, T t (1, 1) = C? 5 C? 6

, T t (1, 2) = ?C? 5 S? 6

, T t (2, 1) = ?S? 6

, 1) = C(? 2 +? 3 ) C? 6 S? 4 +C(? 2 +? 3 ) C? 4 C? 5 S? 6 ?S(? 2 +? 3 ) S? 5 S? 6, J, issue.5

, 1) = ?(C? 5 S(? 2 + ? 3 )) ? C(? 2 + ? 3 ) C? 4 S? 5, J, issue.6

, 2) = C? 5 C? 6 S? 4 + C? 4 S? 6, J, vol.4

, 2) = C? 4 C? 6 ? C? 5 S? 4 S? 6, J, issue.5

, 2) = S? 4 S? 5, J, issue.6

, J, vol.3

, 3) = C? 5 C? 6 S? 4 + C? 4 S? 6, J, vol.4

, 3) = C? 4 C? 6 ? C? 5 S? 4 S? 6, J, issue.5

, 3) = S? 4 S? 5, J, issue.6

, J(1, 4) = l 0A S? 5 S? 6 ? L5 S? 5 S? 6

, 4) = S? 5 S? 6, J, issue.5

, J(1, 5) = l 0A C? 6 ? L5 C? 6

, 5) = ?(l 0A S? 6 ) + L5 S? 6

, 5) = ?(d 0A C? 6 ), J, vol.3

, 5) = C? 6, J, issue.5

, J, issue.6, p.0

, J(1, 6) = 0

, 6) = d 0A

, La matrice jacobienne du robot B exprimée dans le repère de l'outil

, C? 6 S? 4 )+L5 C(? 2 +? 3 ) C? 6 S? 4 +L 1x C? 5 C? 6 S? 4 + L 2 C? 2 C? 5 C? 6 S? 4 + L 34 C(? 2 + ? 3 ) C? 5 C? 6 S? 4 ? D 4 C? 5 C? 6 S(? 2 + ? 3 ) S? 4 +L 1x C? 4 S? 6 +L 2 C? 2 C? 4 S? 6 +L 34 C(? 2 +? 3 ) C? 4, vol.2

, +? 3 )+d 0B C(? 2 +? 3 ) C? 4 S? 5 +l 0B C? 6 S(? 2 +? 3 ) S? 5 ? L5 C? 6 S(? 2 + ? 3 )

, + ? 3 ) C? 6 S? 4 ) ? L 1x S? 4 S? 5 ? L 2 C? 2 S? 4 S? 5 ? L 34 C(? 2 +? 3 ) S? 4

, C(? 2 +? 3 ) C? 4 C? 5 C? 6 ?C? 6 S(? 2 +? 3 ) S? 5 ?C(? 2 +? 3 ) S? 4 S? 6

, 1) = ?(C(? 2 + ? 3 ) C? 6 S? 4 ) ? C(? 2 + ? 3 ) C? 4 C? 5, J, issue.5

, 1) = ?(C? 5 S(? 2 + ? 3 )) ? C(? 2 + ? 3 ) C? 4 S? 5, J, issue.6

, 2) = ?(C? 5 C? 6 S? 4 ) ? C? 4 S? 6, J, vol.4

, 2) = ?(C? 4 C? 6 ) + C? 5 S? 4 S? 6, J, issue.5

, 2) = S? 4 S? 5, J, issue.6

, J, vol.3

, 3) = ?(C? 5 C? 6 S? 4 ) ? C? 4 S? 6, J, vol.4

, 3) = ?(C? 4 C? 6 ) + C? 5 S? 4 S? 6, J, issue.5

, 3) = S? 4 S? 5, J, issue.6

, 4) = ?(d 0B C? 5 ) ? l 0B C? 6 S? 5 + L5 C? 6 S? 5

, C? 6 S? 5

, 4) = ?(S? 5 S? 6 ), J, issue.5

, J(1, 5) = ?(l 0B C? 6 ) + L5 C? 6

, 5) = l 0B S? 6 ? L5 S? 6

, 5) = ?(d 0B C? 6 ), J, vol.3

, 5) = ?C? 6, J, issue.5

, J, issue.6, p.0

, J(1, 6) = 0

, 6) = ?d 0B

E. Abele, M. Weigold, and S. Rothenbücher, Modeling and identification of an industrial robot for machining applications, CIRP Annals-Manufacturing Technology, vol.56, issue.1, pp.387-390, 2007.

O. A. and A. , Etude d'une méthodologie de modélisation et de commande d'un robot multiaxe pour une application en radiologie médicale, 2009.

G. Alici and B. Shirinzadeh, Enhanced stiffness modeling, identification and characterization for robot manipulators, IEEE transactions on robotics, vol.21, pp.554-564, 2005.

W. J. Arbegast, Chapter 13 : Application of Friction Stir Welding and Related Technologies, Friction Stir Welding and Processing, 2007.

J. William and . Arbegast, Application of friction stir welding and related technologies. Friction Stir Welding and Processing, pp.273-308, 2007.

J. Arellano, D. Gómez, and R. Vigil, The maximal workspace of a planar robot : A gröbner bases approach, 1999.

A. Arora, . Nandan, P. Anthony, T. Reynolds, and . Debroy, Torque, power requirement and stir zone geometry in friction stir welding through modeling and experiments, Scripta Materialia, vol.60, issue.1, pp.13-16, 2009.

N. Balasubramanian, R. Gattu, and . Mishra, Process forces during friction stir welding of aluminium alloys, Science and Technology of Welding and Joining, vol.14, issue.2, pp.141-145, 2009.

N. Balasubramanian, S. Rajiv, K. Mishra, and . Krishnamurthy, Process forces during friction stir channeling in an aluminum alloy, Journal of Materials Processing Technology, vol.211, issue.2, pp.305-311, 2011.

R. S. Mishra-balasubramanian and B. Gattu, Process forces during friction stir welding of aluminium alloys, vol.14, pp.141-145, 2009.

A. Brès, Modélisation et simulation du soudage par friction malaxage utilisant des robots industriels, 2008.

A. Bres, . Bruno, . Monsarrat, . Laurant, L. Dubourg et al., Simulation of friction stir welding using industrial robots, Industrial Robot, vol.37, issue.1, pp.36-50, 2010.

. Mm-bridges, M. Darren, C. T. Dawson, and . Abdallah, Contril of rigidlink, flexible-joint robots : a survey of backstepping approaches, Journal of Field Robotics, vol.12, issue.3, pp.199-216, 1995.

M. M. Bridges and . Dawson, Redesign of robust controllers for rigid-link flexible-joint robotic manipulators actuated with harmonic drive gearing, IEE Proceedings-Control Theory and Applications, vol.142, issue.5, pp.508-514, 1995.

T. Brogårdh, Present and future robot control development ?an industrial perspective, Annual Reviews in Control, vol.31, issue.1, pp.69-79, 2007.

T. Brogårdh, Robot control overview : An industrial perspective. Modeling, Identification and Control, vol.30, p.167, 2009.

B. Brogliato, R. Ortega, and R. Lozano, Global tracking controllers for flexible-joint manipulators : a comparative study, Automatica, vol.31, issue.7, pp.941-956, 1995.

C. R. Delphine-s-caravaca, K. Bird, S. Beamish, and . Maddox, Correlation of phased array inspection and fatigue performance of fsw joints, ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering, pp.243-248, 2007.

N. Chaillet, Étude et réalisation d'un robot bipède : commande dynamique et observateur d'efforts, 1993.

J. John and . Craig, Introduction to robotics : mechanics and control, 2005.

J. John, P. Craig, S. Hsu, and . Sastry, Adaptive control of mechanical manipulators, The International Journal of Robotics Research, vol.6, issue.2, pp.16-28, 1987.

J. D. Backer, Feedback control of robotic friction stir welding, 2014.

D. Deblaise, X. Hernot, and P. Maurine, A systematic analytical method for pkm stiffness matrix calculation, Proceedings of the 2006 IEEE International Conference on Robotics and Automation, pp.4213-4219, 2006.

D. Étienne, Programmation des robots, 1998.

L. Dubourg, F. Fo-gagnon, . Nadeau, M. St-georges, and . Jahazi, Process window optimization for fsw of thin and thick sheet al alloys using statistical methods, 2006.

G. Duelen and K. Schröer, Robot calibration : method and results, Robotics and Computer-Integrated Manufacturing, vol.8, 1991.

C. Dumas, Développement de méthodes robotisées pour le parachè-vement de pièces métalliques et composites, 2011.

C. Dumas, S. Caro, S. Garnier, and B. Furet, Joint stiffness identification of six-revolute industrial serial robots. Robotics and Computer-Integrated Manufacturing, vol.27, pp.881-888, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00632989

D. Eireiner, Prozessmodelle zur statischen Auslegung von Anlagen für das Friction Stir Welding, vol.201, 2006.

K. Elangovan and . Balasubramanian, Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in aa2219 aluminium alloy, Materials Science and Engineering : A, vol.459, issue.1, pp.7-18, 2007.

K. Elangovan and . Balasubramanian, Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in aa6061 aluminium alloy, Materials & design, vol.29, issue.2, pp.362-373, 2008.

. Esab, Boeing selects esab for space launch system project, 2013.

G. Abba, F. Dardouri, and W. Seemann, Parallel robot structure optimizations for a friction stir welding application, 2017.

, Friction Stir Tooling : Tool Materials and Designs, Friction Stir Welding and Processing, Friction Stir Welding and Processing, 2007.

M. Gautier, A. Jubien, G. Abba, and J. Qin, Identification du modèle avec flexibilité : méthode et paramètres numé-riques, 2013.

C. Genevois, Genèse des microstructures lors du soudage par friction malaxage d'alliages d'aluminium de la série 2000 & 5000 et comportement mécanique résultant, 2004.

. Bt-gibson, . Dh-lammlein, . Prater, . Longhurst, . Cox et al., Friction stir welding : process, automation, and control, Journal of Manufacturing Processes, vol.16, issue.1, pp.56-73, 2014.

. Mc-good and . Sweet, Dynamic models for control system design of integrated robot and drive systems, Journal of Dynamic Systems, Measurement, and Control, vol.107, issue.1, pp.53-59, 1985.

. Dg-hattingh, . Blignault, . Ti-van-niekerk, and . James, Characterization of the influences of fsw tool geometry on welding forces and weld tensile strength using an instrumented tool, Journal of Materials Processing Technology, vol.203, issue.1-3, pp.46-57, 2008.

. Dg-hattingh, C. Van-niekerk, G. Blignault, . Kruger, and . James, Analysis of the fsw force footprint and its relationship with process parameters to optimise weld performance and tool design, Welding in the World, vol.48, issue.1-2, pp.50-58, 2004.

J. Hollerbach, W. Khalil, and M. Gautier, Model identification, Springer Handbook of Robotics, pp.321-344, 2008.

. Ifr, History of industrial robots : Milestones of technology and commercialization, 2012.

. Doo-yearn, E. J. Jo, and . Haug, Workspace analysis of closed-loop mechanisms with unilateral constraints, 1989.

R. Johnson, Forces in friction stir welding of aluminum alloys, 3rd International Symposium on Friction Stir Welding, pp.6-19, 2001.

W. Khalil, Symoro : système pour la modélisation des robots. Support technique-Notice d'utilisation, 1989.

W. Khalil and D. Creusot, Symoro+ : A system for the symbolic modelling of robots, Robotica, vol.15, pp.153-161, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00401687

W. Khalil and J. F. Kleinfinger, New geometric notation for open and closed-loop robots, pp.1174-1179, 1986.

W. Khalil and E. Dombre, Modélisation, identification et commande des robots. Hermès science publ, 1999.

W. Khalil and M. Gautier, Modeling of mechanical systems with lumped elasticity, Proceedings. ICRA'00. IEEE International Conference on, vol.4, pp.3964-3969, 2000.

K. Khorasani, Nonlinear feedback control of flexible joint manipulators : A single link case study, IEEE Transactions on Automatic Control, vol.35, issue.10, pp.1145-1149, 1990.

. Yg-kim, T. Fujii, . Tsumura, K. Komazaki, and . Nakata, Three defect types in friction stir welding of aluminum die casting alloy, Materials Science and Engineering : A, vol.415, issue.1, pp.250-254, 2006.

J. Latombe, Robot motion planning, kluwer international series in engineering and computer science, 1990.

. Hj-liu, M. Fujii, K. Maeda, and . Nogi, Tensile properties and fracture locations of friction-stir-welded joints of 2017-t351 aluminum alloy, Journal of Materials Processing Technology, vol.142, issue.3, pp.692-696, 2003.

H. Liu, J. David, H. Brown, and . Li, Parametric planning for multiple cooperative robots, Journal of Intelligent and Robotic Systems, vol.44, issue.2, pp.93-105, 2005.

T. Long, P. Anthony, and . Reynolds, Parametric studies of friction stir welding by commercial fluid dynamics simulation, Science and Technology of Welding and Joining, vol.11, issue.2, pp.200-208, 2006.

M. Makarov, Contribution à la modélisation et la commande robuste de robots manipulateurs à articulations flexibles. Applications à la robotique interactive, 2013.

F. Marie, D. Guerin, . Deloison, C. Aliaga, and . Desrayaud, Investigation on bobbin tool friction stir welding of 2000 series aluminum thin sheets, Proc. 7th Int. Symp. on Friction stir welding, pp.1-19, 2008.

A. Marco, S. Meggiolaro, C. Dubowsky, and . Mavroidis, Geometric and elastic error calibration of a high accuracy patient positioning system, Mechanism and Machine Theory, vol.40, pp.415-427, 2005.

J. Merlet, Estimation efficace des caractéristiques de robots parallèles : Extremums des raideurs et des coordonnées, vitesses, forces articulaires et Singularités dans un espace de travail en translation, 1997.

K. Miller, Maximization of workspace volume of 3-dof spatial parallel manipulators, Journal of Mechanical Design, vol.124, issue.2, pp.347-350, 2002.

S. Rajiv, Z. Y. Mishra, and . Ma, Friction stir welding and processing, Materials Science and Engineering,Reports, vol.50, pp.1-78, 2005.

S. Rajiv, Z. Y. Mishra, and . Ma, Friction stir welding and processing, Materials Science and Engineering : R : Reports, vol.50, issue.1-2, pp.1-78, 2005.

S. Muthukumaran and . Mukherjee, Multi-layered metal flow and formation of onion rings in friction stir welds, The International Journal of Advanced Manufacturing Technology, vol.38, issue.1-2, pp.68-73, 2008.

V. Nabat, Robots parallèles à nacelle articulée : Du concept à la solution industrielle pour le pick-and-place, 2007.

R. Nandan, T. Debroy, and H. K. Bhadeshia, Recent advances in friction-stir welding -process, weldment structure and properties, Progress in Materials Science, vol.53, issue.6, p.298, 2008.

M. Östring, S. Gunnarsson, and M. Norrlöf, Closed-loop identification of an industrial robot containing flexibilities, Control Engineering Practice, vol.11, issue.3, pp.291-300, 2003.

M. Palpacelli, Static performance improvement of an industrial robot by means of a cable-driven redundantly actuated system, Robotics and Computer-Integrated Manufacturing, vol.38, pp.1-8, 2016.

A. Pashkevich, D. Chablat, and P. Wenger, Stiffness analysis of overconstrained parallel manipulators. Mechanism and Machine Theory, vol.44, pp.966-982, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00372638

A. Pashkevich, A. Klimchik, and D. Chablat, Enhanced stiffness modeling of manipulators with passive joints. Mechanism and machine theory, vol.46, pp.662-679, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00583167

P. Richard and . Paul, Robot manipulators : mathematics, programming, and control : the computer control of robot manipulators, 1981.

M. Ponte, C. Adamowski, E. Gambaro, and . Lertora, Low-cost transformation of a conventional milling machine into a simple fsw work station, AMST 05 Advanced Manufacturing Systems and Technology, pp.357-365, 2005.

J. Qin, Commande hybride position/force robuste d'un robot manipulateur utilisé en usinage et/ou en soudage, 2013.

J. Qin, F. Leonard, and G. Abba, Nonlinear discrete observer for flexibility compensation of industrial robots. IFAC Proceedings Volumes, vol.47, pp.5598-5604, 2014.

. Kuka-system and . Software, , 2005.

H. Marc, J. Raibert, and . Craig, Hybrid position/force control of manipulators, Journal of Dynamic Systems, Measurement, and Control, vol.103, issue.2, pp.126-133, 1981.

K. Schröer, Theory of kinematic modelling and numerical procedures for robot calibration. Robot Calibration, pp.157-196, 1993.

S. Shepherd and A. Buchstab, Kuka robots on-site, Robotic Fabrication in Architecture, Art and Design, pp.373-380, 2014.

. Springer, , 2014.

B. Siciliano and O. Khatib, Springer Handbook of Robotics, 2008.

B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics : Modelling, Planning and Control, 2010.

B. Siciliano and O. Khatib, Springer handbook of robotics, 2008.

B. Siciliano and O. Khatib, Springer handbook of robotics, 2016.

B. C. Smith, Friction Stir Welding and Processing, chapter 11 Robots and machines for friction stir welding / processing, Friction Stir Welding and Processing, 2007.

B. Christopher and . Smith, Robotic friction stir welding using a standard industrial robot, 2nd International Friction Stir Welding Symposium, 2000.

M. Soron, Towards multidimensionality and flexibility in fsw using an industrial robot system, Welding in the World, vol.52, issue.9, pp.54-59, 2008.

M. Soron, Robot system for flexible 3D friction stir welding, 2007.

M. Soron and I. Kalaykov, A robot prototype for friction stir welding, Robotics, Automation and Mechatronics, pp.1-5, 2006.

A. Spiller and A. Verl, Superimposed force/torquecontrol of cooperating robots, Robotics (ISR), 2010 41st International Symposium on and 2010 6th German Conference on Robotics (ROBOTIK), pp.1-7, 2010.

W. Mark and . Spong, Modeling and control of elastic joint robots, Journal of dynamic systems, vol.109, issue.4, pp.310-318, 1987.

W. Mark and . Spong, On the force control problem for flexible joint manipulators, IEEE Transactions on Automatic Control, vol.34, issue.1, pp.107-111, 1989.

W. Mark, S. Spong, M. Hutchinson, and . Vidyasagar, Robot Modeling and Control, 2005.

W. Mark, S. Spong, M. Hutchinson, and . Vidyasagar, Robot modeling and control, vol.3, 2006.

A. Strombeck, C. Schilling, and J. Santos, 2D and 3D friction stir welding with articulated robot arm, Proc. of 2nd International Friction Stir Welding Symposium, 2000.

L. Sweet and . Good, Redefinition of the robot motion-control problem, IEEE Control Systems Magazine, vol.5, issue.3, pp.18-25, 1985.

H. Takahara, M. Motoyama, S. Tsujikawa, S. W. Oki, K. Chung et al., Allowance of deviation and gap in butt joint on friction stir welding, Advanced Materials Research, vol.15, pp.375-380, 2007.

W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Temple-smith et al., International patent application pct/gb92/02203, 1991.

W. M. Thomas and E. D. Nicholas, Friction stir welding for the transportation industries, Materials & design, vol.18, issue.4-6, pp.269-273, 1997.

P. Tomei, A simple pd controller for robots with elastic joints, IEEE Transactions on automatic control, vol.36, issue.10, pp.1208-1213, 1991.

P. Tricept, . Tricept, and . Tutoriel-l-a-t-e-x, , 2017.

G. Voellner, J. Zaeh, and . Silvanus, Influence of machine types on fsw seam qualities, Proceedings of 7th international friction stir welding symposium, pp.20-22, 2008.

G. Voellner, . Zaeh, O. Silvanus, and . Kellenberger, Robotic friction stir welding, SAE Technical Paper, 2007.

G. Voellner, . Zäh, . Kellenberger, J. Lohwasser, and . Silvanus, 3-dimensional friction stir welding using a modified high payload robot, 6th International Friction Stir Welding Symposium, pp.10-13, 2006.

A. Von-strombeck, C. Schilling, and J. Santos, Robotic friction stir welding-tool, technology and applications, Biuletyn Instytutu Spawalnictwa(Poland), vol.45, issue.6, pp.49-52, 2001.

E. Wernholt and M. Östring, Modeling and control of a bending backwards industrial robot. Department of Electrical Engineering, vol.10, p.38, 2003.

E. Daniel and . Whitney, Historical perspective and state of the art in robot force control, The International Journal of Robotics Research, vol.6, issue.1, pp.3-14, 1987.

H. Donald and . Wykes, Adjustable pin for friction stir welding tool, December 16 1997, US Patent, vol.5, p.544

D. Michael-f-zaeh, L. Eireiner, and . Papadakis, Friction stir welding with modern milling machines/requirements, approach and application, 5th International Friction Stire Wlding Symposium, Sept, pp.1-18, 2004.

F. Michael, G. Zaeh, and . Voellner, Three-dimensional friction stir welding using a high payload industrial robot, Production Engineering, vol.4, issue.2-3, pp.127-133, 2010.

G. Zeng and A. Hemami, An overview of robot force control, Robotica, vol.15, issue.5, pp.473-482, 1997.

R. Zettler, . Lomolino, T. Jf-dos-santos, . Donath, . Beckmann et al., A study on material flow in fsw of aa 2024-t351 and aa 6056-t4 alloys, 5th International FSW Symposium-Metz, pp.14-16, 2004.

R. Zettler, . Lomolino, T. Jf-dos-santos, . Donath, . Beckmann et al., Effect of tool geometry and process parameters on material flow in fsw of an aa 2024-t351 alloy, Welding in the World, vol.49, issue.3-4, pp.41-46, 2005.

H. Zhang, J. Wang, G. Zhang, Z. Gan, Z. Pan et al., Machining with flexible manipulator : toward improving robotic machining performance, Advanced Intelligent Mechatronics. Proceedings, 2005 IEEE/ASME International Conference on, pp.1127-1132, 2005.

Y. Zhao, S. Lin, F. Qu, and L. Wu, Influence of pin geometry on material flow in friction stir welding process, Materials science and technology, vol.22, issue.1, pp.45-50, 2006.

Y. Zhao, S. Lin, L. Wu, and F. Qu, The influence of pin geometry on bonding and mechanical properties in friction stir weld 2014 al alloy, Materials letters, vol.59, issue.23, pp.2948-2952, 2005.

. Zimmer, Contribution à l'industrialisation du soudage par friction malaxage, Ecole Nationale Supérieure d'Arts et Métiers, 2009.
URL : https://hal.archives-ouvertes.fr/pastel-00005619

:. F. Vorveröffentlichung-?-autoren/autorinnen, G. Dardouri, W. Abba, and . Seemann, Titel der Vorveröffentlichung : Parallel robot structure optimizations for a friction stir welding Application, 2017.

:. F. ?-autoren/autorinnen, G. Dardouri, W. Abba, and . Seemann, Titel der Vorveröffentlichung : The optimization of the deflection error ofan industrial robot for a friction stir welding application Veröffentlicht, p.2017

:. F. ?-autoren/autorinnen and . Dardouri, ABBA Titel der Vorveröffentlichung : Etude de l'erreur de positionnement de l'outil dans le procédé de soudage FSW robotisé Veröffentlicht in : Congrès Français de Mécanique, 2015.