, Design NFDM systems based on b (?)-modulation in dual-polarization configuration and perform their experimental validation

, Effective DSP techniques to address the complexity limitations of NFDM systems

, Optimize modulation formats by using techniques such as geometric or probabilistic shaping of constellations

, Analytical and numerical study of noise models in the NFT domain

, IInvestigate NFT based WDM transmissions based on reconfigurable optical add-and-drop multiplexer (ROADM)

G. Agrawal, Fiber-Optic communication Systems, 2002.

G. P. , Nonlinear Fiber Optics, 2001.

I. Chappe, Histoire de la télégraphie, 1824.

T. H. Maiman, Stimulated Optical Radiation in Ruby, Nature, vol.187, pp.493-494, 1960.

J. Hecht, City of light: the story of fiber optics, 1999.

K. C. Kao and G. A. Hockham, Dielectric-fiber surface waveguides for optical frequencies, Proc IEE Optoelectronics, vol.133, issue.3, pp.191-198, 1986.

F. P. Kapron, D. B. Keck, and R. D. Maurer, Radiation losses in glass optical waveguides, Appl. Phys. Lett, vol.17, issue.423, 1970.

T. Miya, Y. Terunume, T. Hosaka, and T. Miyashita, An ultimate low-loss single-mode fiber at 1.55 mm, Elec. Lett, vol.15, p.106108, 1979.

K. Ogawa, E. L. Chinnock, D. Gloge, P. Kaiser, S. R. Nagel et al., System experiments using 1.3 µm LEDs, Elec. Lett, vol.17, issue.2, pp.71-72, 1981.

R. J. Bates, J. D. Spalink, S. J. Butterfield, J. Lipson, C. A. Burrus et al., µm/1.5 µm bidirectional WDM optical-fibre transmission system experiment at 144 Mbit/s, Elec. Lett, vol.1, issue.3, pp.458-459, 1983.

J. I. Yamada, S. Machida, and T. Kimura, Gbit/s optical transmission experiments at 1.3 µm with 44 km single-mode fibre, Elec. Lett, vol.17, issue.2, pp.479-480, 1981.

B. L. Kasper, R. A. Linke, K. L. Walker, L. G. Cohen, T. L. Koch et al.,

. Campbell, A 130-km transmission experiment at 2 Gb/s using silica-core fiber and a vapor phase transported DFB laser, ECOC, 1984.

J. Hecht, The Evolution of Optical Amplifiers, Optics & Photonics News, vol.13, issue.8, pp.36-39, 2002.

E. Desurvire, J. R. Simpson, and P. C. Becker, High-gain erbium-doped traveling-wave fiber amplifier, Opt. Lett, vol.12, issue.11, p.888890, 1987.

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, Low-noise erbiumdoped fibre amplifier operating at 1.54µm, Elec. Lett, vol.23, p.10261028, 1987.

A. Durécu-legrand, C. Simonneau, D. Bayart, A. Mussot, T. Sylvestre et al., Impact of Pump OSNR on Noise Figure for FiberOptical Parametric Amplifiers, IEEE Photonics Technol. Lett, vol.17, issue.6, pp.1178-1180, 2005.

F. Forghieri, R. W. Tkach, and A. R. Chraplyvy, Fiber nonlinearities and their impact on transmission systems, Optical Fiber Telecommunications IIIA, issue.7, p.196264, 1997.

A. R. Chraplyvy, R. W. Tkach, and K. L. Walker, Optical fiber for wavelength division multiplexing, U. S. Patent, vol.5, p.516, 1994.

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, and R. M. Derosier, 8 × 10 Gb/s transmission through 280 km of dispersion-managed fiber, IEEE Photonics Technol. Lett, vol.5, issue.10, p.12331235, 1993.

R. W. Tkach, R. M. Derosier, A. H. Gnauck, A. M. Vengsarkar, D. W. Peckham et al., Transmission of eight 20-Gb/s channels over 232 km of conventional singlemode fiber, IEEE Photonics Technol. Lett, vol.7, issue.11, p.13691371, 1995.

R. Essiambre, P. J. Winzer, and D. F. Grosz, Impact of DCF properties in system design in Fiber Based Dispersion Compensation, p.425496, 2007.

A. M. Vengsarkar, A. E. Miler, and W. A. Reed, Highly efficient singlemode fiber for broadband dispersion compensation, Proc. Optical Fiber Comm. Conf. (OFC), p.13, 1993.

A. M. Vengsarkar, A. E. Miller, M. Haner, A. H. Gnauck, W. A. Reed et al., Fundamental-mode dispersion-compensating fibers: Design considerations and experiments, Proc. Optical Fiber Comm. Conf. (OFC), p.2, 1994.

, Nortel launches first 10 Gbit/s transmission system in Asia, 1997.

P. Trischitta, M. Colas, M. Green, G. Wuzniak, and J. Arena, The TAT-12/13 cable network, IEEE Commun. Mag, vol.34, issue.2, p.2428, 1996.

A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, and T. Li, High-capacity optical transmission systems, J. Lightwave Technol, vol.26, issue.9, p.10321045, 2008.

C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J, vol.27, pp.379-423, 1948.

R. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, Capacity limits of optical fiber networks, J. Lightwave Technol, vol.28, issue.4, p.662701, 2010.

R. Essiambre and R. W. Tkach, Capacity Trends and Limits of Optical Communication Networks, Proc. IEEE, vol.100, issue.5, p.10351055, 2012.

N. J. Frigo, P. P. Iannone, and K. C. Reichmann, A View of Fiber to the Home Economics, IEEE Commun. Mag, vol.42, issue.S16S23, 2004.

T. Koonen, Fiber to the Home/Fiber to the Premesis: What, Where and When? Proc. IEEE, vol.94, p.911934, 2006.

C. Cisco, Visual Networking Index: Forecast and Methodology, 2017.

K. Hill and G. Meltz, Fiber Bragg grating technology fundamentals and overview, J. of Lightwave Tech, vol.15, issue.8, p.12631276, 1997.

I. P. Kaminov, T. Li, and A. E. Willner, Optical fiber telecommunications V A: Components and subsystems, 2008.

K. P. Ho, Phase-Modulated Optical Communication Systems, 2005.

S. J. Savory, Compensation of fiber impairments in digital coherent systems, 34th European Conference on Optical Communication, 2008.

A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, and T. Li, High-capacity optical transmission systems, J. of Lightwave Tech, vol.26, issue.9, p.10321045, 2008.

R. Olshansky, Noise figure for erbium-doped optical fibre amplifiers, Electronics Letters, vol.24, p.13631365, 1988.

I. T. Lima, A. O. Lima, Y. Sun, H. Jiao, J. Zweck et al., A Receiver Model for Optical Fiber Communication Systems With Arbitrarily Polarized Noise, J. of Lightwave Tech, vol.23, issue.3, p.14781490, 2005.

A. Demir, Noise Analysis for Optical Fiber Communication Systems, IC-CAD03, 2003.

A. Hasegawa, Numerical study of optical soliton transmission amplified periodically by the stimulated Raman process, Appl. Opt, vol.23, issue.19, p.3302, 1984.

C. R. Menyuk, Application of multiple-length-scale methods to the study of optical fiber transmission, Journal of Engineering Mathematics, vol.36, pp.113-136, 1999.

S. V. Manakov, On the theory of two-dimensional stationary self-focusing of electromagnetic waves,hskip 1em plus 0.5em minus 0.4emSoviet, Physics-JETP, vol.38, issue.2, p.248253, 1974.

R. Dar and P. Winzer, Nonlinear interference mitigation: Methods and potential gain, J. Ligthwave Tech, vol.35, issue.4, p.903930, 2017.

P. Winzer, D. T. Neilson, and A. R. Chraplyvy, Fiber-optic transmission and networking: the previous 20 and the next 20 years, vol.26, p.2419024239, 2018.

T. Fehenberger, A. Alvarado, G. Böcherer, and N. Hanik, On Probabilistic Shaping of Quadrature Amplitude Modulation for the Nonlinear Fiber Channel, p.28, 2016.

P. P. Mitra and J. B. Stark, Nonlinear limits to the information capacity of optical fiber communications, Nature, vol.411, issue.6841, p.10271030, 2001.

P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang et al., The GN-Model of Fiber Non-Linear Propagation and its Applications, J. Lightw. Tech, vol.32, issue.4, pp.694-721, 2014.

D. Rafique, Fiber nonlinearity compensation: commercial applications and complexity analysis, J. of Lightwave Tech, vol.34, issue.2, p.544553, 2016.

A. Yariv, D. Fekete, and D. M. Pepper, Compensation for channel dispersion by nonlinear optical phase conjugation, Optics Letters, vol.4, issue.2, p.5254, 1979.

S. Kumar and D. Yang, Optical backpropagation for fiber-optic communications using highly nonlinear fibers, Optics Letters, vol.36, issue.7, p.10381040, 2011.

K. V. Peddanarappagari and M. Brandt-pearce, Volterra series transfer function of single-mode fibers, J. of Lightwave Tech, vol.15, issue.12, pp.2232-2241, 1997.

E. Ip and J. M. Kahn, Compensation of Dispersion and Nonlinear Impairments Using Digital Backpropagation, J. of Lightwave Tech, vol.26, pp.3416-3425, 2008.

D. Rafique, M. Mussolin, M. Forzati, J. Martensson, M. N. Chugtai et al., Compensation of intra-channel nonlinear fiber impairments using simplified digital back-propagation algorithm, Optics Express, vol.19, issue.10, p.94539460, 2011.

L. Beygi, N. V. Irukulapati, E. Agrell, P. Johannisson, M. Karlsson et al., On nonlinearly-induced noise in single-channel optical links with digital backpropagation, Opt. Express, vol.21, pp.26376-26386, 2013.

X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim et al., Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing, Optics Express, vol.16, issue.2, p.880888, 2008.

A. Amari, O. A. Dobre, R. Venkatesan, O. S. Kumar, P. Ciblat et al., A survey on fiber nonlinearity compensation for 400 Gbps and beyond optical communication systems, IEEE Commun. Surv. Tutorials, vol.19, pp.3097-9113, 2017.

L. Liu, L. Li, Y. Huang, K. Cui, Q. Xiong et al., Intrachannel nonlinearity compensation by inverse Volterra series transfer function, J. of Lightwave Tech, vol.30, p.310316, 2012.

V. Vgenopoulou, A. Amari, M. Song, E. Pincemin, I. Roudas et al., Volterra-based Nonlinear Compensation in 400 Gb/s WDM Multiband Coherent Optical OFDM Systems, Asia Communications and Photonics Conference, 2014.

V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional selffocusing and one-dimensional self-modulation of waves in nonlinear media, Soviet Physics-JETP, vol.34, p.6269, 1972.

A. Hasegawa and T. Nyu, Eigenvalue communication, J. of Lightwave Tech, vol.11, issue.3, pp.395-399, 1993.

, Optical Solitons: Theoretical Challenges and Industrial Perspectives, 1999.

M. Nakazawa, E. Yamada, H. Kubota, and K. Suzuki, Gbit/s soliton data transmission over one million kilometres, Electronics Letters, vol.27, issue.14, pp.1270-1272, 1991.

I. Mansoor, F. R. Yousefi, and . Kschischang, Information Transmission using the Nonlinear Fourier Transform, Part I-III, IEEE Trans. Inf. Theory, vol.60, 2014.

S. T. Le, J. E. Prilepsky, and S. K. Turitsyn, Nonlinear inverse synthesis for high spectral efficiency transmission in optical fibers, vol.22, pp.26720-26741, 2014.

P. Lax, Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math, vol.21, p.467490, 1968.

M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, The Inverse Scattering Transform-Fourier Analysis for Nonlinear Problems, Studies in Applied Mathematics, vol.53, pp.249-315, 1974.

M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, 1981.

M. J. Ablowitz and J. F. Ladik, Nonlinear differentialdifference equations and Fourier analysis, J. Math. Phys, vol.17, issue.6, p.10111018, 1976.

G. Boffetta and A. Osborne, Computation of the direct scattering transform for the nonlinear schroedinger equation, J. Comput. Phys, vol.102, pp.252-264, 1992.

O. V. Belai, L. L. Frumin, E. V. Podivilov, and D. A. Shapiro, Efficient numerical method of fiber bragg grating synthesis, J. Opt. Soc. Am. B, vol.24, issue.7, pp.1451-1457, 2007.

A. Buryak, J. Bland-hawthorn, and V. Steblina, Comparison of inverse scattering algorithms for designing ultrabroadband fiber bragg gratings, Opt. Express, vol.17, issue.3, 1995.

A. Rosenthal and M. Horowitz, Inverse scattering algorithm for reconstructing strongly reflecting fiber bragg gratings, IEEE J. Quantum Electron, vol.8, pp.1018-1026, 2003.

G. Song and S. Y. Shin, Design of corrugated waveguide filter by the gel'fandlevitan-marchenko inverse-scattering method, J. Opt. Soc. Am. A, vol.2, issue.11, pp.1985-1915, 1985.

M. I. Yousefi and X. Yangzhang, Linear and Nonlinear Frequency-Division Multiplexing, 2016.

S. Burtsev, R. Camassa, and I. Timofeyev, Numerical Algorithms for the Direct Spectral Transform with Applications to Nonlinear Schrödinger Type Systems, Journal of Computational Physics, vol.147, issue.1, p.166186, 1998.

S. Wahls and H. V. Poor, Introducing the Fast Nonlinear Fourier Transform, IEEE International Conference on Acoustics, Speech and Signal Processing, pp.5780-5784, 2013.

S. Wahls and H. V. Poor, Fast Numerical Nonlinear Fourier Transforms, 2015.

S. Wahls and H. V. Poor, Inverse Nonlinear Fourier Transforms Via Interpolation: The Ablowitz-Ladik Case, 21st Proc. Int. Symp. Math. Theory Networks Systems (MTNS), p.18481855, 2014.

S. Wahls and V. Vaibhav, Fast Inverse Nonlinear Fourier Transforms for Continuous Spectra of Zakharov-Shabat Type

S. Wahls, S. T. Le, J. E. Prilepsky, H. V. Poor, and S. K. , Turitsyn Digital Backpropagation in the Nonlinear Fourier Domain, IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications(SPAWC), 2015.

A. Maruta and Y. Matsuda, Polarization division multiplexed optical eigenvalue modulation, 2015 International Conference on Photonics in Switching (PS), pp.256-267, 2015.

J. W. Goossens, M. I. Yousefi, Y. Jaouën, and H. Hafermann, Polarizationdivision multiplexing based on the nonlinear Fourier transform, Opt. Express, vol.25, p.2643726452, 2017.

S. Gaiarin, M. Perego, E. P. Silva, F. Da-ros, and D. Zibar, Dualpolarization nonlinear Fourier transform-based optical communication system, Optica, vol.5, pp.263-270, 2018.

M. J. Ablowitz, B. Prinari, and A. D. Trubatch, Integrable nonlinear Schrödinger systems and their soliton dynamics, Dynamics of PDE, vol.1, issue.3, p.239299, 2004.

M. J. Ablowitz, B. Prinari, and A. D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems, ser. Lond. Math. Soc. Lec. Note Series, vol.302, 2003.

E. G. Turitsyna and S. K. Turitsyn, Digital signal processing based on inverse scattering transform, Opt. Lett, vol.38, 2013.

M. J. Ablowitz, B. Prinari, and A. D. Trubatch, Integrable nonlinear Schrödinger systems and their soliton dynamics, Dynamics of PDE, vol.1, issue.3, p.239299, 2004.

S. L. Jansen, I. Morita, T. C. Schenk, D. Van-den-borne, and H. Tanaka, Optical OFDM-A Candidate for Future Long-Haul Optical Transmission Systems, 2008.

W. Shieh and C. Athaudage, Coherent optical orthogonal frequency division multiplexing, Electron. Lett, vol.42, issue.10, p.587589, 2006.

J. Karaki, E. Pincemin, Y. Jaouen, and R. L. Bidan, Frequency Offset Estimation in a Polarization-Multiplexed Coherent OFDM system stressed by chromatic dispersion and PMD, Conference: Lasers and Electro-Optics (CLEO), 2012.
URL : https://hal.archives-ouvertes.fr/hal-00724999

X. Chen and W. Shieh, Closed-form expressions for nonlinear transmission performance of densely spaced coherent optical OFDM systems, Opt. Express, vol.18, pp.19039-19054, 2010.

S. T. Le, J. E. Prilepsky, and S. K. Turitsyn, Nonlinear inverse synthesis for high spectral efficiency transmission in optical fibers, Optics Express, vol.22, pp.26720-26741, 2014.

S. T. Le, I. D. Philips, J. E. Prilepsky, P. Harper, A. D. Ellis et al., Turitsyn, First Experimental Demonstration of nonlinear inverse synthesis transmission over transoceanic distances, J. Ligthwave Tech, vol.34, issue.10, pp.2459-2466, 2016.

S. T. Le, I. D. Philips, J. E. Prilepsky, M. Kamalian, A. D. Ellis et al., Achievable Information Rate of Nonlinear Inverse Synthesis Based 16QAM OFDM Transmission, Proc. ECOC, Düsseldor f, 2016.

S. T. Le and H. Buelow, 64 × 0.5 Gbaud Nonlinear Frequency Division Multiplexed Transmissions With High Order Modulation Formats, J. Ligtwave Tech, vol.35, issue.17, pp.3692-3698, 2017.
URL : https://hal.archives-ouvertes.fr/hal-00722319

H. Buelow, V. Aref, and W. Idler, Transmission of Waveforms Determined by 7 Eigenvalues with PSK-Modulated Spectral Amplitudes, Proc. ECOC, 2016.

V. Aref, S. T. Le, and H. Bülow, Does the Cross-Talk Between Nonlinear Modes Limit the Performance of NFDM Systems

, SP, 2017.

V. Aref, H. Bulow, K. Schuh, and W. Idler, Experimental demonstration of nonlinear frequency division multiplexed transmission, Proc. ECOC, 2015.

T. Gui, C. Lu, A. P. Lau, and P. K. Wai, High-order modulation on a single discrete eigenvalue for optical communications based on nonlinear Fourier transform, Optics Express, vol.25, issue.17, pp.20286-20297, 2017.

S. T. Le, V. Aref, and H. Buelow, Nonlinear signal multiplexing for communication beyond the Kerr nonlinearity limit, Nat. Photonics, vol.11, issue.9, p.570576, 2017.

W. A. Gemechu, M. Song, Y. Jaouën, S. Wabnitz, and M. I. Yousefi, Comparison of the Nonlinear Frequency Division Multiplexing and OFDM in Experiment, Proc. ECOC, 2017.

S. K. Turitsyn, J. E. Prilepsky, S. T. Le, S. Wahls, L. L. Frumin et al., Nonlinear Fourier transform for optical data processing and transmission: advances and perspectives, Optica, vol.4, issue.3, p.307322, 2017.

V. Aref, H. Bülow, K. Schuh, and W. Idler, Experimental demonstration of nonlinear frequency division multiplexed transmission, Proc. of the European Conference on Optical Communication (ECOC), 2015.

S. T. Le, V. Aref, and H. Buelow, 125 Gbps Pre-Compensated Nonlinear Frequency-Division Multiplexed Transmission, Proc. ECOC, 2017.

J. Armstrong, OFDM for Optical Communications, J. Ligtwave Tech, vol.27, issue.3, pp.189-204, 2009.

W. Shieh and I. Djordjevic, OFDM for Optical Communications, 2009.

R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, Capacity Limits of Optical Fiber Networks, J. of Lightwave Techn, vol.28, issue.4, pp.662-701, 2010.

L. N. Binh, Digital Optical Communications, 2008.

M. Seimetz, High-Order Modulation for Optical Fiber Transmission, 2009.

P. M. Becker, A. A. Olsson, and J. R. Simpson, Erbium-doped fiber amplifiers: fundamentals and technology, 1999.

R. A. Linke and A. H. Gnauck, High-capacity coherent lightwave systems, J. Lightwave Tech, vol.6, issue.11, p.17501769, 1988.

T. J. Schmidt, D. R. Stauffer, and K. Gass, Implementation agreement for intradyne coherent receivers, Optical Internetworking Forum Technical Report, 2010.

T. M. Schmidl and D. C. Cox, Robust frequency and timing synchronization for ofdm, IEEE Transactions on Communications, vol.45, issue.12, p.16131621, 1997.

S. L. Jansen, I. Morita, T. C. Schenk, and H. Tanaka, Long-haul transmission of 16 × 52.5 gbits/s polarization-division-multiplexed ofdm enabled by mimo processing, J. Opt. Netw, vol.7, issue.2, p.173182, 2008.

X. Yi, W. Shieh, and Y. Ma, Phase noise effects on high spectral efficiency coherent optical ofdm transmission, J. Lightwave Tech, vol.26, issue.10, p.13091316, 2008.

E. Pincemin, M. Song, J. Karaki, O. Zia-chahabi, T. Guillossou et al., Multi-Band OFDM Transmission at 100 Gbps With Sub-Band Optical Switching, J. Lightwave tech, vol.32, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01190705

B. Slater, S. Boscolo, V. Mezentsev, and S. Turitsyn, Comparative Analysis of BER Estimation Methods in Numerical Simulation of 40-Gb/s RZ-DPSK Transmission with In-Line SOAs, IEEE Photonics Tech. Lett, vol.19, issue.8, pp.607-609, 2007.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss et al., Error vector magnitude as a performance measure for advanced modulation formats, IEEE Photon. Tech. Lett, vol.24, issue.1, pp.61-63, 2012.

I. Tavakkolnia and M. Safari, Capacity Analysis of Signaling on the Continuous Spectrum of Nonlinear Optical Fibers, J. Ligthwave Tech, vol.35, issue.11, pp.2086-2097, 2017.

S. A. Derevyanko, J. E. Prilepsky, and S. K. Turitsyna, Capacity estimates for optical transmission based on the nonlinear Fourier transform, Nat. Commun, 2016.

A. Hasegawa and Y. Kodama, Solitons in optical communications, 1995.

A. Hasegawa and Y. Kodama, Guiding-center soliton in optical fibers, Optics Letters, vol.15, issue.24, p.14431445, 1990.

S. T. Le, V. Aref, and H. Buelow, High Speed Precompensated Nonlinear Frequency-Division Multiplexed Transmissions, J. Ligthwave Tech, vol.36, issue.6, pp.1296-1303, 2018.

C. Laperle and M. Osullivan, Advances in High-Speed DACs, ADCs, and DSP for Optical Coherent Transceivers, J. Ligthwave Tech, vol.32, issue.4, pp.629-643, 2014.

E. V. Sedov, A. A. Redyuk, M. P. Fedoruk, A. A. Gelash, L. L. Frumin et al., Soliton content in the standard optical OFDM signal, Optical Letters, vol.43, pp.5985-5988, 2018.

S. Civelli, E. Forestieri, and M. Secondini, Why Noise and Dispersion may Seriously Hamper Nonlinear Frequency-Division Multiplexing, Phot. Tech. Lett, vol.29, issue.16, pp.1332-1335, 2017.

O. V. Belai, L. L. Frumin, E. V. Podivilov, and D. A. Shapiro, Reconstruction of high reflectance fiber Bragg grating from noisy data, Laser Physics, vol.17, issue.11, pp.1317-1322, 2007.

O. V. Belai, E. V. Podivilov, O. Y. Schwarz, D. A. Shapiro, and L. L. Frumin, Finite Bragg grating synthesis by numerical solution of Hermitian Gel'fand-Levitan-Marchenko equations, J. Opt. Soc. Am, vol.24, issue.7, pp.1451-1457, 2007.

O. V. Belai, L. L. Frumin, E. V. Podivilov, and D. A. Shapiro, Efficient numerical method of the fiber Bragg grating synthesis, J. Opt. Soc. Am, vol.24, issue.7, pp.1451-1457, 2007.

L. L. Frumin, A. A. Gelash, and S. K. Turitsyn, New approaches to coding information using inverse scattering transform, 2017.