T. Miya, Ultimate low-loss single-mode fibre at 1.55 µm, Electronics Letters, vol.15, pp.106-108, 1979.

, New Market Panorama data at the FTTH Conference, 2018.

, The Zettabyte Era, Trends and Analysis

C. Coldren and M. , Diode Lasers and Photonic Integrated Circuits, 2012.

J. Buus, M. Amann, and D. J. Blumenthal, Fundamental Laser Diode Characteristics, Tunable Laser Diodes and Related Optical Sources, 2005.

H. Yasaka and Y. Shibata, In: Fibre Optic Comms: key devices. Springer Series in Optical Science, 2017.

A. Beling and J. C. Campbell, In: Fibre Optic Communication: key devices. Springer Series in Optical Science, 2017.

A. L. Schawlow and C. H. Townes, Infrared and Optical Masers, Phys. Rev, pp.1940-1949, 1958.

R. N. Hall, Coherent Light Emission From GaAs Junctions, Phys. Rev. Lett, vol.9, pp.366-368, 1962.

H. Kroemer, A proposed class of hetero-junction injection lasers, Proceedings of the IEEE 51, vol.12, pp.1782-1783, 1963.

R. Dingle and C. H. Henry, Quantum effects in heterostructure lasers, 1976.

Y. Arakawa and H. Sakaki, Multidimensional quantum well laser and temperature dependence of its threshold current, Applied Physics Letters, vol.40, pp.939-941, 1982.

M. Lax, Classical Noise. V. Noise in Self-Sustained Oscillators, Phys. Rev, vol.160, pp.290-307, 1967.

C. Henry, Theory of the linewidth of semiconductor lasers, IEEE Journal of Quantum Electronics, vol.18, issue.2, pp.259-264, 1982.

M. C. Larson, Narrow linewidth tunable DBR lasers, 2016 International Semiconductor Laser Conference (ISLC), pp.1-2, 2016.

I. W. and B. F. , In: Fibre Optic Communication: key devices. Springer Series in Optical Science, 2017.

R. Nagarajan, Large-scale photonic integrated circuits, IEEE Journal of Selected Topics in Quantum Electronics, vol.11, issue.1, pp.50-65, 2005.

A. Srivastava, Optical Integration and the Role of DSP in Coherent Optics Modules, OFC Market Focus, 2014.

C. Doerr, Silicon photonic integration in telecommunications, In: Frontiers in Physics, vol.3, p.37, 2015.

S. E. Miller, Integrated optics: An introduction, The Bell System Technical Journal, vol.48, pp.2059-2069, 1969.

R. Soref and B. Bennett, Electrooptical effects in silicon, IEEE Journal of Quantum Electronics, vol.23, issue.1, pp.123-129, 1987.

A. G. Rickman and G. T. Reed, Silicon-on-insulator optical rib waveguides: loss, mode characteristics, bends and y-junctions, IEE Proceedings -Optoelectronics, vol.141, issue.6, pp.391-393, 1994.

A. E. Lim, Review of Silicon Photonics Foundry Efforts, IEEE Journal of Selected Topics in Quantum Electronics, vol.20, issue.4, pp.405-416, 2014.

A. Narasimha, A Fully Integrated 4×10-Gb/s DWDM Optoelectronic Transceiver Implemented in a Standard 0.13µmCMOS SOI Technology, IEEE Journal of SolidState Circuits, vol.42, pp.2736-2744, 2007.

C. Doerr, Silicon Photonics Coherent Modulator/Receiver, Optical Fiber Communication Conference Postdeadline Papers, 2016.

D. Marris-morini, Recent Progress in High-Speed Silicon-Based Optical Modulators, Proceedings of the IEEE 97, pp.1199-1215, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00473046

F. Gardes, High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode, Opt. Express, vol.17, pp.21986-21991, 2009.

T. Hiraki, Heterogeneously integrated III-V/Si MOS capacitor Mach-Zehnder modulator, Nature Photonics, 2017.

S. Meister, Silicon photonics for 100 Gbit/s intra-data center optical interconnects, 2016.

M. Liao, Monolithically Integrated Electrically Pumped Continuous-Wave III-V Quantum Dot Light Sources on Silicon, IEEE Journal of Selected Topics in Quantum Electronics, vol.23, issue.6, pp.1-10, 2017.

A. Y. Liu and J. Bowers, Photonic Integration With Epitaxial III-V on Silicon, IEEE Journal of Selected Topics in Quantum Electronics, vol.24, issue.6, pp.1-12, 2018.

J. Kwoen, All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001), Opt. Express, vol.26, pp.11568-11576, 2018.

G. Duan, Hybrid III-V on Silicon Lasers for Photonic Integrated Circuits on Silicon, IEEE Journal of Selected Topics in Quantum Electronics, vol.20, issue.4, pp.158-170, 2014.

M. J. Heck, Hybrid Silicon Photonic Integrated Circuit Technology, IEEE Journal of Selected Topics in Quantum Electronics, vol.19, issue.4, pp.6100117-6100117, 2013.

G. A. Fish and D. K. Sparacin, Optical Transceivers Using Heterogeneous Integration on Silicon, Silicon Photonics III: Systems and Applications, pp.375-395, 2016.

B. R. Koch, Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), pp.1-3, 2013.

G. Carpintero, Microwave Photonic Integrated Circuits for Millimeter-Wave Wireless Communications, Journal of Lightwave Technology, vol.32, pp.3495-3501, 2014.

C. Sun, Single-chip microprocessor that communicates directly using light, Nature, vol.528, pp.534-538, 2015.

A. Martin, Photonic Integrated Circuit-Based FMCW Coherent LiDAR, J. Lightwave Technol, vol.36, pp.4640-4645, 2018.

M. Smit, Generic foundry model for InP-based photonics, IET Optoelectronics, vol.5, issue.5, pp.187-194, 2011.

M. Lamponi, Hybrid III-V on silicon lasers for telecommunication applications". Theses, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00769402

X. Pommarede, Hybrid III-V/Si photonics integated circuits for optical communication applications

F. Grillot, Propagation Loss in Single-Mode Ultrasmall Square Silicon-on-Insulator Optical Waveguides, J. Lightwave Technol, vol.24, issue.2, p.891, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00084884

D. Bordel, Direct and polymer bonding of III-V to processed silicon-on-insulator for hybrid silicon evanescent lasers fabrication, ECS Transactions, vol.33, pp.403-410, 2010.

A. W. Fang, Electrically pumped hybrid AlGaInAs-silicon evanescent laser, Opt. Express, vol.14, pp.9203-9210, 2006.

S. Keyvaninia, Heterogeneously integrated III-V/silicon distributed feedback lasers, Opt. Lett, vol.38, pp.5434-5437, 2013.

X. Sun and A. Yariv, Engineering supermode silicon/III-V hybrid waveguides for laser oscillation, J. Opt. Soc. Am. B, vol.25, issue.6, pp.923-926, 2008.

N. Girard, Lasersà faible bruit d'intensité en InP sur circuit Silicium pour l'optique hyperfréquence, 2016.

M. Lamponi, Low-Threshold Heterogeneously Integrated InP/SOI Lasers With a Double Adiabatic Taper Coupler, IEEE Photonics Technology Letters, vol.24, issue.1, pp.76-78, 2012.

A. L. Liepvre, Widely wavelength tunable hybrid III-V/silicon laser with 45 nm tuning range fabricated using a wafer bonding technique, The 9th International Conference on Group IV Photonics (GFP), pp.54-56, 2012.

C. T. Santis, High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms, Proceedings of the National Academy of Sciences, vol.111, pp.2879-2884, 2014.

M. and T. Anh, Multi-Ring Mirror-Based Narrow-Linewidth Widely-Tunable Lasers in Heterogeneous Silicon Photonics, 2018 European Conference on Optical Communication (ECOC), pp.1-3, 2018.

A. Gallet, Nouveaux lasers hybrides iii/v sur silicium Largement accordables pour les reseaux d'accès NG-PON2, pp.1-3, 2018.

T. Verolet, Hybrid III-V on Silicon Fast and Widely Tunable Laser Based on Rings Resonators with PIN Junctions, 2018 Asia Communications and Photonics Conference (ACP), pp.1-3, 2018.

M. M. Norbert-grote and M. Ortsiefer, Laser components, in Fibre Optic Communication: Key Devices Springer Series in Optical Science

H. Debrégeas, Widely Tunable Laser Diodes, in Fibre Optic Communication: Key Devices Springer Series in Optical Science

M. C. Larson, Narrow linewidth tunable DBR lasers, 2016 International Semiconductor Laser Conference (ISLC), pp.1-2, 2016.

S. Matsuo and T. Segawa, Microring-Resonator-Based Widely Tunable Lasers, IEEE Journal of Selected Topics in Quantum Electronics, vol.15, issue.3, pp.545-554, 2009.

X. Pommarede, Hybrid III-V/Si photonics integated circuits for optical communication applications

W. Bogaerts, Silicon microring resonators, Laser & Photonics Reviews, vol.6, issue.1, pp.47-73, 2012.

A. Yariv, Coupled-mode theory for guided-wave optics, IEEE Journal of Quantum Electronics, vol.9, pp.919-933, 1973.

N. Girard, Lasersà faible bruit d'intensité en InP sur circuit Silicium pour l'optique hyperfréquence, 2016.

A. L. Liepvre, Widely wavelength tunable hybrid III-V/silicon laser with 45 nm tuning range fabricated using a wafer bonding technique, The 9th International Conference on Group IV Photonics (GFP), pp.54-56, 2012.

H. Elfaiki, Ultra Wide Hybrid III-V On Silicon Tunable Laser, 2018 ECOC Conference, pp.50-51, 2018.

M. Lamponi, Low-Threshold Heterogeneously Integrated InP/SOI Lasers With a Double Adiabatic Taper Coupler, IEEE Photonics Technology Letters, vol.24, issue.1, pp.76-78, 2012.

G. Levaufre, Circuits photoniques intégrés incluant des lasers hybrides III-V sur silicium pour applications en télécommunication très haut débit, 2016.

A. Dewanjee, A low-loss, compact, broadband, polarization insensitive edge coupler for silicon photonics, IEEE Photonics Conference, pp.560-561, 2014.

S. Joshi, Quantum dash based photonic integrated circuits for optical telecommunications, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01149697

M. J. Connelly, Semiconductor optical amplifiers, 2002.

P. Kaspar, The European Conference on Optical Communication (ECOC), pp.1-3, 2014.

M. L. Davenport, Heterogeneous Silicon/III-V Semiconductor Optical Amplifiers, IEEE Journal of Selected Topics in Quantum Electronics, vol.22, issue.6, pp.78-88, 2016.

R. Kumar, Demonstration of an On-Chip III-V/Si Hybrid Semiconductor Optical amplifier for Photonics Integration, pp.50-51, 2014.

G. Duan, Hybrid III-V Silicon Photonic Integrated Circuits for Optical Communication Applications, IEEE Journal of Selected Topics in Quantum Electronics, vol.22, issue.6, pp.379-389, 2016.

M. Sales, M. S. Faruk, and S. J. Savory, Improved linewidth tolerant carrier phase recovery based on polar MAP metric estimate, 2017 Optical Fiber Communications Conference and Exhibition (OFC), pp.1-3, 2017.

C. Xie, Local Oscillator Phase Noise Induced Penalties in Optical Coherent Detection Systems Using Electronic Chromatic Dispersion Compensation, pp.1-3, 2009.

, Advantages of Ultra Narrow Linewidth Lasers For Coherent Communications

, FTBx-2850 -µITLA tunable light source

A. L. Liepvre, Silicon Photonics Hybrid Lasers

T. Komljenovic, Widely Tunable Narrow-Linewidth Monolithically Integrated External-Cavity Semiconductor Lasers, IEEE Journal of Selected Topics in Quantum Electronics, vol.21, issue.6, pp.214-222, 2015.

C. Henry, Theory of the linewidth of semiconductor lasers, IEEE Journal of Quantum Electronics, vol.18, issue.2, pp.259-264, 1982.

H. C. Casey and P. L. Carter, Variation of intervalence band absorption with hole concentration in p-type InP, Applied Physics Letters, vol.44, pp.82-83, 1984.

H. Debregeas, 2kHz Linewidth C-Band Tunable Laser by Hybrid Integration of Reflective SOA and SiO2 PLC External Cavity, 2014 International Semiconductor Laser Conference, pp.50-51, 2014.

H. Brahmi, On the fly all-optical packet switching based on hybrid WDM/OCDMA labeling scheme, Optics Communications, vol.312, pp.175-184, 2014.

R. O'dowd, Frequency plan and wavelength switching limits for widely tunable semiconductor transmitters, IEEE Journal of Selected Topics in Quantum Electronics, vol.7, issue.2, pp.259-269, 2001.

R. Soref and B. Bennett, Electrooptical effects in silicon, IEEE Journal of Quantum Electronics, vol.23, issue.1, pp.123-129, 1987.

R. Wu, Compact models for carrier-injection silicon microring modulators, Opt. Express, vol.23, pp.15545-15554, 2015.

H. Debrégeas, Quasi frequency drift suppression for burst mode operation in low-cost thermally-tuned TWDM-PON, pp.1-3, 2017.

Y. Matsui, Transceiver for NG-PON2: Wavelength tunablity for burst mode TWDM and point-to-point WDM, pp.1-3, 2016.

G. Simon, Introduction des technologies de multiplexage en longueur d'onde dense dans les futures générations de réseaux d'accès optique, 2016.

G. , 2 : 40-Gigabit-capable passive optical networks 2 (NG-PON2): Physical media dependent (PMD) layer specification

R. Bonk, The underestimated challenges of burst-mode WDM transmission in TWDM-PON". English, Optical Fiber Technology 26.Part A, pp.59-70, 2015.

C. Coldren and M. , Diode Lasers and Photonic Integrated Circuits, 2012.

G. Duan, P. Gallion, and G. Debarge, Analysis of the phase-amplitude coupling factor and spectral linewidth of distributed feedback and composite-cavity semiconductor lasers, IEEE Journal of Quantum Electronics, vol.26, issue.1, pp.32-44, 1990.

H. Debrégeas, TWDM-PON Burst Mode Lasers With Reduced Thermal Frequency Shift, Journal of Lightwave Technology, vol.36, issue.1, pp.128-134, 2018.

M. and T. Anh, Multi-Ring Mirror-Based Narrow-Linewidth Widely-Tunable Lasers in Heterogeneous Silicon Photonics, 2018 European Conference on Optical Communication (ECOC), pp.1-3, 2018.

. Itla-msa-specifications,

S. Srinivasan, Coupled-Ring-Resonator-Mirror-Based Heterogeneous III-V Silicon Tunable Laser, IEEE Photonics Journal, vol.7, issue.3, pp.1-8, 2015.

A. Shen, A Packaged Silicon Photonic Circuit Integrating a Hybrid Tunable Laser, a Modulator and an amplifier, Group Four Photonics, pp.50-51, 2018.

G. P. Agrawal and A. H. Bobeck, Modeling of distributed feedback semiconductor lasers with axially-varying parameters, IEEE Journal of Quantum Electronics, vol.24, pp.2407-2414, 1988.

V. Cristofori, 25-Gb/s Transmission Over 2.5-km SSMF by Silicon MRR Enhanced 1.55-µm III-V/SOI DML, IEEE Photonics Technology Letters, vol.29, pp.960-963, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01634603

A. Gallet, Integrated Hybrid III-V/SOI Directly Modulated DFB Laser and Ring Resonator at 10 Gbit/s, IEEE Photonics Technology Letters, vol.29, pp.1424-1426, 2017.

A. Gallet, Hybrid III-V on Silicon Integrated Distributed Feedback Laser and Ring Resonator for 25 Gb/s Future Access Networks, Journal of Lightwave Technology, vol.36, issue.8, pp.1498-1502, 2018.
URL : https://hal.archives-ouvertes.fr/cea-02184510

A. Gallet, Design, Fabrication and Characterization of Hybrid III-V/SOI PhaseShift Free DFB Laser with Tapered Silicon Waveguide, 2018 European Conference on Optical Communication (ECOC), pp.1-3, 2018.

H. Kogelnik and C. V. Shank, Coupled-Wave Theory of Distributed Feedback Lasers, Journal of Applied Physics, vol.43, pp.2327-2335, 1972.

M. Nakamura, GaAs Ga1 xAlxAs double-heterostructure distributed-feedback diode lasers, Applied Physics Letters, vol.25, pp.487-488, 1974.

G. Morthier and P. Vankwikelberge, Handbook of distributed feedback laser diodes, 1997.

J. Buus, M. Amann, and D. J. Blumenthal, Single Mode Laser Diodes, Tunable Laser Diodes and Related Optical Sources, 2005.

G. Bjork and O. Nilsson, A new exact and efficient numerical matrix theory of complicated laser structures: properties of asymmetric phase-shifted DFB lasers, Journal of Lightwave Technology, vol.5, issue.1, pp.140-146, 1987.

W. Streifer, R. Burnham, and D. Scifres, Effect of external reflectors on longitudinal modes of distributed feedback lasers, IEEE Journal of Quantum Electronics, vol.11, issue.4, pp.154-161, 1975.

T. Nakajima, Wide temperature range Operation, p.20

, Gbit/s NRZ directly modulated 1.3 mu m DFB Lasers transmitted over 2 km, 2018 ISLC Conference, mC4, pp.1-3, 2018.

K. Nakahara, Direct Modulation at 56 and 50 Gb/s of 1.3-µm InGaAlAs RidgeShaped-BH DFB Lasers, IEEE Photonics Technology Letters, vol.27, pp.534-536, 2015.

Y. Matsui, 28-Gbaud PAM4 and 56-Gb/s NRZ Performance Comparison Using 1310-nm Al-BH DFB Laser, Journal of Lightwave Technology, vol.34, issue.11, pp.2677-2683, 2016.

Y. Matsui, 55 GHz Bandwidth Distributed Reflector Laser, Journal of Lightwave Technology, vol.35, issue.3, pp.397-403, 2017.

, Bilt Itest current sources

C. Coldren and M. , Diode Lasers and Photonic Integrated Circuits, 2012.

M. M. Norbert-grote and M. Ortsiefer, Laser components, in Fibre Optic Communication: Key Devices Springer Series in Optical Science

Y. Matsui, Transceiver for NG-PON2: Wavelength tunablity for burst mode TWDM and point-to-point WDM, pp.1-3, 2016.

P. A. Morton, Frequency response subtraction for simple measurement of intrinsic laser dynamic properties, IEEE Photonics Technology Letters, vol.4, issue.2, pp.133-136, 1992.

A. Abbasi, 28 Gb/s direct modulation heterogeneously integrated C-band InP/SOI DFB laser, Opt. Express, vol.23, pp.26479-26485, 2015.

J. Provost and F. Grillot, Measuring the Chirp and the Linewidth Enhancement Factor of Optoelectronic Devices with a Mach-Zehnder Interferometer, IEEE Photonics Journal, vol.3, issue.3, pp.476-488, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01166401

R. Schimpe, J. Bowers, and T. Koch, Characterisation of frequency response of 1.5 mu m InGaAsP DFB Laser diode and InGaAs PIN photodiode by heterodyne measurement technique, Electronics Letters, vol.22, pp.453-454, 1986.

S. Joshi, Quantum dash based photonic integrated circuits for optical telecommunications, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01149697

Y. Matsui, Direclty Modulated Laser Technology: Past, Present, and Future, Datacentre Connectivity Technologies: Principle and Practice, 2018.

B. Thedrez, Power and facet phase dependence of chirp for index and gaincoupled DFB lasers, Conference Digest. ISLC 1998 NARA. 1998 IEEE 16th International Semiconductor Laser Conference (Cat. No. 98CH361130), pp.175-176, 1998.

F. Grillot, Lasers monomodesà faible sensibilitéà la rétroaction optique pour les transmissionsà 2,5 GBit/s sans isolateur, 2003.

F. Lelarge, Chirp optimization of 1550nm InAs/InP Quantum Dash based directly modulated lasers for 10Gb/s SMF transmission up to 65Km, 2010 22nd International Conference on Indium Phosphide and Related Materials (IPRM), pp.1-3, 2010.

D. Mahgerefteh, Chirp Managed Laser and Applications, IEEE Journal of Selected Topics in Quantum Electronics, vol.16, pp.1126-1139, 2010.

Y. Yokoyama, 10.709-Gb/s-300-km transmission of PLC-based chirp-managed laser packaged in pluggable transceiver without any optical or electrical dispersion compensation, 34th European Conference on Optical Communication, pp.1-2, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00434143

N. Chimot, Monolithic Integration on InP of a DML and a Ring Resonator for Future Access Networks, IEEE Photonics Technology Letters, vol.28, pp.2039-2042, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01446285

A. Gallet, Long delay optical feedback sensitivity of hybrid III-V/SOI directly modulated DFB lasers, 2017 IEEE 14th International Conference on Group IV Photonics (GFP, pp.115-116, 2017.

C. Caillaud, Integrated SOA-PIN Detector for High-Speed Short Reach Applications, Journal of Lightwave Technology, vol.33, pp.1596-1601, 2015.

R. Marchetti, High-efficiency grating-couplers: Demonstration of a new design strategy, In: Scientific Reports, vol.7, 2017.

J. , 40 Gbit/s Directly Modulated Passive Feedback Laser with ComplexCoupled DFB Section, 33rd European Conference and Exhibition of Optical Communication, pp.1-2, 2007.

A. Abbasi, Direct and Electroabsorption Modulation of a III-V-on-Silicon DFB Laser at 56 Gb/s, IEEE Journal of Selected Topics in Quantum Electronics, vol.23, issue.6, pp.1-7, 2017.

C. Zhang, Low threshold and high speed short cavity distributed feedback hybrid silicon lasers, Opt. Express, vol.22, issue.9, pp.10202-10209, 2014.

H. Duprez, From design to characterization of III-V on silicon lasers for photonic integrated circuits, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01475447

R. Blum, Scaling the compute and high speed networking needs of the datacenter with silicon photonics, 2017 European Conference on Optical Communication (ECOC) Market Focus, pp.1-2, 2017.

J. Yu, Applications of 40-Gb/s Chirp-Managed Laser in Access and Metro Networks, Journal of Lightwave Technology, vol.27, issue.3, pp.253-265, 2009.

A. Abbasi, 10-/28-Gb Chirp Managed 20-km Links Based on Silicon Photonics Transceivers, IEEE Photonics Technology Letters, vol.29, pp.1324-1327, 2017.

R. Nagarajan, Effects of carrier transport on high-speed quantum well lasers, Applied Physics Letters, vol.59, pp.1835-1837, 1991.

F. Grillot, Analysis, fabrication, and characterization of 1.55-mum selection-free tapered stripe DFB lasers, IEEE Photonics Technology Letters, vol.14, pp.1040-1042, 2002.

J. H. Song, Grating Coupler Design for Reduced Back-Reflections, IEEE Photonics Technology Letters, vol.30, issue.2, pp.217-220, 2018.

T. Fujii, Heterogeneously Integrated Membrane Lasers on Si Substrate for Low Operating Energy Optical Links, IEEE Journal of Selected Topics in Quantum Electronics, vol.24, issue.1, pp.1-8, 2018.

X. Pommarede, Hybrid III-V/Si photonics integated circuits for optical communication applications

A. Martin, Photonic Integrated Circuit-Based FMCW Coherent LiDAR, J. Lightwave Technol, vol.36, pp.4640-4645, 2018.

A. Yariv, Quantum Electronics, 1987.

C. T. Santis, High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms, Proceedings of the National Academy of Sciences, vol.111, pp.2879-2884, 2014.

A. Gallet, Dynamic and Noise Properties of High-Q Hybrid Laser, 2018 IEEE International Semiconductor Laser Conference (ISLC), pp.1-2, 2018.

C. Henry, Theory of the linewidth of semiconductor lasers, IEEE Journal of Quantum Electronics, vol.18, issue.2, pp.259-264, 1982.

K. Petermann, Basic Laser Characteristics, Laser Diode Modulation and Noise, pp.5-58, 1988.

K. Kojima, K. Kyuma, and T. Nakayama, Analysis of the spectral linewidth of distributed feedback laser diodes, Journal of Lightwave Technology, vol.3, issue.5, pp.1048-1055, 1985.

S. Keyvaninia, Heterogeneously integrated III-V/silicon distributed feedback lasers, Opt. Lett, vol.38, pp.5434-5437, 2013.

H. Soda, Stability in single longitudinal mode operation in GaInAsP/InP phaseadjusted DFB lasers, IEEE Journal of Quantum Electronics, vol.23, issue.6, pp.804-814, 1987.

M. Faugeron, High-Power Tunable Dilute Mode DFB Laser With Low RIN and Narrow Linewidth, IEEE Photonics Technology Letters, vol.25, issue.1, pp.7-10, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00772368

W. Ming-chiang, L. Yu-hwa, and W. Shyh, Linewidth broadening due to longitudinal spatial hole burning in a long distributed feedback laser, Applied Physics Letters, vol.52, pp.1119-1121, 1988.

M. Okai, Corrugation-Pitch-Modulated Distributed Feedback Lasers with Ultranarrow Spectral Linewidth, Japanese Journal of Applied Physics, vol.33, p.2563, 1994.

D. J. , Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor, Applied Physics Letters, vol.112, p.251111, 2018.

B. A. , Widely tunable narrow-linewidth 1.5 µm light source based on a monolithically integrated quantum dot laser array, Applied Physics Letters, vol.110, p.181103, 2017.

C. T. Santis, Quantum control of phase fluctuations in semiconductor lasers, Proceedings of the National Academy of Sciences, vol.115, pp.7896-7904, 2018.

H. Kogelnik and C. V. Shank, Coupled-Wave Theory of Distributed Feedback Lasers, Journal of Applied Physics, vol.43, pp.2327-2335, 1972.

J. D. Jackson, Classical electrodynamics, 1999.

H. Haus and C. Shank, Antisymmetric taper of distributed feedback lasers, IEEE Journal of Quantum Electronics, vol.12, issue.9, pp.532-539, 1976.

H. Haus and C. Shank, Antisymmetric taper of distributed feedback lasers, IEEE Journal of Quantum Electronics, vol.12, issue.9, pp.532-539, 1976.

H. C. Casey and P. L. Carter, Variation of intervalence band absorption with hole concentration in p-type InP, Applied Physics Letters, vol.44, pp.82-83, 1984.

C. T. Santis, High-coherence hybrid Si/III-V semiconductor lasers, 2013.

J. Buus, M. Amann, and D. J. Blumenthal, Single Mode Laser Diodes, Tunable Laser Diodes and Related Optical Sources, 2005.

M. Faugeron, Diode laser 1.5 micron de puissance et faible bruit pour l'optique hyperfréquence, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00765446

G. P. Agrawal and A. H. Bobeck, Modeling of distributed feedback semiconductor lasers with axially-varying parameters, IEEE Journal of Quantum Electronics, vol.24, pp.2407-2414, 1988.

S. T. Steger, A fundamental approach to phase noise reduction in hybrid Si/III-V lasers, 2014.

S. Combrié, Comb of high-Q Resonances in a Compact Photonic Cavity, Laser & Photonics Reviews, vol.11, issue.6, p.1700099

G. Levaufre, Circuits photoniques intégrés incluant des lasers hybrides III-V sur silicium pour applications en télécommunication très haut débit, 2016.

M. Osinski and J. Buus, Linewidth broadening factor in semiconductor lasers-An overview, IEEE Journal of Quantum Electronics, vol.23, issue.1, pp.9-29, 1987.

C. Coldren and M. , Diode Lasers and Photonic Integrated Circuits, 2012.

G. Baili, Contributionà la réduction du bruit d'intensité relatif des lasersà semiconducteurs pour des applications aux radars, vol.1, 2008.

M. C. Cox, N. J. Copner, and B. Williams, High sensitivity precision relative intensity noise calibration standard using low noise reference laser source, IEE Proceedings -Science, vol.145, pp.163-165, 1998.

T. Okoshi, K. Kikuchi, and A. Nakayama, Novel method for high resolution measurement of laser output spectrum, Electronics Letters, vol.16, pp.630-631, 1980.

L. Richter, Linewidth determination from self-heterodyne measurements with subcoherence delay times, IEEE Journal of Quantum Electronics, vol.22, issue.11, pp.2070-2074, 1986.

G. H. Duan and P. Gallion, Drive current noise induced linewidth in tunable multielectrode lasers, IEEE Photonics Technology Letters, vol.3, issue.4, pp.302-304, 1991.

, Bilt Itest current sources

H. Ludvigsen, M. Tossavainen, and M. Kaivola, Laser linewidth measurements using self-homodyne detection with short delay, Optics Communications, vol.155, pp.180-186, 1998.

N. and V. Bandel, Development and study of low noise laser diodes emitting at 894 nm for compact cesium atomic clocks, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01683150

K. Kikuchi, Effect of 1/f-type FM noise on semiconductor-laser linewidth residual in high-power limit, IEEE Journal of Quantum Electronics, vol.25, pp.684-688, 1989.

J. Tourrenc, Caractérisation et modélisation du bruit d'amplitude optique, du bruit de fréquence et de la largeur de raie de VCSELs monomodesémettant autour de 850 nm, vol.1, 2005.

H. Debregeas, 2kHz Linewidth C-Band Tunable Laser by Hybrid Integration of Reflective SOA and SiO2 PLC External Cavity, 2014 International Semiconductor Laser Conference, pp.50-51, 2014.

F. Girardin, Determination of nonlinear gain coefficient of semiconductor lasers from above threshold spontaneous emission measurement, IEEE Photonics Technology Letters, vol.6, pp.894-896, 1994.

, bonding thickness may be further increased to reduce the III-V overlap, down to values where silicon losses dominate. Moreover, the III-V structure can be optimized for high Q lasers via doping concentration and III-V active region design optimizations

S. E. Miller, Integrated optics: An introduction, The Bell System Technical Journal, vol.48, pp.2059-2069, 1969.

R. Nagarajan, Large-scale photonic integrated circuits, IEEE Journal of Selected Topics in Quantum Electronics, vol.11, issue.1, pp.50-65, 2005.

H. Elfaiki, Ultra Wide Hybrid III-V On Silicon Tunable Laser, 2018 ECOC Conference, pp.50-51, 2018.

P. Dong, Y. Chen, and L. L. Buhl, Reconfigurable four-channel polarization diversity silicon photonic WDM receiver, 2015 Optical Fiber Communications Conference and Exhibition (OFC), pp.1-3, 2015.

C. T. Santis, High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms, Proceedings of the National Academy of Sciences, vol.111, pp.2879-2884, 2014.

M. and T. Anh, Multi-Ring Mirror-Based Narrow-Linewidth Widely-Tunable Lasers in Heterogeneous Silicon Photonics, 2018 European Conference on Optical Communication (ECOC), pp.1-3, 2018.

G. Duan, Hybrid III-V Silicon Photonic Integrated Circuits for Optical Communication Applications, IEEE Journal of Selected Topics in Quantum Electronics, vol.22, issue.6, pp.379-389, 2016.

G. Levaufre, Circuits photoniques intégrés incluant des lasers hybrides III-V sur silicium pour applications en télécommunication très haut débit, 2016.

R. Blum, Scaling the compute and high speed networking needs of the datacenter with silicon photonics, 2017 European Conference on Optical Communication (ECOC) Market Focus, pp.1-2, 2017.

S. Keyvaninia, Heterogeneously integrated III-V/silicon distributed feedback lasers, Opt. Lett, vol.38, pp.5434-5437, 2013.

S. Dhoore, Electronically Tunable DFB Laser on Silicon, 2018 International Semiconductor Laser Conference, pp.1-2, 2018.

A. Abbasi, 28 Gb/s direct modulation heterogeneously integrated C-band InP/SOI DFB laser, Opt. Express, vol.23, pp.26479-26485, 2015.

C. T. Santis, Quantum control of phase fluctuations in semiconductor lasers, Proceedings of the National Academy of Sciences, vol.115, pp.7896-7904, 2018.

A. Gallet, Nouveaux lasers hybrides iii/v sur silicium Largement accordables pour les reseaux d'accès NG-PON2, pp.1-3, 2018.

T. Verolet, Hybrid III-V on Silicon Fast and Widely Tunable Laser Based on Rings Resonators with PIN Junctions, 2018 Asia Communications and Photonics Conference (ACP), pp.1-3, 2018.

A. Gallet, Hybrid III-V on Silicon Integrated Distributed Feedback Laser and Ring Resonator for 25 Gb/s Future Access Networks, Journal of Lightwave Technology, vol.36, issue.8, pp.1498-1502, 2018.
URL : https://hal.archives-ouvertes.fr/cea-02184510

X. Pommarede, Hybrid III-V/Si photonics integated circuits for optical communication applications

C. Doerr, Silicon Photonics Coherent Modulator/Receiver, Optical Fiber Communication Conference Postdeadline Papers, 2016.

T. Hiraki, Heterogeneously integrated III-V/Si MOS capacitor Mach-Zehnder modulator, Nature Photonics, 2017.

, H2020 Picture project

A. Gallet, Hybrid III-V on Silicon Integrated Distributed Feedback Laser and Ring Resonator for 25 Gb/s Future Access Networks, J. Lightwave Technol, vol.36, issue.8, pp.1498-1502, 2018.
URL : https://hal.archives-ouvertes.fr/cea-02184510

A. Gallet, Integrated Hybrid III-V/SOI Directly Modulated DFB Laser and Ring Resonator at 10 Gbit/s, IEEE Photonics Technology Letters, vol.29, pp.1424-1426, 2017.

V. Cristofori, 25-Gb/s Transmission Over 2.5-km SSMF by Silicon MRR Enhanced 1.55-µm III-V/SOI DML, IEEE Photonics Technology Letters, vol.29, pp.960-963, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01634603

K. Schires, Passive Chaos Bandwidth Enhancement Under Dual-Optical Feedback with Hybrid IIIVSi DFB Laser, IEEE Journal of Selected Topics in Quantum Electronics, vol.23, issue.6, pp.1-9, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02101630

, I also included conference proceedings where students under my supervision are first author and where I am second author

T. Verolet, Hybrid III-V on Silicon Fast and Widely Tunable Laser Based on Rings Resonators with PIN Junctions, 2018 Asia Communications and Photonics Conference (ACP), pp.1-3, 2018.

A. Gallet, Design, Fabrication and Characterization of Hybrid III-V/SOI PhaseShift Free DFB Laser with Tapered Silicon Waveguide, 2018 European Conference on Optical Communication (ECOC), pp.1-3, 2018.

A. Gallet, Dynamic and Noise Properties of High-Q Hybrid Laser, 2018 IEEE International Semiconductor Laser Conference (ISLC), pp.1-2, 2018.

A. Gallet, Nouveaux lasers hybrides iii/v sur silicium Largement accordables pour les reseaux d'accès NG-PON2, pp.1-3, 2018.

A. Gallet, Hybrid III-V on Silicon Integrated Distributed Feedback Laser and Ring Resonator for 25 Gb/s Future Access Networks, 2017 European Conference on Optical Communication (ECOC), pp.1-3, 2017.
URL : https://hal.archives-ouvertes.fr/cea-02184510

I. , 25Gb/s Error-free transmission with a packaged chipset integrating a III-V/SOI DFB laser an electro-absorption modulator and a semiconductor optical amplifier, 2017 IEEE 14th International Conference on Group IV Photonics (GFP), pp.99-100, 2017.

A. Gallet, Long delay optical feedback sensitivity of hybrid III-V/SOI directly modulated DFB lasers, 2017 IEEE 14th International Conference on Group IV Photonics (GFP, pp.115-116, 2017.

A. Gallet, 50km Error Free Transmission at 10Gb/s with an Integrated Hybrid III-V on Silicon Directly Modulated DFB Laser and Ring Resonator, ECOC, 2016.

, 42nd European Conference on Optical Communication, pp.1-3, 2016.

, Other conference proceedings

V. Cristofori, Direct Modulation of a Hybrid III-V/Si DFB Laser with MRR Filtering for 22.5-Gb/s Error-Free Dispersion-Uncompensated Transmission over 2.5-km SSMF, ECOC 2016; 42nd European Conference on Optical Communication, pp.1-3, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01464147

V. Cristofori, 25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-mum III-V/SOI DML, 2017 IEEE Photonics Conference (IPC), pp.357-360, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01634603

V. Cristofori, Directly modulated and ER enhanced hybrid IH-V/SOI DFB laser operating up to 20 Gb/s for extended reach applications in PONs, 2017 Optical Fiber Communications Conference and Exhibition (OFC), pp.1-3, 2017.

R. N. Sheehan, 1310 nm Data transmission using silicon photonic integrated circuit comprising directly modulated DFB laser and SOA, 2017 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), pp.1-4, 2017.

S. Gomez, Wideband chaos in hybrid III-V/silicon distributed feedback semiconductor lasers under optical feedback, SPIE Photonics west conference, vol.10098, pp.10098-10098, 2017.

V. Cristofori, 1.5-µm Directly modulated transmission over 66 km of SSMF with an integrated hybrid III-V/SOI DFB laser, 2017 IEEE 14th International Conference on Group IV Photonics (GFP), pp.103-104, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01541221

H. Elfaiki, Ultra Wide Hybrid III-V on Silicon Tunable Laser, 2018 European Conference on Optical Communication (ECOC), pp.1-3, 2018.

A. Shen, A Packaged Silicon Photonic Circuit Integrating a Hybrid Tunable Laser, a Modulator and an Amplifier, 2018 IEEE 15th International Conference on Group IV Photonics (GFP), pp.1-2, 2018.

R. Sheehan, Repeaterless data transmission at 1310 nm using silicon photonic integrated circuit, SPIE Photonics europe conference, vol.10686, pp.10686-10686, 2018.

, Résumé en Francais L es débits des réseaux optiques augmentent exponentiellement mais les prix des composants sont stables. Ce paradigme, appelé "loi de Moore photonique" impose de développer de nouveaux composants. L'intégration photonique répondà cette problématique car elle permet de réduire la taille et la consommation d'énergie par rapport aux systèmes assemblésà

, ] et a récemment suscité un grand intérêt avec le développement de la photonique sur silicium. La photonique sur silicium challenge la plate-forme d'intégration sur InP car des composants a hautes performances peuventêtre fabriqués dans une fonderie silicium. Ceux-ci sont de plus petite taille et produits sur de plus grandes plaques. En photonique sur silicium, les composants sont fabriqués sur des plaques de 200 ou 300 mm,à comparer avec les plaques de 76 mm de la plateforme InP

, Comme les rendements par plaques sont aussi améliorés du fait d'une plus grande automatisation, les coûts des composants photoniques sur silicim sont abaissés par rapport aux composants sur InP. Les modulateurs Mach-Zehnder en siliciums sont déjà implémentés dans des produits

, Tout d'abord, la croissance des wafers III-V se fait dans une salle blanche III-V standard. Ensuite, après le collage, la lithographie et les méthodes de gravure sont similaires aux procédés de réalisation des lasers III-V. Pour finir, le couplage aux guides d'ondes silicium est possible car un mince, Pour développer les lasers sur cette plateforme, l'intégration hétérogène présente plusieurs avantages

. Récemment, une nouvelle approche aété proposée qui repose sur l'épitaxie directe de boites avec des SMSR typiques supérieursà 55 dB. J'ai mesuré un facteur de Henry de 2,5 pour l

, ? Les bandes passantesélectro-optiques petit signal se caractérisent par une faible fréquence d'oscillation de relaxation et un facteur d'amortissementélevé. Le facteur K peut atteindre 4.1 ns, ce qui donne une durée de vie des photons de 103 ps

?. Le, intensité relatif est inférieurà -147 dB/Hz. Il a un profil plat dans la gamme de fréquences de 0-20 GHz

, ? La meilleure largeur de raie obtenue pour un laserà Qélevé est de 27 kHz

, Dans un futur proche, la structure III-V pourraêtre optimisée pour les lasersà Qélevé grâcè a un choix de concentration de dopage du materiaux III-V,à l'optimisation de la conception de la région active III-V età l'optimisation de l'épaisseur de collage

T. Dans-cette, Dans le tableau suivant, je compare mes résultats avec l'état de l'art III-V sur silicium. Les principaux résultats du deuxième chapitre sont l'augmentation de la puissance de sortie et de la vitesse d'accord des lasers largement accordables. Les résultats préliminaires sont rapportés sur le fonctionnement en mode burst avec laser accordable et SOA intégrés. Dans le troisième chapitre, j'ai décrit les lasers DFBà grande vitesse. J'ai obtenu une vitesse de modulation comparable aux résultats de l'état de l'art. J'ai augmenté la portée en utilisant un résonateur en anneau en silicium. Comme la portée est déjà de 20 km avec un taux d, j'aiétudié les lasers accordables basés sur des résonateurs en anneau, des lasersà rétroaction distribuéeà grande vitesse et des lasers hybridesà Qélevé

. Dans-le-dernier-chapitre, aiétudié les lasers hybridesà fort facteur de qualité, conçus pour avoir une faible largeur de raie. Les lasers avaient un seuil minimal de 40 mA et une puissance coupléeà la fibre de 2,5 mW. La largeur de raie mesuréeétait comparable aux résultats présentés dans, vol.6

S. E. Miller, Integrated optics: An introduction, The Bell System Technical Journal, vol.48, pp.2059-2069, 1969.

R. Nagarajan, Large-scale photonic integrated circuits, IEEE Journal of Selected Topics in Quantum Electronics, vol.11, issue.1, pp.50-65, 2005.

A. Narasimha, A Fully Integrated 4×10-Gb/s DWDM Optoelectronic Transceiver Implemented in a Standard 0.13µmCMOS SOI Technology, IEEE Journal of SolidState Circuits, vol.42, pp.2736-2744, 2007.

C. Doerr, Silicon Photonics Coherent Modulator/Receiver, Optical Fiber Communication Conference Postdeadline Papers, 2016.

H. Debrégeas, Widely Tunable Laser Diodes, in Fibre Optic Communication: Key Devices Springer Series in Optical Science

C. T. Santis, High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms, Proceedings of the National Academy of Sciences, vol.111, pp.2879-2884, 2014.

M. and T. Anh, Multi-Ring Mirror-Based Narrow-Linewidth Widely-Tunable Lasers in Heterogeneous Silicon Photonics, 2018 European Conference on Optical Communication (ECOC), pp.1-3, 2018.

G. Duan, Hybrid III-V Silicon Photonic Integrated Circuits for Optical Communication Applications, IEEE Journal of Selected Topics in Quantum Electronics, vol.22, issue.6, pp.379-389, 2016.

G. Levaufre, Circuits photoniques intégrés incluant des lasers hybrides III-V sur silicium pour applications en télécommunication très haut débit, 2016.

R. Blum, Scaling the compute and high speed networking needs of the datacenter with silicon photonics, 2017 European Conference on Optical Communication (ECOC) Market Focus, pp.1-2, 2017.

S. Keyvaninia, Heterogeneously integrated III-V/silicon distributed feedback lasers, Opt. Lett, vol.38, pp.5434-5437, 2013.

S. Dhoore, Electronically Tunable DFB Laser on Silicon, 2018 International Semiconductor Laser Conference, pp.1-2, 2018.

A. Abbasi, 28 Gb/s direct modulation heterogeneously integrated C-band InP/SOI DFB laser, Opt. Express, vol.23, pp.26479-26485, 2015.

C. T. Santis, Quantum control of phase fluctuations in semiconductor lasers, Proceedings of the National Academy of Sciences, vol.115, pp.7896-7904, 2018.

A. Gallet, Nouveaux lasers hybrides iii/v sur silicium Largement accordables pour les reseaux d'accès NG-PON2, pp.1-3, 2018.

T. Verolet, Hybrid III-V on Silicon Fast and Widely Tunable Laser Based on Rings Resonators with PIN Junctions, 2018 Asia Communications and Photonics Conference (ACP), pp.1-3, 2018.

A. Gallet, Hybrid III-V on Silicon Integrated Distributed Feedback Laser and Ring Resonator for 25 Gb/s Future Access Networks, Journal of Lightwave Technology, vol.36, issue.8, pp.1498-1502, 2018.
URL : https://hal.archives-ouvertes.fr/cea-02184510

X. Pommarede, Hybrid III-V/Si photonics integated circuits for optical communication applications

T. Hiraki, Heterogeneously integrated III-V/Si MOS capacitor Mach-Zehnder modulator, Nature Photonics, 2017.

, H2020 Picture project

S. E. Miller, Integrated optics: An introduction, The Bell System Technical Journal, vol.48, pp.2059-2069, 1969.

R. Nagarajan, Large-scale photonic integrated circuits, IEEE Journal of Selected Topics in Quantum Electronics, vol.11, issue.1, pp.50-65, 2005.

A. Narasimha, A Fully Integrated 4×10-Gb/s DWDM Optoelectronic Transceiver Implemented in a Standard 0.13µmCMOS SOI Technology, IEEE Journal of SolidState Circuits, vol.42, pp.2736-2744, 2007.

C. Doerr, Silicon Photonics Coherent Modulator/Receiver, Optical Fiber Communication Conference Postdeadline Papers, 2016.

H. Debrégeas, Widely Tunable Laser Diodes, in Fibre Optic Communication: Key Devices Springer Series in Optical Science

C. T. Santis, High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms, Proceedings of the National Academy of Sciences, vol.111, pp.2879-2884, 2014.

M. and T. Anh, Multi-Ring Mirror-Based Narrow-Linewidth Widely-Tunable Lasers in Heterogeneous Silicon Photonics, 2018 European Conference on Optical Communication (ECOC), pp.1-3, 2018.

G. Duan, Hybrid III-V Silicon Photonic Integrated Circuits for Optical Communication Applications, IEEE Journal of Selected Topics in Quantum Electronics, vol.22, issue.6, pp.379-389, 2016.

G. Levaufre, Circuits photoniques intégrés incluant des lasers hybrides III-V sur silicium pour applications en télécommunication très haut débit, 2016.

R. Blum, Scaling the compute and high speed networking needs of the datacenter with silicon photonics, 2017 European Conference on Optical Communication (ECOC) Market Focus, pp.1-2, 2017.

S. Keyvaninia, Heterogeneously integrated III-V/silicon distributed feedback lasers, Opt. Lett, vol.38, pp.5434-5437, 2013.

S. Dhoore, Electronically Tunable DFB Laser on Silicon, 2018 International Semiconductor Laser Conference, pp.1-2, 2018.

A. Abbasi, 28 Gb/s direct modulation heterogeneously integrated C-band InP/SOI DFB laser, Opt. Express, vol.23, pp.26479-26485, 2015.

C. T. Santis, Quantum control of phase fluctuations in semiconductor lasers, Proceedings of the National Academy of Sciences, vol.115, pp.7896-7904, 2018.

A. Gallet, Nouveaux lasers hybrides iii/v sur silicium Largement accordables pour les reseaux d'accès NG-PON2, pp.1-3, 2018.

T. Verolet, Hybrid III-V on Silicon Fast and Widely Tunable Laser Based on Rings Resonators with PIN Junctions, 2018 Asia Communications and Photonics Conference (ACP), pp.1-3, 2018.

A. Gallet, Hybrid III-V on Silicon Integrated Distributed Feedback Laser and Ring Resonator for 25 Gb/s Future Access Networks, Journal of Lightwave Technology, vol.36, issue.8, pp.1498-1502, 2018.
URL : https://hal.archives-ouvertes.fr/cea-02184510

X. Pommarede, Hybrid III-V/Si photonics integated circuits for optical communication applications

T. Hiraki, Heterogeneously integrated III-V/Si MOS capacitor Mach-Zehnder modulator, Nature Photonics, 2017.

, H2020 Picture project

, OSA Optical Spectrum Analyser

, PIC Photonic Integrated Circuit

, WDM Wavelength Division Multiplexing