Skip to Main content Skip to Navigation

La bouche, un réacteur complexe à l'origine de la libération des stimuli sensoriels : modélisation des transferts de composés d'arôme lors de la déstructuration d'aliments solides

Abstract : Delivery of aroma compounds to olfactory receptors determines the aromatic quality of food products and contributes to consumer choices and preferences. Therefore, understanding and modelling the release kinetic is a scientific challenge and a health issue in order to formulate products of both high nutritional and sensory quality. This thesis studied in-mouth mechanisms responsible of the dynamics of olfactory stimuli release during food consumption. • First, a mechanistic model describing the aroma compounds release during consumption of a liquid or semi-liquid food has been developed. These products have a very short in-mouth residence time and do not require complex intra-oral manipulation. The model takes into account mass balances, transfer mechanisms occurring between some sub-compartments of the system, and the specific conditions at the different stages of consumption. A comparison of the model predictions with in vivo release data during the consumption of Newtnonien fluids flavored with diacetyl and ethyl hexanoate was performed. This study highlighted the role of post-pharyngeal residue and viscosity on the aroma compounds release: • the thickness of bolus covering the mucous membranes has been estimated at about 15μm; • it was found that the relevant properties to be considered for the release of aroma compounds from a Newtonian fluid are those of a mixture highly diluted by saliva. • Second, the model previously developed was adapted for products requiring chewing. It takes into account the phenomena of mass transfer and dissolution of the product in the saliva during chewing. The generation of a product/liquid contact surface as well as the velopharyngial opening that occurs during the mastication of the product were also integrated into the model. The model was then confronted with in vivo release data for ethyl propanoate during consumption of four cheese matrices. All simulations have been satisfactorily fitted to experimental data and the two unknown parameters of our model (the average rate of saliva incorporation into the bolus and the frequency of velopharyngial opening) could be estimated. This study has enabled us to understand the role of mastication on the release of aroma compounds during consumption of solid food: • the opening of velopharynx during intra-oral manipulation of the product produces a continuous supply of aroma compounds in the nose; • the residence time of solid product in the mouth are much longer than for the consumption of liquid and semi-liquid foods, allowing the secretion of significant volumes of saliva. In addition, the study of the release of 2-nonanone highlighted an adsorption phenomenon on the mucous membranes for this molecule. • Finally, sensitivity analysis of the two release models indicates that: • when eating a liquid or semi-liquid food, the mass transfer coefficient in the bolus, the breath rate and the thickness of post-pharyngeal residue are the three key factors governing the release of aroma compounds; • however, when eating a solid food product, it is the average rate of saliva incorporation into the bolus during consumption, the frequency and duration of velopharyngeal opening, and the mastication time which are the three parameters that have major effects on the kinetics of release. The modeling approach allowed us to better understand the relative effects of the product, the individual, and individual-product interaction on the release of aroma compounds during food consumption. The results of this work indicated that the most important parameters depend on the category of product (liquid or solid) under consideration.
Document type :
Complete list of metadata

Cited literature [194 references]  Display  Hide  Download
Contributor : ABES STAR :  Contact
Submitted on : Tuesday, August 27, 2019 - 5:28:29 PM
Last modification on : Friday, August 5, 2022 - 2:38:10 PM


Version validated by the jury (STAR)


  • HAL Id : tel-02272493, version 1



Marion Doyennette. La bouche, un réacteur complexe à l'origine de la libération des stimuli sensoriels : modélisation des transferts de composés d'arôme lors de la déstructuration d'aliments solides. Biochimie, Biologie Moléculaire. AgroParisTech, 2011. Français. ⟨NNT : 2011AGPT0047⟩. ⟨tel-02272493⟩



Record views


Files downloads