N. Abbott, J. Donovan, and M. Shoppee, The effect of temperature and strain rate on the tensile properties of Kevlar and PBI yarns. Defense Technical Information Center, 1974.

Y. Aimene, B. Hagege, F. Sidoroff, E. Vidal-sallé, P. Boisse et al., Hyperelastic approach for composite reinforcement forming simulations, International Journal of Material Forming, vol.1, pp.811-814, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00506214

Y. Aimène, E. Vidal-sallé, B. Hagège, F. Sidoroff, and P. Boisse, A Hyperelastic Approach for Composite Reinforcement Large Deformation Analysis, Journal of Composite Materials, 2009.

D. Andre, Mod{é}lisation par {é}l{é}ments discrets des phases d ' {é}bauchage et de doucissage de la silice, pp.1-34, 2012.

D. André, M. Jebahi, I. Iordanoff, J. Charles, and J. Néauport, Using the discrete element method to simulate brittle fracture in the indentation of a silica glass with a blunt indenter, Computer Methods in Applied Mechanics and Engineering, vol.265, issue.8, pp.136-147, 2013.

R. Barauskas and A. Abraitiene, Computational analysis of impact of a bullet against the multilayer fabrics in LS-DYNA, International Journal of Impact Engineering, vol.34, issue.7, pp.1286-1305, 2007.

S. Bazhenov, Dissipation of energy by bulletproof aramid fabric, Journal of Materials Science, vol.32, issue.15, pp.4167-4173, 1997.

S. L. Bazhenov, I. A. Dukhovskii, P. I. Kovalev, and A. N. Rozhkov, The fracture of SVM aramide fibers upon a high-velocity transverse impact, Polymer science.Series A, vol.43, issue.1, pp.61-71, 2001.

S. L. Bazhenov, G. P. Goncharuk, and A. V. Bobrov, Effect of transverse compression on the tensile strength of aramid yarns, Doklady Physical Chemistry, vol.462, issue.1, pp.115-117, 2015.

F. Boussu, Compréhension des paramètres de produit et de procédé de fabrication des tissus 3D interlocks chaine. Applications en tant que renfort fibreux de solutions de protection à l ' impact, pp.0-173, 2014.

B. J. Briscoe and F. Motamedi, The ballistic impact characteristics of aramid fabrics: The influence of interface friction, Wear, vol.158, issue.1-2, pp.229-247, 1992.

C. Criscione, J. , S. Douglas, A. , C. Hunter et al., Physically based strain invariant set for materials exhibiting transversely isotropic behavior, Journal of the Mechanics and Physics of Solids, vol.49, pp.871-897, 2001.

D. J. Carr, Failure mechanisms of yarns subjected to ballistic impact, Journal of Materials Science Letters, vol.18, issue.7, pp.585-588, 1999.

A. Charmetant, E. Vidal-sall??, and P. Boisse, Hyperelastic modelling for mesoscopic analyses of composite reinforcements, Composites Science and Technology, vol.71, issue.14, pp.1623-1631, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00938547

B. A. Cheeseman and T. A. Bogetti, Ballistic impact into fabric and compliant composite laminates, Composite Structures, pp.161-173, 2003.

W. Chen, M. Hudspeth, Z. Guo, B. H. Lim, S. Horner et al., , 2017.

, Multi-scale experiments on soft body armors under projectile normal impact, International Journal of Impact Engineering, vol.108, pp.63-72

X. Chen, Advanced Fibrous Composite Materials for Ballistic Protection, 2016.

M. Cheng and W. Chen, Modeling transverse behavior of Kevlar® KM2 single fibers with deformation-induced damage, International Journal of Damage Mechanics, vol.15, issue.2, pp.121-132, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00571152

M. Cheng, W. Chen, and T. Weerasooriya, Experimental investigation of the transverse mechanical properties of a single Kevlar KM2 fiber, International Journal of Solids and Structures, vol.41, pp.6215-6232, 2004.

M. Cheng, W. Chen, and T. Weerasooriya, Mechanical Properties of Kevlar® KM2 Single Fiber, Journal of Engineering Materials and Technology, vol.127, issue.2, p.197, 2005.

S. Chocron, E. Figueroa, N. King, T. Kirchdoerfer, A. E. Nicholls et al., Modeling and validation of full fabric targets under ballistic impact, Composites Science and Technology, vol.70, issue.13, pp.2012-2022, 2010.

S. Chocron, T. Kirchdoerfer, N. King, and C. J. Freitas, Modeling of Fabric Impact With High Speed Imaging and Nickel-Chromium Wires Validation, Journal of Applied Mechanics, vol.78, p.51007, 2011.

S. Chocron, K. Ranjan-samant, A. E. Nicholls, E. Figueroa, C. E. Weiss et al., Measurement of strain in fabrics under ballistic impact using embedded nichrome wires. Part I: Technique, International Journal of Impact Engineering, vol.36, pp.1296-1302, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00632732

C. K. Chu and Y. L. Chen, Ballistic-proof effects of various woven constructions. Fibres and Textiles in Eastern Europe, vol.83, pp.63-67, 2010.

T. Chu, C. Ha-minh, and A. Imad, A numerical investigation of the inuence of yarn mechanical and physical properties on the ballistic impact behavior of a Kevlar KM2® woven fabric, Composites Part B: Engineering, vol.95, pp.144-154, 2016.

Y. Chu, S. Min, C. , and X. , Numerical study of inter-yarn friction on the failure of fabrics upon ballistic impacts, Materials and Design, vol.115, pp.299-316, 2017.

P. Cundall and O. Strack, A discrete numerical model for granular assemblies, Géotechnique, vol.29, pp.47-65, 1979.

P. Cunniff, An analysis of the system effects in woven fabrics under ballistic impact, Textile Research Journal, vol.62, issue.9, pp.495-509, 1992.

P. Cunniff, Decoupled response of textile body armor, Proc. 18th Int. Symp. on Ballistics, pp.0-7, 1999.

P. Cunniff, Dimensionless Parameters for Optimization of Textile-Based Body Armor Systems, Proceeding of the 18th International Symposium on Ballistics, pp.1303-1310, 1999.

P. M. Cunniff, A Semiempirical Model for the Ballistic Impact Performance of Textile-Based Personnel Armor, Textile Research Journal, vol.66, issue.1, pp.45-58, 1996.

P. M. Cunniff and T. I. Committee, A Design Tool for the Development of Fragmentation Protective Body Armor, 18th International Symposium on Ballistics, pp.1295-1302, 1999.

H. M. Cuong, A. Imad, F. Boussu, T. Kanit, and D. Crepin, Numerical study on the effects of yarn mechanical transverse properties on the ballistic impact behaviour of textile fabric, Journal of Strain Analysis for Engineering Design, vol.47, issue.7, pp.524-534, 2012.

H. Darijani and R. Naghdabadi, Hyperelastic materials behavior modeling using consistent strain energy density functions, Acta Mechanica, vol.213, issue.3-4, pp.235-254, 2010.

S. Das, S. Jagan, A. Shaw, and A. Pal, Determination of inter-yarn friction and its effect on ballistic response of para-aramid woven fabric under low velocity impact, Composite Structures, vol.120, pp.129-140, 2015.

S. Das, S. Jagan, A. Shaw, and A. Pal, Determination of inter-yarn friction and its effect on ballistic response of para-aramid woven fabric under low velocity impact, Composite Structures, vol.120, pp.129-140, 2015.

S. J. Deteresa, S. R. Allen, R. J. Farris, and R. S. Porter, Compressive and torsional behaviour of Kevlar 49 fibre, Journal of Materials Science, vol.19, issue.1, pp.57-72, 1984.

D. Pont, Kevlar Technical Guide, 2012.

Y. Duan, M. Keefe, T. A. Bogetti, B. A. Cheeseman, and B. Powers, A numerical investigation of the influence of friction on energy absorption by a highstrength fabric subjected to ballistic impact, International Journal of Impact Engineering, vol.32, issue.8, pp.1299-1312, 2006.

Y. Duan, M. Keefe, T. A. Bogetti, and B. Powers, Finite element modeling of transverse impact on a ballistic fabric, International Journal of Mechanical Sciences, vol.48, issue.1, pp.33-43, 2006.

D. Durville, Simulation of the mechanical behaviour of woven fabrics at the scale of fibers, International Journal of Material Forming, vol.3, issue.2, pp.1241-1251, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00495110

D. Erlich, D. Shockey, and J. Simon, Slow Penetration of Ballistic Fabrics, Textile Research Journal, vol.73, pp.179-184, 2003.

A. Gasser, P. Boisse, and S. Hanklar, Mechanical behaviour of dry fabric reinforcements. 3D simulations versus biaxial tests, Computational Materials Science, vol.17, issue.1, pp.7-20, 2000.

M. Grujicic, P. S. Glomski, B. Pandurangan, W. C. Bell, C. F. Yen et al., Multi-length scale computational derivation of Kevlar® yarn-level material model, Journal of Materials Science, vol.46, issue.14, pp.4787-4802, 2011.

M. Grujicic, A. Hariharan, B. Pandurangan, C. F. Yen, B. A. Cheeseman et al., Fiber-level modeling of dynamic strength of kevlar{®} KM2 ballistic fabric, Journal of Materials Engineering and Performance, vol.21, issue.7, pp.1107-1119, 2012.

C. Ha-minh, F. Boussu, T. Kanit, D. Crépin, and A. Imad, Analysis on failure mechanisms of an interlock woven fabric under ballistic impact, Engineering Failure Analysis, vol.18, issue.8, pp.2179-2187, 2011.

C. Ha-minh, A. Imad, F. Boussu, and T. Kanit, Experimental and numerical investigation of a 3D woven fabric subjected to a ballistic impact, International Journal of Impact Engineering, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01233701

C. Ha-minh, A. Imad, T. Kanit, and F. Boussu, Numerical analysis of a ballistic impact on textile fabric, International Journal of Mechanical Sciences, vol.69, pp.32-39, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00816695

C. Ha-minh, T. Kanit, F. Boussu, and A. Imad, Numerical multi-scale modeling for textile woven fabric against ballistic impact, Computational Materials Science, vol.50, issue.7, pp.2172-2184, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00643235

N. Hamila and P. Boisse, A meso-macro three node finite element for draping of textile composite preforms, Applied Composite Materials, vol.14, issue.4, pp.235-250, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00380796

J. Hearle, High-performance fibre, 2001.

G. Holzapfel, Nonlinear solid mechanics A continuum Approach for Engineers

M. Hosseinzadeh, M. Ghoreishi, and K. Narooei, Investigation of hyperelastic models for nonlinear elastic behavior of demineralized and deproteinized bovine cortical femur bone, Journal of the Mechanical Behavior of Biomedical Materials, vol.59, pp.393-403, 2016.

M. Hudspeth, A. Agarwal, B. Andrews, B. Claus, F. Hai et al., Degradation of yarns recovered from soft-armor targets subjected to multiple ballistic impacts, Composites Part A: Applied Science and Manufacturing, vol.58, pp.98-106, 2014.

M. Hudspeth, W. Chen, and J. Zheng, Why the Smith theory over-predicts instant rupture velocities during fiber transverse impact, Textile Research Journal, vol.86, pp.743-754, 2015.

M. Hudspeth, J. Chu, E. Jewell, B. Lim, E. Ytuarte et al., Effect of projectile nose geometry on the critical velocity and failure of yarn subjected to transverse impact, Textile Research Journal, vol.87, pp.953-972, 2016.

M. Hudspeth, D. Li, J. Spatola, W. Chen, and J. Zheng, The effects of off-axis transverse deflection loading on the failure strain of various high-performance fibers, Textile Research Journal, vol.86, issue.9, pp.897-910, 2015.

V. Isvilanonda, J. M. Iaquinto, S. Pai, P. Mackenzie-helnwein, and W. R. Ledoux, Hyperelastic compressive mechanical properties of the subcalcaneal soft tissue: An inverse finite element analysis, Journal of Biomechanics, vol.49, issue.7, pp.1186-1191, 2016.

I. Ivanov and A. Tabiei, Loosely woven fabric model with viscoelastic crimped fibres for ballistic impact simulations, International Journal for Numerical Methods in Engineering, vol.61, issue.10, pp.1565-1583, 2004.

J. Mckee, P. Sokolow, A. C. Yu, J. H. Long, L. L. Wetzel et al., , 2016.

, Finite Element Simulation of Ballistic Impact on Single Jersey Knit Fabric. Composite Structures, vol.162, pp.98-107

S. Leigh-phoenix and P. K. Porwal, A new membrane model for the ballistic impact response and V50 performance of multi-ply fibrous systems, International Journal of Solids and Structures, vol.40, issue.24, pp.6723-6765, 2003.

C. T. Lim, V. P. Shim, and Y. H. Ng, Finite-element modeling of the ballistic impact of fabric armor, International Journal of Impact Engineering, vol.28, pp.13-31, 2003.

C. T. Lim, V. B. Tan, and C. H. Cheong, Perforation of high-strength double-ply fabric system by varying shaped projectiles, International Journal of Impact Engineering, vol.27, issue.6, pp.577-591, 2002.

J. Lim, J. Q. Zheng, K. Masters, C. , and W. W. , Effects of gage length, loading rates, and damage on the strength of PPTA fibers, International Journal of Impact Engineering, vol.38, issue.4, pp.219-227, 2011.

S. Luding, Introduction to discrete element methods: Basic of contact force models and how to perform the micro-macro transition to continuum theory, European Journal of Environmental and Civil, pp.785-826, 2008.

M. R. Mansouri, H. Montazerian, S. Schmauder, and J. Kadkhodapour, 3D-printed multimaterial composites tailored for compliancy and strain recovery, Composite Structures, vol.184, pp.11-17, 2017.

Q. P. Mcallister, J. W. Gillespie, and M. R. Vanlandingham, Evaluation of the three-dimensional properties of Kevlar across length scales, Journal of Materials Research, vol.27, issue.14, pp.1824-1837, 2012.

Y. Miao, E. Zhou, Y. Wang, and B. A. Cheeseman, Mechanics of textile composites: Micro-geometry, Composites Science and Technology, vol.68, issue.7-8, pp.1671-1678, 2008.

G. Nilakantan, Filament-level modeling of Kevlar KM2 yarns for ballistic impact studies, Composite Structures, vol.104, pp.1-13, 2013.

G. Nilakantan, World's First Predictive and Validated Yarn-level FEA Modeling of the V0-V100 Probabilistic Penetration Response of Fully-Clamped Kevlar Fabric, 2017.

G. Nilakantan, Experimentally validated predictive finite element modeling of the V0-V100 probabilistic penetration response of a Kevlar fabric against a spherical projectile, International Journal of Protective Structures, 2018.

G. Nilakantan, B. N. Cox, and O. Sudre, Generation of Realistic Stochastic Virtual Microstructures using a Novel Thermal Growth Method for Woven Fabrics and Textile Composites, 2017.

G. Nilakantan and J. W. Gillespie, Ballistic impact modeling of woven fabrics considering yarn strength, friction, projectile impact location, and fabric boundary condition effects, Composite Structures, vol.94, issue.12, pp.3624-3634, 2012.

G. Nilakantan, M. Keefe, T. A. Bogetti, and J. W. Gillespie, Multiscale modeling of the impact of textile fabrics based on hybrid element analysis, International Journal of Impact Engineering, vol.37, issue.10, pp.1056-1071, 2010.

G. Nilakantan, M. Keefe, E. D. Wetzel, T. A. Bogetti, and J. W. Gillespie, Effect of statistical yarn tensile strength on the probabilistic impact response of woven fabrics, Composites Science and Technology, vol.72, issue.2, pp.320-329, 2012.

G. Nilakantan and S. Nutt, Effects of clamping design on the ballistic impact response of soft body armor, Composite Structures, vol.108, issue.1, pp.13-150, 2014.

G. Nilakantan and S. Nutt, Effects of fabric target shape and size on the V50 ballistic impact response of soft body armor, Composite Structures, vol.116, issue.1, pp.661-669, 2014.

G. Nilakantan and S. Nutt, State of the Art in the Deterministic and Probabilistic Ballistic Impact Modeling of Soft Body Armor : Filaments to Fabrics, 2014.

G. Nilakantan, E. D. Wetzel, T. A. Bogetti, and J. W. Gillespie, A deterministic finite element analysis of the effects of projectile characteristics on the impact response of fully clamped flexible woven fabrics, Composite Structures, vol.95, pp.191-201, 2013.

T. Nottingham, Sherburn, Martin (2007) Geometric and Mechanical Modelling of Textiles, 2007.

R. W. Ogden, G. Saccomandi, and I. Sgura, Fitting hyperelastic models to experimental data, Computational Mechanics, vol.34, issue.6, pp.484-502, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01727230

E. M. Parsons, M. J. King, and S. Socrate, Modeling yarn slip in woven fabric at the continuum level: Simulations of ballistic impact, Journal of the Mechanics and Physics of Solids, vol.61, issue.1, pp.265-292, 2013.

E. M. Parsons, T. Weerasooriya, S. Sarva, and S. Socrate, Impact of woven fabric: Experiments and mesostructure-based continuum-level simulations, Journal of the Mechanics and Physics of Solids, vol.58, issue.11, pp.1995-2021, 2010.

S. Phoenix, U. Heisserer, H. Van-der-werff, and M. Van-der-jagt-deutekom, , 2017.

, Modeling and Experiments on Ballistic Impact into UHMWPE Yarns Using Flat and Saddle-Nosed Projectiles. Fibers, vol.5, p.8

M. Pritchard, R. W. Sarsby, and S. C. Anand, Handbook of Technical Textiles, 2000.

R. A. Prosser, Penetration of Nylon Ballistic Panels by Fragment-Simulating Projectiles: Part II: Mechanism of Penetration, Textile Research Journal, vol.58, issue.3, pp.161-165, 1988.

M. P. Rao, Y. Duan, M. Keefe, B. M. Powers, and T. A. Bogetti, Modeling the effects of yarn material properties and friction on the ballistic impact of a plain-weave fabric, Composite Structures, vol.89, issue.4, pp.556-566, 2009.

B. Rashid, M. Destrade, and M. D. Gilchrist, Mechanical characterization of brain tissue in simple shear at dynamic strain rates, Journal of the Mechanical Behavior of Biomedical Materials, vol.28, pp.71-85, 2013.

D. Roylance, Ballistics of Transversely Impacted Fibers, Textile Research Journal, vol.47, issue.10, pp.679-684, 1977.

D. Roylance, Penetration Mechanics of Textile Structures, 1980.

D. K. Roylance, A. F. Wilde, and G. C. Tocci, Ballistic impact of textile structures, 1973.

A. Shahkarami and R. Vaziri, A continuum shell finite element model for impact simulation of woven fabrics, International Journal of Impact Engineering, vol.34, issue.1, pp.104-119, 2007.

V. P. Shim, V. B. Tan, and T. E. Tay, Modelling deformation and damage characteristics of woven fabric under small projectile impact, International Journal of Impact Engineering, vol.16, issue.4, pp.585-605, 1995.

J. Smith, A. Carl, and P. J. Shouse, Stress-Strain Relationships in Yarns Subjected to Rapid Impact Loading Part XI: Strain Distributions Resulting from Rifle Bullet Impact, pp.743-757, 1964.

J. C. Smith, Stress-Strain Relationship in Yarns Subjected to Rapid Impact Loading Part VII: Stress-Strain Curves and Breaking -Energy Data for Textile Yarns, vol.31, pp.721-734, 1961.

J. C. Smith, Stress-strain relationships in yarns subjected to rapid impact loading part x: Stress-strain curves obtained by impact with rifle bullets, vol.33, pp.919-934, 1963.

J. C. Smith, F. L. Mccracking, and H. F. Schiefer, Stress-Strain Relationships in Yarns Subjected to Rapid Impact Loading. Part V: Wave Propagation In Long Textile Yarns Impacted Transversely, Journal of Research of the National Bureau of Standards, vol.60, issue.5, pp.701-708, 1955.

S. Sockalingam, R. Bremble, J. W. Gillespie, K. , and M. , Transverse compression behavior of Kevlar KM2 single fiber, Composites Part A: Applied Science and Manufacturing, vol.81, pp.271-281, 2016.

S. Sockalingam, S. C. Chowdhury, J. W. Gillespie, K. , and M. , Recent advances in modeling and experiments of Kevlar ballistic fibrils, fibers, yarns and flexible woven textile fabrics -a review, Textile Research Journal, vol.87, pp.984-1010, 2016.

S. Sockalingam, J. W. Gillespie, K. , and M. , On the transverse compression response of Kevlar KM2 using fiber-level finite element model, International Journal of Solids and Structures, vol.51, issue.13, pp.2504-2517, 2014.

S. Sockalingam, J. W. Gillespie, K. , and M. , Dynamic modeling of Kevlar KM2 single fiber subjected to transverse impact, International Journal of Solids and Structures, pp.297-310, 2015.

S. Sockalingam, J. W. Gillespie, K. , and M. , Influence of multiaxial loading on the failure of Kevlar KM2 single fiber, Textile Research Journal, vol.88, pp.483-498, 2016.

S. Sockalingam, J. W. Gillespie, K. , and M. , Fiber-level Tow Modeling of Kevlar KM2 Subjected to High Velocity Impact, SAMPE Seattle, 2014.

S. Sockalingam, J. W. Jr, K. , and M. , Modeling the fiber lengthscale response of Kevlar KM2 yarn during transverse impact, Textile Research Journal, vol.88, pp.483-498, 2016.

B. Song, H. Park, W. Lu, C. , and W. , Transverse Impact Response of a Linear Elastic Ballistic Fiber Yarn, Journal of Applied Mechanics, vol.78, issue.5, p.51023, 2011.

A. Tabiei and G. Nilakantan, Ballistic Impact of Dry Woven Fabric Composites: A, Review. Applied Mechanics Reviews, vol.61, issue.1, p.10801, 2008.

V. B. Tan, C. T. Lim, and C. H. Cheong, Perforation of high-strength fabric by projectiles of different geometry, International Journal of Impact Engineering, vol.28, issue.2, pp.207-222, 2003.

J. D. Walker and S. Chocron, Why Impacted Yarns Break at Lower Speed Than Classical Theory Predicts, Journal of Applied Mechanics, vol.78, p.51021, 2011.

Y. Wang, X. Chen, R. Young, and I. Kinloch, A numerical and experimental analysis of the influence of crimp on ballistic impact response of woven fabrics, Composite Structures, vol.135, pp.8-16, 2016.

Y. Wang, Y. Miao, L. Huang, D. Swenson, C. Yen et al., Effect of the inter-fiber friction on fiber damage propagation and ballistic limit of 2-D woven fabrics under a fully confined boundary condition, International Journal of Impact Engineering, vol.97, pp.66-78, 2016.

Y. Wang, Y. Miao, D. Swenson, B. A. Cheeseman, C. F. Yen et al., Digital element approach for simulating impact and penetration of textiles, International Journal of Impact Engineering, vol.37, issue.5, pp.552-560, 2010.

C. C. Yang, T. Ngo, T. , and P. , Influences of weaving architectures on the impact resistance of multi-layer fabrics, Materials and Design, vol.85, pp.282-295, 2015.

J. H. Yu, P. G. Dehmer, Y. , and C. , High-speed Photogrammetric Analysis on the Ballistic Behavior of Kevlar Fabrics Impacted by Various Projectiles, 2010.

X. S. Zeng, V. B. Tan, and V. P. Shim, Modelling inter-yarn friction in woven fabric armour, International Journal for Numerical Methods in Engineering, vol.66, issue.8, pp.1309-1330, 2006.

Q. Zheng, Theory of Representations for Tensor Functions-A Unified Invariant Approach to Constitutive Equations, Applied Mechanics Reviews, vol.47, issue.11, p.545, 1994.

G. Zhou, X. Sun, W. , and Y. , Multi-chain digital element analysis in textile mechanics, Composites Science and Technology, vol.64, issue.2, pp.239-244, 2004.

Y. Zhou and X. Chen, A numerical investigation into the influence of fabric construction on ballistic performance, Composites Part B: Engineering, vol.76, pp.209-217, 2015.