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Chapter 1

Introduction

Autonomous vehicles are getting more and more attention because of their potential to both
signi�cantly reduce the number of road fatalities and improve drivers' daily lives. Driverless cars
research �eld has been very active in recent years, and signi�cant advances have been achieved.
However, there are still some signi�cant gaps before having fully automated vehicles on public
roads.

The research on the last years has been focused on the development of multi-sensor systems able
to perceive the environment in which the vehicle is driving in, permitting to create a comprehensive
map of the tra�c situation. These multi-sensor perception systems are signi�cantly increasing
the complexity when it comes to autonomously control the vehicle. Di�erent control systems
are activated according to a multi-target decision making system. Each of these systems follows
performance and stability criteria for its design, but they all have to work together, providing
stability guarantees and being able to handle unexpected situations as unpredicted uncertainties
or even fully outages from sensors. With these premises, the goal of this Ph.D. work is to further
investigate intelligent advanced control systems to provide stable responses for autonomous vehicles
under di�erent circumstances.

This thesis has been developed within the Robotics and Intelligent Transportation Systems
(RITS) team/project at the French National Institute for Research in Computer Science and
Control (INRIA, from french: Institut National de Recherche en Informatique et en Automatique).
In the following, the author explains motivation, objectives, manuscript organization and main
contributions of the presented work.

1.1 Motivation

Autonomous driving aims to improve tra�c �ow, reduce accidents and fuel consumption, and make
possible personal car travel for everyone regardless of their abilities or conditions. An autonomous
vehicle is built by combining a set-of-sensors and actuators together with sophisticated algorithms.
These algorithms perform di�erent functions, taking the information coming from the sensors to
make the vehicle react to di�erent tra�c situations through the actuators [Luettel et al., 2012]. A
general architecture for autonomous driving is in Fig. 1.1. Details about each of the blocks that
form this autonomous vehicle's architecture are found below:

ˆ Acquisition. It is the process on charge of getting information from the installed sensors in
the vehicle. Global Position Systems (GPS), Inertial Measurement Unit (IMU) and odom-
etry are used for vehicle location in a coordinate framework; Light Detection And Ranging

1
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(LiDAR) sensors, radar, ultrasounds, and cameras are employed for having a 360º view of
the environment.

ˆ Communication. Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) wireless com-
munications are used to be able to communicate with other vehicles and road infrastructure.

ˆ Perception. This block uses the information coming from the acquisition stage, in order
to understand and model the environment around the vehicle, being aware of its state in
such environment. Obstacles detection in the surroundings (pedestrians, vehicles. . . ), ego-
vehicle's localization and detection of lane marks on the road, are some of the tasks linked
to this block.

ˆ Decision. It manages the data processed in the perception stage for a dynamic behavior of
the vehicle. It is able to react and interact with unexpected situations that usually a�ect
the prede�ned driving such as: pedestrians, road works, obstacles, Human-Machine-Interface
(HMI) request, etc.

ˆ Control. It is responsible for the reference path tracking and driving safety requirements
provided by the decision stage. Control variables as steering angle and longitudinal velocity
are obtained in order to correctly follow orders given by the decision stage.

ˆ Actuation. The control output is sent to the di�erent vehicle actuators: The steering wheel
for the lateral control; and throttle, brake and gear shift for longitudinal control.

This PhD work is focused in the control block design. According to di�erent scenarios (i.e.
road layout, other tra�c agents interaction), di�erent control systems are required. Activation is
commanded by the decision system based on the information provided by the perception block.
Control systems can be divided in classical, optimal, robust, adaptive and Fault Tolerant Control
(FTC):

ˆ Classical control is based on the use of linear di�erential equations describing system dynam-
ics. Control mission is to make the error between reference input and feedback sensor state
zero.

ˆ Optimal control, on the other hand, is an extension of classical control in which you answer
the question: How do I design my controller to ensure that I optimize a performance index?
It assumes a perfect model of the system.

ˆ Robust control, on the contrary, assumes that the model is imperfect, seeking for stability
and quality of the controller given external disturbances or uncertainty in the system model.

ˆ Adaptive control is required in scenarios where large changes occur. Controller parameters
change with time and tracks the changes in the plant, with the goal of designing a system
which, at all instants, performs in accordance with the design constraints.

ˆ FTC aims to increase plant availability and reduce the risk of safety hazards. Its goal is to
prevent that simple faults develop into serious failure.

Vehicle dynamic control can be divided in lateral and longitudinal controllers. The former
allows to automatically steer according to a planned trajectory. The latter acts on the throttle
and brake for folllowing a reference speed, playing a key role to ensure safety and comfort of
passengers.
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Speci�cally related to automated longitudinal control, Cruise control and platooning tasks are
mainly developed. Cruise control permits to set a maximum speed at which someone desires to
travel, acting over throttle and break pedals in order to maintain the speed of the vehicle even on up
and down hills. By adding a forward radar, vehicle gains environmental information � intervehicle
distance � to adapt its velocity according to the preceding's one. This is called Adaptive Cruise
Control (ACC). ACC reduces congestion in highways by making formation of vehicles. V2V
communication is added to the existing ACC system, improving tra�c �ow through the formation
of a tighter string of vehicles� so-called Cooperative Adaptive Cruise Control (CACC). While
ACC/CACC are comfort systems to help the driver and reduce tra�c congestion problem, they
do not have a way to prevent a crash with a forward vehicle or pedestrian. These kind of systems
are not full range, and another controller will be needed if preceding vehicle brakes suddenlyor
a pedestrian passes between two vehicles. Emergency brake control needs to be developed. Once
both cruise and emergency brake control are designed, an optimization process could be carried
out in order to make maneuvers optimal. This involves completing maneuvers, such as join, split
or change lane in the minimum possible time, while maintaining as high a speed and as small
a distance from the preceding vehicle as practicable and safe. Optimal acceleration/deceleration
could be also treated in the sense of minimizing fuel consumption. All these solutions together
signi�cantly enhance road safety and improve highway utility. However, various uncertainties and
disturbances present in the real world should be considered to have not only a optimal solution,
but robust. Uncertainties or external disturbances are for example dynamics of di�erent vehicles,
variant delay communication between vehicles, wind gust or road slopes. When dynamics di�erence
are large, and adaptive control with identi�cation process would be needed. Finally, FTC is also
employed in order to deal with communication link availability or in-wheel motor faults in electrical
vehicles, among others. This shows the need to employ di�erent control systems in order to have
a complete solution dealing with di�erent tra�c situations, dynamics of ego and surrounding
vehicles, sensor/actuators availability, pedestrians or even driver preferences.

Lateral control is in charge to turn the steering wheel for applying path corrections to reduce or
remove errors between actual and intended paths. The intended path can change in order to avoid
obstacles or pedestrians. It is clear that GPS, camara, odometry and LiDAR is needed in order
to localize the vehicle with respect to the intended path. A classical solution should be able to
navigate soft turns and straight lines at speci�c velocity. It is logical that the steering wheel of our
car does not turn in the same way to take a curve, if this is done at 10km=h or 100km=h. Di�erent
controllers would be needed depending on the longitudinal velocity of the vehicle. At thesame
time, those controllers could be modi�ed to cover a wide range of roads/situations, including sharp
turns, roundabouts, lane change and so on. Adaptive control could o�er a good adaptability to
di�erent road types and velocities. Robustness is also important in lateral control. Uncertainties
are mainly in parameters as tire cornering sti�ness, vehicle longitudinal velocity and yaw rate.
A typical external disturbance is the road surface friction condition, which is uncertain and can
change extremely quickly. It is not the same to drive in icy than in rough asphalt roads. To
improve control, the road surface friction can be treated as a robust solution for a speci�c range,
or even as an adaptive solution if an estimation of this parameter exists. Finally, FTC solutions
would be also important to ensure accurate path tracking in the presence of faults. Faults could
go from sensors fails to wheel lock. Consequently, lateral control needs di�erent control solutions
depending on the road form and situation, vehicle dynamics and sensor/actuators availability.
Driver preferences could be also important in order to adapt driving style.

In short, both longitudinal and lateral control solutions have many di�erent solutions depending
on the nature of the problem, and a control/supervision structure would be necessary to deal with
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all the types of changes that may come. In this thesis, Youla-Kucera (YK) parameterization is
analysed as a methodology that could improve the security of autonomous driving systems by
providing a framework managing di�erent sensor/actuator setups, dynamics and tra�c situations
with stability guarantees.

1.2 Objectives

The objective of this Ph.D. thesis is to further investigate the YK parameterization to provide
stable responses for autonomous vehicles when dynamics or environmental changes occur. This
thesis explores the use of the YK parameterization in dynamics systems such as vehicles, with
special emphasis on stability when some dynamic change or the tra�c situation demands controller
recon�guration.

In order to meet with the idea of general control framework handling those changes into the
vehicle, di�erent steps should be followed: First, controller recon�guration due to di�erent tra�c
situations is explored. Then, dynamics of ego or surrounding vehicles could be important in order
to improve vehicle performance/stability. Thus, identi�cation of unmodeled vehicle dynamics is
analysed. Finally, both controller recon�guration and dynamics identi�cation should be used
together following some performance/stability criteria.

Focus is in obtaining simulation and experimental results related to the use of the YK parame-
terization in the longitudinal control of an autonomous vehicle. CACC applications are targetted,
with the aim not only of using for the very �rst time YK parameterization in the Intelligent
Transportation Systems (ITS) domain, but improving CACC state-of-the art by providing sta-
ble controller recon�guration results when non-available communication link with the preceding
vehicle, cut-in/out maneuvers or surrounding vehicles with di�erent dynamics.

With the present results, the author aims to prove adaptability, stability and real implementa-
tion of the YK parameterization as control framework for secure responses in autonomous driving.

1.3 Manuscript organization

The present Ph.D. work is organized in a total of six chapters. An overview of remaining chapters
is given below:

Chapter 2. State of the art. This chapter presents a review of the YK parameterization
related to classical, optimal, adaptive, robust and FTC. The origins of this mathematical framework
are explained. Important groups worldwide are reviewed, focusing on the di�erent types of control
applications developed, allowing the understanding of open challenges and future research work.

Chapter 3. Youla-Jabr-Bongiorno-Kucera parameterization. YK parameterization
provides all stabilizing controllers for a given plant, and this is used for performing stable con-
troller recon�guration. YK mathematical basis is provided with emphasis in stability proof. Dif-
ferent control structures for stable switching are derived from this parameterization, dealing with
problems such order complexity, plant disconnection or matrix inversability. Di�erent numerical
examples are given for the better understading of the stable controller recon�guration and transient
behavior depending on the chosen YK-based control structure.

Chapter 4. Dual Youla-Jabr-Bongiorno-Kucera parameterization. Dual YK parame-
terization provides all plants stabilized by a given controller, and this is used to perform controller
design in the presence of system variations or Closed-Loop (CL) identi�cation. The basis of this
parameterization is also explained. CL stabilization in the presence of system variations is anal-
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ysed. The dual YK parameterization properties are used for obtaining a Multi Model Adaptive
Control (MMAC) approach, and CL identi�cation algorithms.

Chapter 5. Applications. This chapter explores the uses of YK and dual YK parameteriza-
tion in autonomous driving; speci�cally, CACC applications are considered in the presence of tra�c
or dynamics changes. YK-based stable controller recon�guration is used to deal with the problem
of non-available communication link with the preceding vehicle; and vehicles joining/leaving the
string. Then, as vehicles in the string could be di�erent, dual YK parameterization is employed to
perform CL longitudinal dynamics identi�cation. Finally, both YK and dual YK parameterization
are used in a MMAC approach to deal with vehicles heterogeneity in CACC string of vehicles.
Simulation and experimental results with di�erent type of controllers and structures prove adapt-
ability, stability and real implementation of the YK parameterization.

Chapter 6. Conclusions. Conclusions and most important remarks, with respect to the
problems addressed in the present Ph.D. work, are given in this chapter. Also future research lines
are presented and discussed.

1.4 Contributions

In the present dissertation, YK parameterization is used as control framework able to deal with
controller recon�guration, dynamics identi�cation and adaptive control approaches. Contributions
are detailed below:

1. YK parameterization provides all stabilizing controllers for a given plant. This is used in
order to perform stable controller recon�guration. Di�erent YK-based control structures are ob-
tained for dealing with problems such order complexity, plant disconnection or matrix inversability.
Stability properties are preserved even if di�erent structures are employed, but transient behavior
between controllers changes depending on the employed YK-based structure. One of the structures
presents the best transient behavior without oscillations, a lower order controller complexity and
no need to disconnect the initial controller, which would be important if the system shutdown is
very expensive, or the initial controller is part of a safety circuit. This structure is used together
with CACC applications improving CACC state-of-the-art. A hybrid behavior between two CACC
controllers with di�erent time gaps is explored by means of the YK parameterization, in order to
avoid ACC degradation when communication link with preceding vehicle is lost. The proposed
system uses YK parameterization and communication with a vehicle ahead (di�erent from the
preceding one) providing stable responses and, more interestingly, reducing intervehicle distances
in comparison with an ACC degradation. A similar idea of hybrid behavior between CACC con-
troller with di�erent time gap is developed for entering/exiting vehicles in the string. In that case,
YK parameterization is able to ensure stability of these merging/splitting maneuvers.

2. Dual YK parameterization provides all the plants stabilized by a controller. This is employed
for solving CL identi�cation problems, or adaptive control solutions, which integrate identi�cation
and controller recon�guration processes. YK-based CL identi�cation uses classical OL identi�ca-
tion algorithms, providing better results than if it is used alone. Results in a CACC-equipped
vehicle prove how CL nature of the data a�ects a classical OL identi�cation algorithm, and how
dual YK parameterization helps to mitigate these e�ects. Finally, an adaptive control application
is developed by using MMAC. Longitudinal dynamics of two vehicles in a CACC string are esti-
mated within a model set, so the good CACC sytem can be chosen even if a heterogeneous string
of vehicles is considered. Dynamics estimation results much faster than other estimation processes
in the literature.

3. Di�erent type of controllers and structures are used throughout this thesis, proving the
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adaptability of the YK parameterization to any type of controller. Simulation and experimental
results demonstrate real implementation of stable controller recon�guration, CL identi�cation and
adaptive control solutions dealing with dynamics changes or di�erent tra�c situations. The author
thinks that YK is a suitable control framework able to ensure responses in autonomous driving.

1.5 Publications

As results from the work in the development of the Ph.D. thesis, the author cites the following
publications:

1.5.1 Journal articles

Title: Youla-Kucera based Advanced Adaptive Cruise Control.
Authors: F. Navas, V. Milanés and F. Nashashibi.
Journal: IEEE Transactions on Vehicular Technology.
Status: Second revision submitted October 2018.

Title: Multi Model Adaptive Control for CACC applications.
Authors: F. Navas, V. Milanés, C. Flores and F. Nashashibi.
Journal: Control Engineering Practice.
Status: Second revision submmited September 2018.

Title: Youla-Kucera based Fractional Controller for Stable Cut-in/Cut-out Transitions in
Cooperative Adaptive Cruise Control Systems.
Authors: F. Navas, R. de Charette, C. Flores, V. Milanés and F. Nashashibi.
Journal: IEEE Transactions on Intelligent Transportation Systems.
Status: Submitted September 2018.

Title: A Cooperative Car-Following/Emergency Braking System With Prediction-Based
Pedestrian Avoidance Capabilities
Authors: C. Flores, P. Merdrignac, R. de Charette, F. Navas, V. Milanés and F. Nashashibi.
Journal: IEEE Transactions on Intelligent Transportation Systems
Number: 99 Pages: 1-10 Year: 2018.

1.5.2 Conference papers

Title: Youla-Kucera based lateral controller for autonomous Vehicle.
Authors: I. Mahtout, F. Navas, D. González, V. Milanés and F. Nashashibi.
Proceedings: 21st IEEE International Conference on Intelligent Transportation Systems
Place: Hawaii, USA Date: November 2018.

Title: Youla-Kucera control structures for switching.
Authors: F. Navas, I. Mahtout, V. Milanés and F. Nashashibi.
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Proceedings: 2nd IEEE Conference on Control Technology and Applications.
Place: Copenhagen, DenmarkDate: August 2018.

Title: Youla-Kucera based online closed-loop identi�cation for longitudinal vehicle dynamics.
Authors: F. Navas, V. Milanés and F. Nashashibi.
Proceedings: 21st IEEE International Conference on System Theory, Control and Computing.
Place: Sinaia, RomaniaDate: October 2017.

Title: Using Plug&Play Control for stable ACC-CACC system transitions.
Authors: F. Navas, V. Milanés and F. Nashashibi.
Proceedings: 2016 IEEE Intelligent Vehicles Symposium.
Place: Gothenburg, SwedenDate: June 2016.



Chapitre. État de l'art

Below is a French summary of the following chapter "State of the art".

Au sein de l'automatisme, l'ingénierie du contrôle est considérée comme une technologie ma-
ture et cela de di�érentes manières. Elle s'inclut quasiment dans chaque type d'application dans
le monde de l'industrie. La littérature regorge d'algorithmes de contrôle de systèmes, aussi com-
plexes que soient les situations. Cependant, en pratique, de nombreux problémes apparaissent au
moment de l'implémentation et plus particuliérement quand le système inclut des changements
dynamiques, structuraux ou environnementaux. Pour résumer, beaucoup d'outils existent pour
concevoir des contrôleurs appliqués aux systèmes dont la structure est connue. Toutefois, ces
derniers ne fournissent pas les mêmes performances quand la structure du système contrôlé change
au �l du temps. Le probléme de concevoir un contrôleur capable de traiter ces changements n'est
pas nouveau. On peut citer le "Fault Tolerant Control" (FTC) spécialisé dans le cas des composants
tombant en panne. Cependant, le travail dans le domaine est généralement limité par un nombre
de pannes spéci�ques auxquelles s'ajoute le probléme de l'apparition de nouveaux composants.
Un autre domaine qui considère le changement au sein des systèmes est le contrôle adaptatif qui
permet de suivre des changements pouvant être dé�nis par la variation des paramètres du système
controlé. Les changements nécessaires à la recon�guration du système doivent être identi�és d'une
manière ou d'une autre. Lorsque ces changements sont modélisés par des variations paramétriques
prédé�nis, les changements structuraux ou l'introduction d'une nouvelle dynamique ne le sont pas.
On retrouve aussi le contrôle robuste qui considère, quant à lui, un système dont les caractéris-
tiques changent avec incertitudes. Quand ces incertitudes sont limitées, ce contrôleur �xe, garantit
un comportement acceptable. Cependant, ce dernier n'est pas concevable dans les scénarios où
ces changements sont trop importants. Les structures hiérarchiques gérant les changements des
structures, à un instant précis, ont aussi été largement étudiées dans les domaines du contrôle dé-
centralisé, distribué, hiérarchique et réseau. Traiter ces changements structuraux, implique aussi
des transitions d'un système à un autre. Le domaine de "bumpless transfer" étudie le comportement
des contrôleurs pendant la transition entre di�érent systèmes. Pour conclure, il y a di�érentes solu-
tions dépendantes de la nature du problème. De plus, une structure de contrôle et de supervision,
doit être appliquée lorsque di�érents types de changements interviennent.

La paramétrisation de Youla-Jabr-Bongiorno-Kucera (YK) est un outil de contrôle qui est ap-
paru simultanément dans [Ku£era, 1975,Youla et al., 1976a,Youla et al., 1976b]. La paramétrisation
YK fournit tous les contrôleurs stabilisant un système donné. Ces derniers sont paramétrisés par
la fonction de transfert appelée paramètre YKQ et donc : K (Q). Il peut être utilisé pour réaliser
la recon�guration stable du contrôleur quand di�érents changements interviennent. Le contrôleur
en question peut être classique, adaptatif, optimal ou robuste. Mélanger di�érents types de con-
trôleur est permis dans cette recon�guration. La théorie duale de la paramétrisation YK, fournit
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tous les systèmes stabilisés par un contrôleur donné. L'ensemble de tous les systèmes stabilisés
par un contrôleur dépend de la fonction de transfert appelée paramètre YK dualS, ce qui donne:
G(S). Ce paramètre peut représenter la variation paramétrique, les incertitudes de modélisation,
changement de point d'opération .... Ce dernier est employé pour les identi�cations dynamiques
et/ou l'identi�cation de nouveaux capteurs/actionneurs connectés au système. Finalement, les
deux paramètres YK peuvent être utilisés ensemble et ainsi une structure de contrôle qui change,
basé sur des identi�cations dynamiques, est obtenue. Comme les capteurs/actionneurs sont iden-
ti�és, le contrôle hiérarchique et le FTC sont ainsi réalisable par la paramétrisation de YK. Le
contrôleur est modi�é en fonction des nouvelles dynamiques, avec di�érents critères de performance
et de stabilité. Avec ces hypothèses, YK est capable de répondre à toutes les solutions proposées
au dèbut de ce chapitre avec la même structure théorique, tout en garantissant la stabilité. Par
conséquent, il peut servir d'outil général de contrôle pour les systèmes exposés aux changements
dynamiques, structuraux ou environnementaux.

Ce chapitre donne un aperçu du domaine de recherche de la paramétrisation YK. Les origines
de cette technique sont expliquées. Les travaux principaux à travers le monde sont étudiés, ense
concentrant principalement sur les di�érents domaines d'application du contrôle basé sur cet outil
mathématique. Les applications sont classées en fonction de l'utilisation deQ, de S ou bien des
deux.



Chapter 2

State of the art

Control engineering is considered as a mature technology in many di�erent ways, being able of
dealing with almost any kind of application in the industrial context. The literature is rich in
algorithms to design control systems, even highly complex control problems. But, in practice,
several problems appear for its implementation, especially when the system is exposed to dynamics,
instrumental or environmental changes. In short, a lot of tools exists to design feedback controllers
for a system with a known structure, but they are not providing proper responses when the
structure of the system to be controlled changes over time. The problem of designing a controller
able to deal with these changes is not new: Fault Tolerant Control (FTC) specializes in the case of
components that fail. The work in this area, however, is usually limited to a prespeci�ed amount of
faults, and the problem of handling new components is not addressed. Another �eld that considers
changing systems, it is the adaptive control area, which allows tracking changes that can be de�ned
as parameters in the controlled system. Changes for controller recon�guration need to be identi�ed
somehow. Since those changes are already set as prede�ned parameters, structural changes or new
dynamics introduction are not considered either. On the other hand, robust control considers
a system that changes their characteristics over time through uncertainties. These changes are
somewhat bounded, so a �xed controller can be designed, guaranteeing an acceptable behavior.
However, robust control design is not possible in scenarios where changes in the system are large.
Hierarchical structures to deal with running structural changes have been also widely studied in the
areas of decentralized, distributed, hierarchical or networked controls. Handling these structural
changes also involves dealing with the transients when changing from one system to the other.
Considerations about transient behavior when doing controller recon�guration can be found on
the bumpless transfer control area. In short, there are many di�erent solutions depending on the
nature of the problem, and a control/supervision structure would be necessary to deal with all the
types of changes that may come.

Youla-Jabr-Bongiorno-Kucera (YK) parameterization is a control framework that appeared
simultaneously in [Ku£era, 1975, Youla et al., 1976a, Youla et al., 1976b]. YK parameterization
provides all stabilizing controllers for a given system. All stablizing controllers are parameterized
based on the transfer function called YK parameter Q, so K (Q). It can be used to perform
stable controller recon�guration when some change occurs. The type of controller could be any�
classical, adaptive, optimal or robust control. Mixing di�erent types of controller is allowed in
this controller recon�guration. The dual theory, dual YK parameterization, provides all the plants
stabilized for a given controller. The class of all the plant stabilized by a controller depends
on the transfer function called dual YK parameter S, so G(S). This parameter could represent
any plant variations, uncertainties, parameter variations, change of operation point, etc. This
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is employed for dynamics identi�cation and/or identi�cation of new sensors/actuators connected
to a system. Finally, both can be used together, so a control structure that changes based on
identi�ed dynamics is obtained; as sensors/actuators are identi�ed, hierarchical and fault tolerant
control structures are also supported by YK. Controller is changed depending on new dynamics
with some performance/stability criteria. With these premises, YK is able to encompass all the
solutions proposed at the beginning of this chapter within the same theoretical framework and
with stability guarantees. Thus, it could serve as a general control framework to deal with systems
exposed to dynamics, instrumental or environmental changes.

The present chapter gives an overview of the YK parameterization research �eld. The origins of
this technique are explained. Important groups worldwide are reviewed, focusing on the di�erent
type of control applications by using this mathematical framework. Applications are divided
depending on whetherQ or S are used, or both.

2.1 Origins

G(s) yuK(s)r

-

Figure 2.1: Negative feedback loop.

The origin of YK is in [Newton et al., 1957]. Given a Single-Input-Single-Output (SISO) stable
plant, they found a way to parameterize all the controllers that stabilize it. Let's assume a feedback
loop as in Fig. 2.1. If a stable controllerK (s) is connected to the plant G(s) in a negative feedback
loop, the transfer function of the control input u from the reference signalr yields:

Q(s) =
U(s)
R(s)

=
K (s)

1 + K (s)G(s)
(2.1)

where if Q(s) and G(s) are known, the controller transfer function K (s) can be recovered as follows:

K (s) =
Q(s)

1 � G(s)Q(s)
(2.2)

From Eq. 2.2, it is clear that if K (s) is a stabilizing controller, Q(s) is stable and proper; thus
any stable and proper transfer functionQ(s) represents a stabilizing controller forG(s). The class
of all stabilizing controllers for a plant is obtained. This could seem useless, but they observed
that the nonlinear transfer function from reference r to output y in K (s) becomes linear inQ(s)
(see Eqs. 2.3 and 2.4 respectively). Thus, the design ofQ(s) to achieve a desired performance is
linear, obtaining K (s) by back-substitution.

Y (s)
R(s)

(K (s)) =
K (s)G(s)

1 + K (s)G(s)
(2.3)

Y (s)
R(s)

(Q(s)) = Q(s)G(s) (2.4)
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This idea of reparameterizing a set plant-controller in order to obtain linearity reappeared
in [Zames, 1981]; and is well known as internal model control in chemical control process [Morari
and Za�riou, 1989]. But, it was not able to be applied for Multi-Input-Multi-Output (MIMO)
systems.

[Ku£era, 1975] and [Youla et al., 1976a,Youla et al., 1976b] proposed simultaneusly discrete and
continous solutions to deal with MIMO unstable plants� so-called Youla-Kucera parameterization.
There are two key points in the solutions: First, an initial stabilizing controller is considered; and
second, plants are described using stable polynomial fractional transformations. Its use permited
to see the plant as the combination of two stable transfer functions� e.g. an unstable plant
G(s) = 1 =(s � 5) is represented byX (s)Y (s) � 1 with X (s) = 1 =(s + 1) and Y(s) = ( s � 5)=(s + 1).
These factors were employed in order to obtain an equivalent toQ(s) in Eq. 2.1. This new Q(s),
called YK parameter, characterizes the class of all stabilizing controllers depending on stable
polynomial fractional factors for G(s) and an initial K (s). Linearity was preserved even if stable
polynomial fractional factors were used.

This approach was updated with coprime factors in order to avoid algebraic di�culties as
noticed by [Desoer et al., 1980] and [Vidyasagar, 1985] for SISO and MIMO systems. An e�cent
method for obtaining these factors is based on a state-space representation [Nett et al., 1984].
As those coprime factors are the basis for obtaining the class of all stabilizing controllers, this
state-space representation is preserved in almost every future application.

The linearity of Q within the Closed-Loop (CL) function facilitates optimization over the class
of all stabilizing controllers. Every single controller could be augmented withQ. This Q is seen
as a stable �lter that can be optimize o�ine or online in order to improve system's performace.
An adaptive Q technique could be no longer useful when systems variations or uncertainites are
large. A controller solution for such situations is provided by the dual YK parameterization.

Coprime factors of an inital plant connected to a stabilizing controllers are used in order to
obtain the class of all plants stabilized by a controller. The connection between the dual YK and
YK parameterizations was �rst developed by [Tay et al., 1989a], giving robust stability results.
This dual YK parameter was used to suppress CL identi�cation di�culties in [Hansen et al.,
1989, Schrama, 1991]. The identi�cation of a plant in the presence of a feeedback loop could be
complex due to the noise. Given an initial model and controller, by identifying the dual YK S
instead of G(s), the CL problem is transformed into an Open-Loop (OL) like problem. This is
called in the literature Hansen scheme. The resultingS is used to carefully redesign the �lter Q
such that a better performance is achieved without loosing the stability of the system.

Performance enhancement techniques working with an adaptiveQ are seen particularly in the
work of the Australian National University. It is also there that the dual YK parameterization and
robust stability results were �rst developed. Later, the Technical University of Denmark analysed
Q as a �xed �lter, focusing in stable controller recon�guration properties. Stable controller recon-
�guration through Q is combined with a fault-detection system through the dual YK parameter S,
obtaining a Fault-Tolerant-Control (FTC) solution. Finally, some results are in proceeding with
structural changes through S at the University of Aalborg. A more detailed review of the YK de-
sign methodologies at the Australian National University, in the Technical University of Denmark
and at the Aalborg University is in the following three sections.

2.2 Australian National University

The department of System Engineering, Research School of Information Sciences and Engineering
at the Australian National University was the pioneer in using YK parameterization, to get what
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they called high performance control. The concept of high performance control is to use the tools
of classical, optimal, robust and adaptive control in order to deal with complexity, uncertainty
and variability of the real world. They aimed to �nd a mathematical framework able to join
performance and robustness.

First steps in this direction were made by John Moore at 1970s, on a high order NASA �exible
wing aircraft model with �utter mode uncertaintiess. Least square identi�cation was used in order
to have an adaptive loop based on linear quadratic optimal control able to achieve robustness
to these uncertainties. However, the blending betweeen adaptive and robust control lacked a
mathematical framework. A collaboration with Keith Glover at Cambridge University allowed
them to discover the interpretation of the YK parameterization as a general solution to optimal
control problem provided by [Doyle, 1983]. Doyle characterized the class of all stabilizing controller
as an initial Linear-Quadratic-Gaussian (LQG) controller with a stable �lter Q, what �ts the
adaptive �lter that they put in their solution for the aircraft model. A graduate student, Teng
Tiow Tay started working on how to use that theory, obtaining really encouraging results. Initial
point of his thesis with Moore as supervisor [Tay et al., 1989b]. Di�erent applications related to
YK formed a new �eld of research. We refer to book [Tay et al., 1997] and article [Anderson, 1998]
as principal referees for undestanding how to use YK parameterization towards high performance
control. Di�erent techniques and applications related to that are detailed below:

2.2.1 Q o�ine control design

An o�ine optimization of Q was carried out in order to achieve various performance objectives.
The idea is to design a controller in the class of all stabilizing controllers instead of over the class
of all possible controllers (which includes destabilizing controllers). Di�erent control performance
objectives can be set in order to optimize the YK �lter Q. Performance requirements can be
described in time or frequency domain. System norms in the frequency domain is directly related
to optimal control. H 1 is concerned primarily with the peaks in the frequency response, while
H 2 is related to the overall response of the system. The idea is simple, once a transfer function
between di�erent signal of interest is determined, H 1 control designs a stabilizing controller that
ensures that the peaks in the transfer function are knocked down; on the contrary,H 2 or LQG
control designs a stabilizing controller that reduces theH 2 of the transfer function as much as
possible. Penalization of the energy of the tracking error and control energy are examples of LQG
control; while penalizing the maximum tracking error subject to control limits is an example of
H 1 control.

The design of an LQG controller with loop transfer recovery was analysed. This LQG controller
uses a state estimator with the aim of estimating the non-accesible states of the plant. Its aim is
to minimize error tracking and control e�ort. The controller will be optimal if a good model of
the plant has been considered, otherwise the performance could be poor. Loop transfer recovery
refers to the idea of recon�guring the initial LQG controller to achieve full or partial loop transfer
recovery of the original feedback loop. This is usually done through a scalar parameter as a trade-
o� between performance and robustness. In [Moore and Tay, 1989], loop recovery was achieved by
augmenting the original LQG controller with the additional YK �lter Q. They showed how full or
partial loop recovery may be obtained depending if minimum or non-minimum phase plants are
considered. The technique was ilustrated for the case of minimum and non-minimum phase plants
through simulation. Improvements over standard loop recovery techniques were obtained.

The CL transfer function including Q from a disturbance input to a tracking error with a H 1

norm is in chapter 4 of [Tay et al., 1997]. This equation is useful to keep the tracking error within
a given tolerance. However, minimizing the tracking error could lead sometimes to large control
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e�orts, what would be unnaceptable. As weighting factors between tracking error and control e�ort
in a H 1 setup is not allowed [Dahleh and Pearson, 1986], al1 equivalent was proposed in [Teo and
Tay, 1995]. This algorithm allows to choose the correct weighting factors in al1 manner. A curve
with all the possible solutions is generated for a simulation example, analysing the limitations and
choosing the best weighting factors. This strategy is used in a hard disk servo system to minimize
the maximum position error signal [Teo and Tay, 1996], which is the deviation of the read/write
head from the center of the track.

2.2.2 Direct adaptive Q-control

In the previous section, an o�ine optimization of the YK parameter Q has been explained. [Wang
et al., 1991] presented the �rst results in online optimization of Q without an identi�cation process.
The method is valid when the uncertainty is limited but unknown, and the plant-model mistmatch
is not important. The optimization process is based on root-mean-square signals measures. A
state-space relationship between a nominal plant with disturbances and a observer-based feedback
controller K (Q) is obtained. The order of Q should be �xed depending on the application. A
steepest descent algorithm is used to obtain the parameter values of the prede�ned YK parameter
Q, so the error is minimized from the disturbances on the system. Simulation results of the direct
adaptive-Q controller were presented in [Tay and Moore, 1991] to ilustrate their performance
enhancement capabilities when disturbances appear on the system. Part of these results were
previouysly validated in a 55th order aircraft model with a controller design via LQG with Q
augmentations for achieving resonance suppression in [Moore et al., 1989].

In chapter 6 of [Tay et al., 1997], this method was analyzed to discover its limitations. First,
a perfect plant model with disturbances was considered, achieving again without problems an
optimal control. Then, the model-plant mistmach case was analysed, seeing how the adaptive
mechanism breaks down under severe model-plant mismatch. An identi�cation algorithm would
be needed when a large model-plant mistmach is present. Section below presents an extension of
the �rst YK-based CL identi�cation algorithm� Hansen scheme.

2.2.3 CL identi�cation

CL identi�cation provided by [Hansen et al., 1989] is extended when connected to a controller
with the YK �lter Q in chapter 5 of [Tay et al., 1997]. Robust stabilization results in [Tay et al.,
1989a] connectingK (Q) and G(S) are used to obtained an unbiased identi�cation ofS when a YK
parameter Q is applied. A time-invariance property of Q is considered in the result. The unbiased
CL identi�cation of S is done through the identi�cation of Ŝ = S(I � QS) � 1, which includes Q.
In order to obtain the real value of S, Q needs to be known. This CL identi�cation method is the
basis of the iterated (Q; S) control design shown below.

On the other hand, the original Hansen scheme is also extended with a non-linear initial
model G(s) connected to a stabilizing controller K (s) in [Linard and Anderson, 1996,Linard and
Anderson, 1997]; and [De Bruyne et al., 1998] presented a modi�cation able to tune the order of
the resulting model given by the Hansen scheme.

2.2.4 Iterated/Nested (Q; S) control design

This section considers solutions with unmodeled dynamics in the nominal model of the plant.
K (Q) is seen as a controller whereQ is changed online, as well asG(S) is seen as a nominal
plant with an augmentation related to unmodeled dynamics. The process is the following: First, a
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nominal controller K (s) is designed for a nominal plantG(s). Plant-model mistmatch is identi�ed
through the dual YK parameter S, and then the augmented controllerQ is designed to optimally
control S to some performance criteria. The performance is usually the same that the one used
for the initial controller. These ideas are based on the robust stabilization concept in [Tay et al.,
1989a]. Iterative and nested solutions are present in chapter 5 of [Tay et al., 1997].

For iterative control ( Q; S) design, an initial stabilizing controller is designed for the nominal
plant G(s). Then, unmodeled dynamics represented bŷS are identi�ed by using the CL identi�ca-
tion method proposed in [Tay et al., 1997]. It avoids bias problems in the identi�cation process.Ŝ
is used in an iterative manner for �nding the Q that improves the performance criteria. Iteration is
needed as the value of̂S won't be reliable enough at the very beginning or due to new de�ciencies
in the model. In each iteration the order of the controller increases aŝS includes the applied Q,
followed by a control update step. The sucess of this method relies on the use low-order approx-
imations of S. Controller reduction will be also crucial in practical implementation. Simulation
results related to Iterated Pole-Placement, Linear-Quadratic (LQ) control design andH 1 control
are in [Tay et al., 1997].

For nested control (Q; S) design, succesivesS are identi�ed on the residual mistmatch between
model and plant. An external signal needs to be injected in order to identify the newS. In each
step the model of the system is updated. This new model is then taken into consideration for
obtaining a new Q, until the performance criteria is ful�lled. This kind of structure is practical
when a plant is described bym recursive fractional forms. It could be the case of a complex model
composed by low order models, so the controller could be broken down into a sequence of low order
controller designs for a sequence of low-order models. Thus, aS is identi�ed for each fractional
form of the model, and aQ a�ned in the nested control structure.

2.2.5 Indirect adaptive (Q; S)-control

Sometimes, the major limit is the little knowledge about the plant. In such cases, iterated and
nested control designs have been proposed. But, these algorithms are limited to a time-invariance
Q property. In order to deal with a time variance Q, an adaptive version of nested control was
proposed in [Tay et al., 1989b]. In any adaptive algorithm a �xed structure of Q is created.
Parameters in Q are the ones changing depending on the model-plant mistmach identi�ed byS.
Notice how the unbiased identi�cation provided in previous sections is no longer available asQ
varies with time. External excitation signals are needed in order to identify S, and this could
compromise the control performance. Two methods were proposed to solve that:

The use of two di�erent time scales in the adaptive algorithm, a faster one for the identi�cation
of S, and a much slower for the adaptation ofQ. This idea was proposed in the PhD thesis [Wang,
1991].

In chapter 7 of [Tay et al., 1997] a di�erent method is explored. They considered that the
model-plant mistmatch is signi�cant in a frequency range above the passband of the nominal
control loop. In fact, if Q is present on the system, the identi�cation of S is frustrated. In order
to solve that, the idea was to augmentQ with a �lter in the frequency of the excitation signals
needed for the identi�cation of S. The �ltered excitation algorithm provides a suitable method for
including external signal in a particular frequency range to identify S, without compromising the
control performance.

A 55th order aircraft model was used in the literature for obtaining results that validates indi-
rect (Q; S)- control. Adaptive LQG and pole-placements solutions were presented in [Chakravarty
and Moore, 1986] and [Chakravarty et al., 1986] to suppress wing �utter.
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2.3 Technical University of Denmark

The potential of YK were further explored in recent years. There is a large amount of work
developed by Professor Hans Henrik Niemman in the Electrical Engineering Department of the
Technical University of Denmark. Control solutions consideringQ, S and both are again developed.

Related to the class of all stabilizing controller for a given plant parameterized byQ, the concern
is in stable controller recon�guration. [Niemann and Stoustrup, 1999] showed how it is possible to
change between multivariable controllers online in a smooth way, guaranteeing CL stability. The
focus is not in the design ofQ for obtaining a desired performance, but in the use ofQ as a stable
transition between an initial and a �nal controller. Switching between two or more controllers is
considered. The stability proof is extended with a numerical example in [Niemann et al., 2004].
It is shown how linear switching between two controllers results unstable, while the use of YK
turns stable the same problem. Finally, structural changes are considered in connection with YK
in [Niemann, 2006a]. It is demonstrated how it is possible to introduce new sensors/actuators into
the system, and use them in the YK parameterization. The stability of the CL system is still a�ne
in Q even if new sensors or actuators are added. This work will be the basis of the Plug&Play
project presented in next section.

YK stable controller recon�guration is based in the absence of uncertainties in the plant; other-
wise, the dual YK parameterization needs to be used. [Niemann and Stoustrup, 1999] presented a
relation betweenS and system variations, with robust stabilization results similar to those in [Tay
et al., 1989a]. The general model-plant mistmatch represented byS, and used by the Australian
National University, is reformulated by Niemman in [Niemann, 1999]. A connection between a nom-
inal plant model with a uncertainty block � is done through a Linear-Fractional-Transformation
(LFT). The dual YK parameter S is in function of the block uncertainty �, yielding S(�), which is
closer to a robust control design. CL transfer function is also analysed depending onS(�). Eight
types of system descriptionsS in function of � are in [Niemann, 2003]. The method is constraint
to the exact knowledge of �. A literature review shows di�erent applications in funcion of this
S(�) as:

ˆ H1 control design with partial uncertainty description. There is a problem when trying to
design aH1 controller if uncertainty description is not full complex. An iterative process
as the one in [Lin et al., 1993] could be used, but problems as increasing controller order or
non-optimal solutions will be faced up. A transformation betweem � and S allows to a have
a full complex uncertain block, avoiding these problems [Niemann, 1999].

ˆ Model validation with partial uncertainty description. The idea of model validation is to
detect/estimate variations in the system that are not described in the model. Variations could
be several: uncertainties, parameter variations, change of the operation point, etc. Model
validation can be done o�ine or online depending on the desired control application. FTC is
an example where an online methodology is needed. [Savkin and Petersen, 1995] presented
an online model validation algorithm based on Integral Quadratic Constraint (IQC) for full
complex uncertainty. Dual YK parameterization serves again as a conversor from partial to
full uncertainty description.

ˆ Performance validation. [Niemann, 2003] proposed to make a connection betweenS(�) and
CL performance criteria, so an upper bound ofS with respect to the uncertainty can be
used for validation. An estimation of � based on S could be also obtained if the system
description with respect to uncertainty is known.
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ˆ Parameter estimation for gain scheduling. Gain scheduling techniques are motivated by
the large number of control applications that have signi�cant nonlinearities which can not
always be handled well by linear control design techniques. [Niemann and Stroustrup, 1999]
considered the case where a gain scheduling controller is needed, but the scheduling parameter
vector cannot be directly measured. An estimation of the same is done using the dual
YK parameterization. Dual YK parameterization in connection with the paremeter gives a
validation method, which gives very precise parameter estimation. Then, this parameter can
be directly employed on a gain scheduling controller.

ˆ Modi�ed Hansen scheme. A modi�cation of the Hansen scheme is carried out in [Sekunda
et al., 2015]. It gets rid of signals that are not directly measurable. Some a priori knowledge
and numerical accuracies are reduced. Basis of this method is in the CL modi�cation already
carried out in [Tay et al., 1997].

Finally, this dual YK parameter description is connected to the class of all stabilizing controllers
K (Q). Optimal and FTC solutions are proposed:

ˆ Optimal control design. There is a connection between S with � and Q. The idea is to
�nd the optimal value of Q that minimized the value of S, so the nominal performance can
be preserved [Niemann and Stoustrup, 2000]. Algorithms in high performance control are
proposed as solution, but with S(�).

ˆ Fault tolerant control. Dual YK parameterization is used in the design of FTC systems.
When a fault appears in a system, a nonzeroS results. If S is unstable, the fault makes
the CL system unstable. Then, controller recon�guration needs to be carried out to recover
stability. This recon�guration is done through the YK parameter Q. YK allows fault diag-
nosis and the corresponding controller recon�guration in the same approach [Niemann and
Stoustrup, 2002]. A connection with di�erent additive and parametric faults is in [Niemann
and Stoustrup, 2005]. The system with additive faults is directly change with Q, without
consideration ofS, as it shouldn't a�ect the CL stability. When it comes to parametric faults
S plays a key role, obtaining the value ofQ that makes stable 1=(1 � QS). An example with
a servo is given [Niemann and Stoustrup, 2005]. Deviations on the value of tacho gain make
the system unstable. This is seen as an unstableS. Di�erent Q's are obtained depending
on the deviation value. The optimization of Q is done o�ine, so only fault diagnosis will be
needed in order to choose the proper value ofQ. This method is restricted to CL system with
one fault. The fault diagnois method based on dual YK is extended in [Niemann, 2006b] to
deal with OL systems and CL systems with a feedback controller di�erent from the nominal
one. The latter is important in FTC, as fault diagnosis should be running after the �rst fault
has been detected and the controller has been recon�gured.

2.4 Aalborg University

The concept of dealing with structural changes ensuring stability of the system as in [Niemann,
2006a] has been also used at the University of Aalborg (Denmark). A collaboration exists be-
tween Professor Niemann and Professor Jakob Stoustrup (check some of the references in previous
section). Professors Jan Dimon Bendsten and Klaus Trangbaek are other co-workers in the main
project related to YK: Plug and Play Process control (P&P). The project was developed by the
Department of Electronics Systems of Aalborg University from 2006 to 2011.
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The idea was to investigate control problems for complex systems with a modular structure.
Because of that, the fundamental aspect was to understand how to detect the addition of com-
ponents to the system, recon�guring the controller to maintain the system stable and improve
performance. The addition of subsystems could be any kind of sensors or actuators. The general
theory is explained in papers [Bendtsen et al., 2013] and [Stoustrup, 2009]. In fact, three di�erent
scenarios where sensors are included were the referenced ideas to carry out.

ˆ Imagine a stable where the pigs are not comfortable. The farmer plugs a new sensor in a
vacant socket in that part of the stable to stabilize the indoor climate in the proximity of
the sensor. The stable ventilation system needs to automatically register the new component
and recon�gures the control law.

ˆ Imagine the situation where biomass is being added to the fuel of a power plant causing large
thermal stresses to the boiler. Instead of shutting down the plant, the operator of the plant
sticks on a few sensors in the stressed areas. Thanks to the P&P control, after few minutes
the controller is recon�gured and the thermal stresses are within permissible bounds.

ˆ Imagine a grocer who buys a new refrigerated display for his shop. He plugs it in himself.
His compressor rack and the condensators on the roof start sounding slightly di�erent, and
after a couple of hours the new display case as well as all the old ones work correctly. The
eco-meter in his backstore room displays optimal power consumption for all of them.

A total of �ve companies participated in the P&P control research program; Danfoss, Grundfos,
Skov, DONG Energy and FLSmidth Automation, each providing di�erent case studies. A literature
review related to the use of YK in P&P control has been carried out:

ˆ Recon�guration of existing controllers whenever structural changes are introduced in the
system being controlled. The class of all stabiling controllers provided by YK is used to have
stable controller recon�guration when some change happens. The focus is in the correct
integration of sensors/actuators and corresponding controller recon�guration troughQ. Ex-
tended results in [Niemann, 2006a] are crucial. First results related to a bu�er tank model are
in [Trangbaek et al., 2008] and [Trangbaek and Bendtsen, 2009]. A manual valve is replaced
for an automatic one, augmenting the original controller through Q in order to improve the
general performance of the system. Experimental results are in [Bendtsen et al., 2013] for
laboratory-scale model of a district heating system and a livestock stable climate system:
In the district heating system, as consumers are not happy with the variable supply rate,
di�erential pressure sensors are added to examine the problem. That revealed a performance
problem, so control capabilites are added to another pump, improving the initial LQG con-
troller through the corresponding augmented Q; a real livestock stable is also considered,
which is not completely airtight due to crack in the walls. The climate system is initially
with a single temperature sensor; but the farmer detects another area in the stable with an
extra draft. The sensor does not reach this area, so YK is used in order to integrate a second
temperature sensor, making the livestock stable temperature homogeneous.

ˆ CL identi�cation. [Bendtsen et al., 2008] modi�ed the Hansen scheme proposed in [Hansen
et al., 1989] in order to deal with new measurements that become available during online
operation. New dynamics related to new sensors are simply identi�ed by the dual YK
parameter S. On the other hand, this Hansen scheme is extended to Linear-Parameter-
Varying (LPV) systems in [Bendtsen and Trangbaek, 2014]. LPV system is a linear state-
space representation whose dynamics vary as function of certain time-varying parameters
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called scheduling parameters. Interesting results are obtained in terms of stability, and
doubly coprime factors based on these scheduling parameters. Simulation results of coupled
dynamics identi�cation in heat distribution systems are in [Trangbaek and Bendtsen, 2010].

ˆ Automatic control recon�guration to achieve optimal performance together with identi�ca-
tion. Here, the CL identi�cation provided by dual YK is used in order to improve controller
performance. Controller recon�guration is carried out in a simulation district heating sys-
tem, once couple dynamics are identi�ed throughS [Trangbaek, 2009]. Strong coupling in
the network is due to the addition of a second pump demanded by a consumption increment.
Other contribution is in the area of Multi Model Adaptive Control (MMAC). MMAC is a
supervisor who chooses the proper controller among pre-designed candidates controllers once
more information is known about the plant. Controllers are designed based on a prede�ned
set of linear models. Once the closer model in the set is known, the switching is direct.
Results in [Anderson et al., 2001] and [Baldi et al., 2011] are improved in [Bendtsen and
Trangbaek, 2012], as noise correlation problem in CL is supressed by employing the dual
YK parameterization. A LPV simulation example with a total of �ve prede�ned Linear-
Quadratic-Regulator (LQR) controllers is provided; the closer model in the set to the real
system is chosen, switching to the corresponding controller through the correctQ. Finally,
as in MMAC the switching is based on the closer model in a prede�ned set, nobody assures
that the switching of the controller with the real plant results in a stable CL. This situation
is analysed in [Trangbaek, 2011].

2.5 Discussion

This chapter reviewed the YK control framework state-of-the art. Origins of the class of all
stabilizing controllers for a plant K (Q), and its dual version, the class of all plants stabilized by a
controller G(S) are explained. Robust stabilization results betweenQ and S are fundamental for
the YK-based applications in the �eld of optimal, robust, adaptive and fault-tolerant control. These
applications are mainly developed in three di�erent institutions: Australian National University,
Technical University of Denmark and Aalborg University. A state-of-the-art classi�cation is in
Table 2.1. YK applications timeline from the origin to the most recent work is in Fig. 2.2.

The Australian National University was the �rst to use YK parameterization as a control tool
able to use classical control, optimal control, robust control and adaptive control theories together.
High performance control goes beyond all of them by blending the strengths of each to obtain the
best performance possible in a real world subject to uncertainties and system variations. O�ine
methods related to optimal LQG control and robust H 1 control depending onQ are introduced to
achieve various performance objective. An adaptive version of the same is also proposed for cases
where disturbances and uncertainties are not fully known. The dual YK parameterization plays
a key role when unmodeled dynamics are present on the system. Iterative, nested and adaptive
solutions consider the identi�ed dynamics provided by S in order to optimize the YK �lter Q.
Theoretical basis present in [Tay et al., 1997] is strong and exempli�ed through simulation results
for a hard disk servo system and a 55th order aircraft model. Experimental results with real
applications are missing in the literature, especially for iterated/nested solutions. This is due to
the degree explosion of the solution; with each iteration the order of the resulting parametersS
and Q increase. Related also to the order, it looks complicated to get a simple representation of
S even if the model-plant mistmath is simple. Order reduction techniques and model simplication
should be carried out to make these solutions viables. There is neither an explicit parameterization
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when considering decentralized control.
On the other hand, at the Technical University of Denmark, Professor Niemann extended the

YK parameterization of all stabilzing controllers with additional sensors/actuators. This would
be useful to solve decentralized and FTC problems. Research interests are dual YK parameter
S description based on block uncertainty �. Several applications related to control optimization,
performance and model validation are derived, but no simulation or experimental results are present
in the literature. A YK-based fault tolerant control solution is also proposed, integrating controller
recon�guration, fault diagnosis and isolation in the same approach. The most advance FTC control
architecture is in [Niemann, 2012]. Start-up or safe mode coexists with normal, full performance,
reduced performance and closed-down modes. Fault detection based on dual YK parameterization
determines which mode is applied through the correspondingQ. Safe mode is activated during
start-up and fault isolation. Closed-down is set when the loop becomes irremediably unstable after
a fault. Again, experimental real cases are missing.

University of Aalborg, through its project called Plug&Play control developed a novel con-
cept for process distributed control, which allows the control system to self recon�gure once an
instrumental change is introduced. The idea is similar to Niemann's; in fact, an active collabora-
tion exists between both universities. Extended version of YK parameterization is crucial. While
Niemann's idea is more in the �eld of faults (a sensor or an actuator fails), here the objective is
the opposite: a sensor or an actuator is plugged in, and the controller is recon�gured to enhance
performance. An active collaboration between both should be set up in order to get a control
system with full capabilities. Closed-down mode could be avoided if the correct sensor/actuator
is plugged in. Simulation and experimental results well exempli�ed the application of the theory.
It is by far, the part of the literature that presents more detailed and clear examples.

Once the state of the art of YK control framework has been carried out, current challenges
are associated to the non-linear extension of the YK parameterization; integration of intelligent
control system as fuzzy control, model predictive control, genetic algorithm or neuronal networks;
transition analysis for the di�erent YK-based control structures for switching in the literature;
analysis of a scalar factor regulating the action between controllers throughQ in order to improve
the performance of the system; and extension of YK-based FTC and P&P to a more general control
structure (they are all build with an observer-based feedback controller).

Di�erent vehicles dynamics depending on longitudinal speed, emergency maneuvers in the sta-
bility limit of pneumatic systems, or vibrations in chassis control are some examples of what a
unique plant, as a vehicle, needs to handle through di�erent control solutions. YK represents a
suitable technique for its application in ITS. But, almost all the studied cases are mainly focused in
system with very low dynamics, except from some simulation with an aircraft model in high perfor-
mance control. There is neither a faster dynamics case, which in the case of ITS, sensor/actuators
fails could result in a tra�c accident. The application of YK in autonomous driving will not only
serves as a tool, but as extension to real fast dynamics experimental cases.
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Table 2.1: Summary table state-of-the-art Youla-Kucera.

YK Technique Technique description Implemeted in
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lU
ni
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ity

Q An LQG design O�ine H 2 control design.
Loop recovery in LQG control
through YK parameter Q.

[Moore and Tay, 1989]

An l1 design ap-
proach

O�ine H 1 control design
with a l1 modi�cation for er-
ror and control weighting.

[Dahleh and Pearson,
1986] [Vidyasagar, 1991]
[Teo and Tay, 1995] [Teo
and Tay, 1996]

Direct adaptive
Q-control

Online optimization of Q
based on averaging techniques
when disturbances are present
on the system.

[Tay and Moore, 1991]
[Wang et al., 1991] [Tay et
al., 1997]

S CL identi�cation
tunable order

The order of the resulting
Hansen scheme model is tun-
able.

[De Bruyne et al., 1998]

CL identi�cation
non-linear

Hansen scheme is extended
with a nonlinear initial model.

[Linard and Anderson,
1996] [Linard and Ander-
son, 1997]

(Q; S) Iterative/Nested
(Q; S) design

Q is modi�ed depending on
the identi�ed S following a
given performance criteria.
Q remains invariant through
time. S represents the model-
plant mistmatch. Di�erence
between iterated and nested is
in the identi�cation process of
S.

[Tay et al., 1997]

Indirect adaptive-
Q control

Adaptive version of nested
(Q; S) control design. Q has
a �xed order and is time
variant; its parameters are
changed depending onS iden-
ti�cation.

[Tay et al., 1989a] [Yan
and Moore, 1992] [Yan and
Moore, 1996]
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YK Technique Technique description Implemeted in

Te
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ity
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D
en

m
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Q Stable controller
recon�guration

Stable controller recon�gura-
tion through Q given two or
several controllers.

[Niemann and Stoustrup,
1999] [Niemann et al.,
2004]

System structure
changes

Sensors and actuators are in-
cluded in the class of all stabi-
lizing controllers provided by
YK.

[Niemann, 2006a]

S Relation with un-
certainty �

S(�) provides a full complex
uncertainty description that
solvesH1 control and online
model validation problems.

[Niemann, 1999] [Nie-
mann, 2003]

Performance vali-
dation

A connection between S(�)
and CL is done, so an upper
bound of S is used for perfor-
mance validation.

[Niemann, 2003]

Parameter esti-
mation for gain
scheduling

Dual YK is used in order to
get a more precise estima-
tion of non-measurable gain
scheduling parameters.

[Niemann and Stroustrup,
1999]

CL identi�cation Hansen scheme is modi�ed to
get rid of signals that are not
directly measurable.

[Sekunda et al., 2015]

(Q; S) Fault tolerant
control

Connection between fault di-
agnosis and controller recon-
�guration with YK and dual
YK parameterizations.

[Niemann and Stoustrup,
2002] [Niemann and Stous-
trup, 2005] [Niemann,
2006b] [Niemann and
Poulsen, 2009b] [Niemann,
2012]

Optimal con-
troller design

Connection between S(�) and
Q. The idea is to �nd the opti-
mal value of Q that minimized
the value of S.

[Niemann and Stoustrup,
2000]
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YK Technique Technique description Implemeted in
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ity
of

A
al

b
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Q Controller re-
con�guration
with new sen-
sors/actuators

Integration of new sen-
sors/actuators and conse-
quence controller recon�gu-
ration. YK-based practical
examples.

[Trangbaek et al., 2008]
[Trangbaek and Bendtsen,
2009] [Bendtsen et al.,
2013]

S LPV CL Identi�-
cation

Hansen scheme is extended to
LPV systems.

[Trangbaek and Bendt-
sen, 2010] [Bendtsen and
Trangbaek, 2014]

CL identi�cation
with new sensors

New dynamics related to new
sensors are identi�ed in a
modi�ed Hansen scheme.

[Bendtsen et al., 2008]

(Q; S) Optimal control YK-based controller recon�g-
uration and CL identi�cation
are employed to improve sys-
tem performance.

[Trangbaek, 2009]

Multi model
adaptive control

A YK-based MMAC is used to
avoid noise correlation prob-
lems.

[Bendtsen and Trangbaek,
2012] [Trangbaek, 2011]
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Chapitre. Paramétrisation
Youla-Jabr-Bongiorno-Kucera

Below is a French summary of the following chapter "Youla-Jabr-Bongiorno-Kucera parameteriza-
tion".

Ce chapitre présente les bases mathématiques pour lesquelles la paramétrisation de Youla-
Jabr-Bongiorno-Kucera (YK) permet de réaliser une recon�guration stable des contrôleurs. La
paramétrisation YK décrit l'ensemble de tous les contrôleurs qui stabilisent un modèle de système
Linéaire Invariant dans le Temps (LIT). Cette paramétrisation est basée sur la double factorisation
coprime. Cet ensemble est fonction du paramètre YKQ, qui est une fonction de transfert stable.
La recon�guration stable des contrôleurs est réalisée entre di�érents contrôleurs, en choisissant
di�érents Q's. Une description générale d'un modèle de système LIT est donnée en même temps
que les critères nécessaires à la conception d'un contrôleur stable. Cette description générale est
employée dans le but d'obtenir les doubles coprime facteurs nécessaires. Ces facteurs permettent
la génération de la classe des contrôleurs stabilisant le modèle. Des détails sur l'utilisation des ces
facteurs pour la recon�guration des contrôleurs ainsi que la preuve de la stabilité sont donnés dans
ce chapitre. Le chapitre est structuré comme suit: La section 3.1 décrit un modèle ainsi qu'un con-
trôleur général. Un contrôleur stabilisant est aussi fourni véri�ant le concept de stabilité en Boucle
Fermée (BF). Dans la section 3.2, la double factorisation coprime et l'identité de Bézout associée,
sont analysées. La section 3.3 décrit la classe de tous les contrôleurs stabilisants. Elle décrit aussi
comment obtenir une recon�guration stable des contrôleurs entre deux ou plusieurs contrôleurs.
La preuve est également donnée dans cette section. La section 3.4 montre di�érents exemples
numériques, pour une analyse détaillée des propriétés de YK. En�n, quelques commentaires sont
donnés en conclusion.
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Chapter 3

Youla-Jabr-Bongiorno-Kucera
parameterization

This chapter presents the mathematical basis in which Youla-Jabr-Bongiorno-Kucera (YK) param-
eterization relies on for making stable controller recon�guration. YK parameterization describes
the collection of all controllers that stabilize a Linear-Time-Invariant (LTI) plant model. This
parameterization is based on the doubly coprime factorization. This collection is a function of the
YK parameter Q, that can be any stable transfer function. Stable controller recon�guration is
carried out between di�erent controllers by choosing di�erent Q's.

A general description of a LTI plant model is given together with criteria for stable control
design. This general description is employed for obtaining the needed doubly coprime factors.
These factors permit the generation of the class of all the stabilizing controllers. Details on how
to use them to perform controller recon�guration and stability proof are in the present chapter.

The chapter is structured as follows: Section 3.1 describes a general model/controller descrip-
tion, introducing a general plant model. A stabilizing controller is also provided, reviewing the
Closed-Loop (CL) stability concept. In section 3.2, doubly coprime factorization and the associ-
ated Bézout identity are analysed. Section 3.3 describes the class of all stabilizing controllers, and
how to obtain stable controller recon�guration between two or several controllers. Stability proof
can be found within the section. Section 3.4 shows some numerical examples, analysing in detail
YK properties. Finally, some concluding remarks are given.

3.1 System description

This section describes some basic notation, which will be used extensively in the sequel. A general
description of a nominal plant model and a stabilizing controller is given. This notation can be
found in many books and papers; readers are referred to [Zhou et al., 1996] and [Ogata, 2013].

3.1.1 The nominal plant model

The control design begins with the modeling of a physical system. A model is a mathematical
representation of the system dynamics. Models allow to reason about a system and make pre-
dictions about how the system will behave. In this text, the interest is in models describing the
input/output behavior of physical systems. Roughly speaking, a dynamical system is one in which
the e�ects of actions do not occur instantly. For example, the velocity of a vehicle does not change
at the same moment that the gas pedal is pushed; or a headache does not vanish right after an
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aspirin is taken. Input/output behavior can be really di�erent: from the simpliest one with a gain
and a rising time, to the more complex one with a higher order response, delays, dead time and
so on. The number of inputs and outputs can also vary, having di�erent response models between
them. In an industrial context, the number of inputs and outputs depend on the number of sensors
and actuators: Single-Input-Single-Output (SISO) or Multi-Input-Multi-Output (MIMO) systems.
Input-output behavior is merged with some performance and external disturbances relations in a
more general plant:

P =

"
e
y

#

=

"
Gew Geu

Gyw Gyu

# "
w
u

#

=

"
Gew Geu

Gyw G

# "
w
u

#

(3.1)

where u is the variable subject to control, so-called control input, sent to the system actuators;w
is the disturbance vector, also called exogeneous input or auxiliary input;y is the measurement
vector coming from the sensors; ande is the controlled external output signal, which includes
signals of interest in system's performance.e often coincides with the measurement signaly. Gew,
Geu and Gyw represent external disturbance e�ects and performance requirements, whileGyu is
the real plant. Note that Gyu = G represents the input/output behavior or internal dynamics of
the physical system to control. This model includes the modeling of all sensors and actuators for
the plant. In the case of LTI continous systems, the state space representation ofG yields:

_x(t) = Ax (t) + Bu(t)

y(t) = Cx(t) + Du(t)
; G =

"
A B
C D

#

(3.2)

where t indicates time, x(t) is the state vector, _x(t) = dx=dt is the evolution over time of the
state vector, y(t) the measurement vector andu(t) the control vector. Coe�cients A, B , C and D
are constant matrices. Transfer function may be found directly from a state-space representation
through the Laplace transform s:

G(s) = C(sI � A) � 1B + D =
Y(s)
U(s)

=
bm sm + bm� 1sm� 1 + ::: + b1s + b0

sn + an� 1sn� 1 + ::: + a1s + a0
(3.3)

whereY(s) denotes thes-transform of the �lter output signal y(t) and U(s) denotes thes transform
of the �lter input signal u(t). m is the numerator order, while n is the transfer function order.
U(s) and Y(s) allow to �nd poles and zeros of the transfer function G(s).

De�nition 3.1. Zeros are the complex angular frequencies that make the overall gain of the �lter
transfer function zero: The values ofs where Y(s) = 0 .

De�nition 3.2. Poles are the complex angular frequencies that make the overall gain of the �lter
transfer function in�nite: The values of s where U(s) = 0 .

Once both poles and zeros are found, they can be plotted onto thes-plane. The s-plane is
the complex plane on which Laplace transforms are graphed. Analysing the complex roots of an
s-plane equation and plotting them reveal information about the frequency response and stability
of the system.

Stability of G is directly related to poles position. If a small perturbation arises in the system
inputs or initial conditions, a stable system will present small modi�cations in its perturbed re-
sponse. In an unstable system, any perturbation, no matter how small, will make states or outputs
grow unbounded until the system saturates or stops working.

The concept of stability refers to stable response to bounded inputs, assuming zero initial
conditions; and stable response to di�erent initial conditions, assuming inputs zero. A system
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Figure 3.1: CL map of a general plantP with a controller K i .
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Figure 3.2: Feedback controller connection.

is asymptotically stable if its state response converges to the origin for any initial condition or
bounded input. Here, for LTI continuous systems, stability is de�ned as:

Theorem 3.1. A LTI continous system with a transfer function G(s) is asymptotically stable if
and only if every pole is in the left half-plane:z 2 C : Re(z) < 0.

A LTI continous system with state space representationG is stable if and only if all the eigen-
values of A have a negative real part:j A � �I j= 0 with Re (� ) < 0.

Stability condition is equivalent to belonging to the subspaceRH 1 . RH 1 is a real rational
subset ofH 1 with all proper and real rational stable transfer functions/matrices.

Once the plant model has been described, the objetive of a controller will be to change the
position of zeros/poles to make the system behaves according to some stability/performace criteria.

3.1.2 The stabilizing controller

In this subsection, the general plant model in Eq. 3.1 is connected to a general controllerK i .
Subindex i refers to di�erent controllers i 2 [0; p], where p is the number of controllers (useful
notation for subsequent controller recon�guration). CL stability conditions for feedback control
and feedforward/feedback control are revisited. The CL map ofP with a controller K i is shown in
Fig. 3.1. Equivalently to Eq. 3.2, a LTI continous state-space representation of a general controller
is given below:

_x(t) = Ac
i x(t) + B c

i y(t)

u(t) = Cc
i x(t) + D c

i y(t)
; K i =

"
Ac

i B c
i

Cc
i D c

i

#

(3.4)
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The transfer function is unique from state-space representation:

K i (s) = Cc
i (sI � Ac

i )
� 1B c

i + D c
i =

Ui (s)
Yi (s)

=
bmK i ;i smK i + bmK i � 1;i smK i � 1 + ::: + b1;i s + b0;i

snK i + anK i � 1;i snK i � 1 + ::: + a1;i s + a0;i
(3.5)

where mK i and nK i are numerator and denominator orders corresponding toK i .
Feedback control, also known as regulator problem, manipulates the system input to counteract

the e�ect of disturbances. Connection details are found in Fig. 3.2. In other words, the objective
is to regulate the output variables to zero in the presence of disturbances. The general controller
K i takes as input the measurement signalsy to deliver a control input u, such u = K i y.

Let's see the stability conditions when K i is connected toG. The stability conditions will be
later extended to the general plantP, being de�ned as LTI continous systems.

Theorem 3.2. A necessary and su�cient condition to ensure stability of a feedback control loop
with G is:

"
I � K i

� G I

#� 1

2 RH 1 (3.6)

equivalently, all the poles corresponding to(Is � K i G) � 1, K i (Is � GK i ) � 1, G(Is � K i G) � 1 and
(Is � GK i ) � 1 are in the left half-plane: s 2 C : Re(s) < 0.

CL stability when K i is connected to the general plantP is seen as bounded disturbances
responsee in function of the bounded disturbances input w:

e = f (P; K i )w; f (P; K i ) = Gew + GeuK i (zI � GK i ) � 1Gyw (3.7)

where f (P; K ) is a Linear-Fractional-Transformation (LFT) with respect to K i .

Theorem 3.3. A necessary and su�cient condition to ensure stability of a feedback controllerK i

connected to a general plantP is:

2

6
4

I �

"
0 0
0 K i

#

� P I

3

7
5

� 1

2 RH 1 (3.8)

which is equivalent to:

"
I � K i

� G I

#� 1

2 RH 1 ; with G ew; Geu and Gyw 2 RH 1 (3.9)

Notice how stability of the the general plant P is ensured by stability of G with K i , and stable
representations of external disturbances and performance requirementsGew, Geu and Gyw .

Let's consider the more general tracking case, which objective is to minimize the di�erence
between output and a reference trajectory in the presence of disturbances. A feedforward/feedback
controller as the one in Fig. 3.3 is used to determine stability conditions.r is the reference signal
and K f

i is the feedforward controller.
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Figure 3.3: Feedforward/feedback controller connection.

Theorem 3.4. A necessary and su�cient condition to ensure stability of a feedforward/feedback
control loop with G is: 2

6
6
4

I �
h

K f
i K i

i

�

"
0
G

# "
I 0
0 I

#

3

7
7
5

� 1

2 RH 1 (3.10)

which is equivalent to: all the poles corresponding to(Is � K i G) � 1, (Is � K i G) � 1K f
i , K i (Is �

GK i ) � 1, G(Is � K i G) � 1, G(Is � K i G) � 1K f
i and (Is � GK i ) � 1 are in the left half-plane: z 2 C :

Re(z) < 0.
This can be also expressed:

"
I � K i

� G I

#

2 RH 1 ;

"
I
G

#

(I � K i G) � 1K f
i 2 RH 1 (3.11)

From this Theorem, stability condition for feedforward/feedback control is equivalent to feed-
back control condition when K i

f is stable. On the contrary, unstability related to K f
i should be

included in K i . Stability condition for a general plant P connected to [K f
i K i ] remains the same

than in Theorem 3.3:

Theorem 3.5. A necessary and su�cient condition to ensure stability of a feedforward/feedback
controller [K f

i K i ] connected to a general plantP is:

2

6
4

I �

"
0 0
0 [K f

i K i ]

#

� P I

3

7
5

� 1

2 RH 1 (3.12)

which is equivalent to:
"

I � K i

� G I

#� 1

2 RH 1 ; with K f
i ; Gew; Geu and Gyw 2 RH 1 (3.13)

In short, if LTI continuous systems are considered andK f
i , Gew, Geu and Gyw 2 RH 1 , CL

stability of P depends directly on the poles position of the feedback connection betweenK i and
G. Thus, feedback connection is considered as basis connection for doubly coprime factorization,
YK controller recon�guration and stability proof.

3.2 Doubly coprime factorization

A mandatory step towards the class of all stabilizing controllers for a given plant model is the
doubly coprime factorization. In this section, guidelines are given to obtain doubly coprime factors
for a speci�c plant model G connected to a stabilizing controller K i .
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For a LTI SISO continuous system, factorization leads to plant and controller being represented
as the product of two scalar transfer functions. It could be also the product of two state-space
matrix partitions as in Eqs. 3.2 or 3.4. Coprimeness refers to the absence of common zeros in
the right half-plane: z 2 C : Re(z) > 0. For a LTI MIMO continuous system, factorization is
represented as the ratio between a transfer function matrix with another transfer function matrix
inversely stable. State-space matrix partition can be also used. Coprimeness is expressed as full
rank condition in the right half-plane. When dealing with matrices, inversability could be right or
left, and equivalently right and left coprime factorizations exist. Explicit de�nitions for a MIMO
system [Nett et al., 1984], also applicable to SISO, are given below together with a numerical
example.

De�nition 3.3. Two di�erent matrices M i and N i are right coprimes overRH 1 if they have the
same number of columns and if matricesX r;i and Yr;i exist such that:

h
X r;i Yr;i

i
"
M i

N i

#

= X r;i M i + Yr;i N i = I (3.14)

De�nition 3.4. Two di�erent matrices ~M i and ~N i are left coprimes overRH 1 if they have the
same number of rows and if matricesX l;i and Yl;i exist such that:

h
~M i ~N i

i
"
X l;i

Yl;i

#

= ~M i X l;i + ~N i Yl;i = I (3.15)

Example 3.1. For a LTI SISO continous system 2:5
(s+2 :5) , a coprime factorization could beN i =

2:5
(s+1) , M i = (s+2 :5)

(s+1) , ~N i = 2:5(s+0 :5)
(s+2 :5)( s+1) and ~M i = (s+0 :5)

(s+0 :1) , as functions X r;i = s
(s+2 :5) , Yr;i = 0 :4,

X l;i = s
(s+0 :5) and Yl;i = 0:4(s+2 :5)

(s+0 :5) exist such Eqs. 3.14 and 3.15 are ful�l led.

In order to obtain the class of all stabilizing controllers for G, these coprime factors should
representG and K i such that:

G = N i M � 1
i = ~M i

� 1 ~N i

K i = Ui V � 1
i = ~Vi

� 1 ~Ui

(3.16)

These coprime factors should be stablesUi , ~Ui , Vi , ~Vi , N i , ~N i , M i , ~M i 2 RH 1 , and satisfy the
double Bézout's identity [Pommaret and Quadrat, 1998]:

"
~Vi � ~Ui

� ~N i ~M i

# "
M i Ui

N i Vi

#

=

"
M i Ui

N i Vi

# "
~Vi � ~Ui

� ~N i ~M i

#

=

"
I 0
0 I

#

(3.17)

Double Bézout's identity is a relation between doubly coprime factors and stability condition
for a feedback controller:

Theorem 3.6. A necessary and su�cient condition to ensure stability of a feedback control loop
betweenK i = Ui V � 1

i = ~Vi
� 1 ~Ui and G = N i M � 1

i = ~M i
� 1 ~N i with Ui , ~Ui , Vi , ~Vi , N i , ~N i , M i ,

~M i 2 RH 1 is:

~Vi M i � ~Ui N i = I
~M i Vi � ~N i Ui = I

(3.18)

which is equivalent to the double Bézout's identity in Eq. 3.17.
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Proof. [Tay et al., 1997] by substituting Eq. 3.16 in Eq. 3.6 with K i = ~Vi
� 1 ~Ui and G = N i M � 1

i :

(I � K i G) � 1 = ( I � ~Vi
� 1 ~Ui N i M � 1

i ) � 1 = M i ( ~Vi M i � ~Ui N i ) � 1 ~Vi

K i (I � GK i ) � 1 = ~Vi
� 1 ~Ui (I � N i M � 1

i
~Vi

� 1 ~Ui ) � 1 = M i ( ~Vi M i � ~Ui N i ) � 1 ~Ui

G(I � K i G) � 1 = N i M � 1
i (I � ~Vi

� 1 ~Ui N i M � 1
i ) � 1 = N i ( ~Vi M i � ~Ui N i ) � 1 ~Vi

(I � GK i ) � 1 = I + GK i (I � GK i ) � 1 = I + N i M � 1
i

~Vi
� 1 ~Ui (I � N i M � 1

i
~Vi

� 1 ~Ui ) � 1 =

= I + N i ( ~Vi M i � ~Ui N i ) � 1 ~Ui

(3.19)

Thus: "
I � K i

� G I

#� 1

=

"
M i

N i

#

( ~Vi M i � ~Ui N i ) � 1
h

~Vi ~Ui

i
+

"
0 0
0 I

#

(3.20)

And by substituting Eq. 3.16 in Eq. 3.6 with K i = Ui V � 1
i and G = ~M i

� 1 ~N i :

(I � K i G) � 1 = ( I � Ui V � 1
i

~M i
� 1 ~N i ) � 1 = Vi ( ~M i Vi � ~N i Ui ) � 1 ~M i

K i (I � GK i ) � 1 = Ui V � 1
i (I � ~M i

� 1 ~N i Ui V � 1
i ) � 1 = Ui ( ~M i Vi � ~N i Ui ) � 1 ~M i

G(I � K i G) � 1 = ~M i
� 1 ~N i (I � Ui V � 1

i
~M i

� 1 ~N i ) � 1 = Vi ( ~M i Vi � ~N i Ui ) � 1 ~N i

(I � GK i ) � 1 = I + GK i (I � GK i ) � 1 = I + ~M i
� 1 ~N i Ui V � 1

i (I � ~M i
� 1 ~N i Ui V � 1

i ) � 1 =

= I + Ui ( ~M i Vi � ~N i Ui ) � 1 ~N i

(3.21)

Thus: "
I � K i

� G I

#� 1

=

"
Vi

Ui

#

( ~M i Vi � ~N i Ui ) � 1
h

~M i ~N i

i
+

"
0 0
0 I

#

(3.22)

Doubly coprime factors extraction from a modelG connected to a controllerK i has been stud-
ied in the literature. [Nett et al., 1984] presented a doubly coprime factorization for a LTI plant
connected to a controller with a full observer-feedback form. From this work, doubly coprime
factors related to reduced-order observer-based controllers were derived in [Telford and Moore,
1989], [Hippe, 1989] and [Fujimori, 1993]. In [Fujimori, 1993] some of the factors did not re-
sult stables, while [Telford and Moore, 1989] and [Hippe, 1989] provided stable parameters for a
reduced-order observer-based controller. Finally, [Ishihara and Sales, 1999] and [Tay et al., 1997]
extended the doubly coprime factorization to any stabilizing controller in state-space form. This
is the doubly coprime factors extraction here explained.

Theorem 3.7. Consider a plant in state space representationG as in Eq. 3.2 with A; B; C; D
stabilizable and detectable, and a stabilizing controllerK i as in Eq. 3.4. Fi , F c

i should be chosen
such that A + BF i and Ac

i + B c
i F c

i 2 RH 1 . Then doubly coprime factors are given by:

"
M i Ui

N i Vi

#

=

2

6
6
6
4

A + BF i 0 B 0
0 Ac

i + B c
i F c

i 0 B c
i

Fi Cc
i + D c

i F c
i I D c

i
C + DF i F c

i D I

3

7
7
7
5

(3.23)
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"
~Vi � ~Ui

� ~N i ~M i

#

=

2

6
6
6
4

A + BYi D c
i C BYi Cc

i � BYi BYi D c
i

B c
i Z i C Ac

i + B c
i Z i DC c

i � B c
i Z i D B c

i Z i

Fi � Yi D c
i C � Cc

i I � D c
i

C � F c
i 0 I

3

7
7
7
5

with Y i = ( I � D c
i D) � 1 and Z i = ( I � DD c

i ) � 1

(3.24)

Proof. For proof see [Ishihara and Sales, 1999].

In brief, the steps required to obtain the doubly coprime factors of a given feedback control
loop are: 1) construct a model-controller state-space form realization, 2) solve a pole-assignment
problem such A + BF i and Ac

i + B c
i F c

i 2 RH1 , and 3) perform some algebraic manipulations
according to Eqs. 3.23 and 3.24.

3.3 All stabilizing controllers/Controller recon�guration

Youla-Jabr-Bongiorno-Kucera parameterization provides all stabilizing controllers for a given plant
G, by interconnecting a controller K with a parameter Q, called YK parameter, which can be any
stable system with appropriate dimensions:

Theorem 3.8. Consider a �xed plant G connected to a stabilizing controllerK described by their
coprime factors G = NM � 1 = ~M � 1 ~N and K = UV � 1 = ~V � 1 ~U. Then, the set of all stabilizing
controllers for G is described by:

K (Q) = ( U + MQ )(V + NQ) � 1 = ( ~V + Q ~N ) � 1( ~U + Q ~M ) =

= K + ~V � 1Q(I + V � 1NQ) � 1V � 1; Q 2 RH 1
(3.25)

Proof. Let's see how this K (Q) stabilizes the plant G, representing the class of all stabilizing
controllers: "

I � K (Q)
� G I

#� 1

2 RH 1 (3.26)

"
I � K (Q)

� G I

#� 1

=

"
I � ( ~V + Q ~N ) � 1( ~U + Q ~M )

� ~M � 1 ~N I

#� 1

=

=

 "
( ~V + Q ~N ) � 1 0

0 ~M � 1

# "
( ~V + Q ~N ) � ( ~U + Q ~M )

� ~N ~M

#! � 1

=

=

"
M (U + MQ )
N (V + NQ)

# "
( ~V + Q ~N ) 0

0 ~M

#

=

=

 "
M U
N V

#

+

"
0 MQ
0 NQ

#!  "
~V 0
0 ~M

#

+

"
Q ~N 0

0 0

#!

=

=

"
M U
N V

# "
~V 0
0 ~M

#

+

"
MQ ~N 0
NQ ~N 0

#

+

"
0 MQ ~M
0 NQ ~M

#

=

=

"
I � K

� G I

#� 1

+

"
M
N

#

Q
h

~N ~M
i

(3.27)



3.3. ALL STABILIZING CONTROLLERS/CONTROLLER RECONFIGURATION 37

As coprime factors are stable by de�nition, CL stability between G and K is guaranteed, it is
clear that any controller parameterized by Q 2 RH 1 will stabilize G, representing the class of
all stabilizing controllers. As Q varies all over the stable space, all possible proper stabilizing
controllers are provided by K (Q).

By using the class of all stabilizing controllers, it is possible to perform stable controller re-
con�guration as mentioned in [Niemann and Stoustrup, 1999]. The main goal is to guarantee
system stability whereas switching between controllers occurs. The reasons for the change could
be numerous. For instance, new sensors or actuators have been added, or a better knowledge of
the system has been obtained. Transitions between controllers are carried out through a scalar
factor  that a�ects the YK parameter Q.

How to obtain the YK parameter Q is detailed in the following subsections. Di�erent Q's are
considered depending on the number of controllers to be implemented. Stability is studied as a
function of  to carry out controller recon�guration from an initial controller to a �nal one, or
to several ones. The di�erent mathematical expressions derive in di�erent YK control structures
for stable controller recon�guration. These structures are shown and analysed in detail in section
3.3.3. The mathematical stability proof is given for each structure.

3.3.1 From a initial stabilizing controller to a �nal stabilizing controller

Consider that G is connected to an initial controller K 0. An arbitrary �nal controller K 1 is also
chosen. YK makes possible stable controller recon�guration betweemK 0 and K 1 online, just by
choosing the appropriateQ [Niemann and Stoustrup, 1999]:

Theorem 3.9. Let G = N0M � 1
0 = ~M 0

� 1 ~N0 = N1M � 1
1 = ~M 1

� 1 ~N1 be a coprime factorization of
the plant G and K 0 = U0V � 1

0 = ~V0
� 1 ~U0 an initial stabilizing controller represented by its coprime

factors. A second controller is given byK 1 = U1V � 1
1 = ~V1

� 1 ~U1. Then, K 1 can be implemented in
a stable way by calculatingQ as follows:

Q = X 1( ~U1V0 � ~V1U0) = X 1( ~V1(K 1 � K 0)V0) (3.28)

with X 1 = M � 1
0 M 1.

Proof. A controller K 1 is implemented as a stableQ parameter based on a another stabilizing
controller K 0 by using Eq. 3.28 in Eq. 3.25 together with Bézout's identity in Eq. 3.17:

K 0(Q) = K 0 + ~V0
� 1

Q(I + V � 1
0 N0Q) � 1V � 1

0 =

= K 0 + ~V0
� 1

X 1 ~V1(K 1 � K 0)V0(I + V � 1
0 N0X 1 ~V1(K 1 � K 0)V0) � 1V � 1

0

K 0(Q) = K 0 + ~V0
� 1

X 1 ~V1(K 1 � K 0)V0(V0 + N0X 1 ~V1(K 1 � K 0)V0) � 1 =

= K 0 + ~V0
� 1

X 1 ~V1(K 1 � K 0)( I + N0X 1 ~V1(K 1 � K 0)) � 1

K 0(Q) = K 0 + ~V0
� 1

X 1 ~V1(I + N0 ~V1X 1(K 1 � K 0)) � 1(K 1 � K 0) =

= K 0 + ~V0
� 1

X 1( ~V1
� 1

+ N0X 1(K 1 � K 0)) � 1(K 1 � K 0)

K 0(Q) = K 0 + ~V0
� 1

X 1( ~V1
� 1

+ N0X 1 ~V1
� 1 ~U1 � N0X 1 ~V0

� 1 ~U0) � 1(K 1 � K 0) =

= K 0 + ~V0
� 1

X 1( ~V1
� 1

(I + ~U1N1) � ~V0
� 1 ~U0N1) � 1(K 1 � K 0)

K 0(Q) = K 0 + ~V0
� 1

X 1(M 1 � ~V0
� 1 ~U0N1) � 1(K 1 � K 0) =

K 0 + ( ~V0M 0 � U0N0) � 1(K 1 � K 0) = K 0 + K 1 � K 0 = K 1

(3.29)
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When switching from K 0 to K 1, the YK parameter Q can be scaled from 0 to 1 to smooth the
switching between controllers. This scalar factor is included in Eq. 3.25 resulting in:

K 0(Q) = ( U0 + M 0Q )(V0 + N0Q ) � 1 = K 0 + ~V0
� 1

Q (I + V � 1
0 N0Q )V � 1

0 (3.30)

A complete description of the controller K 0(Q) depending on is given below.

K 0(Q) = K 0 + ~V0
� 1

Q (I + V � 1
0 N0Q ) � 1V � 1

0 =

= K 0 + ~V0
� 1

X 1 ~V1(K 1 � K 0)V0(I + V � 1
0 N0X 1 ~V1(K 1 � K 0)V0) � 1V � 1

0

K 0(Q) = K 0 + ~V0
� 1

X 1 ~V1(K 1 � K 0)V0(V0 + N0X 1V1(K 1 � K 0)V0) � 1 =

= K 0 + ~V0
� 1

X 1 ~V1(K 1 � K 0)( I + N0X 1 ~V1(K 1 � K 0)) � 1

K 0(Q) = K 0 + ~V0
� 1

(I + N0M 1M � 1
0

~V1(K 1 � K 0)) � 1(M 1M � 1
0

~V1(K 1 � K 0)) =

= K 0 + ~V0
� 1

(M 0 + N0M 1 ~V1(K 1 � K 0)) � 1(M 1 ~V1(K 1 � K 0)) =

= K 0 + ( M 0 ~V0 + N0M 1 ~V1 ~V0(K 1 � K 0)) � 1(M 1 ~V1(K 1 � K 0))

K 0(Q) = K 0 + ( M 0 ~V0 + M 1( ~U1N0 ~V0 � ~U0N0 ~V1)) � 1(M 1 ~V1(K 1 � K 0)) =

= K 0 + (( I � M 1 ~V1)M 0 ~V0 + M 1 ~V1 + M 1 ~U1N0 ~V0) � 1(M 1 ~V1(K 1 � K 0))

K 0(Q) = K 0 + (( I � M 1 ~V1)M 0 ~V0 + M 1 ~V1 + M 1 ~U1N0 ~V0) � 1(M 1 ~V1(K 1 � K 0)) =

= K 0 + (( I � M 1 ~V1)M 0 ~V0 + M 1 ~V1 +  ~U1N1M 0 ~V0) � 1(M 1 ~V1(K 1 � K 0)) =

= K 0 + (( I � M 1 ~V1 +  ~U1N1)M 0 ~V0 + M 1 ~V1) � 1(M 1 ~V1(K 1 � K 0)) =

= ~V0
� 1 ~U0 + (( I �  )M 0 ~V0 + M 1 ~V1) � 1(M 1 ~V1( ~V1

� 1 ~U1 � ~V0
� 1 ~U0)) =

= (( I �  )M 0 ~V0 + M 1 ~V1) � 1((1 �  )M 0 ~U0 + M 1 ~U1)

(3.31)

K 0(Q) description in Eq. 3.30 is connected to the general plant in Eq. 3.1, so CL stability
from w to e can be studied [Tay et al., 1997]:

A necessary and su�cient condition to ensure stability is given in Theorem 3.3:

2

6
4

I �

"
0 0
0 K 0(Q)

#

� P I

3

7
5

� 1

= Gew + GeuK 0(Q)( I � GK 0(Q)) � 1Gyw 2 RH 1 (3.32)

Eq. 3.27 together with the CL description in Eq. 3.32 are used, yielding:

Tew = Gew + Geu(M 0 ~U0 + M 0Q ~M 0)Gyw (3.33)

where Q is given by Theorem 3.9. Bézout's identity is employed below, resulting:
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Tew = Gew + Geu(M 0 ~U0 + M 0M � 1
0 M 1( ~U1V0 � ~V1U0) ~M 0)Gyw =

= Gew + Geu(M 0 ~U0 + M 1 ~U1V0 ~M 0 � M 1 ~V1M 0 ~U0)Gyw =

= Gew + Geu((1 � M 1 ~V1)M 0 ~U0 + M 1 ~U1V0 ~M 0)Gyw =

= Gew + Geu((1 �  (I + ~U1N1))M 0 ~U0 + M 1 ~U1V0 ~M 0)Gyw =

= Gew + Geu((1 �  )M 0 ~U0 �  ~U1N1M 0 ~U0 + M 1 ~U1V0 ~M 0)Gyw =

= Gew + Geu((1 �  )M 0 ~U0 �  ~U1(N1M 0 ~U0 � M 1V0 ~M 0))Gyw =

= Gew + Geu((1 �  )M 0 ~U0 �  ~U1(N0M 1 ~U0 � M 1V0 ~M 0))Gyw =

= Gew + Geu((1 �  )M 0 ~U0 �  ~U1(M 1(N0 ~U0 � V0 ~M 0))) Gyw =

= Gew + Geu((1 �  )M 0 ~U0 + M 1 ~U1)Gyw

(3.34)

This proves that CL stability of a general plant connected to K 0(Q) depends on coprime factors
M 0, ~U0, M 1 and ~U1. These coprime factors are stable by de�nition, so CL stability is ensured for
every value of  .

Theorem 3.10 (Stable controller recon�guration between K 0 and K 1). CL transfer function of a
general plant connected to a feedback controller is in Eq. 3.7. Consider a controllerK 0(Q) given
by:

K 0(Q) = ( U0 + M 0Q )(V0 + N0Q ) � 1 = ( ~V0 + Q ~N0) � 1( ~U0 + Q ~M 0) (3.35)

with  2 [0; 1]. Then, the CL transfer function Tew depending on is given by:

Tew = Gew + Geu((1 �  )M 0 ~U0 + M 1 ~U1)Gyw (3.36)

CL stability is ensured for every value of  if and only if Gew, Geu, Gyw , M 0, ~U0, M 1 and
~U1 2 RH 1 : As they are stable by de�nition, stability when doing controller recon�guration between

K 0 and K 1 is ensured.

Proof. Proof is above.

The di�erent time-variations of  result in di�erent transients when switching between con-
trollers. CL stability analysis is extended to any time-variation of  in [Hespanha and Morse,
2002]. It is stated that the switching signal  between both controllers could be simpleminded,
because stability is ensured in every moment. As example, two controllers are designed for the
control of the roll angle of an aircraft: the �rst, slow but with good noise rejection; and the second,
fast but sensitive to noise. By switching between them is possible to achieve good noise rejection
when noise is large, and fast response when noise is small. Stability is ensured regardless the
algorithm used to obtain the switching signal. Thus, with the YK parameterization, one can use
a simpleminded algorithm to switch between controllers whereas keeping stability.

3.3.2 From a initial stabilizing controller to several stabilizing controllers

Former sections considered the switching between two possible controllers. However, applications
where more controllers are required could exist:K i with i 2 [1; p]. K 0 is the initial controller.
Further, each of these controllersK i should be implemented with the appropriate Qi . Theorem
3.9 is rewritten in a more general way:
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Theorem 3.11. Let G = N i M � 1
i = ~M i

� 1 ~N i be a coprime factorization of the plantG and K 0 =
U0V � 1

0 = ~V0
� 1 ~U0 an initial stabilizing controller represented by its coprime factors. p stabilizing

controllers are given byK i = Ui V � 1
i = ~Vi

� 1 ~Ui with i 2 [1; p]. Then, K i can be implemented in a
stable way by calculatingQi as follows:

Qi = X i ( ~Ui V0 � ~Vi U0) = X i ( ~Vi (K i � K 0)V0) (3.37)

with X i = M � 1
0 M i .

Proof. Proof is equivalent to the one in Theorem 3.9. Replace subindex1 by i .

Di�erent scalar factors  i are employed for providing smoothness when doing controller recon-
�guration from K 0 to K i . Moreover, they can be also used to provide a combination of di�erent
stabilizing controllers such Q yields:

Q =
pX

i =1

 i Qi with
pX

i =1

 i = 1 (3.38)

The number of controllers is p = 2, both di�erent from the initial controller K 0. This simpli�es
the controller description without loss of generality:

Q =  1Q1 +  2Q2 =  1X 1( ~U1V0 � ~V1U0) +  2X 2( ~U2V0 � ~V2U0) =

=  1X 1 ~V1(K 1 � K 0)V0 +  2X 2 ~V2(K 2 � K 0)V0 with  1 +  2 = 1
(3.39)

This new Q is included into Eq. 3.25 for having a complete description ofK (Q) able to switch
between several controllers:
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K (Q) = K 0 + ~V0
� 1

Q(I + V � 1
0 N0Q) � 1V � 1

0 =

= K 0 + ~V0
� 1

( 1X 1 ~V1(K 1 � K 0) +  2X 2 ~V2(K 2 � K 0))

(I + N0( 1X 1 ~V1(K 1 � K 0) +  2X 2 ~V2(K 2 � K 0))) � 1 =

= K 0 + ~V0
� 1

(I + (  1X 1 ~V1(K 1 � K 0) +  2X 2 ~V2(K 2 � K 0))N0) � 1

( 1X 1 ~V1(K 1 � K 0) +  2X 2 ~V2(K 2 � K 0)) =

= K 0 + ~V0
� 1

(M 0 + (  1M 1( ~U1 � ~V1K 0) +  2M 2( ~U2 � ~V2K 0))N0) � 1

( 1M 1 ~V1(K 1 � K 0) +  2M 2 ~V2(K 2 � K 0)) =

= K 0 + ( M 0 ~V0 + (  1M 1( ~U1 � ~V1K 0) +  2M 2( ~U2 � ~V2K 0))N0 ~V0) � 1

( 1M 1 ~V1(K 1 � K 0) +  2M 2 ~V2(K 2 � K 0)) =

= K 0 + ( M 0 ~V0 +  1M 1( ~U1N0 ~V0 � ~V1U0 ~N0) +  2M 2( ~U2N0 ~V0 � ~V2U0 ~N0)) � 1

( 1M 1 ~V1(K 1 � K 0) +  2M 2 ~V2(K 2 � K 0)) =

= K 0 + (  1M 1 ~V1 +  2M 2 ~V2 + ( I �  1M 1 ~V1 �  2M 2 ~V2)M 0 ~V0 + (  1M 1 ~U1 +  2M 2 ~U2)N0 ~V0) � 1

( 1M 1 ~V1(K 1 � K 0) +  2M 2 ~V2(K 2 � K 0)) =

= K 0 + (  1M 1 ~V1 +  2M 2 ~V2 +  1 ~U1( ~M 1N0 � ~N1M 0) ~V0 +  2 ~U2( ~M 2N0 � ~N2M 0) ~V0) � 1

( 1M 1 ~V1(K 1 � K 0) +  2M 2 ~V2(K 2 � K 0)) =

= K 0 + (  1M 1 ~V1 +  2M 2 ~V2) � 1( 1M 1 ~V1(K 1 � K 0) +  2M 2 ~V2(K 2 � K 0)) =

= ( K 0( 1M 1 ~V1 +  2M 2 ~V2) + (  1M 1 ~V1(K 1 � K 0) +  2M 2 ~V2(K 2 � K 0)))(  1M 1 ~V1 +  2M 2 ~V2) � 1 =

= (  1M 1 ~V1 +  2M 2 ~V2) � 1( 1M 1 ~U1 +  2M 2 ~U2)
(3.40)

Without loss of generality, the solution for p = 2 can be extended top controllers [Niemann et
al., 2004]:

K (Q) =

 pX

i =1

 i M i ~Vi

! � 1 pX

i =1

 i M i ~Ui with
pX

i =1

 i = 1 (3.41)

Notice how K (Q) is independent from K 0. The reason is that the scaling parameters i satisfy
P p

i =1  i = 1. However, if the sum is not equal to one, the �nal controller will be also function of
the initial controller K 0.

Once a general description ofK (Q) is given, CL stability from w to e is analysed. Tew for
p = 2 is equivalent to:

Tew = Gew + Geu(M 0 ~U0 +  1M 1( ~U1V0 � ~V1U0) ~M 0 +  2M 2( ~U2V0 � ~V2U0) ~M 0)Gyw =

= Gew + Geu((1 �  1M 1 ~V1 �  2M 2 ~V2)M 0 ~U0 +  1M 1 ~U1V0 ~M 0 +  2M 2 ~U2V0 ~M 0)Gyw =

= Gew + Geu((  1M 1 ~U1 +  2M 2 ~U2) + (  1M 1 ~U1 +  2M 2 ~U2)N0 ~U0 � ( 1U1 ~N1 +  2U2 ~N2)M 0 ~U0)Gyw =

= Gew + Geu((  1M 1 ~U1 +  2M 2 ~U2) +  1U1( ~M 1N0 � ~N1M 0) ~U0 +  2U2( ~M 2N0 � ~N2M 0) ~U0)Gyw =

= Gew + Geu((  1M 1 ~U1 +  2M 2 ~U2))Gyw

(3.42)

This is again extended top controllers without loss of generality:
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Tew = Gew + Geu

 pX

i =1

 i M i ~Ui

!

Gyw with
pX

i =1

 i = 1 (3.43)

Therefore, CL stability depends directly on the coprime factors M i and ~Ui , which are stable
by de�nition. The information above is summarized in the following Theorem:

Theorem 3.12 (Stable controller recon�guration between several controllers). CL transfer func-
tion of a general plant connected to a feedback controller is in Eq. 3.7. Consider a controllerK (Q)
given by:

K (Q) = ( U0 + M 0

pX

i =1

 i Qi )(V0 + N0

pX

i =1

 i Qi ) � 1 = ( ~V0 +
pX

i =1

 i Qi ~N0) � 1( ~U0 +
pX

i =1

 i Qi ~M 0) (3.44)

with
P p

i =1  i = 1 . Then, the CL transfer function Tew depending on i is given by:

Tew = Gew + Geu

 pX

i =1

 i M i ~Ui

!

Gyw (3.45)

CL stability is ensured for every value of i if and only if Gew, Geu, Gyw , M i and ~Ui 2 RH 1 :
As they are stable by de�nition, stability when doing controller recon�guration between several
controllers K i is ensured.

Proof. Proof is above.

3.3.3 Controller structures

This subsection explores the di�erent control structures in connection with YK parameterization
to provide stable controller recon�guration. Some drawbacks come up when using the YK archi-
tecture: complexity of the resulting controller, matrix inversability or disconnection of the plant
for implementation. The standard structure in [Moore et al., 1990] has been modi�ed in the liter-
ature to avoid matrix inversability [Niemann and Poulsen, 2009a], plant disconnection [Trangbaek
et al., 2008] [Trangbaek and Bendtsen, 2009], or to reduce the complexity of the resulting con-
troller [Niemann and Poulsen, 2009a]. These structures are summarized, highlighting the solved
problems, and providing mathematical proof that stability remains. For the sake of simplicity,
control structures shown in this subsection are for controller recon�guration betweenK 0 and K 1.
It could be extended to several stabilizing controllersK i without losing generality.

3.3.3.a Structures 1 and 2

From Theorem 3.10, the standard control structures for stable controller recon�guration are de-
rived. Figure 3.4 shows the control structure for switching based on right coprime factors. On
the other hand, the structure in Fig. 3.5 depends on left coprime factors. Standard structures
refer to the �rst YK control structures that appeared in [Moore et al., 1990]. The complexity of
these control structures is de�ned as the order/state dimension of the switched controllerK 0(Q):
A non-minimal realization of structures 1 and 2 may yield a K 0(Q) with 7( n + nK 0 ) + 3( n + nK 1 )
states.

When doing controller transitions, the scalar factor  plays a key role. It regulates the di�erent
levels of activation of the YK parameter Q.  may vary from 0 to 1, being 0 a 100% contribution
of K 0 and 1 a 100% contribution ofK 1. In short,  is the switching signal betweenK 0 and K 1.
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Figure 3.4: Structure 1.
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Figure 3.5: Structure 2.

Both implementations present some drawbacks such high order complexity of resulting con-
troller, matrix inversability or controller design from scratch. These structures are modi�ed below,
so the associated problems can be suppressed.

3.3.3.b Structures 3 and 4

Controller recon�guration using structures 1 and 2 requires the initial controller K 0 to be divided
in its coprime factors U0, V0 or ~U0 and ~V0. Even if the system is already operational with an initial
controller K 0, this one should be disconnected. This is unfeasible if the system shutdown is very
expensive, or the initial controller is part of a safety circuit. Remaining the original controller
would be useful for not replicating supervisory logic already installed in the initial controller, or
to come back to the previous control system when failures occur. In several cases, the inside of
the controller could not be accessible.
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Figure 3.6: Structure 3.
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Figure 3.7: Structure 4.

[Trangbaek and Bendtsen, 2009] keep the initial controller in place, accessing at its terminal to
carry out the YK controller recon�guration. New control dynamics can be added online, without
removing the original controller. This allows to return to the original controller in case of problems
with the new one. Control structures for right and left coprime factorizations are shown in Figs.
3.6 and 3.7 respectively. AsK 0 is not decomposed in coprime factors, inversion of matrices is no
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longer needed; and the complexity of the resultingK 0(Q) is lower: 5(n + nK 0 ) + 3( n + nK 1 ) + nK 0

for structure 3 and 6(n + nK 0 ) + 3( n + nK 1 ) + nK 0 for structure 4. Notice that calculations of the
YK parameters Q0 and Q00di�er from the standard one in Eq. 3.28:

Theorem 3.13. Let G = N0M � 1
0 = ~M 0

� 1 ~N0 = N1M � 1
1 = ~M 1

� 1 ~N1 be a coprime factorization of
the plant G and K 0 = U0V � 1

0 = ~V0
� 1 ~U0 an initial stabilizing controller that can not be disconnected.

A second controller is given byK 1 = U1V � 1
1 = ~V1

� 1 ~U1. In order to use structures 3 and 4:
When using right coprime factorsM 0 and N0, Q0 is calculated as:

Q0 = QV � 1
0 = X 1( ~U1 � ~V1 ~U0 ~V0

� 1
) (3.46)

When using left coprime factors ~M 0 and ~N0, Q00is calculated as:

Q00= Q ~V0
� 1

= X 1( ~V0
� 1

( ~U1V0 � ~V1U0)) (3.47)

with X 1 = M � 1
0 M 1.

Proof. Proof is equivalent to stability proof below.

Once structures 3 and 4 are de�ned, the YK property of stable controller recon�guration is
veri�ed. Stability has already been demonstrated in Theorem 3.10. To prove that stability is still
preserved in these new structures, it is only necessary to check thatK 0(Q) remains as in Eq. 3.35.

According to the block diagram of structure 3 (Fig. 3.6), K 0(Q) yields:

u = ( K 0 + M 0Q 0)(1 + N0Q 0) � 1y

u = ( U0V � 1
0 + M 0Q 0)(1 + N0Q 0) � 1y

u = ( U0V � 1
0 + M 0QV � 1

0 )(1 + N0QV � 1
0 ) � 1y

u = ( U0 + M 0Q )(V0 + N0Q ) � 1y

(3.48)

which is equivalent to K 0(Q) description in Eq. 3.35 for right coprime factors.
According to the block diagram of structure 4 (Fig. 3.7), K 0(Q) yields:

u = ( K 0 + Q 00~M 0)(1 + Q 00~N0) � 1y

u = ( ~V0
� 1 ~U0 + Q 00~M 0)(1 + Q 00~N0) � 1y

u = ( ~V0
� 1 ~U0 + Q ~V0

� 1 ~M 0)(1 + Q 00~N0) � 1y

u = ( ~U0 + Q ~M 0)( ~V0 + Q ~N0) � 1y

(3.49)

which is equivalent to K (Q) description in Eq. 3.35 for left coprime factors.
Stable controller recon�guration property is ensured even if di�erent structures are employed.

3.3.3.c Structures 5 and 6

Another critical point in the implementation of structures 1 and 2 is the inversion of coprime
factors V0 and ~V0. As a solution, two new structures related to loop transfer recovery were proposed
in [Niemann et al., 1991] and [Niemann and Poulsen, 2009a]. Structures so-called 5 and 6 do not
present matrix inversion. Block diagrams of both structures are depicted in Figs. 3.8 and 3.9
respectively. Notice that unlike structures 3 and 4 the calculation of the YK parameter Q remains
as in Eq. 3.28, and the initial controller K 0 should be disconnected for structure implementation.
Besides, the resulting controller order is the same as structures 1 and 2: 7(n + nK 0 ) + 3( n + nK 1 ).
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Again stable controller recon�guration property is checked with Eq. 3.35.
According to the block diagram of structure 5 (Fig. 3.8), K 0(Q) yields:

u = ( U0 + M 0Q )( ~M 0y � ~N0u) =

u = ( I + ( U0 + M 0Q ) ~N0) � 1(U0 + M 0Q ) ~M 0y

u = ( ~M 0V0 + ~M 0N0Q ) � 1(U0 + M 0Q ) ~M 0y

u = ( V0 + N0Q ) � 1(U0 + M 0Q )y

(3.50)

which is equivalent to K (Q) description in Eq. 3.35 for right coprime factors.
According to the block diagram of structure 6 (Fig. 3.9), K 0(Q) yields:

u = M 0!

u = M 0( ~U0 + Q ~M 0)(1 + ( ~U0 + Q ~M 0)N0) � 1y

u = M 0( ~U0 + Q ~M 0)( ~V0M 0 + Q ~N0M 0) � 1y

u = ( ~U0 + Q ~M 0)( ~V0 + Q ~N0) � 1y

(3.51)

which is equivalent to K 0(Q) description in Eq. 3.35 for left coprime factors.

3.3.3.d Structures 7 and 8

yu

(1- )U0+ U1M1M0
-1

M0
~

G

N0
~ -

~ ~

Figure 3.10: Structure 7
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Figure 3.11: Structure 8

Finally, the work in [Niemann and Poulsen, 2009a] deals with the reduction of the implemen-
tation complexity of the YK parameter Q. Notice that this parameter is derived from Eq. 3.28,
which depends on six coprime factors. Structures 7 and 8 make the YK controller recon�guration
independent of Q. Both control structures are shown in Figs. 3.10 and 3.11 respectively. The
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equivalent complexity order results in 4(n + nK 0 ) + 2( n + nK 1 ) states. Again structure implemen-
tation requires the initial controller to be disconnected. Notice how for the special case where
X 1 = I , the complexity order gets even lower.

Stable controller recon�guration property is still preserved even if Q is no longer in the structure
for controller recon�guration. Mathematical proof is shown below:

According to the block diagram of structure 7 (Fig. 3.10), K 0(Q) yields:

u = ((1 �  )U0 + U 1 ~M 1 ~M 0
� 1

)( ~M 0y � ~N0)

u = ((1 �  )U0 + U 1 ~M 1(� GU0 + V0))( ~M 0y � ~N0)

u = ((1 �  )U0 +  (� U1 ~N1U0 + U1 ~M 1V0))( ~M 0y � ~N0)

u = ((1 �  )U0 +  (( I � M 1 ~V1)U1 + M 1 ~U1V0))( ~M 0y � ~N0)

u = ( U0 + M 1( ~U1V0 � ~V1U0))( ~M 0y � ~N0)

u = ( U0 + M 0Q )( ~M 0y � ~N0)

u = ( I + ( U0 + M 0Q ) ~N0) � 1(U0 + M 0Q ) ~M 0y

u = ( ~M 0V0 + ~M 0N0Q ) � 1(U0 + M 0Q ) ~M 0y

u = ( V0 + N0Q ) � 1(U0 + M 0Q )y

(3.52)

which is equivalent to K 0(Q) description in Eq. 3.35 for right coprime factors.
According to the block diagram of structure 8 (Fig. 3.11), K 0(Q) yields:

u = M 0!

u = M 0((1 �  ) ~U0 + M � 1
0 M 1 ~U1)

(1 + ((1 �  ) ~U0 + M � 1
0 M 1 ~U1)N0) � 1y

u = M 0( ~U0 + Q ~M 0)(1 + ( ~U0 + Q ~M 0)N0) � 1y

u = M 0( ~U0 + Q ~M 0)( ~V0M 0 + Q ~N0M 0) � 1y

u = ( ~U0 + Q ~M 0)( ~V0 + Q ~N0) � 1y

(3.53)

which is equivalent to K (Q) description in Eq. 3.35 for left coprime factors.
On the other hand, it has been assumed that there is no variation in the dynamic system

represented byG; when doing controller switching in a system with variations, dual YK formulation
needs to be employed. Further details are found in Chapter 4. All the plants stabilized by a given
controller are represented byG(S), where S is the dual YK parameter [Niemann, 2003]. In that
case, CL stability involves both Q and S: (I � QS) � 1 2 RH1 [Niemann and Stoustrup, 1999].
Thus, control structures 7 and 8 cannot be used when system variations are present, asQ is no
longer in the structure.

3.4 Numerical examples

In this section, di�erent numerical examples are given for the better understading of the stable
controller recon�guration provided by the YK parameterization. In particular, it is shown how YK
is able to solve a transition problem where a direct linear change between two controllers could
result in a stability problem. Root locus representation during the transition phase between initial
and �nal �rst-order controllers connected to a �rst-order system is also provided. It allows to
make a connection between YK stability property and zeros/poles position when doing controller
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recon�guration. Finally, transient behavior depending on the control structure is also analysed.
A comparative study is carried out among all the structures, determining if the use of some YK
control structure improves transient performance when doing controller switching.

3.4.1 Stable transition

A linear combination between two controllers K 0 and K 1 could results in an unstable system.
In [Niemann et al., 2004], a theoretical example shows how the linear combination of two stabilizing
controllers does not result in a stabilizing controller of the system. The example is here reused to
show the stabilizing capabilities of the YK parameterization.

Consider the following state-space representation of a systemG:

G =

"
A B
C D

#

=

2

6
6
6
4

7:0 0:0 0:0 1:0
1:0 � 7:0 � 2:4495 0:0
0:0 2:4495 0:0 0:0
1:0 � 5:0 253:1139 0:0

3

7
7
7
5

(3.54)

The system is unstable, but it is stabilized by an initial controller K 0:

K 0 =

"
Ac

0 B c
0

Cc
0 D c

0

#

=

"
0:0 0:0
0:0 1000

#

(3.55)

such that the following stable CL poles remain:

polesCL (G;K 0 ) =

"
� 998:67

� 0:6660� 25:027i

#

(3.56)

Later, the controller is replaced by a more advanced one. It could be the case where the initial
controller is applied in the start-up process of the system, but later replaced with a more advanced
controller. An observer-based feedback controllerK 1 is considered:

K 1 =

"
Ac

1 B c
1

Cc
1 D c

1

#

=

2

6
6
6
4

� 15:070 45:992 � 2309:7 9:1283
0:3537 � 3:7679 � 166:07 0:64643

� 0:13121 3:1056 � 33:212 0:13121
� 12:941 0:35054 0:85619 0:0

3

7
7
7
5

(3.57)

which CL poles result:

polesCL (G;K 1 ) =

2

6
6
6
4

� 25:1218
� 0:9022

� 7:7082� 1:01005i
� 5:3047� 1:1643i

3

7
7
7
5

(3.58)

A direct linear change between controllersK 0 and K 1 is considered. Let the linear combination
between both controllers be as follows:

K � = (1 � � )K 0 + �K 1; with � 2 [0; 1] (3.59)

It results that CL stability is not ensured for every value of � 2 [0; 1]. CL poles are shown
for di�erent values of � in Table 3.1. Notice how for � 2 [0:7; 0:9] there are poles in the right
half-plane, and therefore the response is unstable. A direct linear change between two controllers
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Table 3.1: CL poles (G; K � ). Direct linear change betweenK 0 and K 1.

� CL poles

� = 0 :0 [� 998:67; � 0:6660� 25:027i ]

� = 0 :1 [� 8:7288� 14:0935i; � 0:6288� 25:0287i; � 34:6057; � 898:7287]

� = 0 :2 [� 8:7279� 14:0891i; � 0:5825� 25:0304i; � 34:6244; � 798:8044]

� = 0 :3 [� 8:7268� 14:0835i; � 0:5229� 25:0320i; � 34:6486; � 698:9015]

� = 0 :4 [� 8:7254� 14:0760i; � 0:4436� 25:0332i; � 34:6813; � 599:0303]

� = 0 :5 [� 8:7234� 14:0655i; � 0:3328� 25:0328i; � 34:7276; � 499:2095]

� = 0 :6 [� 8:7205� 14:0500i; � 0:1673� 25:0278i; � 34:7986; � 399:4754]

� = 0 :7 [� 8:7157� 14:0245i; 0:1058� 25:0083i; � 34:9211; � 299:9088]

� = 0 :8 [� 8:7065� 13:9748i; 0:6380� 24:9291i; � 35:1835; � 200:7292]

� = 0 :9 [� 8:6818� 13:8348i; 2:0578� 24:4344i; � 36:1582; � 102:6435]

� = 1 :0 [� 25:1218; � 0:9022; � 7:7082� 1:01005i; � 5:3047� 1:1643i ]

could result in a stability problem. This can be more critical in the case that one wants to change
between more than two controllers.

When using any of the control structures in subsection 3.3.3 stable transition is ensured between
controllers K 0 and K 1. G, K 0 and K 1 are de�ned as in Eqs. 3.54, 3.55 and 3.56 and used within
Theorem 3.7 for obtaining doubly coprime factorsN0, M 0, N1, M 1, ~N0, ~M 0, ~N1, ~M 1, U0, V0, U1,
V1, ~U0, ~V0, ~U1, ~V1. These factors are used for the calculation ofQ so the stable YK controller
recon�guration can be implemented (see Theorem 3.9). CL poles are shown for di�erent values of
in Table 3.2. YK paramaterization is able to stabilize a transition between controllers where direct
linear change results unstable. Independently of the value of , CL poles during the transition are
the combination of CL poles of (G; K 0) and (G; K 1) [Niemann and Stoustrup, 1999]. Poles do not
change during the controller transition. This property is detailed in the subsection below.

3.4.2 Root locus evaluation

In this subsection, a root locus comparison between direct linear change between controllers and
YK controller recon�guration is given. For the shake of clarity, a �rst order plant is used for the
stability analysis.

Consider the following state space representation of a system:

G =

"
A B
C D

#

=

"
� 2:5 2:0
1:25 0:0

#

(3.60)

A controller K 0 was designed to make the system follow a step reference:

K 0 =

"
Ac

0 B c
0

Cc
0 D c

0

#

=

"
0:0 1:0

� 1:0 � 0:4

#

(3.61)

such that the following stable CL pole remains:

polesCL (G;K 0 ) =
h
� 1

i
(3.62)
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Table 3.2: CL poles (G; K 0(Q)). YK controller recon�guration between K 0 and K 1.

 CL poles

 = 0 :0 [� 998:67; � 0:6660� 25:027i ]

 = 0 :1 [� 998:67; � 0:6660� 25:027i; � 25:1218; � 0:9022; � 7:7082� 1:01005i; � 5:3047� 1:1643i ]

 = 0 :2 [� 998:67; � 0:6660� 25:027i; � 25:1218; � 0:9022; � 7:7082� 1:01005i; � 5:3047� 1:1643i ]

 = 0 :3 [� 998:67; � 0:6660� 25:027i; � 25:1218; � 0:9022; � 7:7082� 1:01005i; � 5:3047� 1:1643i ]

 = 0 :4 [� 998:67; � 0:6660� 25:027i; � 25:1218; � 0:9022; � 7:7082� 1:01005i; � 5:3047� 1:1643i ]

 = 0 :5 [� 998:67; � 0:6660� 25:027i; � 25:1218; � 0:9022; � 7:7082� 1:01005i; � 5:3047� 1:1643i ]

 = 0 :6 [� 998:67; � 0:6660� 25:027i; � 25:1218; � 0:9022; � 7:7082� 1:01005i; � 5:3047� 1:1643i ]

 = 0 :7 [� 998:67; � 0:6660� 25:027i; � 25:1218; � 0:9022; � 7:7082� 1:01005i; � 5:3047� 1:1643i ]

 = 0 :8 [� 998:67; � 0:6660� 25:027i; � 25:1218; � 0:9022; � 7:7082� 1:01005i; � 5:3047� 1:1643i ]

 = 0 :9 [� 998:67; � 0:6660� 25:027i; � 25:1218; � 0:9022; � 7:7082� 1:01005i; � 5:3047� 1:1643i ]

 = 1 :0 [� 25:1218; � 0:9022; � 7:7082� 1:01005i; � 5:3047� 1:1643i ]

Later, the controller is replaced by a slower one:

K 1 =

"
Ac

1 B c
1

Cc
1 D c

1

#

=

"
0:0 0:5

� 1:0 � 0:2

#

(3.63)

which CL pole is closer to the origin:

polesCL (G;K 1 ) =
h
� 0:5

i
(3.64)

OnceG, K 0 and K 1 are de�ned as in Eqs. 3.60, 3.61 and 3.62, doubly coprime factorsN0, M 0,
N1, M 1, ~N0, ~M 0, ~N1, ~M 1, U0, V0, U1, V1, ~U0, ~V0, ~U1, ~V1 are obtained through Theorem 3.7. These
factors are used for the calculation ofQ, so the root locus comparison is carried out.

Figure 3.12 shows the root locus representation corresponding to di�erent values of� in Eq.
3.59. The CL pole of the system moves from its position withK 0 to its position with K 1 as �
increases. On the contrary, Fig. 3.13 plots the root locus representation corresponding to the
di�erent values of  in the YK stable controller recon�guration. YK controller recon�guration
includes zeros in the vicinity of the pole whose e�ect should cancel, instead of moving directly the
pole position. At any stage on the transition process, the CL poles of the system are the poles of
(G; K 0) and (G; K 1) compensated with a zero depending on the value of . For  2 [0; 1], poles
position remains in f polesCL (G;K 0 ) ^ polesCL (G;K 1 )g, so there is not posibility that an unstable pole
appears. On the contrary, for � 2 [0; 1] in the direct linear change, CL poles move with the value
of � , leaving the possibility that they go to the unstable area.

3.4.3 Transient behavior

By exploiting the YK parameterization it is possible to change controllers without losing stability,
no matter what of the described control structures are used. As already mentioned, when doing
controller transition,  plays the key role as switching signal betweenK 0 and K 1. But even
if stability is ensured, a step change from one controller to another can lead to unnaceptable
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Figure 3.12: Root locus representation direct linear change betweenK 0 and K 1.
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Figure 3.13: Root locus representation YK controller recon�guration betweenK 0 and K 1.

transitions. It would cause spikes and oscillations in the output, which are not acceptable. The
rate of change of the switching signal could be any, without a�ecting the CL stability of the
system [Hespanha and Morse, 2002]. This subsection studies transient responses when using the
di�erent YK control structures, determining if the use of some structure improves the transient
behavior when doing controller recon�guration.

Notice that the rate of change of  could be any, but a numerical example with the fastest
rate is given such that transient di�erences are more remarkable. G, K 0 and K 1 are de�ned as
in Eqs. 3.60, 3.61 and 3.63 respectively. Responses of both controllers are shown as black and
blue dotted lines in the middle graph of Fig. 3.14. Doubly coprime factorsN0, M 0, N1, M 1, ~N0,
~M 0, ~N1, ~M 1, U0, V0, U1, V1, ~U0, ~V0, ~U1, ~V1 are obtained through Theorem 3.7. These factors are

used for the calculation ofQ, Q0 and Q00, so all the YK control structures can be implemented and
compared in terms of transient performance.

Figure 3.14 depicts the transient behavior of each of the structures. The top graph represents
how  is modi�ed to carry out the switching from K 0 to K 1. System responses when doing the



3.4. NUMERICAL EXAMPLES 51

-1
0
1
2

10 12 14 16 18 20 22 24 26 28 30

0

0.2

0.4

0.6

0.8

1 S1
S2
S3
S4
S5
S6
S7
S8
K

0

K
1

Time (s)
10 12 14 16 18 20 22 24 26 28 30

E
rr

or

-0.1

0

0.1

0.2

�

Figure 3.14: Comparison of transient behavior between di�erent YK control structures. Step from
0 to 1.

transition are shown for the structures 1 to 8 at the middle graph. The bottom graph plots the
error to K 1 response once the YK structure is activated. In all cases, the initial controllerK 0 (black
dotted line) is working until  becomes 1 at 11s. Then, the transient to reach K 1 response (blue
dotted line) is di�erent for each of the structures: Structures 5 and 7 presents the same response,
the time to reach the desired behavior is the fastest 2s, but with an oscillation in the response;
structures 2, 6 and 8 takes twice the time but without overshoot; Structure 3 is even slower, about
8 s, but consequently transition is smoother; �nally, structure 1 and 4 present oscillations over the
desired response, with times reaching 12s and 4s respectively.

When doing controller recon�guration, one looks for a transition without overshoot between
K 0 and K 1 responses. This is the case of structures 2, 3, 6 and 8.

Table 3.3 gathers bene�ts and drawbacks of each structure seen in previous sections, as well as
transition behavior characterized by rising time and the presence of oscillations.



Table 3.3: Summary Table.

K 0 disconnection Complexity Iversability YK parameter System variations (Q,S) Time Oscillations

Structure 1 Yes 7(n + nK 0 ) + 3( n + nK 1 ) Yes Q Yes 12s Yes

Structure 2 Yes 7(n + nK 0 ) + 3( n + nK 1 ) Yes Q Yes 4s No

Structure 3 No 5(n + nK 0 ) + 3( n + nK 1 ) + nK 0 No Q0 Yes 8s No

Structure 4 No 6(n + nK 0 ) + 3( n + nK 1 ) + nK 0 No Q00 Yes 4s Yes

Structure 5 Yes 7(n + nK 0 ) + 3( n + nK 1 ) No Q Yes 2s Yes

Structure 6 Yes 7(n + nK 0 ) + 3( n + nK 1 ) No Q Yes 4s No

Structure 7 Yes 4(n + nK 0 ) + 2( n + nK 1 ) Yes - No 2s Yes

Structure 8 Yes 4(n + nK 0 ) + 2( n + nK 1 ) Yes - No 4s No
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3.5 Conclusions

In this chapter, YK parameterization examines the use of doubly coprime factors to parameterize
the class of all stabilizing controllers for a plant in terms of an initial stabilizing controller and a
stable �lter Q, called YK parameter.

The basis for the rest of the thesis has been de�ned. Derivation of a plant model, with transfer
function and state space representation is provided. Stabilizing properties of feedback and feed-
forward/feedback controllers for such plant model are revisited. The process of obtaining stable
doubly coprime factors for a plant modelG connected to any stabilizing controller K i is explained;
with special emphasis in the relation between coprime representations and stability properties,
called Bézout's identity. The entire class of stabilizing controllers for the a plant model is then
parameterized in terms of a stable �lter Q using these stable coprime factors. It turns out that
this approach gives rise to CL transfer functions that are a�ne in the stable �lter Q. By using
a scalar factor with the stable YK parameter Q, it is possible to switch between controllers in a
stable way. If a direct linear change between controllers is performed, there is no guarantee that
transition is stable. This lack of CL stability during transition is removed by using the YK param-
eterization. A numerical example is given, proving how YK parameterization is able to stabilize
a transition between two controllers where direct linear change results unstable. At any point of
the switching process, the CL poles of the system are the poles of the plant model with initial and
�nal controllers compensated by zeros. Zeros position depends on the value of the scalar factor
multiplying Q.

Finally, the YK mathematical basis is applied to derive the standard YK structures for con-
troller switching. Di�erent modi�cations are proposed to deal with problems such as order com-
plexity, plant disconnection or matrix inversability. Eight structures are obtained, which controller
complexity results in decreasing order: structures 1, 2, 5 and 6; structure 4; structure 3; and struc-
tures 7 and 8. Stability property is still preserved despite modi�cations in the structure, which
means that CL poles during transition are the same even if di�erent structures are used. Even
if stability and CL poles are maintained during transition, transient behavior of each structure is
investigated through a numerical example. Transient responses result di�erent depending on the
applied YK controller structure. Structures 1, 4, 5 and 7 exhibit an oscillating response to be
avoided. The rest presents acceptable behaviors, but one or the other should be chosen depending
on the desired time to reach the �nal response, controller complexity, presence of system variations
or initial controller disconnection. Structures 2, 6 and 8 are the fastest ones without oscillation,
while structure 3 take twice the time (so smoother) with a lower controller complexity, no need
to disconnect the initial controller, and system variations included. Structure 3 will be the chosen
one throughout this thesis.
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Chapitre. Paramétrisation
Youla-Jabr-Bongiorno-Kucera Duale

Below is a French summary of the following chapter "Dual Youla-Jabr-Bongiorno-Kucera param-
eterization".

Un des problèmes fréquents du contrôle est la conception d'un modèle Linéaire Invariant dans
le Temps (LIT) pour un point d'opération donné, qui couvre rarement toute la gamme d'opération
du système. Même si le système n'a qu'un unique point d'opération, les bruits externes ou les
incertitudes peuvent exister, modi�ant encore le comportement du systéme. C'est au court de ces
situations que l'identi�cation du système et le contrôle adaptatif jouent un rôle clé.

Ce chapitre décrit les bases mathématiques de l'application de la paramétrisation duale de
Youla-Jabr-Bongiorno-Kucera (YK) dans les domaine de l'identi�cation en boucle fermée (BF) et
le contrôle adaptatif. La paramétrisation YK duale décrit l'ensemble de tous les systèmes stabilisés
par un contrôleur LIT. Cette paramétrisation est aussi basée sur la double factorisation coprime.
Cet ensemble est fonction du paramètre YK dualS.

Une description des variations du système dans cas réel est exprimé par des incertitudes sur le
modèle ou par une représentation Linéaire à Paramétres Variants (LPV). Ceci peut être exprimé
en fonction du paramètre YK dual S. S peut être interprété comme la di�érence entre le système
réel et son modèle, rendant possible la connexion avec la paramétrisation YK. Ceci, dans le but de
concevoir le paramètre YK Q capable de satisfaire des critères de stabilité/performance. D'autre
part, le paramètre YK dual S peut être utilisé pour résoudre le probléme d'identi�cation en BF et
le transformer en identi�cation en boucle ouverte (BO).

Le chapitre est structuré comme suit: la section 4.1 décrit un système général avec ses varia-
tions. La section 4.2 reformule la double factorisation coprime pour la paramétrisation YK duale.
Dans la section 4.3, la classe de tous les systèmes stabilisés par un contrôleur donné est développée.
La section 4.4 décrit comment cette classe et la classe de tous les contrôleurs stabilisant un sys-
tème donné, peuvent être utilisées ensemble en analysant sa stabilité en BF et sa connexion avec
la conception du contrôle adaptatif. Dans la section 4.5 la paramétrisation YK duale est utilisée
pour transformer un problème d'identi�cation BF en problème d'identi�cation BO. Des détails à
propos des deux di�érentes solutions sont donnés. En�n, di�érentes remarques sont fournies en
conclusion dans la section 4.6.
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Chapter 4

Dual Youla-Jabr-Bongiorno-Kucera
parameterization

One of the common problems in controllers is the design for a Linear-Time-Invariant (LTI) model
in a given operation point, which rarely covers all the operation range of the system. Even if the
plant has an unique operation point, external disturbances or uncertainties could exist, modifying
again the system behavior. It is under these situations that system's identi�cation and adaptive
control play a key role.

This chapter describes the mathematical basis in which the dual Youla-Jabr-Bongiorno-Kucera
(YK) parameterization relies on for making Closed-Loop (CL) identi�cation and adaptive control.
Dual YK parameterization describes the collection of all plants stabilized by a LTI controller. This
parameterization is also based on the doubly coprime factorization. This collection is function of
the dual YK parameter S.

A description of system variations for a real plant is given as uncertainties or Linear-Parameter-
Varying (LPV) representation. These could be expressed in function of the dual YK parameter
S. S can be interpreted as the di�erence between the real system and its model, being possible to
make a connection with the YK parameterization in order to design the YK parameter Q able to
ful�ll some stability/performance criteria. On the other hand, the dual YK parameter S can be
identi�ed for solving CL identi�cation problems as Open-Loop-like (OL-like) problems.

The chapter is structured as follows: Section 4.1 describes a general system with variations.
Section 4.2 reformulates the doubly coprime factorization for the dual YK parameterization. In
section 4.3, the class of all plants stabilized by a given controller is derived. Section 4.4 describes
how this class can be used together with the class of all stabilizing controllers for a given plant,
analysing its CL stability and connection with adaptive control design. In section 4.5, the dual
YK parameterization is used to transform a CL identi�cation problem into a OL-like identi�cation
problem. Details about two di�erent schemes are given. Finally, some concluding remarks are in
section 4.6.

4.1 System variations

Models are an aproximation of the real physical system. Usually, LTI models are used to represent
physical systems, which are really time variant and nonlinear. As example, consider a LTI model
for describing the yaw control of a vehicle. A complete description of this model is non-linear,
and depends on variables such velocity, mass, cornering sti�ness, road friction coe�cient, and so
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on. A simple LTI model can at best capture only the essential behavior in the neighborhood of an
operation point.

Every model-plant mistmatch is called uncertainty in the plant model. Generally speaking, the
sources of uncertainty can be several: from plant aging, unmodeled dynamics (because the system
is too complex, no easy model), neglected dynamics (accuracy is too expensive), operation over
a large range of operation points, non-repeatable dynamics behaviours, inaccurate description of
component characteristics, shifting of operation points, time delay, parasitic coupling, hysteresis,
etc. The discrepancies between a system and its mathematical representation may lead to violation
of some performance speci�cations, or even to the CL instability, and thus they should be modeled
for a robust control design.

A typical procedure to represent uncertainty in models is the use of Linear Fractional Trans-
formations (LFT) [Doyle et al., 1991]. It basically separates what is known from what is unknown
in a feedback-like connection, bounding the possible values of the unknown elements. The basic
principle is to eliminate all the uncertaintites which can appear in a plant and combine them in
one uncertainty block �. This uncertainty block is used in robust control design, to achieve a
performance/stability level in the present of uncertainties. Uncertainty modeling could not be
simple, as in real systems all sources of uncertainty are mixed.

On the other hand, LPV representation [Bruzelius, 2004] o�ers a systematic way to obtain a
nonlinear model suitable for control. LPV system is a state-space representation whose dynamics
vary as function of certain time-varying parameters called scheduling parameters. It can represent
practical/real systems subject to uncertainties as parameters variations, unmodeled dynamics and
operation point shifting.

A LPV system can be expressed as:

_x(t) = A(p(t))x(t) + B (p(t))u(t)

y(t) = C(p(t))x(t) + D(p(t))u(t)
(4.1)

where p(t) is a vector of time-varying parameters assumed to be bounded8t. These time-varying
parameters are called scheduling parameters. A LPV system is a state-space representation where
A(p), B (p), C(p) and D(p) are the state space matrices parametrized by the scheduling parameter
p. Scheduling parameters are exogenous if they are external variables. On the contrary, they are
endogenous if they are function of the state variablep = p(x(t)), and, in that case, the LPV system
is referred as a quasi-LPV system. Di�erent system variations are considered depending on the
nature of the scheduling parameter. Slow or fast scheduling parameter can be considered. Both
related to plants which dynamics change with time, due for example the actual operation point of
the system. Other representation is considered ifp is piecewise-constant, or varies in a �nite set
of elements. This is a representation mainly used for switching systems.

It does not matter what type of representation is used;S describes any plant-model mistmath,
and this can be identi�ed in order to improve controller performance.

4.2 Doubly coprime factorization

A mandatory step towards the class of all systems stabilized by a controllerK is the doubly
coprime factorization. In order to obtain the class of all stabilizing controller for K , these coprime
factors should representGi and K such that:

Gi = N i M � 1
i = ~M i

� 1 ~N i

K = Ui V � 1
i = ~Vi

� 1 ~Ui

(4.2)
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These coprime factors should be stablesUi , ~Ui , Vi , ~Vi , N i , ~N i , M i , ~M i 2 RH 1 , and satisfy the
double Bézout's identity in Eq. 3.17. Notice how coprime factors change in comparison with Eq.
3.16, as a system that variesGi is connected to a �xed controller K :

Theorem 4.1. Consider a plant in state space representationGi with A i ; B i ; Ci ; D i stabilizable
and detectable, and a stabilizing controllerK . Fi , F c

i should be chosen such thatA i + B i Fi and
Ac + B cF c

i 2 RH 1 . Then doubly coprime factors are given by:

"
M i Ui

N i Vi

#

=

2

6
6
6
4

A i + B i Fi 0 B i 0
0 Ac + B cF c

i 0 B c

Fi Cc + D cF c
i I D c

Ci + D i Fi F c D i I

3

7
7
7
5

(4.3)

"
~Vi � ~Ui

� ~N i ~M i

#

=

2

6
6
6
4

A i + B i Yi D cCi B i Yi Cc � B i Yi B i Yi D c

B cZ i Ci Ac + B cZ i D i Cc � B cZ i D i B cZ i

Fi � Yi D cCi � Cc I � D c

Ci � F c
i 0 I

3

7
7
7
5

with Y i = ( I � D cD i ) � 1 and Z i = ( I � D i D c) � 1

(4.4)

Proof. For proof see [Ishihara and Sales, 1999].

In short, to obtain those elements, 1) construct a model-controller in state-space form, 2) solve
a pole-assignment problem suchA i + B i Fi and Ac + B cF c

i 2 RH1 , and 3) perform algebraic
manipulations according to Eqs. 4.3 and 4.4.

4.3 All systems stabilized by a controller

Once double coprime factors are obtained, it is possible to derive the dual theory related to Theorem
3.8. This theory allows to know the class of all the systems stabilized by a given controller [Tay
et al., 1997].

Theorem 4.2. Consider an initial plant G connected to a stabilizing �xed controller K described
by their coprime factors G = NM � 1 = ~M � 1 ~N and K = UV � 1 = ~V � 1 ~U. Then the set of all
plants stabilized by the controllerK is described by:

G(S) = ( N + V S)(M + US) � 1 =

= ( ~M + S ~U) � 1( ~N + S ~V); S 2 RH 1
(4.5)

where S is a stable transfer function of appropiate dimensions called dual YK parameter.

Proof. Let's see how this G(S) represents all the plants stabilized by K . CL stability between
G(S) and K is analysed (see Eq. 3.6 in the previous chapter):

"
I � K

� G(S) I

#� 1

=

"
I � G(S)

� K I

#� 1

2 RH 1 (4.6)
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"
I � G(S)

� K I

#� 1

=

"
I � ( ~M + S ~U) � 1( ~N + S ~V)

� ~V � 1 ~U I

#� 1

=

=

 "
( ~M + S ~U) � 1 0

0 ~V � 1

# "
( ~M + S ~U) � ( ~N + S ~V)

� ~U ~V

#! � 1

=

=

"
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(4.7)

As coprime factors are stable by de�nition, CL stability between G and K is guaranteed; and then
it is clear that any system parameterized byS 2 RH 1 is stabilized by K .

The dual YK parameter S can represent any plant-model mistmatch present in a real system,
either as a uncertainty � or as LPV representation. If the resulting S is stable, it means that
uncertainty/plant-variation does not destabilize the loop. Nevertheless, the performance could be
a�ected.

Equivalent to the previous chapter, below it is shown the parameterization in function of Si

from a nominal/initial LTI model G0 to the one which re�ects the real behavior of the systemGi .
This real model could include �xed uncertainties or linear parameter variations in function of a
scheduling parameterp(t). The mistmatch source will determine if Si is an LTI or LPV function.
Si is LTI or LPV depending on the real system Gi .

4.3.1 From a nominal model to a real model

Consider that a nominal LTI model G0 is connected to an initial controller K 0. An arbitrary �nal
LTI or LPV model Gi represents the real system. Then, the dual YK parameterization allows to
representGi in function of Si as follows:

Theorem 4.3. Consider an initial plant model G0 connected to a �xed controller K 0 described
by their coprime factors G0 = N0M � 1

0 = ~M 0
� 1 ~N0 and K 0 = U0V � 1

0 = ~V0
� 1 ~U0. The real system

connected to K 0 has dynamics corresponding to a modelGi , which coprime factors are Gi =
N i M � 1

i = ~M i
� 1 ~N i . Then, the real systemGi is represented in function of Si as:

Gi = G0(Si ) = ( N0 + V0Si )(M 0 + U0Si ) � 1 = ( ~M 0 + Si ~U0) � 1( ~N0 + Si ~V0) =

= G0 + ~M 0
� 1

Si (I + M � 1
0 U0Si )M � 1

0

(4.8)

where Si is equivalent to:

Si = X i ~M i (Gi � G0)M 0 = X i ( ~N i M 0 � ~M i N0) (4.9)

with X i = V � 1
0 Vi .
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Proof. Below, it is demonstrated how is possible to represent the plant modelGi as a stableSi

based on a initial modelG0 connected to a stabilizing controller K 0:

G0(Si ) = G0 + ~M 0
� 1

Si (I + M � 1
0 U0Si ) � 1M � 1

0 =

= G0 + ~M 0
� 1

X i ~M i (Gi � G0)M 0(I + M � 1
0 U0X i ~M i (Gi � G0)M 0) � 1M � 1

0

G0(Si ) = G0 + ~M 0
� 1

X i ~M i (Gi � G0)M 0(M 0 + U0X i ~M i (Gi � G0)M 0) � 1 =

= G0 + ~M 0
� 1

X i ~M i (Gi � G0)( I + U0X i ~M i (Gi � G0)) � 1

G0(Si ) = G0 + ~M 0
� 1

X i ~M i (I + U0X i ~M i (Gi � G0)) � 1(Gi � G0) =

= G0 + ~M 0
� 1

X i ( ~M i
� 1

+ U0X i (Gi � G0)) � 1(Gi � G0)

G0(Si ) = G0 + ~M 0
� 1

X i ( ~M i
� 1

+ U0X i ~M i
� 1 ~N i � U0X i ~M 0

� 1 ~N0) � 1(Gi � G0) =

= G0 + ~M 0
� 1

X i ( ~M i
� 1

+ U0V � 1
0 Vi ~M i

� 1 ~N i � U0V � 1
0 Vi ~M 0

� 1 ~N0) � 1(Gi � G0) =

= G0 + ~M 0
� 1

X i ( ~M i
� 1

+ Ui V � 1
i Vi ~M i

� 1 ~N i � Ui V � 1
i Vi ~M 0

� 1 ~N0) � 1(Gi � G0) =

= G0 + ~M 0
� 1

X i ( ~M i
� 1

+ Ui ~M i
� 1 ~N i � Ui ~M 0

� 1 ~N0) � 1(Gi � G0)

G0(Si ) = G0 + ~M 0
� 1

X i (( I + Ui ~N i ) ~M i
� 1

� Ui ~M 0
� 1 ~N0) � 1(Gi � G0) =

= G0 + ~M 0
� 1

X i (Vi � Ui ~M 0
� 1 ~N0) � 1(Gi � G0) =

= G0 + ~M 0
� 1

V � 1
0 Vi (Vi � Ui ~M 0

� 1 ~N0) � 1(Gi � G0)

G0(Si ) = G0 + ( ~M 0V0 � U0 ~N0) � 1(Gi � G0) = G0 + ( Gi � G0) = Gi

(4.10)

Notice how in the LPV case, the real modelGi could vary with some scheduling parameter
p(t) or a time-varying uncertainty �( t), and therefore the corresponding dual YK parameterSi .
Speci�c representations in function of a scheduling parameterp(t) or an uncertainty model � are
found in [Bendtsen and Trangbaek, 2014] and [Niemann and Stoustrup, 1999] respectively. For
the sake of simplicity, in the rest of the chapter, a LTI Si is considered.

From the general description of any plant stabilized by a controller K 0 in Theorem 4.3, the
structure shown in Fig. 4.1 is obtained (This is the one based on right coprime factors). The
structure based on left coprime factors is depicted in Fig. 4.2. In both,n0 represents the measure-
ment noisen relocated to a�ect the output of Si : n0 = ( ~M 0 + ~Si ~U0)n. r1 and r2, as in the previous
chapter, could be the reference input and the feedforward output respectively; and �nally, � 0 and
z0 representSi input and output.

4.4 Adaptive control design

The dual YK parameterization is used in connection with controller design. Any system variation
can be expressed in function of the dual YK parameterS. It is then possible to use the dual
YK parameterization in connection with the YK parameterization, so the changes related to S
induce some change inQ with some stability or performance criteria. Di�erent controller tuning
techniques based on YK are named in this section, with special emphasis in Multi Model Adaptive
Control (MMAC). But �rst, a connection between both classes is carried out, analysing CL stability
for a system formed byG0(Si ) (Theorem 4.3) and K 0(Qi ) (Theorem 3.11).
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Figure 4.2: Dual YK parameterization struc-
ture based on left coprime factors.

Theorem 4.4. Let (G0; K 0) be a stabilizing LTI plant controller pair de�ned by its coprime factors
G0 = N0M � 1

0 = ~M 0
� 1 ~N0 and K 0 = U0V � 1

0 = ~V0
� 1 ~U0. Consider the class of all stabilizing

controllers for G0 as:

K 0(Qi ) = ( U0 + M 0Qi )(V0 + N0Qi ) � 1 = ( ~V0 + Qi ~N0) � 1( ~U0 + Qi ~M 0) (4.11)

and the class of all the plants stabilized byK 0 as:

G0(Si ) = ( N0 + V0Si )(M 0 + U0Si ) � 1 = ( ~M 0 + Si ~U0) � 1( ~N0 + Si ~V0) (4.12)

with Qi ; Si 2 RH 1 . Then the pair (G0(Si ); K 0(Qi )) is CL stable if and only if the pair (Qi ; Si )
is stable: 0

@

"
I � Qi

� Si I

#� 1

� I

1

A 2 RH 1 (4.13)

Proof. Consider CL stability condition in Theorem 3.2 together with descriptions in Eqs. 4.11 and
4.12:
"

I � K 0(Qi )
� G0(Si ) I

#� 1

=

"
I � ( ~V0 + Qi ~N0) � 1( ~U0 + Qi ~M 0)
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#� 1

=

=

 "
( ~V0 + Qi ~N0) � 1 0
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# "
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#! � 1

=

=
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=
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(4.14)

where: "
M 0 U0

N0 V0

# "
~V0 0
0 ~M 0

#

=

"
I � K 0

� G0 I

#� 1

(4.15)
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and
"

I � Qi

� Si I

#� 1 "
0 Qi

Si 0

#

=

"
I � Qi

� Si I

#� 1

� I (4.16)

From these expresions is clear that the stability of the set (G0(Si ); K 0(Qi )) depends on an initial
set (G0; K 0) stable and stability of the pair ( Qi ; Si ).

This theorem is the heart of di�erent control applications already seen in the state-of-the-art:

The iterative solution presented in [Tay et al., 1997]. An initial controller K 0 stabilizing both
model G0 and G0(Si ) can be updated/retuned by identifying Si : This is done selecting aQi

stabilizing Si and ful�lling some performance criteria. The design ofQi is based on the knowdlege
of Si . A simple transformation between Qi and Q0

i could be done in order to use the structure
three� Q0

i = Qi V � 1
0 . Notice how low order approximations for Si should be used in order to keep a

low order controller. Even with that, for practical implementation, controller order reduction may
be required, as controller order increases with each iteration.

A direct relation between Si and uncertainty � is adressed in [Niemann and Stoustrup, 1999].
This relation is used in the literature in H1 control problems, in order to design optimal controllers
when uncertainty description is not full complex [Niemann, 1999]. A transformation between �
and Si permits to a have a full complex uncertain block, avoiding problems such increasing order
controller and non-optimal solution. Once a connection between � and Si is obtained, the idea is
to �nd the optimal value of Qi that minimizes the value of Si .

Fault tolerant control applications are also found in the literature [Niemann and Stoustrup,
2005] [Niemann and Stoustrup, 2002] [Niemann and Stoustrup, 2004]. In that case, the use of the
YK parameterization allows to have both fault recognition/detection (Dual YK parameterization)
and controller recon�guration (YK parameterization) in the same mathematical framework. An
optimization algorithm is again needed in order to obtain the Qi able to reduce the e�ect of the
fault in the system. If Si is unstable, the faulty system is unstable and a recon�guration/retuning
of the controller needs to be done throughQi for stabilising the system. Plug&Play control extends
the idea to connection/disconnection of sensors and actuators [Stoustrup, 2009].

All these previous solutions cover a great dynamic range as identi�cation and optimization
processes are carried out. With the idea of avoiding processes that could slow down the control loop,
a set of linear plants that describes a wide range of system dynamics could be de�ned. Controller
recon�guration depending on a set of linear plants it is called in the literature MMAC [Lourenco
and Lemos, 2006]. MMAC is a supervisor who chooses the proper controller, among pre-designed
candidates controllers, once more information is known about the plant. Pre-designed controllers
are conceived with the set of linear plants. MMAC is able to determine the closer plant in the set,
switching to its corresponding controller to maintain a desired performance. [Anderson et al., 2001]
proposed an indirect adaptive control based on identi�cation of linear plants by using the � -gap
metric. As the metric is di�cult to obtain in real time, [Baldi et al., 2011] proposed a similar
approach but using model unfalsi�cation: If a model and a controller are unable to reproduce
the observed behavior in CL, then the set plant-controller is not the correct representation of
the system. However, noise correlation problems are a�ecting system performance. The noise
correlation problem is later solved in [Bendtsen and Trangbaek, 2012] by using the dual YK
parameterization. The latter is extended below for a general set of nominal plants and predesigned
controllers.
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Figure 4.3: Outline structure used in MMAC.

4.4.1 Multi model adaptive control

Consider a set of nominal plants represented asf Gg = f G0:::; Gi :::; Gpg, describing di�erent dy-
namics of a system. Gi denotes the i th LTI plant mapping input signals u in output signals y.
For each of these plants a LTI feedback controllerK i mapping error signalse in input signals u
is designed such that the CL behavior of the system is the desired one. Thus, a set of candidate
controllers is de�ned based on the nominal set of plantsf K g = f K 0:::; K i ; :::; K pg. Time variations
in the real plant Greal are considered slow compared to input-output dynamics. Nominal plants are
de�ned, such that once a candidate controller is selected, it remains unchanged�i.e. the variations
in Greal are smaller than those needed to change from one nominal plant to other within the set.

YK parameterization provides all stabilizing controllers for a given plant Gi within the set f Gg
by interconnecting an initial controller K 0 with Q0

i , called YK parameter. The initial controller
could be any in the setf K g.

Thus, di�erent controllers K i can be implemented just by getting the YK parameter Q0
i . Dif-

ferent Q0
i 's are obtained for each controller in the setf K g; so the YK parameter set is f Q0g =n

Q0
0; :::; Q0

i ; :::; Q0
p

o
(see Theorem 3.13 forQ0

i 's calculation). As the initial controller is K 0, its
correspondingQ0

0 = 0.
When doing controller transitions, the scalar factor  i is the switching signal. If the set of

controllers is greater than 2,p > 2, a linear combination of all the controllers could be implemented
as seen in Eq. 3.38. In a MMAC approach, just one of the candidate controllers is activated at
the same time. Controller recon�guration depends on the supervisor. It considers that the real
plant Greal belongs to a set of nominal plantsf Gg = f G0:::; Gi :::; Gpg, or at least is close to one
of them. Each of the nominal plants is associated to a controller to give a desired performance
f K g = f K 0:::; K i ; :::; K pg. An outline of the structure used in MMAC is shown in Fig. 4.3. The
supervisor is at higher level, specifying which is the switching sequence that makes the system
converge to the best controller for the unknown real plantGreal . If Greal coincides with one of the
nominal plants in the set f Gg, a good candidate controllerK i is straightforward. Otherwise, the
closest nominal plant in the set should be chosen, switching to the corresponding controller.

The switching sequencef  g = f  0:::;  i ; :::;  pg is speci�ed by the supervisor. Supervisor is
based on the dual YK parameterization. The goal is to �gure out which plant in the set f Gg is
the closest to the real plant Greal . As outlined in [Bendtsen and Trangbaek, 2012], the dual YK
parameter Si does not need to be directly identi�ed to know the closest plant in the set. If Greal

coincides with the initial plant G0, z0 should be zero for any value ofu and y (see structure in
Fig. 4.2). By choosing di�erent coprime factors ~M i and ~N i for every nominal plant in the set f Gg,
zi = ~M i y� ~N i u gives the closeness to these plants. The smallest truncated 2-normJ i = ( kzi k2)2 will
activate the signal  i corresponding to the controller K i able to ful�ll performance requirements.

The MMAC algorithm for a real plant Greal with a set of stabilizing controllers f K g designed
for a set of nominal plants f Gg is described in Algo. 1. h should be h > 0, and expresses the
mandatory di�erence between two norms for controller change. In order to clarify the needed
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Figure 4.4: MMAC solution for Example 4.1.

coprime factors when using the YK and the dual YK parameterization in a MMAC approach, an
example is given:

Example 4.1. Consider a set composed by three modelsf Gg = f G0; G1; G2g. A controller is
designed for each model following some performace criteria; and thus the resulting controller set
is f K g = f K 0; K 1; K 2g.

First, the class of all stabilizing controllers for a given plant is applied, so controller recon�gura-
tion can be obtained. The controllerK 0 is considered as the initial controller, and the plant model
is supposed to beG0. Three di�erent pairs plant-controller are considered: (G0; K 0), (G0; K 1),
(G0; K 2). Coprime factors are obtained by applying Theorem 3.7:

The pair (G0; K 0) is factorized in coprime factors Uk0, ~Uk0, Vk0, ~Vk0, Nk0, ~Nk0, M k0, ~M k0 2
RH 1 .

The pair (G0; K 1) is factorized in coprime factors Uk1, ~Uk1, Vk1, ~Vk1, Nk1, ~Nk1, M k1, ~M k1 2
RH 1 .

The pair (G0; K 2) is factorized in coprime factors Uk2, ~Uk2, Vk2, ~Vk2, Nk2, ~Nk2, M k2, ~M k2 2
RH 1 .

So, the set of YK parametersf Q0g = f Q0
0; Q0

1; Q0
2g results:

Q0
0 = M � 1

k0 M k0( ~Uk0 � ~Vk0 ~Uk0 ~Vk0
� 1

) = 0 (4.17)

Q0
1 = M � 1

k0 M k1( ~Uk1 � ~Vk1 ~Uk0 ~Vk0
� 1

) (4.18)

Q0
2 = M � 1

k0 M k2( ~Uk2 � ~Vk2 ~Uk0 ~Vk0
� 1

) (4.19)

Once this is done, a controller structure as the one in Fig. 3.6 can be used to perform controller
switching, which is the one with the best transient behavior.

Second, the class of all the models stabilized by a given controller is used to estimate the
closest model in the set. The given controller isK 0, but the real model could be any in the set
f Gg. Three di�erent pairs plant-controllers are considered: (G0; K 0), (G1; K 0) and (G2; K 0), so
coprime factors result (Theorem 4.1):

The pair (G0; K 0) is factorized in coprime factors UG0, ~UG0, VG0, ~VG0, NG0, ~NG0, M G0,
~M G0 2 RH 1 . Notice how these factors are equivalent toUk0, ~Uk0, Vk0, ~Vk0, Nk0, ~Nk0, M k0 and
~M k0.
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Algorithm 1 Multi Model Adaptive Control

1. Initialization
 [p] = [0] . Switching sequence initialization
K [p] = [ K 0; :::; K i ; :::; K p] . Candidate controllers
~M [p] = [ ~M 0; :::; ~M i ; :::; ~M p] . Left coprime factor M for Gi
~N [p] = [ ~N0; :::; ~N i ; :::; ~Np] . Left coprime factor N for Gi

z[p] = [0] . S i output initialization
J [p] = [0] . Truncated 2-norm initialization
loop
2. YK Control ler recon�guration
UpdateController(  ) . Apply controller K i , with i = 
Get(u,y) . Obtain measurementsu and y
3. Supervisor
3.1 Closeness to plants in set
for i in (0; n) do

z[i ] = ~M [i ]y � ~N [i ]u . Output of Si

J [i ] = ( norm2(z[i ]))2 . Compute truncated 2-norm/ Closeness to nominal plants
end for
i min = argmin i f i 2 n j J [i ]g . The smallest norm corresponds to the closer plant

3.2 Evaluate switching sequence
if (J [ [i ] == 1] � J [i min ] + h) then

 =  . Previous controller remains
else

 [i min ] = 1 . Controller changes
 [8i except i = i min ] = 0

end if
end loop
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The pair (G1; K 0) is factorized in coprime factors UG1, ~UG1, VG1, ~VG1, NG1, ~NG1, M G1,
~M G1 2 RH 1 . Those coprime factors di�ers from the ones for the pair (G0; K 1).

The pair (G2; K 0) is factorized in coprime factors UG2, ~UG2, VG2, ~VG2, NG2, ~NG2, M G2,
~M G2 2 RH 1 . Those coprime factors di�ers from the ones for the pair (G0; K 2).

Notice how the coprime factors needed for closeness (zi = ~M i y� ~N i u) are those corresponding to
sets (G1; K 0) and (G2; K 0), and not the ones used for controller recon�guration. Coprime factors
X ki are only used for the calculation ofQi . A detailed block diagram of MMAC with coprime
factors is shown in Fig. 4.4.

4.5 Dynamics identi�cation

In this section, before explaining the dual YK-based CL identi�cation, a general OL identi�cation
setup is compared to a general CL identi�cation setup, so the advantages of using the second one
can be highlighted.

4.5.1 Open-loop identi�cation

Gi
yu s

n

Figure 4.5: Setup for OL
identi�cation.

Gi
yu s

n

K0
r

-

Figure 4.6: Setup for CL identi�cation.

Let's consider an OL identi�cation case as the one described in Fig. 4.5. Control inputu and
measurement noisen are assumed to be uncorrelated. Some control inputu can be applied to the
system Gi , obtaining the corresponding output y with noise n:

y = Gi u + n (4.20)

If measurementsu and y are available, many OL identi�cation schemes (Auto Regressive model
with eXternal inputs (ARX) [Karaboyas and Kalouptsidis, 1991], PBSIDopt [van Wingerden, 2012]
...) can be used to �nd cross-correlation with u, and estimate Gi

� yu = Gi � uu + � nu (4.21)

where � nu = 0 as n and u are independent.

4.5.2 Closed-loop identi�cation

Now let's consider the case where the loop is closed with a controllerK 0 (see Fig. 4.6), where
reference signalr and output noise n are uncorrelated. Equation 4.21 remains, but �nu is not
zero, asn is feedback through the controller K 0 a�ecting the control signal u. Cross-correlation
expression results:

� yu = Gi � uu � (1 + K �
0G�

i ) � 1� nn (4.22)

where the superscript * denotes complex conjugation on thej! axis.
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It is obvious that the identi�cation process becomes complex. Even if �nn is really small, Eq.
4.22 denotes thatGi should be stable, what could not be the case. As a solution, one could seek
to estimate the CL transfer function from the reference signalr to y: Pi = K 0Gi (1 + K 0Gi ) � 1.
Once an estimation of the CL function is obtained P̂i , an estimation of the real systemĜi would
be:

Ĝi =
P̂i

K 0(1 � P̂i )
(4.23)

but problems could occur if K 0 has some unstables poles/zeros; the estimation could result again
unstable.

It is then logical to disconnect the plant in order to carry out an OL identi�cation. But
there will be cases in which this is not possible: The plant is unstable, disconnecting the plant
supposes a great economic cost, the feedback controller is embedded in the system, or an online
estimation of the system is needed for controller improvement, being necessary CL identi�cation.
Among OL and CL identi�cation methods, it is well-known that for model-based control design,
CL identi�cation gives better performance [Hjalmarsson et al., 1996]; but you need to deal with
its associated di�culties: Linear matrix inequality (LMI) feasibility [Sznaier and Mazzaro, 2003],
linear fractional dependence with respect to measured variables [Salcedo and Martinez, 2008] or
linear-deterministic subspace selection [Santos et al., 2007] are some examples picturing these
di�culties.

A clever solution to suppress CL identi�cation di�culties was given by [Hansen et al., 1989].
This solution is mentioned in the literature as Hansen scheme. Given a LTI initial model and a
controller, the key idea is to identify the dual YK Si instead of Gi . Interestingly, the identi�cation
of Si is a standard OL identi�cation problem, so a CL problem is transformed into an OL-like
problem.

Modi�cations and extensions of the Theorem have been carried in the literature. A non-linear
initial model G0 connected to a stabilizing controller K 0 is considered in [Linard and Anderson,
1996] [Linard and Anderson, 1997]. [De Bruyne et al., 1998] presented a modi�cation able to
tune the order of the resulting model given by the Hansen scheme. Several analysis have later
demonstrated how the obtained model with the Hansen scheme is superior than an OL identi�cation
solution for subsequent control design [Gevers et al., 2001] [Douma et al., 2003]. The Hansen
scheme has been also extended to LPV systems [Bendtsen and Trangbaek, 2014] [Trangbaek and
Bendtsen, 2010], and identi�cation of actuators/sensors connected to a system [Knudsen et al.,
2008]. The most recent work in the literature dates from the year 2015, and presents a modi�cation
of the Hansen scheme able to get rid of signals that are not directly measurable, eliminating the
need of some a priori knowdledge and reducing numerical accuracies [Sekunda et al., 2015]. In the
following section, Hansen scheme and its most recent modi�cation are introduced.

4.5.2.a Hansen scheme

From the general description of any plant stabilized by a controller K 0 provided by the structure
in Fig. 4.1, the following relations are derived:

u � U0z0 = M 0� 0 (4.24)

y � V0z0 = N0� 0 (4.25)

Applying the coprime factors ~N0 and ~M 0 in Eqs. 4.24 and 4.25 respectively, yields:

~N0(u � U0z0) = ~N0M 0� 0 (4.26)
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~M 0(y � V0z0) = ~M 0N0� 0 (4.27)

subtracting one from the other and applying the Bézout's identity in Eq. 3.17, results:

~M 0(y � V0z0) = ~N0(u � U0z0)
~M 0y � ~N0u = ( V0 ~M 0 � U0 ~N0)z0

z0 = ~M 0y � ~N0u

(4.28)

Again from the block diagram in Fig. 4.1, the following expressions result:

N0� 0 + V0(Si � 0 + n0) = y

(N0 + V0Si )� 0 = y � V0n0 (4.29)

u � U0Si � 0 � U0n0 = M 0� 0

(M 0 + U0Si )� 0 = u � U0n0

(M 0 + U0Si )� 0 = r2 + ~V0
� 1 ~U0(y + r1) � U0n0

(4.30)

Applying coprime factors ~U0 and ~V0 in Eqs. 4.29 and 4.30, the relations are:

~U0(N0 + V0Si )� 0 = ~U0y � ~U0V0n0 (4.31)

~V0(M 0 + U0Si )� 0 = ~V0r2 + ~U0(y + r1) � ~V0U0n0 (4.32)

substituying Eq. 4.31 in Eq. 4.32, yields:

~V0(M 0 + U0Si )� 0 = ~U0r1 + ~V0r2 + ~U0(N0 + V0Si )� 0

( ~V0M 0 + ~V0U0Si � ~U0N0 � ~U0V0Si )� 0 = ~U0r1 + ~V0r2

( ~V0M 0 � ~U0N0)� 0 = ~U0r1 + ~V0r2

� 0 = ~U0r1 + ~V0r2

(4.33)

Assuming that the output noise n is not correlated to r1 and r2, then � 0 is also independent ofn0.
Thus, although u and y are measured in CL, the identi�cation of the dual YK parameter Si is OL
by using the signals� 0 and z0. OL identi�cation algorithms like ARX [Karaboyas and Kalouptsidis,
1991] or PBSIDopt [van Wingerden, 2012] can be used for obtainingSi . By identifying Si in OL,
advantages of CL identi�cation are preserved with a simpler method.

Theorem 4.5. Given an initial LTI model G0 and a stabilizing LTI controller K 0. A CL iden-
ti�cation of the real system Gi connected to K 0 is possible through the OL identi�cation of the
associated dual YK parameterSi . Filtered signals � 0 and z0 are obtained in order to estimateŜi

through any OL identi�cation algorithm:

� 0 = ~U0r1 + ~V0r2

z0 = ~M 0y � ~N0u
(4.34)

wherer1 and r2 are external excitation signals; andu and y are control input and output measure-
ment respectively. Then, the equivalent CL model results:

Ĝi = ( N0 + V0Ŝi )(M 0 + U0Ŝi ) � 1 (4.35)

Proof. Proof is above.
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From this Theorem, it is clear that it is impossible to obtain direct measurements of the internal
signals � 0 and z0. These signals result from �ltered information in the system. [Sekunda et al.,
2015] stated that this approach might lead to some numerical problems, as excitation signalsr1

and r2 are imposed for the OL identi�cation of Si . Sekunda scheme studies how to directly apply
a signal equivalent to � 0 and how to measure a signal equivalent toz0.

4.5.2.b Sekunda scheme

Sekunda scheme is based on the relation between the class of all the plants stabilized by a controller
G0(Si ), and the class of all the controllers stabilizing a given plantK 0(Qi ). This relation is �rst
seen in [Tay et al., 1997], as the problem of identifyingSi when a controller K 0(Qi ) has been
implemented. Both parameterizations can be seen as LFT depending onSi and Qi :

K 0(Qi ) = Fl (JK 0 ; Qi ) with J K 0 =

"
K 0 ~V0

� 1

V � 1
0 � V � 1

0 N0

#

(4.36)

G0(Si ) = Fu(JG0 ; Si ) with J G0 =

"
� M � 1

0 U0 M � 1
0

~M 0
� 1

G0

#

(4.37)

A connection between Eqs. 4.36 and 4.37 is shown in Fig. 4.7. The cross coupling between
JG0 and JK 0 is solved through the Redhe�er star product [Redhe�er, 1960] of two matrices:

JG0 � JK 0 =

"
Fl (JG0 ; K 0) M � 1

0 (I � K 0G0) � 1 ~V0
� 1

V � 1
0 (I � K 0G0) � 1 ~V0

� 1
Fu(JK 0 ; G0)

#

(4.38)

where:

Fl (JG0 ; K 0) = � M � 1
0 U0 + M � 1

0 K 0(I � G0K 0) � 1 ~M 0
� 1

=

= � M � 1
0 U0 + M � 1

0 U0V � 1
0 (I � ~M 0

� 1 ~N0U0V � 1
0 ) � 1 ~M 0

� 1
=

= � M � 1
0 U0 + M � 1

0 U0V � 1
0 V0( ~M 0V0 � ~N0U0) � 1 ~M 0 ~M 0

� 1
= � M � 1

0 U0 + M � 1
0 U0 = 0

(4.39)

Fu(JK 0 ; G0) = � V � 1
0 N0 + V � 1

0 G0(I � K 0G0) � 1 ~V0
� 1

=

= � V � 1
0 N0 + V � 1

0 N0M � 1
0 (I � ~V0

� 1 ~U0N0M � 1
0 ) � 1 ~V0

� 1
=

= � V � 1
0 N0 + V � 1

0 N0M � 1
0 M 0( ~V0M 0 � ~U0N0) � 1 ~V0 ~V0

� 1
= � V � 1

0 N0 + V � 1
0 N0 = 0

(4.40)

M � 1
0 (I � K 0G0) � 1 ~V0

� 1
= M � 1

0 (I � ~V0
� 1 ~U0N0M � 1

0 ) � 1 ~V0
� 1

=

= M � 1
0 M 0( ~V0M 0 � ~U0N0) � 1 ~V0 ~V0

� 1
= ( ~V0M 0 � ~U0N0) � 1 = I

(4.41)

V � 1
0 (I � G0K 0) � 1 ~M 0

� 1
= V � 1

0 (I � ~M 0
� 1 ~N0U0V � 1

0 ) � 1 ~M 0
� 1

=

= V � 1
0 V0( ~M 0V0 � ~N0U0) � 1 ~M 0 ~M 0

� 1
= ( ~M 0V0 � ~N0U0) � 1 = I

(4.42)

And then it is proved that the output of Qi is the input of Si , and the input of Qi is the output
of Si , being possible to measure the signals� 0 and z0 from s0 and r0. Connection betweenSi and
Qi is in Fig. 4.8.
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Figure 4.7: Block representation of the connection be-
tween G0(Si ) and K 0(Si ).
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Figure 4.8: Connection
betweenQi and Si .
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Figure 4.9: General control scheme using YK structure 2 andG0(Si ).

Connection of s0 and r0 with r1, r2, u and y is analysed. For doing so, a YK control structure
as the one in Fig. 3.5 is connected toG0(Si ) with Qi = 0. The resulting CL structure is shown in
Fig. 4.9. The transfer function relations between all the signals are reagrupped and summarized
in a matricial form as follows:

2

6
4

y
u
r0

3

7
5 =

2

6
4

(N0 + V0Si ) ~U0 (N0 + V0Si ) ~U0 (N0 + V0Si ) ~V0 (N0 + V0Si )
(M 0 + U0Si ) ~U0 (M 0 + U0Si ) ~U0 (M 0 + U0Si ) ~V0 (M 0 + U0Si )

( ~M 0 + Si ~U0) ( ~M 0 + Si ~U0) ( ~N0 + Si ~V0) Si

3

7
5

2
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6
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n
r1

r2

s0

3

7
7
7
5

(4.43)

where r1, r2 and r0 are uncorrelated. By applying an excitation signalss0 it is possible to measure
r0. This method is superior as it is possible to getr0 independently of the external excitation
signals r1 and r2.

In the absence of external excitation signalsr1 and r2, z0 and � 0 yield:

z0 = r0 = ~M 0y � ~N0u

� 0 = s0 = ~V0u � ~U0y
(4.44)
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4.6 Conclusions

In this chapter, the dual YK parameterization is examined to parameterize the class of all plants
stabilized by a given controller in terms of an initial nominal model and a stable �lter S, called
dual YK parameter. The use of the dual YK parameterization is justi�ed when there is variation
in the dynamics system to control. Variations as uncertainty � or LPV representations are brie�y
introduced.

The process of obtaining stable doubly coprime factors for several plant modelsGi connected
to a stabilizing controller K is formulated; then the dual question of describing all the plants
stabilized by a given controller is considered. As in a feedback loop, controller and plant can be
interchanged without a�ecting the CL stability, the dual version of Theorem 3.8 is obtained in
function of the dual YK parameter S. When a nominal initial model is compared with the real
system, the function S results to be the mistmatch between nominal plant and real system. The
mistmatch representation of S could be in function of a LPV scheduling parameter, an uncertainty
�, or in a more general way as a LPV tranfer function. If the resulting S is stable, it means that
the mistmatch does not destabilize the loop. Nevertheless, the performance of the system will be
a�ected.

Once a explicit relation between system changes and the dual YK parameter is derived, the dual
YK parameterization can be applied in connection with the design of a controller. A connection
with the class of all stabilizing controllers introduced in the previous chapter is carried out, resulting
that the dual YK parameter S is the OL transfer function between input and output of the YK
parameter Q. Then, stability of the CL formed by G(S) and K (Q) requires stability of the nominal
CL system (G; K ) and stability of the dual YK parameter S with the YK parameter Q. Given
S, control design should be in the direction of getting the optimal value of Q that ful�ls some
stability/performance criteria; but it will require a high computational cost, that wouldn't be
a�ordable for some industrial applications. So, a YK-based MMAC algorithm based on a set of
nominal plants and prede�ned controllers is proposed. MMAC acts as a supevisor determining
the closer plant to the real system in the set, switching to the predesigned controller that will give
the best performance possible. As identi�cation and/or optimization processes are not needed, the
control-loop is not slowed down.

Finally, the dual YK parameterization is used to perform CL identi�cation of system dynamics.
The CL identi�cation provided by the Hansen scheme is based in the OL identi�cation of the dual
YK parameter S. Mathematical proof is given of how an OL identi�cation of S is equivalent
to a CL identi�cation of the real system connected to a controller. Identi�cation using Hansen
scheme was conducted using indirect excitation signalsr1 and r2 for identi�cation. This approach
makes di�cult to determine the frequency response of the excitation signal, asr1 and r2 could be
already reference input and feedforward output. In order to solve so, Sekunda scheme proposed a
modi�cation, letting to impose any desired excitation signal for the identi�cation of S.



Chapitre. Applications

Below is a French summary of the following chapter "Applications".

Ce chapitre explore l'utilisation des deux paramétrisations Youla-Kucera (YK) et YK duale
dans les véhicules autonomes, en insistant spécialement sur la stabilité quand di�érents change-
ments dynamiques ou situations de tra�c, nécessitent de recon�gurer le contrôleur. Des simu-
lations et résultats expérimentaux sont obtenus par di�érentes applications sur des Systèmes de
Transports Intelligents (STI). La paramétrisation YK est utilisée dans l'application "Cooperative
Adaptive Cruise Control" (CACC) pour résoudre di�érentes situations qui n'ont pas encore été
résolues dans l'état de l'art. Spéci�quement, un comportement hybride entre deux contrôleurs
CACC avec di�érents temps d'écart en utilisant la recon�guration stable de YK est étudié. Ce
comportement hybride utilise les propriétés de YK pour éviter les dégradations ACC quand la
communication avec le véhicule précédent n'est plus disponible; et pour assurer la stabilité quand
les véhicules sont entrant/sortant de la chaîne de véhicules. Les deux applications sont dévelop-
pées pour des véhicules ayant la même dynamique. Cependant, il est clair qu'en situation de tra�c
réel, la dynamique changera. En conséquence, l'identi�cation en Boucle-Fermée (BF) basée sur
YK est utilisée dans le but d'identi�er les dynamiques du véhicule connecté à un système CACC.
Finalement, la recon�guration du contrôleur basé sur YK et l'identi�cation BF sont tout les deux
utilisés, ensemble, dans le but d'obtenir une approche adaptative, capable de gérer l'hétérogénéité
dynamique dans une chaîne de véhicules CACC.

Le chapitre est structuré comme suit : la plateforme expérimentale et les modèles de simulation
utilisés pour développer les di�érentes applications CACC sont décrits dans la section 5.1. La
section 5.2 traite de la recon�guration du contrôleur quand des changements spéci�és apparaissent.
Une chaine de véhicules équipée avec un système CACC est considérée. La paramétrisation YK est
utilisée pour améliorer la circulation quand la communication Vehicule-to-Vehicule (V2V) échoue
ou quand les véhicules sont entrant/sortant de la chaîne. La section 5.3 considère l'denti�cation
en BF de la dynamique longitudinale du véhicule . Une comparaison entre l'identi�cation en
Boucle-Ouverte (BO) et l'identi�cation en BF fournie par la paramétrisation YK duale est faite
durant l'utilisation du système CACC. La section 5.4 utilise la recon�guration du contrôleur et
l'identi�cation, ensemble, dans un Contrôle Adaptatif Multi Model (CAMM). L'idée est de pouvoir
gérer l'hétérogénéité de la chaîne de véhicules équipée du CACC. En�n, di�érentes remarquessont
fournies en conclusion dans la section 5.5, déterminant si la paramétrisation YK peut être utile
comme outil général de contrôle pour sécuriser la réponse du véhicule autonome.
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Chapter 5

Applications

This chapter explores the use of both Youla-Kucera (YK) and dual YK parameterizations in
automated vehicles, with special emphasis on stability when some dynamics changes or the tra�c
situation demand controller recon�guration. Both simulation and experimental results are obtained
for di�erent Intelligent Transportation Systems (ITS) applications.

YK parameterization is used with Cooperative Adaptive Cruise Control (CACC) application for
solving cases that have not been addressed in the state-of-the-art. Speci�cally, an hybrid behaviour
between two CACC controllers with di�erent time gaps is explored by means of the YK-based
stable controller recon�guration. This hybrid behaviour uses YK properties for avoiding ACC
degradation when communication link with preceding vehicle is not available; and for ensuring
stability when vehicles are entering/exiting the string of vehicles. Both applications are developed
for vehicles with same dynamics, but it is clear that in a real tra�c situation, dynamics will change.
Consequently, YK-based Closed-Loop (CL) identi�cation is used in order to identify the dynamics
of a vehicle connected to a CACC system. Finally, both YK-based controller recon�guration and
CL identi�cation are applied together in order to obtain an adaptive approach able to deal with
vehicle heterogeneity in CACC string of vehicles.

The chapter is structured as follows: Experimental platform and simulation models used to
develop the di�erent CACC applications are described in section 5.1. Section 5.2 deals with
controller recon�guration when a prespeci�ed change occurs. A string of vehicles equipped with a
CACC system is considered. YK parameterization is used to enhance tra�c �ow when Vehicle-to-
Vehicle (V2V) communication fails or vehicles are entering/exiting the string. Section 5.3 considers
CL identi�cation of longitudinal vehicle dynamics. A comparison between Open-Loop (OL) and
CL identi�cation provided by dual YK is carried out when using a CACC system. Section 5.4 uses
both controller recon�guration and identi�cation in a Multi Model Adaptive Control (MMAC)
approach. The idea is to deal with vehicles heterogeneity in CACC-equipped string. Finally, some
concluding remarks are given in section 5.5, determining if YK parameterization could serve as
general control approach for secure responses in autonomous driving.

5.1 Experimental platform and simulation models

Di�erent simulation models are used throughout the chapter for proving controller design in sta-
ble YK-based controller recon�guration, dual YK-based CL identi�cation and YK-based MMAC
approach. For simulation purpose, the system identi�cation tool provided by MATLAB has been
used for emulating low-speed INRIA experimental platform. A Linear Time Invariant (LTI) model
describing longitudinal dynamics is obtained for subsequent controller design. With the aim of
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5.1.1.b Identi�ed model

Friction force between tire and road is the main reason why any vehicle moves [Pacejka, 2005].
It converts the motor torque provided by the electrical machine to longitudinal force, making
possible forward vehicle movement. As physical parameters about the real experimental platform
are missing, vehicle dynamics identi�cation from experimental data seems a viable solution for
obtaining a vehicle's model. Cycab's model is identi�ed based on the response of the experimental
platform to di�erent speed changes applied to the low-level controller. This low-level controller
is in charge of obtaining the needed electrical torque for making speed error zero. Real response
depending on this reference velocity is plotted in Fig. 5.4. This experimental data is employed
within MATLAB system identi�cation tool, obtaining a LTI second order model as a compromise
between simplicity and goodness. Cycab LTI model response corresponding to Eq. 5.1 is also in
Fig. 5.4.

G(s) =
1

0:8768s2 + 1 :252s + 1
(5.1)
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Figure 5.4: Velocity cycab response compared with identi�ed model.

5.1.2 Nissan In�nity M56

Cycab is designed as a transportation system solution for the last mile in dense urban environments,
so reaching high speeds is not necessary, reason why its velocity is limited. As vehicle control
solutions should be tested in the whole velocity range (including high-speed solutions), a high-
speed LTI model has been chosen from the literature.

For high-speed simulation purposes, the vehicle model introduced in [Milanés et al., 2014] is
used. It is a second-order response with a time delay identi�cation from a Nissan In�niti M56.
Vehicle LTI model is identi�ed based on its response to di�erent speed changes, resulting:

G(s) =
1:136

s2 + 1 :067s + 1 :1385
(5.2)

5.2 YK controller recon�guration

In this section, two applications related to CACC are developed by using the YK stable controller
recon�guration presented in chapter 3. As concluded in section 3.4.3, among all YK-based struc-
tures for controller recon�guration, structure 3 is employed because of its lower complexity and
better transient behaviour.
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In order to highlight the scienti�c contribution of these applications, section 5.2.1 summarizes
the state of the art about CACC, and gives details about the control structure and the concept
of string stability. CACC controller recon�guration is carried out when some speci�c change oc-
curs. Section 5.2.2 deals with the problem of non-available communication link with the preceding
vehicle, while section 5.2.3 considers tra�c perturbations as vehicles joining/leaving the string.
Di�erent CACC controller types are used in each application, so YK adaptability can be tested.
In both applications, two di�erent CACC controllers are designed. Those controllers correspond
to two extreme situations, focusing in how to change the scalar factor in the YK-based controller
recon�guration in order to improve system performance.

5.2.1 Cooperative adaptive cruise control

Recently, the International Council on Clean Transportation has estimated that over the next two
decades vehicle ownership is expected to increase 7 million only in the European Union (EU) [ICCT,
2016]. Therefore, road transport will have to deal with these �gures. Among the associated
problems, drivers will �nd more congested roads, resulting in an enormous waste of fuel and
productivity together with health problems. According to the European Commission, congestion
costs are equivalent to 1% of Gross Domestic Product (GDP)�in other words more than the EU
budget [Commision, 2012].

Since building new infrastructure is no longer an appropriate solution, more intelligent and
e�cient options result of ITS. Speci�cally, related to tra�c congestion, intelligent longitudinal
speed control is a suitable system to improve congestion in highways, through homogeneous speed
on the part of the driver and shorter intervehicle distances. Adaptive Cruise Control (ACC)
[Marsden et al., 2001] is a commercial system already implemented in production vehicles. An
ACC system can track the preceding vehicle, measuring the actual distance and the ego-vehicle
velocity. These inputs allow the system to maintain a selected time gap, calculating the required
acceleration or deceleration to reach the desired velocity or to prevent a collision. Recently, research
focuses on the cooperative version of the system, so-called Cooperative ACC (CACC) [Ploeg et al.,
2011a]. V2V communication is added to the existing ACC system, improving tra�c �ow through
the formation of a tighter string of vehicles.

CACC research has received a lot of attention in last years [Dey et al., 2016]. Related to
real vehicle implementations, �rst european results can be found in the Connect Drive Dutch
project where a �eet of six Toyota Prius were equipped with CACC capabilities [Ploeg et al.,
2011b] using a Proportional-Derivative (PD) feedback/feedforward controller [Ploeg et al., 2011a].
Later, the �rst Grand Cooperative Driving Challenge (GCDC) held in The Netherlands in 2011
showed for the very �rst time several vehicles from di�erent institutions performing a two-lane
CACC string. Control algorithms were based either in the already used PD feedback/feedforward
structure [Lidstrom et al., 2012] or Model Predictive Control (MPC) algorithm [Kianfar et al.,
2012]. In United States, the California PATH carried out a four vehicle string demonstration
on California highways showing the bene�ts of CACC against ACC in real tra�c using a PD
feedback/feedforward structure [Milanés et al., 2014]. The latter is selected for this work due to
its simplicity and proven experimental implementation; making it ideal for embedded systems.
Details are in section 5.2.1.a.

Tra�c �ow improvement is directly related to string stability. When tighter car-following
policies are implemented�i.e. CACC�, string stability ful�lment plays a key role to ensure a
proper response of the vehicle string [Swaroop, 1997]. On string stable car-following, the impact
of tra�c perturbations is attenuated upstream, improving tra�c �ow and reducing tra�c jams.
String stability is linked with the implemented car-following policy and vehicle dynamics. An
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homogeneus string of vehicles is considered along section 5.2. Most algorithms are based on the so-
called constant time gap policy [Swaroop and Rajagopal, 2001], which references the ideal spacing
(proportional to ego-vehicle speed) between vehicles, improving string stability with respect to
constant spacing algorithms.

Tra�c �ow bene�ts in function of the ACC-equipped vehicles market penetration have been
widely studied. [Kesting et al., 2008] [Kesting et al., 2007] stated that a 25% of market penetration
could remove congestion. Recent studies [Shladover et al., 2012] proposes a di�erent ACC model
that provides no tra�c �ow bene�ts even with a market penetration of 100%. This model is
based on the �eld test of ACC driven by 16 drivers from the general public in [Nowakowski et al.,
2010b]. These drivers were encouraged to select the time gap setting that they preferred, resulting
in a time-gap close to manual driving. As quantitative example, the highway capacity with every
vehicle driven manually is 2050 veh/h, while with ACC-equipped vehicles the capacity increases
up to 2200 veh/h [Werf et al., 2002].

In contrast, the CACC system on the tra�c �ow characteristics presents much more optimistic
results. [Arem et al., 2006] concluded that CACC improves the highway capacity when the pene-
tration rate is greater than 60%, obtaining better results on high tra�c volume because of more
vehicles participate in the string. The CACC model in [Shladover et al., 2012] validates these
results, showing a maximum lane capacity of 4000 veh/h under 100% CACC-equipped vehicles
condition. This model is again based on the chosen time-gap by the general public in the �eld test
in [Nowakowski et al., 2010b]. CACC can double the highway capacity in the ideal situation.

It is clear that the market penetration of CACC systems would progressively occur, making
necessary to work with mixing tra�c situations. As the highway capacity is sensitive to the
percentage of CACC-equipped vehicles, it is important to preserve the CACC behaviour when there
is no communication with the preceding vehicle, but with another vehicle further on. For instance,
when a vehicle loses communication capability into a string previously formed by CACC-equipped
vehicles. As the communication with the preceding vehicle is no longer available, existing literature
on the �eld (see [Milanés and Shladover, 2014] and [Ploeg et al., 2013] for details) degrades the
system to a conventional ACC, removing the strong impact of CACC systems on highway capacity.

Finally, CACC systems capability of improving string stability has been widely demonstrated,
but the system stability when the string structure is modi�ed (either a new vehicle is entering or
leaving the string) is still an open research �eld. First e�orts on this direction using real vehicles
were carried out by California PATH, where an algorithm able to handle vehicles cutting in the
string was implemented [Milanés and Shladover, 2016]. However, the stability during time gap
transition was not demonstrated.

YK-based controller recon�guration is proposed as solution for covering the two present gaps
in CACC state-of-the-art. Section 5.2.2 avoids ACC degradation, by employing the V2V com-
munication with a vehicle ahead (di�erent from the preceding one).  is designed in order to
improve tra�c �ow and vehicle response. Section 5.2.3 explains relation bewteen and time gap
to guarantee stability when vehicles are entering/exiting the string.

5.2.1.a Control structure and string stability

A string of w vehicles driving in the same lane is considered.j determines the order of a vehicle
inside of the string j 2 [1; w]. Vehicle j denotes ego-vehicle, vehiclej � 1 preceding vehicle and
j = 1 leader vehicle. A schematic representation of a CACC-equipped string of vehicles is in
Fig. 5.5, where dj is the distance between vehiclej and j � 1 seen as the di�erence between
absolute positionsx j and x j � 1; and vj is the velocity of the vehicle j . Control velocities vc are
sent through communication between vehicles. A reference distancedj

r is followed for each vehicle.
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(see control law in Eq. 5.4); andvj � 1
c the control velocity of vehicle j � 1 received and processed by

means of a feedforward �lter F j
i in order to get a tighter string of vehicles. Feedforward transfer

function is in Eq. 5.5. PD's output uj
c and feedforward's output uj

f f addition results in the control
velocity vj

c.

K j
i (s) =

U j
c

E j = k j
p;i + k j

d;i s (5.4)

F j
i (s) =

1

1 + hj
i s

(5.5)

Highway capacity improves when tighter gap policies can be adopted whereas keeping string
stability. String stability is de�ned as the attenuation of disturbances along the string of vehicles.
A su�cient condition for string stability is given in [Rajamani, 2011], which means that the
absolute position of each vehicle must not increase as it propagates through the string. Condition
is equivalent to the following equation:

kX j =X j � 1k � 1 for j > 1 (5.6)

According to [Naus et al., 2010], for a PD-based feedback/feedforward CACC system, string sta-
bility function results:

X j

X j � 1 =
D j + (1 + hj

i s)Gj K j
i

(1 + hj
i s)(1 + (1 + hj

i s)Gj K j
i )

; for i > 1 (5.7)

Under the ideal situation where the communication delay is null (D j = 1), string stability
yields:

X j

X j � 1 =
1

(1 + hj
i s)

; for i > 1 (5.8)

Therefore, string stability is guaranteed for any hj
i > 0. The existence of communication with

preceding vehicle makes vehicle response faster, allowing any time gaps without compromising the
string stability. On the contrary, as ACC system has not communication, the achievable stable
time gap is longer, even close to the time gap of a manual driver. It explains why even with a high
market penetration of ACC-equipped vehicles the tra�c �ow improvement e�ects are not visible.

Finally, the classical feedback/feedforward CACC system is modi�ed in Fig. 5.7 to include
the time gap hj

i into the controller. Thereby, time gap is changed when doing YK controller
recon�guration. The extended controller is shown in Eq. (5.9). Feedforward �lter is changed to
F j

i =K j
i .

K j
ext;i (s) =

K j
i

1 + Gj hj
i K j

i

(5.9)

5.2.2 Advanced cooperative adaptive cruise control

CACC provides signi�cant tra�c �ow improvements when a V2V communication link exists with
the preceding vehicle (upper plot of Fig. 5.8 depicts the situation), but it degrades to ACC when
this communication link is no longer available [Milanés and Shladover, 2014] [Ploeg et al., 2013]
(middle plot of Fig. 5.8). As quantitative example, [Ploeg et al., 2011a] showed how the minimum
time gap string stable increases from 0:7s to 3:16s when communication is not available. This
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5.2.2.a Problem formulation

A string of three vehiclesw = 3 is considered. Problem formulation focuses on ego-vehicle situation
according to V2V communication availability with vehicle j � 1 and vehicle 1 in the string. V2V
communication between vehiclej and vehicle j � 1 is de�ned as C j � 1. Communication between
vehicle j and vehicle 1 is de�ned asC1.

In the literature, communication availability with vehicle j � 1 determines the use of ACC or
CACC controllers in the vehicle j , and therefore its time gap hj

i :

ˆ When C j � 1 exists, a regular CACC controller can be used. Faster responses can be achieved,
allowing tighter string of vehicles by employing a time gaphCACC �i.e.

9C j � 1 ! CACC where hj
i = hCACC .

ˆ If C j � 1 is no longer available: the system degrades to a conventional ACC algorithm [Navas
et al., 2016]. Consequently, bene�ts of CACC systems on highway capacity are removed
because a longer time gaphACC > h CACC needs to be set to ensure string stability� i.e.
@C j � 1 ! ACC where hj

i = hACC > h CACC .

These situations have been extensively studied (see [Marsden et al., 2001] for ACC and [Ploeg
et al., 2011a] for CACC), but potential bene�ts of using C1 when C j � 1 is not available have not
been further investigated. Speed oscillations on the string (i.e. the di�erence betweenv1 and vj � 1)
is limited to 5m=s according to [Milanés and Shladover, 2014]. Experimental results demonstrated
that over this value, drivers disengage ACC system due to its degraded performance.

The objective of the ACACC controller is to enhance tra�c �ow when there is no communica-
tion with vehicle j � 1, by taking the information from the closer V2V-equipped vehicle ahead, in
that case, vehicle 1. Since V2V communication is always available (no matter from which vehicle
comes from), a CACC control structure is proposed. ACACC is composed by two CACC con-
trollers with di�erent time gaps: A CACC controller with a short time gap hj

i = hCACC so-called
CACCST G and a CACC controller with a longer time gap hj

i = hACC so-calledCACCLT G . The
proposed ACACC algorithm bene�ts from the YK parameterization to provide a hybrid response
between both controllers. The regulation between the e�ect of each controller through in the
control command is based on a correlation between the speed received via V2V communication
and the one detected by the on-board ego-vehicle sensor (i.e. radar). The correct tuning of with
a maximum speed oscillation of 5m=s, assures stability and improves tra�c �ow.

In brief, the application here described works whenC j � 1 is lost but C1 is available, providing
a control structure of the form:

if @C j � 1&9C1

ACACC = CACCST G(1 �  ) + CACCLT G  ;  2 [0; 1]
(5.10)

where hj
i 2 [hCACC ; hACC ]. Notice how the time gap would be lower than degrading the system

to a regular ACC.

5.2.2.b Control algorithm

ACACC is composed by two di�erent CACC controllers: CACCST G and CACCLT G . Time gap
valueshCACC and hACC are chosen according to the general public accepted time gaps for CACC
and ACC systems [Nowakowski et al., 2010b]. For CACC, the shortest gap is set at 0:6s, while for
ACC is set to 1:5s.
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For each of these controllers, the modi�ed CACC controller presented in Fig. 5.7 is used to
allow stable transitions between controllers with di�erent hj

i , k j
p;i and k j

d;i . CACCST G has the
index i = 0, while CACCLT G has the index i = 1. The information related to both controllers
is summarized in Table 5.1. Notice how the values ofk j

p;0, k j
p;1, k j

d;0 and k j
d;1 will depend on the

accepted time gaps by drivers and the vehicle modelGj .
OnceCACCST G and CACCLT G are de�ned, doubly coprime factors for pairs (K j

ext; 0; Gj =s) and

(K j
ext; 1; Gj =s) are obtained following guidelines in Theorem 3.7. Then, it is possible to change from

one to the other, without losing stability by obtaining the parameter Q0 through Theorem 3.13.
Figure 5.9 modi�es the YK control structure 3 in Fig. 3.6 to allow CACC controller modi�cation.
Please notice how the structure only di�ers in adding the �ltered communication link with the
closest V2V-equipped vehicle, in that case, communication linkC1.

Once the YK control structure for CACC is obtained, a di�erent percentage of each of the
controllers is applied depending on the tra�c situation. The percentage is chosen through the YK
gamma  . Gamma tuning is chosen in order to improve tra�c �ow. A simple decision-making
system is used whenC j � 1 does not exist, but there is communication with vehicle 1,C1.  is
modi�ed according to the following equation:

 = 0 :033(vj � 1
s � v1) + 0 :5 if j v1 � vj � 1

s j< 5m=s

wherevj � 1
s is the velocity of the vehiclej � 1 obtained through the on-board sensor systems, andv1

is the velocity of vehicle 1 received throughC1. A maximum speed oscillation ofj v1� vj � 1
s j= 5m=s

is considered as the operation range for the present application.

Table 5.1: CACC parameters.

K j
ext;u k j

p;i k j
d;i hj

i

CACCST G K j
ext; 0 k j

p;0 k j
d;0 hj

0 = hCACC = 0 :6s

CACCLT G K j
ext; 1 k j

p;1 k j
d;1 hj

1 = hACC = 1 :5s

Di�erent tra�c situations are pictured for understanding the tuning of  :
When vehicle j � 1 has a behaviour similar to vehicle 1, is modi�ed to response faster to

speed changes.

ˆ If vehicle 1 accelerates, v1 will be higher than vj � 1
s . So,  decreases, making the gap time

shorter.

ˆ If vehicle 1 brakes, v1 will be lower than vj � 1
s . So,  increases, making the gap time longer.

ˆ When both vehicle 1 and vehicle j � 1 have similar velocities,  results in an intermediate
value between both controllers.

Advantages of using this are analysed in sections below through simulation and experimental
results.

5.2.2.c Simulation results

This section presents the ACACC performance at high speeds (i.e. highway scenario). For simula-
tion purposes, the vehicle model introduced in section 5.1.2 is used. The extended control structure
in section 5.2.1.a is employed, obtaining two di�erent CACC controllers: K j

ext; 0 and K j
ext; 1. The
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Figure 5.9: YK control structure for modifying CACC controllers online. ACACC.

Table 5.2: Nissan In�niti M56 CACC parameters. ACACC.

K j
ext;i k j

p;i k j
d;i hj

i dj
std;i

CACCST G K j
ext; 0 k j

p;0 = 0 :45 k j
d;0 = 0 :25 hj

0 = hCACC = 0 :6s dj
std;0 = 5m

CACCLT G K j
ext; 1 k j

p;1 = 0 :45 k j
d;1 = 0 :25 hj

1 = hACC = 1 :5s dj
std;1 = 5m

controller gains k j
p;i and k j

d;i correspond to those already designed for a Nissan In�nity M56 in [Mi-
lanés et al., 2014].CACCST G and CACCLT G information is summarized in Table 5.2. Once both
controllers are de�ned, stability depending on  is studied in the corresponding section. Finally,
the algorithm performance is tested by using as vehiclej � 1 a non V2V-equipped vehicle. It is
modeled as a human driver�using the Intelligent Driver Model (IDM) [Kesting et al., 2010]�or
equipped with an ACC system.

Stability CL stability for the designed ACACC is studied in function of  . A necessary and
su�cent condition to ensure stability for a feedback/feedforward control loop as the one in Fig.



5.2. YK CONTROLLER RECONFIGURATION 87

5.9 is in Theorem 3.4. As feedforward �lter is stable, CL stability condition yields:

"
I � K 0(Q0)

� Gj =s I

#� 1

2 RH 1 =

=
K 0(Q0)Gj =s

1 + K 0(Q0)Gj =s
=

K j
ext; 0+ M 0 Q 0

1+ N0 Q 0 Gj =s

1 +
K j

ext; 0+ M 0 Q 0

1+ N0 Q 0 Gj =s
2 RH 1

(5.11)

CL poles are shown for di�erent values of  in Table 5.3. As in section 3.4.1, CL poles during
the transition are the combination of CL poles of (Gj =s; K j

ext; 0) and (Gj =s; K j
ext; 1). CL stability

is ensured for every value of . String stability is not studied as there is not communication with
the preceding vehicle.

Table 5.3: CL poles (Gj =s; K0(Q0)). YK controller recon�guration between K j
ext; 0 and K j

ext; 1.
Nissan In�nity M56.

 CL poles

 = 0 :0 [� 6:283e7; 0; � 0:6185� 1:0308i ]

 = 0 :1 [� 6:283e7; � 6:283e7; 0; 0; � 0:7465� 1:1609i; � 0:6185� 1:0308i ]

 = 0 :2 [� 6:283e7; � 6:283e7; 0; 0; � 0:7465� 1:1609i; � 0:6185� 1:0308i ]

 = 0 :3 [� 6:283e7; � 6:283e7; 0; 0; � 0:7465� 1:1609i; � 0:6185� 1:0308i ]

 = 0 :4 [� 6:283e7; � 6:283e7; 0; 0; � 0:7465� 1:1609i; � 0:6185� 1:0308i ]

 = 0 :5 [� 6:283e7; � 6:283e7; 0; 0; � 0:7465� 1:1609i; � 0:6185� 1:0308i ]

 = 0 :6 [� 6:283e7; � 6:283e7; 0; 0; � 0:7465� 1:1609i; � 0:6185� 1:0308i ]

 = 0 :7 [� 6:283e7; � 6:283e7; 0; 0; � 0:7465� 1:1609i; � 0:6185� 1:0308i ]

 = 0 :8 [� 6:283e7; � 6:283e7; 0; 0; � 0:7465� 1:1609i; � 0:6185� 1:0308i ]

 = 0 :9 [� 6:283e7; � 6:283e7; 0; 0; � 0:7465� 1:1609i; � 0:6185� 1:0308i ]

 = 1 :0 [� 6:283e7; 0; � 0:7465� 1:1609i ]

Using IDM as preceding non V2V-equipped vehicle First simulations consider a human
driven vehicle (modeled by the IDM) as vehicle j � 1 without communication. IDM is a well-
known car-following model in the tra�c �ow simulation literature [Kesting et al., 2010]. It de�nes
an accelerationaIDM as a continous function incorporating di�erent driving modes for all velocities
in freeway and urban tra�c. The acceleration pro�le depends on desired v0 and actual v velocities,
free acceleration exponent� , mimimum spacings0, actual distances, desired time gapT, maximum
acceleration value a, and desired decelerationb (see Eq. 5.12). By choosing di�erent desired
velocities v0, impatient or relaxed drivers can be emulated. The parameters in [Milanés and
Shladover, 2014] are used as reference values, and they are shown in Table 5.4.

aIDM = a

2

41 �
�

v
v0

� �

�

0

@
s0 + max(0; vT + v� v

2
p

ab
)

s

1

A

3

5 (5.12)
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Table 5.4: IDM parameters.

Parameter Value

desired velocity v0

� 4

T 1:1s

s0 0m

a 1m=s2

b 2m=s2

Figure 5.10 depicts the performance of the ACACC controller in comparison with ACC and
CACC (assuming V2V capabilities in the IDM vehicle, only in the CACC case) controllers when the
IDM desired velocity is v0 = 33:33m=s. The comparison is between the perfect CACC situation�
V2V communication with preceding vehicle exists; classical ACC degradation and the proposed
ACACC system (both without communication with preceding vehicle). The top graph plots the
vehicles' speeds. The second graph plots the vehicles' accelerations during the simulation. The
third graph shows the relative distance between vehicles. The bottom graph represents how
is modi�ed together with the time gap. For notation, vehicle 1 (solid magenta line) is a V2V-
equipped vehicle and the �rst vehicle during the whole simulation; vehiclej � 1 (solid cyan line) is
the one that starts the string in the second position as IDM; and, the vehiclej or follower is either
an ACC-equipped vehicle (solid red line), a CACC-equipped vehicle (solid green line, assuming
than the IDM is V2V-equipped for comparison purposes) or an ACACC-equipped vehicle (solid
blue line).

The value of  is always around 0:5, changing with acceleration or braking phases. The per-
formance of the ACACC system is a hybrid response betweenCACCST G and CACCLT G . Its
response comes earlier to changes in leader speedv1 than the ACC/CACC systems. For instance,
when vehicle 1 is braking at 300s, the ACACC system brakes practically at the same time, while
ACC and CACC react 5s later. Besides, the system is more damped while speed changes take
place, better preserving string stability. Finally, the main objective of the present application is
also ful�lled, instead of degrading to an ACC system, ACACC takes C1 for making the string of
vehicles tighter, improving highway capacity. The relative distance corresponds to a spacing policy
betweenCACCST G and CACCLT G responses.

Figure 5.11 shows a second simulation using IDM. The desired velocity parameterv0 from
[Milanés and Shladover, 2014] is changed from 33:33m=s to 28m=s, emulating a very slow vehicle
dynamic on the non V2V-equipped vehiclej � 1 when tracking changes inv1. Since the IDM
model is not correctly following vehicle 1 response, the ACACC system has a closer behaviour to
CACCLT G . This behaviour is appreciated on the lower plot of Fig. 5.11.

Using an ACC-equipped vehicle as preceding non V2V-equipped vehicle [Milanés and
Shladover, 2014] compared the car following performance among ACC and CACC systems for a
Nissan In�niti M56s (section 5.1.2). Experimental results are used to obtain car-following models
for representing the production ACC and the new designed CACC controller, highlighting how the
production ACC results string unstable, amplifying the speed changes of the preceding vehicle.
A simulation using the ACC/CACC car-following models presented in [Milanés and Shladover,
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Figure 5.10: Simulation results comparison among car-following policies using CACC, ACC and
ACACC controllers when a non V2V-equipped vehicle is in front. The non V2V-equipped is a
conventional driver emulated by a IDM with the desired velocity of 33:33m=s.

2014] is carried out. Speci�cally, the more the ACC-equipped vehicles in the string, the bigger the
ampli�cation. Here, instead of degrading the system to another ACC, the system is changed to
ACACC with C1.

Figure 5.12 depicts the performance of the ACACC controller in comparison with ACC and
CACC controllers when an ACC-equipped vehicle is the vehiclej � 1. For notation, vehicle 1
(solid magenta line) is a CACC-equipped vehicle following a speed reference; vehiclej � 1 (solid
cyan line) is the one that starts the string in the second position with an ACC as controller; and,
vehicle j or follower is either an ACC-equipped vehicle (solid red line), a CACC-equipped vehicle
(solid green line, only possible if vehiclej � 1 is V2V-equipped) or an ACACC-equipped vehicle
(solid blue line).

ACACC system signi�cantly reduces speed oscillation introduced by the ACC-equipped vehicle,
providing string stability but also increasing tra�c �ow by reducing intervehicle distances. This
simulation represents the closer behaviour to real tra�c environment with a high penetration
of ACC-equipped and CACC-equipped vehicles, giving an insight into the potential bene�ts of
ACACC.
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