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M. Stefan Moser
Professeur, NCTU and ETH Zurich Co-directeur de thèse
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Résumé : Les systèmes de communication à in-

tensité optique en espace libre (FSOI) sont large-

ment utilisés dans les communications à courte por-

tée, telles que les communications infrarouges entre

des dispositifs électroniques portables. L’émetteur de

ces systèmes module sur l’intensité des signaux

optiques émis par des diodes électroluminescentes

(LEDs) ou des diodes laser (LDs), et le récepteur me-

sure les intensités optiques entrantes au moyen de

photodétecteurs. Les entrées ne sont pas négatives

car elles représentent des intensités. En outre, ils

sont généralement soumis à des contraintes de puis-

sance de pointe et moyenne, la contrainte de puis-

sance de pointe étant principalement dû aux limita-

tions techniques des composants utilisés, alors que

la contrainte de puissance moyenne est imposée par

des limitations de batterie et des considérations de

sécurité. En première approximation, le bruit dans de

tels systèmes peut être supposé être gaussien et in-

dépendant du signal transmis.

Cette thèse porte sur les limites fondamentales des

systèmes de communication FSOI, plus précisément

sur leur capacité. L’objectif principal de notre travail

est d’étudier la capacité d’un canal FSOI général à en-

trées multiples et sorties multiples (MIMO) avec une

contrainte de puissance de crête par entrée et une

contrainte de puissance moyenne totale sur toutes les

antennes d’entrée. Nous présentons plusieurs résul-

tats de capacité sur le scénario quand il y a plus d’an-

tennes d’émission que d’antennes de réception, c’est-

à-dire, nT > nR > 1. Dans ce scénario, différents vec-

teurs d’entrée peuvent donner des distributions iden-

tiques à la sortie, lorsqu’ils aboutissent au même vec-

teur d’image multiplié par la matrice de canal. Nous

déterminons d’abord les vecteurs d’entrée d’énergie

minimale permettant d’atteindre chacun de ces vec-

teurs d’image. Il définit à chaque instant dans le temps

un sous-ensemble de nT � nR antennes à zéro ou

à pleine puissance et utilise uniquement les nR an-

tennes restantes pour la signalisation. Sur cette base,

nous obtenons une expression de capacité équiva-

lente en termes de vecteur d’image, ce qui permet

de décomposer le canal d’origine en un ensemble de

canaux presque parallèles. Chacun des canaux paral-

lèles est un canal MIMO nR ⇥nR à contrainte d’ampli-

tude, avec une contrainte de puissance linéaire, pour

laquelle des limites de capacité sont connues. Avec

cette décomposition, nous établissons de nouvelles

limites supérieures en utilisant une technique de li-

mite supérieure basée sur la dualité, et des limites

inférieures en utilisant l’inégalité de puissance d’en-

tropie (EPI). Les limites supérieure et inférieure déri-

vées correspondent lorsque le rapport signal sur bruit

(SNR) tend vers l’infini, établissant la capacité asymp-

totique à haut SNR. À faible SNR, il est connu que la

pente de capacité est déterminée par la trace maxi-

male de la matrice de covariance du vecteur image.

Nous avons trouvé une caractérisation de cette trace

maximale qui est plus facile à évaluer en calcul que

les formes précédentes.
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Abstract : Free-space optical intensity (FSOI) com-

munication systems are widely used in short-range

communication such as the infrared communication

between electronic handheld devices. The transmit-

ter in these systems modulates on the intensity of op-

tical signals emitted by light emitting diodes (LEDs)

or laser diodes (LDs), and the receiver measures in-

coming optical intensities by means of photodetec-

tors. Inputs are nonnegative because they represent

intensities. Moreover, they are typically subject to

both peak- and average-power constraints, where

the peak-power constraint is mainly due to techni-

cal limitations of the used components, whereas the

average-power constraint is imposed by battery limi-

tations and safety considerations. As a first approxi-

mation, the noise in such systems can be assumed

to be Gaussian and independent of the transmitted si-

gnal.

This thesis focuses on the fundamental limits of FSOI

communication systems, more precisely on their ca-

pacity. The major aim of our work is to study the capa-

city of a general multiple-input multiple-output (MIMO)

FSOI channel under a per-input-antenna peak-power

constraint and a total average-power constraint over

all input antennas. We present several capacity re-

sults on the scenario when there are more transmit

than receive antennas, i.e., nT > nR > 1. In this sce-

nario, different input vectors can yield identical distri-

butions at the output, when they result in the same

image vector under multiplication by the channel ma-

trix. We first determine the minimum-energy input vec-

tors that attain each of these image vectors. It sets

at each instant in time a subset of nT � nR anten-

nas to zero or to full power, and uses only the remai-

ning nR antennas for signaling. Based on this, we de-

rive an equivalent capacity expression in terms of the

image vector, which helps to decompose the original

channel into a set of almost parallel channels. Each

of the parallel channels is an amplitude-constrained

nR⇥nR MIMO channel, with a linear power constraint,

for which bounds on the capacity are known. With

this decomposition, we establish new upper bounds

by using a duality-based upper-bounding technique,

and lower bounds by using the Entropy Power Inequa-

lity (EPI). The derived upper and lower bounds match

when the signal-to-noise ratio (SNR) tends to infinity,

establishing the high-SNR asymptotic capacity. At low

SNR, it is known that the capacity slope is determined

by the maximum trace of of the covariance matrix of

the image vector. We found a characterization to this

maximum trace that is computationally easier to eva-

luate than previous forms.
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Abstract

Free-space optical intensity (FSOI) communication systems are widely used in short-
range communication such as the infrared communication between electronic hand-
held devices. The transmitter in these systems modulates on the intensity of optical
signals emitted by light emitting diodes (LEDs) or laser diodes (LDs), and the re-
ceiver measures incoming optical intensities by means of photodetectors. Inputs are
nonnegative because they represent intensities. Moreover, they are typically subject
to both peak- and average-power constraints, where the peak-power constraint is
mainly due to technical limitations of the used components, whereas the average-
power constraint is imposed by battery limitations and safety considerations. As a
first approximation, the noise in such systems can be assumed to be Gaussian and
independent of the transmitted signal.

This thesis focuses on the fundamental limits of FSOI communication systems,
more precisely on their capacity. The major aim of our work is to study the capacity
of a general multiple-input multiple-output (MIMO) FSOI channel under a per-
input-antenna peak-power constraint and a total average-power constraint over all
input antennas. We present several capacity results on the scenario when there are
more transmit than receive antennas, i.e., nT > nR > 1. In this scenario, different
input vectors can yield identical distributions at the output, when they result in the
same image vector under multiplication by the channel matrix. We first determine
the minimum-energy input vectors that attain each of these image vectors. It sets at
each instant in time a subset of nT � nR antennas to zero or to full power, and uses
only the remaining nR antennas for signaling. Based on this, we derive an equivalent
capacity expression in terms of the image vector, which helps to decompose the
original channel into a set of almost parallel channels. Each of the parallel channels
is an amplitude-constrained nR⇥nR MIMO channel, with a linear power constraint,
for which bounds on the capacity are known. With this decomposition, we establish
new upper bounds by using a duality-based upper-bounding technique, and lower
bounds by using the Entropy Power Inequality (EPI). The derived upper and lower
bounds match when the signal-to-noise ratio (SNR) tends to infinity, establishing
the high-SNR asymptotic capacity. At low SNR, it is known that the capacity slope
is determined by the maximum trace of of the covariance matrix of the image vector.
We found a characterization to this maximum trace that is computationally easier
to evaluate than previous forms.

We also consider the two special cases when nT = nR = 1 and nT > nR = 1.
In the former single-input single-output (SISO) setup, we propose a new duality-

xi
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based upper bound that improves over all previous bounds in the moderate-SNR
regime. This upper bound is also asymptotically tight at high SNR. For the latter
multiple-input single-output (MISO) setup, we characterize the low-SNR slope of
the capacity, and it can be achieved by an input vector that has at most three
probability mass points. Furthermore, we present a new duality-based upper bound
that beats other previous bounds at moderate SNR and also asymptotically tight
at high SNR.

The last technical chapter considers the FSOI channel with block fading under
different assumptions on the transmitter’s channel state information (CSI) (The re-
ceiver is assumed to have perfect CSI throughout). Lower and upper bounds on the
capacities are derived using the EPI and the duality-based upper-bounding tech-
nique, respectively. The lower-bounds for perfect and partial CSI utilize a transmit-
antenna cooperation strategy based on the proposed minimum-energy signaling. For
perfect CSI, this lower bound matches the upper bound asymptotically in the high
SNR regime. For imperfect CSI, the lower bound is close to its perfect-CSI coun-
terpart, showing that with only (nT � nR) log2

�
nT
nR

�
bits of channel state feedback,

one can well approximate the perfect CSI capacity.



Chapter 1

Introduction

1.1 Background and Motivation
The spread of wireless communications emerges as one of the most prominent phe-
nomena in the history of technology. The wide applications of wireless equipments
have fundamentally influenced the development of the human society, and it will
continue to play an essential role in the modern society for the future. Nowadays,
because of the wide-scale deployment and utilization of wireless radio-frequency
(RF) devices and systems, wireless communications usually refer to the RF commu-
nications. In recent years, there has been a tremendous growth in data traffic and
the licensed RF bands face severe congestions. To accommodate the ever-growing
data traffic in wireless communications, merely demanding for RF spectrum is not
sufficient, and we have to seriously consider other feasible choices by using new parts
of the electromagnetic spectrum.

As an excellent supplement to the existing RF communications, optical wireless
communication (OWC) has attracted much attention in recent years. It operates
in 350–1550nm band, and usually refers to the transmission in unguided propaga-
tion media by using optical carriers on the visible, infrared (IR) and ultraviolet (UV)
band. When the OWC operates in near IR band, it is also widely referred to as Free-
Space Optical (FSO) communication in the literature. Although its widespread use
has been limited by its low link reliability particularly in long ranges due to atmo-
spheric turbulence-induced fading and sensitivity to weather conditions, FSO link
has a very high optical bandwidth available, allowing much higher data rates in
short-range communication [1], [2]. Recently, many innovative physical layer con-
cepts, originally introduced in the context of RF systems have been successfully
applied in the FSO systems. The FSO communication has been regaining popular-
ity, and it has been increasingly used to enhance the coverage area and improve the
communication rate in existing RF networks. It has become an important supple-
ment and substitute for the RF communications.

FSO systems can be broadly classified into two classes based on the type of detec-
tion: noncoherent and coherent. In coherent systems, amplitude, frequency, or phase

1



2 CHAPTER 1. INTRODUCTION

modulation can be used, while in noncoherent systems, the intensity of the emitted
light is employed to convey the information. At the receiver side, the photodetector
directly detects changes in the light intensity. The non-coherent systems are also
known as free-space optical intensity-modulation direct-detection (IM/DD) systems
or free-space optical intensity (FSOI) systems. Although coherent systems offer
superior performance in terms of background noise rejection, mitigating turbulence-
induced fading, and higher receiver sensitivity [3], FSOI systems are commonly used
in the FSO links due to their simplicity and low costs.

Since in a FSOI system the input signal modulates the optical intensity of the
emitted light, it is proportional to the light intensity and nonnegative. The receiver
equipped with a front-end photodetector measures the incident optical intensity
of the incoming light and produces an output signal which is proportional to the
detected intensity, corrupted by white Gaussian noise. To preserve the battery and
for safety reasons, the input signal is subject to a peak- and an average- intensity
(power) constraints.

The noise sources at the receiver consist of the photo detector (PD) dark cur-
rent, the transmitter noise, thermal noise, and the photo-current shot-noise (which
is caused by input signal and background radiations). The PD dark current can
be neglected for most practical purposes. The transmitter noise arises from the
instability of the laser intensity and the resulting fluctuations of the photo-current
at the receiver, which has usually a negligible effect on the receiver performance
[3]. The two main noise sources affecting the receiver are thermal and shot noises.
Thermal noise originates from the receiver electronic circuitry, and can be modeled
as a Gaussian random process. On the other hand, shot noise, arises from random
fluctuations of the current flowing through the PD and is modeled by a Poisson
process. If the mean number of absorbed photons is relatively large, the shot noise
can also be approximately modeled by a Gaussian process. In most FSOI applica-
tions, the received photon flux is high enough to allow this approximation. Hence,
in practice, the noise in the receiver can always be modeled as a Gaussian process.

1.2 State of the Art of FSOI Communications
The FSOI channel has been extensively studied in the literature. There are many
existing channel models for FSOI channels [7], and the most often studied model
is the channel with input-independent Gaussian noise [4]. The input signal in this
model is a positive random variable representing the intensity, and the noise is
input-independent Gaussian. Besides its nonnegativity, the input signal is typically
restricted by a peak- and an average- constraint. We also adopt this channel model
in this thesis. A related channel model for optical communication is the Poisson
channel for the discrete-time channel [5]–[7] and for the continuous-time channel
[8]–[12]. A variation of the channel model, where the noise depends on the input, is
also investigated in [13].

Although the capacity-achieving input distribution in our model is known to be
discrete [4], [14], the closed-form expression of capacity is still an open problem.
Despite the difficulty of the exact capacity characterization, many bounds have
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been proposed to evaluate the capacity under different transmit and receive antenna
settings. In the case of single-input single-output (SISO), i.e., nT = nR = 1, several
upper and lower bounds on the capacity were presented in [14]–[17]. They show
the differences between the derived upper and the lower bounds tend to zero as the
SNR tends to infinity, and their ratios tend to one as the SNR tends to zero [16].
Improved bounds at finite SNR have subsequently been presented in [18]–[21] by
choosing different auxiliary measures. The MISO scenario, i.e., nT > nR = 1, was
treated in [22], [23]. By proposing an antenna-cooperation strategy, which relies as
much as possible on antennas with larger channel gains, several asymptotically tight
lower and upper bounds at high and low SNR were derived.

Many works also extended some of the above results to the MIMO case. In the
current literature, the capacity of MIMO channels was mostly studied in special
cases: 1) the channel matrix has full column rank, i.e., there are fewer transmit
than receive antennas: nT  nR, and the channel matrix is of rank nT [24]; 2) the
multiple-input single-output (MISO) case where the receiver is equipped with only a
single antenna: nR = 1; and 3) the general MIMO case but with only a peak-power
constraint [25] or only an average-power constraint [26], [27]. More specifically, [24]
determined the asymptotic capacity at high signal-to-noise ratio (SNR) when the
channel matrix is of full column-rank. For general MIMO channels with average-
power constraints only, the asymptotic high-SNR capacity was determined in [26],
[27]. The coding schemes of [26], [27] were extended to channels with both peak-
and average-power constraints, but they were only shown to achieve the high-SNR
pre-log (degrees of freedom), and not necessarily the exact asymptotic capacity.

In [28], the asymptotic capacity slope in the low-SNR regime is considered for
general MIMO channels under both a peak- and an average-power constraint. It
is shown that the asymptotically optimal input distribution in the low-SNR regime
puts the antennas in a certain order, and assigns positive mass points only to input
vectors in such a way that if a given input antenna is set to full power, then also all
preceding antennas in the specified order are set to full power. This strategy can be
considered in some degree as a generalization of the optimal signaling strategy for
MISO channels [22], [23]. However, whereas the optimal order in [28] needs to be
determined numerically, in the MISO case the optimal order naturally follows the
channel strengths of the input antennas.

Besides above bounds on capacity, many practical transmission schemes with
different modulation methods, such as pulse-position modulation or LED index
modulation based on orthogonal frequency-division multiplexing, were presented
in [29]–[31]. Code constructions were described in [21], [32]–[34].

When the FSOI channel suffers from fading, many capacity results were pre-
sented in the so called atmospheric turbulence channels [35]–[37]. However, these
results mainly focus on the analysis of the ergodic (average) capacity with different
turbulence distribution modelings, and without taking a peak-power constraint into
consideration. In this thesis we first attempt a theoretical analysis of the capacity
in our adopted model when the channel suffers from block fading.

The capacity of block fading channels heavily depends on the channel modeling
(such as the models for turbulence, fading, and antenna correlation) and the avail-
ability of channel state information (CSI) at the transmitter and receiver. In the
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classic block fading Gaussian channel model for RF communication, where there
exists an expected second moment constraint on its input, when both the transmit-
ter and receiver have perfect CSI, capacity can be achieved by a waterfilling power
allocation strategy [38], [39]. When the transmitter has no CSI, while the receiver
has perfect CSI, capacity is achieved by allocating equal power over all transmit
antennas [38], [40], [41]. When the transmitter has rate-limited CSI, which can be
obtained from a channel state feedback link, and the receiver has perfect CSI, capac-
ity then can be estimated by using feedback adaptation techniques, which include
beamforming transmission [42]–[44], and space-time precoding [45], [46]. Inspired
by above works, we assume that in our model, where the power is proportional to
the first moment of its input, the receiver has perfect CSI, and study three different
versions of transmitter CSI: no CSI, perfect CSI, and limited CSI.

1.3 Contributions
The main contributions of this thesis are as listed as below:

• MIMO FSOI Channel

– We propose a minimum-energy signaling for MIMO channels with nT >

nR > 1. It partitions the image space of vectors x̄ = Hx— an nR-
dimensional vector produced by multiplying an input vector x by the
channel matrix H— into

�
nT
nR

�
parallelepipeds, each one spanned by a

different subset of nR columns of the channel matrix (see Figures 3.1
and 3.2). In each parallelepiped, the minimum-energy signaling sets the
nT �nR inputs corresponding to the columns that were not chosen either
to 0 or to the full power according to a predescribed rule and uses the
nR inputs corresponding to the chosen columns for signaling within the
parallelepiped.

– We can restrict to minimum-energy singaling to achieve capacity. This
observation allows us to derive an equivalent capacity expression of the
MIMO channel in terms of the random image vector X̄, where the power
constraints on the input vector are translated into a set of constraints on
X̄. The equivalent capacity expression shows that the original channel
can be decomposed into a set of almost parallel nR⇥nR MIMO channels.
This decomposition helps us to obtain new upper and lower bounds on
channel capacity.

– Lower bounds on the capacity of the channel of interest are obtained by
applying the Entropy Power Inequality (EPI) and choosing input vectors
that maximize the differential entropy of X̄ under the imposed power
constraints.

– Upper bounds are derived by applying the duality-based upper-bounding
technique or maximum-entropy arguments to the equivalent capacity ex-
pression.
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– We restate the result that the low-SNR slope of the capacity of the MIMO
channel is determined by the trace of the covariance matrix of X̄, and
establish several properties for the optimal input distribution that max-
imizes this trace. We show that the covariance-trace maximizing input
distribution puts positive mass points in a way that if an antenna is set to
full power, then all preceding antennas in a specified order are also set to
full power. Further, the optimal probability mass function puts nonzero
probability to the origin and to at most nR + 1 other input vectors.

– We present the asymptotic capacity when the SNR tends to infinity, and
also give the slope of capacity when the SNR tends to zero. (This later
result was already proven in [28], but as described above, our results
simplify the computation of the slope.)

• SISO and MISO FSOI Channel

– We present a new duality-based upper bound for the SISO channel. It
beats all existing bounds in the moderate-SNR regime, and also asymp-
totically tight at high SNR.

– The asymptotic low-SNR capacity slope of the MISO channel is derived,
and it is achieved by an input vector that has two or three probability
mass points, irrespective of the number of antennas.

– We also derive a new duality-based upper bound for the MISO channel.
The upper bound is an extension of the derived upper bound in the SISO
case and also improves over all previous bounds in the moderate-SNR
regime.

• Block Fading FSOI Channel
We always assume that the receiver has perfect CSI. Then,

– Lower bounds are presented for the capacities without CSI, with perfect
CSI, and with limited CSI.

– The lower bounds for perfect and limited CSI are obtained based on the
proposed minimum-energy signaling strategy.

– For perfect CSI, the lower bound matches a new duality-based upper
bound in the high signal-to-noise ratio (SNR) regime.

– For limited CSI, the lower bound is close to the one with perfect CSI, but
requires only (nT � nR) log2

�
nT
nR

�
bits of feedback in each block.

1.4 Organization of the Thesis
This remainder of thesis is organized as follows:

Chapter 2 gives a precise description of the FSOI channel model. The capac-
ity expression on this channel is derived, and a useful bounding technique is also
introduced.
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In Chapters 3 and 4, we present two important auxiliary results which are useful
to the capacity analysis. In Chapter 3, the minimum-energy signaling is described
in detail. Chapter 4 characterizes the properties of channel input distribution that
maximizes the trace of the input covariance matrix.

Chapters 5 and 6 present our capacity results. In Chapter 5, the MISO channel
is investigated. The asymptotic slope at low SNR is characterized, and an asymp-
totically tight upper bound at high SNR is also presented. Chapter 6 considers the
general MIMO channel. Several upper and lower bounds are presented, and the
asymptotic capacities at high and low SNR are also derived.

Chapter 7 investigates the capacity when the channel suffers from block fading.
Upper and lower bounds on capacity are derived under three different assumptions
on the availability of CSI at the transmitter side: no CSI, perfect CSI, and limited
CSI.

1.5 Notation
We distinguish between random and deterministic quantities. A random variable is
denoted by a capital Roman letter, e.g., Z, while its realization is denoted by the
corresponding small Roman letter, e.g., z. Vectors are boldfaced, e.g., X denotes
a random vector and x its realization. The matrices in the thesis are denoted in
capital letters. The deterministic matrices are typeset in a special font, e.g., H,
while the random ones are typeset in another font, e.g., H. Constants are typeset
either in small Romans, in Greek letters, or in a special font, e.g., E or A. Entropy
is typeset as H(·), differential entropy as h(·), and mutual information as I(·; ·). The
relative entropy (Kullback-Leibler divergence) between probability vectors p and q

is denoted by D(pkq). The L1 -norm is indicate by k · k1, while k · k2 denotes the
L2 -norm. The logarithmic function log(·) and log2(·) denote the natural and base-2
logarithm, respectively.



Chapter 2

Free-Space Optical Intensity
Channel

In this chapter, we discuss a specific free-space optical intensity (FSOI) channel
model used for modeling one type of optical wireless communications. The channel
input corresponds to the optical intensity, therefore nonnegative, and is also con-
strained by an average- and a peak-power constraint. We consider the scenario when
the noise at the receiver is mainly due to the thermal noise, and other noise sources
can be neglected. Hence the noise can be assumed to be independent of the channel
input.

2.1 Channel Model

2.1.1 Physical Description
In the FSOI channel, the input signal is transmitted by the light emitting diodes
(LED) or laser diodes (LD). Conventional diodes emit light of wavelength between
850 and 950 nm, i.e., in the infrared spectrum. The modulation of the signals
onto this infrared light is technically very difficult using amplitude or frequency
modulation, as used for example in radio communication. Instead the simplest way
is to modulate the signal onto the optical intensity of the emitted light, which is
proportional to the optical intensity. Using intensity modulation, the intensity of
the emitted light is proportional to the electrical input current. Therefore, the
instantaneous optical power is proportional to the electrical input current and not
to its square as is usually the case for radio communication.

At the receiver, direct detection of the incident optical intensity is performed.
This means that the photo-detector produces an electrical current at the output
which is proportional to the detected intensity.

For our model we will neglect the impact of inter-symbol interference due to
multi-path propagation and assume that the direct line-of-sight path is dominant.
However, we do take into account that the signal is corrupted by additive noise.
Since the signal is transmitted through air and not any special optical medium
like, e.g., a fiber cable, the dominant noise source for the optical intensity is strong

7
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ambient light. Even if optical filters are used to filter the ambient light, some part of
it always arrives at the photo-detector and has typically much larger power than the
actual signal. This effect causes high intensity shot noise in the received electrical
signal that is independent of the signal itself. Due to eye safety and the danger of
potential thermal skin damage the optical peak-power and the optical average-power
have to be constrained.

2.1.2 Mathematical Model
We abstract the above physical description into the following nR⇥nT channel model:

Y = Hx+ Z. (2.1)

Here x = (x1, . . . , xnT)
T denotes the nT-dimensional channel input vector, where

Z denotes the nR-dimensional noise vector with independent standard Gaussian
entries,

Z ⇠ N (0, I), (2.2)

and where

H = [h1,h2, . . . ,hnT ] (2.3)

is the deterministic nR⇥nT channel matrix with nonnegative entries (hence h1, . . . ,hnT

are nR-dimensional column vectors).
Since the channel inputs correspond to optical intensities sent by the LEDs, they

are nonnegative:

xk 2 R
+
0 , k = 1, . . . , nT. (2.4)

We assume the inputs are subject to a peak-power (peak-intensity) and an average-
power (average-intensity) constraint:

Pr
⇥
Xk > A

⇤
= 0, 8 k 2 {1, . . . , nT}, (2.5a)

E
⇥
kXk1

⇤
 E, (2.5b)

for some fixed parameters A,E > 0. It should be noted that the average-power
constraint is on the expectation of the channel input and not on its square. Also
note that A describes the maximum power of each single LED, while E describes
the allowed total average power of all LEDs together. We denote the ratio between
the allowed average power and the allowed peak power by ↵:

↵ , E

A
. (2.6)

Throughout this thesis, we assume that

rank(H) = nR. (2.7)

In fact, if r , rank(H) is less than nR, then the receiver can first compute U
T
Y,

where U⌃V
T denotes the singular value decomposition of H, and then discard the

nR � r entries in U
T
Y that correspond to zero singular values. The problem is then

reduced to one for which (2.7) holds.1

1A similar approach can be used to handle the case where the components of the noise vector
Z are correlated.



2.2. CHANNEL CAPACITY 9

2.2 Channel Capacity
Shannon [47] showed that for memoryless channels with finite discrete input alphabet
X , finite discrete output alphabet Y , and input constraint function g(·), the channel
capacity C is given by

C = max
Q

I(X;Y ) (2.8)

where the maximum is taken over all input probability distributions Q on X that
satisfy the constraint:

EQ[g(X)]  E , (2.9)

where E is the average-cost constraint on the channel input X. This result for mem-
oryless channels with finite alphabets was generalized to the continuous alphabet in
[48], [49].

Hence the capacity for this channel has the following formula:

CH(A,↵A) = max
PX satisfying (2.5)

I(X;Y). (2.10)

The next proposition shows that, when ↵ >
nT
2 , the channel essentially reduces

to one with only a peak-power constraint. The other case where ↵  nT
2 will be the

main focus of this thesis.

Proposition 1. If ↵ >
nT
2 , then the average-power constraint (2.5b) is inactive,

i.e.,

CH(A,↵A) = CH

⇣
A,

nT

2
A

⌘
, ↵ >

nT

2
. (2.11)

If ↵  nT
2 , then there exists a capacity-achieving input distribution PX in (2.10) that

satisfies the average-power constraint (2.5b) with equality.

Proof: See Appendix A.1.1.

2.3 Duality Capacity Expression
Since in this thesis we are interested in deriving capacity bounds, we introduce a
dual capacity expression for the channel capacity which will prove useful to get
upper bounds in Chapters 5, 6, and 7.

In the case of a channel with finite input and output alphabets X and Y , respec-
tively, a dual expression for channel capacity is

C = min
R(·)

max
x2X

D
�
W (·|x)

��R(·)
�
. (2.12)

Every choice of a probability measure R(·) on the output Y thus leads to an
upper bound on channel capacity

C  max
x2X

D
�
W (·|x)

��R(·)
�
, R(·) 2 P(Y ). (2.13)
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In fact, by using the following identity [50],
X

x2X

P (x)D
�
W (·|x)

��R(·)
�
= I(X, Y ) +

X

x2X

P (x)D
�
PW (·)

��R(·)
�
, (2.14)

and because of the nonnegativity of the relative entropy, we get

I(X, Y ) 
X

x2X

P (x)D
�
W (·|x)

��R(·)
�
. (2.15)

Above results are useful in this thesis, and they can be extended to channels over
infinite alphabets [51, Theorem 2.1].



Chapter 3

Minimum-Energy Signaling

In this chapter we describe the minimum-energy signaling method for the FSOI
channel. This result is useful to get an alternative capacity expression in terms of
this random image vector, which we will specify in Chapter 5.

3.1 Problem Formulation
We first alternatively write the input-output relation as

Y = x̄+ Z, (3.1)

where we set

x̄ , Hx. (3.2)

Define now the set

R(H) ,
(

kX

i=1

�ihi : �1, . . . ,�k 2 [0,A]

)
. (3.3)

Note that this set is a zonotope. Since the nT-dimensional input vector x is con-
strained to the nT-dimensional hypercube [0,A]nT , the nR-dimensional image vector
x̄ takes value in the zonotope R(H).

For each x̄ 2 R(H), let

S(x̄) ,
�
x 2 [0,A]nT : Hx = x̄

 
(3.4)

be the set of input vectors inducing x̄. In the following section we derive the most
energy-efficient signaling method to attain a given x̄. This will allow us to express
the capacity in terms of X̄ = HX instead of X, which will prove useful in the next
chapters.

Since the energy of an input vector x is kxk1, we are interested in finding an
xmin that satisfies

kxmink1 = min
x2S(x̄)

kxk1. (3.5)

11
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3.2 MISO Minimum-Energy Signaling
In this section we consider the minimum-energy signaling in the MISO channel, i.e.,
nR = 1. In this case it can be described in a much simpler way. To see this, we
first permuate the entries in the channel vector h

T = (h1, . . . , hnT) such that they
are ordered decreasingly:

h1 � h2 � · · · � hnT > 0. (3.6)

Then, let

s0 , 0 (3.7a)

sk ,
kX

k0=1

hk0 , k 2 {1, . . . , nT}. (3.7b)

Also, notice that X̄ in this scenario is just a scalar:

X̄ = h
T
X =

nTX

k=1

hkXk. (3.8)

Then, the minimum-energy signaling is given by the following lemma, whose
proof can be found in [23].

Lemma 2. Fix some k 2 {1, 2, · · · , nT} and some x̄ 2 [Ask�1,Ask). The vector
that induces x̄ with minimum energy is given by x = (x1, . . . , xnT)

T, where

xi =

8
><

>:

A if i < k,

x̄�Ask�1

hk
if i = k,

0 if i > k.

(3.9)

The above results just show that the optimal signaling strategy in the MISO
channel is to rely as much as possible on antennas with larger channel gains. Specif-
ically, if an antenna is used for active signaling in a channel use, then all antennas
with larger channel gains should transmit at maximum allowed peak power A, and
all antennas with smaller channel gains should be silenced, i.e., send 0.

3.3 An Example of MIMO Minimum-Energy Sig-
naling

Before describing the minimum-energy signaling strategy on a general MIMO chan-
nel, we present a simple example.

Example 3. Consider the 2⇥ 3 MIMO channel matrix

H =

✓
2.5 2 1
1 2 2

◆
(3.10)
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D{1,2} R(H)

Figure 3.1: The zonotope R(H) for the 2 ⇥ 3 MIMO channel matrix H =
[2.5, 2, 1; 1, 2, 2] and its minimum-energy decomposition into three parallelograms.

composed of the three column vectors h1 = (2.5, 1)T, h2 = (2, 2)T, and h3 = (1, 2)T.
Figure 3.1 depicts the zonotope R(H) and partitions it into three parallelograms.
For any x̄ in the parallelogram D{1,2} , R

�
H{1,2}

�
, where H{1,2} , [h1, h2], the

minimum-energy input xmin inducing x̄ has 0 as its third component. Since H{1,2}
has full rank, there is only one such input inducing x̄:

xmin =

✓
H

�1
{1,2}x̄

0

◆
, if x̄ 2 D{1,2}. (3.11)

Similarly, for any x̄ in the parallelogram D{2,3} , R
�
H{2,3}

�
, where H{2,3} , [h2, h3],

the minimum-energy input xmin inducing x̄ has 0 as its first component. Therefore,

xmin =

✓
0

H
�1
{2,3}x̄

◆
, if x̄ 2 D{2,3}. (3.12)

Finally, for any x̄ in the parallelogram Ah2 +D{1,3}, where D{1,3} , R
�
H{1,3}

�
and

H{1,3} , [h1, h3], the minimum-energy input xmin inducing x̄ has A as its second
component, and hence

xmin =

0

@
xmin,1

A

xmin,3

1

A, if x̄ 2 Ah2 +D{1,3}, (3.13)

where
✓
xmin,1

xmin,3

◆
= H

�1
{1,3}(x̄�Ah2). (3.14)

⌃
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3.4 MIMO Minimum-Energy Signaling
In this section we now formally solve the optimization problem in (3.5) for an ar-
bitrary nT ⇥ nR channel matrix H. To this end, we need some further definitions.
Denote by U the set of all choices of nR columns of H that are linearly independent:

U ,
n
I = {i1, . . . , inR} ✓ {1, . . . , nT} : hi1 , . . . ,hinR

are linearly independent
o
.

(3.15)

For every one of these index sets I 2 U , we denote its complement by

Ic , {1, . . . , nT} \ I; (3.16)

we define the nR ⇥ nR matrix HI containing the columns of H indicated by I:

HI , [hi : i 2 I]; (3.17)

and we define the nR-dimensional parallelepiped

DI , R(HI). (3.18)

We shall see (Lemma 6 ahead) that R(H) can be partitioned into parallelepipeds
that are shifted versions of {DI} in such a way that, within each parallelepiped,
xmin has the same form, in a sense similar to (3.11)–(3.13) in Example 3.

We now specify the shifts of the parallelepipeds, which determine the partition
of R(H). Define the nR-dimensional vector

�I,j , H
�1
I hj, I 2 U , j 2 Ic

, (3.19)

and the sum of its components

aI,j , 1
T
nR
�I,j, I 2 U , j 2 Ic

. (3.20)

The shifts vI are then chosen as (3.21) where the binary coefficients {gI,j}I2U
are obtained through the following rule.

vI , A

X

j2Ic

gI,jhj, I 2 U . (3.21)

• If

aI,j 6= 1, 8 I 2 U , 8 j 2 Ic
, (3.22)

then let

gI,j ,
(
1 if aI,j > 1,

0 otherwise,
I 2 U , j 2 Ic

. (3.23)

• If (3.22) is violated, then run Algorithm 4 below to determine {gI,j}.
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Algorithm 4.
for j 2 {1, . . . , nT} do

for I 2 U such that I ✓ {j, . . . , nT} do
if j 2 Ic then

gI,j ,
(
1 if aI,j � 1,

0 otherwise
(3.24)

else
for k 2 Ic \ {j + 1, . . . , nT} do

gI,k ,

8
><

>:

1 if aI,k > 1 or
�
aI,k = 1 and the first component
of �I,j is negative

�
,

0 otherwise
(3.25)

end for
end if

end for
end for

Remark 5. The purpose of Algorithm 4 is to break ties when the minimum in (3.5)
is not unique. Concretely, if (3.22) is satisfied, then for all x̄ 2 R(H) the input
vector that achieves the minimum in (3.5) is unique. If there exists some aI,j = 1,
then there may exist multiple equivalent choices. The algorithm simply picks the
first one according to a certain order. M

We are now ready to describe our partition of R(H).

Lemma 6. Let DI, gI,j, and vI be as given in (3.18), (3.23) or Algorithm 4, and
(3.21), respectively.

1. The zonotope R(H) is covered by the parallelepipeds {vI+DI}I2U , which over-
lap only on sets of measure zero:

[

I2U

�
vI +DI

�
= R(H) (3.26)

and

vol
⇣�

vI +DI
�
\
�
vJ +DJ

�⌘
= 0, I 6= J , (3.27)

where vol(·) denotes the (nR-dimensional) Lebesgue measure.

2. Fix some I 2 U and some x̄ 2 vI + DI. The vector that induces x̄ with
minimum energy, i.e., xmin in (3.5), is given by x = (x1, . . . , xnT)

T, where

xi =

(
A · gI,i if i 2 Ic

,

�i if i 2 I,
(3.28)

where the vector � = (�i : i 2 I)T is given by

� , H
�1
I (x̄� vI). (3.29)
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Proof: The proof is deferred to Appendix A.2.1.

Figure 3.2 shows the partition of R(H) into the union (3.26) for two 2 ⇥ 4 ex-
amples. Figure 3.3 shows the union for a 2⇥ 3 example when there exist 2 column
vectors in the channel matrix that are linearly dependent.
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Figure 3.2: Partition of R(H) into the union (3.26) for two 2⇥ 4 MIMO examples.
The example on the left is for H = [7, 5, 2, 1; 1, 2, 2.9, 3] and the example on the right
for H = [7, 5, 2, 1; 1, 3, 2.9, 3].

Remark 7. If Condition (3.22) holds, then the vector x that solves the minimization
problem in (3.5) is unique. M

Hence the minimum-energy signaling strategy partitions the image space of vec-
tors x̄ into

�
nT
nR

�
parallelepipeds, each one spanned by a different subset of nR columns

of the channel matrix. In each parallelepiped, the minimum-energy signaling sets
the nT�nR inputs corresponding to the columns that were not chosen either to 0 or
to A according to a the rule specified in (3.21) and uses the nR inputs corresponding
to the chosen columns for signaling within the parallelepiped.
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0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

h1

h2
h3

Ah2 +D{1,3}

D{2,3}

R(H)

Figure 3.3: The zonotope R(H) for the 2 ⇥ 3 MIMO channel matrix H =
[2.5, 5, 1; 1.2, 2.4, 2] and its minimum-energy decomposition into two parallelograms.
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Chapter 4

Maximum-Variance
Signaling

This chapter describes a maximum-variance signaling that maximizes the trace
of the covariance matrix of the random image vector X̄. We characterize several
properties of the corresponding optimal input distribution that are useful to obtain
the low-SNR capacity slope in Chapters 5 and 6.

4.1 Problem Formulation
As we shall see in Chapters 5 and 6 ahead and in [28], at low SNR the asymptotic
capacity is characterized by the maximum trace of the covariance matrix of X̄ = HX,
which we denote

KX̄X̄ , E
⇥
(X̄� E[X̄])(X̄� E[X̄])T

⇤
. (4.1)

In this chapter we discuss properties of an optimal input distribution for X that
maximizes this trace. Thus, we are interested in the following maximization problem:

max
PX satisfying (2.5)

tr
�
KX̄X̄

�
(4.2)

where the maximization is over all input distributions PX satisfying the peak- and
average-power constraints given in (2.5).

4.2 MIMO Maximum-Variance Signaling
The following three lemmas show that the optimal input to the optimization problem
in (4.2) has certain structures: Lemma 8 shows that it is discrete with all entries
taking values in {0,A}; Lemma 9 shows that the possible values of the optimal X
form a “path” in [0,A]nT starting from the origin; and Lemma 10 shows that, under
mild assumptions, this optimal X takes at most nR + 2 values.

The proofs to the lemmas in this section are given in Appendix A.3.

19
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Lemma 8. An optimal input to the maximization problem in (4.2) uses for each
component of X only the values 0 and A:

Xi 2 {0,A} with probability 1, i = 1, . . . , nT. (4.3)

Lemma 9. An optimal input to the optimization problem in (4.2) is a PMF P
⇤
X

over a set {x⇤
1,x

⇤
2, . . .} satisfying

x
⇤
k,`  x

⇤
k0,` for all k < k

0
, ` = 1, . . . , nT. (4.4)

Furthermore, the first point is x
⇤
1 = 0, and

P
⇤
X(0) > 0. (4.5)

Notice that Lemma 8 and the first part of Lemma 9 have already been proven
in [28]. A proof is given in the appendix for completeness.

Lemma 10. Define T to be the power set of {1, . . . , nT} without the empty set, and
define for every J 2 T and every i 2 {1, . . . , nR}

rJ ,i ,
nTX

k=1

hi,k {k 2 J }, 8J 2 T , 8 i 2 {1, . . . , nR}. (4.6)

(Here J describes a certain choice of input antennas that will be set to A, while the
remaining antennas will be set to 0.) Number all possible J 2 T from J1 to J2nT�1

and define the matrix

R ,

0

BBBB@

2rJ1,1 · · · 2rJ1,nR |J1| krJ1k22
2rJ2,1 · · · 2rJ2,nR |J2| krJ2k22

.

.

.
. . .

.

.

.
.
.
.

.

.

.

2rJ2nT�1,1
· · · 2rJ2nT�1,nR |J2nT�1| krJ2nT�1

k22

1

CCCCA
(4.7)

where

rJ ,
�
rJ ,1, rJ ,2, . . . , rJ ,nR

�T
, 8J 2 T . (4.8)

If for every (nR + 2)⇥ (nR + 2) submatrix RnR+2 of matrix R is full-rank

rank(RnR+2) = nR + 2, 8RnR+2, (4.9)

then the optimal input to the optimization problem in (4.2) is a PMF P
⇤
X over a set

{0,x⇤
1, . . . ,x

⇤
nR+1} with nR + 2 points.

Remark 11. Lemmas 6 and 8 together imply that the optimal X̄ in (4.2) takes
value only in the set FCP of corner points of the parallelepipeds {vI +DI}:

FCP ,
[

I2U

⇢
vI +

X

i2I

�ihi : �i 2 {0,A}, 8 i 2 I
�
. (4.10)

Lemmas 9 and 10 further imply that the possible values of this optimal X̄ form a
path in FCP, starting from 0, and containing no more than nR + 2 points. M

Table 4.1 (see next page) illustrates four examples of distributions that maximize
the trace of the covariance matrix in some MIMO channels.
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Table 4.1: Maximum variance for different channel coefficients

channel gains ↵ max
PX

tr
�
KX̄X̄

�
PX : max

PX

tr
�
KX̄X̄

�

H =

✓
1.3 0.6 1 0.1
2.1 4.5 0.7 0.5

◆
1.5 16.3687A2

PX(0, 0, 0, 0) = 0.625,

PX(A,A,A,A) = 0.375

H =

✓
1.3 0.6 1 0.1
2.1 4.5 0.7 0.5

◆
0.9 12.957A2

PX(0, 0, 0, 0) = 0.7,

PX(A,A,A, 0) = 0.3

H =

✓
1.3 0.6 1 0.1
2.1 4.5 0.7 0.5

◆
0.6 9.9575A2

PX(0, 0, 0, 0) = 0.7438,

PX(A,A, 0, 0) = 0.1687,

PX(A,A,A, 0) = 0.0875

H =

✓
1.3 0.6 1 0.1
2.1 4.5 0.7 0.5

◆
0.3 6.0142A2

PX(0, 0, 0, 0) = 0.85,

PX(A,A, 0, 0) = 0.15

H =

0

@
0.9 3.2 1 2.1
0.5 3.5 1.7 2.5
0.7 1.1 1.1 1.3

1

A 0.9 23.8405A2
PX(0, 0, 0, 0) = 0.7755,

PX(A,A,A,A) = 0.2245

H =

0

@
0.9 3.2 1 2.1
0.5 3.5 1.7 2.5
0.7 1.1 1.1 1.3

1

A 0.75 20.8950A2
PX(0, 0, 0, 0) = 0.7772,

PX(A,A,A, 0) = 0.1413,

PX(A,A,A,A) = 0.0815

H =

0

@
0.9 3.2 1 2.1
0.5 3.5 1.7 2.5
0.7 1.1 1.1 1.3

1

A 0.6 17.7968A2
PX(0, 0, 0, 0) = 0.8,

PX(A,A,A, 0) = 0.2
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4.3 MISO Maximum-Variance Signaling
When nR = 1, the channel reduces to the MISO channel. Since X̄ in this case is
just a scalar, then the maximum variance of X̄ can be characterized by

Vmax(A,↵A) , max
PX̄

E
h�
X̄ � E[X̄]

�2i
, (4.11)

where the maximization is over all distributions on X̄ 2 R
+
0 satisfying the power

constraints.
The following Lemma 12 characterizes the optimal input to the optimization

problem in (4.11) in the MISO channel.

Lemma 12 (Lemma 8, [23]). 1. The maximum variance Vmax(A,↵A) can be
achieved by restricting PX̄ to the support set

{0, s1A, s2A, . . . , snTA}. (4.12)

2. The maximum variance Vmax(A,↵A) satisfies

Vmax(A,↵A) = A
2
� (4.13)

where

� , max
q1,..., qnT�0:
PnT

k=1 qk1
PnT

k=1 k·qk↵

(
nTX

k=1

s
2
kqk �

✓ nTX

k=1

skqk

◆2
)
. (4.14)

3. The optimal solution q
⇤ = (q⇤1, . . . , q

⇤
nT
) in (4.14) satisfies

PnT
k=1 qk < 1 with

strict inequality and
PnT

k=1 k · qk = ↵ with equality. Furthermore, whenever

rank

0

BBBBB@

1 1
s1

s1

1 2
s2

s2

.

.

.
.
.
.

.

.

.

1 nT
snT

snT

1

CCCCCA
= 3, (4.15)

the solution q
⇤ to (4.14) has at most two nonzero elements, i.e., under con-

dition (4.15), the maximum variance Vmax is achieved by an X̄
⇤ with positive

probability masses at 0 and at most two points from the set {s1A, . . . , snTA}.

See Table 4.2 for a few examples on numerical solution to the maximization
problem in (4.14).

For many examples, the optimizing q
⇤ has only a single positive entry, and thus

Vmax is achieved by an X̄
⇤ that has only two point masses (one of them at 0).

Table 4.1 presents some examples of maximum variances Vmax and the probability
mass functions of X̄⇤ achieving Vmax.
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Table 4.2: Maximum Variance for Different Channel Coefficients

channel gains ↵ Vmax QX̄ achieving Vmax

h = (3, 2.2, 0.1) 0.9 6.6924A2
QX̄(0) = 0.55, QX̄(s2A) = 0.45

h = (3, 2.2, 1.1) 0.7 7.1001A2
QX̄(0) = 0.7667, QX̄(s3A) = 0.2333

h = (3, 1.5, 0.3) 0.95 5.1158A2
QX̄(0) = 0.5907, QX̄(s2A) = 0.2780,

QX̄(s3A) = 0.1313
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Chapter 5

MISO Channel Capacity
Analysis

This chapter presents a new improved upper bound for the SISO channel and
new lower and upper bounds for the MISO channel. Many results in this chapter
are from [23], and included for completeness; Theorems 14 and 16 are the main new
results of this thesis.

5.1 Equivalent Capacity Expression
In this section we first express the channel capacity in terms of X̄. From Lemma 2
in Chapter 3, we define the random variable U over the alphabet {1, . . . , nT} to
indicate in which interval X̄ lies:

X̄ 2 [Ask�1,Ask) =) U = k, (5.1)

and U = nT if X̄ = AsnT . Let p = (p1, . . . , pnT) denote the probability vector of U :

pk , Pr[U = k], k 2 {1, . . . , nT}. (5.2)

The expression of the channel capacity for the MISO case can then be simplified
in the following lemma. The proof can be found in [23].

Lemma 13 (Proposition 3, [23]). The MISO capacity satisfies

Ch(A,↵A) = max
PX̄

I(X̄;Y ), (5.3)

where the maximization is over all laws on X̄ 2 R
+
0 satisfying

Pr
⇥
X̄ > snTA

⇤
= 0 (5.4a)

and
nTX

k=1

pk

✓
E[X̄ |U = k]�Ask�1

hk
+ (k � 1)A

◆
 ↵A. (5.4b)

25



26 CHAPTER 5. MISO CHANNEL CAPACITY ANALYSIS

5.2 Capacity Results

5.2.1 A Duality-Based Upper Bound for the SISO Channel
Consider first the SISO channel, where nT = 1 and h1 = 1. So here, the average-
power constraint is active when ↵  1

2 . We have the following upper bound:

Theorem 14 (Upper Bound on SISO Capacity). For any µ > 0, the SISO
capacity C1(A,↵A) under peak-power constraint A and average-power constraint
↵A is upper-bounded as:

C1(A,↵A)  log

✓
1 +

Ap
2⇡e

1� e
�µ

µ

◆
+

1p
2⇡

µ

A

⇣
1� e

�A2

2

⌘
+ µ↵

✓
1� 2Q

✓
A

2

◆◆
,

(5.5)

where Q(·) denotes the Q-function associated with the standard normal distribution.

Proof: See Appendix A.4.1.

5.2.2 A Duality-Based Upper Bound for the MISO Channel
In the following we present an analytic upper bound and compare it to numerical
lower bounds. As we will see, the upper bound is asymptotically tight at high-SNR,
and can improve on previous bounds in the regime of moderate SNR.

This upper bound is based on Theorem 5.5 and the following Proposition 15:

Proposition 15 (Sec. 6, Eq. (88), [23]). Let X
⇤ be a capacity-achieving input

distribution for the MISO channel with gain vector h. Define for all k 2 {1, . . . , nT}:

p
⇤
k , PrX⇤ [U = k], (5.6a)

↵
⇤
k , EX⇤


X̄ � sk�1A

hkA

����U = k

�
. (5.6b)

The capacity of the MISO channel is upper-bounded as

Ch(A,↵A)  H(p⇤) +
nTX

k=1

p
⇤
kC1(hkA,↵

⇤
khkA), (5.7)

and it holds that
nTX

k=1

p
⇤
k

�
↵
⇤
k + (k � 1)

�
 ↵. (5.8)

We can now state our new upper bound on the MISO capacity.

Theorem 16. The MISO capacity is upper-bounded as:

Ch(A,↵A)  sup
p

inf
µ>0

(
H(p) +

nTX

k=1

pk log

✓
1 +

Ahkp
2⇡e

· 1� e
�µ

µ

◆

+
µp
2⇡A

nTX

k=1

pk

hk

✓
1� e

�A2h2k
2

◆
+ µ

 
↵�

nTX

k=1

pk(k � 1)

!)

(5.9)
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where the supremum is over vectors p = (p1, . . . , pnT) satisfying
nTX

k=1

pk(k � 1)  ↵. (5.10)

Proof: Combine Proposition 15 and Theorem 14, and use the bound 1 �
2Q
�
A

2

�
< 1.

5.3 Asymptotic Capacity at low SNR
Proposition 17. The MISO capacity is upper-bounded as

Ch(A,↵A)  1

2
log(1 + Vmax(A,↵A)). (5.11)

Proof: Since X̄ and Z are independent, we know that the variance of Y

cannot exceed Vmax(A,↵A) + 1, and therefore

h(Y )  1

2
log 2⇡e(Vmax(A,↵A) + 1). (5.12)

The bound follows by subtracting h(Z) = 1
2 log 2⇡e from the above.

In fact, the asymptotic capacity slope at low SNR is only determined by two
parameters A and Vmax(A,↵A). It is shown that

Theorem 18 (Proposition 12, [23]). The low-SNR asymptotic capacity slope is

lim
A#0

Ch(A,↵A)

A
2 =

�

2
, (5.13)

where � is defined in (4.14).

5.4 Numerical Results
Example 19. Consider a SISO channel with ↵ = 0.4, the numerical results are
shown in Figure 5.1. We compare the upper bound (5.5) with the lower and upper
bounds in [23]. We also plot numerical lower bound with two, three, and four
probability mass points. At low- and moderate-SNR regime, these numerical lower
bounds are very close to the new upper bound. This indicates that it gives a good
approximation to the capacity and dominates other existing upper bounds in the
moderate-SNR regime. ⌃

Example 20. Consider the 3-LED MISO channel with gains h = (3, 2, 1.5). The
asymptotic low-SNR capacity slope is �/2 = 5.07 and is attained by choosing X̄

equal to 0 with probability q0 = 0.6 and equal to s3A with probability q3 = 0.4.
Figure 5.2 shows lower and upper bounds on the channel capacity at different SNR
values. The blue lower bound is obtained by numerically evaluating I(X̄;Y ) for
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Figure 5.1: Bounds on capacity of SISO channel with ↵ = 0.4.

the choice of X̄ that achieves the asymptotic low-SNR capacity. The magenta lower
bound follows by numerically optimizing I(X̄;Y ) over all choices of X̄ that have pos-
itive probability on X̄ = 0 and on at most two point masses from {s1A, . . . , snTA}.
In the low-SNR regime, these numerical lower bounds improve over the previous
analytic lower bounds in [23] and are very close to the maximum-variance upper
bound in [23, Prop. 9]. The gap between the best upper and lower bounds is larger
in the moderate SNR regime. In this regime, the best upper bound (see the black
line) is given in Theorem 16. ⌃
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Figure 5.2: Bounds on capacity of MISO channel with gains h = (3, 2, 1.5) and
average-to-peak power ratio ↵ = 1.2.
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Chapter 6

MIMO Channel Capacity
Analysis

In this chapter we present new upper and lower bounds on the capacity of the
general MIMO channels. As byproducts, we also characterize the asymptotic capac-
ity at low and high SNR. The results in this chapter are based on the results in [52],
[53].

6.1 Equivalent Capacity Expression
We state an alternative expression for the capacity CH(A,↵A) in terms of X̄ instead
of X. To that goal we define for each index set I 2 U

sI ,
X

j2Ic

gI,j, I 2 U , (6.1)

which indicates the number of components of the input vector set to A in order to
induce vI .

Remark 21. It follows directly from Lemma 6 that

0  sI  nT � nR. (6.2)
M

Proposition 22. The capacity CH(A,↵A) defined in (2.10) is given by

CH(A,↵A) = max
PX̄

I(X̄;Y) (6.3)

where the maximization is over all distributions PX̄ over R(H) subject to the power
constraint:

EU

h
AsU +

��H�1
U

�
E[X̄ |U ]� vU

���
1

i
 ↵A, (6.4)
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where U is a random variable over U such that1

�
U = I

�
=)

�
X̄ 2 (vI +DI)

�
. (6.5)

Proof: Notice that we have a Markov chain X (�� X̄ (�� Y, and that X̄ is
a function of X. Therefore, I(X̄;Y) = I(X;Y). Moreover, by Lemma 6, the range
of X̄ in R(H) can be decomposed into the shifted parallelepipeds {vI + DI}I2U .
Again by Lemma 6, for any image point x̄ in vI +DI , the minimum energy required
to induce x̄ is

AsI +
��H�1

I (x̄� vI)
��
1
. (6.6)

Without loss in optimality, we restrict ourselves to input vectors x that achieve some
x̄ with minimum energy. Then, by the law of total expectation, the average power
can be rewritten as

E
⇥
kXk1

⇤
=
X

I2U

pI E
⇥
kXk1

��U = I
⇤

(6.7)

=
X

I2U

pI E
h
AsI +

��H�1
I (X̄� vI)

��
1

���U = I
i

(6.8)

=
X

I2U

pI

⇣
AsI +

��H�1
I
�
E[X̄ |U = I]� vI

���
1

⌘
(6.9)

= EU

h
AsU +

��H�1
U

�
E[X̄ |U ]� vU

���
1

i
. (6.10)

Remark 23. The term inside the expectation on the left-hand side (LHS) of (6.4)
can be seen as a cost function for X̄, where the cost is linear within each of the
parallelepipeds {DI+vI}I2U (but not linear on the entire R(H)). At very high SNR,
the receiver can obtain an almost perfect guess of U . As a result, our channel can
be seen as a set of almost parallel channels in the sense of [54, Exercise 7.28]. Each
one of the parallel channels is an amplitude-constrained nR ⇥ nR MIMO channel,
with a linear power constraint. This observation will help us obtain upper and lower
bounds on capacity that are tight in the high-SNR limit. Specifically, for an upper
bound, we reveal U to the receiver and then apply previous results on full-rank
nR ⇥ nR MIMO channels [24]. For a lower bound, we choose the inputs in such a
way that, on each parallelepiped DI + vI , the vector X̄ has the high-SNR-optimal
distribution for the corresponding nR ⇥ nR channel. M

6.2 Capacity Results
Define

VH ,
X

I2U

|det(HI)|, (6.11)

1The choice of U that satisfies (6.5) is not unique, but U under different choices are equal with
probability 1.
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and let q be a probability vector on U with entries

qI , |detHI |
VH

, I 2 U . (6.12)

Further, define

↵th , nR

2
+
X

I2U

sI qI , (6.13)

where {sI} are defined in (6.1). Notice that ↵th determines the threshold value for ↵
above which X̄ can be made uniform over R(H). In fact, combining the minimum-
energy signaling in Lemma 6 with a uniform distribution for X̄ over R(H), the
expected input power is

E[kXk1] =
X

I2U

Pr[U = I] · E[kXk1 |U = I] (6.14)

=
X

I2U

qI

✓
AsI +

nRA

2

◆
(6.15)

= ↵thA (6.16)

where the random variable U indicates the parallelepiped containing X̄; see (6.5).
Equality (6.15) holds because, when X̄ is uniform over R(H), Pr[U = I] = qI , and
because, conditional on U = I, using the minimum-energy signaling scheme, the
input vector X is uniform over vI +DI .

Remark 24. Note that

↵th  nT

2
, (6.17)

as can be argued as follows. Let X be an input that achieves a uniform X̄ with
minimum energy. According to (6.16) it consumes an input power ↵thA. Define X

0

as

X
0
i , A�Xi, i = 1, . . . , nT. (6.18)

It must consume input power (nT � ↵th)A. Note that X
0 also induces a uniform X̄

because the zonotope R(H) is point-symmetric. Since X consumes minimum energy,
we know

E[kXk1]  E[kX0k1], (6.19)

i.e.,

↵thA  (nT � ↵th)A, (6.20)

which implies (6.17). M
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6.2.1 EPI Lower Bounds
The proofs to the theorems in this section can be found in Appendix A.5.1.

Theorem 25. If ↵ � ↵th, then

CH(A,↵A) � 1

2
log

✓
1 +

A
2nRV

2
H

(2⇡e)nR

◆
. (6.21)

Theorem 26. If ↵ < ↵th, then

CH(A,↵A) � 1

2
log

✓
1 +

A
2nRV

2
H

(2⇡e)nR
e
2⌫

◆
(6.22)

with

⌫ , sup
�2(max{0,nR

2 +↵�↵th},min{nR
2 ,↵})

⇢
nR

✓
1� log

µ

1� e�µ
� µ e

�µ

1� e�µ

◆
� inf

p
D(pkq)

�
,

(6.23)

where µ is the unique solution to the following equation:

1

µ
� e

�µ

1� e�µ
=

�

nR
, (6.24)

and where the infimum is over all probability vectors p on U such that
X

I2U

pIsI = ↵� � (6.25)

with {sI} defined in (6.1).

The two lower bounds in Theorems 25 and 26 are derived by applying the EPI,
and by maximizing the differential entropy h(X̄) under constraints (6.4). When
↵ � ↵th, choosing X̄ to be uniformly distributed on R(H) satisfies (6.4), hence
we can achieve h(X̄) = logVH. When ↵ < ↵th, the uniform distribution is no
longer an admissible distribution for X̄. In this case, we first select a PMF over
the events {X̄ 2 (vI + DI)}I2U , and, given X̄ 2 vI + DI , we choose the inputs
{Xi : i 2 I} according to a truncated exponential distribution rotated by the matrix
HI . Interestingly, it is optimal to choose the truncated exponential distributions for
all sets I 2 U to have the same parameter µ. This parameter is determined by the
power �

nR
allocated to the nR signaling inputs {Xi : i 2 I}.

6.2.2 Duality-Based Upper Bounds
The proofs to the theorems in this section can be found in Appendix A.5.2.

The first upper bound is based on an analysis of the channel with peak-power
constraint only, i.e., the average-power constraint (2.5b) is ignored.
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Theorem 27. For an arbitrary ↵,

CH(A,↵A)  sup
p

(
logVH �D(pkq) +

X

I2U

pI

nRX

`=1

log

✓
�I,` +

Ap
2⇡e

◆)
, (6.26)

where �I,` denotes the square root of the `th diagonal entry of the matrix H
�1
I H

�T
I ,

and where the supremum is over all probability vectors p on U .

The following two upper bounds in Theorems 28 and 29 hold only when ↵ < ↵th.

Theorem 28. If ↵ < ↵th, then
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where the supremum is over all probability vectors p on U such that
X

I2U

pIsI  ↵. (6.28)

Theorem 29. If ↵ < ↵th, then
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where Q(·) denotes the Q-function associated with the standard normal distribution,
and the supremum is over all probability vectors p on U satisfying (6.28).

The three upper bounds in Theorems 27, 28 and 29 are derived using the fact
that capacity cannot be larger than over a channel where the receiver observes both
Y and U . The mutual information corresponding to this channel I(X̄;Y, U) de-
composes as H(U) + I(X̄;Y|U), where the term H(U) indicates the rate that can
be achieved by coding over the choice of the parallelepiped to which X̄ belongs,
and I(X̄;Y|U) indicates the average rate that can be achieved by coding over a
single parallelepiped. By the results in Lemma 6, we can treat the channel ma-
trix as an invertible matrix when knowing U , which greatly simplifies the bounding
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on I(X̄;Y|U). The upper bounds are then obtained by optimizing over the prob-
abilities assigned to the different parallelepipeds. As we will see later, the upper
bounds are asymptotically tight at high SNR. The reason is that the additional
term I(X̄;Y, U)� I(X̄;Y) = I(X̄;U |Y) vanishes as the SNR grows large. To derive
the asymptotic high-SNR capacity, we also use previous results in [24], which derived
the high-SNR capacity of this channel when the channel matrix is invertible.

6.2.3 A Maximum-Variance Upper Bound
The upper bound in Theorem 30 is determined by the maximum trace of the covari-
ance matrix of X̄ under the constraints (2.5).

Theorem 30. For an arbitrary ↵,

CH(A,↵A)  nR

2
log

✓
1 +

1

nR
max
PX

tr
�
KX̄X̄

�◆
, (6.30)

where the maximization is over all input distributions PX satisfying the power con-
straints (2.5).

Note that Section 4.2 provides results that considerably simplify the maximiza-
tion in (6.30). In particular, there exists a maximizing PX that is a probability mass
function over 0 and at most nR + 1 other points on FCP, where FCP is defined in
(4.10).

6.3 Asymptotic Capacity
The proofs to the theorems in this section can be found in Appendix A.5.4.

Theorem 31 (High-SNR Asymptotics). If ↵ � ↵th, then

lim
A!1

�
CH(A,↵A)� nR logA
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If ↵ < ↵th, then

lim
A!1

�
CH(A,↵A)� nR logA

 
=

1

2
log

✓
V
2
H

(2⇡e)nR

◆
+ ⌫, (6.32)

where ⌫ < 0 is defined in (6.23)–(7.47).

Recall that ↵th is a threshold that determines whether X̄ can be uniformly dis-
tributed over R(H) or not. When ↵ < ↵th, compared with the asymptotic capacity
without active average-power constraint, the average-power constraint imposes a
penalty on the channel capacity. This penalty is characterized by ⌫ in (6.32). As
shown in Figure 6.1, ⌫ is a increasing function of ↵. When ↵ < ↵th, ⌫ is always
negative, and reaches 0 when ↵ � ↵th.
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Figure 6.1: The parameter ⌫ in (6.23) as a function of ↵, for a 2⇥ 3 MIMO channel
with channel matrix H = [1, 1.5, 3; 2, 2, 1] with corresponding ↵th = 1.4762. Recall
that ⌫ is the asymptotic capacity gap to the case with no active average-power
constraint.

Theorem 32 (Low-SNR Asymptotics, [28]). For an arbitrary ↵,

lim
A#0

CH(A,↵A)

A
2 =

1

2
max
PX

tr
�
KX̄X̄

�
, (6.33)

where the maximization is over all input distributions PX satisfying the power con-
straints

Pr
⇥
Xk > 1

⇤
= 0, 8 k 2 {1, . . . , nT}, (6.34a)

E
⇥
kXk1

⇤
 ↵. (6.34b)

Again, see the results in Section 4.2 about maximizing the trace of the covariance
matrix KX̄X̄.

Example 33. Figure 6.2 plots the asymptotic slope, i.e., the right-hand side (RHS)
of (6.33), as a function of ↵ for a 2⇥3 MIMO channel. As we can see, the asymptotic
slope is strictly increasing for all values of ↵ <

nT
2 . ⌃

6.4 Numerical Results
In the following we present some numerical examples of our lower and upper bounds.

Example 34. Figures 6.3 and 6.4 depict the derived lower and upper bounds for
a 2 ⇥ 3 MIMO channel (same channel as in Example 33) for ↵ = 0.9 and ↵ = 0.3
(both values are less than ↵th = 1.4762), respectively. Both upper bounds (6.27)
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Figure 6.2: Low-SNR slope as a function of ↵, for a 2 ⇥ 3 MIMO channel with
channel matrix H = [1, 1.5, 3; 2, 2, 1].

and (6.29) match with lower bound (6.22) asymptotically as A tends to infinity.
Moreover, upper bound (6.26) gives a good approximation on capacity when the
average-power constraint is weak (i.e., when ↵ is close to ↵th). Indeed, (6.26) is
asymptotically tight at high SNR when ↵ � ↵th. We also plot three numerical
lower bounds by optimizing I(X̄;Y) over all feasible choices of X̄ that have positive
probability on two, three, or four distinct mass points. (One of the mass points is
always at 0.) In the low-SNR regime, the upper bound (6.30) matches well with
the two-point numerical lower bound. Actually (6.30) shares the same slope with
capacity when the SNR tends to zero, which can be seen by comparing (6.30) with
Theorem 32. ⌃

Example 35. Figures 6.5 and 6.6 show similar trends in a 2 ⇥ 4 MIMO channel.
Note that although in the 2 ⇥ 3 channel of Figures 6.3 and 6.4 the upper bound
(6.27) is always tighter than (6.29), this does not hold in general, as can be seen in
Figure 6.6. ⌃
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Figure 6.3: Bounds on capacity of 2 ⇥ 3 MIMO channel with channel matrix H =
[1, 1.5, 3; 2, 2, 1], and average-to-peak power ratio ↵ = 0.9. Note that the threshold
of the channel is ↵th = 1.4762.
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Figure 6.4: Bounds on capacity of the same 2 ⇥ 3 MIMO channel as discussed in
Figure 6.3, and average-to-peak power ratio ↵ = 0.3.
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Figure 6.5: Bounds on capacity of 2 ⇥ 4 MIMO channel with channel matrix H =
[1.5, 1, 0.75, 0.5; 0.5, 0.75, 1, 1.5], and average-to-peak power ratio ↵ = 1.2. Note that
the threshold of the channel is ↵th = 1.947.
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Figure 6.6: Bounds on capacity of the same 2 ⇥ 4 MIMO channel as discussed in
Figure 6.5, and average-to-peak power ratio ↵ = 0.6.



Chapter 7

Block Fading Channel
Capacity Analysis

The capacity of block fading FSOI channel is investigated in this chapter. With
the assumption that the receiver always has perfect CSI, we present several upper
and lower bounds on channel capacity when the transmitter has no CSI, perfect
CSI, and limited CSI.

7.1 Channel Model
We first consider the following nR ⇥ nT block fading channel:

Yt[n] = Htxt[n] + Zt[n], (7.1)

where t 2 {1, 2, . . . ,B} denotes the block index, with B being the number of blocks;
n 2 {1, 2, . . . ,N} denotes the symbol index along a block, with N being the block
length; xt[n] =

�
x
(1)
t [n], . . . , x(nT)

t [n]
�T denotes the nT-dimensional channel input

vector; Zt[n] denotes the nR-dimensional noise vector with independent standard
Gaussian entries,

Zt[n] ⇠ N (0, I); (7.2)

and

Ht =
⇥
H

(1)
t ,H

(2)
t , . . . ,H

(nT)
t

⇤
(7.3)

is a random nR⇥nT channel matrix with nonnegative entries. Thus, H(1)
t , . . . ,H

(nT)
t

are nR-dimensional random column vectors. The channel noises {Zt[n]} are inde-
pendent and identically distributed (IID) inside and across blocks. The channel
matrix Ht remains constant within each block and is IID across blocks. We assume
it has finite density f(Ht) over the set of nonnegative real numbers (e.g., Rayleigh,
Weibull, Pareto, or gamma distributions).

43
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As before, since the channel inputs correspond to optical intensities, they are
nonnegative:

x
(k)
t [n] 2 R

+
0 , k = 1, . . . , nT, (7.4)

for all t 2 {1, . . . ,B} and n 2 {1, . . . ,N}, and we assume that the inputs are subject
to a peak-power (peak-intensity) and a per-block average-power (average-intensity)
constraint:

Pr
⇥
X

(k)
t [n] > A

⇤
= 0, 8 k 2 {1, . . . , nT}, (7.5a)

1

N
E

"
NX

n=1

��Xt[n]
��
1

#
 E, 8 t 2 {1, 2, . . . ,B}, (7.5b)

for some fixed parameters A,E > 0. Here, the power allocation is permitted only
inside each block. This restriction on power allocation is to prevent large, visible
fluctuations in the light.

We still denote ↵ as the ratio between the allowed average power and the allowed
peak power:

↵ , E

A
. (7.6)

The goal of the communication is to convey a random message M 2 {1, 2, . . . ,M}
from the transmitter to the receiver over a fixed number of B blocks. Encoding is
described separately for each kind of CSI. Decoding is as follows. Based on its
observed NB outputs Y1[1], . . . ,YB[N] and its knowledge of the B channel state
matrices H1, . . . ,HB, it produces an estimate

M̂ ,  (Y1[1], . . . ,YB[N],H1, . . . ,HB). (7.7)

The probability of error is defined as

P
(NB)
e = Pr

⇥
M̂ 6= M

⇤
, (7.8)

and the communication rate is given as

R =
log2 M

NB
. (7.9)

A rate R is said to be achievable if there exists a sequence of codes such that
P

(NB)
e ! 0 as B ! 1 (N remains fixed). The ergodic capacity CH of the channel is

defined as the supremum of all achievable rates.

7.2 No CSI at the Transmitter
In this section we assume that the transmitter has no CSI.1 In this case, the channel
input Xt[n] is just a function of the message M :

Xt[n] = �t(M), (7.10)

and the ergodic capacity is given by the following proposition.
1Note that the channel statistics are always assumed to be known everywhere.
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Proposition 36. If the transmitter has no CSI, then

CH = max
PX satisfying (7.5)

EH

⇥
I(X; X̄+ Z|H = H)

⇤
, (7.11)

where

X̄ , HX. (7.12)

Proof: By treating the CSI at the receiver as a part of the output of the
channel, the mutual information between channel input and output can be expressed
as

I(X;Y,H) = I(X;H) + I(X;Y|H) (7.13)
= I(X;Y|H). (7.14)
= EH

⇥
I(X;Y|H = H)

⇤
. (7.15)

Hence the ergodic capacity is

CH = max
PX satisfying (7.5)

EH

⇥
I(X;Y|H = H)

⇤
. (7.16)

We first present a lower bound based on the EPI, whose proof is given in Ap-
pendix A.6.1.

Theorem 37. If the transmitter has no CSI, then

CH � 1

2
sup

�2(0,nR
2 )

sup
G

EH


log2

✓
1 +

A
2nR(detHG)2 e2⌫

(2⇡e)nR

◆�
.

(7.17)

Here, the supremum is over all nT ⇥ nR matrices G with nonnegative entries, with
rank(G) = nR, with kGk1  ↵/�, and with row vectors satisfying kgik1  1, 8 i 2
{1, . . . , nT}; and ⌫ is defined as

⌫ , nR

✓
1� log2

µ

1� e�µ
� µ e

�µ

1� e�µ

◆
(7.18)

with µ being the unique solution to (6.24).

7.3 Perfect CSI at the Transmitter
In this section, we assume that the transmitter has perfect CSI, i.e., the channel
input Xt[n] is a function of the message M and the channel matrix Ht:2

Xt[n] = �t(M,Ht). (7.19)

The ergodic capacity in this scenario is characterized as follows.
2More generally, one could allow the channel input Xt[n] to depend on all previous channel

matrices H1, . . . ,Ht. But since we do not allow for power allocation across blocks and since the
channel matrices are independent across blocks, the more general definition is not helpful.
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Proposition 38. If the transmitter has perfect CSI, then

CH = EH

h
max

PX|H=H satisfying (7.5)
I(X; X̄+ Z|H = H)

i
. (7.20)

Proof: The choice of the distribution of X can be dependent on each realiza-
tion H of H, and the mutual information for the given H can be expressed as, by
treating the CSI at the receiver as a part of the output of the channel,

I(X,H = H;Y,H = H) = I(X;Y|H = H). (7.21)

Remark 39. The difference between Propositions 36 and 38 lies in the optimization
space of the input distributions. Here in Proposition 38, the input distribution
PX|H=H can depend on the channel realization H, which was not the case before. M

7.3.1 The Choice of PX|H=H

Fix an nR ⇥ nT channel matrix H for which every tuple of nR columns is linearly
independent.

The following parameters are important in this section. Let q be a probability
vector on U with entries

qI , |detHI |P
I02U |detHI0 | , I 2 U , (7.22)

and define

↵th(H) ,
nR

2
+
X

I2U

sI qI . (7.23)

If ↵ � ↵th(H), we choose PX so that X̄ is uniform over R(H). This is obtained
by defining a random variable over U with probability mass function (PMF) q and
conditional on Ũ = I, choose X according to the minimum-energy signaling in (3.28)
and so that X̄ is uniform over the shifted parallelepiped vI +DI .

If ↵ < ↵th(H), we fix a parameter

� 2
⇣
max

n
0,

nR

2
+ ↵� ↵th(H)

o
,min

n
nR

2
,↵

o⌘
(7.24)

and a PMF p = (pI : I 2 U) over the set U so that
X

I2U

pIsI = ↵� �. (7.25)

Let then Ũ be a random variable over U with PMF p, and conditional on Ũ = I,
choose X according to the minimum-energy signaling in (3.28) and so that X̄ follows
an nR-dimensional truncated exponential distribution over the shifted parallelepiped
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vI + DI . Specifically, given H = H and Ũ = I, the inputs {Xi : i 2 Ic} are
deterministically set to

Xi = A · gI,i(H), i 2 Ic
, (7.26)

where gI,i(H) is defined in (3.18), (3.23) or Algorithm 4, and the remaining inputs
{Xi : i 2 I} are chosen as the truncated exponential distribution,

fXi|Ũ=I(xi) =
µ

1� e�µ
e
�µxi

A , 8i 2 I. (7.27)

Then at the receiver side, the image vector X̄ = HX is of conditional density

fX̄|Ũ=I(x̄) =
1

A
nR |detHI |

·
✓

µ

1� e�µ

◆nR

e

�µkH�1
I (x̄�vI)k1

A . (7.28)

7.3.2 Capacity Results
We first present the following lower bound on capacity obtained with the EPI, whose
proof is given in Appendix A.6.2.

Theorem 40. If the transmitter has perfect CSI, then

CH � 1

2
EH


log2

✓
1 +

A
2nRV

2
H

(2⇡e)nR
e
2⌫(H)

◆�
, (7.29)

where for each realization of the channel matrix H:

VH ,
X

I2U

|detHI |, (7.30)

and if ↵ � ↵th(H), then

⌫(H) , 0, (7.31)

whereas if ↵ < ↵th(H), then

⌫(H) , sup
�2(max{0,nR

2 +↵�↵th},min{nR
2 ,↵})

(
nR

✓
1� log2

µ

1� e�µ
� µ e

�µ

1� e�µ

◆

� inf
p
D(pkq)

)
.

(7.32)

Thus, ⌫(H) is nonpositive and corresponds to the penalty due to ↵.

Next, we present a duality-based upper bound on capacity, whose proof is given
in Appendix A.6.3.
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Theorem 41. If the transmitter has perfect CSI, then

CH  EH

h
CH,1

�
↵ � ↵th(H)

 
+ CH,2

�
↵ < ↵th(H)

 i
, (7.33)

where for each realization of the channel matrix H: CH,1 and CH,2 are defined the
same as CH(A,↵A) in (6.26) and (6.27), respectively.

Finally, we analyze the asymptotic capacity for A,E ! 1 with ↵ held fixed.

Theorem 42. If the transmitter has perfect CSI, then

lim
A!1

�
CH � nR log2 A

 
=

1

2
EH


log2

✓
V
2
H

(2⇡e)nR

◆
+ ⌫(H)

�
↵ < ↵th(H)

 �
, (7.34)

where for each realization of the channel matrix H, ⌫(H) is defined by (7.31) for
↵ � ↵th(H) and by (7.32) for ↵ < ↵th(H).

Proof: See Appendix A.6.4.

7.4 Limited CSI at the Transmitter
In this section we assume an instantaneous rate-limited channel state feedback link
from the receiver to the transmitter. At the very beginning of each block, before
transmission begins, the receiver learns Ht and sends a function of it,

Ft(Ht), (7.35)

back to the transmitter.
The transmitter can thus compute its channel inputs Xt[n] as a function of the

received feedback Ft(Ht) and the message M :

Xt[n] = �
�
Ft(Ht),M

�
. (7.36)

Of course, the capacity of this channel depends on the functions {Ft}Bt=1. We
will assume a stationary feedback policy where

F1 = · · · = FB = F . (7.37)

Proposition 43. The capacity CH,F of a channel with limited CSI F(H) at the
transmitter is:

CH,F = EH


max

PX|F(H) satisfying (7.5)
I(X;Y|H = H)

�
. (7.38)

Proof: The choice of the distribution of X is dependent on F(H) for each
realization H of H, and the mutual information can be expressed as, by treating the
CSI at the receiver as a part of the output of the channel,

I(X,F(H);Y,H = H) = I(X;Y|H = H). (7.39)

Then the ergodic capacity is

CH = EH


max

PX|F(H) satisfying (7.5)
I(X;Y|H = H)

�
. (7.40)
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7.4.1 The Choice of PX|F(H)

We present a choice of the function F with only
�
nT
nR

�nT�nR function values, for which
the corresponding capacity with limited CSI is close to the one with perfect CSI.
Obviously, to implement this function it suffices that the receiver can feed back

RFB = (nT � nR) log2

✓
nT

nR

◆
(7.41)

bits in each block.
Before describing our choice of F , we first define a parameter:

aI,i(H) = A · gI,i, i 2 Ic
, (7.42)

where gI,i is defined in (3.18), (3.23) or Algorithm 4.
Notice that to achieve the rates in Theorem 40, it suffices that the transmitter

learns the binary values {aI,i(H)}I2U and the PMF p for each realization of H.
Learning the PMF p at the transmitter requires the state-feedback to have infinite
number of bits. In contrast, the binary values {aI,i(H)}I2U can be learned with only
(nT � nR) log2

�
nT
nR

�
bits of feedback.

We thus propose to set

F(H) , {aI,i(H) : I 2 U , i 2 Ic}. (7.43)

The transmitter then uses the following conditional distribution PX|F to generate
its (random) codebook for transmitting the desired message M . For each realization
F = f, pick an arbitrary positive number � 2 (0, nR

2 ) and let µ denote the solution
to (6.24) for the picked value of �. Then for this �, pick an arbitrary PMF p over
U satisfying (7.25), and let Ũ ⇠ p. (By (6.1) and (7.43), the parameters {sI}I2U
in condition (7.25) depend on H only through F(H), and thus the proposed p can
be used as a parameter for the distribution PX|F(H).) Similarly to before, given that
F = f and Ũ = I, we deterministically set

Xi = aI,i(H), i 2 Ic
, (7.44)

and choose the remaining inputs {Xi : i 2 I} according to the distribution in (7.27).

7.4.2 Capacity Results
We now present the following lower bound, whose proof is given in Appendix A.6.5.
Theorem 44. For the limited CSI function F in (7.43):

CH,F � EF(H)

"
sup

�2(0,nR
2 )

sup
p

EH|F

"
1

2
log

✓
1 +

A
2nRVH

2
e
2⌫?

(2⇡e)nR

◆##
(7.45)

where

⌫
? , nR

✓
1� log2

µ

1� e�µ
� µ e

�µ

1� e�µ

◆
�D(pkq), (7.46)

with µ satisfying (6.24), and where the supremum over p is over all PMFs satisfying
X

I2U

pIsI = ↵� �. (7.47)
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7.5 Numerical Results
Figure 7.1 illustrates the derived upper and lower bounds on the capacities for a
1⇥ 3 MISO channel where the entries {hi}i2{1,2,3} in the channel matrix H are IID
and follow a Rayleigh distribution:

f(hi) = 2hie
�hi

2 {hi � 0}, 8i 2 {1, 2, 3}. (7.48)

When the SNR tends to infinity, the lower bound in Theorem 40 coincides with the
upper bound in Theorem 41. Furthermore, the gap between the lower bound in
Theorem 44 below and the upper bound in Theorem 41 tends to a small constant at
high SNR. Thus, at high SNR a relatively small number of feedback bits is sufficient
to approach the perfect CSI capacity.
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Figure 7.1: A 1 ⇥ 3 MISO channel, where entries in H1⇥3 follow a Rayleigh distri-
bution, with ↵ = 0.4.



Chapter 8

Conclusions and
Perspectives

8.1 MIMO FSOI Channels
In this thesis we investigated the capacity of a general nR⇥nT MIMO FSOI channel
with nR > nT. We first expressed capacity as a maximization problem over distri-
butions for the image vector X̄ = HX. The main challenge there is to transform the
total average-power constraint on X to a constraint on X̄, as the mapping from x to
x̄ is many-to-one. This problem is solved by identifying, for each x̄, the input vector
xmin that induces this x̄ with minimum energy. Specifically, we showed that the
range of the image vectors x̄ can be decomposed into a number of parallelepipeds
such that, for all x̄ within one parallelepiped, the minimum-energy input vectors
xmin have a similar form.

At high SNR, the above minimum-energy signaling result allows the transmitter
to decompose the channel into several “almost parallel” channels, each of which
being an nR ⇥nR MIMO channel in itself. This is because, at high SNR, the output
y allows the receiver to obtain a good estimate of which of the parallelepipeds x̄

lies in. We can then apply previous results on the capacity of the MIMO channel
with full column rank. The remaining steps in deriving our results on the high-SNR
asymptotic capacity can be understood, on a high level, as optimizing probabilities
and energy constraints assigned to each of the parallel channels.

In the low-SNR regime, the capacity slope is shown to be proportional to the
trace of the covariance matrix of X̄ under the given power constraints. We proved
several properties of the input distribution that maximizes this trace. For example,
each entry in X should be either zero or the maximum value A, and the total number
of values of X with nonzero probabilities need not exceed nR + 2.

We also derived new upper and lower bounds on the capacity of SISO and MISO
FSOI channels. At low SNR, we characterized the capacity slope, and showed that
for almost all channel gains, the distribution to achieve the asymptotic low-SNR
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capacity slope only contains two or three positive probability mass points. These
mass points correspond to setting all input antennas to 0 or to setting some strongest
antennas to the maximum allowed peak power and the remaining weaker antennas
to 0. We also present improved upper bounds which are asymptotically tight at
high SNR and beat other existing upper bounds in large regimes of moderate- and
high-SNR regime. For certain parameters, these upper bounds also match well
with our derived numerical lower bounds indicating that these bounds give good
approximations to the channel capacity.

8.2 Block Fading FSOI Channel
We considered the scenario when the channel suffers from block fading. Lower
bounds were derived on the capacity of block fading channels in the three cases
where the transmitter has no CSI, perfect CSI, and limited CSI, respectively. For
perfect and limited CSI, our lower bounds are based on the proposed minimum-
energy signaling. In particular, for limited CSI, in each block, the receiver only sends
a finite set of binary values, which can be exactly characterized by (nT�nR) log2

�
nT
nR

�

bits per block, but the corresponding lower bound performs close to the lower bound
with perfect CSI. In the case of perfect CSI we also provided an upper bound on
capacity and showed that it approaches the proposed lower bound asymptotically in
the high-SNR regime. In this regime, the perfect CSI capacity can thus be closely
approached with only a small number of feedback bits per block.

8.3 Future Work
Smith’s seminal paper [14] showed that the optimal input distribution is discrete
with finite support. However, the exact capacity-achieving input distribution is
itself unknown to date, and even estimating the number of positive mass points
is currently insurmountable. Interestingly, the results in [55] seem to be related
with this involved problem. They show that for fixed m mass points, the so-called
Gauss quadrature constellation is capacity-achieving in the low SNR regime. The
peak power for the Gauss quadrature constellation is

p
m, so it seems reasonable to

conjecture that the number of mass point in the capacity-achieving input distribution
may scale as square of the peak power. This is a potentially interesting research
problem.

In the general MIMO FSOI channels, although the asymptotic capacities at low
and high SNR have been exactly characterized, existing lower and upper bounds
still have a large gap for small average-to-noise ratio in the finite SNR regime. New
methods and techniques may be introduced to get improved upper and lower bounds
in the MIMO case.

When the channel suffers from fading, in this thesis we only consider the sce-
nario when the receiver sends (nT � nR) log2

�
nT
nR

�
bits-feedback per channel block

to the transmitter. However, if the feedback capacity is less or larger than (nT �
nR) log2

�
nT
nR

�
bits per channel block, how to choose the feedback function, such that
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it can most efficiently describe the channel matrix in the rate-limited feedback link
to the transmitter, is an interesting extension to our current work.
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Appendix A

Proofs

A.1 Proofs of Chapter 2

A.1.1 A Proof of Proposition 1
Fix a capacity-achieving input X and let

↵
⇤ , E

⇥
kXk1

⇤
A

�1
. (A.1)

Define a , (A,A, . . . ,A)T and

X
0 , a�X. (A.2)

We have

E
⇥
kX0k1

⇤
= A(nT � ↵

⇤) (A.3)

and

I(X;Y) = I(X;Ha�Y) (A.4)
= I(X;Ha� HX� Z) (A.5)
= I(a�X;H(a�X)� Z) (A.6)
= I(a�X;H(a�X) + Z) (A.7)
= I(X0;HX0 + Z) (A.8)
= I(X0;Y0) (A.9)

where Y
0 , HX

0+Z, and where (A.7) follows because Z is symmetric around 0 and
independent of X.

Define another random vector X̃ as follows:

X̃ ,
(
X with probability p,

X
0 with probability 1� p.

(A.10)

Notice that, since I(X;Y) is concave in PX for a fixed channel law, we have

I(X̃; Ỹ) � p I(X;Y) + (1� p) I(X0;Y0). (A.11)
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Therefore, by (A.9),

I(X̃; Ỹ) � I(X;Y) (A.12)

for all p 2 [0, 1]. Combined with the assumption that X achieves capacity, (A.12)
implies that X̃ must also achieve capacity.

We are now ready to prove the two claims in the proposition. We first prove that
for ↵ >

nT
2 the average-power constraint is inactive. To this end, we choose p = 1

2 ,
which yields

E
⇥
kX̃k1

⇤
=

nT

2
A. (A.13)

Since X̃ achieves capacity (see above), we conclude that capacity is unchanged if
one strengthens the average-power constraint from ↵A to nT

2 A.
We now prove that, if ↵  nT

2 , then there exists a capacity-achieving input
distribution for which the average-power constraint is met with equality. Assume
that ↵⇤

< ↵ (otherwise X is itself such an input), then choose

p =
nT � ↵

⇤ � ↵

nT � 2↵⇤ . (A.14)

With this choice,

E
⇥
kX̃k1

⇤
= pE

⇥
kXk1

⇤
+ (1� p)E

⇥
kX0k1

⇤
(A.15)

=
�
p↵

⇤ + (1� p)(nT � ↵
⇤)
�
A (A.16)

= ↵A. (A.17)

Hence X̃ (which achieves capacity) meets the average-power constraint with equality.

A.2 Proofs of Chapter 3

A.2.1 A Proof of Lemma 6
We first restrict ourselves to the case where the condition in (3.22) is satisfied. The
implications caused if (3.22) is violated are discussed at the end.

We start with Part 2. The minimization problem under consideration,

min
x02S(x̄)

kx0k1, (A.18)

is over a compact set and the objective function is continuous, so a minimum must
exist. We are now going to prove that in fact the minimum is unique and is achieved
by the input vector x defined in (3.28). To that goal, we first link the components
�i in (3.28) with the components of some arbitrary input vector x

0 2 S(x̄), x0 6= x,
and then use this to show that x

0 consumes more energy than x.
In the following, Ii denotes the ith entry in I for i 2 {1, . . . , nR}. Thus, we can

restate (3.19) as

hj = HI�I,j =
nRX

i=1

�
(i)
I,j hIi , 8 j 2 Ic

, (A.19)
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where �(i)I,j, i = 1, . . . , nR, denote the components of �I,j.
So, we choose an arbitrary x

0 , (x0
1, . . . , x

0
nT
)T 2 S(x̄) and notice that

x̄ = Hx
0 (A.20)

=
nTX

j=1

x
0
jhj (A.21)

=
X

j2I

x
0
jhj +

X

j2Ic:
aI,j<1

x
0
jhj +

X

j2Ic:
aI,j>1

x
0
jhj (A.22)

=
X

j2I

x
0
jhj +

X

j2Ic:
aI,j<1

x
0
jhj +

X

j2Ic:
aI,j>1

Ahj �
X

j2Ic:
aI,j>1

�
A� x

0
j

�
hj (A.23)

=
nRX

i=1

x
0
IihIi +

X

j2Ic:
aI,j<1

x
0
j

nRX

i=1

�
(i)
I,j hIi +

X

j2Ic:
aI,j>1

Ahj �
X

j2Ic:
aI,j>1

�
A� x

0
j

� nRX

i=1

�
(i)
I,j hIi(A.24)

=
nRX

i=1

0

BB@x
0
Ii +

X

j2Ic:
aI,j<1

�
(i)
I,j x

0
j �

X

j2Ic:
aI,j>1

�
(i)
I,j
�
A� x

0
j

�

1

CCAhIi +
X

j2Ic:
aI,j>1

Ahj (A.25)

=
nRX

i=1

0

BB@x
0
Ii +

X

j2Ic:
aI,j<1

�
(i)
I,j x

0
j �

X

j2Ic:
aI,j>1

�
(i)
I,j
�
A� x

0
j

�

1

CCAhIi + vI , (A.26)

where in (A.24) we used (A.19) and where the last equality follows from (3.23) and
(3.21).

Since {hi : i 2 I} are linearly independent, they must span R
nR , and hence the

coefficients
8
>><

>>:
x
0
Ii +

X

j2Ic:
aI,j<1

�
(i)
I,j x

0
j �

X

j2Ic:
aI,j>1

�
(i)
I,j (A� x

0
j)

9
>>=

>>;
i2{1,...,nR}

(A.27)

uniquely determine x̄ � vI . Thus it follows from (3.29) that (A.27) must be equal
to {�i}i2{1,...,nR}, i.e. by (3.28), to {xIi}i2{1,...,nR}.

Next we argue that, if x0 6= x, then

kxk1 < kx0k1. (A.28)

To that goal notice that, because the components of x are nonnegative,

kxk1 =
nTX

j=1

xj (A.29)

=
X

i2Ic:
aI,i>1

xi +
X

i2Ic:
aI,i<1

xi +
nRX

i=1

xIi (A.30)
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=
X

i2Ic:
aI,i>1

A+
X

i2Ic:
aI,i<1

0 +
nRX

i=1

0

BB@x
0
Ii +

X

j2Ic:
aI,j<1

�
(i)
I,j x

0
j �

X

j2Ic:
aI,j>1

�
(i)
I,j
�
A� x

0
j

�

1

CCA (A.31)

=
X

j2Ic:
aI,j>1

A+
nRX

i=1

x
0
Ii +

X

j2Ic:
aI,j<1

nRX

i=1

�
(i)
I,j x

0
j �

X

j2Ic:
aI,j>1

nRX

i=1

�
(i)
I,j
�
A� x

0
j

�
(A.32)

=
X

j2Ic:
aI,j>1

A+
X

j2I

x
0
j +

X

j2Ic:
aI,j<1

aI,j|{z}
<1

x
0
j �

X

j2Ic:
aI,j>1

aI,j|{z}
>1

�
A� x

0
j

�
(A.33)

<

X

j2Ic:
aI,j>1

A+
X

j2I

x
0
j +

X

j2Ic:
aI,j<1

x
0
j �

X

j2Ic:
aI,j>1

(A� x
0
j) (A.34)

=
nTX

j=1

x
0
j = kx0k1. (A.35)

Here (A.31) follows from (3.23) and because {xIi} are identical to (A.27); (A.33)
follows from (3.20); and (A.34) holds because, since x

0 6= x, there must exist some
j 2 Ic, aI,j < 1, such that x0

j > 0, or some j 2 Ic, aI,j > 1, such that x0
j < A. This

completes the proof of Part 2.
We now prove Part 1. Fix I,J 2 U with I 6= J , and a point x̄ in the interior

of (vI + DI). We argue by contradiction that x̄ cannot be in (vJ + DJ ). To this
end, choose an index i 2 {1, . . . , nT} such that the channel vector hi is in HI but
not in HJ . Since I 6= J , such an index must exist. By definition of � in (3.29), any
x that is a solution to the minimization in (A.18) has xi lying in the open interval
(0,A). If x̄ is also in (vJ +DJ ), then xi must be 0 or A since i 2 J c. Since we have
shown that the solution to the minimization in (A.18) is unique, we have arrived
at a contradiction. Thus, no point can be in the interior of both (vI + DI) and
(vJ +DJ ), and therefore their intersection has Lebesgue measure zero.

Furthermore, clearly,
[

I2U

(vI +DI) ✓ R(H). (A.36)

Since the intersection of vI + DI and vJ + DJ has Lebesgue measure zero, the
reverse direction follows immediately by noting that both sets are closed and

vol
�
R(H)

�
=
X

I2U

vol(vI +DI). (A.37)

This latter equality holds because

vol(vI +DI) = A
nR |detHI | (A.38)

and by [56], [57]

vol
�
R(H)

�
= A

nR
X

I2U

|detHI |. (A.39)
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This completes the proof of Part 1.
Finally, we argue that the lemma holds also when (3.22) is violated. Note that

when aI,j = 1 for some I and j, then the solution to (A.18) is not necessarily unique
anymore. To circumvent this problem, note that Algorithm 4 can be interpreted
as generating a small perturbation of the matrix H. We fix some small values
✏1 > · · · > ✏nT > 0 and check through all aI,j, j 2 {1, . . . , nT}. When we encounter
a first tie aI,j = 1, we multiply the corresponding vector hj by a factor (1 + ✏1)
and thereby break the tie (✏1 is chosen to be small enough so that it does not affect
any other choices). If a second tie shows up, we use the next perturbation factor
(1 + ✏2) (which is smaller than (1 + ✏1), so we do not inadvertently revert our first
perturbation); and so on. The lemma is then proven with a continuity argument by
letting all of ✏1, . . . , ✏nT go to zero. We omit the details.

A.3 Proofs of Chapter 4

A.3.1 A Proof of Lemma 8
The ith diagonal element of KX̄X̄ can be decomposed as follows:

(KX̄X̄)i,i = E
h�
X̄i � E[X̄i]

�2i (A.40)

= E

2

4
 

nTX

k=1

hi,k

�
Xk � E[Xk]

�
!2
3

5 (A.41)

=
nTX

k=1

h
2
i,k E

h�
Xk � E[Xk]

�2i

+
nTX

k=1

nTX

`=1
`6=k

hi,khi,`

�
E[XkX`]� E[Xk]E[X`]

�
. (A.42)

Thus, the objective function in (4.2) is
nRX

i=1

nTX

k=1

h
2
i,k E

h�
Xk � E[Xk]

�2i
+

nRX

i=1

nTX

k=1

nTX

`=1
`6=k

hi,khi,`

�
E[XkX`]� E[Xk]E[X`]

�
. (A.43)

If we fix a joint distribution on (X1, . . . , XnT�1) and choose with probability 1 a
conditional mean E[XnT |X1, . . . , XnT�1], then the consumed total average input
power is fixed and every summand on the RHS of (A.43) is determined except for

E
h�
XnT � E[XnT ]

�2i
. (A.44)

This value is maximized—for any choice of joint distribution on (X1, . . . , XnT�1) and
conditional mean E[XnT |X1, . . . , XnT�1]—if XnT takes value only in the set {0,A}.
We conclude that, to maximize the expression in (4.2) subject to a constraint on the
average input power, it is optimal to restrict XnT to taking value only in {0,A}.

Repeating this argument for XnT�1, XnT�2, etc., we conclude that every Xk,
k = 1, . . . , nT, should take value only in {0,A}.
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A.3.2 A Proof of Lemma 9
Some steps in our proof are inspired by [28]. We start by rewriting the objective
function in (4.2) as:

tr
�
KX̄X̄

�
=

nRX

i=1

E
h�
X̄i � E[X̄i]

�2i (A.45)

=
nRX

i=1

E

2

4
 

nTX

k=1

hi,k

�
Xk � E[Xk]

�
!2
3

5 (A.46)

=
nRX

i=1

nTX

k=1

nTX

k0=1

hi,k hi,k0 E
⇥�
Xk � E[Xk]

��
Xk0 � E[Xk0 ]

�⇤
(A.47)

=
nTX

k=1

nTX

k0=1

nRX

i=1

hi,k hi,k0

| {z }
,k,k0

· Cov[Xk, Xk0 ] (A.48)

=
nTX

k=1

nTX

k0=1

k,k0 Cov[Xk, Xk0 ]. (A.49)

Thus, we need to maximize Cov[Xk, Xk0 ]. Assume that we have fixed the average
power Ek, k = 1, . . . , nT, assigned to each input antenna, and further assume that
we reorder the antennas such that

E1 � · · · � EnT . (A.50)

Note that since each antenna only uses a binary input Xk 2 {0,A}, the assignment
E[Xk] = Ek determines the probabilities:

Pr[Xk = A] =
Ek

A
(A.51)

and the variances:

Cov[Xk, Xk] = Var[Xk] = E
⇥
X

2
k

⇤
� E

2
k = EkA� E

2
k. (A.52)

For the covariances with k < k
0 we obtain

Cov[Xk, Xk0 ] = E[XkXk0 ]� EkEk0 (A.53)
= A

2 Pr[Xk = Xk0 = A]� EkEk0 (A.54)
= A

2 Pr[Xk0 = A] Pr[Xk = A |Xk0 = A]| {z }
1

� EkEk0 (A.55)

 AEk0 � EkEk0 (A.56)
=
�
A� Ek

�
Ek0 . (A.57)

The upper bound holds with equality if

Pr[Xk = A |Xk0 = A] = 1. (A.58)
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This choice is allowed, because for k < k
0 the ordering (A.50) is compatible with

Condition (A.58). This proves that the mass points can be ordered in such a way
that (4.4) holds.

We next prove by contradiction that the first mass point must be 0. By Lemma 8,
if x⇤

1 6= 0, then x
⇤
1 must contain at least one entry that equals A. By (4.4), that

entry must be A for all mass points used by the optimal input. Clearly, changing
its value from A to 0 for all mass points will not affect the trace of (4.1), but will
reduce the total input power. Hence we conclude that an input with x

⇤
1 6= 0 (or

with zero probability on 0) must be suboptimal.

A.3.3 A Proof of Lemma 10
We investigate the Karush-Kuhn-Tucker (KKT) conditions of the optimization prob-
lem (4.2). Using the definition of T and rJ ,i we rewrite the objective function of
(4.2) as

tr
�
KX̄X̄

�
=

nRX

i=1

⇣
E
⇥
X̄

2
i

⇤
�
�
E[X̄i]

�2⌘ (A.59)

= A
2
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i=1
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@
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J2T

pJ r
2
J ,i �

 
X

J2T

pJ rJ ,i

!2
1

A. (A.60)

Taking into account the constraints (2.5), the Lagrangian is obtained as:

L(p, µ0, µ1,µ) = A
2

nRX

i=1

0

@
X

J2T

pJ r
2
J ,i �

 
X

J2T

pJ rJ ,i

!2
1

A� µ0

 
X

J2T

pJ � 1

!

� µ1

 
X

J2T

pJ |J |� ↵

!
�
X

J2T

µJ (0� pJ ). (A.61)

The KKT conditions for the optimal PMF {p⇤K}K2U are as follows:

A
2

nRX

i=1

 
r
2
K,i � 2rK,i

X

J2T

p
⇤
J rJ ,i

!
� µ0 � µ1|K|+ µK = 0, K 2 T , (A.62a)

µ0

 
X

J2T

p
⇤
J � 1

!
= 0, (A.62b)

µ1

 
X

J2T

p
⇤
J |J |� ↵

!
= 0, (A.62c)

µKp
⇤
K = 0, K 2 T , (A.62d)
µ0 � 0, (A.62e)
µ1 � 0, (A.62f)
µK � 0, K 2 T , (A.62g)X

J2T

p
⇤
J  1, (A.62h)
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X

J2T

p
⇤
J |J |  ↵, (A.62i)

p
⇤
K � 0, K 2 T . (A.62j)

We define the vector m = (m1, . . . ,mnR) with components

mi ,
X

J2T

p
⇤
J rJ ,i, i = 1, . . . , nR, (A.63)

and rewrite (A.62a) as

A
2krKk22 � 2A2

r
T
Km� µ0 � µ1|K|+ µK = 0, K 2 T . (A.64)

Since by Lemma 9 P
⇤
X(0) > 0, it must hold that (A.62h) holds with strict inequality

and it thus follows from (A.62b) that µ0 = 0.
Next, assume by contradiction that there exist nR+2 choices K1, . . . ,KnR+2 2 T

with positive probability p
⇤
K`

> 0. Then, by (A.62d), µK`
= 0 for all ` 2 {1, . . . , nR+

2}. From (A.64) we thus have

2rT
K`
m+ µ̃1|K`| = krK`

k22, ` 2 {1, . . . , nR + 2}, (A.65)

with µ̃1 , µ1/A
2, which can be written in matrix form:
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2rK1,1 · · · 2rK1,nR |K1|
2rK2,1 · · · 2rK2,nR |K2|
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2rKnR+2,1 · · · 2rKnR+2,nR |KnR+2|

1

CCCCA

0

BBBBB@

m1

m2

.

.

.

mnR

µ̃1
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CCCCCA
=
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krK1k22
krK2k22
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.

krKnR+2k22

1

CCCA
. (A.66)

This is an over-determined system of linear equations in nR+1 variables m1, . . . ,mnR ,
µ̃1, which has a solution if, and only if,

rank
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BBB@

2rK1,1 · · · 2rK1,nR |K1|
2rK2,1 · · · 2rK2,nR |K2|
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.
.
.
.

2rKnR+2,1 · · · 2rKnR+2,nR |KnR+2|

1

CCCA

= rank
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BBB@

2rK1,1 · · · 2rK1,nR |K1| krK1k22
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.
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2rKnR+2,1 · · · 2rKnR+2,nR |KnR+2| krKnR+2k22

1

CCCA
. (A.67)

However, since the matrix on the LHS has only nR + 1 columns, its rank can be at
most nR + 1. The matrix on the RHS, on the other hand, has by assumption (see
(4.9)) rank nR+2. This is a contradiction. We have proven that there exist at most
nR + 1 values pK with positive values. Together with 0, there are at most nR + 2
mass points in total.
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A.3.4 A Proof of Lemma 12
The proof of Part 1 follows the same arguments as in the proof of Lemma 10. To
prove Part 2, we notice that a solution q

⇤ = (q⇤1, . . . , q
⇤
nT
) to (4.14) has to satisfyPnT

k=1 q
⇤
k < 1 because any X̄ that achieves maximum variance Vmax puts nonzero

probability on X̄ = 0. We further notice that the optimization problem (4.14) is
convex because s1, . . . , snT > 0. Consider the KKT conditions for this optimization
problem, and account for the fact that the linear constraint

PnT
k=1 q

⇤
k  1 is not

active. The KKT conditions are then given by the following six (in)equalities:

�sk(sk � 2sT
q) + µ0 · k � µk = 0, k 2 {1, . . . , nT}, (A.68a)

µkqk = 0, k 2 {1, . . . , nT}, (A.68b)

µ0

 
nTX

k=1

k · qk � ↵

!
= 0 (A.68c)

µi � 0, i 2 {0, 1, . . . , nT}, (A.68d)
nTX

k=1

k · qk  ↵, (A.68e)

qk � 0, k 2 {1, . . . , nT}. (A.68f)

A solution to this convex optimization always exists. Assume now that for such a
solution the inequality constraint

PnT
k=1 k · q⇤k  ↵ holds with strict inequality. The

corresponding Lagrange multiplier µ0 must then equal 0. Now, since for any q
⇤
i > 0,

µi = 0, (A.68a) then implies
si = 2sT

q
⇤
. (A.69)

But this can hold at most for a single i 2 {1, . . . , nT} because all values of si are
different (hnT > 0). Moreover, it can hold only for k = nT. Indeed, if (A.69) holds
for some i < nT, then the KKT condition (A.68a) cannot be satisfied for all k > i

because µk � 0. To conclude, if the inequality constraint
PnT

k=1 k · q⇤k  ↵ holds with
strict inequality, then the optimal q⇤ satisfies q

⇤
1 = q

⇤
2 = . . . = q

⇤
nT�1 and qnT = 1/2.

But this choice is only feasible for ↵ = nT
2 , in which case the inequality constraintPnT

k=1 k ·q⇤k  ↵ holds with equality. We have thus reached the desired contradiction,
irrespective of the value of ↵  nT

2 .
We now prove Part 3 of the lemma by contradiction. Assume that for positive

integers k > i > j the optimal solution q
⇤ satisfies q

⇤
k, q

⇤
i , q

⇤
j > 0. Then, by (A.68b),

µk = µj = µi = 0, and (A.68a) implies
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A. (A.70)

This is an overdetermined system of linear equations in the two “variables” (2sT
q)

and µ0 � 0, and it has a solution if, and only if,
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The proof follows then by noticing that this is only possible if the rank of both
matrices in (A.71) is 2. In particular, the left-most matrix cannot have rank 1. And
neither can the matrix in (4.15).

A.4 Proofs of Chapter 5

A.4.1 A Proof of Theorem 14
Let Q(·) denote the capacity-achieving input distribution. Then we evaluate the
upper bound [58]

C1(A,↵A) 
Z

D(W (·|x)kR(·)) dQ(x) (A.72)

for the test density

R(y) =

(
(1� �) ·R1(y) if y 2 [0,A],

� ·R2(y) otherwise,
(A.73)

where R1(y) is a density over [0,A],

R1(y) =
1

A
· µ

1� e�µ
· e�

µy
A , y 2 [0,A], (A.74)

for some µ > 0; R2(y) is a density over R\[0,A],

R2(y) =

8
<

:

1p
2⇡

e
� y2

2 if y < 0,

1p
2⇡

e
� (y�A)2

2 y > A;
(A.75)

and � 2 (0, 1) will be specified later.
For any X = x 2 [0, A] , we have

D(W (·|x)||R(·)) =
Z 1

�1
W (y|x) log W (y|x)

R(y)
dy

= �
Z 1

�1
W (y|x) logR(y) dy � log

p
2⇡e. (A.76)

We first expand the first term in the RHS of (A.76) as

�
Z �1

�1
W (y|x) logR(y) dy

= �
Z 0

�1
W (y|x) logR(y) dy �

Z A

0

W (y|x) logR(y) dy �
Z 1

A

W (y|x) logR(y) dy

(A.77)

We notice that

�
Z 0

�1
W (y|x) logR(y) dy

= �
Z 0

�1

1p
2⇡

e
� (y�x)2

2

✓
log

�p
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� y
2

2

◆
dy (A.78)
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= � log
�p
2⇡

Q(x) +
1

2

�
Q(x) + x

2Q(x)� x�(x)
�

(A.79)

 �
✓
log

�p
2⇡

� 1

2

◆
Q(x), (A.80)

where

�(x) , 1p
2⇡

e
�x2

2 , (A.81)

and (A.80) holds because of [59, Prop. A.8]

⇠Q(⇠)  �(⇠), ⇠ � 0. (A.82)

Similarly,

�
Z 1

A

WI,`(y|x) logRI,`(y) dy  � log
�p

2⇡e�I,`
· Q
✓
A� x

�I,`

◆
. (A.83)

Following the same arguments, we also obtain:

�
Z 1

A

W (y|x) logR(y) dy  �
✓
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�p
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� 1
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◆
Q(A� x). (A.84)

Moreover,
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 � log

✓
1� �

A

µ

1� e�µ

◆�
1�Q(x)�Q(A� x)
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+
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✓
�(0)� �(A) + x

✓
1� 2Q

✓
A

2

◆◆◆
, (A.87)

where (A.87) follows from the fact that 1�Q(x)�Q(A�x) achieves the maximum
value at x = A

2 when x 2 [0,A].
Combining (A.80), (A.84), and (A.87) with (A.72), and choosing

� =
µ
p
2⇡e

A · (1� e�µ) + µ
p
2⇡e

, (A.88)

now yields the desired upper bound in the theorem.



66 APPENDIX A. PROOFS

A.4.2 A proof of Theorem 18
The converse follows immediately from the maximum-variance upper bound in The-
orem 17. Achievability follows from [60, Thm. 2], which states that

Ch(A,↵A) � Vmax(A,↵A) + o(A2), (A.89)

where o(A2) decreases to 0 faster than A
2, i.e.,

lim
A#0

o(A2)

A
2 = 0. (A.90)

Note that the MISO channel under consideration in this paper satisfies the technical
conditions A–F in [60].

A.5 Proofs of Chapter 6

A.5.1 Derivation of Lower Bounds
For any choice of the random vector X̄ over R(H), the following holds:

CH(A,↵A) � I(X̄; X̄+ Z) (A.91)
= h(X̄+ Z)� h(Z) (A.92)

� 1

2
log
⇣
e
2h(X̄) + e

2h(Z)
⌘
� h(Z) (A.93)

=
1

2
log

 
1 +

e
2h(X̄)

(2⇡e)nR

!
, (A.94)

where (A.93) follows from the EPI [54].

Proof of Theorem 25

We choose X̄ to be uniformly distributed over R(H). To verify that this uniform
distribution satisfies the average-power constraint (6.4), we define

pI , Pr[U = I] (A.95)

and derive

EU

⇥
AsU +

��H�1
U

�
E
⇥
X̄
��U
⇤
� vU

���
1

⇤

= A

X

I2U

pI sI +
X

I2U

pI
��H�1

I
�
E[X̄ |U = I]� vI

���
1

(A.96)

= A

X

I2U

qI sI +
X

I2U

qI ·
nRA

2
(A.97)

= ↵thA (A.98)
 ↵A. (A.99)
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Here, (A.97) follows because when X̄ is uniformly distributed in R(H), we have

H
�1
I
�
E[X̄ |U = I]� vI

�
=

A

2
· 1nR (A.100)

and

pI = qI , I 2 U . (A.101)

The last inequality (A.99) holds by the assumption in the theorem.
The uniform distribution of X̄ results in

h(X̄) = log(AnR · VH), (A.102)

which, by (A.94), leads to (6.21).

Proof of Theorem 26

We choose

� 2
⇣
max

n
0,

nR

2
+ ↵� ↵th

o
,min

n
nR

2
,↵

o⌘
, (A.103)

a probability vector p satisfying (7.47), and µ as the unique solution to (6.24).
Note that such choices are always possible as can be argued as follows. From

(A.103) one directly sees that 0 < � <
nR
2 . Thus, 0 <

�
nR

<
1
2 , which corresponds

exactly to the range where (6.24) has a unique solution. From (A.103) it also follows
that nR

2 + ↵� ↵th < � < ↵ and thus

0 < ↵� � < ↵th �
nR

2
 nT

2
� nR

2
, (A.104)

where the inequality follows from (6.17). So the RHS of (6.25) takes value within the
interval

�
0, nT�nR

2

�
. By Remark 21, the LHS of (7.47) can take value in the interval

[0, nT �nR], which covers the range of the RHS. The existence of p satisfying (6.25)
now follows from the continuity of the LHS of (6.25) in p.

For each I we now pick the probability density function (PDF) fX̄|U=I to be the
nR-dimensional product truncated exponential distribution rotated by the matrix
HI :

fX̄|U=I(x̄) =
1

A
nR |detHI |

·
✓

µ

1� e�µ

◆nR

e

�µkH�1
I (x̄�vI)k1

A . (A.105)

Note that this corresponds to the entropy-maximizing distribution under a total
average-power constraint. The average-power constraint (6.4) is satisfied because
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(A.106)
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✓
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µ
� e
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1� e�µ

◆◆
(A.107)
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=
X

I2U

pI
�
AsI +A�

�
(A.108)

= A

X

I2U

pIsI +A� (A.109)

= A(↵� �) +A� (A.110)
= ↵A. (A.111)

Here, (A.107) follows from the expected value of the truncated exponential distri-
bution; (A.108) is due to (6.24); and (A.110) follows from (6.25).

Furthermore,

h(X̄) = I(X̄;U) + h(X̄|U) (A.112)
= H(U) + h(X̄|U) (A.113)
= H(p) +

X

I2U

pI h(X̄|U = I) (A.114)

= H(p) +
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pI log|detHI |+ nR logA� nR log
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(A.115)
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pI log
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+ logVH + nR logA
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(A.116)

= �D(pkq) + logVH + nR logA+ nR

✓
1� log
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1� e�µ
� µ e

�µ

1� e�µ

◆
.

(A.117)

Here, (A.113) holds because H(U |X̄) = 0; (A.115) follows from the differential
entropy of a truncated exponential distribution; and in (A.117) we used the definition
of q in (6.12). Then, (6.22) follows by plugging (A.117) into (A.94).

A.5.2 Derivation of Upper Bounds
Let X̄

? be a maximizer in (6.3) and let U
? be defined by X̄

? as in (6.5). Then,

CH(A,↵A) = I
�
X̄

?; X̄? + Z
�

(A.118)
 I
�
X̄

?; X̄? + Z, U
?
�

(A.119)
= H(U?) + I

�
X̄

?; X̄? + Z
��U?
�
. (A.120)

For each set I 2 U , we have

I
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X̄

?; X̄? + Z
��U? = I

�
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? � vI ; (X̄
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(A.121)
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�1
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(A.122)
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= I(XI ;XI + ZI |U? = I) (A.123)
where we have defined

ZI , H
�1
I Z, (A.124)

XI , H
�1
I (X? � vI). (A.125)

It should be noted that
ZI ⇠ N

�
0,H�1

I H
�T
I
�
. (A.126)

Moreover, XI is subject to the following peak- and average-power constraints:
Pr
⇥
X̄I,` > A

⇤
= 0, 8 ` 2 {1, . . . , nR}, (A.127a)

E
⇥
kXIk1

⇤
= EI , (A.127b)

for some EI � 0, where the set {EI : I 2 U} satisfies
X

I2U

pI(sIA+ EI)  ↵A. (A.128)

To further bound the RHS of (A.123), we use the duality-based upper-bounding
technique using a product output distribution

RI(yI) =
nRY

`=1

RI,`(yI,`). (A.129)

Denoting by WI(·|XI) the transition law of the nR ⇥ nR MIMO channel with input
XI and output YI , XI + ZI , and by WI,`(·|X̄I,`) the marginal transition law of
its `th component, we have:
I(XI ;XI + ZI |U? = I)

 EXI |U?=I
⇥
D
�
WI(·|XI)

��RI(·)
�⇤

(A.130)
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EWI(YI |XI)[logRI,`(YI,`)]

#

(A.131)
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log 2⇡e+ log|detHI |�

nRX
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EX̄I,`|U?=I

h
EWI,`(YI,`|X̄I,`)[logRI,`(YI,`)]

i
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(A.132)
where the last equality holds because

h(XI + ZI |XI , U
? = I) = h(ZI) =
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(2⇡e)nR detH�1
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I
�
. (A.133)

We finally combine (A.120) with (A.123) and (A.132) to obtain

CH(A,↵A)  H(p⇤)�
nRX

`=1

X

I2U

p
⇤
I EX̄I,`|U?=I

h
EWI,`(YI,`|X̄I,`)[logRI,`(YI,`)]

i

+
X

I2U

p
⇤
I log|detHI |�

nR

2
log 2⇡e, (A.134)

where p
⇤ denotes the probability vector of U?. The bounds in Section 6.2.2 are then

found by picking appropriate choices for the distribution on the output alphabet
RI,`(·). We elaborate on this in the following.
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Proof of Theorem 27

Inspired by [17] and [20], we choose

RI,`(y) =

8
>>>><

>>>>:
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2�2
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(A.135)

where � 2 (0, 1) will be specified later. Recall that �I,` is the square root of the `th
diagonal entry of the matrix H

�1
I H

�T
I , i.e.,

�I,` =
q
Var[ZI,`]. (A.136)

We notice that
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(A.139)

= � log
�p

2⇡e�I,`
· Q
✓

x

�I,`

◆
, (A.140)

where �(·) is defined in (A.81), and (A.139) holds because of (A.82).
Similarly,

�
Z 1

A

WI,`(y|x) logRI,`(y) dy  � log
�p

2⇡e�I,`
· Q
✓
A� x

�I,`

◆
. (A.141)

Moreover, we have

�
Z

A

0

WI,`(y|x) logRI,`(y) dy = �
Z

A

0

1p
2⇡�I,`

e
� (y�x)2

2�2
I,` log

(1� �)

A
dy (A.142)

= log

✓
A

1� �

◆
·
✓
1�Q

✓
x

�I,`

◆
�Q

✓
A� x

�I,`

◆◆
.

(A.143)

We choose

� =

p
2⇡e�I,`

A+
p
2⇡e�I,`

(A.144)
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and obtain from (A.140), (A.141), and (A.143)

�EWI,`(YI,`|X̄I,`)[logRI,`(YI,`)]  log
�
A+

p
2⇡e�I,`

�
. (A.145)

Substituting (A.145) into (A.134) then yields

CH(A,↵A)  sup
p

(
H(p)� nR

2
log 2⇡e+

X

I2U

pI log|detHI |

+
X

I2U

pI

nRX

`=1

log
⇣
A+

p
2⇡e�I,`

⌘)
(A.146)

= sup
p

(
H(p) +

X

I2U

pI log
|detHI |

VH

+ logVH

+
X

I2U

pI

nRX

`=1

log

✓
�I,` +

Ap
2⇡e

◆)
(A.147)

= sup
p

(
logVH �D(pkq) +

X

I2U

pI

nRX

`=1

log

✓
�I,` +

Ap
2⇡e

◆)
.

(A.148)

Proof of Theorem 28

We choose

RI,`(y) =

8
>>>>><

>>>>>:

�p
2⇡�I,`

e
� y2

2�2
I,` if y 2 (�1, 0),

1��
A

· µ
1�e�µ e

�µy
A if y 2 [0,A],

�p
2⇡�I,`

e
� (y�A)2

2�2
I,` if y 2 (A,1),

(A.149)

where � 2 (0, 1) and µ > 0 will be specified later.
We notice that the inequalities in (A.140) and (A.141) still hold, while

�
Z

A

0

WI,`(y|x) logRI,`(y) dy

= �
Z

A

0

1p
2⇡�I,`

e
� (y�x)2

2�2
I,`

✓
log

1� �

A

µ

1� e�µ
� µ

A
y

◆
dy (A.150)

= � log

✓
1� �

A

µ

1� e�µ

◆✓
1�Q

✓
x

�I,`

◆
�Q

✓
A� x

�I,`

◆◆

+
µ�I,`

A

✓
�

✓
x

�I,`

◆
� �

✓
A� x

�I,`

◆◆
+

µ

A
x

✓
1�Q

✓
x

�I,`

◆
�Q

✓
A� x

�I,`

◆◆

(A.151)

 � log

✓
1� �

A

µ

1� e�µ

◆✓
1�Q

✓
x

�I,`

◆
�Q

✓
A� x

�I,`

◆◆
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+
µ�I,`

A

✓
�(0)� �

✓
A

�I,`

◆◆
+

µ

A
x

✓
1� 2Q

✓
A

2�I,`

◆◆
(A.152)

 � log

✓
1� �

A

µ

1� e�µ

◆✓
1�Q

✓
x

�I,`

◆
�Q

✓
A� x

�I,`

◆◆

+
µ�I,`

A

✓
�(0)� �

✓
A

�I,`

◆◆
+

µ

A
x. (A.153)

Here (A.152) follows from the fact that, for ⇠ 2 [0,A], 1�Q(⇠)�Q(A� ⇠) achieves
the maximum value at ⇠ = A

2 , and that �(⇠) is monotonically decreasing; and (A.153)
holds because 1� 2Q(⇠)  1 and because x � 0.

Combining (A.140), (A.141), and (A.153), and choosing

� =
µ
p
2⇡e�I,`

A(1� e�µ) + µ
p
2⇡e�I,`

(A.154)

now yield

�EWI,`(YI,`|x̄I,`)[logRI,`(YI,`)]

 log

✓p
2⇡e�I,` +A · 1� e

�µ

µ

◆
+

µ�I,`

A
p
2⇡

 
1� e

� A2

2�2
I,`

!
+

µ

A
x̄I,`. (A.155)

Substituting (A.155) into (A.134), we have

CH(A,↵A)

 H(p⇤) +
X

I2U

p
⇤
I log|detHI |�

nR

2
log 2⇡e+

X

I2U

p
⇤
I

nRX

`=1

log

✓p
2⇡e�I,` +A · 1� e

�µ

µ

◆

+
µ

A
p
2⇡

X

I2U

p
⇤
I

nRX

`=1

�I,`

 
1� e

� A2

2�2
I,`

!
+

µ

A

X

I2U

p
⇤
I

nRX

`=1

E
⇥
X̄I,`

��U? = I
⇤

(A.156)

= H(p⇤) +
X

I2U

p
⇤
I log

|detHI |
VH

+ logVH +
X

I2U

p
⇤
I

nRX

`=1

log

✓
�I,` +

Ap
2⇡e

· 1� e
�µ

µ

◆

+
µ

A
p
2⇡

X

I2U

p
⇤
I

nRX

`=1

�I,`

 
1� e

� A2

2�2
I,`

!
+

µ

A

X

I2U

p
⇤
I
��H�1

I
�
E[X? |U? = I]� vI

���
1

(A.157)

 logVH �D(p⇤kq) +
X

I2U

p
⇤
I

nRX

`=1

log

✓
�I,` +

Ap
2⇡e

· 1� e
�µ

µ

◆

+
µ

A
p
2⇡

X

I2U

p
⇤
I

nRX

`=1

�I,`

 
1� e

� A2

2�2
I,`

!
+ µ

 
↵�

X

I2U

p
⇤
IsI

!
, (A.158)

where (A.157) follows from (A.125), and (A.158) from (6.4). Theorem 28 is proven
by taking the supremum over the probability vector p and the infimum over µ > 0.
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Proof of Theorem 29

We choose

RI,`(y) =

8
>>>>>><

>>>>>>:

1p
2⇡�I,`

e
� y2

2�2
I,` if y 2 (�1,��),

µ
A
·

1�2Q
✓

�
�I,`

◆

e
µ�
A �e�µ(1+ �

A
)
e
�µy

A if y 2 [��,A+ �],

1p
2⇡�I,`

e
� (y�A)2

2�2
I,` if y 2 (A+ �,1),

(A.159)

where �, µ > 0 are free parameters. Following the steps in the proof of [16, App. B.B]
and bounding 1�Q(⇠1)�Q(⇠2)  1, we obtain:

�EX̄I,`|U?=I

h
EWI,`(YI,`|X̄I,`)[logRI,`(YI,`)]

i

 log

0

@A · e
µ�
A � e

�µ(1+ �
A
)

µ

⇣
1� 2Q

⇣
�

�I,`

⌘⌘

1

A+
�p

2⇡�I,`
e
� �2

2�2
I,` +Q

✓
�

�I,`

◆

+
µ�I,`

A
p
2⇡

 
e
� �2

2�2
I,` � e

� (A+�)2

2�2
I,`

!
+

µ

A
E
⇥
X̄I,`

��U? = I
⇤
. (A.160)

Plugging (A.160) into (A.134) and using a derivation analogous to (A.156)–(A.158)
then results in the given bound.

A.5.3 Derivation of Maximum-Variance Upper Bounds
Proof of Theorem 30

Using that

h(Y)  1

2
log
�
(2⇡e)nR detKYY

�
, (A.161)

where

KYY = KX̄X̄ + I, (A.162)

we have

CH(A,↵A) = max
PX

�
h(Y)� h(Z)

 
(A.163)

 max
PX

⇢
1

2
log
�
(2⇡e)nR det(KX̄X̄ + I)

�
� 1

2
log(2⇡e)nR

�
(A.164)

= max
PX

1

2
log det(I+ KX̄X̄) (A.165)

 max
PX

1

2
log

nRY

i=1

�
I+ KX̄X̄

�
i,i

(A.166)
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= max
PX

nR

2

nRX

i=1

1

nR
log
⇣
1 +

�
KX̄X̄

�
i,i

⌘
(A.167)

 max
PX

nR

2
log

 
1 +

nRX

i=1

1

nR

�
KX̄X̄

�
i,i

!
(A.168)

= max
PX

nR

2
log

✓
1 +

1

nR
tr
�
KX̄X̄

�◆
(A.169)

=
nR

2
log

✓
1 +

1

nR
max
PX

tr
�
KX̄X̄

�◆
. (A.170)

Here, (A.166) follows from Hadamard’s inequality, and (A.168) follows from Jensen’s
inequality.

A.5.4 Derivation of Asymptotic Results
Proof of Theorem 31

It follows directly from Theorem 25 that the RHS of (6.31) is a lower bound to its
LHS. To prove the other direction, using that D(pkq) � 0, we have from Theorem 27
that

CH(A,↵A)  logVH + nR log

✓
�max +

Ap
2⇡e

◆
(A.171)

where

�max , max
I2U

`2{1,...,nR}

�I,`. (A.172)

This proves that the RHS of (6.31) is also an upper bound to its LHS, and hence
completes the proof of (6.31).

Next, we prove (6.32). Again, that its RHS is a lower bound to its LHS follows
immediately from Theorem 26. To prove the other direction, we define for any p:

�(p) , ↵�
X

I2U

pIsI  ↵. (A.173)

We then fix A � 1 and choose µ depending on �(p) to be

µ =

8
><

>:

µ
⇤(p) if A�(1�⇣)

<
�(p)
nR

<
1
2 ,

A
1�⇣ if �(p)

nR
 A

�(1�⇣)
,

1
A

if �(p)
nR

� 1
2 ,

(A.174)

where 0 < ⇣ < 1 is a free parameter and µ
⇤(p) is the unique solution to

1

µ⇤ � e
�µ⇤

1� e�µ⇤ =
�(p)

nR
. (A.175)
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Note that in the first case of (A.174),

A
�(1�⇣)

<
�(p)

nR
=

1

µ⇤(p)
� e

�µ⇤(p)

1� e�µ⇤(p)
<

1

µ⇤(p)
, (A.176)

i.e.,

µ
⇤(p) < A

1�⇣
, (A.177)

and thus the choice (A.174) makes sure that in all three cases, irrespective of p:

µ  A
1�⇣

, for A � 1. (A.178)

Then, for A � 1, the upper bound (6.27) can be loosened as follows:

CH(A,↵A)  1

2
log

✓
A

2nRV
2
H

(2⇡e)nR

◆
+ f(A) + sup

p
g(A,p, µ) (A.179)

where

f(A) , nR�max

A
⇣
p
2⇡

✓
1� e

� A2

2�2
min

◆
, (A.180)

g(A,p, µ) , nR log

 p
2⇡e�max

A
+

1� e
�µ

µ

!
+ µ�(p)�D(pkq) (A.181)

with �max defined in (A.172) and with

�min , min
I2U

`2{1,...,nR}

�I,`. (A.182)

Note that

lim
A!1

f(A) = 0. (A.183)

Next, we upper-bound g(A,p, µ) individually for each of the three different cases
in (A.174) to obtain a bound of the form

g(A,p, µ) 

8
><

>:

g1(A) if A�(1�⇣)
<

�(p)
nR

<
1
2 ,

g2(A) if �(p)
nR

 A
�(1�⇣)

,

g3(A) if �(p)
nR

� 1
2 ,

(A.184)

for three functions g1, g2, and g3 that only depend on A but not on p or µ. Thus,
we shall then obtain the bound

g(A,p, µ)  max{g1(A), g2(A), g3(A)}, A � 1. (A.185)

The functions g1, g2, and g3 are introduced in the following.
For the first case where �(p)

nR
2
�
A

�(1�⇣)
,
1
2

�
, we have

g(A,p, µ) = nR log

 p
2⇡e�max

A
+

1� e
�µ⇤(p)

µ⇤(p)

!
+ µ

⇤(p)�(p)�D(pkq) (A.186)
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= nR log

 
1 +

µ
⇤(p)

1� e�µ⇤(p)
·
p
2⇡e�max

A

!

+ nR

✓
1� log

✓
µ
⇤(p)

1� e�µ⇤(p)

◆
� µ

⇤(p) e�µ⇤(p)

1� e�µ⇤(p)

◆
�D(pkq) (A.187)

 sup
p : �(p)

nR
2(A⇣�1, 12)

(
�D(pkq) + nR log

 
1 +

µ
⇤(p)

1� e�µ⇤(p)
·
p
2⇡e�max

A

!

+ nR

✓
1� log

✓
µ
⇤(p)

1� e�µ⇤(p)

◆
� µ

⇤(p) e�µ⇤(p)

1� e�µ⇤(p)

◆)

(A.188)
, g1(A). (A.189)

Here, in (A.187) we have used (A.175).
For the second case where �(p)

nR
 A

�(1�⇣), we use this inequality in combination
with (A.174) to bound

µ�(p)  A
1�⇣ · nRA

�(1�⇣) = nR. (A.190)

Because D(pkq) � 0, we thus obtain

g(A,p, µ)  nR log

 p
2⇡e�max

A
+

1� e
�µ

µ

!
+ nR (A.191)

= nR log

 p
2⇡e�max

A
+

1� e
�A

1�⇣

A
1�⇣

!
+ nR (A.192)

, g2(A). (A.193)

For the third case where �(p)
nR

� 1
2 , we have

g(A,p, µ) = nR log

 p
2⇡e�max

A
+

1� e
� 1

A

1
A

!
+
�(p)

A
�D(pkq) (A.194)

 nR log

 p
2⇡e�max

A
+

1� e
� 1

A

1
A

!
+
↵

A
� inf

p : �(p)
nR

> 1
2

D(pkq)

(A.195)
, g3(A). (A.196)

Here, we used (A.173) to bound �(p)  ↵.
We have now established (A.185) for the three functions defined in (A.189),

(A.193), and (A.196), respectively. We now analyze the maximum in (A.185) when
A ! 1. Since g2(A) tends to �1 as A ! 1, and since g1(A) and g3(A) are both
bounded from below for A � 1, we know that, for large enough A, g2(A) is strictly
smaller than max{g1(A), g3(A)}.

We next look at g3(A) when A ! 1. Note that

lim
A!1

1� e
� 1

A

1
A

= 1, (A.197)
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therefore

lim
A!1

g3(A) = � inf
p : �(p)

nR
> 1

2

D(pkq) (A.198)

= � inf
p : ↵�

P
I2U pIsI�

nR
2

D(pkq) (A.199)

= � inf
p : ↵�

P
I2U pIsI=

nR
2

D(pkq), (A.200)

where the last equality holds because given ↵ < ↵th, an optimal p will meet the
constraint with equality.

It remains to investigate the behavior of g1(A) when A ! 1. To this end, we
define

g̃1(A,p) , �D(pkq) + nR log

 
1 +

µ
⇤(p)

1� e�µ⇤(p)
·
p
2⇡e�max

A

!

+ nR

✓
1� log

✓
µ
⇤(p)

1� e�µ⇤(p)

◆
� µ

⇤(p) e�µ⇤(p)

1� e�µ⇤(p)

◆
, (A.201)

and note that, for any fixed p,

�(A,p) , g̃1(A,p)� lim
A!1

g̃1(A,p) = log

 
1 +

µ
⇤(p)

1� e�µ⇤(p)
·
p
2⇡e�max

A

!
.

(A.202)

Since, when A ! 1,

|�(A,p)|  log

 
1 +

�����
1

1� e�A
1�⇣ ·

p
2⇡e�max

A
⇣

�����

!
! log(1) = 0, (A.203)

we see that g̃1(A,p) converges uniformly over p as A ! 1, and therefore we are
allowed to interchange limit and supremum:

lim
A!1

g1(A)

= lim
A!1

sup
p : �(p)

nR
2(A⇣�1, 12)

g̃1(A,p) (A.204)

= sup
p : �(p)

nR
2(0, 12)

lim
A!1

g̃1(A,p) (A.205)

= sup
p : �(p)

nR
2(0, 12)

(
nR

✓
1� log

µ
⇤(p)

1� e�µ⇤(p)
� µ

⇤(p) e�µ⇤(p)

1� e�µ⇤(p)

◆
�D(pkq)

)
(A.206)

= sup
p : �(p)2(max{0,nR

2 +↵�↵th},min{nR
2 ,↵})

(
nR

✓
1� log

µ
⇤(p)

1� e�µ⇤(p)
� µ

⇤(p) e�µ⇤(p)

1� e�µ⇤(p)

◆

�D(pkq)
)

(A.207)
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= ⌫. (A.208)

Here, in (A.207) we are allowed to restrict the supremum1 to �(p) 2 (nR
2 +↵�↵th,↵)

because of (A.173) and because

�(q) , ↵�
X

I2U

sIqI = ↵� ↵th +
nR

2
(A.209)

and for any p such that �(p)  �(q) the objective function in (A.206) is smaller
than for p = q. In fact, �D(pkq) is clearly maximized for p = q and

µ
⇤(p) 7! nR

✓
1� log

µ
⇤(p)

1� e�µ⇤(p)
� µ

⇤(p) e�µ⇤(p)

1� e�µ⇤(p)

◆
(A.210)

is decreasing in µ
⇤(p), which is a decreasing function of �(p); see (A.175). Finally,

(A.208) follows from the definition of ⌫ in (6.23).
It is straightforward to see that ⌫ is larger than the RHS of (A.200). Therefore,

lim
A!1

max{g1(A), g2(A), g3(A)} = ⌫. (A.211)

Combining (A.179) with (A.183), (A.185), and (A.211) proves the theorem.
The theorem is proven by normalizing X̄ by A, which results in a factor A2, and

by then letting A go to zero.

Proof of Theorem 32

From [61, Corollary 2], it is known that the capacity is lower-bounded as

CH(A,↵A) � 1

2
max
PX̄

tr
�
KX̄X̄

�
+ o

✓
max
PX̄

tr
�
KX̄X̄

�◆
. (A.212)

For an upper bound, we use that

log(1 + ⇠)  ⇠, ⇠ > 0, (A.213)

and obtain from Theorem 30 that

CH(A,↵A)  1

2
max
PX̄

tr
�
KX̄X̄

�
. (A.214)

A.6 Proofs of Chapter 7

A.6.1 A Proof of Theorem 37
We first lower-bound the mutual information I(X;Y|H = H) for a given channel
realization H by using the independence between H and Z and invoking the EPI:

I(X;HX+ Z|H = H) = h(HX+ Z|H = H)� h(Z) (A.215)
1Notice that because of the supremum and continuity, we can restrict to the open interval

instead of the closed interval.
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� 1

2
log2

�
e
2h(HX|H=H) + e

2h(Z)
�
� h(Z) (A.216)

=
1

2
log2

✓
1 +

e
2h(HX|H=H)

(2⇡e)nR

◆
(A.217)

=
1

2
log2

✓
1 +

e
2h(HX)

(2⇡e)nR

◆
, (A.218)

where the last equality holds because without CSI at the transmitter, the input
vector X is independent of the channel matrix H.

Fix some � 2 (0, nR
2 ) and let the nR-dimensional random vector V be exponen-

tially distributed with density

f(v) =
1

A
nR

✓
µ

1� e�µ

◆nR

e
�µkvk1

A , v 2 [0,A]nR , (A.219)

where µ denotes the unique solution to (6.24). Choose then some matrix G with
nonnegative entries, with rank(G) = nR, with kGk1  ↵/�, and with row vectors
satisfying kgik1  1, 8 i 2 {1, . . . , nT}, and define PX as the distribution of the
vector

X = GV. (A.220)

It can be directly verified that this choice of PX satisfies the power constraints (7.5)
and puts nonzero density only on nonnegative inputs.

Then for a given realization of the channel matrix H = H, it implies the following
density on the channel image vector X̄ = HX:

fHX(x̄) =
1

A
nR |detHG| ·

✓
µ

1� e�µ

◆nR

e
�µk(HG)�1x̄k1

A . (A.221)

The differential entropy h(HX) thus evaluates to:

h(HX) = nR log2(A · |detHG|) + nR

✓
1� log2

µ

1� e�µ
� µe

�µ

1� e�µ

◆
. (A.222)

Combining this with (A.218), taking expectation over H, and maximizing over the
free parameters concludes the proof.

A.6.2 A Proof of Theorem 40
If ↵ � ↵th(H), we choose PX so that X̄ is uniform over R(H). This is obtained
by defining a random variable over U with probability mass function (PMF) q and
conditional on Ũ = I, choose X according to the minimum-energy signaling in (3.28)
and so that X̄ is uniform over the shifted parallelepiped vI +DI .

If ↵ < ↵th(H), we fix a parameter

� 2
⇣
max

n
0,

nR

2
+ ↵� ↵th(H)

o
,min

n
nR

2
,↵

o⌘
(A.223)
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and a PMF p = (pI : I 2 U) over the set U so that
X

I2U

pIsI = ↵� �. (A.224)

Let then Ũ be a random variable over U with PMF p, and conditional on Ũ = I,
choose X according to the minimum-energy signaling in (3.28) and so that X̄ follows
an nR-dimensional truncated exponential distribution over the shifted parallelepiped
vI + DI . Specifically, given H = H and Ũ = I, the inputs {Xi : i 2 Ic} are
deterministically set to

Xi = A · gI,i, i 2 Ic
, (A.225)

where gI,i is defined in (3.23) or Algorithm 4, and the remaining inputs {Xi : i 2 I}
are chosen as the truncated exponential distribution,

fXi|Ũ=I(xi) =
µ

1� e�µ
e
�µxi

A , 8i 2 I. (A.226)

Then at the receiver side, the image vector X̄ = HX is of conditional density

fX̄|Ũ=I(x̄) =
1

A
nR |detHI |

·
✓

µ

1� e�µ

◆nR

e

�µkH�1
I (x̄�vI)k1

A . (A.227)

Consider first the case ↵ � ↵th(H). With the proposed choice (X̄ uniform over
R(H)), for each realization H = H, the conditional differential entropy is

h(X̄|H = H) = log2(A
nR · VH). (A.228)

Combining this with (A.217) yields the desired result.
Consider now the case ↵ < ↵th(H). We define U to be a discrete random variable

that is obtained by applying a function on X̄ in a way to satisfy:
�
U = I

�
(=

�
X̄ 2 (vI +DI)

�
. (A.229)

We then start from (A.217) and decompose the conditional differential entropy
h(X̄|H = H) as

h(X̄|H = H) = I(X̄;U |H = H) + h(X̄|U,H = H) (A.230)
= H(U |H = H) + h(X̄|U,H = H) (A.231)

where we used that U is a function of X̄. Notice that we do not specify the value
of U when X̄ lies on the border of a parallelepiped vI + DI . However, the way we
picked X̄ this event happens with probability 0 and does not influence the entropies.
Moreover, with probability 1, U = Ũ and these two random variables thus have same
(conditional) entropies. By the choice of the PMF p in (A.224) and the exponential
distribution in (A.227), we then have:

h(X̄|H = H) = H(Ũ |H = H) + h(X̄|Ũ,H = H)) (A.232)
= H(p) + log2|detHI |+ nR log2 A
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+ nR
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1� log2
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1� e�µ
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(A.233)

= �D(pkq) + log2 VH + nR log2 A

+ nR

✓
1� log2

µ

1� e�µ
� µ e

�µ

1� e�µ

◆
. (A.234)

The result now follows from substituting (A.234) into (A.217), then maximizing over
the free parameters � and p, and taking expectation over H.

A.6.3 A Proof of Theorem 41
For each realization H of H, let X̄

? be the capacity-achieving input, and let U
? be

defined by X̄
? as in (A.229). Then, the capacity can be upper-bounded as follows:

CH = I(X̄?;Y?|H = H) (A.235)
= I(X̄?; X̄? + Z|H = H) (A.236)
 I(X̄?; X̄? + Z, U

?|H = H) (A.237)
= H(U?|H = H) + I(X̄?; X̄? + Z|U?

,H = H). (A.238)

Moreover, for each size-nR subset I 2 U ,

I(X̄?; X̄? + Z|U? = I,H = H)

= I
�
X̄

? � vI ; (X̄
? � vI) + Z

��U? = I,H = H
�

(A.239)
= I
�
H

�1
I (X̄? � vI);H

�1
I (X̄? � vI) + H

�1
I Z

��U? = I,H = H
�

(A.240)
= I(X̄?

I ; X̄
?
I + ZI |U? = I,H = H), (A.241)

where we defined

ZI , H
�1
I Z, (A.242)

X̄
?
I , H

�1
I (X̄? � vI). (A.243)

To further bound the term in (A.241), we then use the duality-based upper-
bounding technique with a product output distribution

RI(yI) =
nRY

`=1

RI,`(yI,`). (A.244)

Denoting by WI(·|X̄?
I) the transition law of the channel X̄?

I 7! YI , (X̄?
I +ZI) and

by WI,`(·|X̄?
I,`) the marginal transition law for its `-th component, we have:

I(X̄?
I ; X̄

?
I + ZI |U? = I,H = H)

 EX̄?
I |U?=I

⇥
D
�
WI(·|X̄?

I)
��RI(·)
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(A.245)

 �h
�
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I + ZI

��X̄?
I , U
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�
� EX̄?

I |U?=I

"
nRX
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EWI(YI |X̄?
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[logRI,`(YI,`)]

#

(A.246)
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= �nR
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log 2⇡e+ log|detHI |�
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h
EWI,`(YI,`|X̄?

I,`)
[logRI,`(YI,`)]

i
,

(A.247)

where the last equality holds because

h(X̄?
I + ZI |X̄?

I , U
? = I,H = H) = h(ZI) =

1

2
log
�
(2⇡e)nR detH�1

I H
�T
I
�
. (A.248)

For the realization H satisfying ↵ � ↵th(H), we choose the auxillary distribution
RI,`(·) as

RI,`(y) =

8
>>>><

>>>>:

1
A+

p
2⇡e�I,`

e
� y2

2�I,` if y < 0,
1

A+
p
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if y 2 [0,A],

1
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p
2⇡e�I,`

e
� (y�A)2

2�I,` if y > A,

(A.249)

which yields, irrespectively of the value of x̄?
I,`:

�EWI,`(YI,`|x̄?
I,`)

[logRI,`(YI,`)]  log
�
A+

p
2⇡e�I,`

�
. (A.250)

Combining (A.250) with (A.247) ,and (A.241), CH,1 can be derived.
When ↵ � ↵th(H), we choose RI,`(·) as

RI,`(y) =

8
>>>><

>>>>:

µ
p
e

A(1�e�µ)+µ
p
2⇡e�I,`

e
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(A.251)

Following the same steps as in the proof of [62, Appendix B], we obtain:

�EWI,`(YI,`|x̄?
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[logRI,`(YI,`)]

 log
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CH,2 can then be derived by combining (A.252) with (A.238), (A.241), and (A.247),
and by noting that

µ

A
EQU?

"
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`=1

EQX̄?
U,`

|U?
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?
U?,`

⇤
#
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���
1

⇤
(A.253)

 µ
�
↵� EQU? [sU? ]

�
, (A.254)

where (A.254) follows from (A.243), and (A.254) from the average-power constraint.
Taking expectation over H concludes the proof.
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A.6.4 A Proof of Theorem 42
When the realization H satisfying ↵ � ↵th(H), the proof is straightforward from
(7.29) and (7.33).

For the realization H satisfying ↵ < ↵th(H), the fact that the left-hand side of
(7.34) cannot be smaller than its right-hand side follows directly from (7.29). To
show the reverse direction, we rely on (6.27). By following the same arguments as
in the proof of Theorem 31 when ↵ < ↵th, we can obtain:

CH,2 � nR logA sup
p

⇢
1

2
log

✓
V
2
H

(2⇡e)nR

◆
�D(pkq)

+ nR

✓
1� log

µ
⇤

1� e�µ⇤ � µ
⇤
e
�µ⇤

1� e�µ⇤

◆�
+ o(A). (A.255)

The proof is concluded by letting A ! 1, and taking expectation over H.

A.6.5 A Proof of Theorem 44
For each realization F = f, pick an arbitrary positive number � 2 (0, nR

2 ) and let
µ denote the solution to (6.24) for the picked value of �. Then for this �, pick an
arbitrary PMF p over U satisfying (7.47), and let Ũ ⇠ p. Similarly to before, given
that F = f and Ũ = I, we deterministically set

Xi = aI,i(H), i 2 Ic
, (A.256)

and choose the remaining inputs {Xi : i 2 I} according to the distribution:

fXi|Ũ=I(xi) =
µ

1� e�µ
e
�µxi

A , 8i 2 I. (A.257)

Then, with X̄ = HX, we obtain

h(X̄|H = H) = �D(pkq) + logVH + nR logA+ nR

✓
1� log

µ

1� e�µ
� µ e

�µ

1� e�µ

◆
.

(A.258)

Substituting (A.258) into (A.218), and taking expectation over H, the proof is con-
cluded.
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