4, pp.1899-1907, 2018.

F. Alimi, H. Elfil, and A. Gadri, Kinetics of the precipitation of calcium sulfate dihydratein a desalination unit, Desalination, vol.157, pp.9-16, 2003.

E. Barbier, M. Coste, A. Genin, D. Jung, C. Lemoine et al., Simultaneous determination of nucleation and crystal growth kinetics of gypsum, Chemical Engineering Science, vol.64, pp.363-369, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00383188

G. Berthe, S. Savoye, C. Wittebroodt, and J. L. Michelot, Changes in containment properties of claystone caprocks induced by dissolved CO2seepage, Energy Procedia, vol.4, pp.5314-5319, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00690872

,

B. Cochepin, L. Trotignon, O. Bildstein, C. I. Steefel, V. Lagneau et al., Approaches to modelling coupled flow and reaction in a 2D cementation experiment, Advances in Water Resources, vol.31, pp.1540-1551, 2008.

M. Descostes, V. Blin, F. Bazer-bachi, P. Meier, B. Grenut et al., Diffusion of anionic species in Callovo-Oxfordian argillites and Oxfordian limestones, Applied Geochemistry, vol.23, pp.655-677, 2008.

M. Descostes, E. Pili, O. Felix, B. Frasca, J. Radwan et al., Diffusive parameters of tritiated water and uranium in chalk, Journal of Hydrology, pp.40-50, 2012.

,

S. Emmanuel and B. Berkowitz, Effects of pore-size controlled solubility on reactive transport in heterogeneous rock, Geophysical Research Letters, vol.34, pp.1-5, 2007.

,

F. González-caballero, M. A. Cabrerizo, J. M. Bruque, and A. Delgado, The zeta potential of celestite in aqueous electrolyte and surfactant solutions, Journal of Colloid And Interface Science, vol.126, pp.367-370, 1988.

J. Hang, L. Shi, X. Feng, and L. Xiao, Electrostatic and electrosteric stabilization of aqueous suspensions of barite nanoparticles, Powder Technology, vol.192, pp.166-170, 2009.

,

D. Kashchiev and G. M. Van-rosmalen, Review: Nucleation in solutions revisited, Crystal Research and Technology, vol.38, pp.555-574, 2003.

V. Lagneau, Modélisation des couplages entre réactions géochimiques et processus, 2013.

V. Lagneau and J. Van-der-lee, Operator-splitting-based reactive transport models in strong feedback of porosity change: The contribution of analytical solutions for accuracy validation and estimator improvement, Journal of Contaminant Hydrology, vol.112, pp.118-129, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00505026

,

Y. Li and S. Gregory, Diffusion of Ions in Sea Water and in Deep Sea Sediments, 1973.

, Geochimica et Cosmochimica Acta, vol.38, pp.703-714, 1974.

P. C. Lichtner, Continuum formulation of multicomponent-multiphase reactive transport, Reviews in Mineralogy and Geochemistry, vol.34, pp.1-81, 1996.

A. J. Mallon and R. E. Swarbrick, Diagenetic characteristics of low permeability, non-reservoir chalks from the Central North Sea, Marine and Petroleum Geology, vol.25, pp.1097-1108, 2008.

,

B. M. Nagaraja, H. Abimanyu, K. D. Jung, and K. S. Yoo, Preparation of mesostructured barium sulfate with high surface area by dispersion method and its characterization, Journal of Colloid and Interface Science, vol.316, pp.645-651, 2007.

J. Poonoosamy, E. Curti, G. Kosakowski, D. Grolimund, L. R. Van-loon et al., Barite precipitation following celestite dissolution in a porous medium: A SEM/BSE and ?-XRD/XRF study, Geochimica et Cosmochimica Acta, vol.182, pp.131-144, 2016.

,

J. H. Potgieter and C. A. Strydom, An investigation into the correlation between different surface area determination techniques applied to various limestone-related compounds, Cement and Concrete Research, vol.26, pp.159-166, 1996.

N. I. Prasianakis, E. Curti, G. Kosakowski, J. Poonoosamy, and S. V. Churakov, Deciphering pore-level precipitation mechanisms, Scientific Reports, vol.7, pp.1-9, 2017.

M. Prieto, Nucleation and supersaturation in porous media (revisited), pp.1437-1447, 2014.

C. I. Steefel, CrunchFlow software for modeling multicomponent reactive flow and transport, 2009.

, User's manual. Earth Sciences Division, 1991.

C. I. Steefel and K. T. Macquarrie, Approaches to modeling of reactive transport in porous media, Reviews in Mineralogy and Geochemistry, vol.34, pp.85-129, 1996.

J. Van-der-lee, L. De-windt, V. Lagneau, and P. Goblet, Module-oriented modeling of reactive transport with HYTEC, Computers and Geosciences, vol.29, pp.265-275, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00564455

J. Zhang and G. H. Nancollas, Influence of calcium/sulfate molar ratio on the growth rate of calcium sulfate dihydrate at constant supersaturation, Journal of Crystal Growth, vol.118, pp.287-294, 1992.

,

, to develop kinetic rate relationship to take into account dependence of precipitation on pore size (Emmanuel & Berkowitz, 2007) and also on the type of growths (nucleation, supersaturation)

I. Bardenhagen, O. Yezerska, M. Augustin, D. Fenske, A. Wittstock et al., Journal of Power Sources, vol.278, pp.255-264, 2015.

,

G. Berthe, S. Savoye, C. Wittebroodt, and J. L. Michelot, Changes in containment properties of claystone caprocks induced by dissolved CO2seepage, Energy Procedia, vol.4, pp.5314-5319, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00690872

M. Descostes, E. Pili, O. Felix, B. Frasca, J. Radwan et al., Diffusive parameters of tritiated water and uranium in chalk, Journal of Hydrology, pp.40-50, 2012.

,

S. Emmanuel and B. Berkowitz, , 2007.

,

F. González-caballero, M. A. Cabrerizo, J. M. Bruque, and A. Delgado, The zeta potential of celestite in aqueous electrolyte and surfactant solutions, Journal of Colloid And Interface Science, vol.126, issue.1, pp.367-370, 1988.

J. Hang, L. Shi, X. Feng, and L. Xiao, Electrostatic and electrosteric stabilization of aqueous suspensions of barite nanoparticles, Powder Technology, vol.192, issue.2, pp.166-170, 2009.

,

A. J. Mallon and R. E. Swarbrick, Diagenetic characteristics of low permeability, nonreservoir chalks from the Central North Sea, Marine and Petroleum Geology, vol.25, issue.10, pp.1097-1108, 2008.

,

J. Poonoosamy, E. Curti, G. Kosakowski, D. Grolimund, L. R. Van-loon et al., , 2016.

, Barite precipitation following celestite dissolution in a porous medium: A SEM/BSE and ?-XRD/XRF study, Geochimica et Cosmochimica Acta, vol.182, pp.131-144

,

M. Prieto, But these codes rely on empirical relationships, such as the Archie's law used to describe the feedback of chemistry on the diffusive transport properties. Thus, prior to long-term prediction, it is essential create a data to test and improve the description of the feedback of chemistry on transport. In this view, this thesis work dealt with developing such reactive diffusion experiments to estimate mineral precipitation impacts on containment properties of porous materials under diffusive transport regime and the c apability of REV chemistry transport codes to reproduce such an experimental dataset. In order to design these simplified experiments, three proxy porous materials (micritic chalk, compacted kaolinite and compacted illite) were chosen to address specific property describing claystones (clay surface charge, pore size distribution). Two sulfate-alkali minerals, namely barite and gypsum were selected as precipitating minerals, since they present two extremities in reference to their kinetic rate of precipitation and solubility. In a first step, intact properties of each proxy material were determined (pore size distribution, effective diffusion coefficient (De) of water tracers (HTO & HDO) and anionic tracer, 36 Cl -). Barite precipitation was studied in all the proxy materials and gypsum precipitation was studied in chalk only. During these through diffusion experiments, we monitored the reactant concentration evolution in the reservoirs at both ends of the sample and, after a known experimental time, 36Cl -and/or water tracers could diffuse through the porous samples impacted by precipitation. In addition to diffusive testing, the combined impact of pore structure and intrinsic property of mineral (solubility and kinetic rate of precipitation) on final evolution of mineral in each proxy material was also quantified using X-ray tomography (µCT), as France, Belgium and Switzerland have proposed to host a deep geological facility to confine high an d mid-level long lived radioactive waste into argillaceous formations. Such formations are considered as a potential host -rock, because of their very high containment properties, i.e. high retention capacity and very low permeability, vol.78, pp.1437-1447, 2014.

. Mots-clés,

. Argilites and . Archie, expériences de diffusion traversante, simulatio n numérique VER RÉSUMÉ Plusieurs pays tels que la France, la Belgique et la Suisse prévoient de confiner leurs déchets radioactifs de moyenne et haute activité à vie longue dans des installations souterraines sises au sein de formations argileuses profondes. Ces formations constituent en effet de très bonnes barrières ultimes contre la dispersion des radionucléides

, De ce fait, il est primordial, avant les simulations long-termes. Dans ce cadre, le présent travail de thèse s'est intéressé au développement de telles expériences de diffusion réactives pour estimer (i) l'impact de la précipitation de minéraux sur les propriétés de confinemen t de matériaux poreux "modèles" et (ii) la capacité des codes de chimie-transport à reproduire ce jeu de données expérimentales. La mise au point de ces expériences simplifiées a nécessité de se focaliser sur trois matériaux poreux « modèles », de la craie, de la kaolinite et de l'illite, choisis pour décrire une propriété spécifique des roches argileuses (charges de surface des argiles ou la structure du réseau poreux) . Par ailleurs, deux minéraux sulfatés, gypse et barytine, ont été sélectionnés comme minéraux susceptibles de pr écipiter car ils représentent deux extrêmes vis-à-vis de leur cinétique de précipitation et de leur solubilité, Néanmoins, la dégradation de certains colis de déchets devrait libérer d'importantes quantités de sels nitratés et sulfatés solubles. Ainsi, ce s panaches salins en déséquilibre chimique avec l'encaissant devraient conduire à des phénomènes de dissolution/colmatage, fais ant évoluer localement la structure porale de la roche argileuse. Aussi, pour estimer la performance de telles installations souterraines , l'évolution des propriétés de confinement de ces roches en réponse à ces processus physicochimiques se doit d'être étudié e, et ce, sur des échelles de temps et d'espace représentatives du stockage