J. Gennisson, Le palpeur acoustique: un nouvel outils d'investigation des tissus biologiques, 2003.
URL : https://hal.archives-ouvertes.fr/tel-00006100

J. M. Guccione, K. D. Costa, and A. D. Mcculloch, Finite element stress analysis of left ventricular mechanics in the beating dog heart, Journal of biomechanics, vol.28, issue.10, pp.1167-1177, 1995.

G. A. Holzapfel and R. W. Ogden, Constitutive modelling of passive myocardium: a structurally based framework for material characterization, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.367, pp.3445-3475, 1902.

D. A. Hooks, M. L. Trew, B. J. Caldwell, G. B. Sands, I. J. Legrice et al., Laminar arrangement of ventricular myocytes influences electrical behavior of the heart', Circulation Research, vol.101, issue.10, pp.103-112, 2007.

P. Joly, The mathematical model for elastic wave propagation, Effective Computational Methods for Wave Propagation, 2008.

L. Tallec and P. , Numerical methods for nonlinear three-dimensional elasticity, vol.3, pp.465-622, 1994.

W. Lee, M. Pernot, M. Couade, E. Messas, P. Bruneval et al., Mapping myocardial fiber orientation using echocardiographybased shear wave imaging, IEEE transactions on medical imaging, vol.31, issue.3, pp.554-562, 2012.

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility, Ultrasound in medicine & biology, vol.28, issue.2, pp.227-235, 2002.

M. Pernot, M. Couade, P. Mateo, B. Crozatier, R. Fischmeister et al., Real-time assessment of myocardial contractility using shear wave imaging, Journal of the American College of Cardiology, vol.58, issue.1, pp.65-72, 2011.

M. Pernot, W. Lee, A. Bel, P. Mateo, M. Couade et al., Shear wave imaging of passive diastolic myocardial stiffness: stunned versus infarcted myocardium, JACC: Cardiovascular Imaging, vol.9, issue.9, pp.1023-1030, 2016.

A. Raoult, Symmetry groups in nonlinear elasticity: An exercise in vintage mathematics, Communications on Pure and Applied Mathematics, vol.8, issue.1, pp.435-456, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00275450

R. S. Rivlin and J. L. Ericksen, Stress-Deformation Relations for Isotropic Materials, pp.911-1013, 1997.

D. Royer and E. Dieulesaint, Elastic waves in solids i: Free and guided propagation, translated by DP Morgan, 2000.

A. Sarvazyan, T. Hall, M. Urban, M. Fatemi, S. Aglyamov et al., An overview of elastography-an emerging branch of medical imaging, Current medical imaging reviews, vol.7, issue.4, pp.255-282, 2011.

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics, Ultrasound in medicine & biology, vol.24, issue.9, pp.1419-1435, 1998.

D. Boffi, F. Brezzi, and M. Fortin, Mixed finite element methods and applications, vol.44, 2013.

F. Brezzi and K. Bathe, A discourse on the stability conditions for mixed finite element formulations, Computer methods in applied mechanics and engineering, vol.82, issue.1-3, pp.27-57, 1990.

F. Brezzi and R. S. Falk, Stability of higher-order Hood-Taylor methods, SIAM Journal on Numerical Analysis, vol.28, issue.3, pp.581-590, 1991.

F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, vol.15, 2012.

F. Brezzi and J. Pitkäranta, On the stabilization of finite element approximations of the Stokes equations, in 'Efficient solutions of elliptic systems, pp.11-19, 1984.

A. N. Brooks and T. J. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible navierstokes equations, Computer methods in applied mechanics and engineering, vol.32, issue.1-3, pp.199-259, 1982.

D. Chapelle and K. Bathe, The inf-sup test, Computers & structures, vol.47, issue.4-5, pp.537-545, 1993.
URL : https://hal.archives-ouvertes.fr/hal-00839728

D. Chapelle, P. Le-tallec, P. Moireau, and M. Sorine, An energy-preserving muscle tissue model: formulation and compatible discretizations, International Journal for Multiscale Computational Engineering, vol.10, issue.2, pp.189-211, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00678772

M. Chiumenti, Q. Valverde, C. A. De-saracibar, and M. Cervera, A stabilized formulation for incompressible elasticity using linear displacement and pressure interpolations, Computer methods in applied mechanics and engineering, vol.191, issue.46, pp.5253-5264, 2002.

A. J. Chorin, Numerical solution of the Navier-Stokes equations, Mathematics of computation, vol.22, issue.104, pp.745-762, 1968.

A. J. Chorin, On the convergence of discrete approximations to the Navier-Stokes equations, Mathematics of computation, vol.23, issue.106, pp.341-353, 1969.

G. Cohen, Higher-Order Numerical Methods for Transient Wave Equations, Scientific Computation, 2001.

G. Cohen and S. Fauqueux, Mixed spectral finite elements for the linear elasticity system in unbounded domains, SIAM Journal on Scientific Computing, vol.26, issue.3, pp.864-884, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00982991

M. Durufle, P. Grob, and P. Joly, Influence of Gauss and Gauss-Lobatto quadrature rules on the accuracy of a quadrilateral finite element method in the time domain, Numer. Methods Partial Differential Equations, vol.25, issue.3, pp.526-551, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00403791

L. P. Franca and S. L. Frey, Stabilized finite element methods: Ii. the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, vol.99, issue.2-3, pp.209-233, 1992.

L. P. Franca, T. J. Hughes, A. F. Loula, and I. Miranda, A new family of stable elements for nearly incompressible elasticity based on a mixed Petrov-Galerkin finite element formulation, Numerische Mathematik, vol.53, issue.1-2, pp.123-141, 1988.

J. Guermond, P. Minev, and J. Shen, An overview of projection methods for incompressible flows, Computer methods in applied mechanics and engineering, vol.195, pp.6011-6045, 2006.

J. Guermond and L. Quartapelle, On stability and convergence of projection methods based on pressure Poisson equation, International Journal for Numerical Methods in Fluids, vol.26, issue.9, pp.1039-1053, 1998.

J. Guermond and L. Quartapelle, On the approximation of the unsteady Navier-Stokes equations by finite element projection methods', Numerische Mathematik, vol.80, issue.2, pp.207-238, 1998.

J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. i. regularity of solutions and second-order error estimates for spatial discretization, SIAM Journal on Numerical Analysis, vol.19, issue.2, pp.275-311, 1982.

J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem, part ii: Stability of solutions and error estimates uniform in time, SIAM journal on numerical analysis, vol.23, issue.4, pp.750-777, 1986.

J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem iii. smoothing property and higher order error estimates for spatial discretization, SIAM Journal on Numerical Analysis, vol.25, issue.3, pp.489-512, 1988.

J. G. Heywood and R. Rannacher, Finite-element approximation of the nonstationary Navier-Stokes problem. part iv: Error analysis for second-order time discretization, SIAM Journal on Numerical Analysis, vol.27, issue.2, pp.353-384, 1990.

T. J. Hughes, Generalization of selective integration procedures to anisotropic and nonlinear media, International Journal for Numerical Methods in Engineering, vol.15, issue.9, pp.1413-1418, 1980.

T. J. Hughes, The finite element method: linear static and dynamic finite element analysis, Courier Corporation, 2012.

T. J. Hughes, L. P. Franca, and M. Balestra, A new finite element formulation for computational fluid dynamics: V. circumventing the Babu?ka-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Computer Methods in Applied Mechanics and Engineering, vol.59, issue.1, pp.85-99, 1986.

P. Joly, The mathematical model for elastic wave propagation, Effective Computational Methods for Wave Propagation, 2008.

O. Klaas, A. Maniatty, and M. S. Shephard, A stabilized mixed finite element method for finite elasticity.: Formulation for linear displacement and pressure interpolation, Computer Methods in Applied Mechanics and Engineering, vol.180, issue.1-2, pp.65-79, 1999.

D. Komatitsch and J. Vilotte, The spectral element method: an efficient tool to simulate the seismic response of 2d and 3d geological structures, Bulletin of the seismological society of America, vol.88, issue.2, pp.368-392, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00669068

S. K. Lahiri, J. Bonet, J. Peraire, and L. Casals, A variationally consistent fractional time-step integration method for incompressible and nearly incompressible Lagrangian dynamics, International journal for numerical methods in engineering, vol.63, issue.10, pp.1371-1395, 2005.

W. Lee, M. Pernot, M. Couade, E. Messas, P. Bruneval et al., Mapping myocardial fiber orientation using echocardiographybased shear wave imaging, IEEE transactions on medical imaging, vol.31, issue.3, pp.554-562, 2012.

D. S. Malkus and T. J. Hughes, Mixed finite element methods. reduced and selective integration techniques: a unification of concepts, Computer Methods in Applied Mechanics and Engineering, vol.15, issue.1, pp.63-81, 1978.

A. M. Maniatty, Y. Liu, O. Klaas, and M. S. Shephard, Higher order stabilized finite element method for hyperelastic finite deformation, Computer methods in applied mechanics and engineering, vol.191, pp.1491-1503, 2002.

A. Masud and T. J. Truster, A framework for residual-based stabilization of incompressible finite elasticity: Stabilized formulations and F methods for linear triangles and tetrahedra, Computer Methods in Applied Mechanics and Engineering, vol.267, pp.359-399, 2013.

E. Neto, F. Pires, and D. Owen, F-bar-based linear triangles and tetrahedra for finite strain analysis of nearly incompressible solids. part i: formulation and benchmarking', International Journal for Numerical Methods in Engineering, vol.62, issue.3, pp.353-383, 2005.

G. Orzechowski and J. Fr?czek, Nearly incompressible nonlinear material models in the large deformation analysis of beams using ANCF', Nonlinear Dynamics, vol.82, issue.1-2, pp.451-464, 2015.

A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, 1994.

S. Rossi, N. Abboud, and G. Scovazzi, Implicit finite incompressible elastodynamics with linear finite elements: A stabilized method in rate form, Computer Methods in Applied Mechanics and Engineering, vol.311, pp.208-249, 2016.

A. P. Sarvazyan, O. V. Rudenko, and W. L. Nyborg, Biomedical applications of radiation force of ultrasound: historical roots and physical basis, Ultrasound in medicine & biology, vol.36, issue.9, pp.1379-1394, 2010.

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics, Ultrasound in medicine & biology, vol.24, issue.9, pp.1419-1435, 1998.

G. Scovazzi, B. Carnes, X. Zeng, and S. Rossi, A simple, stable, and accurate linear tetrahedral finite element for transient, nearly, and fully incompressible solid dynamics: a dynamic variational multiscale approach, International Journal for Numerical Methods in Engineering, vol.106, issue.10, pp.799-839, 2016.

G. Scovazzi, T. Song, and X. Zeng, A velocity/stress mixed stabilized nodal finite element for elastodynamics: Analysis and computations with strongly and weakly enforced boundary conditions, Computer Methods in Applied Mechanics and Engineering, vol.325, pp.532-576, 2017.

G. Sommer, A. J. Schriefl, M. Andrä, M. Sacherer, C. Viertler et al., Biomechanical properties and microstructure of human ventricular myocardium, Acta biomaterialia, vol.24, pp.172-192, 2015.

D. D. Streeter, H. M. Spotnitz, D. P. Patel, J. Ross, and E. H. Sonnenblick, Fiber orientation in the canine left ventricle during diastole and systole, Circulation research, vol.24, issue.3, pp.339-347, 1969.

T. Sussman and K. Bathe, A finite element formulation for nonlinear incompressible elastic and inelastic analysis, Computers & Structures, vol.26, issue.1-2, pp.357-409, 1987.

R. Temam, Une méthode d'approximation de la solution des équations de NavierStokes, Bull. Soc. Math. France, vol.98, issue.4, pp.115-152, 1968.

R. Temam, Navier-Stokes equations: theory and numerical analysis, vol.343, 2001.

T. E. Tezduyar, Stabilized finite element formulations for incompressible flow computations, in 'Advances in applied mechanics, vol.28, pp.1-44, 1991.

W. Ye, A. Bel-brunon, S. Catheline, M. Rochette, and A. Combescure, A selective mass scaling method for shear wave propagation analyses in nearly incompressible materials, International Journal for Numerical Methods in Engineering, vol.109, issue.2, pp.155-173, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01864365

O. C. Zienkiewicz, R. L. Taylor, and R. L. Taylor, The finite element method: solid mechanics, vol.2, 2000.

R. A. Adams and J. J. Fournier, Sobolev spaces, vol.140, 2003.

D. Boffi, F. Brezzi, and M. Fortin, Mixed finite element methods and applications, vol.44, 2013.

S. C. Brenner and L. Sung, Linear finite element methods for planar linear elasticity, Mathematics of Computation, vol.59, pp.321-338, 0200.

H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, 2010.

F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, 1991.

A. J. Chorin, Numerical solution of the Navier-Stokes equations, Mathematics of computation, vol.22, issue.104, pp.745-762, 1968.

A. J. Chorin, On the convergence of discrete approximations to the Navier-Stokes equations, Mathematics of computation, vol.23, issue.106, pp.341-353, 1969.

L. C. Evans, , 2010.

V. Girault and P. Raviart, Finite element approximation of the Navier-Stokes equations, 1979.

J. Guermond, Un résultat de convergence d'ordre deux en temps pour l'approximation des équations de Navier-Stokes par une technique de projection incrémentale, ESAIM: Mathematical Modelling and Numerical Analysis, vol.33, issue.1, pp.169-189, 1999.

J. Guermond, P. Minev, and J. Shen, An overview of projection methods for incompressible flows, Computer methods in applied mechanics and engineering, vol.195, pp.6011-6045, 2006.

J. Guermond and L. Quartapelle, On stability and convergence of projection methods based on pressure Poisson equation, International Journal for Numerical Methods in Fluids, vol.26, issue.9, pp.1039-1053, 1998.

J. Guermond and L. Quartapelle, On the approximation of the unsteady Navier-Stokes equations by finite element projection methods', Numerische Mathematik, vol.80, issue.2, pp.207-238, 1998.

J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. i. regularity of solutions and second-order error estimates for spatial discretization, SIAM Journal on Numerical Analysis, vol.19, issue.2, pp.275-311, 1982.

J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem, part ii: Stability of solutions and error estimates uniform in time, SIAM journal on numerical analysis, vol.23, issue.4, pp.750-777, 1986.

J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem iii. smoothing property and higher order error estimates for spatial discretization, SIAM Journal on Numerical Analysis, vol.25, issue.3, pp.489-512, 1988.

J. G. Heywood and R. Rannacher, Finite-element approximation of the nonstationary Navier-Stokes problem. part iv: Error analysis for second-order time discretization, SIAM Journal on Numerical Analysis, vol.27, issue.2, pp.353-384, 1990.

P. Joly, The mathematical model for elastic wave propagation, Effective Computational Methods for Wave Propagation, 2008.

P. Monk, Finite element methods for Maxwell's equations, 2003.

A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, 1994.

R. Temam, Une méthode d'approximation de la solution des équations de NavierStokes, Bull. Soc. Math. France, vol.98, issue.4, pp.115-152, 1968.

R. Temam, Navier-Stokes equations: theory and numerical analysis, vol.343, 2001.

, 218 6.2 A 3D non-linear model for wave propagation in the myocardial tissue

.. .. Constitutive-law,

.. .. Perspective-results,

C. .. Discussions,

. .. Bibliography and . Bécache, 236 simplest choice is to consider transparent boundary conditions everywhere except for the surface where the probes are positioned. However, it would be of interest to use Perfectly Matched Layers (PML) [Berenger, Fliss and Joly, 2012] and in elastic materials, 1994.

E. Bécache, S. Fauqueux, and P. Joly, Stability of perfectly matched layers, group velocities and anisotropic waves, Journal of Computational Physics, vol.188, issue.2, pp.399-433, 2003.

J. Bercoff, M. Tanter, and M. Fink, Supersonic shear imaging: a new technique for soft tissue elasticity mapping, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.51, issue.4, pp.396-409, 2004.

J. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, Journal of computational physics, vol.114, issue.2, pp.185-200, 1994.

D. Boffi, F. Brezzi, and M. Fortin, Mixed finite element methods and applications, vol.44, 2013.

A. Caenen, M. Pernot, M. Peirlinck, L. Mertens, A. Swillens et al., An in silico framework to analyze the anisotropic shear wave mechanics in cardiac shear wave elastography, Physics in Medicine & Biology, vol.63, issue.7, p.75005, 2018.

A. Caenen, M. Pernot, D. A. Shcherbakova, L. Mertens, M. Kersemans et al., Investigating shear wave physics in a generic pediatric left ventricular model via in vitro experiments and finite element simulations, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.64, issue.2, pp.349-361, 2017.

D. Chapelle, P. Le-tallec, P. Moireau, and M. Sorine, An energy-preserving muscle tissue model: formulation and compatible discretizations, International Journal for Multiscale Computational Engineering, vol.10, issue.2, pp.189-211, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00678772

W. Chew and Q. Liu, Perfectly matched layers for elastodynamics: a new absorbing boundary condition, Journal of Computational Acoustics, vol.4, issue.04, pp.341-359, 1996.

G. Cohen, Higher-Order Numerical Methods for Transient Wave Equations, Scientific Computation, 2001.

E. Demaldent and S. Imperiale, Perfectly matched transmission problem with absorbing layers: Application to anisotropic acoustics in convex polygonal domains, International Journal for Numerical Methods in Engineering, vol.96, issue.11, pp.689-711, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00875814

M. Durufle, P. Grob, and P. Joly, Influence of Gauss and Gauss-Lobatto quadrature rules on the accuracy of a quadrilateral finite element method in the time domain, Numer. Methods Partial Differential Equations, vol.25, issue.3, pp.526-551, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00403791

A. Ezziani, Modélisation mathématique et numérique de la propagation d'ondes dans les milieux viscoélastiques et poroélastiques, 2005.

. Ensta-paristech, . Français, and . N-n-t, A090019 . tel ? 00009179v3, 2005.

S. Fliss and P. Joly, Wave propagation in locally perturbed periodic media (case with absorption): Numerical aspects, Journal of Computational Physics, vol.231, issue.4, pp.1244-1271, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00849566

K. H. Lee, B. A. Szajewski, Z. Hah, K. J. Parker, and A. M. Maniatty, Modeling shear waves through a viscoelastic medium induced by acoustic radiation force, International journal for numerical methods in biomedical engineering, vol.28, issue.6-7, pp.678-696, 2012.

W. Lee, M. Pernot, M. Couade, E. Messas, P. Bruneval et al., Mapping myocardial fiber orientation using echocardiographybased shear wave imaging, IEEE transactions on medical imaging, vol.31, issue.3, pp.554-562, 2012.

K. Nightingale, S. Mcaleavey, and G. Trahey, Shear-wave generation using acoustic radiation force: in vivo and ex vivo results, Ultrasound in medicine & biology, vol.29, issue.12, pp.1715-1723, 2003.

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility, Ultrasound in medicine & biology, vol.28, issue.2, pp.227-235, 2002.

M. L. Palmeri, A. C. Sharma, R. R. Bouchard, R. W. Nightingale, and K. R. Nightingale, A finite-element method model of soft tissue response to impulsive acoustic radiation force, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.52, issue.10, pp.1699-1712, 2005.

B. Qiang, J. C. Brigham, S. Aristizabal, J. F. Greenleaf, X. Zhang et al., Modeling transversely isotropic, viscoelastic, incompressible tissue-like materials with application in ultrasound shear wave elastography, Physics in medicine and biology, vol.60, issue.3, p.1289, 2015.

N. C. Rouze, M. H. Wang, M. L. Palmeri, and K. R. Nightingale, Finite element modeling of impulsive excitation and shear wave propagation in an incompressible, transversely isotropic medium, Journal of biomechanics, vol.46, issue.16, pp.2761-2768, 2013.

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics, Ultrasound in medicine & biology, vol.24, issue.9, pp.1419-1435, 1998.

G. Sommer, A. J. Schriefl, M. Andrä, M. Sacherer, C. Viertler et al., Biomechanical properties and microstructure of human ventricular myocardium, Acta biomaterialia, vol.24, pp.172-192, 2015.

D. D. Streeter, H. M. Spotnitz, D. P. Patel, J. Ross, and E. H. Sonnenblick, Fiber orientation in the canine left ventricle during diastole and systole, Circulation research, vol.24, issue.3, pp.339-347, 1969.

W. Ye, A. Bel-brunon, S. Catheline, A. Combescure, and M. Rochette, Simulation of non-linear transient elastography: finite element model for the propagation of shear waves in homogeneous soft tissues, International Journal for Numerical Methods in Biomedical Engineering, 2017.

, 241 7.2 Statement of the problem and standard results, p.242

. .. , 242 7.2.2 A fast solver based on FFT in one-dimension, p.244

, 3.2 Extension to Neumann and Dirichlet Boundary conditions, The High-Order Spectral Element FFT solver in one-dimension245 7.3.1 Periodic boundary, p.251

, Extension to higher dimensions

N. .. Results,

.. .. Conclusions,

.. .. Bibliography,

M. Ainsworth, Discrete dispersion relation for hp-version finite element approximation at high wave number, SIAM Journal on Numerical Analysis, vol.42, issue.2, pp.553-575, 2004.

M. Ainsworth and P. Coggins, A uniformly stable family of mixed hp-finite elements with continuous pressures for incompressible flow, IMA journal of numerical analysis, vol.22, issue.2, pp.307-327, 2002.

F. Amlani and O. P. Bruno, An FC-based spectral solver for elastodynamic problems in general three-dimensional domains, Journal of Computational Physics, vol.307, pp.333-354, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01593044

J. Bercoff, M. Tanter, and M. Fink, Supersonic shear imaging: a new technique for soft tissue elasticity mapping, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.51, issue.4, pp.396-409, 2004.

F. Brezzi and R. S. Falk, Stability of higher-order Hood-Taylor methods, SIAM Journal on Numerical Analysis, vol.28, issue.3, pp.581-590, 1991.

F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, vol.15, 2012.

A. Caenen, M. Pernot, M. Peirlinck, L. Mertens, A. Swillens et al., An in silico framework to analyze the anisotropic shear wave mechanics in cardiac shear wave elastography, Physics in Medicine & Biology, vol.63, issue.7, p.75005, 2018.

G. Cohen, Higher-Order Numerical Methods for Transient Wave Equations, Scientific Computation, 2001.

G. Cohen and S. Fauqueux, Mixed spectral finite elements for the linear elasticity system in unbounded domains, SIAM Journal on Scientific Computing, vol.26, issue.3, pp.864-884, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00982991

J. Guermond, P. Minev, and J. Shen, An overview of projection methods for incompressible flows, Computer methods in applied mechanics and engineering, vol.195, pp.6011-6045, 2006.

J. Guermond and L. Quartapelle, On the approximation of the unsteady Navier-Stokes equations by finite element projection methods', Numerische Mathematik, vol.80, issue.2, pp.207-238, 1998.

B. Gustafsson, Fundamentals of Scientific Computing, 2011.

W. Hackbusch, Hierarchical matrices: algorithms and analysis, vol.49, 2015.

M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, vol.49, 1952.

A. Iserles, A first course in the numerical analysis of differential equations, number 44, 2009.

D. Komatitsch and J. Vilotte, The spectral element method: an efficient tool to simulate the seismic response of 2d and 3d geological structures, Bulletin of the seismological society of America, vol.88, issue.2, pp.368-392, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00669068

M. Lyon and O. P. Bruno, High-order unconditionally stable FC-AD solvers for general smooth domains ii. elliptic, parabolic and hyperbolic pdes; theoretical considerations, Journal of Computational Physics, vol.229, issue.9, pp.3358-3381, 2010.

Y. Maday and A. T. Patera, Spectral element methods for the incompressible Navier-Stokes equations, in 'State-of-the-art surveys on computational mechanics (A90-47176 21-64), pp.71-143, 1989.

M. L. Palmeri, A. C. Sharma, R. R. Bouchard, R. W. Nightingale, and K. R. Nightingale, A finite-element method model of soft tissue response to impulsive acoustic radiation force, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.52, issue.10, pp.1699-1712, 2005.

G. Pena, Spectral element approximation of the incompressible Navier-Stokes equations in a moving domain and applications, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00764421

A. Quarteroni, R. Sacco, and F. Saleri, Numerical mathematics, vol.37, 2010.

N. Spillane, An adaptive multipreconditioned conjugate gradient algorithm, SIAM journal on Scientific Computing, vol.38, issue.3, pp.1896-1918, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01170059

C. Van-loan, Computational frameworks for the fast Fourier transform, vol.10, 1992.

E. Bibliography-bécache, S. Fauqueux, and P. Joly, Stability of perfectly matched layers, group velocities and anisotropic waves, Journal of Computational Physics, vol.188, issue.2, pp.399-433, 2003.

J. Bercoff, M. Tanter, and M. Fink, Supersonic shear imaging: a new technique for soft tissue elasticity mapping, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.51, issue.4, pp.396-409, 2004.

S. Börm, L. Grasedyck, and W. Hackbusch, Introduction to hierarchical matrices with applications', Engineering analysis with boundary elements, vol.27, pp.405-422, 2003.

R. Chabiniok, P. Moireau, P. Lesault, A. Rahmouni, J. Deux et al., Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model, Biomechanics and modeling in mechanobiology, vol.11, issue.5, pp.609-630, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00654541

D. Chapelle, P. Le-tallec, P. Moireau, and M. Sorine, An energy-preserving muscle tissue model: formulation and compatible discretizations, International Journal for Multiscale Computational Engineering, vol.10, issue.2, pp.189-211, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00678772

M. Correia, I. Podetti, O. Villemain, J. Baranger, M. Tanter et al., Non-invasive myocardial shear wave elastography device for clinical applications in cardiology, IRBM, vol.38, issue.6, pp.357-362, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01682319

M. Couade, M. Pernot, E. Messas, A. Bel, M. Ba et al., In vivo quantitative mapping of myocardial stiffening and transmural anisotropy during the cardiac cycle, IEEE transactions on medical imaging, vol.30, issue.2, pp.295-305, 2011.

A. Dhia, S. Fliss, and A. Tonnoir, The halfspace matching method: A new method to solve scattering problems in infinite media, Journal of Computational and Applied Mathematics, vol.338, pp.44-68, 2018.

J. Gennisson, Le palpeur acoustique: un nouvel outils d'investigation des tissus biologiques, 2003.
URL : https://hal.archives-ouvertes.fr/tel-00006100

W. Lee, M. Pernot, M. Couade, E. Messas, P. Bruneval et al., Mapping myocardial fiber orientation using echocardiographybased shear wave imaging, IEEE transactions on medical imaging, vol.31, issue.3, pp.554-562, 2012.

P. Moireau and D. Chapelle, Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems', ESAIM: Control, Optimisation and Calculus of Variations, vol.17, pp.380-405, 2011.

K. Nightingale, S. Mcaleavey, and G. Trahey, Shear-wave generation using acoustic radiation force: in vivo and ex vivo results, Ultrasound in medicine & biology, vol.29, issue.12, pp.1715-1723, 2003.

M. L. Palmeri, A. C. Sharma, R. R. Bouchard, R. W. Nightingale, and K. R. Nightingale, A finite-element method model of soft tissue response to impulsive acoustic radiation force, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.52, issue.10, pp.1699-1712, 2005.

C. Papadacci, M. Pernot, M. Couade, M. Fink, and M. Tanter, Shear wave imaging of the heart using a cardiac phased array with coherent spatial compound, Ultrasonics Symposium (IUS), pp.2023-2026, 2012.

M. Pernot, M. Couade, P. Mateo, B. Crozatier, R. Fischmeister et al., Real-time assessment of myocardial contractility using shear wave imaging, Journal of the American College of Cardiology, vol.58, issue.1, pp.65-72, 2011.

M. Pernot, W. Lee, A. Bel, P. Mateo, M. Couade et al., Shear wave imaging of passive diastolic myocardial stiffness: stunned versus infarcted myocardium, JACC: Cardiovascular Imaging, vol.9, issue.9, pp.1023-1030, 2016.

A. P. Sarvazyan, O. V. Rudenko, and W. L. Nyborg, Biomedical applications of radiation force of ultrasound: historical roots and physical basis, Ultrasound in medicine & biology, vol.36, issue.9, pp.1379-1394, 2010.

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics, Ultrasound in medicine & biology, vol.24, issue.9, pp.1419-1435, 1998.