A. A. Abdallah, S. Samer, Z. M. Saab, and . Kassas, A Machine Learning Approach for Localization in Cellular Environments, 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), pp.1223-1250, 2018.

G. Agamennoni, S. Fontana, Y. Roland, D. G. Siegwart, and . Sorrenti, Point Clouds Registration with Probabilistic Data Association, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.4092-98, 2016.

A. A. Agashe, R. S. Amrita-a.-agashe, and . Patil, Evaluation of DV Hop Localization Algorithm in Wireless Sensor Networks, 2012 International Conference on Advances in Mobile Network, Communication and Its Applications, pp.79-82, 2012.

N. Akai, L. Y. Morales, T. Yamaguchi, E. Takeuchi, Y. Yoshihara et al., Autonomous Driving Based on Accurate Localization Using Multilayer LiDAR and Dead Reckoning, p.2017, 2017.

, IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp.1-6

. Ieee and . Doi,

A. Alarifi, A. Al-salman, M. Alsaleh, A. Alnafessah, S. Al-hadhrami et al., Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances, Sensors, issue.5, p.16, 2016.

Z. Alsayed and G. Bresson, PML-SLAM : A Solution for Localization in Large-Scale Urban Environments, IROS PPNIV the 7th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01202038

A. Amini, R. M. Vaghefi, J. Garza, and . Buehrer, Improving GPS-Based Vehicle Positioning for Intelligent Transportation Systems, pp.1023-1052, 2014.

F. C. Anderson and M. G. Pandy, Dynamic Optimization of Human Walking, Journal of Biomechanical Engineering, vol.123, issue.5, p.381, 2001.

C. Ang, Vehicle Positioning Using WIFI Fingerprinting in Urban Environment, 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), vol.4, pp.652-57, 2018.

M. Arulampalam, S. Sanjeev, N. Maskell, T. Gordon, and . Clapp, A Tutorial on Particle Filters for Online Nonlinear/Nongaussian Bayesian Tracking, vol.50, pp.723-760, 2007.

Y. Bar-shalom, X. Li, and T. Kirubarajan, Estimation with Applications to Tracking and Navigation, 2001.

V. Belagiannis, C. Rupprecht, G. Carneiro, and N. Navab, Robust Optimization for Deep Regression, Proceedings of the IEEE International Conference on Computer Vision, pp.2830-2868, 2015.

S. Belloche, On-Street Parking Search Time Modelling and Validation with Survey-Based Data, Transportation Research Procedia, vol.6, pp.313-337, 2014.

P. J. Besl and N. D. Mckay, A Method for Registration of 3-D Shapes, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.14, issue.2, pp.239-56, 1992.

D. Bhatt, S. R. Babu, and H. S. Chudgar, A Novel Approach towards Utilizing Dempster Shafer Fusion Theory to Enhance WiFi Positioning System Accuracy, Pervasive and Mobile Computing, vol.37, pp.115-138, 2017.

J. Blumenthal, R. Grossmann, F. Golatowski, and D. Timmermann, Weighted Centroid Localization in Zigbee-Based Sensor Networks, 2007 IEEE International Symposium on Intelligent Signal Processing, pp.1-6, 2007.

J. Bojja, M. Kirkko-jaakkola, J. Collin, and J. Takala, Indoor Localization Methods Using Dead Reckoning and 3D Map Matching, Journal of Signal Processing Systems, pp.1-12, 2013.

J. Borenstein, Internal Correction of Dead-Reckoning Errors With a Dual-Drive Compliant Linkage Mobile Robot, Reprint from Journal of Robotic Systems, vol.12, issue.4, pp.257-73, 1995.

P. Borges, R. Zlot, M. Bosse, S. Nuske, and A. Tews, VisionBased Localization Using an Edge Map Extracted from 3D Laser Range Data, 2010 IEEE International Conference on Robotics and Automation, pp.4902-4911, 2010.

M. Boucher, F. Ababsa, and M. Mallem, Reducing the SLAM Drift Error Propagation Using Sparse but Accurate 3D Models for Augmented Reality Applications, Proceedings of the Virtual Reality International Conference on Laval Virtual -VRIC '13, vol.1, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00859811

M. Boushaba, A. Hafid, and A. Benslimane, High Accuracy Localization Method Using AoA in Sensor Networks, Computer Networks, vol.53, issue.18, 2009.

B. V. Elsevier, , pp.3076-88

G. E. Box and M. E. Muller, A Note on the Generation of Random Normal Deviates, The Annals of Mathematical Statistics, vol.29, issue.2, pp.610-621, 1958.

L. Breiman, Bagging Predictors, Machine Learning, vol.24, pp.123-163, 1996.

G. Bresson, Z. Alsayed, L. Yu, and S. Glaser, Simultaneous Localization And Mapping: A Survey of Current Trends in Autonomous Driving, IEEE Transactions on Intelligent Vehicles, pp.1-1, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01615897

G. Bresson, R. Aufr, R. Chapuis, G. Bresson, R. Aufr et al., Improving SLAM with Drift Integration To Cite This Version, 2016.

J. J. Caffery, A New Approach to the Geometry of TOA Location, IEEE VTS Fall VTC2000. 52nd Vehicular Technology Conference (Cat. No.00CH37152), vol.4, pp.1943-1992, 2000.

J. Carlson, C. Thorpe, and B. Browning, Mapping Large , Urban Environments with GPS-Aided SLAM, 2010.

H. Chen, P. Huang, and M. Martins, Novel Centroid Localization Algorithm for Three-Dimensional Wireless Sensor Networks, 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing, 2008.

H. Chen, F. Li, and Y. Wang, SoundMark: Accurate Indoor Localization via PeerAssisted Dead Reckoning, IEEE Internet of Things Journal, pp.1-1, 2018.

S. Chen, Z. Li, and Y. Long, An Adaptive Hybrid Indoor WiFi Fingerprinting and Propagation Parameter Estimation Using RANSAC LASSO Regression, 2017 IEEE 5th International Symposium on Electromagnetic Compatibility, pp.1-6, 2017.

T. Dao, H. L. Kien, T. T. Nguyen, E. Pham, . Castelli et al., User Localization in Complex Environments by Multimodal Combination of GPS, WiFi, RFID, and Pedometer Technologies, The Scientific World Journal, 2014.

F. Daum, Nonlinear Filters: Beyond the Kalman Filter, IEEE Aerospace and Electronic Systems Magazine, vol.20, issue.8 II, pp.57-68, 2005.

F. Daum, J. Huang, and A. Noushin, Particle Flow for Nonlinear Filters, Proceedings of SPIE, pp.5920-5943, 2011.

. De-ponte-müller, E. Fabian, I. Munoz-diaz, and . Rashdan, Cooperative Infrastructure-Based Vehicle Positioning, IEEE Vehicular Technology Conference, 2017.

F. Dellaert, D. Fox, W. Burgard, and S. Thrun, Monte Carlo Localization for Mobile Robots, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C), vol.2, pp.1322-1350, 2018.

U. S. Department-of-defense, Global Positioning System Standard Positioning Service, Www.Gps.Gov, pp.1-160, 2008.

T. G. Dietterich, Ensemble Methods in Machine Learning, Multiple Classifier Systems, vol.1857, pp.1-15, 2000.

D. Huang and H. Leung, EM-IMM Based Land-Vehicle Navigation with GPS/INS, Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems, pp.624-653, 2004.

R. Douc, O. Cappé, and E. Moulines, Comparison of Resampling Schemes for Particle Filtering, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00005883

A. Doucet and A. M. Johansen, A Tutorial on Particle Filtering and Smoothing: Fiteen Years Later, pp.656-705, 2008.

N. Drawil, O. Mohamed, and . Basir, Intervehicle-Communication-Assisted Localization, vol.11, pp.678-91, 2010.

D. Bagnell, Particle Filter: The Good, The Bad, The Ugly, 2018.

H. Durrant-whyte and T. Bailey, Simultaneous Localization and Mapping (SLAM), IEEE Robotics & Automation Magazine, vol.13, issue.2, pp.99-116, 2006.

B. Efron and R. Tibshirani, An Introduction to the Bootstrap, 1994.

,. El-faouzi, Heterogeneous Data Source Fusion for Impedance Indicators, pp.1307-1319, 1997.

A. Elfes, Occupancy Grids: A Stochastic Spatial Representation for Active Robot Perception, 2013.

A. Eskandarian, Handbook of Intelligent Vehicles, 2012.

F. ~. , Particle Filter Theory and Practice with Positioning Applications, IEEE Transactions on Aerospace and Electronics Systems Magazine Part II: Tutorials, vol.25, pp.53-82, 2010.

N. E. Faouzi, H. El, A. Leung, and . Kurian, Data Fusion in Intelligent Transportation Systems: Progress and Challenges -A Survey, Information Fusion, vol.12, issue.1, 2011.

B. V. Elsevier, , pp.4-10

I. Fernández-hernández, . Simón, C. Blasi, . Payne, J. Miquel et al., The Galileo Commercial Service: Current Status and Prospects, Accessed August, vol.16, 2018.

, Hernandez/publication/264762639_The_Galileo_Commercial_Service_Current_Status_a

, nd_Prospects/links/53ee3a1b0cf2981ada175ca3/The-Galileo-Commercial-ServiceCurrent-Status-and-Prospects

C. Fouque, P. Bonnifait, D. Bétaille, and A. Working, Enhancement of Global Vehicle Localization Using Navigable Road Maps and Dead-Reckoning, pp.1286-91, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00445289

K. Fujii, Extended Kalman Filter, 2018.

, Galileo General Introduction -Navipedia, 2018.

E. Gantelet and A. Lefauconnier, The Time Looking for a Parking Space: Strategies, Associated Nuisances and Stakes of Parking Management in France, pp.1-7, 2006.

M. Garip, P. H. Turker, P. Kim, M. Reiher, and . Gerla, INTERLOC: An Interference-Aware RSSI-Based Localization and Sybil Attack Detection Mechanism for Vehicular Ad Hoc Networks, 14th IEEE Annual Consumer Communications & Networking Conference (CCNC), pp.1-6, 2017.

A. J. Giger, S. Member, and W. Barnett, Effects of Multipath Propagation on Digital, pp.1345-52, 1981.

V. Gikas, C. Antoniou, G. Retscher, A. Panagopoulos, and A. Kealy, A Low-Cost Wireless Sensors Positioning Solution for Indoor Parking Facilities Management, Journal of Location Based Services, vol.10, issue.4, pp.241-61, 2016.

. Gps-directorate, Global Positioning System Precise Positioning Service (PPS), 2007.

P. Standard, GPS Performances -Navipedia, p.35, 2018.

B. H. Groh, M. Friedl, A. G. Linarth, and E. Angelopoulou, Advanced Real-Time Indoor Parking Localization Based on Semi-Static Objects, Information Fusion (FUSION), pp.1-7, 2014.

Y. Guan and T. Ploetz, Ensembles of Deep LSTM Learners for Activity Recognition Using Wearables, vol.1, 2017.

X. Guo, N. Ansari, L. Li, and H. Li, Indoor Localization by Fusing a Group of Fingerprints Based on Random Forests, IEEE Internet of Things Journal XX (XX, pp.1-13, 2018.

D. Hahnel, W. Burgard, D. Fox, and S. Thrun, An Efficient Fastslam Algorithm for Generating Maps of Large-Scale Cyclic Environments from Raw Laser Range Measurements, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), vol.1, pp.206-217, 2018.

J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, 2012.

S. Francisco, I. Ca, and . Kaufmann,

L. Hansen, P. Kai, and . Salamon, Neural Network Ensembles, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, issue.10, pp.993-1001, 1990.

S. Harkema, A. Behrman, and H. Barbeau, Evidence-Based Therapy for Recovery of Function after Spinal Cord Injury, Handbook of Clinical Neurology, vol.109, pp.259-74, 2012.

. He, S. G. Suining, L. Chan, N. Yu, and . Liu, Fusing Noisy Fingerprints with Distance Bounds for Indoor Localization, Proc. IEEE INFOCOM, pp.2506-2520, 2015.

Y. He, B. Liang, J. Yang, S. Li, and J. He, An Iterative Closest Points Algorithm for Registration of 3D Laser Scanner Point Clouds with Geometric Features, Sensors, vol.17, issue.8, p.1862, 2017.

J. Heaton, Introduction to Neural Networks with Java, uction to Neural Networks for Java, Second Edition The Number of Hidden Layers&source=bl&ots=TJx9QaeWw6&sig=gZqg9e73K1oCqWBxmcBWAf2pbrE&hl= it&sa=X&ved=0CCUQ6AEwAGoVChMIudnOsJr1yAIVwjkaCh3AAgnU#v=onepage& q=Introduction to Neural Networks for Java%2C Second Edition The Number of Hidden Layers&f=false, 2008.

N. Hernández, J. M. Alonso, and M. Ocaña, Fuzzy Classifier Ensembles for Hierarchical WiFi-Based Semantic Indoor Localization, Expert Systems with Applications, vol.90, pp.394-404, 2017.

N. Hernandez, A. Hussein, D. Cruzado, I. Parra, and J. M. Armingol, Applying Low Cost WiFi-Based Localization to in-Campus Autonomous Vehicles, 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp.1-6, 2017.

B. Hofmann-wellenhof, E. Herbert-lichtenegger, and . Wasle, GNSS--Global Navigation Satellite Systems : GPS, GLONASS, Galileo, and More. Accessed, 2018.

S. Houben, . Komar, . Hohm, M. Luke, M. Neuhausen et al., On-Vehicle Video-Based Parking Lot Recognition with Fisheye Optics, 16th International Ieee Conference on Intelligent Transportation Systems -(Itsc), no. Itsc, pp.7-12, 2013.

A. Ibisch, S. Stumper, H. Altinger, M. Neuhausen, M. Tschentscher et al., Towards Autonomous Driving in a Parking Garage: Vehicle Localization and Tracking Using Environment-Embedded LIDAR Sensors, IEEE Intelligent Vehicles Symposium, pp.829-863, 2013.

, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE, vol.802, 2016.

F. Ignacio, R. Hernandez, T. Irma, and . Guillermo, Galileo's Commercial Service Testing GNSS High Accuracy and Authentication, 2015.

, Infsoft Ultra-Wideband Technology for Indoor Positioning, 2018.

D. Iter, J. Kuck, and P. Zhuang, Target Tracking with Kalman Filtering, KNN and LSTMs, 2016.

J. E. , Introduction to LiDAR and Its Applications | Col-East | Aerial Photo, LiDAR, Topo Mapping and GIS Data, 2017.

S. J. Julier and J. K. Uhlmann, A Counter Example to the Theory of Simultaneous Localization and Map Building, Proceedings -IEEE International Conference on Robotics and Automation, vol.4, pp.4238-4281, 2001.

R. E. Kalman, A New Approach to Linear Filtering and Prediction Problems, Journal of Basic Engineering, 1960.

R. Kaune, Accuracy Studies for TDOA and TOA Localization, 15th International Conference on Information Fusion (FUSION), pp.408-423, 2012.

J. Kim, SLAM Aided GPS / INS Navigation in GPS Denied and Unknown Environments, 2004.

T. Kos, I. Markezic, and J. Pokrajcic, Effects of Multipath Reception on GPS Positioning Performance, Proceedings, pp.15-17, 2010.

M. Kotaru, K. Joshi, D. Bharadia, and S. N. Katti, SpotOn: Indoor Localization Using Commercial off-the-Shelf WiFi NICs, SpotFi : Decimeter Level Localization Using WiFi, pp.269-82, 2015.

A. Krogh, . Jesper, and . Vedelsby, Neural Network Ensembles , Cross Validation , and Active Learning, Advances in Neural Information Processing Systems, vol.7, pp.231-269, 1995.

F. Kunz, D. Nuss, J. Wiest, H. Deusch, and S. Reuter, Norme Francaise, Parcs de Stationnement a Usage Privatif, 1996.

M. Nourinejad, S. Bahrami, and M. J. Roorda, Designing Parking Facilities for Autonomous Vehicles, 2018.

, Parking at the Service of Connected Urban Mobility and a Sustainable City -The Urban Mobility Blog, 2018.

, Parking Solutions -Solutions -OneSITU, 2018.

, Parkmatic -Multi Parking, 2018.

M. Pierzcha?a, P. Giguère, and R. Astrup, Mapping Forests Using an Unmanned Ground Vehicle with 3D LiDAR and Graph-SLAM, Computers and Electronics in Agriculture, vol.145, pp.217-242, 2018.

M. K. Pitt and N. Shephard, Filtering via Simulation: Auxiliary Particle Filters, Journal of the American Statistical Association, vol.94, issue.446, pp.590-99, 1999.

P. Pivato, L. Palopoli, and D. Petri, Accuracy of RSS-Based Centroid Localization Algorithms in an Indoor Environment, IEEE Transactions on Instrumentation and Measurement, vol.60, issue.10, pp.3451-60, 2011.

L. Prechelt, Early Stopping -But When?, Real Time Kinematics -Navipedia, vol.7700, pp.53-67, 2012.

T. Reineking and J. Clemens, Evidential FastSLAM for Grid Mapping, International Conference on Information Fusion (FUSION), no. i, pp.789-96, 2013.

. Schleicher, L. M. David, M. Bergasa, R. Ocaña, M. E. Barea et al., Real-Time Hierarchical Outdoor Slam Based on Stereovision and GPS Fusion, IEEE Transactions on Intelligent Transportation Systems, vol.10, issue.3, pp.440-52, 2009.

U. Schwesinger, M. Burki, J. Timpner, S. Rottmann, L. Wolf et al., Automated Valet Parking and Charging for EMobility, IEEE Intelligent Vehicles Symposium, Proceedings 2016-Augus, pp.157-64, 2016.

C. Scrapper, S. Madhavan, and . Balakirsky, Stable Navigation Solutions for Robots in Complex Environments ?, 2018.

G. Shafer, A Mathematical Theory of Evidence, 1976.

Y. Shi, S. Ji, Z. Shi, Y. Duan, and R. Shibasaki, GPSSupported Visual SLAM with a Rigorous Sensor Model for a Panoramic Camera in Outdoor Environments, Sensors, vol.13, issue.1, pp.119-155, 2012.

S. Inc, Innovative Automated Parking Solution | Skyline Parking | Skyline Parking, 2018.

P. Smets and R. Kennes, The Transferable Belief Model, Artificial Intelligence, vol.66, issue.2, pp.191-234, 1994.
URL : https://hal.archives-ouvertes.fr/hal-01185821

R. Smith, C. , and P. Cheeseman, On the Representation and Estimation Of, 2018.

V. Ta, D. Cuong, T. Vaufreydaz, E. Dao, . Castelli et al., Smartphone-Based User Location Tracking in Indoor Environment To Cite This Version, 2016.

, Smartphone-Based User Location Tracking in Indoor Environment

R. Wilfinger, S. Master, and . Thesis, Absolute Positioning of Vehicles in Indoor Environments Using Wireless LAN and Bluetooth LE, 2015.

, World Geodetic System (WGS84) -GIS Geography, 2018.

J. Xie, F. Nashashibi, M. Parent, O. Garcia-favrot, J. Xie et al., A Real-Time Robust Global Localization for Autonomous Mobile Robots in Large Environments To Cite This Version : A Real-Time Robust Global Localization for Autonomous Mobile Robots in Large Environments, 2011.

J. Xiong and K. Jamieson, ArrayTrack: A Fine-Grained Indoor Location System, USENIX Symposium on Networked Systems Design and Implementation, pp.71-84, 2013.

J. Yin, Q. Wan, S. Yang, and K. C. Ho, A Simple and Accurate TDOA-AOA Localization Method Using Two Stations, IEEE Signal Processing Letters, vol.23, issue.1, pp.144-192, 2016.

W. Zhang, K. Liu, W. Zhang, Y. Zhang, and J. Gu, Deep Neural Networks for Wireless Localization in Indoor and Outdoor Environments, Neurocomputing, vol.194, pp.279-87, 2016.

R. Zhou, S. Lu, J. Chen, and Z. Li, An Optimized Space Partitioning Technique to Support Two-Layer WiFi Fingerprinting, 2017 IEEE Wireless Communications and Networking Conference (WCNC), pp.1-6, 2017.

R. Zhou, X. Lu, P. Zhao, and J. Chen, Device-Free Presence Detection and Localization with SVM and CSI Fingerprinting, IEEE Sensors Journal, vol.17, issue.23, pp.7990-99, 2017.

J. Ziegler, P. Bender, M. Schreiber, H. Lategahn, T. Strauss et al., Making Bertha Drive-An Autonomous Journey on a Historic Route, IEEE Intelligent Transportation Systems Magazine, vol.6, issue.2, 2014.

, En comparant différentes approches de localisation des WSN, une méthode de prise d'empreinte est choisie car elle satisfait aux quatre critères énoncés dans la section 1.2, à savoir la disponibilité, l'évolutivité, l'universalité et la précision

, Le concept général de la localisation d'empreintes digitales Wi-Fi est présenté à la section 3

, Il existe deux phases pour cette méthode: une phase hors ligne et une phase en ligne

, Dans la phase hors ligne, une base de données d'empreintes digitales (FP) est construite

, Comme défini dans la section 3.4.3, une empreinte digitale peut être n'importe quel