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ABSTRACT

In 2019, ten years after the announcement of project Natal at E31, the destinies of
visual scene analysis and commodity depth cameras are strongly tied. The performance
and accuracy of the former are crucial for mass development of its applications such
as augmented reality, interactive games, 3D scanning, security, autonomous vehicles
or household robots, to name a few. On the other hand, the latter provides easy and
affordable access to 3D information of the surroundings through structured light,
stereo-vision or time-of-flight technologies. The problem of converting this accessible
data into knowledge and understanding of the scene has sparked interest among both
computer vision and computer graphics research communities in the last ten years.
Processing this organized 3D data set requires specifically tailored algorithms that also
need to be efficient. Recent advances in scene analysis provide fast and robust ways to
build a meaningful geometric and structural representation of observed scenes, localize
sensors within that representation or acquire semantic information on surrounding
objects.

In that regard, this PhD thesis lies at the frontier between computer graphics and
computer vision and focuses on the use of 3D geometry analysis tools for visual depth
data in terms of enhancement, registration and consolidation. In particular, we aim at
showing how shape abstraction can generate lightweight representations of the data for
fast analysis with low hardware requirements. This last property is important as one of
our goals is to design algorithms suitable for live embedded operation in e.g., wearable
devices, smartphones or mobile robots. The context of this thesis is the live operation
of 3D interaction on a mobile device, which raises numerous issues including placing
3D interaction zones with relation to real surrounding objects, tracking the interaction
zones in space when the sensor moves and providing a meaningful and understandable
experience to non-expert users. Towards solving these problems, we make contributions
where scene abstraction leads to fast and robust sensor localization as well as efficient
frame data representation, enhancement and consolidation. While simple geometric
surface shapes are not as faithful as heavy point sets or volumes to represent observed
scenes, we show that they are an acceptable approximation and their light weight as
geometric substitute makes them well balanced between accuracy and performance. In
addition, they provide a consistent spatial support to process and analyze raw data.

1Kinect, the first consumer grade depth sensor: http://en.wikipedia.org/wiki/Kinect
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RÉSUMÉ

Cette thèse se concentre sur l’analyse visuelle de scènes intérieures capturées par
des caméras de profondeur. La performance et la précision de cette analyse sont
cruciales pour le développement d’applications telles que la réalité augmentée, les
jeux interactifs, la numérisation 3D, la sécurité, les véhicules autonomes ou les
robots domestiques. Les capteurs de profondeur modernes offrent un accès aisé et
abordable à une information tridimensionnelle de l’environnement. Le traitement de
cet ensemble organisé de données 3D doit permettre sa conversion en information de
haut niveau et compréhension de la scène mais nécessite des algorithmes spécifiques,
qui doivent également être efficaces. Les avancées récentes en matière d’analyse de
scènes fournissent des moyens rapides et robustes pour construire une représentation
géométrique et structurelle des scènes observées, localiser des capteurs dans cette
représentation ou obtenir des informations sémantiques sur les objets environnants.

Dans ce cadre, cette thèse se situe à la frontière entre l’informatique graphique et la
vision par ordinateur et porte sur l’application d’outils d’analyse géométrique 3D à
des données visuelles de profondeur en termes d’amélioration de qualité, de recalage
et de consolidation. En particulier, elle vise à montrer comment l’abstraction de
formes permet de générer des représentations légères pour une analyse rapide avec
des besoins matériels faibles. Cette propriété est liée à notre objectif de concevoir
des algorithmes adaptés à un fonctionnement embarqué en temps réel dans le cadre
d’appareils portables, téléphones ou robots mobiles.

Le contexte de cette thèse est l’exécution d’un procédé d’interaction 3D temps réel sur
un appareil mobile. Cette exécution soulève plusieurs problématiques, entre autres, le
placement de zones d’interaction 3D par rapport à des objets environnants réels, le suivi
de ces zones dans l’espace lorsque le capteur est déplacé ainsi qu’une utilisation claire
et compréhensible du système par des utilisateurs non experts. Nous apportons des
contributions vers la résolution de ces problèmes pour montrer comment l’abstraction
géométrique de la scène permet une localisation rapide et robuste du capteur et une
représentation efficace des données fournies ainsi que l’amélioration de leur qualité et
leur consolidation.
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Bien que les formes géométriques simples ne contiennent pas autant d’information que
les nuages de points denses ou les ensembles volumiques pour représenter les scènes
observées, nous montrons qu’elles constituent une approximation acceptable et que leur
légèreté en tant que substitut géométrique leur donne un bon équilibre entre précision
et performance. De plus, elles fournissent un support spatial cohérent pour traiter et
analyser les données brutes.

Dans un premier temps, nous décrivons une approche utilisant des plans qui se
recoupent dans plusieurs vues, afin de déterminer le déplacement d’un capteur de
profondeur. La mise en correspondance de ces plans grâce à plusieurs heuristiques
puis l’utilisation de leurs paramètres géométriques permet de retrouver l’ensemble des
degrés de liberté du capteur.

Ensuite, nous définissons une superstructure composée de plusieurs objets géométriques
de formes simples qui permet de modéliser, traiter et consolider les données du flux
RGB-D à la volée. Cette structure est basée sur la cohérence de formes simples suivies
dans le temps et l’espace, ce qui permet l’agrégation d’échantillons du capteur au sein
d’un même accumulateur. Notre approche fournit plusieurs primitives de traitement qui
améliorent la qualité du flux RGB-D ou allègent les traitements ultérieurs. Elle consiste
à générer et mettre à jour un ensemble de statistiques locales compactes paramétrées
sur des proxies géométriques de formes simples détectés dans la scène. En tant que
substitut géométrique de la scène observée, l’ensemble de proxies peut également être
utilisé pour compresser ou reconstruire la scène. Nous montrons plusieurs résultats sur
des ensembles de données publics synthétiques et réels où notre modèle géométrique
se montre robuste et cohérent dans la consolidation des données du flux, pour une
performance adaptée à une exécution embarquée.
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I INTRODUCTION

I.1 Context and Motivation

I.1.1 Context

At the start of this PhD thesis, in late 2015, Paris-based computer vision software
company Ayotle was working on a new project that would be unveiled a year later as
Hayo1. While having developed computer vision based interaction tools on desktop
platforms for multiple industries in the last five years, the company was willing to
bring its technology to general consumers through a dedicated device. At the core of
this device, the custom interaction algorithm would run seamlessly on an embedded
platform to enable live control of connected devices, as detailed in section I.1.3. In
2015, the efficient implementation of the interaction algorithm fed by an RGB-D stream
from commodity sensors was already running in real-time on a Raspberry Pi platform2.

This transfer from desktop to embedded platform leads to multiple problems that are
at the origin of this PhD thesis. The first issue that appeared is the spatial consistency
needed for the interaction software to run. As explained in section I.1.3, the interaction
is based on user-defined local zones, fixed with relation to the sensor, which is not an
issue for desktop operation, where the setup has to be done only once. But an embedded
device can be moved around, and in that case the positions of interaction zones with
relation to the sensor have to be recomputed, in order to be at the same real physical
locations as they were before sensor motion. Hence, tracking the sensor in the scene was
the first goal of this PhD and had to be achieved with the embedded constraints detailed
below in section I.1.4.

1https://twitter.com/meethayo/status/784068130205229056
2https://www.raspberrypi.org/
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Figure I.1: Left: Hayo sensor photo and case wireframe (2016). Right: Breakdown of
the sensor with case and RGB-D sensor connected to a Raspberry Pi computer (2016).
More information on the Hayo project at www.hayo.io.

Second, the device is only an RGB-D sensor connected to an embedded computer,
enclosed in a case, as shown in Figure I.1. As it has no graphical interface and one is
needed for the user to manually setup the interaction zones as explained in section I.1.3,
the team developed a mobile application that displays the live stream of the sensor to
enable the user to place these zones. However, the sparse but heavy content of the
sensor image is hard to stream and meaningfully display for non experienced users.
We therefore imagined that abstracting the observed scene with simple geometric
shapes would allow streaming and displaying both lighter and more understandable
information. Eventually, the construction of a complete while compact representation
of the user’s environment based on this high level abstraction seemed appealing as it
would enable development of new advanced features on the embedded device, such
as automatic setup of interaction zones by analyzing the structure and semantic of
surrounding objects.

In light of these different issues and opportunities, and after discussions between Ayotle
and the computer graphics group at Telecom Paris, this PhD title was defined as Real-Time
Scene Analysis for 3D Interaction. Its goal, further developed in section I.2, is broadly
to perform lightweight scene analysis on RGB-D data to enable real-time interaction on
embedded devices, through shape abstraction.

www.hayo.io
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The next sections detail the different components of the problem:

• accurate visual scene analysis (section I.1.2);

• embedded 3D interaction (section I.1.3);

• requirements of live performance (section I.1.4).

I.1.2 Visual Scene Analysis

As we saw in the last section, the efficient operation of a 3D interaction framework
within an embedded mobile device could greatly benefit from live scene analysis. Here,
we present the problem of 3D scene analysis, at the crossing between computer vision
and computer graphics, whose goal is to provide a meaningful 3D representation of a
scene captured by a visual sensor. To be more specific, a 3D scene analysis framework
would analyze a set of images and attempt to recover any of:

• geometric relations between sensor positions, if multiple, such as position and
orientation;

• geometric information on the components of the real scene observed by the sensor,
such as distance, size or motion;

• structural information and geometric relations between static or dynamic
components;

• semantic information on observed scene parts.

Modern visual methods for 3D modeling of scenes make use of all recent acquisition
modalities, leaning towards embedded operation for interactive mobile applications.
Among them, commodity RGB-D cameras, as presented in section II.1, become more
and more accessible and provide partial geometry information in addition to a regular
color image. The data provided by the sensor or generated by the system can either
be composed of color images, depth maps, dense and unstructured 3D point clouds or
connected polygonal meshes, as detailed in section II.4.1.

The problem of relative localization of multiple sensor acquisitions is detailed in
section II.2. The scene reconstruction process, aiming at aggregating multiple visual
observations into a global geometric model, is then detailed in section II.3. In particular,
simultaneous localization and mapping (SLAM) systems attempt to solve both problems
simultaneously. From a stream of images, geometric relations between nearby frames
are estimated to initialize the scene representation. Their samples are then consolidated
into a global map model, which contains more complete features from the scene that
can be tracked in subsequent frames [KM07].
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In this thesis, we focus on a certain type of scene representations, in order to satisfy
our initial performance requirements as presented in section I.1.4. We aim at building
a high level abstraction of the scene, composed of simple geometric elements that
have a structural meaning. While most modern reconstruction methods use volumetric
representations, we make the observation that visual sensors provide samples of
object surfaces and not of their volume. In consequence, we think that representing
non-deformable real scene elements with compact geometric surface shapes allows
building a model of acceptable quality with less impact on computing resources. In
other words, we want to apply advanced analysis and reasoning to build a virtual
structural and semantic understanding of the surroundings which would be similar to
human visual perception of the world, where surface elements of the representation are
intuitive and make more sense from an operational point of view.

I.1.3 3D Interaction with RGB-D Cameras

In the context of this thesis, we refer to 3D interaction3 as human-machine interaction
in 3D space. Analyzing the output of commodity 3D sensors, described in section II.1.1,
allows defining a 3D user interface, where locations and motions of objects and people
in 3D space have impact and control on real or virtual entities. The most famous
instance of 3D interaction as we mean it is probably the learning-based skeleton tracking
embedded in the Kinect camera [SFC+11], unveiled in 2011. Existing video games based
on 3D human skeletons became more robust and stable when this new technology
was integrated into the XBox video game console. The original paper is based on
the structured light depth sensing technology initially patented by Primesense in 2007
[SZ07].

As any user interface, a 3D interaction system must provide real time feedback to users
for them to intuitively understand the actions triggered by their motion. In practice,
we observe that even short delays in interaction feedback can confuse users about their
communication with the interface. This requirement was tackled by the Kinect through
custom hardware components, however real time skeleton tracking is a challenging
problem whose solution is hard to generalize to more complex setups, such as small
gestures, multiple people tracking or fast motion [EAG17]. In addition, most robust
recent methods are based on neural networks [AII+18, XWW18] and are not adapted to
embedded platforms.

3https://en.wikipedia.org/wiki/3D_interaction

https://en.wikipedia.org/wiki/3D_interaction
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Figure I.2: Ayotle’s Configurator software interface (2015) allows an operator to
manually place virtual interaction zones and configure the actions triggered with the
activation of such zones. This desktop application is however hard to manipulate for
inexperienced users and requires tedious setup time.

Ayotle’s Skeleton-free 3D Interaction

In order to overcome issues raised by the real time construction and operation of a
virtual human skeleton, a new method was developed by Ayotle, based on geometric
analysis of the depth sensor output [YZ13b, YZ13a]. The system is based on local 3D
activation zones represented by geometric objects such as boxes, spheres or cylinders
having different functionalities. However, in contrast to skeleton based approaches
which rely only on the relative positions and orientations of body parts, the interaction
zones are defined based on surrounding objects with a fixed absolute position with
relation to the sensor. Hence, setting up the interaction zones for a given application
requires tedious manipulation of custom 3D software allowing the user to manually
define the type and shape of the interaction as well as the position and orientation of
the geometric activation zone. In practice, interaction zones are setup by an operator
using Ayotle’s Configurator software, as shown in Figure I.2.
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Figure I.3: Hayo camera, application and interaction zones for the connected house
(2016). The Hayo sensor, paired with its mobile application (left), allows users to place
virtual interaction zones represented geometrically by spheres or cylinders anywhere in
their house (right), to control connected devices such as e.g., Philips Hue smart bulbs.

3D Interaction in the Connected Home

With the rise of connected objects in the 2010s, applying Ayotle’s efficient 3D interaction
technology to the control of these objects appeared as a good way to broaden the
audience of the tool. Hence, in 2015, prototypes of embedded interaction for project
Hayo4 were built and the algorithm was optimized to run in real time on a Raspberry
Pi 2 platform. In addition, embedding the interaction technology in a mobile device
enables many more applications than the fixed desktop computer setup. Combined with
a mobile application designed to place and configure virtual interaction zones in the
same spirit as with the Configurator, the sensor provides inexperienced users with an
intuitive way to enable 3D interaction with connected objects anywhere in their house,
as shown in Figure I.3.

I.1.4 Performance Requirements

As we saw in the last section, intuitive 3D interaction with RGB-D cameras requires
high performance processing to achieve real time operation. The embedded platform
also adds a constraint on the available computer memory that the algorithm can use,
despite the recent advances of the hardware in smartphones as well as single-board
computers, such as the Raspberry Pi 35 or the ASUS Tinker Board6. In addition, providing
3D interaction technology to general consumers raises privacy issues, where visual data
from the sensor should be kept within the device and not being transfered on an external
server where the user looses control over it. This enforces complete onboard processing
of the incoming data stream.

4www.hayo.io
5https://www.raspberrypi.org/
6https://www.asus.com/Single-Board-Computer/Tinker-Board/

www.hayo.io
https://www.raspberrypi.org/
https://www.asus.com/Single-Board-Computer/Tinker-Board/
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From a computing point of view, the scene analysis processing should not disturb the
3D interaction computations in order to keep real time operation and user feedback. In
that sense, dividing the processing between available computing cores provides some
independence between tasks. However, it is important to keep in mind that the lower
the requirements to analyze the scene, the larger the available resources to enable more
complex reasoning and functionality.

Hence, this PhD thesis enforces several design goals to satisfy its performance
requirements:

• reason on the scene representation to find the most efficient model for both
construction and operation;

• moderate the algorithm’s impact on resources in terms of memory, bandwidth and
CPU time;

• allow extension of functionality by providing meaningful high level representation
of the 3D space.

More generally, our work was oriented from the start towards the design of a light
framework, which in our vision comes down to the following paradigms:

• defining light data structures, taking into account the weight of each member;

• enforcing efficient memory management and freeing;

• avoiding data copy and transfer as much as possible;

• reducing dependencies to external tools;

• developing only the needed functionality.

I.2 Objectives

Our main goal is to create a scene analysis and abstraction methodology based on RGB-D
data and geometric shapes which is robust within the context expressed in the last
section, in order to enable and enhance live 3D interaction on mobile devices. Such
a high level interpretation would provide the system and user with a simple perception
of the surroundings, hence easy to update and operate. In particular, we want to be
able, at any time in the processing, to:

• localize an RGB-D sensor with relation to a given representation of the
surroundings, including data from another RGB-D sensor;

• display a meaningful and as complete as possible 3D model of the observed scene
understandable by non-expert users;

• stream the model to a remote client with as few delay as possible.
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I.2.1 Research Axes

In order to come closer to that goal, we wish to study three research axes. For each of
them, the proposed solution will have to stay robust to illumination changes as well as
dynamic elements and static change of position of objects. The axes are:

• fast relative sensor localization;

• lightweight while faithful representation of indoor scenes, in particular with
knowledge of physical holes and adjacent elements;

• live processing and analysis of the stream from RGB-D sensors;

These axes are related through the need for spatial and structural knowledge of the
environment. Knowing the pose of the sensor at different locations is needed to enforce
temporal and spatial consistency of geometrical objects detected in the data. This
consistency is the key to the accumulation of samples from multiple observations to
build an accurate representation of the scene. Such a geometric accumulator will allow
improving the quality and completeness of the stream, which itself will improve the
localization from frame to frame.

I.2.2 Industrial Expectations

In the context of this thesis, the performance and robustness of the algorithm are key
for a seamless integration into a commercial product. Hence, throughout the document,
the design of the different tools is thought as to handle ”real life” constraints such as
lifelong7 operation and presence of dynamic elements, computing power and bandwidth
limitations as well as an experience tailored for non-expert users.

In addition, the privacy issues raised in section I.1.4 where users should keep control
over their personal data follow the General Data Protection Regulation8 from the
European Union implemented in May 2018, in which any use and export of personal
data should be justified. In that sense, we will enforce ”privacy by design” by fully
processing all visual data on the fly onto the embedded platform, which avoids the need
to store or send any private data beyond its processing.

7By lifelong, we mean that the acquisition of the data is not constrainted in the time frame of a handheld
capture, but rather spans an unknown number of hours or days, where we do not control the modification
of content in the scene.

8https://eugdpr.org/

https://eugdpr.org/
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I.3 Organization and Contributions

I.3.1 Contributions

As presented in the last section, the objective of this thesis is to generate a 3D
representation of a scene, live from an RGB-D stream, whose operation and analysis
would enable the definition and tracking of 3D interaction zones on a mobile device. In
this document, we present four contributions towards that goal:

• a study and classification of state-of-the-art methods for geometrical approximation
of 3D data by simple shapes (section II.4);

• a novel method that leverages planar representation and consistence of scene
structure to register overlapping RGB-D frames (chapter III);

• a lightweight and consistent geometric superstructure to model structural elements
of captured indoor scenes (chapter IV);

• an efficient framework for live enhancement and consolidation of RGB-D streams
(chapter V).

The first contribution was published as a state-of-the-art report in Computer Graphics
Forum [KYZB19]. The second contribution was unveiled as a patent submitted in
February 2019 [KYZBC19]. The last two contributions were presented in 2018 at the
European Conference on Computer Vision (ECCV) [KYZB18]. A complete list of scientific
communications produced during this PhD is available in section A.2.

I.3.2 Organization

This document is organized in four parts, followed by a general conclusion in chapter VI.

First, chapter II presents the state-of-the-art in domains linked to our objectives.
Fundamentals of RGB-D data, its limitations and existing methods to enhance it are
shown in section II.1. Methods to locally and globally register RGB-D frames are
presented in section II.2. Methods to build complete 3D reconstructions modeling
acquired scenes are presented in section II.3. Eventually, section II.4 summarizes our
study [KYZB19] on recent methods to detect simple geometric primitives in captured
3D data.

The second contribution of this thesis is then presented in chapter III, namely a new
method to register together pairs of 3D views, stored as RGB-D frames or point clouds.
Our plane matching strategy is presented in section III.2, while our plane-based motion
computation is detailed in section III.3. Experiments with each method are shown in
section III.4, based on a toy example and a public online benchmark dataset.
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Our geometric superstructure to model incoming RGB-D streams is detailed in
chapter IV, with information on their live construction and update (section IV.2), stored
statistics (section IV.3) as well as performance results and examples (section IV.4).

Applications of this superstructure are shown in chapter V, with both live frame-wise
improvements (section V.2) and a method to consolidate the stream into a global regular
model (section V.3).



II BACKGROUND

As presented in the introduction, this thesis aims at introducing geometry analysis into
some essential 3D computer vision tasks presented in section I.1.2. In this chapter, we
present the different problems arising from the following tasks and list state-of-the-art
methods to solve them:

• processing raw RGB-D frames from the sensor;

• registering multiple 3D images into a global model;

• building a complete 3D model of the observed scene;

• creating a high level representation of the scene using primitive shapes.

II.1 RGB-D Data

This thesis focuses on the processing of raw RGB-D data into meaningful scene
information through the application of geometrical tools. This section broadly presents
the specifics of RGB-D data, its limitations and the different existing methods to solve
them, as well as its applications.

II.1.1 Fundamentals of Depth Data

Brief History of Depth Sensing

3D capture first appeared during the 1960s with tedious techniques based on lights,
cameras and projectors [Ebr15]. At this time, most 3D scanning devices made use of
physical contact probes. With the evolution of electronics and computer science in the
mid-1980s, efficient optical methods for 3D scanning were developed. Devices based on
point, area or stripe lighting allowed faster generation of 3D images. One of the first
commercial successes of the stripe 3D scanners was the human body modeling in the
animation industry in early 1990s.

21
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In the following years, several expensive professional laser range scanners were released,
such as the REPLICA and ModelMaker sensors and eventually the Faro Focus. In the late
2000s, multiple small time-of-flight sensors were available such as the Mesa Imaging
SwissRanger and the first pmd sensors, although their price range was around 10 000 $.

2011 saw the release of the first Kinect consumer grade RGB-D camera, based on
structured light technology fom Primesense [SZ07], allowing broader availability of
3D scanning. While discontinued since 2017, the Kinect project sparked interest in
the commodity RGB-D sensor market, with the development of many applications
and the release of affordable sensors from e.g., Intel1 or Texas Instruments2. Although
research was conducted using depth sensors before 2010, the availability of such
sensors to general consumers produced a growing interest among the 3D computer
vision community.

More recently, the Google Tango platform, available from 2014 to 2018, was the
first globally available embedded device with integrated RGB-D sensing based on
time-of-flight technology from German manufacturer pmd3. This opened the way to
RGB-D sensor integration in modern smartphones such as recent devices from e.g.,
Lenovo4 or Honor5.

Data Structure

RGB-D cameras provide two images. The first one is a regular 3-channel color image
containing texture information about the observed scene. The second one is a depth
image, also called depth map, where each single channel pixel encodes the distance
from the camera to the viewed object on 8 to 16 bits. This part of the data set allows
extracting structural information from the scene. In most consumer depth cameras, color
and depth sensors have different intrinsic parameters, hence the need for a registration
step between the two modalities before any processing can be done. The quality of this
registration plays an important role in the shift between depth and color and can lead to
misalignment. Given the intrinsic parameters of both sensors, it is possible to unproject
the data and generate colored 3D points for all depth points to create a 2.5D point cloud.
In that case, the single view capture only provides parts of the observed 3D scene and
the data is incomplete. Figure II.1 shows an example of data contained in an RGB-D
image.

1https://www.intelrealsense.com/
2http://www.ti.com/sensors/specialty-sensors/time-of-flight/overview.html
3https://www.pmdtec.com/news_media/press_release/google_tango_tablet.php
4https://www.lenovo.com/gb/en/tango/
5https://www.hihonor.com/global/products/smartphone/honorview20/

https://www.intelrealsense.com/
http://www.ti.com/sensors/specialty-sensors/time-of-flight/overview.html
https://www.pmdtec.com/news_media/press_release/google_tango_tablet.php
https://www.lenovo.com/gb/en/tango/
https://www.hihonor.com/global/products/smartphone/honorview20/
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Figure II.1: Data structure of an RGB-D image. An RGB-D image is composed of a regular
3-channel color image (left) and a 1-channel depth map (middle) encoding pixel-wise
distances from the scene to the sensor. They allow building a partial 3D point cloud of a
single view, also called 2.5D point cloud (right).

Depth Acquisition

The acquisition of this data is possible through different technologies [AFT14] such
as structured light, time-of-flight, active and passive stereo vision or LIDAR. We present
here the three main technologies used in commodity depth sensors. A more complete
comparison is provided by Texas Instruments [Li14] (Table 1).

Structured light (also known as light coding) depth sensing is composed of an infrared
(IR) projector and an IR sensor. The projector sends a known pattern onto the scene,
which is captured by the sensor. Patches of the returned warped pattern are then
matched to reference patterns to estimate the depth at each pixel. Even though the
use of IR allows capturing information with no visible light, such technology is very
sensitive to strong sunlight.

Time-of-flight depth sensing is made possible by computing distance based on the time
needed for a light signal to hit a surface and come back to the sensor. As there is no need
for computations to get the depth values from the signal, the capture is faster than with
computational methods. In addition, this technology is less sensitive to sunlight than a
structured light sensor, however its sensing range is usually lower for the same similar
input power, as the light source has high power requirements.

Stereo vision emulates human vision by matching patterns in two calibrated images.
Prior calibration allows more robust matching of features for which the disparity is
estimated. However, finding correspondences in images can be challenging, in particular
with repeated patterns or low textured areas. Active stereo vision makes use of infrared
signal to improve the observed features by projecting a highly discriminative pattern
read with an IR sensor. This allows finding more correspondences, however adding a
requirement for power, which then controls the range of the IR projection and capture.
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Figure II.2: Geometrical limitations of depth sensing. We show a synthetic indoor scene
with floor and wall corner, seen from the top and sampled by a depth sensor. Due
to quantization of depth information, irregular sampling appears over the surfaces.
Instability of the sensor signal creates noise, especially farther from the sensor where
the signal is weaker. Holes in the data can be due to sensor topology and also specular
elements or light sources which confuse the signal. In addition, depth data is highly
temporally inconsistent.

II.1.2 RGB-D Data Limitations

In spite of their affordability, and although they are constantly improving, the impact
spectrum of consumer depth cameras is limited by the low quality of their RGB-D
stream. This mostly originates in the low resolution of the frames and the inherent
noise, incompleteness and temporal inconsistency stemming from single view capture.
In particular, we list the following issues, summarized in Figure II.2.

• noise and temporal flickering;

• holes and missing data;

• irregular sampling;

• heavy memory footprint.

Both axial and lateral noise appear when sensing depth and their amplitude increases
further from the axis or the origin of the camera [NIL12]. This also generates temporal
inconsistencies, especially on the edge on objects.
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Holes in RGB-D data are created by the range limits and high noise levels of depth
sensing. Given the material of observed objects and the type of technology used, some
surfaces are harder to detect. The orientation of the surface with regards to the sensor
and the perturbations due to light sources can also lower the quality in some areas.

The inherent data structure of RGB-D data can also be an issue, as it represents many
pixels to store with a potentially important size, given the accuracy used by the sensor.
This makes the memory footprint of real-time RGB-D data acquisition a challenge that
has to be dealt with, possibly by abstracting the dataset into a lighter data structure.

II.1.3 RGB-D Data Processing

Since the appearance of commodity depth sensors, a number of methods have been
developed in order to improve the low quality of their generated images. In particular,
we present methods developed to:

• remove noise and temporal flickering;

• fill holes and complete missing data;

• resample depth points and control point density;

• compress the heavy amount of incoming data;

• use planar abstraction for data enhancement.

Depth maps can be denoised using spatial filters [Li16] e.g., Gaussian, median, bilateral
[TM98, SHKZ14, EGD+12], adaptive or anisotropic [LCK16, LJW14] filters, often
refined through time. Other methods include non-local means [BRR15], bilateral
filters with time [EGD+12], Kalman filters [CS12], over-segmentation [SJ13] and
region-growing [CLL12]. Depth sensors manufacturers such as pmd also develop
custom filtering methods allowing to increase signal noise ratio at far distance, such as
adaptive high dynamic range [CHL15].

They can be upsampled using cross bilateral filters such as joint bilateral upsampling
[KCLU07] or weighted mode filtering [MLD12]. Such methods are particularly useful
to recover sharp depth regions boundaries and enforce depth-based segmentation. In
particular, Wu et al. [WZN+14] present a shape-from-shading method using the color
component to improve the geometry, which allows adding details to the low quality input
depth. They show applications of their method to improve volumetric reconstruction on
multiple small scale and close range scenes.
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Figure II.3: Depth improvement methods. Spatial filters [BRR15] (left) allow
denoising and filling holes in depth maps. Bilateral filters [LJW14] (top right) and
over-segmentation [SJ13] (bottom right) allow filling holes and upsampling the data.
Images taken from papers.

In order to fill holes in the depth component, one can use the same spatial filters as
those used for denoising [BRR15], or morphological filters [LCK16, LJW14]. Inpainting
methods [LDY+16], over-segmentation [BDTL15] or multiscale [SA12] processing are
also used to fill holes for e.g., depth image-based rendering (DIBR) under close viewing
conditions. Figure II.3 shows examples of depth map improvement methods.

A set of 3D planes offers a faithful yet lightweight approximation for many indoor
environments. Only a few methods have used planar proxies as priors to process 2.5D
data, with in particular Schnabel et al. [SDK09] who detect limits of planes to fill holes
in static 3D point clouds. Fast sampling plane filtering [BV12] detects and merges planar
patches in static indoor scenes. The detected planes allow filtering the planar surfaces
of the input point cloud, however the primitives are quite sensitive to the depth sensor
noise and lack spatial consistency.

II.1.4 Applications of RGB-D Data

Direct applications of RGB-D data streams provided by both high end and commodity
depth sensors are at the core of many research efforts in 3D computer vision. In particular,
we focus in this thesis on three main topics:

• pairwise and global sensor registration to recover the relative position and
orientation of multiple sensor acquisitions with relation to each other;

• full reconstruction to build a consistent and accurate geometrical 3D model of the
observed scene;

• scene abstraction and generation of a high level model with geometric, spatial and
semantic meaning.
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As it provides fast visual knowledge of the surroundings, the real time RGB-D stream
output of modern commodity consumer depth cameras is widely used for indoor 3D
capture. It can feed a growing set of end applications in domains ranging from modeling
to robotics, through gaming, such as:

• augmented reality;

• human computer interaction;

• 3D reconstruction;

• industrial design;

• motion tracking;

• autonomous robots.

II.2 Indoor Scene Registration

This section surveys the existing methods to register multiple overlapping 3D images of
an indoor scene. We will focus on four categories of methods:

• pairwise registration of overlapping depth and RGB-D images;

• pairwise registration of overlapping point sets;

• global registration of multiple 3D images;

• registration based on planar constraints.

II.2.1 Pairwise RGB-D Frames Registration

First, we focus on pairwise registration of overlapping views of a scene acquired by an
RGB-D sensor. The input is composed of two single RGB-D images of an indoor scene
sampling overlapping objects. The goal is to estimate the rigid transformation matrix
that transforms the first scan into the second scan. It also corresponds to the motion
of the sensor between the two acquisitions. In a recent survey, Morell-Gimenez et al.
[MGSCVM+18] divide these methods into two categories. First, the construction of
sparse feature descriptors at 2D or 3D point locations and their matching using RANSAC
[FB81]. Second, the dense registration methods pioneered by Iterative Closest Point (ICP)
[BM92] and applied to depth data through the KinectFusion [NIH+11] line of work.



CHAPTER II. BACKGROUND 28

Figure II.4: 3DMatch descriptors matched between different RGB-D views. We notice
that most detected locations correspond to highly descriptive parts of the scene. Image
taken from Zeng et al. [ZSN+17].

Here, we only detail methods dedicated to RGB-D frames, but one may also use point
cloud methods, as described in section II.2.2, to register depth maps. Most methods aim
at matching 3D locations between the two views and then compute the motion matrix
by minimizing their Euclidean distance in the least squares sense [Ume91]. In order to
acquire corresponding 3D locations, a first range of methods uses the color component
and known 2D keypoint detectors and descriptors. After matching 2D descriptors in
the color component such as SIFT [Low99], SURF [BTVG06] or ORB [RRKB11], the
corresponding 3D locations can be directly read from the depth component. While the
use of known 2D descriptors opens the range of available tools, the color component is
sensitive to illumination changes, which can confuse the matching of such features.

Recent methods leverage the global availability of RGB-D reconstruction datasets to
learn local 3D feature descriptors. In particular, 3DMatch [ZSN+17] descriptors are
learned through a self-supervised volumetric convolutional neural network. Ground
truth correspondences are acquired using existing reconstructed models of RGB-D data
and the definition of volumetric patches allows computing strong local descriptors that
can be matched using RANSAC, as shown in Figure II.4. While the 3DMatch descriptors
show robustness in a variety of scenarios, it is important to note the high requirements
of the method in terms of hardware and execution time.
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II.2.2 Pairwise Point Cloud Registration

In this section, we present more general registration methods applied to 3D point sets.
On one hand, efficient 3D descriptors can be matched between point sets and the
transformation matrix can be estimated as for RGB-D frames. On the other hand, the
family of Iterative Closest Point (ICP) variants allows accurate registration at the cost of
multiple iterations over the full data.

3D Descriptors

Visual descriptors aim at describing features in visual data in terms of shape, color or
texture. By analyzing the data at specific locations and their neighborhoods, they build
a list of local characteristics to uniquely identify parts or elements. Here, we present the
most used 3D descriptors used in the process of pairwise point cloud registration. For a
comprehensive study, we point the reader to the 2016 survey from Guo et al. [GBS+16].

In 1999, Johnson and Hebert present the spin images [JH99] with the goal of recognizing
3D objects. At selected 3D oriented point locations, a local image plane is defined using
cylindrical coordinates, as shown on Figure II.5. Projecting nearby points onto the virtual
image plane allows aggregating local geometry information into a 2D, simple to compare
image grid.

In 2008, Rusu et al. [RBMB08] define the point feature histogram (PFH) descriptor to
locally encode the geometrical properties of a 3D point’s neighborhood. By computing
local deviations in surface orientation, they build a high dimensional histogram that
describes well the local curvature and its variations. Although, as the base information
used is the surface normals, the robustness of the method highly depends on their
quality.

In 2008, Aiger et al. present a method to match congruent groups of 4 points in 4PCS
[AMCO08]. By designing local metrics for a group of 4 points and analyzing their
geometry, they are able to reach a high level of description even in the presence of noise
and outliers, as shown in Figure II.6. This descriptor was then optimized by Mellado et
al. in Super4PCS [MAM14] to reach linear complexity.

In 2010, Drost et al. present a new local geometric descriptor called point pair features
(PPF) [DUNI10]. A PPF is defined for two oriented points to describe their relative
position and orientation and an accumulator space allows fast comparison between point
pairs. A recent paper presents PPFNet [DBI18], a learning approach to the detection and
estimation of PPF descriptors.
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Figure II.5: Spin image defined at an oriented point location on a 3D surface. The
projection of nearby geometry onto a local 2D patch allows easy comparison of
transformation invariant descriptors. Image taken from Johnson et Hebert [JH99].

Figure II.6: 4PCS: Extraction of congruent groups of 4 oriented 3D points. The wide
baseline allows more accurate registration even in the presence of noise and outliers.
Image taken from Aiger et al. [AMCO08].
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Figure II.7: Registration of partial point clouds using SparseICP. The p value is the norm
used and p = 2 is the traditional least-squares ICP. The sparse optimization with p ∈ [0, 1]
allows detection and removal of outlier 3D points. Image taken from Bouaziz et al.
[BTP13].

Iterative Closest Point

The iterative closest point (ICP) methodology was first described by Besl and McKay
in 1992 [BM92] with the goal of registering general 2D and 3D geometric objects of
multiple representations. ICP is widely used to register 3D point clouds and has seen
numerous extensions. The first one was its combination with the point-to-plane distance
defined by Chen and Medioni [CM91], by replacing the original point-to-point metric
by the distance between a 3D point and the tangent plane at its corresponding oriented
point.

Generalized ICP by Segal et al. [SHT09] as well as Viejo et al. [VHC08] define a
plane-to-plane ICP by considering both source and target point clouds as oriented, thus
having tangent planes at each location. Finally, Sparse ICP by Bouaziz et al. [BTP13]
is an efficient variant of the original method, where outliers of the transformation are
detected and removed during the process, as shown on Figure II.7.

For more details on ICP variants, a study was published by Rusinkiewicz and Levoy
[RL01]. More recently, Bellekens et al. [BSBW14] also compared ICP variants to
registration based on principal component analysis and singular value decomposition.

II.2.3 Offline Global Registration

While we have seen state-of-the-art methods to rigidly register pairs of overlapping
RGB-D frames or point clouds, we now focus on the use of multiple images to register
them together into a global model of the scene. Processing the full acquired collection
of frames allows building a more complete model where missing data from some views
is filled by other views. We consider offline global registration, in opposition to online
reconstruction as presented in section II.3.
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Figure II.8: Global offline reconstruction results. By aggregating many different
overlapping views of the scene into a global optimization framework, the method is
able to generate high quality geometry of the observed scene, with very few missing
parts. Image taken from Choi et al. [CZK15].

Most methods first consider an initial pairwise transformation as previously described.
Then, different strategies allow aggregating the information from all registered frame
pairs into the global model. The structure-from-motion method of SUN3D [XOT13]
first registers a list of RGB-D frames with each other using 2D keypoint descriptors
associated with a RANSAC framework. Then, they define an energy based on geometry,
appearance and semantics which is iteratively solved in order to get all frames into a
globally consistent coordinate frame.

Methods by Choi et al. [CZK15] and Zhou et al. [ZPK16], whose implementations
are both available in the Open3D library [ZPK18], use the fast point feature histogram
(FPFH) descriptor to estimate initial pairwise alignments of partial point clouds. Then,
a RANSAC framework allows discarding wrong initial alignments and a global bundle
adjustment pass leads to high quality reconstruction results, as shown in Figure II.8.

II.2.4 Plane-based Registration

When looking to localize acquired parts of indoor scenes with each other, several
methods make the observation that they are mostly composed of planar elements.
Hence, introducing planar constraints into both pairwise and global registration
improves robustness and reduces the drift due to data accumulation. In addition, using
planar geometric features can improve localization in low textured areas of the scene.
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In 2010, Pathak et al. [PBVP10] define a consistency-based framework to match
extracted local plane features between multiple 3D views. By introducing the plane
parameters into a SLAM update step, they obtain regular and accurate indoor scene
reconstruction from a depth sensor mounted on a mobile robot.

In a similar fashion, Dou et al. [DGFF12a] detect large planes in indoor scenes and
modify the RANSAC matching step to handle both points and planes. The generation
of multiple hypothetic plane matches and their disambiguation using plane pairs and
relative angles improves the robustness of the method. Again, the extension of bundle
adjustment to planes greatly improves the accuracy of the reconstruction results.

Forstner and Khoshelham [FK17] assume knowledge of large matching planes in
overlapping 3D views to define a plane-to-plane metric that is minimized to get the
relative sensor positions and orientations. By explicitly modeling the uncertainty of
detected planes, they leverage planar constraints and provide multiple formulations and
solutions to the registration problem. Their method is fast and accurate to register pairs
of frames, however gets confused and slower when multiple frames are simultaneously
processed. The prior requirement of matched planes, which itself is a complex task, is a
limit to the automation of this technique.

Halber and Funkhouser [HF17] define a fine-to-coarse registration framework that
iteratively aggregates local to global planar features matched in subsets of the scene.
Enforcing planar regularity while preserving local features fixes drifting issues appearing
in regular optimization frameworks, as shown in Figure II.9. In addition, the local to
global aggregation reduces the sensitivity to errors appearing in the frame-to-frame
registration based on SIFT and RANSAC. However, as an offline method, it can not be
applied to live registration because of the requirement for global structural information.

More recently, Shi et al. presented PlaneMatch [SXN+18], a learning approach to planar
feature matching and registration in RGB-D frames. They predict local and global patch
coplanarity in different RGB-D views of a scene and aggregate all coplanarity constraints
as well as point correspondences into a robust optimization framework that achieves
state-of-the-art results. The predictions are mostly accurate and of various nature,
even with wide baselines, thanks to the large amount of training data. Although, as
they rely on color, depth and normal information to match planar patches, the lack
of discriminative features e.g. flat or low textured areas, can sometimes lead to false
positive matches disturbing the global registration. In addition, the use of a neural
network requires high performance hardware and leads to high computation times.
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Figure II.9: Global reconstruction with planar constraints (right). Introducing planar
regularization into the global reconstruction reduces registration drift and leads to more
accurate models. Image taken from Halber and Funkhouser [HF17].

II.3 Indoor Scene Reconstruction

This section surveys the methods aiming at building a partial or full geometrical model
of an indoor scene from a stream of depth or RGB-D frames. The particularity of
these methods is their speed, as we focus on so-called online methods whose goal is
to provide real-time interactive reconstruction of the scene while a sensor browses the
surroundings. A recent survey by Zollhöfer et al. [ZSG+18] presents these methods in
more details, with a focus on volumetric fusion and some surfel-based approaches. Here,
we study three classes of methods:

• dense simultaneous localization and mapping (SLAM);

• volumetric fusion of depth samples;

• offline surface regularization.

Several performance issues are raised when building such a map in real-time. First,
accurate pairwise registration of nearby frames requires low baseline, which implies
either slow motion of the sensor or a frame processing faster than the sensor provides
new frames, to avoid delay, typically in less than 30 milliseconds. Second, the amount
of memory needed to store and update the map and 3D model are usually significant,
especially for volumetric methods, and require recent high end hardware.

II.3.1 Dense SLAM

Simultaneous localization and mapping (SLAM) jointly focuses on the localization of
a moving sensor in a scene and the creation of a 3D map of the environment by
aggregating multiple observed samples. While the information stored in the map grows
with the motion of the sensor in the surroundings, more descriptive data of the scene
can be tracked to accurately recover the sensor location and motion in time.
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Figure II.10: 3D map built by RGB-D SLAM. Occupied voxels of the fixed 1cm grid are
shown with averaged colors. Image taken from Endres et al. [EHS+14].

Pioneered by PTAM in 2007 [KM07] and first applied to augmented reality, these
methods have evolved from sparse to dense with the apparition of commodity depth
sensors in the early 2010s. Recent online SLAM methods aim at localizing multiple
overlapping depth acquisitions of the scene with relation to a global model and
aggregating their samples into this global representation.

One of the most common dense SLAM systems is RGB-D SLAM, presented by Endres et
al. [EHS+14] in 2014. They describe an egomotion estimation method that uses point
features detected in the color component of the RGB-D frames. After detecting and
matching SIFT, SURF or ORB descriptors in subsequent color images, their 3D position
in both frames is computed using the depth component. Using these matching 3D points,
a robust RANSAC-based [FB81] estimation of the motion matrix allows discarding false
positive matches. Sets of three matching points are randomly picked and the matrix
transforming a set in the first frame into the second set is computed using a least-squares
method [Ume91]. Inliers of the transformation are estimated using their 3D position and
orientation and the one giving the most inliers is kept. After pairwise frame localization
was successful, observations of keypoints are aggregated into a global camera pose
model based on graph optimization of correspondence errors. Acquired scene samples
are then accumulated into a voxel grid of fixed size 1cm to build the global map, as
shown in Figure II.10. Other recent dense SLAM systems include RTAB-Map [LM14],
KDP SLAM [HWZK17] or ORB-SLAM2 [MAT17].
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Figure II.11: Planar map creation with dense planar SLAM. The identification of large
planar areas in the scene allows augmenting them with web content in real-time. Image
taken from Salas-Moreno et al. [SMGKD14a].

Multiple methods have been developed to introduce higher level planar primitives in the
SLAM system, either to smooth and improve the reconstruction [SMGKD14a, ERAB15]
or improve the localization of the sensor [DGFF12b, Kae15, GZ15]. Results from dense
planar SLAM [SMGKD14a] provide knowledge of large planar areas in the observed
scene in real-time, which makes it suitable to add augmentations, such as web pages,
over these areas, as shown in Figure II.11.

While these methods gain robustness by leveraging the descriptive character of color
image features, the same features make them highly sensitive to illumination changes
or low textured areas. In that sense, the introduction of planar features reduces this
sensitivity while providing a lightweight regularization support for the generated map.
This consistent support maintained throughout the processing can also be seen as the
map itself, giving a solution to the issue of storage of a large set of 3D points, which
are then transfered onto this planar structure through specific projection and update
operators.

II.3.2 Volumetric Depth Fusion

Volumetric depth fusion is the construction of a volumetric representation by
accumulating depth observations into a faithful model of the input scene. In
1996, pioneering research by Curless and Levoy [CL96] introduces depth fusion with
the volumetric definition of a signed distance function (SDF) to the surface. A voxel
grid is used as accumulator where 3D samples are merged to update values of signed
distance to the nearest model surface. A mesh model can then be extracted as the
isosurface of this implicit volumetric function.
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Figure II.12: KinectFusion integrates depth samples into a global truncated signed
distance function grid. The TSDF slice on the left corresponds to the red plane in the
3D view. Image taken from Newcombe et al. [NIH+11].

In 2011, following the global availability of consumer grade depth sensor Kinect,
KinectFusion [NIH+11] defines the new norm in volumetric 3D reconstruction
with a truncated SDF and efficient implementation for live operation. First, dense
frame-to-frame tracking is achieved by assuming high frame rate and applying projective
data association [BL95] followed by point-to-plane metric optimization in an ICP
scheme. No color information is required for the tracking, which enables depth only 3D
reconstruction. Depth samples in a global coordinate frame can then be used to update
SDF values in the voxel grid that we can see on Figure II.12. The progressive integration
of depth samples into the volumetric representation creates a complete model that
is ray casted to get live depth maps of the global model. In the following years,
multiple performance improvements were published such as VoxelHashing [NZIS13],
DynamicFusion [NFS15], ElasticFusion [WSMG+16] and more recently BundleFusion
[DNZ+17b]. In 2015, Klingensmith et al. present Chisel [KDSX15], an embedded
implementation of volumetric depth fusion for live large scale 3D reconstruction on a
Google Tango tablet6.

High level planar primitives can also be introduced in volumetric depth fusion in order
to regularize and complete the data within the volume. Recent methods by Zhang et
al. [ZXTZ15] or Dzitsiuk et al. [DSM+17] lead to smoother large scale reconstructions
by maintaining a structural geometrical model of the surroundings to introduce spatial
constraints in the voxel grid. In particular, the second method is based on the Chisel
embedded implementation [KDSX15] and creates accurate, complete and semantically
meaningful segmented 3D reconstructions in real-time, as shown on Figure II.13.
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Figure II.13: Planar regularization and segmentation of 3D reconstructions. From the
raw scene reconstruction (left), plane regularization and hole filling lead to a more
accurate model (middle) which can be easily segmented into planes and non planar
connected components (right). Image taken from Dzitsiuk et al. [DSM+17].

While modern volumetric depth fusion enables live 3D reconstruction even on
embedded devices, acceptable trade-offs between accuracy and performance often
require high end hardware to get sufficient model resolution. Given the resolution
of the voxel grid, the representation of a full set of rooms, however efficient, can
need several gigabytes of memory. For instance, state-of-the-art live 3D reconstruction
implementation BundleFusion [DNZ+17b] requires modern GPUs and more than 20
GB of CPU and GPU memory. In contrast, point-based fusion [KLL+13] is a variant of
depth fusion that uses point accumulators to discard the full volumetric representation.
Another aspect of performance requirements is the need for small baseline between
subsequent frames to avoid losing track of the sensor, hence requiring processing images
at least as fast as the sensor provides them.

II.3.3 Offline Surface Regularization

Online generation of full 3D models allows fast acquisition of rather accurate 3D images
of scenes. However, the speed of live operation often leads to accumulation of noise
and missing data in the representation. Using the exported 3D model as input, multiple
methods apply structure analysis to the geometry to regularize and complete the scene
representation. These processes are usually applied offline, after the acquisition is done,
in order to take advantage of the complete knowledge of the scene. However, this
complete scene data is heavy and processing it requires lots of computing memory and
time, hence not adapted to embedded operation. As an example, the generation of a
regularized model can take 30 minutes to 1 hour for 1000 images [ZCC16], to several
hours for a full scene mesh [HDGN17].

6Google Tango project: http://en.wikipedia.org/wiki/Tango_(platform)

http://en.wikipedia.org/wiki/Tango_(platform)
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Figure II.14: Scene model and offline lighting and furniture editing. Left: Raw RGB
image from an RGB-D frame. Middle: Empty room geometrical, lighting and appearance
model. Right: Relighted and refurnished room. Image taken from Zhang et al. [ZCC16].

Zhang et al. [ZCC16] make use of planes to estimate the geometry of a room in order to
remove furnitures and model the lighting of the environment. This allows relighting and
refurnishing the room as desired, as shown on Figure II.14. In the same spirit, 3DLite
[HDGN17] turns the volumetric representation into a planar model of the observed
scene and optimizes it to achieve a high quality texturing of the surfaces. Examples of
such models can be seen in Figure V.6 (middle).

II.4 Shape Primitive Surface Recovery

This section aims at providing an overview, a classification and a comparison of the
methods developed over the years to detect simple geometric primitives in 3D data,
captured from different possible sources. As described by Woodford et al. [WPM+12],
these methods are ”model fitting algorithms that, given a set of features (here, points),
find the most likely model instance (here, primitives) that generated those features”.
The concept of simple geometric primitives is further developed in section II.4.1. For a
more complete study of primitive surface recovery, we refer the reader to our full paper
[KYZB19].

Objectives and Motivations

The process of approximating and abstracting 3D shapes by a simple parameterization
allows extreme simplification of the geometry while keeping an accurate representation
of the input data. Therefore, explaining 3D data using simple geometric primitives is a
way of representing it in a compact manner and makes easier any subsequent analysis
that would be performed, with consequences on both performance and the ability to
perform high level tasks. Figure II.15 shows the goals of the detection process with the
different types of input, detailed in section II.4.1, and the expected output primitives
with different layers of abstraction.
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Figure II.15: Objectives of the detection procedure. Using one of the input data types
discussed in section II.4.1 (left), the detection process outputs primitives with different
levels of abstraction (right). Images taken from papers [LPRM02, WPM+12, TJRF13,
CSAD04, WK05, SWK07, LWC+11, ASF+13, GMLB12].

In order to exploit raw captured 3D data in practical applications, one often has to
reconstruct a high-level representation, of a single object or an entire scene, providing
a visual summary which is similar to the understanding acquired by a human brain.
This often amounts to the description of complex objects using only a couple of
simple geometric primitives, such as spheres, cylinders, planes or boxes. Such visual
abstractions not only simplify the geometry and topology of the input data, but also
help clarify the spatial relationships between shape components, can act as economic
substitutes for visibility queries, rendering effects and physics simulation, or be used as
super-structures to quickly distribute filters, edits or enriched semantics over the data,
on a per-component basis. Such compact primitive lists that summarize dense sampling
sets are later used for processing, reasoning or interaction, with applications ranging
from path finding in robotics to object placement in augmented reality, through domain
meshing in CAD, control structures for free-form design and level-of-detail selection in
game engines.

After giving fundamental information on 3D data and simple geometric shapes, this
section presents the different theoretical concepts used as a basis for simple geometric
primitive detection in existing methods. Note that a number of methods are based on
more than a single theoretical paradigm. Table II.1 gives strengths and weaknesses for
these different theoretical frameworks, which include:

• stochastic: RANSAC, local statistics;

• parameter spaces: Hough-like voting methods, parameter space clustering;

• other clustering techniques: primitive-driven region growing, Lloyd-like automatic
clustering, primitive-oblivious segmentation followed by fitting.
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Figure II.16: 3D acquisition pipeline for the statue in the Arenes de Lutece, Paris, France.
The green captions indicate potential bootstrap stages for primitive detection.

II.4.1 Fundamentals

Three Dimensional Data

Three dimensional data can be modeled with different representations, each of which
favoring different families of processing methods. The specific forms of input data
used for simple geometric primitive detection are further presented below, and the full
acquisition pipeline is shown in Figure II.16. As presented in this figure, the data suitable
as input for primitive detection can be formatted as color or depth images, point clouds,
and polygonal meshes. Although most methods are developed for one particular type
of data, some implementations handle any form of input by performing a conversion to
their specific input format.

The raw format of acquired 3D data is the depth map directly extracted from depth
sensors and represented by a single channel image. Depth sensors are often coupled
with a regular RGB camera to provide additional color information. The natural 2D
grid structure of these RGB-D images allows fast processing of 3D data. RGB-D data is
presented in details in section II.1.

When scanning an object or a room, users can move a handheld sensor around
them. The goal is to acquire as many views as possible and build the most accurate
reconstruction. This generates a high number of 2D images that can be used as they
are or post-processed. Typically, a sequence of RGB-D images gives a sequence of 2.5D
colored point clouds sampling parts of the same items, which are then consolidated into
a single 3D point cloud. On the other hand, a sequence of RGB images must first be
processed via stereo vision algorithms to produce a 3D point cloud ready for primitive
detection.
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A point cloud is the most common representation of acquired 3D data, as it is simply
a point sampling of the real world. It takes the form of a list of 3D positions, possibly
with additional attributes, such as per-sample normals and color values. If computed
from an image or an image sequence, the point cloud may be organized in multiple 2D
grid structures, which allows fast browsing and point-wise neighborhood query using
the sensor topology.

In computer graphics, numerous advanced processes exploit polygonal representations
of surfaces, such as triangle or quad meshes. Their explicit topology makes easier
operators such as filtering, resampling and rendering, either based on projection or
intersection search. They are typically generated from acquired point clouds using
surface reconstruction algorithms. These may use an inside/outside volumetric indicator
functions, e.g., moving least squares [ABCO+03], implicit multiple radial basis functions
[OBA+03] or gradient-based Poisson solutions [KBH06]. Other algorithms are based on
a Delaunay-based triangulation, e.g., use tangent planes [HDD+92], Voronoi filtering
[AB99] or power crust [ACK01]. See the work of Berger et al. [BTS+14] for a complete
survey.

Simple Geometric Primitives

A simple 3D geometric primitive is defined as a 3D geometric shape with the following
characteristics:

• fixed and limited number of global intrinsic parameters i.e., that only define the
global size, orientation and position of the shape;

• convex (except for the torus);

• symmetric;

• basic shape which can be assembled with others to construct more complex shapes.

This definition matches the use of primitives in constructive solid geometry [Fol96], where
complex shapes are built using Boolean compositions of these simple objects. We classify
the geometric primitives used for detection in 3D data into four categories described in
details below, from the most simple with few parameters to the most complicated ones.
Figure Figure II.17 shows different simple primitives of varying complexity, sorted by
category.

• planes;

• cuboids and boxes;

• spheres, cylinders and cones;

• other shapes: ellipsoids, tori, non-rectangular parallelepipeds.
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Figure II.17: Common geometric primitives.

Our interest lies in the fitting of primitive shapes to surfaces in order to approximate the
boundary of objects and not their volume. We consider all simple primitive shapes as
surface patches rather than as volumes of solid shapes. To be more specific, most of the
methods that detect primitives in 3D data output trimmed shape surfaces, whose extent
corresponds to that of the modeled object. Details on primitive trimming are given at
the end of this section.

A plane is the most basic isotropic three-dimensional shape and the most commonly seen
primitive in human-made environments. It can simply be defined by a normal vector ~N
and its distance d ∈ R to the origin point of the reference frame. Methods using planar
patches instead of infinite planes usually compute the convex hull or bounding rectangle
of the set of plane inliers, or determine the limits of patches by clipping planes to each
other.

Boxes and cuboids are sets of assembled orthogonal planes and are defined by their
center C, orientation vector ~N and the three lengths of their sides. They can also be
represented by their eight vertices or by the parameters of the planes forming them.

A sphere is an isotropic shape and can be defined by its center C and a scalar r ∈ R+

representing its radius. A cylinder can be parameterized with a point C belonging to its
axis, a radius r ∈ R+ and an additional vector ~A representing its orientation. A cone
is parameterized by its center C, called apex, an orientation vector ~A and an angle α
between its axis and surface.

Ellipsoids, tori and non-rectangular parallelepipeds are geometric shapes of higher
complexity. An ellipsoid is defined by its center C, axis ~A and three radii a, b, c ∈ R+,
also called semi axes. A torus is defined by its center C, axis ~A, minor and major radii
m and M . A general parallelepiped is defined by its center C, orientation vector ~N , the
three lengths of its sides and three interaxial angles.
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In the context of this study, simple primitive shapes are considered as surface patches
whose goal is to approximate the bounded surface of objects. When parts of the data
has been identified as belonging to a primitive shape, some methods stop the processing
while the shape has an infinite (planes, cylinders, cones) or full (spheres, cuboids, boxes,
parallelepipeds, ellipsoids, tori) extent. However, multiple algorithms go further in the
analysis and estimate the extent of the fitted shape that models the actual object. In
particular, Schnabel et al. [SWK07] define a regular grid on the surface of detected
shapes in order to identify connected components. Such a grid can also be used to
compute the convex hull of inliers in the space of the shape [And79]. Another solution
is to fit smaller shape patches to the surface and merge them in the final model [BV11].
This extent appears naturally in region growing algorithms such as the method proposed
by Feng et al. [FTK14].

II.4.2 Stochastic Methods

RANSAC-based

Random sample consensus (RANSAC) is a popular stochastic method used to estimate
model parameters iteratively given a data set. It is known to be particularly robust to
outliers. First introduced by Fischler and Bolles [FB81], RANSAC has been used in a
variety of applications, especially in computer vision and image processing. The basic
principle of the algorithm is to try many possible randomized models that could fit the
data and evaluate how good this model is in order to find a consensus, i.e. an agreement
of most of the data samples. Here, the term ”most” is to be defined depending on the
application. Specifically, the algorithm is composed of two main steps. The first one
is a randomized sampling over the data to find a minimum set of samples allowing to
compute parameters for the model. The second step consists in counting how much of
the dataset is represented by this model and keep the model that fits most of the data.

Variants of RANSAC usually keep the random sampling part but use a more elaborate
method to compute the score and choose the best model, instead of the simple inlier
count. The score to maximize or minimize can be the median of squared errors to the
model [Rou84], a squared error function where outliers are given a fixed penalty in
MSAC [TZ00] or the maximum likelihood in MLESAC [TZ00]. Randomized RANSAC
[MC04] introduces a speed-up to the original RANSAC algorithm by running a pre-test
on a few data points before score computation, called Td,d test, which allows detecting
and discarding wrong models very early. PROSAC [CM05] makes a change to the
random sampling strategy by selecting samples within a small subset of data, ordered
by confidence values, and increasing its size until a suitable model has been found.
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RANSAC for Shape Detection

The efficient iterative primitive detection method presented by Schnabel et al. [SWK07]
makes use of the RANSAC paradigm to detect planes, spheres, cylinders, cones and
tori given an unorganized oriented point cloud as input. Their implementation gives
stochastic improvements to the critical steps of the algorithm in terms of complexity. For
a regular RANSAC-based shape detector, minimal sets of three points would be randomly
picked a fixed and large number of times. Then, the shape parameters are estimated
from this minimal set and inliers of the estimated shape are computed. The shape with
the highest score is kept, its inliers are removed from the point cloud and the algorithm is
ran again on the remaining data. Schnabel et al. replace the fixed number of loops with
a stochastic condition to stop looking for shapes in the dataset, based on the number of
detected shapes and number of randomly picked minimal sets. Also, instead of searching
the full point cloud for inliers of a given shape, they estimate this count in a random
subset of the dataset and extrapolate it to the full point cloud. Other modifications
allow improving the quality of detected shapes with a localized sampling and specific
post-processing. This method and its implementation have since been used in many
follow ups, as it is designed to be efficient by giving a stochastic answer to the problem
of RANSAC iteration count.

Its direct application [SWWK08] uses the primitives to build a topology graph and
match shapes in 3D point clouds. Another application by Li et al. [LWC+11] adds a
regularization step for mechanical objects. Assuming regular relations of coplanarity,
coaxiality and orthogonality between object parts, the high-level modeling made of
geometric primitives is optimized to form a cleaner and more regular model. Following
the same paradigm, the multiBaySAC algorithm [KL15] uses Bayes rule to randomly
generate multiple primitive hypothesis that fill up a parameter space in which the best
candidates are identified.

Local Statistics

The definition of occupancy probabilities at space locations allows inferring local
primitive parameters from these distributions. Mostly, such methods aim at bounding
detected objects with boxes or cylinders. The probabilities can be defined at all or some
locations in space using e.g., a simple Gaussian, Gaussian mixture models or Bayesian
inference [BFF15]. The analysis of this probabilistic field enables the detection of object
positions.

For example, Carr et al. [CSM12] create occupancy maps from registered RGB views,
where each ground location is associated with an occupancy probability for vehicles or
pedestrians. By deconvolving these maps with primitive specific kernels corresponding
to the projection of boxes and cylinders, the algorithm is able to highlight object
locations. A mean shift procedure then allows recovering the position and orientation
of cuboids and cylinders that bound vehicles and pedestrians in the scene.
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Bagautdinov et al. [BFF15] identify objects, especially persons, standing on the floor
of indoor rooms acquired through depth sensors. The algorithm builds a Bayesian
generative model of probabilistic occupancies at each location. Its optimization using
current depth observations makes it converge towards a discrete number of positions on
the ground. Boxes are then fitted to the detected objects to form a clear boundary in
image space.

II.4.3 Parameter Spaces

Hough Transform

The Hough transform defines an accumulation space built upon a parameter space in
which similar geometric elements coincide. After quantizing this space into regular bins,
all samples of the data cast votes for all geometric elements of which they are inliers. The
most voted parameter set identifies the object that best explains the input data. Named
after Paul Hough’s 1962 patent [Hou62], and originally used to detect lines in images
[DH72], it has since been generalized [Bal81] to detect 2D and 3D common geometric
objects, such as circles. In particular, it can be used to detect 3D shapes [WPM+14]. In
spite of its generic nature, one of the most important drawbacks of this method is the
lack of boundary of the parameter space. Given its potential dimension, it can become
an issue in terms of memory consumption and processing time.

Research has been conducted in order to improve the performance and usability of the
Hough transform. The probabilistic Hough tansform [KEB91] gives a stochastic answer to
the complexity of the Hough transform but keeps its one-to-many mapping from image
to parameter space, thus only solves the speed issue. The authors show that only a
random subset of points in the image is enough to correctly recover the models, although
the size of the subset is not automatically defined. In contrast to the usual algorithmical
definition of the Hough transform, Stephens [Ste91] derives an analytic formulation
based on the maximum likelihood method which leads to continuous values in Hough
space and allows the use of known mathematical tools for locating maxima. Introduced
in 2008, the kernel-based Hough transform [FO08] forms approximately collinear image
edge pixel clusters in which the best fitting line and its error kernel are computed. All
kernels are then merged into the Hough space and a peak detection allows identifying
the correct candidates within a simplified parameter space.

Planes can be detected using their spherical parameterization. Each 3D point and
its associated normal extracted from depth maps contributes to only one voxel in the
discrete Hough space. By smoothing this space, local maxima and candidate planes
are identified. Through time, correct candidates form peaks in a time-global Hough
space and get activated [HSSM14]. The detected planes can then be refined using
singular value decomposition over the inlier sets [WO02]. Figure Figure II.18 shows a
three-dimensional Hough space where each 3D Euclidean location builds a surface. The
intersection of these surfaces yields the plane passing through all three points.
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Figure II.18: 3D Hough space for plane detection. Each 3D Euclidean location (left)
builds a surface defined by spherical coordinates (right). The 3D Hough points at the
intersections of these surfaces give the planes passing through many points (white dot).

In order to simplify a given mesh model, billboard clouds [DDSD03] can also be created
using a voxelized 3D Hough space. The local maxima of this space give the planes that
approximate the shape, called billboards (textured planar polygons) that can be used
to render the shape using very few primitives. The resolution of the voxel grid gives
control over the approximation of the mesh. A coarse voxel grid tends to merge many
triangles into a single billboard, and a finer grid will produce more billboards for a better
approximation. Rabbani et al. [RVDH05] use a Hough-based method to detect cylinders
in point clouds. First, the orientation of the cylinder is detected using a 3D Hough
parameter space lying upon the Gauss sphere. From the orientation of the cylinders, the
corresponding inliers are projected on the orthogonal plane and the Hough transform
for circle fitting in 2D allows recovering the radius and position of the cylinders.

Clustering Parameter Space

Some methods directly exploit and analyze parameter spaces to detect simple geometric
primitives. These methods mainly detect plane clusters in point clouds, as the parameter
space for planes can be divided into two simple disjoint spaces. These are the parameter
space for normal vectors i.e., Gauss map modeling the plane orientation as a point on
the unit sphere – and the Euclidean distance to the origin.

By clustering the space of normal orientations over a hemisphere using voxels [HHRB11]
or a mean shift procedure [CC08], dominant orientations can be found. The individual
plane clusters can be extracted using a threshold on the distance in Euclidean space
[HHRB11] or point density peaks along the detected directions [FCSS09]. Parameters
can then be estimated using principal component analysis within the clusters [CC08].
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II.4.4 Clustering

Primitive-driven Region Growing

Several methods use known segmentation and clustering techniques to discover
primitives in 3D data. As described by Lukacs et al. [LMM98], ”segmentation is most
commonly treated as a local-to-global aggregation problem with similarity constraints
employed to control the process”. In the context of 3D geometric primitive detection,
these similarity constraints drive the detection towards different paradigms.

The region growing algorithm is used to extract connected components in a depth map
or a point cloud with neighborhood information (e.g., k-nearest neighbors). A label
is assigned to a seed sample and its neighbors are iteratively analyzed and assigned the
seed’s label if their characteristics are similar enough to the seed’s. These characteristics,
such as color, depth or normal orientation are considered similar given a threshold
which is usually application-dependent. We call primitive growing, the region growing
procedure in the context of primitive detection.

The processing is started by assigning seeds to random [OLA16, LMM98] or regular
[ZYH+15] positions in the data. The growing of points into regions can be performed
through a neighbor search using efficient data structures such as a neighbor graph
[FTK14, AEH15]. A shape-based flood filling can also be used [LLL+12, ZXTZ15]. Some
methods over-segment the data into patches, super-points or super-regions [LGZ+13]
that can be joined together to form the final segmentation. Algorithms used to merge
these patches include rectangle fitting [MPM+14, OLA16], candidate generation and
selection [MMBM15], linear interpolation [TGB13] or automatic merge of neighboring
shapes [LMM98, AFS06, ZYH+15]. Making use of the efficient structure of images, a few
methods offer a speed-up over point cloud based methods [TGRC13, KHB+15, AEH15].
A refinement step is usually applied to estimate plane parameters. It can be based
on least squares fitting [TGRC13, BSG+11], principal component analysis [SMGKD14b],
RANSAC [LLL+12, SXZ+12, AEH15] or shape-driven pixel-wise region growing [FTK14].

Points are aggregated into regions using similarities with their neighbors in terms
of different heuristics related to the primitive shapes to detect. For plane detection,
planar heuristics include Euclidean distance [SMGKD14b, SXZ+12, LGZ+13], normal
orientation [MMBM15, OLA16, TGRC13] and surface curvature [ZXTZ15, MPM+14,
BSG+11]. More general methods often use the primitive fitting error, computed as the
mean square error resulting of a potential aggregation [AP10, XZZ+11, LMM98]. Other
metrics include the spherical quadric error [TGB13], cylindricity measure [ZYH+15] and
tensors capturing the local dimensionality of the data [Sch04]. More details on fitting
error are given in section II.4.5. Gelfand and Guibas [GG04] compare point clusters in
terms of slippable motions, defined as rigid transformations that, applied to a simple
geometric shape, will not form any gaps between the original and transformed shapes.
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A special kind of primitive growing algorithms uses a tree representation of the data
[AP10, TGB13]. Points are initialized as separate clusters and ordered according to the
cost of aggregating them with nearby clusters into a single primitive, based on previously
discussed metrics. Iterative aggregations are then performed, starting from the least
costly, in order to build a hierarchical partition of the data. The hierarchical model
allows navigating through different levels of approximation, that can be used as an
intermediate control structure to deform the input model.

Automatic Clustering

Automatic clustering methods in machine learning are often based on Lloyd’s clustering
algorithm [Llo82], developed in 1957 to create a partition of point sets in Euclidean
spaces. This algorithm proceeds iteratively in order to cluster all points into regularly
distributed regions. The two main Lloyd-based algorithms are the k-means and mean
shift clustering methods, described below.

The k-means procedure, first defined by MacQueen [Mac67], takes as input a spatial
data set and a fixed number k of clusters to detect within this set. After selecting k
random data points called means, the remaining points are assigned to the closest mean
according to a chosen distance metric. Using the so-initialized clusters, new means are
created at their respective centroids. The cluster assignment and means update steps are
repeated until convergence. These two steps can also be seen as iterations of expectation
and maximization steps, making the k-means algorithm a variant of the EM method.

In contrast to the k-means algorithm, the mean shift algorithm does not require a prior
number of clusters to be found. Originally presented by Fukunaga and Hostetler [FH75],
and first applied to computer vision by Comaniciu and Meer [CM02], it creates partitions
of a feature space. The data is considered as samples of a probability distribution
made of kernel instances and points are assigned to the corresponding kernels. In other
words, this algorithm is seeking the modes of a distribution modeled by kernels, among
which the two commonly used ones are the flat and Gaussian kernels. These kernels
are recovered by iteratively shifting each point towards a kernel center using weighted
contributions of the original points in the dataset. The kernels then appear naturally to
form the data clusters.



CHAPTER II. BACKGROUND 50

Several methods were inspired by these automatic clustering algorithms to fit geometric
primitives to 3D data. They were pioneered by variational shape approximation (VSA)
[CSAD04], which aims to find a fixed number of planar proxies to simplify a meshed
object with the best possible approximation. Randomly picked data samples are used as
initial shapes to bootstrap the process. Then, the optimization starts with an iteration
of geometry partitioning and shape fitting that is repeated until convergence of the
partitions. The partitioning is done using region growing started from the centers of
the current shapes and using their parameters. Regions are grown based on distortion
error between adjacent samples and the surface of the shapes. The fitting step computes
the shapes that minimize the error to their associated samples and the partitioning
starts again with the newly computed shapes. Yan et al. [YWLY12] developed a similar
method to estimate quadric surfaces from a given mesh model. In the specific case of
the method proposed by Woodford et al. [WPM+12], points are assigned by expanding
or contracting neighboring primitives, leading to an unspecified number of primitive
shapes.

Primitive-oblivious Segmentation

Several methods apply a segmentation step to the data prior to fitting, in order to
reduce the number of outliers, thus getting a more accurate model. The segmentation
of three-dimensional data, in the form of a point cloud or depth map, is carried out
through algorithms such as region growing, watershed by flooding, classification or
other clustering methods presented below. In this context, the segmentation methods
do not take into account primitive search: they are completely oblivious to the primitive
detection. Instead, they use heuristics such as location, color, distance or other
application-specific features.

Region growing and the search for connected components is the most commonly used
technique to segment images and 3D data. This method, presented earlier with the use
of primitive-specific neighbor comparison, can also be applied to the raw data with a
comparison based on heuristics such as depth discontinuities or color. For example,
Martinovic et al. [MKRVG15] first label a point cloud for different architectural
elements, independently of primitive shape considerations. Connected components are
then extracted for each element of the facade using architecturally-based features.

Supervised classification methods use previously labeled data to characterize points into
a number of classes. Depending on the application, these semantic classes are defined
using features that discriminate them well from one another. In scene analysis, they are
typically used to segment buildings from vegetation [LM12], walls from desks, or object
parts [KLM+13]. For example, Lalonde et al. [LVHH06] use local geometry features in
natural outdoor scenes to label flat areas as trails, linear areas as trees and scattered
areas as leaves. Other geometric attributes include elevation or horizontality [VLA15].
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The watershed algorithm is a segmentation method that uses the gradient magnitude
image computed from an input image and considers it as a height map inside which
water would be dropped. Starting from a number of markers in the image, the watershed
by flooding technique [BL79] makes the water level rise up from these locations to find
local maxima of the height map. These local maxima represent the watershed of the
image gradient and thus are the limits of the segments in the image. Such flood filling
algorithms are most suitable for depth maps as input images, in the context of 3D data
segmentation [WGC99].

Using 3D data as input, one can apply geometry rules to detect different parts in the
data. These rules can be based on the height or size of clusters in the data. For
example, different tables of an indoor scene can be clustered using horizontality and
distance. Then, objects are projected on the table planes and clustered in 2D to form
object segments [RBMB09, GMLB12].

In some of the primitive detection methods, interactive techniques are used to drive the
segmentation prior to fitting. The user can be asked to assign labels to regions [OVWK14,
WGC99] or drive the segmentation using strokes [CZS+13, SXZ+12, SAG+13].

Finally, many segmentation methods have been developed when using meshes [Sha08],
usually by adapting known image processing algorithms to 3D data. In particular,
data-driven methods [XKH+16] that perform segmentation based on databases of
labeled meshes are more and more used thanks to the availability of this segmented
data. Using powerful descriptors, shapes can be segmented very efficiently and robustly
using the diversity of the many segmented mesh examples.

Fitting Primitives to Segments

In order to compute the parameters of geometric primitives, a fitting method is finally
applied to the individual detected clusters. To do so, one common method is to
use principal component analysis to extract these parameters [WGC99, KLM+13]. By
computing the covariance matrix of all points in the segment, an eigen analysis allows
recovering the primitive information. For instance, the normal of an optimal plane
fitting the data is the eigenvector of the covariance matrix with the lowest corresponding
eigenvalue. The covariance matrix for a set of N 3D points Xi = (xi, yi, zi)i=1...N with
their centroid X̄ = 1

N

∑
i=1...N Xi is given by

1

N

∑
i=1...N

(Xi − X̄)(Xi − X̄)T . (II.1)

One can also apply the RANSAC algorithm to the segments, which allows getting a
faster and more accurate model as the segmented objects or parts often correspond to
one primitive shape [RBMB09, GMLB12].
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Finally, the primitive fitting problem can often be modeled as an unconstrained
optimization problem. Thus, it can be solved using least-squares fitting by minimizing
an energy representing the distance from the model to the data. Different energies
can be used and are detailed in section II.4.5. For instance, Lukacs et al. [LMM98]
provide per-primitive energies in the context of least-squares fitting, based on the
efficient parameterization of primitive shapes brought by Marshall et al. [MLM01].
Depending on the complexity of the energy, the minimizing parameters can be estimated
using standard linear system solvers such as Cholesky and QR matrix factorization or
singular value decomposition [GVL96]. Complex energies are minimized with iterative
optimization methods like Newton’s method or a gradient descent [Avr76].

II.4.5 Metrics and Evaluation

This section aims at giving insights into ways to evaluate simple geometric detection
methods, as well as metrics used to model the error in these methods.

Evaluation Methodology

In order to evaluate the quality of a modeling instance made of simple geometric
primitives, different metrics can be used depending on the application and the
performance objective, including:

• fitting error (detailed below);

• processing time measured in milliseconds or number of processed frames per
second (fps);

• simplicity of the model and over-detection: number of primitives.

Some metrics, such as segmentation correctness, need ground truth information to be
computed. This usually requires prior manual and user-assisted work on the data, which
includes:

• segmentation and spatial consistency: objects are correctly separated by primitives
and modeled by one instance each;

• camera poses (in the context of scene analysis).
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Framework Strengths Weaknesses
Reference
algorithm

RANSAC
simple, general,
accurate, robust
to outliers

many parameters to tune,
dependent on a minimum
set, no spatial consistency

Fast RANSAC
[SWK07]

Local
statistics

application-specific model-dependent
Monocular
Occupancy Maps
[CSM12]

Hough
transform

handles missing
data, supports
many model
instances,
relatively robust
to noise

unbounded space size,
dependent on parameter
space quantization

Primitive-based
registration
[RDvdHV07]

Clustering
parameter
space

robust to outliers
restricted to low
dimensions

Cluster Normal
Space [HHRB11]

Primitive
growing

meaningful
segmentation,
spatial
consistency

slow, local, sensitive to
initial conditions (seeds),
noise and outliers

Hierarchical
Modeling [AP10]

Automatic
clustering

no prior on
location, few
parameters

dependent on seeds,
sensitive to outliers, can
require numerous clusters
(k-means)

Quadric Surface
Fitting [YWLY12]

Segmentation
then fitting

vast literature for
segmentation

can merge different
primitives, sensitive to
noise, sensitive to outliers

Hybrid City
Representation
[LM12]

Table II.1: Strengths and weaknesses of the main theoretical frameworks. The reference
algorithm is the most representative of each framework and usually has the most
features and the best quality output.
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Evaluation Metrics

In order to evaluate the quality of an output model made of simple geometric primitives
compared to the input data, different metrics have been used to estimate the error made
with the detected set of primitives by measuring the distance to the model, or fitting
error:

• the simplest metric is the sum of squared distances from points to the their
corresponding primitives. For primitives Si, i ∈ [0, N ] gathering inliers
P ij , j ∈ [0,M ], the fitting error is

ε =

N∑
i=0

M∑
j=0

∥∥P ij − proj(P ij , Si)∥∥2 (II.2)

with proj(P ij , Si) modeling the projection, i.e. the closest point, of point P ij on its
corresponding primitive shape Si;

• the Hausdorff distance [CRS98] defined for two sets of points a ∈ A and b ∈ B
is the highest distance among all points a to the corresponding closest point of B,
considering d() as a given real distance function:

HAB = maxa∈A{minb∈B d(a, b)}. (II.3)

Processing Metrics

The following metrics are used to drive algorithms, although their values do not make
much sense to evaluate of the quality of the output.

• the quadric error metric, introduced by Garland and Heckbert [GH97] in order to
simplify meshes. By summing squared point-to-plane distances, a quadratic form
appears and allows efficient evaluation of the error at any point in space. For a
vertex v and N planes Pi, i ∈ [1, N ] with normals pi, i ∈ [1, N ]:

ε =
N∑
i=1

dist(v, pi)
2 =

N∑
i=1

(pTi v)2 =
N∑
i=1

vT pip
T
i v = vT (

N∑
i=1

pip
T
i )v = vTQv . (II.4)

In the scope of the original work [GH97], summing the Q matrices associated with
the two vertices of an edge allows evaluating the error produced by the collapse of
this edge. This provides a global ordering of edges to collapse for progressive mesh
simplification. In the field of geometric primitive detection, Yan et al. [YWLY12]
perform Lloyd-like iterations based on the quadric fitting error on an input triangle
mesh;
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• an extension of the quadric error metric, called the spherical quadric error metric
(SQEM) [TGB13] allows to iteratively collapse edges to spheres, with potential
null radii, progressively moving from a surface to a volume representation as
the model is simplified. The SQEM represents the distance from a sphere to an
oriented plane and is minimized to identify the best sphere approximation for a set
of triangles, with the resulting mesh of spheres connected by edges and triangles
being called a sphere mesh. This is instrumental for extreme approximation, shape
editing and, through its later extensions, animated mesh analysis [TGBE16] and
hand recognition [TPT16].

II.4.6 Discussion

Common geometric shapes, such as planes, cuboids, spheres, cylinders, cones, tori,
ellipsoids and parallelepipeds are the building blocks of most of the objects present in
man-made environments and of some natural elements as well. Their simplicity makes
them a perfect tool for the analysis of heavy and complex 3D data acquired from noisy
3D scanners, as they allow both reduction of the size of the data and complexity of the
model for a computer.

For scene modeling in the context of robotics, a simple geometric primitive-based
representation allows faster and more accurate processing for real-time applications
and autonomous navigation. For the automatic reconstruction of objects or buildings,
geometric primitives can help recover the regularity of the scanned items. In the area
of computer graphics, shape processing can also make use of geometric primitives to
simplify objects and apply simple algorithms for deformation or animation.

In this section, we have described the principles of the most recent methods aiming
at detecting such simple geometric primitives in captured 3D data. We categorized the
detection of simple geometric primitives in 3D data such as depth images, point clouds or
polygonal meshes using several well established theoretical foundations that make use
of stochastic paradigms, parameter spaces or clustering and segmentation techniques.

Towards Spatial Reasoning

Spatial reasoning enriches data in terms of space and organization through structural
information. In the case of 3D space modeling, spatial reasoning is possible by acquiring
qualitative and quantitative knowledge of spatial locations in the observed scene. In the
particular context of this section, these are represented by the positions and orientations
of detected objects or parts, modeled by simple geometric primitives, with relations to
each other.



CHAPTER II. BACKGROUND 56

Several recent methods have looked into quantitatively describing these relations, in
order to infer information about the scene structure. They can be represented by a graph
of objects where the edges model rigid transformation matrices. Li et al. [LWC+11]
define a graph of geometric relations between parts of objects modeled as simple
primitives, which is simplified to get a regular model based on relations of coplanarity,
coaxiality and orthogonality between object parts. To model relations between objects
in a closed room, Rusu et al. [RBM+07] define relations between detected objects
with 3D rigid transformation matrices, while Silberman et al. [SHKF12] hierarchically
segment the scene into objects and infer adjacency relations between them. In order to
model full building interiors, Ochmann et al. [OVWK14] detect doors and windows to
create a graph of connectivity between rooms. Monszpart et al. [MMBM15] assume a
regular structure between walls and floors in the building and find regular arrangements
of planes to model that structure.

Research Challenges

The problem of simple geometric primitive detection in captured 3D data raises
numerous challenges in the context of modern applications. Although consumer depth
cameras represent a great opportunity for many applications, they still raise many
issues, as shown in section II.1.2. Indoor scene modeling methods based on streams of
depth data seem to perform generally well, as the repetition of observations of a closed
environment allows building a noise-free and consistent model through time.

Most methods aim at modeling man-made environments using planes or even model
curved objects with this primitive shape, because of its simplicity and the fact that it can
be easily identified with known geometric heuristics such as normal orientations. Fewer
methods detect more complex primitives in order to build a more reliable model of the
data which allows even lighter representations for a similar quality.

Therefore, future research challenges lean towards the improvement of results in
terms of completeness and consistency of the model. In particular, completeness can
take the form of more complex primitives, although they need to stay generic and
not data-specific. Meanwhile, overall performance and compatibility with real time
constraints remain a key enabler for future applications.
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II.5 Research Challenges

In this chapter, we presented existing methods to perform some essential 3D scene
analysis tasks and solve arising issues. Recent work on RGB-D data processing,
registration and reconstruction exhibits robust results in the presence of noise, outliers
and missing data, often at the expense of requirements in computing resources.
Abstracting such acquired 3D data with simple geometric shapes leads a lightweight
and intuitive representation of the space, and can be used to assist or drive registration
and reconstruction methods.

However, recent methods have limitations and cannot cope with the constraints to reach
our goals, expressed in section I.2. In particular, dynamic scenes, variability and lifelong
operation are mostly ignored when considering feature matching for registration or
reconstruction. In addition, our hardware and performance constraints cannot be solved
with point or volumetric approaches, and surface based methods do not accurately
represent the topology in shape space. We detail below the research axes that we
followed to satisfy our requirements.

II.5.1 Frame-wise View Registration

As explained in introduction (section I.1), the 3D interaction framework requires spatial
knowledge of the local zones with relation to the camera, even when the sensor is
moved. However, the embedded device has limited computing power that prevents
us from tracking the camera frame after frame similarly to e.g., simultaneous localization
and mapping. Thus, we need to perform offline registration of RGB-D frame pairs, after
the device is done moving (see section A.1.3 for details). Our other constraint of lifelong
operation means that compared frames can have modifications of object placement,
visibility or illumination.

We saw in section II.2 that there exists a number of ways to register pairs of overlapping
frames. 2D descriptors (section II.2.1) detected in the color component are too sensitive
to illumination changes, missing data or moving objects. Geometric methods based on
3D descriptors and point comparison e.g., iterative closest point (section II.2.2), need to
iterate over the whole point set and cannot run fast enough on embedded devices.

In that sense, comparing and matching planes instead of pixels or points between
views allows fixing issues of performance and sensitivity to changes. Although,
existing plane-based methods showed in section II.2.4 mostly integrate matching plane
parameters into global formulations to register a full set of frames, and cannot be
applied to our frame-wise scenario.

Hence, we propose in chapter III a novel approach that leverages planes detected in two
overlapping 3D views to register pairs of RGB-D frames in a robust and lightweight way.
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II.5.2 Lightweight Global Reconstruction

Our embedded context for 3D interaction first required the visualization of the sensor
view in an intuitive way for non experienced users. The remote display on mobile
phone also added a constraint on the model weight that needs to stay low for real-time
feedback. Again, lifelong operation of the device implies static and dynamic motion of
objects as well as illumination and texture changes, which have to be considered in the
model. To that end, we aim to build an understandable reconstruction of the observed
scene that takes into account these constraints, which would lead to a more complete
and intuitive visualization for the end user.

State-of-the-art reconstruction methods such as dense SLAM (section II.3.1) and
volumetric fusion (section II.3.2) have high requirements of computing resources that
cannot be met on our embedded platform. They also generate heavy detailed models
that are not suitable for live wireless transmission. Offline surface regularization
as detailed in section II.3.3, while offering lighter models, is currently too slow for
our application, as it can require several hours to compute on a desktop computer.
These offline methods are usually based on the output of an online point or volume
reconstruction, which adds the computing resource constraint as one of their limitations.

We make the observation that there exists no surface accumulation structure to
aggregate acquired point sets into a global model on the fly. In consequence, we
propose in chapter IV a new geometric superstructure, based on simple geometric
shapes as explained in section II.4. While simple shapes have a few 3D parameters,
the representation of their extent at the surface can be problematic, as it needs to be
both accurate and lightweight. In order to take into account both the limits of the
extent, holes and salient areas existing at the surface as well as illumination and object
arrangement changes, our structure defines local regularization on a simple grid that
aggregates incoming depth and color samples into compressed statistics.

We show in chapter V that our simple shape-based reconstruction is lightweight and fast
to compute with a moderate memory footprint, while staying accurate enough to be
understood and operated by non-expert users.



III PLANE-BASED REGISTRATION

This chapter focuses on an essential task in the process of recording the real world in 3D,
namely the registration of multiple 3D views. We aim to introduce geometric constraints
under the form of planes into the registration problem, in order to reduce complexity
and take into account the structure of the scene. We present methods to match planes
between overlapping 3D views in section III.2 and use these matches to estimate the
motion matrix between the views in section III.3. Experiments of 3D view registration
based on detected planes are shown in section III.4.

The specificity of our approach is the structure analysis we implicitly perform when
categorizing planes given their orientation in the scene and comparing them by pair
instead of one by one. In addition, our plane-based motion estimation leverages this
classification to separately estimate the different degrees of freedom of the sensor based
on plane orientation matching and quadric error minimization. Existing methods that
ignore the scene structure are more prey to confusion between geometrical elements
and require a certain amount and configuration of constraints in order to estimate the
full camera motion.

III.1 Context and Motivation

The low amount of structural and high level information contained in a single depth
view can be increased by aggregating several views. However, this requires knowledge
of the relative position and orientation of the sensor while capturing these views. The
problem of image registration, while studied for several decades, gets more complex
when considering 3D data, as shown in section II.2. In this study, we showed that
estimating the motion between different 3D views is mostly carried out using local 3D
descriptors such as fast point feature histograms (FPFH) [RBB09], or 2D descriptors using
the 3D information of the depth component, when color image is available. Instead, our
approach makes use of detected planes in overlapping 3D views to infer relative position
and orientation of sensors.

59
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In order to stay as general as possible and as we cannot assume having control over
the acquisition of the views, we consider registration of 3D views by single pairs that
overlap between roughly 20% and 80% in intersection over union of the 3D geometry e.g.,
image surface or 3D point locations. Empirically, these values give sufficient overlapping
features while keeping challenging geometrical differences. We do not aim to use any
kind of global optimization as we only consider two views at a time and not the full
acquisition. Our algorithm, being based on detected planes, is particularly suited for
indoor environments composed of multiple horizontal and vertical planar structures,
such as floors, ceilings, walls, doors or tables. More specifically, scenes that follow the
Manhattan world orientation assumption [CY99] allow better performance.

The inference of sensor motion from the scene structure gives robustness to variability
in indoor scenes where small objects might often be moved. Hence, such a registration
of scenes acquired at different times is robust to movements of objects, which could
confuse local descriptors.

Overview

Our goal is to leverage the scene structure to estimate the motion T of a sensor
capturing an indoor scene. We decompose the scene into different plane arrangements,
e.g. horizontal and vertical, using our probabilistic framework based on geometric
characteristics of planes, such as relative angles α and distances d. By defining a local
coordinate frame, we are able to reduce the dimensionality of the computation and
separately estimate the degrees of freedom of the sensor. Figure III.1 is a representation
of the elements involved in our plane-based registration procedure.

Contributions

We present different strategies to match planes between 3D views and estimate the
relative transformation based on the following contributions:

• the definition of a probabilistic framework to analyze the scene structure and
separate different arrangements of planes, e.g. horizontal and vertical;

• the comparison of planes by pairs instead of single matches to reduce complexity
of the search;

• the definition of multiple heuristics based on geometry and appearance to prevent
wrong matches;

• a quadric minimizer between multiple vertical planes to estimate the horizontal
translation of the sensor;

• the estimation of a prior motion matrix to gracefully degrade to the state-of-the-art
in cases where not enough plane information is available.
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Figure III.1: Overview of the plane-based registration of two RGB-D views. Two RGB-D
views are represented by their color component with planar areas overlaid (left and
right). In this example, the observed indoor scene (middle) is composed of vertical
planes, the walls (orange) and horizontal planes, the floor and ceiling (light blue). A
plane is represented by its normal vector ~N and a 3D point P at its surface (dark blue
arrows and circles). The scene was captured by the views at the locations shown in green
frames when the sensor moved of a motion T ∈ R4×4. Using our analysis of the scene,
we define the world local frame ~Xw, ~Yw, ~Zw where Yw is the Up vector aligned with the
gravity. Our method is able to recover the sensor motion using plane arrangements
constraints such as relative angles α and distances d.

III.2 Plane Matching

In this section, we present strategies to match planes between two views of a scene,
modeled as a depth map and more generally as a point cloud. The first step is to estimate
the parameters of the planar elements of the scene in both views. This can be done
through different methods, detailed in section II.4. In our experiments, we use the
RANSAC-based plane detection of Schnabel et al. [SWK07]. At the end of this step, we
have a list of detected planes, their associated parameters and inlier point positions. In
case we have a prior coarse estimation of the motion between the views, we can track
the planes instead of detecting and matching them, as shown in section III.2.1.

In the general case where we have no prior knowledge of the motion between the views,
we first classify planes following absolute and relative geometry rules, as explained in
section III.2.2. In particular, we separate horizontal and vertical planes relatively to
the gravity orientation and classify them as parallel or non-parallel. Grouping planes
following these arrangements allows reducing the complexity of the matching problem.
Then, the matching is done by considering planes by pairs and comparing their relative
orientation or distance, as explained in section III.2.3.
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III.2.1 Plane Tracking

A straightforward way to match planes between views is to use a prior transformation
matrix between the views, that could be estimated through any registration method
presented in section II.2. Then, we can run any plane detection method on the first
view, apply the prior motion matrix to their parameters, and check if samples of the
planes are present in the second view. If the number of inliers that are close enough to
the planes in the new view is high enough, then the plane is considered as seen in the
new frame and its parameters can be refined using the new inlier set.

III.2.2 Plane Arrangements

In the following, we will consider planes and pairs of planes as belonging to geometric
categories with relation to the orientation of the scene, such as:

• horizontal plane, i.e. orthogonal to a reference direction;

• vertical plane, i.e. parallel to a reference direction;

• pair of parallel planes;

• pair of non-parallel planes.

Reference Direction

For a given scene sampled as an RGB-D frame or point cloud, we consider the reference
direction to be the gravity vector in the sense of Newton’s law of universal gravitation in
physics. We motivate this choice after observing that most of the components of indoor
scenes are either orthogonal or parallel to the gravity vector. In particular, this direction
has the advantage of being consistent in the scene and among the objects composing it,
from any point of view and representation.

For the rest of this chapter, we consider that the direction of the gravity is known and
can be acquired by either one of these means:

• identification of a near horizontal plane among the detected planes;

• inertial device such as an accelerometer, whose orientation in the coordinate frame
of the data is known;

• pre-computed and available in a file for loading.
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Figure III.2: Detection of plane arrangements using Gaussian distributions. The
category of the plane or pair of planes is given by its highest probability. Categories
are horizontal (h), vertical parallel (v/p) and vertical non-parallel (v/np). In this
illustration, the y axis is the angle of a plane with relation to the reference Up vector.
The x axis is the relative angle between two planes. Control over the angle thresholds
is given by the standard deviation values of the Gaussian functions. The red lines show
the actual angle thresholds in radians at a probability of 0.5.

Plane Classification

In order to classify planes as horizontal or vertical and parallel or non-parallel, we define
the following probabilistic framework. Figure III.2 shows visual representation of the
plane classification probabilities. For a plane of angle deviation αup = arccos(| ~N.~Yw|)
with the reference direction ~Yw and a pair of planes (i, j) of relative angle deviation
αrel = arccos(| ~Ni. ~Nj |), the class of the plane is defined by Equation III.1.

k(αup, αrel) = arg max
k

g(αup, µ
k
up, σ

k
up) g(αrel, µ

k
rel, σ

k
rel) (III.1)

Here, g(α, µ, σ) is the value at α of a Gaussian function centered on µ with standard
deviation σ, as shown in Equation III.2.

g(α, µ, σ) = e
−(α−µ)2

2σ2 (III.2)

The probability distributions g(α) for the three categories are centered at the following
values:

horizontal µup = 0 µrel = 0
vertical parallel µup = π/2 µrel = 0
vertical non-parallel µup = π/2 µrel = π/2

(III.3)
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The value of σ for each category is set to control the values of the angle thresholds by
arbitrarily fixing the probability at 0.5. In practice, we evaluate the standard deviation
value σ for each Gaussian function using an angle threshold value αthresh and the fixed
probability threshold 0.5, as shown in Equation III.4.

σ(αthresh) =

√
−(αthresh − µ)2

2 log(0.5)
(III.4)

In that formulation, the σ values represent uncertainties associated with the plane
classification, as they model the extent of the higher probability values over the angle
domain. Tuning these values gives control over the angle thresholds as well as the
uncertainty of the classification.

III.2.3 Plane Association

We now consider that we have a list of planes categorized as horizontal or vertical and
parallel or not. In order to match planes that correspond to the same part of the actual
scene, we will use this classification to reduce the amount of possible matches. Hence,
we first group horizontal and vertical planes together. While we could simply try to
match planes with each other in both views, we choose to consider planes as pairs and
not as single planes, in order to further reduce potential wrong matches.

Plane Pairs Generation

We generate all possible pairs of vertical and horizontal planes, regardless of the order.
Then, we compare all pairs in views a and b and estimate whether or not the two pairs
(ia, ja) and (ib, jb) are composed of two plane matches (ia, ib) and (ja, jb). A first test is
performed using a simple penalty e in plane pair space, that is agnostic to the view:

• for pairs of non-parallel planes, i.e vertical non-parallel, the plane pair penalty is
the difference of relative angles α between the normals of the planes:

e(ia,ib),(ja,jb) = |αiaja − αibjb | = | arccos(| ~Nia . ~Nja |)− arccos(| ~Nib . ~Njb |)| ; (III.5)

• for pairs of parallel planes, i.e vertical parallel or horizontal, the plane pair penalty
is the difference of relative distance d in the normal directions of the planes:

e(ia,ib),(ja,jb) = |diaja − dibjb | = | ~Nia .(Pia − Pja)− ~Nib .(Pib − Pjb)| . (III.6)

For each pair of planes in the two views, if this penalty e is below a given threshold, we
keep it and further check if the pair is an actual match, based on several heuristics, as
shown below. In practice, we keep a pair match if the difference is below 10 degrees
in angle or 10 cm in distance. These loose thresholds allow accounting for the noise
disturbing the plane parameters between acquisitions.
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Plane Pairs Validation

First, we compute the motion matrix transforming the planes from one view to another,
using the method from section III.3. For pairs of vertical planes, we compute the rotation
(section III.3.1) and horizontal translation (section III.3.2). For pairs of horizontal
planes, we compute the vertical translation (section III.3.3). If the magnitude of the
computed transformation is too high, we consider the match as wrong and discard it. If
it is low enough, we apply it to the second pair of planes and validate the match using
plane-wise comparisons of:

• the similarity of normal orientations and distances to origin;

• the overlap of convex hulls;

• the average Euclidean distance of 100 inliers of each plane to the other plane;

• the similarity of color histograms as described by Dou et al. [DGFF12a].

After comparing all generated plane pairs, in case plane pair matches create more than
one match for a single plane, we keep the match with the closest plane distance. If
there are not enough planes to generate pairs, or if no plane pairs have been matched,
we consider single planes and compare them one by one using the previously described
heuristics. Finally, we recompute the motion between the two views using all plane
matches derived from the pair matches, using the method described in section III.3.

III.3 Transformation Computation

In this section, we describe a novel method to estimate the global transformation
between two 3D views composed of matching planes, based on the plane structural
classification defined in section III.2.2. We consider planes as horizontal and vertical
and split the degrees of freedom of the transformation the same way. In particular, while
the rotation is computed in camera coordinate frame, the translation is first computed in
world coordinate frame, considering the known Up vector as Y axis, and then converted
to camera coordinate frame. Hence, the computation of the transformation is divided
into three steps:

• estimation of the rotation in camera space X,Y, Z;

• estimation of the horizontal translation with vertical planes along Xw, Zw;

• estimation of the vertical translation with horizontal planes along Yw.

As an optional pre-processing step, we refine the Up vector in each view by taking the
median value of deviations of horizontal plane normals to the current Up vector.
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Figure III.3: Rotation computation using a matching vertical plane. As the Up vector is
known in both views, knowledge of a matching vertical plane of normal N is enough
to build a local coordinate frame {Up, N, Up × N}. Associating the local coordinate
frames in both views a and b leads the complete rotation matrix between the views, as
shown in Equation III.7. The same computation can be done for the second plane and
rotations Rab can then be averaged.

III.3.1 Rotation Computation

For views a and b of reference Up vectors Upa and Upb, the local coordinate frames for
a plane of normal N are given by Ba and Bb. The rotation matrix in world space can be
inferred as Rab, as shown in Equation III.7 and illustrated in Figure III.3.

Ba = (Na Upa Upa ×Na) ∈ R3×3

Bb = (N b Upb Upb ×N b) ∈ R3×3

Rab = Ba TBb ∈ R3×3
(III.7)

III.3.2 Horizontal Translation

We use the vertical planes matching between two views to compute the translation in
the horizontal plane Xw, Zw of the world space. First, we apply the rotation computed
in the previous step and we project the plane normals and positions in this 2D space.
At this point, matching planes are aligned in orientation and are only transformed by a
translation.
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Figure III.4: Computation of the translation in horizontal 2D Xw, Zw world space with
planes (light blue) aligned along a single direction, here represented by the blue dotted
line. Ca and Cb are the center of cameras in the two views, projected on this line. The
known distances to origin da and db (dotted red and green lines) of planes in the views
allow recovering the value of the translation TN in the direction N of the planes.

We have knowledge of the planes 2D normals and distances to origin in the two views,
and the goal is to estimate the relative position of the camera origins in 2D horizontal
space. Given the relative orientations of the vertical planes, we have two choices:

• if all planes are parallel and have the same direction, we can only compute the 2D
translation in this direction;

• if at least one pair of planes is non-parallel, we use a quadric error minimizer to
compute the full translation in Xw, Zw world space.

Parallel Planes

In the case where all vertical planes are parallel as defined in section III.2.2, we can
only compute the translation of the camera along their normal direction in horizontal
Xw, Zw world space, as illustrated in Figure III.4. As we know the distances to origin of
the plane in both views da and db, we can compute their difference and apply it to the
common direction to get a translation vector TN = (db − da) N . This vector can then be
converted into world space as TXw,Zw = [TN .Xw TN .Zw].

Non-Parallel Planes

In the case where there is at least one pair of non-parallel vertical planes, we
can compute the full translation of the camera in horizontal Xw, Zw world space.
Figure III.5 illustrates the setup in horizontal Xw, Zw world space where multiple planes
have non-parallel directions.
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Figure III.5: Computation of the translation in horizontal Xw, Zw world space with
non-parallel plane directions. Ca and Cb are the center of cameras in the two views.
Blue lines with arrows represent tracked vertical planes projected in 2D Xw, Zw world
space. Dotted blue lines are the planes displaced of the distance to origin. Dotted red
and green lines represent the distances da and db of vertical planes to the center of the
camera in the first and second frames, respectively. The quadric minimizer for those
displaced planes leads the translation of the camera in horizontal world space TXw,Zw .

In order to minimize the error, we make use of the quadric error to the planes and their
minimizer point as described by Garland and Heckbert [GH97]. For each vertical plane
of normal N , we compute the fundamental error quadric in 2D space Xw, Zw as

K = ppT with p = [a b − d]T = [N.Xw N.Zw − (da − db)]T . (III.8)

By defining the distance d as the difference between distances to the origin of the planes
in the first and second views, we simulate the displacement of the planes to the origin of
the second view, while taking the origin of the first as reference. After summing the K
matrices for all planes, we solve for the minimizer as described by Garland and Heckbert,
which describes the translation along the Xw and Zw axes in world space TXw,Zw .

III.3.3 Vertical Translation

For the vertical translation, we consider the parallel case of the horizontal translation
as illustrated in Figure III.4, with the Y world Up vector as common direction. Using
all horizontal planes, we compute the displacement along the Y axis as in section III.3.2
with N = Yw.
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Figure III.6: Toy example used to validate the plane-based transformation computation.
The red arrow is the Up vector. The blue and yellow planes are orthogonal vertical ones.
The green and purple are horizontal planes, modeling the floor and ceiling respectively.

III.4 Experiments

In section III.4.1, we validate our motion computation method using a toy example.
Then, we evaluate both our plane matching and plane motion estimation strategies
on recent public datasets presented in section III.4.2. We compare our methods to
state-of-the-art 3D view registration methods.

III.4.1 Toy Example

In order to validate the computation of the transformation as detailed in section III.3,
we designed a toy example, illustrated in Figure III.6. The example models views of an
indoor scene composed two orthogonal vertical planes, that can be seen as a left and far
walls, and two horizontal planes to represent the floor and ceiling.

With fixed initial plane parameters in one view, we randomly compute values of rotation
of the camera with relation to the Up vector, as well as a transformation matrix that we
apply to the parameters, in order to run the registration algorithms on two views.

We show experiments on this toy example while adding uniform noise in Figure III.7. To
simulate sensor noise, we sample a set of 3D points from the generated plane parameters
and add uniform noise to their positions to re-estimate the parameters from this noisy
inlier set. We can see that with no noise added to the plane inliers, the transformation
matrix is always recovered with no error, which validates our motion estimation error.
Although, we notice that the accuracy of the transformation quickly drops after 30% of
added synthetic noise, which highlights the sensitivity of our algorithm to noisy planes.
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Figure III.7: Adding noise on the toy example for registration. After applying the
random transformation to the planes in both views, we sample the plane surface with
400 random 3D point locations to which we apply uniform noise displacement as a
percentage of a maximum value of 2m, which ensures covering most noise and outlier
values observed in practice. Although this noise model is not the one observed on
samples from depth sensors, it gives a first insight on the influence of noise on a
controllable example, while staying simple and general. We then re-estimate the normals
and centers of the planes using singular value decomposition of the noisy point set and
use them in the plane-based registration algorithm. The rotation and translation errors
are the norm along the three axes. A registration is considered valid if its rotation
angle error is below 20 degrees and its translation error is below 20cm. Each noise
level experiment was ran 10000 times and averaged. This experiment first validates our
motion estimation in the perfect case where no noise is present. Then, it shows a good
robustness to noisy point sets up to about 30% of noise, which is already a high amount.
The use of planes even in noisy depth maps allows smoothing the error and recovering
correct information in many cases.
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In this experiment, we generate 400 noisy points to re-estimate plane parameters, but in
practice with real captured data, the aggregation of thousands of inlier point positions
to compute the plane parameters allows the noise in the observed data to stay low.

III.4.2 Dataset

In order to evaluate the accuracy of our plane-based registration, we make use of the
publicly available RGB-D dataset SUN3D [XOT13]. In particular, we use the benchmark
provided by the authors of fine-to-coarse [HF17] and 3DMatch [ZSN+17]. The former
provides ground truth correspondences in overlapping RGB-D frames, which we use
to compute error values and evaluate the accuracy of our registration. The latter,
similar to the synthetic benchmark of Choi et al. [CZK15], provides scene fragments
generated from 50 fused RGB-D frames at 6mm resolution, associated with ground truth
transformations and correspondences.

As specified by Choi et al., we consider a registered pair as valid if the average error
of all correspondences after applying the transformation, computed as the averaged
Euclidean distance between transformed corresponding 3D point locations, falls below
the threshold of 20cm. We then attempt to register pairs of frames and fragments with
available ground truth motion and correspondences.

We quantitatively evaluate the registration with the following metrics:

• success: the amount of pairs that the algorithm is able to register;

• recall: the amount of correct pairs that the algorithm successfully registers and are
valid;

• precision: the amount of registered pairs that are valid, i.e. with a correspondence
error below the threshold;

• root mean squared error (RMSE): the average error of the ground truth
correspondences for all registered pairs;

• median absolute error (MAE): the median error of the ground truth correspondences
for all registered pairs;

• time: the average total number of milliseconds required to register a pair.

We compare our plane-based registration to state-of-the-art pairwise registration
methods using ORB keypoint descriptors in RGB image [RRKB11] and fast point feature
histograms (FPFH) [RBB09]. In the following tables, we present the evaluation metrics
of our methods with relative difference to the accuracy of ORB and FPFH.
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Method Success (%) Rec (%) Prec (%) RMSE (m) MAE (m) Time (ms)
ORB 78.1 42.7 53.2 0.771 0.133 8
FPFH 73.5 41.8 55.6 0.649 0.141 2470
Plane pairs 38.7 11.4 27.1 1.01 0.483 396

vs ORB -50% -73% -49% +31% +263% +5K%

vs FPFH -47% -73% -51% +56% +243% -84%

Table III.1: Registration of single RGB-D frames using our plane matching strategy.

Method Success (%) Rec (%) Prec (%) RMSE (m) MAE (m) Time (ms)
FPFH 90.2 54.1 68.2 1.13 0.100 3004
Plane pairs 73.7 14.3 21.0 1.254 0.865 987

vs FPFH -18% -74% -69% +11% +765% -67%

Table III.2: Registration of scan fragments using our plane matching strategy.

III.4.3 Plane Matching

To evaluate our plane matching strategy presented in section III.2, we run plane
detection in both frames separately and feed the planes to the algorithm to match them
and estimate the motion between the views. The method will be successful as long
as the frames have a common vertical plane that is correctly identified. However, the
validity of the estimated motion matrix – or precision – is evaluated using the ground
truth motion and correspondences provided by the datasets.

Table III.1 shows quantitative evaluation of single RGB-D frames registration using
our plane matching method, while Table III.2 shows evaluation of scan fragments
registration. In both cases, while the plane-based method shows significant speed-up
over FPFH, we can see a noticeable degradation of the accuracy. We put that degradation
down to the lack of distinguishable features between geometrically similar planes, even
when taking appearance histograms into account. In consequence, we consider a prior
registration estimate, however coarse, as needed to match the planes before computing
the transformation.

III.4.4 Motion Computation

As we notice that geometric planes are not characteristic enough by themselves to
be matched even when classified and grouped by pairs, we first compute a coarse
transformation matrix to track the planes as presented in section III.2.1, and then refine
this estimate using our method presented in section III.3. The method will be successful
as long as the prior registration is successful and the frames in the pair have a common
horizontal or vertical plane. In the case where some planes are missing to compute the
full 6 degrees of freedom of the transformation, we use the prior estimate to fill in for
the components of the rotation and translation that we can not compute.
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Method Success (%) Rec (%) Prec (%) RMSE (m) MAE (m) Time (ms)
ORB 78.1 42.7 53.2 0.771 0.133 8
FPFH 73.5 41.8 55.6 0.649 0.141 2470
ORB + pl. 52.4 34.4 63.3 0.732 0.122 228

vs ORB -33% -19% +19% -5% -8% +3K%

vs FPFH -29% -18% +14% +13% -13% -91%

FPFH + pl. 63.7 33.6 52.0 0.837 0.169 2668
vs ORB -18% -21% -2% +9% +27% +33K%

vs FPFH -13% -20% -6% +29% +20% +8%

Table III.3: Registration of single RGB-D frames using planes tracked with a prior
estimate. Using ORB as prior allows improving accuracy, while showing significant
speed-up over FPFH.

Method Success (%) Rec (%) Prec (%) RMSE (m) MAE (m) Time (ms)
FPFH 90.2 54.1 68.2 1.13 0.100 3004
FPFH + pl. 90.1 28.3 35.8 1.26 0.365 3855

vs FPFH -0% -48% -48% +12% +265% +28%

Table III.4: Registration of scan fragments using planes tracked with a prior estimate.
The higher amount of information present in fragments allows FPFH to perform better
than the plane-based method.

Again, we compute evaluation metrics for the registration of single RGB-D frames in
Table III.3 and scan fragments in Table III.4. For RGB-D frames, computing a prior
transformation with ORB keypoints leads to a 10 to 20% increase in precision, while
reducing the median error of about 10%. The significant speed-up of 90% over FPFH
shows a real interest of the plane-based method when coupled with ORB. However,
using FPFH as a prior registration method, while allowing more frame pairs to succeed,
reduces the accuracy of the the transformation. For scan fragments, the plane-based
method lacks accuracy improvement, as the prior FPFH motion estimate is likely accurate
enough. While scan fragments aggregate the information from 50 single frames, more
distinctive geometric features should overlap between the views, allowing the FPFH
descriptor to perform well.

Figure III.8 shows corresponding planes in two views used to compute the
transformation. Figure III.9 shows the two registered views in a common space.
In this example, we can see that even low overlap is sufficient to register the view
if enough common planes are present. Here in both frames, the floor plane allows
recovering the gravity vector and its association with the wall planes leads the full three
angles rotation. Translation is then recovered using the floor (vertical translation) and
wall (horizontal translation).
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Figure III.8: Corresponding planes in two RGB-D views used to compute their
relative transformation. In this example, we use frames 301 and 401 of scene
home at/home at scan1 2013 jan 1 from the SUN3D database. Top: plane inliers
overlaid on RGB images. Bottom: side and top views showing detected planes in 3D
with their normal vectors in thin green and the world frame in red, green and blue lines.
Only the blue horizontal and purple vertical planes are common in the two views, but
they are sufficient to compute the sensor motion.
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Figure III.9: Plane-registered RGB-D views in a common space using SUN3D SfM
[XOT13], giving matrices as ground truth in the dataset (top), and our plane-based
method (bottom). In these two frames, the overlap is rather low and the overlapping
region does not contain many distinctive features, which are essential to the
performance of regular 3D descriptors. Here, recovering two overlapping planes allows
us to compute the full transformation between sensor positions. We can see that the
difference with the ground truth is subtle, showing the high quality of the plane-based
method.

III.5 Discussion and Perspectives

In this chapter, we introduced planar geometric and structural constraints into the
problem of 3D view registration. We have presented multiple ways to make use of
planar structures seen in overlapping 3D views in order to estimate the motion between
them. We exploit the Manhattan world structure of indoor scenes to recover the motion
of the sensor with relation to this structure. This allows the methods to be lightweight
and makes them agnostic to subtle changes in the positions of objects. While results
could be improved, we like to see these contributions as incremental and designed to
be paired with other existing methods in order to reach state-of-the-art accuracy and
performance. We discuss them below and give hints towards improvement of robustness
and accuracy.

In the following chapters, we enforce temporal and spatial consistency by tracking planes
as defined in section III.2.1. This tracking will enable consistent knowledge of geometric
elements of the scene in time and allow building a complete superstructure representing
the surroundings, as shown in chapter IV.
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III.5.1 Discussion and Limitations

The analysis of the scene structure, agnostic to subtle changes in scene geometry of
e.g., small objects, is particularly well suited to lifelong 3D information aggregation. In
that sense, our use of large planar structures to register views with each other is an
advantage over state-of-the-art local descriptors. In particular, the analysis of relations
between these structures and the definition of plane pair distances that are agnostic to
the point of view adds robustness to the registration process.

Computing the sensor motion from separated horizontal and vertical planes to split
computation of rotations and translations works well in practice when used as a
refinement step after a prior coarse estimation method. We show a significant
improvement in accuracy over the prior method, as well as fast processing compared to
3D descriptors. However, the requirement for overlapping planar structures in the two
views leads to a lower success rate.

For view matching, detected planes do not seem to be strong distinguishable features in
an indoor scene, where more complex 3D descriptors give better results. The grouping
of planes by pairs, while reducing complexity of the problem, does not prevent wrong
plane matches as much as expected. On the other hand, the low success rate can be
explained by the requirement for overlapping Manhattan world structures in the views,
which are not always present.

III.5.2 Towards Robust Plane-based Registration

While geometric planes offer a more stable support than 3D points to estimate the
motion of a sensor in a scene, they also embed less information that regular 3D
descriptors and can lead to some confusion. We give here multiple research paths and
challenges for the improvement of robustness in plane distinction and estimation of the
transformation matrix, in order to improve current results.

Plane Matching

In order to ease the distinction of different geometrically similar planes and prevent
confusion, we could use stronger heuristics. When color information is available,
the comparison of color keypoints detected in the 2D space of the plane could help
discarding wrong matches.

While we presented associations of two planes to form pairs and their relative distances,
we could imagine grouping planes by three or four. We would need to design specific
descriptors based on geometric information in order to discriminate the correct groups
from each other.

Finally, we could add a quality check to discard wrong plane pair matches. By applying
the estimated transformation for a plane pair match to other already detected plane pair
matches, we could identify whether the motion matrix correctly transforms planes from
a view to another, and discard the new plane pair if not.
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Transformation Computation

In order to reduce error on the translation, when possible, we could use an horizontal
plane associated with two non-parallel planes. After applying the rotation, their unique
intersection point will allow computing the translation of the sensor.

We could imagine lowering the quality of the prior 3D descriptor method to speed it up,
while keeping enough accuracy for plane tracking. This would allow faster processing
with a plane-based refinement step to reach state-of-the-art accuracy.

Evaluation

In order to further understand the behavior of both algorithms in failure cases, we could
investigate specific cases by implementing visual quality check. In addition, the model
of the noise we add to the toy example is rather far from the noise observed in captured
data. We could imagine using a more advanced depth sensor simulator on our synthetic
toy dataset in order to get a more meaningful evaluation.



IV GEOMETRIC SUPERSTRUCTURE

We saw in chapter III that camera and plane tracking lead to a temporally and spatially
consistent set of geometric shapes representing an observed scene. In this chapter,
we focus on turning these consistent geometric objects into a multi-shape geometric
superstructure that models structural elements of the scene. In particular, we define a
spatially consistent grid to model the extent of the shapes and gather local statistics.

IV.1 Context and Motivation

As shown in section II.1, modern commodity depth sensors provide real time RGB-D
stream which has end applications in multiple domains, from human computer
interaction and augmented reality to industrial design. Although, recent advances in
sensor technology are not sufficient and their impact is still limited by the low quality
and unreliability of their data stream. In particular, limitations include low resolution
of the frames and inherent noise as well as incompleteness and temporal inconsistency
due to single view capture.

In this chapter, we present a new multi-shape geometric superstructure to improve
real time RGB-D streams by analyzing them. A sparse set of detected 3D shapes are
parameterized to record statistics extracted from the stream and form a structure that
we call proxy. This superstructure substitutes the RGB-D data and approximates the
geometry of the scene. In particular, our contributions are:

• a stable and lightweight multi-shape geometric superstructure for RGB-D data
(section IV.3);

• construction and updating methods which are spatially and temporally consistent
(section IV.2);

• a collection of RGB-D enhancement methods based on our structure which run on
the fly (section V.2).
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Figure IV.1: Geometric superstructure model. Built upon a shape in 3D space (e.g., a
plane), our proxy model is made of a local frame, bounds and a grid of cells which
contain statistics. These statistics are a collection of mean µ and variance σ values
representing a smoothed local histogram, as well as quantized color information, all
gathered from the RGB-D data. They are detailed in section IV.3.3. Activated cells
are the ones containing inliers from many frames.

IV.2 Multi-shape Modeling

Basically, our model represents RGB-D data which is often seen and consistent through
frames and space, hence revealing the dominant structural elements in the scene. To do
so, they take the form of a multi-shape geometric superstructure, where each proxy is
equipped with a local frame, bounds and, within the bounds, a regular 2D grid of rich
statistics, mapped on the shape and gathered from the RGB-D data. Figure IV.1 gives
visual insight of a geometric proxy. A proxy can have the shape of a plane, a cylinder or
a sphere. Our implementation is based on the efficient RANSAC method by Schnabel et
al. [SWK07], which is detailed in section II.4.2 (paragraph RANSAC-based).

IV.2.1 Shape Detection and Tracking

We build geometric proxies on the fly and update them through time using solely
incoming raw RGB-D frames from the live stream. More precisely, for each new RGB-D
image Xt = {It, Dt} (color and depth), we run the procedure described in Algorithm 1
and Figure IV.2. Figure IV.3 shows the different steps of the construction of the proxies
on one specific example.

The initial depth filtering (step 1) is based on a bilateral convolution [TM98] of the
depth map using a Gaussian kernel associated with a range check. This allows discarding
points further than a depth threshold from the current point, which could create artificial
depth values if taken into account. In our experiments, we choose to set this threshold
to 20cm, which allows filtering together parts of the same object, while ignoring the
influence of unrelated objects. Due to the embedded processing constraint, we estimate
the normal field (step 2) through the simple computation of the depth gradient at each
pixel, using the sensor topology as domain.
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Figure IV.2: Overview of proxy structure construction. This procedure is ran for each
new RGB-D image Xt at frame t, made of a color image It and a depth map Dt. The
proxy update allows accumulating samples from Dt in the superstructure to compute
statistics, as detailed in section IV.3. Df

t : low-pass filtered version of Dt; Mt: camera
motion matrix; Nt: normal vectors associated with Dt; Pt−1: proxies detected at frame
t−1; P ct : candidate proxies; Pt: proxies at frame t; Df

t |in: low-pass filtered depth points
without inliers from Pt.

The estimation of the camera motion from the previous frame (step 3) is inspired from
RGB-D SLAM introduced by Endres et al. [EHS+14], using point features from It.
However, any egomotion estimation algorithm can be used at this step, as all we need is
the values of the six degrees of freedom localizing an RGB-D camera in its environment.
Examples of such algorithms are given in section II.2.

In order to keep or discard previously detected proxies (step 4.2), we define a voting
scheme where samples of Xt which are inliers of a given previous proxy cast their vote
to this proxy and are marked. Then, the per-proxy vote count in the new frame indicates
whether the proxy is preserved or discarded (step 4.3). Preserved proxies are updated
with Xt, hence see their parameters refined and occupancy statistics updated with new
inliers. Discarded proxies are placed in probation state for near-future recheck with new
incoming frames, and purged if discarded for too long. However, in order to avoid losing
information on non-observed but important parts of the scene, we do not purge proxies
that have been seen a large number of times, which stay in probation instead.

When new proxies have been detected (step 5.1), similar ones are merged together
in order to avoid modeling different parts of geometric surfaces with multiple proxy
instances (step 5.2). The proxy is then initialized (step 5.3) with a bounding rectangle
and a local frame computed to be aligned with the scene orientation (more details in
section IV.4.1). Using the global scene axes to compute the local frame leads to a fixed
resolution and spatial consistency for the grid of all proxies and allows efficient recovery
and fusion (step 5.2).
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Algorithm 1 Proxy structure construction
Notations:
Xt: current RGB-D frame;
It: current RGB frame;
Dt: current depth frame;
Pt: current proxies;

Pt ← ∅
function BUILDPROXIES(Xt = {It, Dt})

1. filter Dt with a bilateral depth convolution;
2. estimate the normal field Nt from Dt;
3. estimate the camera motion Mt from Xt−1 [EHS+14];
4. search for previous proxies in Xt:

4.1 register previous frame proxies to Xt using Mt;
4.2 cast votes from samples of Xt to previous proxies;
4.3 given the vote count for each previous proxy:

keep it, update it with Xt and add it to Pt;
discard it and place it in probation state;
purge it if it has been discarded for too long;

5. detect new proxy shapes in Xt \ inliers(Pt):
5.1 RANSAC-based shape detection [SWK07];
5.2 post-detection shape fusion;
5.3 compute the local frame;
5.4 initialize the new proxy with Xt;
5.5 register new proxy to global space using Mt.

return Pt
end function

Finally, initial occupancy statistics are computed using Xt (step 5.4), by recovering the
coordinates of the cell in the proxy grid corresponding to each inlier. In order to take
into account the point of view when modeling the scene, grid cell coordinates for an
inlier depth point are computed by projecting it upon the detected shape following the
direction between the camera and the point. This projection is illustrated in Figure V.3.
As a last step, proxies are transformed from local depth frame into global 3D space in
order to be tracked in the next frames (step 5.5).

IV.2.2 Spatial Extent Modeling

In order to model the observed elements as faithfully as possible, we need to take into
account the extent of these elements at the surface of the shape. In addition, we wish
to store local information on parts of the shape to avoid smoothing small details, which
requires quantization of the shape surface.
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Figure IV.3: Example of proxy structure construction. The input RGB-D frame is
converted into a raw point cloud to which a low-pass filter is applied, followed by normal
estimation (top). RANSAC-based shape detection [SWK07] is applied and used as a
basis for the construction or the update of our proxies, following the structure shown
in Figure IV.1 (bottom right). Accumulated proxy cells (bottom) are visualized with
colors weighted by their occupancy probabilities: darker cells have a low probability
and represent low confidence areas, whereas brighter cells represent areas with high
confidence. Proxies are then used to generate enhanced RGB-D frames, as detailed in
section V.2. The whole process runs on the fly.

When proxy shapes are detected, the shape is parameterized based on its local frame
in order to define a fixed grid with relation to the actual object. This parameterization
from 3D space at the surface of the shape to 2D space is described below for planes and
revolution surfaces such as cylinders and spheres.

Planes

We define local axes in the space of a plane based on the reference orientation of the
world, as detailed in section IV.4.1. This leads to a consistent orientation of the grid
of all proxies, where local axes ~X and ~Y both belong to the plane. This local frame
allows us to compute a consistent parameterization of the shape at any given frame. In
particular, a 3D point P belonging to a plane of origin point C will have coordinates in
the local frame of the proxy defined as{

u = (P − C). ~X

v = (P − C).~Y
(IV.1)
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Figure IV.4: Proxy grid parameterization for cylinders and spheres. Cylinders are
parameterized with the cylindrical coordinates (left). As parameterizing a sphere with
spherical coordinates creates heavy distortion at the poles (middle), we choose to use
the octahedral parameterization (right), which reduces stretch between grid cells.

Revolution Shapes

For the the shapes of revolution such as cylinders and spheres, we want to maintain a
unified representation allowing the use of the same 2D operators as for the plane. In
that regard, we define a parameterization for both of these shapes, also based on their
local axes. Figure IV.4 shows the parameterization of the revolution shapes.

The cylinder has its ~X and ~Y local axes orthogonal to its direction axis ~A, allowing
the use of cylindrical coordinates. Hence, the local axes define the angular position
around the cylinder, while the axis ~A defines the height of a point along the cylinder.
On a cylinder of origin point C and radius r, a 3D point P would have its local shape
coordinates defined as{

u = r(π + arctan2(~pc.~Y , ~pc. ~X)) ∈ [0, 2πr]

v = ~pc. ~A

with ~pc = P − C .

(IV.2)
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Figure IV.5: Sphere octahedral parameterization. This parameterization defined by
Praun and Hoppe [PH03] allows reducing stretch at the surface of the sphere. The
2D grid on the right fully contains the extent of the shape.

The straightforward solution to parameterize a sphere would be to use spherical
coordinates. Local axes ~X and ~Y of the sphere are defined in that sense, where they
allow computing the azimuthal angle. In that parameterization, the polar angle is
computed from the zenith direction defined as ~X × ~Y . However, as we can see on the
middle of Figure IV.4, the use of spherical coordinates implies strong distortion at the
poles.

As we want to discretize the shape extent to locally represent the surface with statistics,
it would be more meaningful to have a grid with similar cell size. In consequence, we
choose to parameterize a sphere with a octahedron, as defined by Praun and Hoppe
[PH03], which strongly reduces stretch. Figure IV.5 shows the octahedron-based
spherical parameterization that we use.

On a sphere of center point C and radius r parameterized as a octahedron, a 3D point
P would have its local shape coordinates defined as

x = ~pc. ~X

y = ~pc.~Y

z = ~pc.( ~X × ~Y )

with ~pc = P−C
‖P−C‖

u = πr
2


x
n if z ≥ 0

1− |y|n if z < 0 ∧ x ≥ 0
|y|
n − 1 if z < 0 ∧ x < 0

v = πr
2


y
n if z ≥ 0

1− |x|n if z < 0 ∧ y ≥ 0
|x|
n − 1 if z < 0 ∧ y < 0

with n = |x|+ |y|+ |z| .

(IV.3)
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Shape Extent Discretization

From the 2D local coordinates of each shape as described above, we define a fixed-size
grid on top of the shape surface. We simply discretize the coordinate values of a given
point at the surface of shape using a fixed cell size. We set the size to 5cm x 5cm,
which corresponds to about four times the area of a depth pixel at a typical distance
of 8 meters from the sensor. The area of a pixel at given depth z is given by a(z) =
tan(fovHresH

) tan(fovVresV
)z2. With fov = (60°,45°) and res = (320, 240), we have a(8m) ≈

0.00068539m2 ≈ (2.6cm)2. Hence, this size ensures a minimum sampling of proxy cells
by depth points even at far capture distances. In practice, the real case capture distance
will not go beyond 5 to 6 meters due to the size of indoor rooms and limitations of the
capture device. In consequence, the potential amount of visiting depth point per frame
for a cell is guaranteed to be more than four.

Cells are activated when their visitation percentage over the recent frames (the last 100
frames in our experiments) is greater than a threshold (25% in practice). Once activated,
a cell stays so until the end of the processing. We consider a cell as visited as soon as it
admits at least one inlier data point i.e., a data point located within a threshold distance
to the cell under a projection in the direction from the sensor origin to the point. This
activation threshold allows modeling the actual geometry of the observed scene, while
discarding outliers observations due to the low quality of the sensor.

IV.3 Accumulation Structure

IV.3.1 Accumulation of Depth Samples

As shown in section IV.2, we track 3D shapes in time and space to maintain a consistent
geometric representation of the surroundings. This temporal and spatial consistency
gives information on local geometry at its fixed location in the real world. Hence, we
leverage the 3D sampling of this geometry as provided by the depth sensors, to refine our
model with time. At each new frame, shape tracking provides a list of 3D sample points
belonging to a shape. These 3D points bear geometrical and appearance information
such as distance to the shape, orientation deviation, curvature and color. The definition
of our local extent model at the shape surface, as explained in section IV.2.2, allows
accumulating this information into a unified geometric representation.

IV.3.2 Shape-wise Statistics

The first use of these accumulated depth samples at the shape surface is to compute
global shape statistics. At each frame, the new set of inliers is used to compute shape
parameters which are averaged with the previous parameters to get more consistent
shapes. In addition, the standard deviation of shape parameters gives insight on their
distribution and can be seen as a confidence value on the shape.
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Figure IV.6: Real data example of proxy statistics. Top left: Color image provided for
information in order to understand the structure of the scene. Bottom left: Four planar
proxies are represented in 3D with a single color per shape, on top of the current 3D
point cloud. Right: Proxy cells are represented with a color code showing the current
values of their statistics. Intensity represents occupancy probability, and hue – from blue
(-5cm) to red (5cm) through white (0cm) – represents the distance from the shape.
We can notice that cells behind table legs have a lower occupancy with darker shade,
as they were not observed very often (green arrow). The geometric details due to the
frame on the wall above the table are correctly recovered with a positive shape offset
(yellow arrow).

IV.3.3 Local Statistics

The consistent grid defined at the surface of a shape based on a shape-specific
parameterization was designed to gather statistics on local parts of the shape, in order
to model small details. In each cell of the grid, a probability of occupancy is computed
to get knowledge of the visitation rate of this cell. This allows understanding whether a
cell models actual geometry in the scene, or if it just corresponds to noise or flickering
parts and should be ignored. Figure IV.6 shows an example of statistics of occupancy
and distance stored at the surface of shapes.
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Figure IV.7: Close-up example of local geometry stored in the smoothed local histogram
(SLH) of each proxy cell. Accumulating depth samples into the histogram naturally
reveals distribution modes indicating the local nature of the geometry. Here, cells over
the wall and frame have a single mode, as all samples have a similar distance to the
plane (light green and orange). Cells at the limit between wall and frame accumulate
samples that can have the plane distance of either the wall or frame, hence containing
two histogram modes (light purple).

Shape Distance

Each cell of the grid includes a statistical model of the depth values gathered from the
RGB-D data. These statistics are composed of a collection of mean µ and variance
σ values of the distance to the shape. This local distribution represents a smoothed
local histogram [KS10] made of Gaussian kernels. Using such a compressed histogram
representation allows recording samples into a compact but faithful model made of a
short list of normal distribution parameters, as well as smoothing out outlier depth
values. The contribution of an inlier p of distance d(p) to the proxy is given as

hp(s) =
1

σ
√

2π
e

(s−d(p))2

2σ2 h′p(s) = −s− d(p)

σ2
hp(s) . (IV.4)

This compressed model stores the repartition of shape inliers distances to the proxy and
makes possible estimating the diversity of the values within each cell by counting the
number of modes in the distribution, appearing naturally when building the histogram.
If it has a single mode, then all values are similar and the surface of the proxy within the
cell is most likely flat. If the distribution has two or more modes, then the values belong
to different groups and the cell likely overlaps a salient area of the surface. Figure IV.7
shows a close-up example of flat and salient proxy areas with representation of the
associated histogram and distribution modes.
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Figure IV.8: Updating color points of a proxy cell from the color component of an RGB-D
point sample. An RGB-D point sample projected on the 2D proxy grid falls within a
discretized color point (light green). w is the cell width in meters. Here, 2r color
points are defined with r = 2. Radii of influence area ρ (light red) and color point
neighborhood n (light blue) are computed from the point depth (see Equation IV.5). All
color points within the computed neighborhood n are updated with a weight depending
on the distance to the point and the size of the influence area (see Equation IV.6).

Color

In order to accumulate faithful color information within our coarse grid, we define color
samples at higher resolution than the cells. To do so, we take inspiration from the mesh
colors methodology [YKH10] which defines discrete color positions on faces of triangle
meshes. In our framework, each cell of grid contains a fixed color sub-resolution grid
which is updated by each RGB-D sample point falling into the cell. Figure IV.8 details
the update of color in the grid from an RGB-D sample.

For each RGB-D sample falling within the bounds of a given proxy cell, we compute a
neighborhood n of color positions which will be updated with this sample’s color value.
In order to update as much color positions as covered by a sample point, we compute
an influence radius of the point based on its distance to the sensor. The topology of depth
sensors implies that the further the depth point, the larger the size of the image pixel
when unprojected to 3D. Hence, the influence radius is computed as the size of this
depth pixel in 3D and discretized to get the size of the color point neighborhood at the
surface of the shape.
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For a 3D point sample of depth z ∈ R+, with a width of grid cells defined as w ∈ R+ and
a color point resolution defined by its power of two r ∈ N, the point influence radius ρ
and discrete color neighborhood radius n are given by

ρ = z
2 tan(fovHresH

) ∈ R+

n =
⌊
ρ2r

w

⌋
∈ N .

(IV.5)

Then, for each color point within the computed neighborhood n, including points
belonging to neighboring cells, the average color is updated with the point’s color. In
order to take into account the uncertainty of information brought by depth samples
far from the camera, we weight the color contribution with both the distance from the
color point to the projected depth point and the color neighborhood size, which itself
is computed from the point depth, as shown in Equation IV.5. Weighting the color
inversely to the point depth allows further points to give a less important contribution
to the color model. For color point neighbor (u, v) ∈ J−n, nK × J−n, nK, the color
contribution weight of a given depth point is defined in Equation IV.6. In practice, we
empirically define the standard deviation factor α = 3, which gives a good balance
between smoothness and sharpness of the textures.

1

1 + 2n2
e−
‖(u,v)‖2

2σ2 with σ = α2r, α ∈ R+ (IV.6)

IV.4 Experiments

IV.4.1 Implementation

Our proxies are implemented through hardware and software components. The
hardware setup is made of a computer with Intel Core i7 at 3.5GHz and 10GB memory.
No GPU is used. The software setup has a client-server architecture, where the server
runs within an embedded environment with low computational power and limited
memory to trigger the sensor and process the data. The client’s graphical user interface
allows controlling the processing parameters and getting a real time feedback of the
stream. A limited range of intuitive parameters allows the user to control the trade-off
between quality of the output and performance of the processing. More details on the
graphical interface are given in section A.1.2. In order to achieve a better quality and
efficiency when building proxies, a few minor optimizations have been implemented, as
shown below.
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Parallelization

Parallelization through OpenMP is used to process shapes faster. When tracking shapes,
as more and more previous shapes have to be checked in new frames, their score in
the new frame is computed in parallel. The update of proxies with the new shape
observation is also conducted in parallel for all proxies. However, computations such
as proxy clipping or cell update within a proxy can not be parallelized because of
concurrent access and inter-dependencies. Optimization along these axes would require
heavy refactoring of the current implementation.

Sensor-dependent Tuning

The axial and lateral noise introduced by the consumer depth cameras lead to artificial
and erroneous data samples in the input. Based on the noise model from Nguyen et al.
[NIL12], we estimate a noise threshold at a given distance to the camera, under which
differences in geometry will not be considered as actual differences in the observed
surfaces. Hence, in order to prevent wrong geometry from being modeled within the
proxies, we modulate the distance thresholds throughout the processing by the noise
estimated at the corresponding distance to the camera origin.

Scene Orientation

We aim at building a model which is consistent and intuitive with relation to the
structure of the observed scene. We therefore orient the local frames of the proxies
along the orientation of the scene, assuming that its structure follows the Manhattan
world assumption [CY99]. This allows the cells on the walls to be oriented along the
directions of the floor and orthogonal walls, and the cells on the floor and ceiling to be
oriented along the directions of both walls. In order to detect the structural orientation
of walls and floor in the scene, we look for nearly horizontal and vertical planes at the
beginning of the processing, and use their orientations as a prior.

IV.4.2 Dataset

We run all of our experiments on the 3DLite [HDGN17] dataset1, containing 10 scenes
acquired with a Structure sensor2 under the form of RGB-D image sequences. This
choice was motivated by the availability of ground truth poses along with the visual data,
as well as result meshes and performance metrics provided from processing with both
BundleFusion [DNZ+17a] and 3DLite [HDGN17], with which we compare our method
in section V.3.1.

13DLite dataset: http://graphics.stanford.edu/projects/3dlite/#data
2Structure sensor: http://structure.io

http://graphics.stanford.edu/projects/3dlite/#data
http://structure.io
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Scene # proxies # cells Avg # proxies / fr. Avg # cells / fr.
apt 51 62K 3.8 3139

offices 86 123K 3.7 3958
office0 50 44K 4.0 2491
office1 56 53K 4.5 3108
office3 56 50K 3.9 2332

scene0220 02 41 42K 4.7 3369
scene0271 01 32 33K 4.4 3340
scene0294 02 31 39K 4.5 4441
scene0451 05 48 42K 4.7 3984
scene0567 01 42 48K 4.4 3354

Table IV.1: Statistics on the geometric proxies. Total number of proxies and cells for
each scene of the 3DLite [HDGN17] dataset. The average number of observed proxies
and cells per frame (/ fr.) is also given.

IV.4.3 Building Proxies

Geometric statistics on the generated proxies are available in Table IV.1 for all processed
scenes. We also provide in Figure IV.9, a plot of the increment of the average depth over
time, to show the fast convergence of the proxy statistics after about 30 accumulated
samples. The accuracy of the proxy representation can be quantitatively assessed
through the PSNR values in Table V.1.

The time required to build and update geometric proxies using our current
implementation is around 150 ms for an input depth image of 320x240 pixels. A
detailed graph presenting the repartition of the processing time for all steps is available
in Figure IV.10.

IV.4.4 Validation on Synthetic Data

We define a synthetic data processing framework, in order to validate RGB-D data
modeling with our geometric proxies while testing all kinds of shapes, even when not
commonly seen in human made environments. We use the Blender tool3 to generate a
synthetic RGB-D image set from known 3D objects4 of planar, cylindrical and spherical
shapes, along with ground truth camera poses. Figure IV.11 shows the proxies generated
from this artificial dataset, along with ground truth renderings at the same positions.

3Blender is an open source 3D modeler and renderer: https://www.blender.org/
43D models taken from https://sketchfab.com/adrksr/collections/simple-shapes

https://www.blender.org/
https://sketchfab.com/adrksr/collections/simple-shapes
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Figure IV.9: Increment of the depth average in proxy cells over time. Absolute value
of the increment of the depth average with relation to the number of depth samples
accumulated within the proxy cell. At each frame, we compute the absolute difference
between the previous and current average values of distance to shape and average it
over all cells in the scene. We observe the fast convergence of the depth average after
about 30 accumulated samples, where the change in distance to shape value falls below
0.5mm. This shows that only a few seconds are needed for the statistics in the proxy to
become stable.
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Figure IV.10: Timing repartition for geometric proxy generation, averaged over all
frames of each scene. Proxy update operations extrapolation and closing are described
in section V.2.2 and meshing in section V.3.1. Shape tracking is the longest processing
with about 40% of the total time, as it iterates over all previous proxies and depth image
samples. Proxy cell update is the second longest with about 30% due to the iterations
over cells and color points for each cell. We can see that the tracking takes more time
for the largest scene offices (8518 frames), as its size implies more previous shapes to
iterate over.
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ground truth proxies

Figure IV.11: Simple shapes modeling from synthetic data, shown at two camera
locations. From a set of rendered RGB-D images (left), proxies are built for planar,
cylindrical and spherical synthetic elements. Both geometry and texture are recovered
at lower resolution than the original while keeping a good visual quality (middle).
For these simple shapes, a coarse proxy grid resolution allows recovering most of the
geometry (right). The yellow circle close-ups show how proxies record local geometric
information. Although at lower resolution, we can notice slight irregularities on some
proxy cells at the surface of the purple cylinder, corresponding to fine geometric details
present in the original 3D model.

In particular, processing data generated from synthetic models allows comparing
texture information between proxy-generated and ground truth images from 3D
models. Figure IV.12 shows qualitative comparison of texture images used to generate
the synthetic data and computed with the color point model of our proxies. As we can
see for the revolution surfaces, our proxies allow re-parameterization of the texture
information from bin packing for the cylinder or spherical for the sphere, into more
meaningful and less distorted cylindrical or octahedral solutions.



CHAPTER IV. GEOMETRIC SUPERSTRUCTURE 95

original textures 
of 3D models

colors recorded 
in proxy space

pl
an

e
cy

lin
de

r
sp

he
re

(auto. bin packing)

(spherical param.) (octahedral param.)

(cylindrical param.)

Figure IV.12: Simple shape proxies modeling textures. Left: Texture images from 3D
models used to generate the RGB-D sequence in Blender. Right: Our local color point
model embedded within the 2D grid of the proxies allows recovering textures of 3D
objects. Black areas on the proxies textures were not observed by the camera e.g.,
the poles of the sphere at the center and corners of the octahedron square (bottom
right). As expected, the parameterization of our proxies leads to more consistent and
less distorted textures as we can see between e.g., the octahedral and spherical sphere
parameterizations (bottom). In addition, our proxies converted the texture of the
cylinder from an automatic bin packing to a more meaningful cylindrical parameterized
representation (middle).



CHAPTER IV. GEOMETRIC SUPERSTRUCTURE 96

IV.5 Discussion and Perspectives

This chapter introduced a new geometric superstructure for RGB-D streams, based on
spatially and temporally consistent shape instances. By tracking geometric shapes over
time and space, we define a shape-wise accumulation structure to record information
brought by RGB-D samples. The use of surface shapes instead of a volumetric structure
lightens the modeling while keeping a faithful representation of most elements seen in
human-made environments. The statistics stored in the proxies maintain knowledge
of the local geometry and appearance of the observed scene to keep as much detail
as possible with the lowest possible hardware cost. In the following, we list paths to
improvement towards better stability and performance.

The frame-wise on the fly construction and update of the superstructure enables
continuous understanding of the surroundings. In addition, the statistics of multiple
nature stored within the proxy grid can be thought of as a consistent support to apply
operations to the incoming data. In that sense, chapter V presents both local and global
tools for improvement and consolidation of the data on the fly, based on the described
geometric superstructure.

IV.5.1 Towards More Stable Proxies

While our proxies are continuously made more accurate by averaging observations
in RGB-D frames, they are highly sensitive to the quality of the spatial consistency.
We enforce spatial and temporal consistency based on the computation of the camera
motion at each frame, which itself is a hard problem. As the proxies are agnostic to the
camera motion computation method, tracking is sometimes lost and new proxies are
generated for the same physical element. Introducing the shape proxies into the camera
motion estimation using e.g., their parameters or geometric statistics, could allow more
robustness and stability of the shape tracking.

IV.5.2 Performance Improvements

While we currently use OpenMP to improve performance of shape processing, we could
develop a finer parallel implementation and leverage mobile GPUs, e.g. ARM Mali5, to
achieve a higher processing rate on embedded platforms. In addition, our current proxy
model stores statistics on a uniform (yet sparse) grid, which could be improved using a
sparse adaptive structure such as random access trees [LH07].

5https://en.wikipedia.org/wiki/Mali_(GPU)

https://en.wikipedia.org/wiki/Mali_(GPU)


V INDOOR SCENE ANALYSIS

As shown in chapter IV, we maintain a multi-shape geometric superstructure modeling
structural elements of an observed indoor scene and storing rich statistics to accurately
represent it. As such, it can be seen as a consistent model of the surroundings and
a support to apply operations and processing components of 3D scene analysis. In
particular, section V.2 explores applications of the superstructure to solve issues of noise
and instability in RGB-D data, missing information or heavy weight in the context of
transmission and visualization. In section V.3, we show how our stable superstructure
and its statistics can be used as an accumulation structure to consolidate information
while navigating an indoor scene.

V.1 Context

V.1.1 Motivation

We define a geometric framework using the time-evolving statistics stored in our proxies
and based on their consistent spatial support that can be then seen as a geometric
”scaffold”. Its purpose is to improve the RGB-D stream on the fly by reinforcing features,
removing noise and outliers or filling missing parts, under the memory-limited and real
time embedded constraints of mobile capture in indoor environments (Figure V.1).

As shown in the previous chapter, we designed such a lightweight geometric
superstructure to be stable through time and space, which gives priors to apply
several signal-inspired processing primitives to the RGB-D frames. They include filtering
to remove noise and temporal flickering, hole filling or resampling (section V.2).

This allows structuring the data and can simplify or lighten subsequent operations,
e.g. tracking and mapping, measurements, data transmission, rendering or physical
simulations. While our primary goal is the enhancement of the RGB-D data stream,
our framework can additionally be applied to compression and scene reconstruction
(section V.3), as the generated structure is a representation of the observed scene.

97
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Figure V.1: Overview of our geometric scene analysis framework. From a stream of
RGB-D frames (left), proxies are built on the fly and updated over time (bottom) and
used to apply different real-time processing primitives to the incoming RGB-D frames
(top). The system outputs an enhanced data stream and a geometric model of the
observed scene (right). The ”build & update” procedure is detailed in Figure IV.2.

V.1.2 Overview

We leverage the stable and consistent nature of our geometric proxies in two different
applications to process incoming RGB-D frames into a more regular, complete and stable
data set, namely:

• local processing for frame-wise improvement and compression (section V.2);

• global consolidation and reconstruction into a complete 3D representation
(section V.3).

In practice, our system takes a raw RGB-D stream as input to build and update a set
of geometric proxies on the fly, as shown in chapter IV. It outputs an enhanced stream
together with a model of regularly-shaped (e.g., planar) areas in the observed scene
(Figure V.2).

On the contrary to previous approaches, which mostly rely on a full volumetric
reconstruction to consolidate data as shown in section II.3.2, our approach is
lightweight, with a moderate memory footprint and a transparent interfacing to any
higher level RGB-D pipeline.
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Figure V.2: Geometric scene analysis workflow. From a stream of 2.5D RGB-D frames,
proxies are built on the fly and updated through time (section IV.2). They are used as
priors to process incoming frames through filtering, resampling or hole filling, which can
lead to better tracking, mapping, automated navigation or measurement. A selection of
proxies based on the current RGB-D frame can be used for lightened transmission of
the data. Proxies can be used as priors for triangulation and fast depth data meshing,
with applications to rendering or simulation. Eventually, the consolidation of the depth
stream within the proxies leads to a reconstruction of regularly-shaped areas in the
observed scene. Processing modules are described in section V.2 and the consolidation
of data is presented in section V.3.

V.2 Live Frame Processing

Our first use of the consistent geometric proxy structure is as a support for filtering
operators with the goal of:

• removing noise to smooth data while keeping small details and local saliency;

• filling holes due to specular elements or unseen parts;

• resampling the incoming point cloud at any desired resolution at the surface of
shape proxies;

• using the proxies as a compressed version of the input for transmission or
visualization.

V.2.1 Filtering

While projecting the sensor’s data points onto their associated proxy would allow
removing the acquisition noise and quantization errors due to the sensor, this would
lead to the flattening of all shape inliers. In order to minimize the loss of details on the
shape surfaces while keeping a lightweight data structure, we instead use the geometric
proxies as a simple collaborative filter model.
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Figure V.3: Filtering 3D points using statistics from the proxy. Example of our custom
filtering on a planar proxy inlier point p (yellow circle). Here, 3D point p has normal
norm(p) at the proxy surface (red arrow) with orthogonal distance dp (red line), used to
update the average dc. Point p is projected along the camera ray (yellow line) into proj(p)
(blue circle), which allows retrieving its cell c (light blue). In this specific example, we
assume that c is a cell whose smoothed local histogram has one mode mc = 1, hence we
apply the shape offset dc (blue line) along the surface normal direction (green line) to
get the filtered 3D point pf (green circle).

To that end, we designed a custom filter to leverage the smoothed local histograms stored
in each cell of the proxies. As explained in section IV.3.3, the number of detected modes
allows distinguishing flat areas of the proxy surface from salient ones. For flat cells
whose distribution has a single mode, we project the depth points on the shape along the
direction between the camera and the point. We offset the points of the average distance
to the shape only if it is above the noise threshold at the corresponding distance to the
camera (see details on the noise threshold in section IV.4.1). This allows smoothing
surface areas that are exactly on the shape while keeping flat areas offset from the shape
as they are in the scene. For cells whose distribution has two or more modes, we do not
perform any projection in order to keep the saliency and details of the surface.

Equation V.1 details the smoothed local histograms-based filtering of inlier p to pf ,
belonging to cell c with mc modes and an average distance to the proxy of dc, and a
noise threshold of α.

pf =


proj(p) if mc = 1 ∧ dc ≤ α
proj(p) + dc norm(p) if mc = 1 ∧ dc > α

p if mc 6= 1

(V.1)
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The function proj(p) represents the projection of p on the proxy along the camera
direction, which can also be seen as the intersection between the proxy shape and the
camera ray passing through the pixel that generated point p. The function norm(p)
represents the normal vector on the shape surface at the projected point location.
Figure V.3 illustrates the filtering process on a planar example where, for a plane of
normal ~N and distance to origin l, proj(p) = l

p. ~N
p and norm(p) = ~N .

In addition, the proxy can also be used as a high level range space for cross bilateral
filtering [KCLU07], where inliers of different proxies will not be processed together.

Temporal Flickering Removal

Based on time-evolving data points, the proxies consolidate the stable geometry of the
scene by accumulating observations in multiple frames. Averaging those observations
over time removes temporal flickering, after a few frames only. In particular, Figure IV.9
shows that the changes in statistics of distance to the shape fall below 0.5mm after about
30 accumulated samples.

V.2.2 Hole Filling

Missing data in depth is often due to specular and transparent surfaces such as glass
or screens. With our framework, observed data is reinforced over multiple frames from
the support of stable proxies, augmenting the current frame with samples from previous
ones. In practice, the depth data that is often seen in incoming frames creates activated
cells with sufficient occupancy probability to survive within the model even when
samples for these cells are missing.

This hole filling, stemming naturally from the proxy structure, is completed by two
additional steps. First, the extent of the proxies is extrapolated to the intersection of
adjacent proxies – this is particularly useful to complete unseen areas under furniture
for example. Second, we perform a morphological closing [Ser83] on the grid of cells,
with a square structural element having a fixed side of seven cells. This corresponds to
closing holes of maximum 35cm by 35cm, which allows filling missing data due to small
specular surfaces, e.g. computer screens or glass-door cabinets, while keeping larger
openings such as windows or doors.
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raw RGB-D filtering hole filling resampling

Figure V.4: Data improvement using geometric proxies. Raw RGB-D and
proxy-improved data showing results of real time filtering, hole filling and resampling.
Hole filled and resampled point clouds are generated by sampling the proxy surface with
respectively 2x2 and 4x4 points per cell. Blue surrounded areas highlight a region where
improvement using the proxies is significant compared to the low quality input RGB-D
frames.

V.2.3 Resampling

Our proxies can be used to super-sample RGB-D streams on the fly. The low definition
geometric component of raw frames can be enriched by the higher resolution
information structured in the proxies. Our 3D structure can guide the process using both
its color and geometric components, whose smoothness and stability appear naturally
with the accumulation of samples. In addition, the local nature of statistics stored in
the proxy cells allows generating high resolution data while keeping geometrical details
and salient areas and avoid over-smoothing. The sub-resolution color component of the
proxies can be used to assist the sampling process to recover even more detail. This
results in high definition RGB-D data with controllable point density on the surface of
the shapes.

V.2.4 Experiments

Figure V.4 shows examples of data improvement using the processing modules of our
framework. Experiments show that the proxies are particularly efficient to remove noise
over walls and floors while keeping salient parts, and helps reducing holes due to unseen
areas, specular areas such as lights or glass, and low confidence areas such as distant
points. Resampling the point cloud allows recovering structure if the sensor did not give
enough data samples, e.g. on lateral surfaces. Timings for hole filling operations are
given in Figure IV.10.
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Scene
Proxies JPEG export H.264 [NSS14]

frame r. scene r. PSNR ratio PSNR scene r. PSNR
apt 5.40 790.5 38.0dB 8.09 33.8dB 11.1 25.0dB

offices 4.29 1173.7 38.0dB 9.22 33.8dB 10.5 22.1dB
office0 6.78 2376.6 21.4dB 6.60 20.6dB 14.4 30.3dB
office1 5.44 1828.0 41.2dB 6.70 34.7dB 10.5 26.9dB
office3 7.24 1286.2 33.8dB 8.58 31.0dB 12.3 29.0dB

scene0220 02 5.02 814.7 36.7dB 6.29 31.9dB 11.1 18.3dB
scene0271 01 5.07 977.8 43.8dB 5.82 36.7dB 10.5 18.8dB
scene0294 02 3.82 1024.3 43.4dB 7.27 36.8dB 9.4 17.2dB
scene0451 05 4.25 694.9 42.1dB 5.44 34.7dB 7.9 15.5dB
scene0567 01 5.05 729.8 40.2dB 9.00 35.3dB 15.6 20.0dB

Table V.1: Proxy compression metrics for all processed scenes. Compression ratios
(frame-wise and scene global) are based on the raw size of a 320x240 depth map and
the size of the proxies without the outliers. The JPEG export ratio is between the sizes of
the raw and exported proxies. The peak signal-to-noise ratio (PSNR) is computed using
the average root mean square error (RMSE) between raw depth points and proxy-filtered
ones. We compare our compression performance to a state-of-the-art method based on
H.264 [NSS14] with a quality profile of 50.

V.2.5 Compression

Compression of the input data is achieved by using directly the proxies as a compressed,
lightweight geometric substitute to the huge amount of depth data carried in the stream,
avoiding storing uncertain and highly noisy depth regions, while still being able to
upsample back to high resolution depth using a bilateral upsampling. In particular, this
is convenient to broadcast captures of indoor scenes where planar regions are frequent.

Substituting the geometric proxies to the RGB-D stream provides a simple yet effective
lossy compression scheme for transmission, with the practical side effect of removing
many outliers. Our efficient data structure leads to good compression ratios while
keeping high peak signal-to-noise ratio (PSNR) and being fast for compression and
decompression. Table V.1 and Table V.2 show evaluation metrics of the compression
using proxies.

The proxies are stored as simple grids of statistics with a local frame and bounding
rectangle. As such, the compressed structure itself, i.e. the proxies, can benefit from
image-based compression schemes such as JPEG [Wal92] for offline export and storage,
for which we report compression ratios and PSNR values in Table V.1. The JPEG export
and load procedure for all proxies of a scene takes an average of about 40 ms.
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Scene
Proxies (ms) H.264 [NSS14] (sec)

comp. decomp. comp. decomp.
apt 150 32 267 232

offices 213 30 828 926
office0 161 19 692 902
office1 160 27 693 692
office3 150 32 424 444

scene0220 02 134 41 165 175
scene0271 01 133 39 165 162
scene0294 02 152 39 238 200
scene0451 05 133 41 190 138
scene0567 01 154 28 170 151

Table V.2: Proxy compression timings for all processed scenes. The compression time
is the building of proxies averaged over all frames, while the decompression time is the
generation of a depth map by applying visibility tests to the proxies. The compression
and decompression times for the method based on H.264 [NSS14] are given in seconds
for the whole frame set.

In addition to the bandwidth saving, the compressed proxy representation enables
smooth super-sampling of the geometric data, where the output point cloud density
over proxy surfaces can be increased as desired. The geometric surface parameterization
of each proxy offers a suitable domain for point upsampling operators, while a similar
approach performed directly on the RGB-D stream is blind to the scene structure.

V.3 RGB-D Stream Consolidation

V.3.1 Regular Shape Reconstruction

While being lightweight and fast to compute, the proxies represent a superstructure
modeling the dominant regular geometric elements of an indoor scene. In addition to
being used to filter the input point cloud and generate an enhanced RGB-D stream as
output, proxies themselves are a way to consolidate the input RGB-D frames. Hence,
meshing the proxy cells leads to a lightened organized structure and aggregating all
proxies in the global space allows reconstructing a higher quality surface model of the
observed scene, generated on the fly. The time required to mesh the full proxy set is
below 10ms, as shown in Figure IV.10.

In this section, we compare the performance and quality of scene reconstruction using
our proxies to state-of-the-art methods BundleFusion [DNZ+17a] and 3DLite [HDGN17].
As in the previous chapter, we run all of our experiments on the 3DLite dataset composed
of 10 RGB-D scenes captured with a Structure sensor (section IV.4.2).
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Mesh Closing

In practice, our meshing process iterates over all active cells of a given proxy to connect
adjacent cells. However, revolution surfaces such as cylinders and sphere have a periodic
nature and cells at opposite limits of the parameterized domain are actually adjacent in
the Euclidean domain. Hence, to avoid discontinuity of the proxy surface mesh, we
designed a closing methodology through a range check where cells at extremities of the
2D domain are connected to cells at the other extremities. In particular, we can see these
connections in the lower part of the octahedral sphere in Figure IV.4.

V.3.2 Experiments

Qualitative Results

Figure V.5 presents the reconstructed geometric models based on the corresponding
proxies. As we can see, most large planar surfaces such as walls and floors are modeled
with a single proxy instance. At scene scale, the relatively low color resolution of our
proxy is sufficient to identify most elements of the scene. Figure V.6 and Figure V.7
compare reconstructions with Proxies, BundleFusion and 3DLite from global and local
point of views. Qualitatively, proxy meshes are similar to BundleFusion while offering
the structural regularity of 3DLite models.

Quantitative Results

Table V.3 and Table V.4 present performance and quality metrics for the 10 scenes of the
dataset. The accuracy of the reconstruction using proxies can be quantitatively assessed
and compared to 3DLite through the values of RMSE with BundleFusion as a reference.
These metrics show that the lightweight and simple structure of the proxies leads to
better performance both in timing and memory consumption, while keeping a quality
comparable to that of state-of-the art methods.

With their low runtime and memory needs, our proxies offer a lighter alternative to most
recent reconstruction methods characterized by volumetric or deep learning approaches,
which have high requirements in computation costs and memory consumption.
The generic format and implementation of the proxies avoid the need for tedious
platform-specific tuning and make them well suited for embedded operation and
modern mobile applications. In addition to the fact that our proxies are built and
updated on the fly, the processing does not run on a GPU and requires far less memory
than modern embedded devices offer.
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Figure V.5: Examples of reconstructed scenes of the 3DLite [HDGN17] dataset using our
geometric proxies. On the left, each proxy is shown with a different random color. On
the right, textures have been generated from the color points stored in the proxies (see
section IV.3.3). The meshes are made of quads when four activated cells are adjacent,
and triangles otherwise.
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Figure V.6: Qualitative comparison of reconstruction using our Proxies, BundleFusion
[DNZ+17a] and 3DLite [HDGN17]. BundleFusion meshes (top), while being the most
accurate and containing lots of details, are a heavy model and keep some noise and
outliers from the incoming data. In addition, their lack of knowledge of the scene
structure and global geometry prevents filling missing data in unobserved areas. 3DLite
meshes (middle) have geometric details smoothed out because of the strong planar
regularization. However, the textures are sharper and appearance details are of better
quality. With a good balance between the two, proxy meshes (bottom) are aware of the
scene structure and composed of meaningful geometric elements. The local nature of
the grid and its accumulated statistics allow keeping saliency details at the surface of the
shapes.
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Figure V.7: Close-up views of reconstructions using our Proxies, BundleFusion
[DNZ+17a] and 3DLite [HDGN17]. Left: As in the global view, we can see the high detail
but also high irregularity of the BundleFusion mesh (top). The 3DLite model (middle)
has sharp texture for high appearance quality, although no geometric details. The proxy
mesh (bottom) has a lower color resolution but sufficient to identify elements in the
scene. Its local information allows keeping geometric details smoothed out by 3DLite,
such as the laptop on the table. Right: The BundleFusion mesh (top) is shown with
only 30% of the original geometry for better visualization, but we can see that the high
details imply a large amount of polygons. 3DLite is aware of the geometry and models
large planar areas with large triangles, refining it at the limits of elements. The regular
grid of the proxies is lightweight while storing accurate geometry at all locations of the
shapes e.g., for the frame on the wall above the table.
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Scene #Frames
Processing Time Memory Consumption

BF (ms) 3DL (h) Prox (ms) BF (GB) Prox (MB)
apt 2865 – 5.5 150 – 226

offices 8518 – 10.8 213 – 432
office0 6159 26.4 3.6 161 21.4 239
office1 5730 27.7 3.1 160 21.1 241
office3 3820 27.7 4.5 150 16.9 232

scene0220 02 2026 – 2.8 134 – 183
scene0271 01 1904 – 3.0 133 – 178
scene0294 02 2369 – 5.0 152 – 177
scene0451 05 1719 – 5.1 133 – 189
scene0567 01 2066 – 3.1 154 – 207

Table V.3: Quantitative comparison of proxy scene reconstruction processing. The
metrics are compared between BundleFusion (BF), 3DLite (3DL) and our proxies (Prox).
The processing time to process one frame is averaged over all frames in the scene. The
memory consumption is the maximum used memory during processing.

Scene
Geometry Size (vertices/faces) Model Size (MB) RMSE (m)
BF (M) 3DL (K) Prox (K) BF 3DL Prox 3DL Prox

apt 1.7/3.3 62/93 62/58 70 9.8 10.7 0.14 0.15
offices 1.4/2.8 116/174 123/115 58 19 21.8 0.14 0.18
office0 5.7/11.3 42/63 44/40 238 6.3 8.2 0.14 0.11
office1 6.0/11.8 46/69 53/48 251 7.2 10.3 0.09 0.15
office3 6.4/12.6 42/64 50/46 266 6.2 9 0.15 0.19

scene0220 02 0.3/0.6 55/83 42/39 12 9.1 7.6 0.33 0.22
scene0271 01 0.2/0.4 39/59 33/33 9 5.8 5.6 0.11 0.10
scene0294 02 0.3/0.5 39/59 39/40 10 6.1 6.6 0.19 0.14
scene0451 05 0.3/0.6 60/90 42/38 12 9.2 8.3 0.10 0.13
scene0567 01 0.3/0.4 29/43 48/45 9 4.5 8.3 0.10 0.12

Table V.4: Quantitative comparison of proxy scene reconstruction data. We compare
our proxies (Prox) to BundleFusion (BF) and 3DLite (3DL). The root mean square error
(RMSE) is computed using the Metro tool [CRS98] between the BundleFusion mesh,
taken as reference, and the 3DLite and proxy meshes. We can see that the model
generated by the proxies is similar in size and quality to the one generated by 3DLite,
i.e. orders of magnitude lighter than the BundleFusion mesh, while requiring much less
computing resources.
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V.4 Discussion and Perspectives

We introduced a new unified geometric framework for real-time processing of RGB-D
streams. It is based on stable proxies modeling the dominant geometric scene structure,
introduced in chapter IV. Our method leverages the compact, lightweight and consistent
spatio-temporal support of geometric proxies within the processing primitives designed
to enhance data or lighten subsequent operations. It runs at interactive rates on mobile
platforms and allows fast enhancement and transmission of the captured data. Our
structure can be meshed and used as a model of the observed scene, generated on the fly.
Its implementation makes possible real-time feedback and its control relies on a limited
range of parameters. Compared to BundleFusion and 3DLite, reconstruction using our
proxies provides a good balance between processing time, memory consumption and
approximation quality.

V.4.1 Towards a More Faithful Proxy Model

More Geometry

While our proxy grid allows recovering unseen geometry at the surface of the shapes, the
heuristic of hole size is not strong enough to make the decision of filling it or not. Missing
data at the location of a door or window should not be filled, and the fact that this empty
space is observed by the sensor could allow modeling it as ”non-fillable” space. In that
sense, we could update non observed cells when crossed by a ray going from the sensor
to another proxy’s cell to get a negative occupancy probability indicating the absence
of physical elements. In addition, we could imagine strengthen this heuristic using the
color component to derive semantic information on elements at the locations of holes.

While geometric proxies model most components of indoor scenes, e.g. planar, our
current implementation simply ignores non regular shaped elements, such as most small
objects. In order to complete this missing information, we could imagine defining a
sparse voxel grid of the same size as proxy cells. While most sensor data would be
modeled as shape proxies, at least in regular indoor scenes, the few remaining depth
samples could be used to locally update voxels at observed locations. These could store
the same geometric and appearance statistics as proxy cells, and their low amount and
coarse resolution would only add low overhead. To export them, we could imagine
running reconstruction algorithms such as marching cubes [LC87] or dual contouring
[JLSW02] to generate a polygonal mesh.

More Colors

While filling holes in the proxy grid allows recovering unseen geometry, we do not
currently recover unseen appearance. This could be done using inpainting techniques
such as ImageMelding [DSB+12], to compute pixel values at locations where the sensor
did not provide color information. As we store proxy appearance as simple texture
images, it would be straightforward to add a color filling step before exporting the mesh.
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raw depth map after proxy filtering

Figure V.8: Surface reconstruction on raw depth and proxy-filtered data. This
preliminary result shows how geometric proxies can be used as a smoothing operator
in the context of mesh reconstruction. Here, we apply Poisson surface reconstruction
[KBH06] to raw depth point cloud (left) and point cloud generated by sampling our
proxies (right). We can see that the planar elements (door on the left, ceiling at the top,
and walls) are smoothly reconstructed and do not exhibit the artifacts seen on the raw
depth due to sensor limitations.

V.4.2 Proxies to Regularize Reconstruction

Our proxies are a geometric superstructure that stores accumulated data from the RGB-D
stream to model regular elements of indoor scenes. As we showed in section V.3, it can
be used directly as a regularized reconstruction of the scene by meshing the proxy cells.
However, we could imagine using its shapes as regularization priors to be integrated into
existing reconstruction frameworks.

For example, we could obtain a smoother model by applying Poisson surface
reconstruction [KBH06] on a regularized point cloud. Figure V.8 shows preliminary
results of surface reconstruction applied before and after proxy filtering. One could
also use directly the geometric proxy information to regularize the mesh within
the reconstruction process. Accumulating data points can be achieved using e.g.,
an Octomap [HWB+13] where additional voxel or vertex attributes could link to
proxy shapes bearing additional geometric information used for regularization. As
such, the proxy superstructure becomes a smoothing operator used before or during
reconstruction.



VI CONCLUSION

VI.1 Summary

VI.1.1 Concluding Remarks

In this thesis, we defined a methodology which introduces geometry processing and
analysis tools into the problem of RGB-D based indoor scene analysis. As planned in
section I.2, we focused on the construction of a scene superstructure based on simple
geometric shapes detected in the raw 3D data, which can be used as geometric scaffold for
live processing of RGB-D frame sets as well as substitute for the creation of efficient global
3D representations of the surroundings. In particular, our approach shows robustness in
the constrained context where positions of sensors and objects as well as illumination
and scene setup can change in a time frame that we do not control.

We started this thesis with the observation that geometric abstraction of 3D data
would make sense to process captured scenes as a simple, lightweight and meaningful
representation. As we show in section II.4, abstracting real 3D elements with simple
parameterized shapes allows extreme simplification of the geometry while keeping an
accurate representation of the input data. Hence, our lightweight geometric proxies
model the dominant structural elements in the scene while adapting well to changes.
They provide a consistent spatio-temporal support for the typical processing primitive
designed to localize, enhance or consolidate data and lighten subsequent operations. As
shown in section V.3, geometric proxies as 3D reconstruction are well balanced between
performance and accuracy, with the goal of being efficient and sufficiently usable for
modern 3D applications running on mobile devices.
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Our contributions allow bringing Ayotle’s efficient process of local 3D interaction to a
consumer mobile device by tackling the issues of device motion, dynamic scenes and
lifelong operation. The continuous integration of scene analysis software components
into the company’s code base (section A.1.1), with the guidance of software engineers,
was key to discovering new issues due to real life conditions. In addition, a large
amount of engineering effort was used to build a demonstrator interface allowing
real-time remote feedback and control over the processing on the embedded platform
(section A.1.2). Eventually, iterations across all components of product development
were necessary to tailor the output of our scene analysis framework towards better
performance and usability. Specific details on the integration of our results into the
company’s product are given in section A.1.3.

VI.1.2 Contributions

As we showed in introduction (section I.1), real-time analysis of indoor scenes in an
embedded computing environment raises several challenges that have to be addressed
in order to run modern interactive 3D applications. The amount of incoming data
as well as its low quality and resolution require specific algorithms to process RGB-D
streams in real-time and infer structural information on the observed scene. The use
of geometry processing on this 2.5D data allows lightening and improving subsequent
operations of the computer vision and computer graphics frameworks such as localization,
reconstruction and visualization.

In particular, we made several contributions listed below:

• an overview and classification of recent methods to generate simple geometric
shape abstraction from captured 3D data (section II.4);

• a fast and lightweight methodology to register overlapping 3D images of indoor
scenes based on planar representation (chapter III);

• a consistent model based on simple geometric shapes to aggregate 3D samples of
captured scenes in a global superstructure (chapter IV);

• its use in an efficient live processing and consolidation framework for RGB-D
streams (chapter V).

We communicated on these contributions during this PhD under different forms,
summarized in a complete list of scientific productions available in section A.2.
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VI.2 Open Problems

The scene abstraction as defined here is efficient and allows tackling some challenges
raised by our context and needs. However, abstracting the scene with simple geometric
shapes has some limitations, both in terms of accuracy and performance. Hence, the
current state of our scene analysis framework could benefit from some modifications
and evolutions for which we give hints in the next sections. In addition, a number
of applicative opportunities can be exploited on top of it, in particular regarding the
integration into an interaction tool.

VI.2.1 Accuracy

While representing real indoor scene elements with simple shapes leads to a good
trade-off between efficiency and accuracy, the latter may be improved to get results
closer to state-of-the-art. The current shape detection sometimes fails to distinguish
nearby objects and often generates a single shape instance for parts of different objects.
More advanced considerations on the extent of these shapes could allow splitting more
accurate connected components, for which the current method has quite a coarse
resolution. In addition, leveraging recent performance of semantic identification of
objects using neural networks [RDGF16, SIVA17, HSS18] could allow separating parts
of different objects.

When considering the variability of inhabited indoor environments, our current
geometric proxy modeling lacks stability and robustness. Objects moving on a short
term e.g. people or pets, or long term e.g. small furniture or bags, might be modeled as
structural elements with simple shapes, even with the safeguards and requirements of
long term presence added to our implementation. Again, more advanced reasoning on
the nature of elements and their motion might help discarding this type of non-structural
parts from the model.

In section V.4.1, we give hints towards the construction of more faithful proxy models.
In particular, our shape-based modeling of indoor scenes lacks knowledge of non-regular
elements for which depth samples could be accumulated into an additional sparse local
structure such as a voxel grid or octree. Hole filling using the proxies as a prior, could
be more efficient by identifying empty space at door and window locations, in order to
make stronger decisions when recovering missing data. Eventually, the proxies could
be used as a smoothing operator to be integrated into existing surface reconstruction
methods. Introducing such a regularization prior into e.g., Poisson surface reconstruction
[KBH06] could lead to more regular reconstruction, leveraging the structure awareness
brought by geometric information.
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The multi-scale nature of indoor scenes is still to be considered within our geometric
proxies. We could generate knowledge of global and local scene geometry at multiple
levels, whose analysis could reveal scene information of e.g., similarities or clusters.
First, at the level of proxies, analyzing the local geometry within each cell could reveal
regular structures whose modeling by a compact representation would allow generating
more faithful scene model with finer details. This idea is close to the volume-surface trees
[BHGS06], where volume nodes of a 3D hierarchical representation switch to surface
nodes when their local geometry is close to a regular shape, e.g. planar. Second, at scene
level, the currently unique set of proxies representing the scene at a single scale could
be replaced by multiple sets of proxies each modeling specifically and faithfully different
scales of the scene. Decomposing a proxy shape into sub-shapes or aggregating nearby
similar proxies would lead to multiple levels of detail representing the surroundings,
providing more accurate geometrical insight into the scene structure at different scales.
In such a hierarchical representation, local proxy statistics could be shared between
levels, similarly to covariance trees [GAB14], where multivariate Gaussian kernels model
spatial data locally and hierarchically and share distribution information between tree
levels.

When using planes to localize 3D acquisitions from each other as in chapter III, we saw
that two main issues prevented the methods from giving superior results. First, planes,
even associated with shape space extent and color histogram, do not contain enough
discriminative features and information to be unequivocally matched between views. As
we explain in section III.5.2, improvement of plane matching could be allowed through
the use of stronger heuristics, a grouping of the planes by three or four, or a step of
quality check. Second, a limitation of our approach is the need for overlapping planar
structures in two views, which is not always the case, in particular when comparing
single frames from sensors with no control over their fields of view. In order to increase
the success rate of our method, we could imagine using not only planes, but also objects
present in the scene, that would be modeled by simple shapes as well. Shapes such
as cylinders, spheres, boxes or cones, are simple and lightweight but embed more
information than planes. By exploiting the parameters of these simple shapes matched
in overlapping views, in the same spirit as with planes, we could infer sensor motion
more accurately.
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VI.2.2 Performance

While we designed our framework to be fast and lightweight, the different operations
required to process the data and maintain our superstructure still prevent full real-time
processing. The current implementation within the interaction system leverages
multi-threading to process the data at a lower frame rate for scene analysis, while
maintaining real-time interaction. This setup is viable, as a model of the scene structure
does not need to be updated 30 times per second, however a better performance would
mean taking better advantage of available resources to run more functionalities on the
device. In that sense, model update could be run every second or so and be fast enough
to leave time for other processing to run.

While representing indoor scenes with simple lightweight geometric shapes, our current
model can itself benefit from improvement on its structure. The objective of such an
optimization of our data structure is twofold. First, a more efficient model means
a lower memory footprint on the device, which again leaves more resources to other
processes. Second, and more importantly, a lighter model is lighter to transmit through
wireless network for e.g. visualization or further processing. The intuitive improvement
to implement would be a smarter organization of local proxy grid cells, whose goal is to
accurately represent the spatial limits of the object in shape space as well as the saliency
at the surface of the shape. When looking at the proxy scene models in Figure V.7
(bottom right), we can see large planar areas which contain many similar quads. We
could imagine building a sparse adaptive structure where similar basic grid cells are
grouped together into a higher level cell that gathers information from lower level
cells. This multi-scale grouping would generate different levels of detail that are key
to enable faster transmission and visualization on low end networks and devices. Such
an advanced cell quantization mechanism, associated with a smart re-organization of
the smoothed local histograms, can be seen as a form of local learning of the nature and
distribution of the geometry, which could then be used to modulate the aggregation of
samples into the structure.
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VI.2.3 Interaction

Integrating our scene analysis framework into the existing embedded interaction system,
as described in section A.1.3, enables efficient localization of the sensor as well as
visualization of the data. However, these improvements do not allow the interaction to
leverage the knowledge of the surroundings acquired by our framework. We can imagine
seamlessly using the simplified model as input of the interaction system, provided that
processing is fast enough, to increase the performance and usability of interactive tools.
In the following, we present two possible uses of the our lightweight and simplified
scene representation.

First, our scene model naturally defines a distinction between permanent structural
elements of the scene such as walls or furniture and temporary data clusters such as
people interacting with the environment. We could use the structural information stored
in our proxies to remove RGB-D data points belonging to the scene structure, hence
building a change detection mechanism. Removing this structural data from the input
of the interaction engine greatly reduces the amount of data to process. Such a use of
geometric proxies for change detection simplifies the operations required to analyze the
interactions, as we focus on the motion of people with relation to fixed local interaction
zones. Again, this requires real-time identification of the structure data points in order
to maintain real-time interaction responsiveness.

Second, this distinction between structural and moving elements gives a natural prior
as to where and how to define the interaction zones. Using the temporally consistent
parameterization of the proxies as a stable interaction space would allow creating smart
control interfaces. For example, we could define interaction templates that would be
automatically setup when a specific organization of the space or elements are detected.
In addition, the proxy support could allow displaying 3D data onto the surfaces of the
observed scene and open new opportunities for augmented reality applications in the
context of 3D interaction.



A APPENDIX

A.1 Implementation

A.1.1 Software Components

The components of the proxy-based scene analysis pipeline have been implemented
as modules within a prototype application running on an embedded device. Existing
methods used in the processing, such as scene tracking [EHS+14] and geometric
primitive detection [SWK07], have been reimplemented following the corresponding
articles. Basic functionality such as system tools or 3D vectors and matrices and the
corresponding operations were used directly from Ayotle’s code base. Time profiling
and memory footprint monitoring modules have been included in order to control the
usability of the tool. In total, about 55K lines of C++ code were written to implement
all components and experiments of this thesis.

A.1.2 Demonstrator Interface

A graphical user interface has been designed to control most parameters of the
processing and get a real-time feedback of the data (Figure A.1). This demonstrator has
a client-server architecture where the server is a module of the prototype application
and updates its data at each new frame. The client runs within the graphical interface
to update the displayed data. The initial goal of this interface was to display the raw
data acquired by the sensor as well as the enhancement and consolidation obtained
through the processing. The specificity of the project being the need for embedded
operation prevents direct access to the computer’s graphical interface and led to the
development of such a client-server architecture, where only wireless connection is
needed to get remote feedback. Later, the communication between the demonstrator
and the processing device was modified for the device to receive information from the
interface. This allowed modifying parameters within the interface and getting feedback
of their impact on the data in real time.
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control the 3D view

control the processing
parameters

optionsrecord

get real-time information

real-time 3D data feedbackremote connection information

Figure A.1: Demonstrator Interface. The graphical interface was developed to display
the current data seen and processed by the sensor (middle), as well as controlling a
number of parameters to analyze their impact on the results (top). The client-server
architecture allows remote analysis of the results when working with embedded devices
(see bottom banner).
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A.1.3 Technology Transfer

In the industrial context of this thesis, research presented in chapter III, chapter IV
and chapter V has been integrated into the company’s product Hayo, presented in
section I.1.1. First, the plane-based 3D view registration method showed in chapter III
was used to solve the need for spatial consistency of the local interaction zones when
the device is moved. Second, the scene reconstruction offered by the geometric proxy
representation (section V.3) was integrated into both the device and the mobile app to
allow more complete and simplified visualization of the sensor view for more intuitive
positioning of the interaction zones.

Efficient RGB-D Sensor Relocalization

In the use case of 3D interaction, when the mobile device is moved in the scene, the
sensor needs to be localized with relation to a reference, here being its last position.
As the performance of recent frame-to-frame tracking methods (section II.3) is not high
enough to be accurate on embedded devices such as a Raspberry Pi board, we need to
use so-called relocalization methods, as if the sensor was lost. In practice, we detect
motion of the sensor and wait until motion has finished to trigger the computation.
We first tried to use the visual sensor to detect the motion of the device, but its high
sensitivity to objects moving in the field of view led to the use of an accelerometer. When
the device stops moving, we run the plane-based registration algorithm from chapter III
(and described in our patent [KYZBC19]) several times and keep the motion matrix with
the highest confidence.

Live Simplified Visualization of RGB-D Stream

The Hayo mobile app was designed to allow non-expert users to position and configure
local interaction zones activated with the Hayo sensor. The view of the sensor would
be shown as a 3D point cloud computed from its depth map. However, the sparse
and incomplete depth map provided by commodity depth sensors, as explained
in section II.1.2, leads to point structures that are non intuitive to understand for
inexperienced users. In consequence, we decided to use our geometric representation
of the scene, described in chapter V, to improve the user’s perception of the 3D sensor
view. The light weight and simplicity of our structure is well suited to live streaming
to a mobile device through wireless network. As shown in Figure A.2, depth points
belonging to the structure are identified and removed from the data to stream. They are
replaced by textured and meshed proxy grid cells which offer lighter and more complete
display, leading to a hybrid polygon and point visualization.
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Figure A.2: Geometric proxies in Hayo mobile app. In the 3D viewer of the companion
app for the Hayo camera, proxy inliers are replaced by the textured proxy mesh to offer
a more complete and intuitive visualization during the process of placing interaction
zones (light green sphere). In addition, streaming the compressed proxy version of the
data increases the refreshing rate of the 3D information.

A.2 Scientific Productions

This section presents the different productions made during this PhD, under the form
of journal articles, conference proceedings, talks, patents and industrial conferences.
Full references for the journal and conference communications are listed on the ORCID
identifier 0000-0002-5998-3932.

A.2.1 Peer-Reviewed Journal Articles

• Adrien Kaiser, Jose Alonso Ybanez Zepeda and Tamy Boubekeur:
A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data
[KYZB19]
Computer Graphics Forum, Volume 38 (2019), number 1 (February) pp. 167 – 196
Presented at Eurographics 2019, May 6 – 10, Genova, Italy (1h30 talk)
DOI: 10.1111/cgf.13451

https://orcid.org/0000-0002-5998-3932
https://doi.org/10.1111/cgf.13451
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A.2.2 Peer-Reviewed Conference Proceedings

• Adrien Kaiser, Jose Alonso Ybanez Zepeda and Tamy Boubekeur:
Proxy Clouds for RGB-D Stream Processing: A Preview [KYZB17a]
Eurographics Posters Program
Presented at Eurographics 2017, April 24 – 28, Lyon, France (1h30 poster session)
DOI: 10.2312/egp.20171039

• Adrien Kaiser, Jose Alonso Ybanez Zepeda and Tamy Boubekeur:
Proxy Clouds for RGB-D Stream Processing: An Insight [KYZB17b]
SIGGRAPH Technical Talks Program
Presented at SIGGRAPH 2017, July 30 – August 3, Los Angeles, CA, USA (20 min
talk)
DOI: 10.1145/3084363.3085031

• Adrien Kaiser, Jose Alonso Ybanez Zepeda and Tamy Boubekeur:
Proxy Clouds for Live RGB-D Stream Processing and Consolidation [KYZB18]
European Conference on Computer Vision (ECCV)
Presented at ECCV 2018, September 8 – 14, Munich, Germany (2h poster session)
DOI: 10.1007/978-3-030-01231-1 16

A.2.3 Invited Talks

• Proxy Clouds for RGB-D Stream Processing: A Preview (Eurographics 2017 poster)
Research Day of the Image, Signal, Data department of Telecom Paris
July 6, 2017, Paris, France (1h15 poster session)

• Geometric Proxies for Live RGB-D Stream Processing and Consolidation
Research Day of the Image, Signal, Data department of Telecom Paris
July 5, 2018, Paris, France (20 min talk)

• Simple Geometric Primitives Detection for Captured 3D Data
IMAGINE research group of ENPC
October 22, 2018, ENPC, Champs-sur-Marne, France (1h talk)

• Proxy Clouds for Live RGB-D Stream Processing and Consolidation
Research seminar of NPM3D class in MVA master of ENS Paris-Saclay
February 22, 2019, Mines ParisTech, Paris, France (20 min talk)

A.2.4 Patents

• Adrien Kaiser, Jose Alonso Ybanez Zepeda, Tamy Boubekeur and Alain Courteville:
Procédé de Recalage d’Images de Profondeur [KYZBC19]
French patent request number FR1901827, submitted on February 22, 2019.

http://doi.org/10.2312/egp.20171039
https://doi.org/10.1145/3084363.3085031
https://doi.org/10.1007/978-3-030-01231-1_16
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A.2.5 Industrial Conferences

• Presentation of Ayotle’s Hayo camera 1

Laval Virtual 2017, March 22 – 26, Laval, France

• Presentation of Ayotle’s Hayo camera
Futur en Seine 2017, June 8 – 10, Paris, France

1hayo.io

https://hayo.io/
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[BSG+11] Roseline Bénière, Gérard Subsol, Gilles Gesquière, François Le Breton,
and William Puech. Recovering primitives in 3D cad meshes. IS&T/SPIE
Electronic Imaging, pages 78640R–78640R, 2011. II.4.4

[BTP13] Sofien Bouaziz, Andrea Tagliasacchi, and Mark Pauly. Sparse Iterative
Closest Point. Computer Graphics Forum (Symposium on Geometry
Processing), 32(5):1–11, 2013. II.7, II.2.2

[BTS+14] Matthew Berger, Andrea Tagliasacchi, Lee Seversky, Pierre Alliez,
Joshua Levine, Andrei Sharf, and Claudio Silva. State of the art in
surface reconstruction from point clouds. EUROGRAPHICS star reports,
pages 161–185, April 2014. II.4.1

[BTVG06] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. SURF: Speeded up
robust features. In European Conference on Computer Vision, pages
404–417. Springer, 2006. II.2.1

[BV11] Joydeep Biswas and Manuela Veloso. Fast sampling plane filtering,
polygon construction and merging from depth images. Robotics: Science
and Systems Conference (RSS), June 2011. II.4.1

[BV12] Joydeep Biswas and Manuela Veloso. Planar polygon extraction and
merging from depth images. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 3859–3864. IEEE, 2012.
II.1.3

[CC08] Jie Chen and Baoquan Chen. Architectural modeling from sparsely
scanned range data. International Journal of Computer Vision,
78(2-3):223–236, July 2008. II.4.3

[CHL15] Miguel Heredia Conde, Klaus Hartmann, and Otmar Loffeld. Adaptive
high dynamic range for time-of-flight cameras. IEEE Transactions on
Instrumentation and Measurement, 64(7):1885–1906, 2015. II.1.3

[CL96] Brian Curless and Marc Levoy. A Volumetric Method for Building



BIBLIOGRAPHY 127

Complex Models from Range Images. ACM SIGGRAPH, pages 303–312,
August 1996. II.3.2

[CLL12] Li Chen, Hui Lin, and Shutao Li. Depth image enhancement for
kinect using region growing and bilateral filter. In 21st International
Conference on Pattern Recognition (ICPR), pages 3070–3073. IEEE,
2012. II.1.3

[CM91] Yang Chen and Gérard Medioni. Object Modelling by Registration
of Multiple Range Images. In Proceedings. 1991 IEEE International
Conference on Robotics and Automation, pages 2724–2729. Elsevier,
1991. II.2.2

[CM02] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward
feature space analysis. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 24(5):603–619, May 2002. II.4.4

[CM05] Ondrej Chum and Jiri Matas. Matching with prosac-progressive sample
consensus. Computer Vision and Pattern Recognition, pages 220–226,
June 2005. II.4.2

[CRS98] Paolo Cignoni, Claudio Rocchini, and Roberto Scopigno. Metro:
Measuring Error on Simplified Surfaces. Computer Graphics Forum,
17(2):167–174, August 1998. II.4.5, V.4

[CS12] Massimo Camplani and Luis Salgado. Adaptive spatio-temporal filter
for low-cost camera depth maps. In IEEE International Conference on
Emerging Signal Processing Applications (ESPA), pages 33–36. IEEE,
2012. II.1.3

[CSAD04] David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. Variational
shape approximation. ACM Transactions on Graphics (TOG),
23(3):905–914, August 2004. II.15, II.4.4

[CSM12] Peter Carr, Yaser Sheikh, and Iain Matthews. Monocular object
detection using 3d geometric primitives. ECCV, pages 864–878,
October 2012. II.4.2, II.4.4

[CY99] James M Coughlan and Alan L Yuille. Manhattan world: Compass
direction from a single image by bayesian inference. In Proceedings of



BIBLIOGRAPHY 128

the Seventh IEEE International Conference on Computer Vision, volume 2,
pages 941–947. IEEE, 1999. III.1, IV.4.1

[CZK15] Sungjoon Choi, Qian-Yi Zhou, and Vladlen Koltun. Robust
Reconstruction of Indoor Scenes. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015. II.8, II.2.3, III.4.2

[CZS+13] Tao Chen, Zhe Zhu, Ariel Shamir, Shi-Min Hu, and Daniel Cohen-Or.
3-sweep: Extracting editable objects from a single photo. ACM
Transactions on Graphics (TOG), 32(6):195, November 2013. II.4.4

[DBI18] Haowen Deng, Tolga Birdal, and Slobodan Ilic. PPFNet: Global Context
Aware Local Features for Robust 3D Point Matching. In Computer Vision
and Pattern Recognition (CVPR), 2018 IEEE Conference on, 2018. II.2.2
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Courteville. Procédé de Recalage d’Images de Profondeur, February
2019. FR Patent pending. I.3.1, A.1.3, A.2.4

[LC87] William E Lorensen and Harvey E Cline. Marching Cubes: A High
Resolution 3D Surface Construction Algorithm. In ACM SIGGRAPH,
volume 21, pages 163–169. ACM, 1987. V.4.1

[LCK16] Suolan Liu, Chen Chen, and Nasser Kehtarnava. A computationally
efficient denoising and hole-filling method for depth image
enhancement. In Nasser Kehtarnavaz and Matthias F Carlsohn,
editors, SPIE Conference on Real-Time Image and Video Processing. SPIE,
April 2016. II.1.3

[LDY+16] Ran Liu, Zekun Deng, Lin Yi, Zhenwei Huang, Donghua Cao, Miao
Xu, and Ruishuang Jia. Hole-filling based on disparity map and



BIBLIOGRAPHY 134

inpainting for depth-image-based rendering. International Journal of
Hybrid Information Technology, 9(5):145–164, 2016. II.1.3

[LGZ+13] Hui Lin, Jizhou Gao, Yu Zhou, Guiliang Lu, Mao Ye, Chenxi
Zhang, Ligang Liu, and Ruigang Yang. Semantic decomposition and
reconstruction of residential scenes from lidar data. ACM Transactions
on Graphics, (Proc. of SIGGRAPH), 32(4), November 2013. II.4.4

[LH07] Sylvain Lefebvre and Hugues Hoppe. Compressed random-access trees
for spatially coherent data. In Jan Kautz and Sumanta Pattanaik,
editors, Proceedings of the 18th Eurographics conference on Rendering
Techniques, pages 339–349. Eurographics Association, 2007. IV.5.2

[Li14] Larry Li. Time-of-Flight Camera - An Introduction. In Technical White
Paper SLOA190B, May 2014. II.1.1

[Li16] Larry Li. Filtering for 3d time-of-flight sensors. Technical Report
SLOA230, Texas Instruments, January 2016. II.1.3

[LJW14] Anh Vu Le, Seung-Won Jung, and Chee Sun Won. Directional joint
bilateral filter for depth images. Sensors, 14(7):11362–11378, 2014.
II.1.3, II.3

[LLL+12] Tae-kyeong Lee, Seungwook Lim, Seongsoo Lee, Shounan An, and
Se-young Oh. Indoor mapping using planes extracted from noisy
rgb-d sensors. Intelligent Robots and Systems (IROS), pages 1727–1733,
October 2012. II.4.4

[Llo82] Stuart P Lloyd. Least squares quantization in pcm. Information Theory,
IEEE Transactions on, 28(2):129–137, March 1982. II.4.4

[LM12] Florent Lafarge and Clément Mallet. Creating large-scale city models
from 3d-point clouds: a robust approach with hybrid representation.
International journal of computer vision, 99(1):69–85, August 2012.
II.4.4, II.4.4
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Résumé: Cette thèse porte sur l’analyse visuelle
de scènes intérieures capturées par des caméras
de profondeur dans le but de convertir leurs
données en information de haut niveau sur la
scène. Elle explore l’application d’outils d’analyse
géométrique 3D à des données visuelles de
profondeur en termes d’amélioration de qualité,
de recalage et de consolidation. En particulier,
elle vise à montrer comment l’abstraction de
formes permet de générer des représentations
légères pour une analyse rapide avec des besoins
matériels faibles. Cette propriété est liée à notre
objectif de concevoir des algorithmes adaptés
à un fonctionnement embarqué en temps réel
dans le cadre d’appareils portables, téléphones
ou robots mobiles. Le contexte de cette thèse
est l’exécution d’un procédé d’interaction 3D
temps réel sur un appareil mobile. Cette
exécution soulève plusieurs problématiques, dont

le placement de zones d’interaction 3D par
rapport à des objets environnants réels, le suivi
de ces zones dans l’espace lorsque le capteur
est déplacé ainsi qu’une utilisation claire et
compréhensible du système par des utilisateurs
non experts. Nous apportons des contributions
vers la résolution de ces problèmes pour
montrer comment l’abstraction géométrique de la
scène permet une localisation rapide et robuste
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qualité et leur consolidation. Bien que les formes
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d’information que les nuages de points denses
ou les ensembles volumiques pour représenter
les scènes observées, nous montrons qu’elles
constituent une approximation acceptable et que
leur légèreté leur donne un bon équilibre entre
précision et performance.
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of visual scene analysis captured by commodity
depth sensors to convert their data into high level
understanding of the scene. It explores the use
of 3D geometry analysis tools on visual depth
data in terms of enhancement, registration and
consolidation. In particular, we aim to show
how shape abstraction can generate lightweight
representations of the data for fast analysis
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to design algorithms suitable for live embedded
operation in e.g., wearable devices, smartphones
or mobile robots. The context of this thesis
is the live operation of 3D interaction on a
mobile device, which raises numerous issues

including placing 3D interaction zones with
relation to real surrounding objects, tracking the
interaction zones in space when the sensor moves
and providing a meaningful and understandable
experience to non-expert users. Towards solving
these problems, we make contributions where
scene abstraction leads to fast and robust sensor
localization as well as efficient frame data
representation, enhancement and consolidation.
While simple geometric surface shapes are not
as faithful as heavy point sets or volumes
to represent observed scenes, we show that
they are an acceptable approximation and their
light weight makes them well balanced between
accuracy and performance.
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