. Al-ghossein, Exploiting Contextual and External Data for Hotel Recommendation, Certains des résultats présentés dans cette thèse sont basés sur les publications suivantes : Chapitre 4 contient des résultats extraits de, pp.323-328, 2018.

. Al-ghossein, Open data in the hotel industry : leveraging forthcoming events for hotel recommendation, Chapitre 5 contient des résultats extraits de, pp.1-26, 2018.

A. , Chapitre 6 contient des résultats extraits de, Al-Ghossein and Abdessalem, 2016.

A. Al-ghossein, T. Al-ghossein, and . Abdessalem, SoMap : Dynamic Clustering and Ranking of Geotagged Posts, Proc. 25th International Conference Companion on World Wide Web (WWW), pp.151-154, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01700153

. Al-ghossein, CrossDomain Recommendation in the Hotel Sector, Proc. Workshop on Recommenders in Tourism at the 12th ACM Conference on Recommender Systems (RecTour@RecSys), pp.1-6, 2018.

. Al-ghossein, Dynamic Local Models for Online Recommendation, Companion Proc. of the The Web Conference (WWW), pp.1419-1423, 2018.

. Al-ghossein, Chapitre 10 contient des résultats extraits de, 2018.

[. Murena, Adaptive Window Strategy for Topic Modeling in Document Streams, Proc. International Joint Conference on Neural Networks (IJCNN), pp.1-7, 2018.

. Al-ghossein, Online Learning with Reoccurring Drifts : The Perspective of CaseBased Reasoning, Proc. Workshop on Synergies between CBR and Machine Learning at the 26th International Conference on Case-Based Reasoning (CBRML@ICCBR), pp.133-142, 2018.

. Al-ghossein, Adaptive Collaborative Topic Modeling for Online Recommendation, Proc. 12th ACM Conference on Recommender Systems (RecSys), pp.338-346, 2018.

, Accor launches its digital transformation, 2014.

P. Adamopoulos and A. Tuzhilin, On Over-Specialization and Concentration Bias of Recommendations: Probabilistic Neighborhood Selection in Collaborative Filtering Systems, Proc. RecSys, 2014.

G. Adomavicius and A. Tuzhilin, Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions, IEEE TKDE, issue.6, 2005.

G. Adomavicius and A. Tuzhilin, Context-Aware Recommender System, Recommender Systems Handbook, 2015.

G. Adomavicius, R. Sankaranarayanan, S. Sen, and A. Tuzhilin, Incorporating Contextual Information in Recommender Systems Using a Multidimensional Approach, ACM TOIS, vol.23, issue.1, 2005.

G. Adomavicius, B. Mobasher, F. Ricci, and A. Tuzhilin, Context-Aware Recommender Systems, vol.32, 2011.

D. Agarwal and B. Chen, Regression-based Latent Factor Models, Proc. KDD, 2009.

D. Agarwal and B. Chen, fLDA: Matrix Factorization through Latent Dirichlet Allocation, Proc. WSDM, 2010.

D. Agarwal, B. Chen, and P. Elango, Fast Online Learning through Offline Initialization for Time-sensitive Recommendation, Proc. KDD, 2010.

A. Ahmed, C. Hui-teo, S. V. Vishwanathan, and A. Smola, Fair and Balanced: Learning to Present News Stories, Proc. WSDM, 2012.

F. Aiolli, Efficient Top-N Recommendation for Very Large Scale Binary Rated Datasets, Proc. RecSys, 2013.

M. Al-ghossein and T. Abdessalem, SoMap: Dynamic Clustering and Ranking of Geotagged Posts, Proc. WWW, pp.151-154, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01700153

M. Al-ghossein, T. Abdessalem, and A. Barré, Open data in the hotel industry: leveraging forthcoming events for hotel recommendation, JITT, pp.1-26, 2018.

M. Al-ghossein, T. Abdessalem, and A. Barré, Dynamic Local Models for Online Recommendation, Proc. WWW, pp.1419-1423, 2018.

M. Al-ghossein, T. Abdessalem, and A. Barré, Cross-Domain Recommendation in the Hotel Sector, Proc. Workshop on Recommenders in Tourism@RecSys, pp.1-6, 2018.

M. Al-ghossein, T. Abdessalem, and A. Barré, Exploiting Contextual and External Data for Hotel Recommendation, Proc. UMAP, pp.323-328, 2018.

M. Al-ghossein, P. Murena, T. Abdessalem, A. Barré, and A. Cornuéjols, Adaptive Collaborative Topic Modeling for Online Recommendation, Proc. RecSys, pp.338-346, 2018.

M. Al-ghossein, P. Murena, A. Cornuéjols, and T. Abdessalem, Online Learning with Reoccurring Drifts: The Perspective of Case-Based Reasoning, Proc. Workshop on Synergies between CBR and Machine Learning@ICCBR, pp.133-142, 2018.

C. Alippi and M. Roveri, An Adaptive CUSUM-based Test for Signal Change Detection, Proc. ISCAS. IEEE, 2006.

L. Alsumait, D. Barbará, and C. Domeniconi, On-Line LDA: Adaptive Topic Models for Mining Text Streams with Applications to Topic Detection and Tracking, Proc. IEEE ICDM, 2008.

X. Amatriain, Mining Large Streams of User Data for Personalized Recommendations, SIGKDD Explorations, vol.14, issue.2, 2013.

X. Amatriain and J. Basilico, Netflix Recommendations: Beyond the 5 stars, 2012.

X. Amatriain and J. Basilico, Past, Present, and Future of Recommender Systems: An Industry Perspective, Proc. RecSys, 2016.

X. Amatriain and J. M. Pujol, Data Mining Methods for Recommender Systems, Recommender Systems Handbook, 2015.

R. A. Baeza-yates, A. Berthier, and . Ribeiro-neto, Modern Information Retrieval: the concepts and technology behind search, 2011.

M. Balabanovi? and Y. Shoham, Fab: Content-Based, Collaborative Recommendation, Commun. ACM, vol.40, issue.3, 1997.

L. Baltrunas and X. Amatriain, Towards Time-Dependant Recommendation based on Implicit Feedback, Proc. Workshop on Context-Aware Recommender Systems@RecSys, 2009.

L. Baltrunas and F. Ricci, Experimental evaluation of context-dependent collaborative filtering using item splitting, vol.24, 2014.

Y. Bao, H. Fang, and J. Zhang, TopicMF: Simultaneously Exploiting Ratings and Reviews for Recommendation, Proc. AAAI, 2014.

R. Battiti, Accelerated Backpropagation Learning: Two Optimization Methods, Complex Systems, vol.3, issue.4, 1989.

M. Robert, Y. Bell, and . Koren, Lessons from the Netflix Prize Challenge. SIGKDD Explorations, vol.9, 2007.

M. Robert, Y. Bell, and . Koren, Scalable Collaborative Filtering with Jointly Derived Neighborhood Interpolation Weights, Proc. IEEE ICDM, 2007.

D. Ben-shimon, A. Tsikinovsky, M. Friedmann, B. Shapira, L. Rokach et al., RecSys Challenge 2015 and the YOOCHOOSE Dataset, Proc. RecSys, 2015.

J. Bennett and S. Lanning, The Netflix Prize, Proc. KDD Cup and Workshop, 2007.

S. Berkovsky, D. Goldwasser, T. Kuflik, and F. Ricci, Identifying InterDomain Similarities through Content-Based Analysis of Hierarchical Web-Directories, Proc. ECAI, 2006.

S. Berkovsky, T. Kuflik, and F. Ricci, Cross-Domain Mediation in Collaborative Filtering, Proc. UMAP, 2007.

L. Bernardi, J. Kamps, J. Kiseleva, and M. J. Müller, The Continuous Cold Start Problem in e-Commerce Recommender Systems, Proc. Workshop on New Trends on Content-Based Recommender Systems@RecSys, 2015.

A. Beutel, H. Ed, Z. Chi, H. Cheng, J. Pham et al., Beyond Globally Optimal: Focused Learning for Improved Recommendations, Proc. WWW, 2017.

A. Bifet and R. Gavalda, Learning from Time-Changing Data with Adaptive Windowing, Proc. SDM, 2007.

D. Billsus, J. Michael, and . Pazzani, Adaptive News Access, The Adaptive Web, 2007.

M. David, J. Blei, and . Lafferty, Dynamic Topic Models, Proc. ICML, 2006.

M. David, J. Blei, and . Lafferty, Topic Models, Text Mining: Theory and Applications, 2009.

M. David, . Blei, Y. Andrew, and M. Ng, Latent Dirichlet Allocation. JMLR, vol.3, 2003.

J. Borràs, A. Moreno, and A. Valls, Intelligent tourism recommender systems: A survey, Expert Systems with Applications, vol.41, issue.16, 2014.

L. Bottou and O. Bousquet, The Tradeoffs of Large Scale Learning, Proc. NIPS, 2008.

P. Andrew and . Bradley, The use of the area under the ROC curve in the evaluation of machine learning algorithms, Pattern Recognition, vol.30, issue.7, 1997.

M. Brand, Fast online SVD revisions for lightweight recommender systems, Proc. SDM. SIAM, 2003.

D. John-s-breese, C. Heckerman, and . Kadie, Empirical Analysis of Predictive Algorithms for Collaborative Filtering, Proc. UAI, 1998.

D. Bridge, H. Mehmet, L. Göker, B. Mcginty, and . Smyth, Case-Based Recommender Systems, Knowledge Eng. Review, vol.20, issue.3, 2005.

R. Burke, Hybrid Recommender Systems: Survey and Experiments, vol.12, 2002.

R. Burke, Evaluating the Dynamic Properties of Recommendation Algorithms, Proc. RecSys, 2010.

G. Pedro, F. Campos, I. Díez, and . Cantador, Time-aware recommender systems: a comprehensive survey and analysis of existing evaluation protocols, vol.UMUAI, 2014.

I. Cantador, A. Bellogín, and D. Vallet, Content-based Recommendation in Social Tagging Systems, Proc. RecSys, 2010.

I. Cantador, I. Fernández-tobías, and A. Bellogín, Relating Personality Types with User Preferences in Multiple Entertainment Domains, Proc. International Workshop on Emotions and Personality in Personalized Services@UMAP, 2013.

I. Cantador, I. Fernández-tobías, S. Berkovsky, and P. Cremonesi, CrossDomain Recommender Systems, Recommender Systems Handbook, 2015.

H. Cao, E. Chen, J. Yang, and H. Xiong, Enhancing Recommender Systems Under Volatile User Interest Drifts, Proc. CIKM, 2009.

O. Celma, Music Recommendation. In Music recommendation and discovery, 2010.

O. Celma and P. Herrera, A New Approach to Evaluating Novel Recommendations, Proc. RecSys, 2008.

B. Chandramouli, J. J. Levandoski, A. Eldawy, and M. F. Mokbel, StreamRec: A Real-Time Recommender System, Proc. SIGMOD, 2011.

J. Chang, S. Gerrish, C. Wang, J. L. Boyd-graber, and D. M. Blei, Reading Tea Leaves: How Humans Interpret Topic Models, Proc. NIPS, 2009.

S. Chang, Y. Zhang, J. Tang, D. Yin, Y. Chang et al., Streaming Recommender Systems, Proc. WWW, 2017.

O. Chapelle, D. Metlzer, Y. Zhang, and P. Grinspan, Expected Reciprocal Rank for Graded Relevance, Proc. CIKM, 2009.

L. Chen and P. Pu, Critiquing-based recommenders: Survey and emerging trends, UMUAI, vol.22, issue.1-2, 2012.

W. Chin, Y. Zhuang, Y. Juan, and C. Lin, A Learning-rate Schedule for Stochastic Gradient Methods to Matrix Factorization, Proc. PAKDD, 2015.

E. Christakopoulou and G. Karypis, Local Item-Item Models for Top-N Recommendation, Proc. RecSys, 2016.

E. Christakopoulou and G. Karypis, Local Latent Space Models for Top-N Recommendation, Proc. KDD, 2018.

R. Chung, D. Sundaram, and A. Srinivasan, Integrated Personal Recommender Systems, Proc. ICEC, 2007.

M. Claypool, A. Gokhale, T. Miranda, P. Murnikov, D. Netes et al., Combing Content-Based and Collaborative Filters in an Online Newspaper, 1999.

P. Covington, J. Adams, and E. Sargin, Deep Neural Networks for Youtube Recommendations, Proc. RecSys, 2016.

N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey, An Experimental Comparison of Click Position-Bias Models, Proc. WSDM, 2008.

P. Cremonesi and M. Quadrana, Cross-domain Recommendations without Overlapping Data: Myth or Reality?, Proc. RecSys, 2014.

P. Cremonesi, A. Tripodi, and R. Turrin, Cross-Domain Recommender Systems, Proc. ICDMW, 2011.

P. Cremonesi, F. Garzotto, and M. Quadrana, Evaluating Top-N Recommendations "When the Best are Gone, Proc. RecSys, 2013.

P. Cremonesi, F. Garzotto, R. Pagano, and M. Quadrana, Recommending without Short Head, Proc. WWW, 2014.

S. Abhinandan, M. Das, A. Datar, S. Garg, and . Rajaram, Google News Personalization: Scalable Online Collaborative Filtering, Proc. WWW, 2007.

G. Morales, A. Gionis, and C. Lucchese, From Chatter to Headlines: Harnessing the Real-Time Web for Personalized News Recommendation, Proc. WSDM, 2012.

P. Marco-de-gemmis, G. Lops, P. Semeraro, and . Basile, Integrating Tags in a Semantic Content-based Recommender, Proc. RecSys, 2008.

J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin et al., Large Scale Distributed Deep Networks, Proc. NIPS, 2012.

M. Deshpande and G. Karypis, Item-Based Top-N Recommendation Algorithms, ACM TOIS, vol.22, issue.1, 2004.

C. Desrosiers and G. Karypis, A Comprehensive Survey of Neighborhood-based Recommendation Methods, Recommender Systems Handbook, 2011.

R. Devooght, N. Kourtellis, and A. Mantrach, Dynamic Matrix Factorization with Priors on Unknown Values, Proc. KDD, 2015.

K. Anind and . Dey, Understanding and Using Context. Personal and Ubiquitous Computing, vol.5, 2001.

D. Benjamin-dias, M. Locher, W. Li, P. El-deredy, and . Lisboa, The Value of Personalised Recommender Systems toe-Business: A Case Study, Proc. RecSys, 2008.

E. Diaz-aviles, L. Drumond, Z. Gantner, L. Schmidt-thieme, and W. Nejdl, That Interests Me? Online Topic Discovery and Recommendation in Twitter, Proc. CIKM, 2012.

E. Diaz-aviles, L. Drumond, L. Schmidt-thieme, and W. Nejdl, RealTime Top-N Recommendation in Social Streams, Proc. RecSys, 2012.

J. Diederich and T. Iofciu, Finding Communities of Practice from User Profiles Based on Folksonomies, Proc. EC-TEL06 Workshops, 2006.

Y. Ding and X. Li, Time Weight Collaborative Filtering, Proc. CIKM, 2005.

G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, Learning in Nonstationary Environments: A Survey, IEEE CIM, vol.10, issue.4, 2015.

P. Dourish, What We Talk About When We Talk About Context. Personal and Ubiquitous Computing, vol.8, 2004.

D. Doychev, A. Lawlor, R. Rafter, and B. Smyth, An Analysis of Recommender Algorithms for Online News, Proc. CLEF, 2014.

L. Du, H. Wray-lindsay-buntine, and . Jin, Sequential Latent Dirichlet Allocation: Discover Underlying Topic Structures within a Document, Proc. IEEE ICDM, 2010.

J. Duchi, E. Hazan, and Y. Singer, Adaptive Subgradient Methods for Online Learning and Stochastic Optimization, JMLR, vol.12, 2011.

R. Elwell and R. Polikar, Incremental Learning of Concept Drift in Nonstationary Environments, IEEE Transactions on Neural Networks, vol.22, issue.10, 2011.

E. Viorica-epure, B. Kille, J. E. Ingvaldsen, R. Deneckere, C. Salinesi et al., Recommending Personalized News in Short User Sessions, Proc. RecSys, 2017.

R. Fagin, A. Lotem, and M. Naor, Optimal aggregation algorithms for middleware, J. Comput. Sys. Sci, vol.66, issue.4, 2003.

A. Felfernig, S. Gordea, D. Jannach, E. Teppan, and M. Zanker, A Short Survey of Recommendation Technologies in Travel and Tourism, ÖGAI-Journal, vol.25, issue.7, 2007.

I. Fernández-tobías, I. Cantador, and L. Plaza, An Emotion Dimensional Model Based on Social Tags: Crossing Folksonomies and Enhancing Recommendations, Proc. EC-Web, 2013.

R. Filieri, S. Alguezaui, and F. Mcleay, Why do travelers trust TripAdvisor? Antecedents of trust towards consumer-generated media and its influence on recommendationadoption and word of mouth, Tourism Management, p.51, 2015.

B. Fling, Mobile Design and Development: Practical concepts and techniques for creating mobile sites and Web apps, 2009.

E. Frigó, R. Pálovics, D. Kelen, L. Kocsis, and A. A. Benczúr, Online ranking prediction in non-stationary environments, Proc. Workshop on Temporal Reasoning in Recommender Systems@RecSys, 2017.

J. Gama, R. Sebastião, and P. P. Rodrigues, On evaluating stream learning algorithms, Machine learning, vol.90, issue.3, 2013.

J. Gama, A. Indr??liobait?, M. Bifet, A. Pechenizkiy, and . Bouchachia, A Survey on Concept Drift Adaptation. ACM CSUR, vol.46, issue.4, 2014.

Z. Gantner, L. Drumond, C. Freudenthaler, S. Rendle, and L. Schmidtthieme, Learning Attribute-to-Feature Mappings for Cold-start Recommendations, Proc. IEEE ICDM, 2010.

Z. Gantner, S. Rendle, and L. Schmidt-thieme, Factorization Models for Context-/Time-Aware Movie Recommendations, Proc. Workshop on Context-Aware Movie Recommendation@RecSys, 2010.

L. Gao, C. Wu, Y. Zhou, and . Hu, Collaborative Dynamic Sparse Topic Regression with User Profile Evolution for Item Recommendation, Proc. AAAI, 2017.

S. Gao, H. Luo, D. Chen, S. Li, P. Gallinari et al., Cross-Domain Recommendation via Cluster-Level Latent Factor Model, ECML/PKDD, 2013.

M. Ge, C. Delgado-battenfeld, and D. Jannach, Beyond Accuracy: Evaluating Recommender Systems by Coverage and Serendipity, Proc. RecSys, 2010.

R. Gemulla, E. Nijkamp, J. Peter, Y. Haas, and . Sismanis, Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent, Proc. KDD, 2011.

T. George and S. Merugu, A Scalable Collaborative Filtering Framework based on Co-clustering, Proc. IEEE ICDM, 2005.

D. Getz, Event tourism: Definition, evolution, and research, Tourism management, vol.29, issue.3, 2008.

D. Goldberg, D. Nichols, M. Brian, D. Oki, and . Terry, Using Collaborative Filtering to Weave an Information Tapestry, Commun. ACM, vol.35, issue.12, 1992.

J. P. Heitor-murilo-gomes, F. Barddal, A. Enembreck, and . Bifet, A Survey on Ensemble Learning for Data Stream Classification, vol.50, 2017.

A. Carlos, N. Gomez-uribe, and . Hunt, The Netflix Recommender System: Algorithms, Business Value, and Innovation, ACM TMIS, vol.6, issue.4, 2016.

U. Gretzel, Intelligent Systems in Tourism: A Social Science Perspective, Annals of Tourism Research, vol.38, issue.3, 2011.

L. Thomas, M. Griffiths, and . Steyvers, Finding scientific topics. Proc. NAS, vol.101, 2004.

A. Gunawardana and G. Shani, Evaluating Recommender Systems, Recommender Systems Handbook, 2015.

J. Hannon, M. Bennett, and B. Smyth, Recommending twitter users to follow using content and collaborative filtering approaches, Proc. RecSys, 2010.

N. Hariri, B. Mobasher, and R. Burke, Context-Aware Music Recommendation Based on Latent Topic Sequential Patterns, Proc. RecSys, 2012.

M. Harper and J. A. Konstan, The Movielens Datasets: History and Context, ACM TiiS, vol.5, issue.4, 2016.

A. John, . Hartigan, A. Manchek, and . Wong, Algorithm AS 136: A K-Means Clustering Algorithm, Journal of the Royal Statistical Society. Series C (Applied Statistics), vol.28, issue.1, 1979.

C. Hayes and P. Cunningham, Context Boosting Collaborative Recommendations, J. Knowledge-Based Systems, vol.2, issue.17, 2004.

R. He and J. Mcauley, VBPR: Visual Bayesian Personalized Ranking from Implicit Feedback, Proc. AAAI, 2016.

X. He, H. Zhang, M. Kan, and T. Chua, Fast Matrix Factorization for Online Recommendation with Implicit Feedback, Proc. SIGIR, 2016.

C. B. Hensley, Selective Dissemination of Information (SDI): State of The Art in May, 1963, Proc. AFIPS, 1963.

B. Hidasi and M. Quadrana, Alexandros Karatzoglou, and Domonkos Tikk. Parallel Recurrent Neural Network Architectures for Feature-rich Session-based Recommendations, Proc. RecSys, 2016.

W. Hill, L. Stead, M. Rosenstein, and G. Furnas, Recommending and Evaluating Choices in a Virtual Community of Use, Proc. CHI, 1995.

M. Hoffman, R. Francis, D. M. Bach, and . Blei, Online Learning for Latent Dirichlet Allocation, Proc. NIPS, 2010.

S. Horner and J. Swarbrooke, Consumer Behaviour in Tourism. Routledge, 2016.

Y. Hu, Y. Koren, and C. Volinsky, Collaborative Filtering for Implicit Feedback Datasets, Proc. IEEE ICDM, 2008.

X. Huang, L. Wu, E. Chen, H. Zhu, Q. Liu et al., Incremental Matrix Factorization: A Linear Feature Transformation Perspective

Y. Huang, B. Cui, W. Zhang, J. Jiang, and Y. Xu, TencentRec: Real-time Stream Recommendation in Practice, Proc. SIGMOD, 2015.

Y. Huang, B. Cui, J. Jiang, K. Hong, W. Zhang et al., Realtime Video Recommendation Exploration, Proc. SIGMOD, 2016.

T. Iwata, T. Yamada, Y. Sakurai, and N. Ueda, Online Multiscale Dynamic Topic Models, Proc. KDD, 2010.

K. Jacobson, V. Murali, E. Newett, B. Whitman, and R. Yon, Music Personalization at Spotify, Proc. RecSys, 2016.

M. Jahrer, A. Töscher, and R. Legenstein, Combining Predictions for Accurate Recommender Systems, Proc. KDD, 2010.

K. Järvelin and J. Kekäläinen, Cumulated Gain-based Evaluation of IR Techniques, ACM TOIS, vol.20, issue.4, 2002.

H. Jelodar, Y. Wang, C. Yuan, and X. Feng, Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey, 2017.

K. Kabassi, Personalizing Recommendations for Tourists, Telematics and Informatics, vol.27, 2010.

A. Karatzoglou, Collaborative Temporal Order Modeling, Proc. RecSys, 2011.

A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver, Multiverse Recommendation: N-dimensional Tensor Factorization for Context-aware Collaborative Filtering, Proc. RecSys, 2010.

M. Khoshneshin and . Street, Incremental Collaborative Filtering via Evolutionary Co-clustering, Proc. RecSys, 2010.

H. Khrouf and R. Troncy, Hybrid Event Recommendation using Linked Data and User Diversity, Proc. RecSys, 2013.

B. Kille, F. Hopfgartner, T. Brodt, and T. Heintz, The plista dataset, Proc. International News Recommender Systems Workshop and Challenge@RecSys, 2013.

D. Kim, C. Park, J. Oh, S. Lee, and H. Yu, Convolutional Matrix Factorization for Document Context-Aware Recommendation, Proc. RecSys, 2016.

D. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, ICLR, vol.5, 2015.

J. Kiseleva, J. I. Melanie, L. Mueller, C. Bernardi, I. Davis et al., Mats Stafseng Einarsen, Jaap Kamps, Alexander Tuzhilin, and Djoerd Hiemstra. Where to Go on Your Next Trip? Optimizing Travel Destinations Based on User Preferences, Proc. SIGIR, 2015.

J. Kiseleva, A. Tuzhilin, J. Kamps, J. I. Melanie, L. Mueller et al., Mats Stafseng Einarsen, and Djoerd Hiemstra. Beyond Movie Recommendations: Solving the Continuous Cold Start Problem in E-commerce Recommendations, 2016.

T. Kitazawa, Incremental Factorization Machines for Persistently Cold-starting Online Item Recommendation, 2016.

R. Klinkenberg, Learning drifting concepts: Example selection vs. example weighting, Intell. Data Anal, vol.8, issue.3, 2004.

D. Kluver and . Joseph-a-konstan, Evaluating Recommender Behavior For New Users, Proc. RecSys, 2014.

N. Koenigstein and Y. Koren, Towards Scalable and Accurate Item-Oriented Recommendations, Proc. ReSys, 2013.

N. Koenigstein, G. Dror, and Y. Koren, Yahoo! Music Recommendations: Modeling Music Ratings with Temporal Dynamics and Item Taxonomy, Proc. RecSys, 2011.

N. Koenigstein, P. Ram, and Y. Shavitt, Efficient Retrieval of Recommendations in a Matrix Factorization Framework, Proc. CIKM, 2012.

Y. Koren, Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model, Proc. KDD, 2008.

Y. Koren, Collaborative Filtering with Temporal Dynamics, Proc. KDD, 2009.

Y. Koren and R. Bell, Advances in Collaborative Filtering, Recommender Systems Handbook, 2015.

Y. Koren, R. Bell, and C. Volinsky, Matrix Factorization Techniques For Recommender Systems, IEEE Computer, issue.8, 2009.

B. Krulwich, LIFESTYLE FINDER: Intelligent User Profiling Using Large-Scale Demographic Data. AI magazine, vol.18, 1997.

Y. Kurata, CT-Planner2: More Flexible and Interactive Assistance for Day Tour Planning, Proc. ENTER, 2011.

M. Kurucz, A. András, K. Benczúr, and . Csalogány, Methods for large scale SVD with missing values, Proc. KDD Cup and Workshop, vol.12, 2007.

N. Lathia, S. Hailes, and L. Capra, Temporal Collaborative Filtering With Adaptive Neighbourhoods, Proc. SIGIR, 2009.

J. Lee, S. Kim, G. Lebanon, and Y. Singer, Local Low-rank Matrix Approximation, Proc. ICML, 2013.

J. Lee, S. Bengio, S. Kim, G. Lebanon, and Y. Singer, Local Collaborative Ranking, Proc. WWW, 2014.

E. Victor, N. Lee, R. Ruan, C. Jin, and . Aggarwal, A Survey Of Algorithms For Dense Subgraph Discovery. In Managing and Mining Graph Data, 2010.

J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas et al., DBpedia -A Large-scale, Multilingual Knowledge Base Extracted from Wikipedia, Semantic Web, vol.6, issue.2, 2015.

D. Lemire and A. Maclachlan, Slope One Predictors for Online Rating-Based Collaborative Filtering, Proc. SDM. SIAM, 2005.

L. Lerche and D. Jannach, Using Graded Implicit Feedback for Bayesian Personalized Ranking, Proc. RecSys, 2014.

M. Letsios, . Oana-denisa, M. Balalau, E. Danisch, M. Orsini et al., Finding Heaviest k-Subgraphs and Events in Social Media, Proc. ICDMW, 2016.

J. Justin, M. Levandoski, A. Sarwat, M. F. Eldawy, and . Mokbel, LARS: A Location-Aware Recommender System, Proc. IEEE ICDE, 2012.

A. Levi, O. Mokryn, C. Diot, and N. Taft, Finding a Needle in a Haystack of Reviews: Cold Start Context-Based Hotel Recommender System, Proc. RecSys, 2012.

B. Li, Q. Yang, and X. Xue, Can Movies and Books Collaborate? CrossDomain Collaborative Filtering for Sparsity Reduction, Proc. IJCAI, vol.9, 2009.

D. Li, C. Chen, Q. Lv, H. Gu, T. Lu et al., AdaError: An Adaptive Learning Rate Method for Matrix Approximation-based Collaborative Filtering, Proc. WWW, 2018.

C. Lin, R. Xie, X. Guan, L. Li, and T. Li, Personalized news recommendation via implicit social experts, Inf. Sci, vol.254, 2014.

G. Linden, B. Smith, and J. York, Amazon.com Recommendations Item-to-Item Collaborative Filtering, IEEE Internet Computing, issue.1, 2003.

N. Littlestone, Learning Quickly When Irrelevant Attributes Abound: A New Linearthreshold Algorithm, Machine learning, vol.2, issue.4, 1988.

R. E. Stephen-w-litvin, B. Goldsmith, and . Pan, Electronic Word-of-Mouth in Hospitality and Tourism Management, Tourism management, vol.29, issue.3, 2008.

J. Liu, P. Dolan, and E. R. Pedersen, Personalized News Recommendation Based on Click Behavior, Proc. IUI, 2010.

N. Nathan, B. Liu, M. Cao, Q. Zhao, and . Yang, Adapting neighborhood and matrix factorization models for context aware recommendation, Proc. Workshop on ContextAware Movie Recommendation@RecSys, 2010.

N. Nathan, M. Liu, E. Zhao, Q. Xiang, and . Yang, Online Evolutionary Collaborative Filtering, Proc. RecSys, 2010.

X. Liu, Modeling Users' Dynamic Preference for Personalized Recommendation, Proc. IJCAI, 2015.

X. Liu and K. Aberer, Towards a dynamic top-N recommendation framework, Proc. RecSys, 2014.

X. Liu, Q. He, Y. Tian, W. Lee, J. Mcpherson et al., Event-based Social Networks: Linking the Online and Offline Social Worlds, Proc. KDD, 2012.

Y. Liu, T. Pham, G. Cong, and Q. Yuan, An Experimental Evaluation of Point-of-Interest Recommendation in Location-Based Social Networks, vol.10, 2017.

B. Loni, Y. Shi, M. Larson, and A. Hanjalic, Cross-Domain Collaborative Filtering with Factorization Machines, Proc. ECIR, 2014.

P. Lops, G. Marco-de-gemmis, and . Semeraro, Content-based Recommender Systems: State of the Art and Trends, Recommender Systems Handbook, 2011.

Y. Low, D. Agarwal, and A. J. Smola, Multiple Domain User Personalization, Proc. KDD, 2011.

Z. Lu, Y. Sinno-jialin-pan, J. Li, Q. Jiang, and . Yang, Collaborative Evolution for User Profiling in Recommender Systems, Proc. IJCAI, 2016.

H. Ma, H. Yang, I. Michael-r-lyu, and . King, SoRec: Social Recommendation Using Probabilistic Matrix Factorization, Proc. CIKM, 2008.

L. B. Augusto-q-macedo, R. Marinho, and . Santos, Context-Aware Event Recommendation in Event-based Social Networks, Proc. RecSys, 2015.

M. Benjamin, R. S. Marlin, S. Zemel, M. Roweis, and . Slaney, Collaborative Filtering and the Missing at Random Assumption, Proc. UAI, 2007.

P. Matuszyk and M. Spiliopoulou, Selective Forgetting for Incremental Matrix Factorization in Recommender Systems, Proc. DS, 2014.

P. Matuszyk, J. Vinagre, M. Spiliopoulou, A. Mário, J. et al., Forgetting Methods for Incremental Matrix Factorization in Recommender Systems, Proc. SAC, 2015.

E. Minkov, B. Charrow, J. Ledlie, S. Teller, and T. Jaakkola, Collaborative Future Event Recommendation, Proc. CIKM, 2010.

C. Miranda and A. , Item-Based and User-Based Incremental Collaborative Filtering for Web Recommendations, Proc. EPIA, 2009.

M. Tom and . Mitchell, Machine Learning. Burr Ridge, vol.45, issue.37, 1997.

K. Miyahara, J. Michael, and . Pazzani, Collaborative Filtering with the Simple Bayesian Classifier, Proc. PRICAI, 2000.

C. Douglas, G. C. Montgomery, and . Runger, Applied statistics and probability for engineers, 2010.

J. Raymond, L. Mooney, and . Roy, Content Based Book Recommending Using Learning for Text Categorization, Proc. ACM DL, 2000.

O. Moreno, B. Shapira, L. Rokach, and G. Shani, TALMUD -Transfer Learning for Multiple Domains, Proc. CIKM, 2012.

T. Murakami, K. Mori, and R. Orihara, Metrics for Evaluating the Serendipity of Recommendation Lists, Proc. JSAI, 2007.

P. Murena, M. Al-ghossein, T. Abdessalem, and A. Cornuéjols, Adaptive Window Strategy for Topic Modeling in Document Streams, Proc. IJCNN, pp.1-7, 2018.

O. Nasraoui, J. Cerwinske, C. Rojas, and F. Gonzalez, Performance of Recommendation Systems in Dynamic Streaming Environments, Proc. SDM. SIAM, 2007.

T. T. Nguyen, P. Hui, F. M. Harper, L. Terveen, and J. A. Konstan, Exploring the Filter Bubble: The Effect of Using Recommender Systems on Content Diversity, Proc. WWW, 2014.

M. Nilashi, Othman bin Ibrahim, Norafida Ithnin, and Nor Haniza Sarmin. A multi-criteria collaborative filtering recommender system for the tourism domain using Expectation Maximization (EM) and PCA-ANFIS, Electronic Commerce Research and Applications, vol.14, issue.6, 2015.

X. Ning and G. Karypis, Slim: Sparse Linear Methods for Top-N Recommender Systems, Proc. IEEE ICDM, 2011.

X. Ning, C. Desrosiers, and G. Karypis, A comprehensive survey of neighborhood-based recommendation methods, Recommender Systems Handbook, 2015.

W. Douglas, J. Oard, and . Kim, Implicit Feedback for Recommender Systems, Proc. Workshop on Recommender Systems@AAAI, 1998.

O. Mark, J. Connor, and . Herlocker, Clustering Items for Collaborative Filtering, Proc. Workshop on Recommender Systems@SIGIR, vol.128, 1999.

O. Celma, Music Recommendation and Discovery: The Long Tail, Long Fail, and Long Play in the Digital Music Space, 2010.

R. Pagano, P. Cremonesi, M. Larson, B. Hidasi, D. Tikk et al., The Contextual Turn: from Context-Aware to Context-Driven Recommender Systems, Proc. RecSys, 2016.

C. Palmisano, A. Tuzhilin, and M. Gorgoglione, Using Context to Improve Predictive Modeling of Customers in Personalization Applications, IEEE TKDE, vol.20, issue.11, 2008.

R. Pálovics, A. András, L. Benczúr, and . Kocsis, Exploiting Temporal Influence in Online Recommendation, Tamás Kiss, and Erzsébet Frigó, 2014.

R. Pan, Y. Zhou, B. Cao, N. Nathan, R. Liu et al., One-Class Collaborative Filtering, Proc. IEEE ICDM, 2008.

W. Pan, E. W. Xiang, N. N. Liu, and Q. Yang, Transfer Learning in Collaborative Filtering for Sparsity Reduction, Proc. AAAI, vol.10, 2010.

W. Pan, N. N. Liu, E. W. Xiang, and Q. Yang, Transfer Learning to Predict Missing Ratings via Heterogeneous User Feedbacks, Proc. IJCAI, 2011.

U. Panniello, A. Tuzhilin, M. Gorgoglione, C. Palmisano, and A. Pedone, Experimental Comparison of Pre-vs. Post-Filtering Approaches in ContextAware Recommender systems, Proc. RecSys, 2009.

M. Papagelis, I. Rousidis, D. Plexousakis, and E. Theoharopoulos, Incremental Collaborative Filtering for Highly-Scalable Recommendation Algorithms, Proc. ISMIS, 2005.

S. Park and W. Chu, Pairwise Preference Regression for Cold-start Recommendation, Proc. RecSys, 2009.

A. Paterek, Improving regularized singular value decomposition for collaborative filtering, Proc. KDD Cup and Workshop, 2007.

M. Pazzani and D. Billsus, Learning and Revising User Profiles: The Identification of Interesting Web Sites, Machine learning, vol.27, issue.3, 1997.

J. Michael and . Pazzani, A Framework for Collaborative, Content-Based and Demographic Filtering, Artif. Intell. Rev, vol.13, pp.5-6, 1999.

J. Michael, D. Pazzani, and . Billsus, Content-Based Recommendation Systems, The Adaptive Web, 2007.

A. Popescul, M. David, S. Pennock, and . Lawrence, Probabilistic Models for Unified Collaborative and Content-Based Recommendation in Sparse-Data Environments, Proc. UAI, 2001.

Z. Qiao, P. Zhang, C. Zhou, Y. Cao, L. Guo et al., Event Recommendation in Event-Based Social Networks, Proc. AAAI, 2014.

M. Quadrana, P. Cremonesi, and D. Jannach, Sequence-Aware Recommender Systems, vol.51, 2018.

B. Recht, C. Re, S. Wright, and F. Niu, HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent, Proc. NIPS, 2011.

S. Rendle, Factorization Machines with libFM, ACM TIST, vol.3, issue.3, 2012.

S. Rendle and L. Schmidt-thieme, Online-Updating Regularized Kernel Matrix Factorization Models for Large-Scale Recommender Systems, Proc. RecSys, 2008.

S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-thieme, BPR: Bayesian Personalized Ranking from Implicit Feedback, Proc. UAI, 2009.

D. M. Jasson, N. Rennie, and . Srebro, Fast Maximum Margin Matrix Factorization for Collaborative Prediction, Proc. ICML, 2005.

P. Resnick and . Varian, Recommender Systems, Commun. ACM, vol.40, issue.3, 1997.

P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, GroupLens: An Open Architecture for Collaborative Filtering of Netnews, Proc. CSCW, 1994.

F. Ricci, Travel Recommender Systems, IEEE Intelligent Systems, vol.17, issue.6, 2002.

F. Ricci, L. Rokach, and B. Shapira, Recommender Systems: Introduction and Challenges, Recommender Systems Handbook, 2015.

R. Saga, Y. Hayashi, and H. Tsuji, Hotel Recommender System Based on User's Preference Transition, Proc. SMC. IEEE, 2008.

R. Salakhutdinov and A. Mnih, Probabilistic Matrix Factorization, Proc. NIPS, 2008.

R. Salakhutdinov and A. Mnih, Bayesian Probabilistic Matrix Factorization using Markov Chain Monte Carlo, Proc. ICML, 2008.

R. Salakhutdinov, A. Mnih, and G. Hinton, Restricted Boltzmann Machines for Collaborative Filtering, Proc. ICML, 2007.

R. Sanchez, -. Vazquez, J. Silva, and R. Santos, Exploiting Socio-Economic Models for Lodging Recommendation in the Sharing Economy, Proc. RecSys, 2017.

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, Application of Dimensionality Reduction in Recommender System -A Case Study, 2000.

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, Item-Based Collaborative Filtering Recommendation Algorithms, Proc. WWW, 2001.

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, Incremental Singular Value Decomposition Algorithms for Highly Scalable Recommender Systems, Proc. CIT, 2002.

M. Saveski and A. Mantrach, Item Cold-Start Recommendations: Learning Local Collective Embeddings, Proc. RecSys, 2014.

J. , B. Schafer, D. Frankowski, J. Herlocker, and S. Sen, Collaborative Filtering Recommender Systems, The Adaptive Web, 2007.

A. Andrew-i-schein, . Popescul, H. Lyle, D. M. Ungar, and . Pennock, Methods and Metrics for Cold-Start Recommendations, Proc. SIGIR, 2002.

L. Sebastia, I. Garcia, E. Onaindia, and C. Guzman, A Tourist Recommendation And Planning Application. IJAIT, vol.18, 2009.

B. Shapira, L. Rokach, and S. Freilikhman, Facebook single and cross domain data for recommendation systems, UMUAI, vol.23, issue.2-3, 2013.

U. Shardanand and P. Maes, Social Information Filtering: Algorithms for Automating "Word of Mouth, Proc. CHI, 1995.

Y. Shi, M. Larson, and A. Hanjalic, List-Wise Learning to Rank with Matrix Factorization for Collaborative Filtering, Proc. RecSys, 2010.

Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, N. Oliver et al., CLiMF: Learning to Maximize Reciprocal Rank with Collaborative Less-is-More Filtering, Proc. RecSys, 2012.

Z. Siddiqui, Eleftherios Tiakas, Panagiotis Symeonidis, Myra Spiliopoulou, and Yannis Manolopoulos. xStreams: Recommending Items to Users with Time-evolving Preferences. In Proc. WIMS, 2014.

I. Soboroff and C. Nicholas, Combining Content and Collaboration in Text Filtering, Proc. Workshop on Machine Learning for Information Filtering@IJCAI, 1999.

Q. Song, J. Cheng, and H. Lu, Incremental Matrix Factorization via Feature Space Re-learning for Recommender System, Proc. RecSys, 2015.

N. Srebro and T. Jaakkola, Weighted Low-Rank Approximations, Proc. ICML, 2003.

N. Srebro, J. Rennie, and T. S. Jaakkola, Maximum-Margin Matrix Factorization, Proc. NIPS, 2005.

K. Subbian, C. Aggarwal, and K. Hegde, Recommendations For Streaming Data, Proc. CIKM, 2016.

L. A. Suchman, Plans and Situated Actions, 1987.

G. Takács, I. Pilászy, B. Németh, and D. Tikk, Major components of the Gravity Recommendation System. SIGKDD Explorations, vol.9, issue.2, 2007.

G. Takács, I. Pilászy, B. Németh, and D. Tikk, Scalable Collaborative Filtering Approaches for Large Recommender Systems, JMLR, vol.10, 2009.

L. Tang, Y. Jiang, L. Li, and T. Li, Ensemble Contextual Bandits for Personalized Recommendation, Proc. RecSys, 2014.

C. Teflioudi, F. Makari, and R. Gemulla, Distributed Matrix Completion, Proc. IEEE ICDM, 2012.

C. Teflioudi, R. Gemulla, and O. Mykytiuk, LEMP: Fast Retrieval of Large Entries in a Matrix Product, Proc. SIGMOD, 2015.

B. Thomee, A. David, G. Shamma, B. Friedland, K. Elizalde et al., YFCC100M: The New Data in Multimedia Research, Commun. ACM, vol.59, issue.2, 2016.

N. Tintarev and J. Masthoff, Explaining Recommendations: Design and Evaluation, Recommender Systems Handbook, 2015.

C. Trattner, A. Oberegger, L. Marinho, and D. Parra, Investigating the Utility of the Weather Context for Point of Interest Recommendations, JITT, vol.19, issue.1-4, 2018.

A. Tsymbal, The Problem of Concept Drift: Definitions and Related Work, TCD, vol.106, issue.2, 2004.

H. Lyle, . Ungar, P. Dean, and . Foster, Clustering Methods for Collaborative Filtering, Workshop on Recommendation Systems@AAAI, 1998.

M. Van-setten, S. Pokraev, and J. Koolwaaij, Context-Aware Recommendations in the Mobile Tourist Application COMPASS, Proc. AH, 2004.

S. Vargas and P. Castells, Rank and Relevance in Novelty and Diversity Metrics for Recommender Systems, Proc. RecSys, 2011.

K. Verstrepen, K. Bhaduriy, B. Cule, and B. Goethals, Collaborative Filtering for Binary, Positive-only Data, SIGKDD Explorations, vol.19, issue.1, 2017.

J. Vinagre and A. , Forgetting mechanisms for scalable collaborative filtering, J. Braz. Comp. Soc, vol.18, issue.4, 2012.

J. Vinagre, A. Mário, J. , and J. Gama, Evaluation of Recommender Systems in Streaming Environments, Proc. Workshop on Recommender Systems Evaluation: Dimensions and Design@RecSys, 2014.

J. Vinagre, A. Mário, J. , and J. Gama, Fast Incremental Matrix Factorization for Recommendation with Positive-Only Feedback, Proc. UMAP, 2014.

J. Vinagre, A. Mário, J. , and J. Gama, Collaborative filtering with recencybased negative feedback, Proc. SAC, 2015.

J. Vinagre, A. Mário, J. , and J. Gama, An overview on the exploitation of time in collaborative filtering, WIREs Data Min. Knowl. Discov, vol.5, issue.5, 2015.

J. Vinagre, A. Mário, J. , and J. Gama, Online Bagging for Recommender Systems, Expert Systems, vol.35, issue.4, 2018.

S. Jeffrey and . Vitter, Random Sampling with a Reservoir, ACM TOMS, vol.11, issue.1, 1985.

C. Wang, M. David, and . Blei, Collaborative Topic Modeling for Recommending Scientific Articles, Proc. KDD, 2011.

H. Wang, N. Wang, and D. Yeung, Collaborative Deep Learning for Recommender Systems, Proc. KDD, 2015.

J. Wang, C. H. Steven, P. Hoi, Z. Zhao, and . Liu, Online Multi-Task Collaborative Filtering for On-the-Fly Recommender Systems, Proc. RecSys, 2013.

W. Wang, J. Yang, and R. Muntz, STING : A Statistical Information Grid Approach to Spatial Data Mining, Proc. VLDB, 1997.

W. Wang, H. Yin, Z. Huang, and Q. Wang, Xingzhong Du, and Quoc Viet Hung Nguyen. Streaming Ranking Based Recommender Systems, Proc. SIGIR, 2018.

X. Wang and A. Mccallum, Topics over Time: A Non-Markov Continuous-Time Model of Topical Trends, Proc. KDD, 2006.

F. Wei, H. Guo, S. Cheng, and F. Jiang, AALRSMF: An Adaptive Learning Rate Schedule for Matrix Factorization, Proc. APWeb, 2016.

M. Weimer, A. Karatzoglou, V. Quoc, A. J. Le, and . Smola, COFIRANK Maximum Margin Matrix Factorization for Collaborative Ranking, Proc. NIPS, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00482740

H. Werthner and F. Ricci, E-commerce and tourism, Commun. ACM, vol.47, issue.12, 2004.

H. Werthner, A. Alzua-sorzabal, L. Cantoni, A. Dickinger, U. Gretzel et al., Future Research Issues in IT and Tourism, vol.15, issue.1, 2015.

M. Patricia, D. West, S. Ariely, E. Bellman, J. Bradlow et al., , vol.10, 1999.

G. Widmer and M. Kubat, Learning in the Presence of Concept Drift and Hidden Contexts, Machine learning, vol.23, issue.1, 1996.

L. Xiang, Q. Yuan, S. Zhao, L. Chen, X. Zhang et al., Temporal Recommendation on Graphs via Long-and Short-term Preference Fusion, Proc. KDD, 2010.

Z. Xiang, P. Vincent, D. R. Magnini, and . Fesenmaier, Information Technology and Consumer Behavior in Travel and Tourism: Insights from Travel Planning Using the Internet, J. Retailing and Consumer Services, vol.22, 2015.

B. Xu, J. Bu, C. Chen, and D. Cai, An Exploration of Improving Collaborative Recommender Systems via User-Item Subgroups, Proc. WWW, 2012.

D. Yang, D. Zhang, and B. Qu, Participatory Cultural Mapping Based on Collective Behavior Data in Location-Based Social Networks, ACM TIST, vol.7, issue.3, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01346717

S. Yang, B. Long, A. J. Smola, H. Zha, and Z. Zheng, Collaborative Competitive Filtering: Learning Recommender Using Context of User Choice, Proc. SIGIR, 2011.

M. Ye, P. Yin, W. Lee, and D. Lee, Exploiting Geographical Influence for Collaborative Point-of-Interest Recommendation, Proc. SIGIR, 2011.

B. Hongzhi-yin, L. Cui, Z. Chen, X. Hu, and . Zhou, Dynamic User Modeling in Social Media Systems, ACM TOIS, vol.33, issue.3, 2015.

B. Hongzhi-yin, X. Cui, Y. Zhou, H. Shao, S. Wang et al., Joint Modeling of User Check-in Behaviors for Real-time Point-of-Interest Recommendation, Proc. CIKM, 2015.

T. Yu, O. J. Mengshoel, A. Jude, E. Feller, J. Forgeat et al., Incremental Learning for Matrix Factorization in Recommender Systems, Proc. IEEE BigData, 2016.

H. Yun, H. Yu, C. Hsieh, I. Svn-vishwanathan, and . Dhillon, NO-MAD: Non-locking, stOchastic Multi-machine algorithm for Asynchronous and Decentralized matrix completion, vol.7, 2014.

D. Matthew and . Zeiler, ADADELTA: An Aadaptive Learning Rate Method, 2012.

K. Zhang, K. Wang, X. Wang, C. Jin, and A. Zhou, Hotel recommendation based on user preference analysis, Proc. ICDEW. IEEE, 2015.

M. Zhang and N. Hurley, Avoiding monotony: Improving the diversity of recommendation lists, Proc. RecSys, 2008.

W. Zhang, H. Sun, and X. Liu, An Incremental Tensor Factorization Approach for Web Service Recommendation, Proc. ICDMW. IEEE, 2014.

X. Zhao, Z. Niu, and W. Chen, Opinion-Based Collaborative Filtering to Solve Popularity Bias in Recommender Systems, Proc. DEXA, 2013.

Y. Zheng, R. Burke, and B. Mobasher, The Role of Emotions in Context-aware Recommendation, 2013.

Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan, Large-scale Parallel Collaborative Filtering for the Netflix Prize, Proc. AAIM, 2008.

C. Ziegler, S. M. Mcnee, J. A. Konstan, and G. Lausen, Improving Recommendation Lists Through Topic Diversification, Proc. WWW, 2005.

A. Zimdars, D. M. Chickering, and C. Meek, Using Temporal Data for Making Recommendations, Proc. UAI, 2001.

O. Zoeter, Recommendations in Travel, Proc. RecSys, 2015.