F. Résumé-en, 111 6.3.1 General formulation of the optimisation problem, Optimisation en temps réel de la fréquence des mesures . . 110 6

.. .. Discussion,

.. .. Conclusion,

, 119 7.2.2 Organisation and contributions of the chapter

, 1 Method: an adaptive criterion for update rate adaptation, Update rate adaptation with a non-linear model

, Application: Non-linear target model

.. .. Experiments, 122 7.5.1 Tracking results with a Linear Kalman filter and an IEKF

.. .. Discussion,

.. .. Conclusion,

P. Abbeel, A. Coates, M. Montemerlo, A. Y. Ng, and S. Thrun, Discriminative training of kalman filters, Robotics: Science and systems, vol.2, p.56, 2005.

C. Alippi and M. Roveri, An adaptive cusum-based test for signal change detection, IEEE International Symposium on Circuits and Systems, vol.4, 0119.

I. Vladimir and . Arnold, Sur la géométrie différentielle des groupes de lie de dimension infinie et ses applicationsa l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier, vol.16, issue.1, p.28, 1966.

M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking, IEEE Transactions on Signal Processing, vol.50, issue.2, p.44, 2002.

Y. Bar-shalom, K. C. Chang, A. P. Henk, and . Blom, Tracking a maneuvering target using input estimation versus the interacting multiple model algorithm. Aerospace and Electronic Systems, IEEE Transactions on, vol.25, issue.2, p.46, 1989.

Y. Bar-shalom, X. Li, and T. Kirubarajan, Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software, vol.46, p.61, 2004.

Y. Bar-shalom, X. Li, and T. Kirubarajan, Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software, p.86, 2004.

Y. Bar-shalom, K. Peter, X. Willett, and . Tian, Tracking and data fusion. YBS publishing, p.36, 2011.

A. Barrau, Non-linear state error based extended Kalman filters with applications to navigation. Theses, Mines Paristech, p.43, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01247723

A. Barrau and S. Bonnabel, Navigating with highly precise odometry and noisy GPS: a case study, IFAC Proceedings Volumes. IEEE, p.22, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01267244

A. Barrau and S. Bonnabel, The invariant extended kalman filter as a stable observer, IEEE Transactions on Automatic Control, vol.62, issue.4, p.55, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01692380

M. Basseville and I. V. Nikiforov, Detection of abrupt changes: theory and application, vol.104, p.119, 1993.
URL : https://hal.archives-ouvertes.fr/hal-00008518

H. Benoudnine, . Keche, M. S. Ouamri, and . Woolfson, Fast adaptive update rate for tracking a maneuvering target with a phased array radar, using imm and mrimm algorithms, Journal of Applied Science, vol.9, issue.2, p.119, 2009.

D. Bestle and M. Zeitz, Canonical form observer design for non-linear timevariable systems, International Journal of control, vol.38, issue.2, p.31, 1983.

R. H. Bishop, Geometric nonlinear filtering theory with application to the maneuvering aircraft tracking problem, p.41, 1990.

H. Robert, A. C. Bishop, and . Antoulas, Nonlinear approach to aircraft tracking problem, Journal of Guidance, Control, and Dynamics, vol.17, issue.5, p.41, 1994.

Y. Blanchard and . Le, Histoire d'un siècle d'innovations techniques et opéra-tionnelles. Ellipses, pp.1904-2004, 2004.

A. P. Henk, Y. Blom, and . Bar-shalom, The interacting multiple model algorithm for systems with markovian switching coefficients, IEEE transactions on Automatic Control, vol.33, issue.8, pp.780-783, 1988.

Y. Boers and J. N. Driessen, Interacting multiple model particle filter, IEE Proceedings-Radar, Sonar and Navigation, vol.150, p.61, 2003.

P. L. Bogler, Tracking a maneuvering target using input estimation, IEEE transactions on Aerospace and Electronic Systems, issue.3, p.17, 1987.

S. Bonnabel, P. Martin, and P. Rouchon, Symmetry-preserving observers, IEEE Transactions on Automatic Control, vol.53, issue.11, p.52, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00449206

S. Bonnabel, Left-invariant extended kalman filter and attitude estimation, Decision and Control, 46th IEEE Conference on, p.37, 2007.

S. Bonnabel, P. Martin, and P. Rouchon, Non-linear observer on lie groups for leftinvariant dynamics with right-left equivariant output, IFAC World Congress, p.52, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00485749

S. Bonnabel, P. Martin, and E. Salaün, Invariant extended Kalman filter: theory and application to a velocity-aided attitude estimation problem, Proceedings of the 48th IEEE Conference on, p.37, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00494342

J. Boulanger, S. Said, N. L. Bihan, and J. H. Manton, Filtering from observations on stiefel manifolds. Signal Processing, vol.122, p.44, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01240547

G. Bourmaud, R. Mégret, M. Arnaudon, and A. Giremus, Continuousdiscrete extended Kalman filter on matrix lie groups using concentrated gaussian distributions, Journal of Mathematical Imaging and Vision, vol.51, issue.1, p.44, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01311170

G. Bourmaud, R. Megret, A. Giremus, and Y. Berthoumieu, Discrete extended Kalman filter on lie groups, Signal Processing Conference (EUSIPCO), 2013 Proceedings of the 21st European, vol.37, p.44, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00903252

Y. Briheche, F. Barbaresco, F. Bennis, and D. Chablat, Update rates constraints in fixed-panel radar search pattern optimization with limited time budget, 18th International, p.110, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01559652

Y. Briheche, F. Barbaresco, F. Bennis, D. Chablat, and F. Gosselin, Non-uniform constrained optimization of radar search patterns in direction cosines space using integer programming, Radar Symposium (IRS), p.110, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01559432

M. Brossard, S. Bonnabel, and J. Condomines, Unscented kalman filtering on lie groups, Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International Conference on, vol.61, p.62, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01489204

T. E. Bullock and . Sangsuk-iam, Maneuver detection and tracking with a nonlinear target model, The 23rd IEEE Conference on, vol.23, p.15, 1984.

P. Bunch and S. Godsill, Dynamical models for tracking with the variable rate particle filter, Information Fusion (FUSION), 2012 15th International Conference on, vol.46, p.148, 2012.

P. Bunch and S. Godsill, Particle smoothing algorithms for variable rate models, IEEE Transactions on Signal Processing, vol.61, issue.7, p.91, 2013.

O. Cappé, E. Moulines, and T. Rydén, Inference in hidden markov models, vol.21, p.148, 2009.

R. Frank and . Castella, An adaptive two-dimensional Kalman tracking filter, IEEE Transactions on Aerospace and Electronic Systems, vol.61, issue.6, p.69, 1980.

J. Cesic, I. Markovic, and I. Petrovic, Moving object tracking employing rigid body motion on matrix lie groups, p.22, 2017.

R. Chatila and J. Laumond, Position referencing and consistent world modeling for mobile robots, Robotics and Automation. Proceedings. 1985 IEEE International Conference on, vol.2, pp.138-145, 1985.

D. Clark, Bayesian filtering for multi-object systems with independently generated observations

S. A. Cohen, Adaptive variable update rate algorithm for tracking targets with a phased array radar. Communications, Radar and Signal Processing, IEE Proceedings F, vol.133, issue.3, p.119, 1986.

R. G. Curry, Radar System Performance Modeling. Number vol. 1 in Artech House radar library. Artech House, vol.5, p.26, 2005.

J. Darricau, Physique et théorie du radar: principes et éléments de base, 2002.

G. De-moura-magalhães, E. Dranka, Y. Cáceres, B. R. João, R. S. Val et al., Ekf on lie groups for radar tracking using polar and doppler measurements, 2018 IEEE Radar Conference (RadarConf18), vol.27, p.44, 1922.

P. Del-moral, Non-linear filtering: interacting particle resolution, Markov processes and related fields, vol.2, p.148, 1996.

P. Del-moral and A. Guionnet, On the stability of interacting processes with applications to filtering and genetic algorithms, Annales de l'IHP Probabilités et statistiques, vol.37, p.148, 2001.

D. Delahaye, S. Puechmorel, and L. Boussouf, Trajectory prediction: a functional regression approach, ICRAT 2008, International Conference on Research in Air Transportation, p.81, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01004152

F. Dellaert and M. Kaess, Square root sam: Simultaneous localization and mapping via square root information smoothing, The International Journal of Robotics Research, vol.25, issue.12, pp.1181-1203, 2006.

T. Dong-si and A. Mourikis, Motion tracking with fixed-lag smoothing: Algorithm and consistency analysis, Robotics and Automation (ICRA), 2011 IEEE International Conference on, p.89, 2011.

R. Douc and O. Cappé, Comparison of resampling schemes for particle filtering, ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, vol.44, p.148, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00005883

A. Doucet, K. Nando-de-freitas, S. Murphy, and . Russell, Rao-blackwellised particle filtering for dynamic bayesian networks, Proceedings of the Sixteenth conference on Uncertainty in artificial intelligence, vol.45, p.143, 2000.

A. Doucet, J. Neil, V. Gordon, and . Krishnamurthy, Particle filters for state estimation of jump Markov linear systems, IEEE Transactions on, vol.49, issue.3, p.44, 1921.

A. Doucet and A. , A tutorial on particle filtering and smoothing: Fifteen years later. Handbook of nonlinear filtering, vol.12, p.44, 2009.

D. Nour-elhouda-dougui, M. Delahaye, S. Mongeau, and . Puechmorel, Aircraft trajectory planning under uncertainty by light propagation, Procedia-Social and Behavioral Sciences, vol.54, p.81, 2012.

,. Zhansheng-duan, C. Li, H. Han, and . Zhu, Sequential unscented kalman filter for radar target tracking with range rate measurements, Information Fusion, 2005 8th International Conference on, vol.1, p.27, 2005.

J. Duistermaat and J. Kolk, Lie groups, p.28, 2012.

H. Ryan-m-eustice, J. Singh, and . Leonard, Exactly sparse delayed-state filters, vol.87, 2005.

J. Forbes, A. Hj-de-ruiter, and D. E. Zlotnik, Continuous-time normconstrained kalman filtering, Automatica, vol.50, issue.10, p.37, 2014.

C. Gardiner, Stochastic methods, vol.4, p.19, 2009.

S. Godsill and J. Vermaak, Variable rate particle filters for tracking applications, IEEE/SP 13th Workshop on Statistical Signal Processing, vol.91, p.148, 1921.

J. Simon, J. Godsill, W. Vermaak, J. Ng, and . Li, Models and algorithms for tracking of maneuvering objects using variable rate particle filters, Proceedings of the IEEE, vol.95, issue.5, p.148, 2007.

S. Maria, F. Greco, P. Gini, K. Stinco, and . Bell, Cognitive radars: A reality, p.110, 2018.

F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson et al., Particle filters for positioning, navigation, and tracking, IEEE Transactions on signal processing, vol.50, issue.2, p.44, 2002.

F. Gustafsson, Particle filter theory and practice with positioning applications. IEEE Aerospace and Electronic Systems Magazine, vol.25, p.44, 2010.

S. Haykin, Cognitive radar: a way of the future, IEEE Signal Processing Magazine, vol.23, issue.1, pp.30-40, 0110.

X. Hu, T. Schön, and L. Ljung, A basic convergence result for particle filtering, IEEE Transactions on Signal Processing, vol.56, issue.4, p.45, 2008.

X. Hu, T. Schön, and L. Ljung, A general convergence result for particle filtering, IEEE Transactions on Signal Processing, vol.59, issue.7, p.146, 2011.

J. Simon, J. K. Julier, and . Uhlmann, New extension of the kalman filter to nonlinear systems, AeroSense'97, vol.41, p.42, 1997.

J. Simon, J. K. Julier, and . Uhlmann, Unscented filtering and nonlinear estimation. Proceedings of the IEEE, vol.92, p.42, 2004.

M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. John et al., isam2: Incremental smoothing and mapping using the bayes tree. The International, Journal of Robotics Research, vol.31, issue.2, pp.216-235, 2012.

M. Kaess, A. Ranganathan, and F. Dellaert, isam: Incremental smoothing and mapping, IEEE Transactions on Robotics, vol.24, issue.6, p.89, 2008.

R. E. Kalman and R. S. Bucy, New results in linear filtering and prediction theory, J. Basic Eng, p.111, 1961.

R. E. and K. , A new approach to linear filtering and prediction problems, Journal of basic Engineering, vol.82, issue.1, p.38, 1960.

M. Bernt, J. Åkesson, N. K. Bagterp-jørgensen, S. Poulsen, and . Jørgensen, A tool for kalman filter tuning, 17th European Symposium on Computer Aided Process Engineering, vol.24, pp.859-864, 2007.

A. Khosravian, J. Trumpf, R. Mahony, and C. Lageman, Observers for invariant systems on lie groups with biased input measurements and homogeneous outputs, Automatica, vol.55, p.52, 2015.

M. Koldychev and C. Nielsen, Local observers on linear lie groups with linear estimation error dynamics, IEEE Transactions on Automatic Control, vol.59, issue.10, p.52, 2014.

K. Konolige, Large-scale map-making, AAAI, vol.87, pp.457-463, 2004.

J. Korn, S. W. Gully, and A. S. Willsky, Application of the generalized likelihood ratio algorithm to maneuver detection and estimation, 1982 American Control Conference, p.119, 1982.

T. Lacey, Tutorial: The kalman filter. Georgia Institute of Technology, p.139

N. L. Bihan, The geometry of proper quaternion random variables, Signal Processing, vol.138, p.73, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01550207

N. François-le-gland and . Oudjane, Stability and uniform approximation of nonlinear filters using the Hilbert metric and application to particle filters, The Annals of Applied Probability, vol.14, issue.1, p.146, 2004.

R. Li, P. Vesselin, and . Jilkov, Survey of maneuvering target tracking. part i. dynamic models, IEEE Transactions on Aerospace and Electronic Systems, vol.39, issue.4, pp.1333-1364, 2003.

R. Li, P. Vesselin, and . Jilkov, Survey of maneuvering target tracking. part v. multiplemodel methods, IEEE Transactions on Aerospace and Electronic Systems, vol.41, issue.4, p.40, 2005.

G. David and . Luenberger, Observing the state of a linear system, IEEE transactions on military electronics, vol.8, p.31, 1964.

R. Mahler, Phd filters of higher order in target number, IEEE Transactions on Aerospace and Electronic Systems, vol.43, issue.4, p.37, 2007.

P. Martin and E. Salaün, Generalized multiplicative extended kalman filter for aided attitude and heading reference system, AIAA Guidance, Navigation, and Control Conference, p.37, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00555580

P. Matisko and V. Havlena, Noise covariances estimation for kalman filter tuning, 10th IFAC Workshop on the Adaptation and Learning in Control and Signal Processing, vol.43, pp.31-36, 2010.

M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, Fastslam: A factored solution to the simultaneous localization and mapping problem, Aaai/iaai, vol.87, pp.593-598, 2002.

R. Mark, N. J. Morelande, and . Gordon, Target tracking through a coordinated turn, IEEE International Conference on Acoustics, Speech, and Signal Processing, vol.4, p.86, 2005.

N. Nabaa and R. H. Bishop, Validation and comparison of coordinated turn aircraft maneuver models, IEEE Transactions on aerospace and electronic systems, vol.36, issue.1, p.31, 2000.

B. Øksendal, Stochastic differential equations, Stochastic differential equations, vol.17, p.37, 2003.

M. Pilté, S. Bonnabel, and F. Barbaresco, Fully-adaptive update rate for nonlinear trackers. IET Radar, Sonar & Navigation, 2018.

M. Pilté, S. Bonnabel, and F. Barbaresco, Tracking the frenet-serret frame associated to a highly maneuvering target in 3d, 2017 IEEE 56th Annual Conference on Decision and Control (CDC), vol.9, p.23, 2017.

M. Pilté and F. Barbaresco, Tracking quality monitoring based on information geometry and geodesic shooting, Radar Symposium (IRS), p.119, 2016.

M. Pilté, S. Bonnabel, and F. Barbaresco, Drone tracking using an innovative ukf, International Conference on Geometric Science of Information, pp.301-309

. Springer, , 2017.

M. Pilté, S. Bonnabel, and F. Barbaresco, An innovative nonlinear filter for radar kinematic estimation of maneuvering targets in 2d, 18th International, pp.1-10, 2017.

M. Pilté, S. Bonnabel, and F. Barbaresco, Maneuver detector for active tracking update rate adaptation, 19th International Radar Symposium (IRS), pp.1-10, 2018.

P. Rebeschini and R. Van-handel, Can local particle filters beat the curse of dimensionality?, The Annals of Applied Probability, vol.25, issue.5, p.146, 2015.

K. Reif, F. Sonnemann, and R. Unbehauen, An EKF-based nonlinear observer with a prescribed degree of stability, Automatica, vol.34, issue.9, p.68, 1998.

B. Risti, D. Clark, and B. Vo, Improved smc implementation of the phd filter, p.37, 2010.

P. Sarunic, Adaptive update rate target tracking for a phased array radar, p.119, 1995.

H. J. Shin, S. M. Hong, and D. H. Hong, Adaptive-update-rate target tracking for phasedarray radar, IEE Proceedings -Radar, Sonar and Navigation, vol.142, issue.3, p.119, 1995.

G. Sibley, L. Matthies, and G. Sukhatme, Sliding window filter with application to planetary landing, Journal of Field Robotics, vol.27, issue.5, p.89, 2010.

I. Simeonova and T. Semerdjiev, Specific features of imm tracking filter design, Information and Security, vol.9, p.25, 2002.

A. Robert and . Singer, Estimating optimal tracking filter performance for manned maneuvering targets, IEEE Transactions on Aerospace and Electronic Systems, vol.31, issue.4, p.118, 1970.

M. George and . Siouris, Missile guidance and control systems, p.14, 2004.

S. Merrill-ivan, Radar handbook, 1970.

A. Gabriel and . Terejanu, Unscented kalman filter tutorial, p.42, 2011.

S. Thrun and M. Montemerlo, The graph slam algorithm with applications to large-scale mapping of urban structures, The International Journal of Robotics Research, vol.25, issue.5-6, pp.403-429, 2006.

. Guenter-van-keuk, S. Samuel, and . Blackman, On phased-array radar tracking and parameter control, IEEE Transactions on Aerospace Electronic Systems, vol.29, p.129, 1993.

E. A. Wan and R. Van-der-merwe, The unscented kalman filter for nonlinear estimation, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373), p.42, 2000.

A. Gregory, W. Watson, and . Blair, Tracking performance of a phased array radar with revisit time controlled using the imm algorithm, Proceedings of 1994 IEEE National Radar Conference, p.119, 1994.