K. Adamberg, S. Kask, T. M. Laht, and T. Paalme, The effect of temperature and pH on the growth of lactic acid bacteria: a pH-auxostat study, Int J Food Microbiol, vol.85, pp.171-183, 2003.

A. Ampatzoglou, B. Schurr, G. Deepika, S. Baipong, and D. Charalampopoulos, Influence of fermentation on the acid tolerance and freeze drying survival of Lactobacillus rhamnosus GG, 2010.

, Biochem Eng J, vol.52, pp.65-70

G. E. Box and D. W. Behnken, Some new three level designs for the study of quantitative variables, Technometrics, vol.2, pp.455-475, 1960.

B. Ozkalp, B. Ozden, Y. Tuncer, P. Sanlibaba, and M. Akcelik, Technological characterization of wild-type Lactococcus lactis strains isolated from raw milk and traditional fermented milk products in Turkey, Lait, vol.87, pp.521-534, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00895644

J. Palmfeldt and B. Hahn-hagerdal, Influence of culture pH on survival of Lactobacillus reuteri subjected to freeze-drying, Int J Food Microbiol, vol.55, pp.235-238, 2000.

S. Passot, S. Cenard, I. Douania, I. C. Trelea, and F. Fonseca, Critical water activity and amorphous state for optimal preservation of lyophilised lactic acid bacteria, Food Chem, vol.132, pp.1699-1705, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01536691

A. Rault, M. Bouix, and C. Beal, Dynamic analysis of Lactobacillus delbrueckii subsp, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01560802

, bulgaricus CFL1 physiological characteristics during fermentation, Appl Microbiol Biot, vol.81, pp.559-570

S. Ruckold, K. H. Grobecker, and H. D. Isengard, The effects of drying on biological matrices and the consequences for reference materials, Food Control, vol.12, pp.401-407, 2001.

M. Saarela, I. Virkajarvi, H. L. Alakomi, T. Mattila-sandholm, A. Vaari et al.,

J. Matto, Influence of fermentation time, cryoprotectant and neutralization of cell concentrate on freeze-drying survival, storage stability, and acid and bile exposure of Bifidobacterium animalis ssp. lactis cells produced without milk-based ingredients, J Appl Microbiol, vol.99, pp.1330-1339, 2005.

C. Santivarangkna, M. Aschenbrenner, U. Kulozik, and P. Foerst, Role of glassy state on stabilities of freeze-dried probiotics, J Food Sci, vol.76, pp.152-156, 2011.

M. Savini, C. Cecchini, M. C. Verdenelli, S. Silvi, C. Orpianesi et al., Pilot-scale production and viability analysis of freeze-dried probiotic bacteria using different protective agents, Nutrients, vol.2, pp.330-339, 2010.

A. Schoug, J. Fischer, H. J. Heipieper, J. Schnuerer, and S. Hakansson, Impact of fermentation pH and temperature on freeze-drying survival and membrane lipid composition of Lactobacillus coryniformis Si3, J Ind Microbiol Biot, vol.35, pp.175-181, 2008.

A. Schoug, J. Olsson, J. Carlfors, J. Schnurer, and S. Hakansson, Freeze-drying of, 2006.

, Lactobacillus coryniformis Si3 -effects of sucrose concentration, cell density, and freezing rate on cell survival and thermophysical properties, Cryobiology, vol.53, pp.119-127

L. Beney and P. Gervais, Influence of the fluidity of the membrane on the response of microorganisms to environmental stresses, Appl Microbiol Biotechnol, vol.57, issue.1-2, pp.34-42, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02291708

J. Beranova, M. Jemiola-rzeminska, D. Elhottova, K. Strzalka, and I. Konopasek, Metabolic control of the membrane fluidity in Bacillus subtilis during cold adaptation, Biochim Biophys ActaBiomembr, vol.1778, issue.2, pp.445-453, 2008.

J. C. Bischof, W. F. Wolkers, N. M. Tsvetkova, A. E. Oliver, and J. H. Crowe, Lipid and protein changes due to freezing in dunning AT-1 cells, Cryobiology, vol.45, issue.1, pp.22-32, 2002.

J. R. Broadbent and C. Lin, Effect of heat shock or cold shock treatment on the resistance of Lactococcus lactis to freezing and lyophilization, Cryobiology, vol.39, issue.1, pp.88-102, 1999.

H. P. Castro, P. M. Teixeira, and R. Kirby, Storage of lyophilized cultures of Lactobacillus bulgaricus under different relative humidities and atmospheres, Appl Microbiol Biotechnol, vol.44, issue.1-2, pp.172-176, 1995.

S. Chu-ky, R. Tourdot-marechal, P. Guzzo, and J. , Combined cold, acid, ethanol shocks in Oenococcus oeni: effects on membrane fluidity and cell viability, Biochem Biophys Acta, vol.1717, issue.2, pp.118-142, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01668040

, Résultats et discussion

I. Coulibaly, R. Dubois-dauphin, J. Destain, M. Fauconnier, G. Lognay et al., The resistance to freeze-drying and to storage was determined as the cellular ability to recover its survival rate and acidification activity, Int J Microbiol, p.625239, 2010.

I. Coulibaly, R. Dubois-dauphin, S. Danthine, L. Majad, T. Mejoub et al., Preservation of industrial's lactic acid bacteria (probiotics) by freeze-drying, 2011.

, Biotechnol Agron Soc, vol.15, issue.2, pp.287-299

J. H. Crowe, B. D. Mckersie, and L. M. Crowe, Effects of free fatty acids and transition temperature on the stability of dry liposomes, Biochem Biophys Acta, vol.979, issue.1, pp.90516-90522, 1989.

J. H. Crowe, F. A. Hoekstra, L. M. Crowe, T. J. Anchordoguy, and E. Drobnis, Lipid phase transitions measured in intact cells with Fourier transform infrared spectroscopy, Cryobiology, vol.26, issue.1, pp.76-84, 1989.

M. G. Da-silveira, E. A. Golovina, F. A. Hoekstra, F. M. Rombouts, and T. Abee, Membrane fluidity adjustments in ethanol-stressed Oenococcus oeni cells, Appl Environ Microbiol, vol.69, issue.10, pp.5826-5832, 2003.

C. Daly, G. F. Fitzgerald, L. O'connor, and R. Davis, Technological and health benefits of dairy starter cultures, Int Dairy J, vol.8, issue.3, pp.195-205, 1998.

Z. Drici-cachon, J. F. Cavin, and C. Divies, Effect of pH and age of culture on cellular fatty acid composition of Leuconostoc oenos, Lett Appl Microbiol, vol.22, issue.5, pp.331-334, 1996.

F. Fonseca, C. Beal, and G. Corrieu, Method of quantifying the loss of acidification activity of lactic acid starters during freezing and frozen storage, J Dairy Res, vol.67, issue.1, pp.83-90, 2000.

M. H. Fox and T. M. Delohery, Membrane fluidity measured by fluorescence polarization using an epics V-cell corter, Cytometry, vol.8, issue.1, pp.20-25, 1987.

F. Franks, Freeze-drying of bioproducts: putting principles into practice, Eur J Pharm Biopharm, vol.45, pp.221-229, 1998.

J. Gautier, S. Passot, C. Penicaud, H. Guillemin, S. Cenard et al., A low membrane lipid phase transition temperature is associated with a high cryotolerance of Lactobacillus delbrueckii subspecies bulgaricus CFL1, J Dairy Sci, vol.96, issue.9, pp.5591-5602, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01001061

D. W. Grogan and J. E. Cronan, Cyclopropane ring formation in membrane lipids of bacteria, Microbiol Mol Biol Rev, vol.61, issue.4, pp.429-441, 1997.

A. Guillot, D. Obis, and M. Y. Mistou, Fatty acid membrane composition and activation of glycinebetaine transport in Lactococcus lactis subjected to osmotic stress, Int J Food Microbiol, vol.55, issue.1-3, pp.47-51, 2000.

, Résultats et discussion

C. Hartig, N. Loffhagen, and H. Harms, Formation of trans fatty acids is not involved in growthlinked membrane adaptation of Pseudomonas putida, Appl Environ Microbiol, vol.71, issue.4, pp.1915-1922, 2005.

L. Hua, W. Y. Zhao, H. Wang, Z. C. Li, and A. L. Wang, Influence of culture pH on freeze-drying viability of Oenococcus oeni and its relationship with fatty acid composition, Food Bioprod Process, vol.87, issue.C1, pp.56-61, 2009.

T. Johnsson, P. Nikkila, L. Toivonen, H. Rosenqvist, and S. Laakso, Cellular fatty acid profiles of Lactobacillus and Lactococcus strains in relation to the oleic acid content of the cultivation medium, Appl Environ Microbiol, vol.61, issue.12, pp.4497-4499, 1995.

K. Jouppila, J. Kansikas, and Y. H. Roos, Glass transition, water plasticization, and lactose crystallization in skim milk powder, J Dairy Sci, vol.80, issue.12, pp.3152-3160, 1997.

H. Keweloh and H. J. Heipieper, Trans unsaturated fatty acids in bacteria, Lipids, vol.31, issue.2, pp.129-137, 1996.

L. Kurtmann, C. U. Carlsen, J. Risbo, and L. H. Skibsted, Storage stability of freeze-dried Lactobacillus acidophilus (La-5) in relation to water activity and presence of oxygen and ascorbate, Cryobiology, vol.58, issue.2, pp.175-180, 2009.

L. Kurtmann, L. H. Skibsted, and C. U. Carlsen, Browning of freeze-dried probiotic bacteria cultures in relation to loss of viability during storage, J Agric Food Chem, vol.57, issue.15, pp.6736-6741, 2009.

F. Leroy and L. De-vuyst, Lactic acid bacteria as functional starter cultures for the food fermentation industry, Trends Food Sci Tech, vol.15, issue.2, pp.67-78, 2004.

C. Li, J. L. Zhao, Y. T. Wang, X. Han, and N. Liu, Synthesis of cyclopropane fatty acid and its effect on freeze-drying survival of Lactobacillus bulgaricus L2 at different growth conditions, World J Microbiol Biotechnol, vol.25, issue.9, pp.1659-1665, 2009.

L. Linders, W. F. Wolkers, and F. A. Hoekstra, Effect of added carbohydrates on membrane phase behavior and survival of dried Lactobacillus plantarum, Cryobiology, vol.35, issue.1, pp.31-40, 1997.

N. Loffhagen, C. Hartig, W. Geyer, M. Voyevoda, and H. Harms, Competition between cis, trans and cyclopropane fatty acid formation and its impact on membrane fluidity, Eng Life Sci, vol.7, issue.1, pp.67-74, 2007.

P. Mazur, Role of intracellular freezing in death of cells cooled at supraoptimal rates, Cryobiology, vol.14, issue.3, pp.251-272, 1977.

J. Munoz-rojas, P. Bernal, E. Duque, P. Godoy, A. Segura et al., , 2006.

, Appl Environ Microbiol, vol.72, issue.1, pp.472-477

, Résultats et discussion

H. Oldenhof, W. F. Wolkers, F. Fonseca, S. P. Passot, and M. Marin, Effect of sucrose and maltodextrin on the physical properties and survival of air-dried Lactobacillus bulgaricus: An in situ Fourier transform infrared spectroscopy study, Biotechnol Prog, vol.21, issue.3, pp.885-892, 2005.

N. Rozes, S. Garbay, M. Denayrolles, and A. Lonvaud-funel, A rapid method for the determination of bacterial fatty-acid composition, Lett Appl Microbiol, vol.17, issue.3, pp.126-131, 1993.

S. Ruckold, K. H. Grobecker, and H. D. Isengard, The effects of drying on biological matrices and the consequences for reference materials, Food Control, vol.12, issue.7, pp.401-407, 2001.

K. H. Schleifer, J. Kraus, C. Dvorak, R. Kilpperbalz, M. D. Collins et al., Transfer of Streptococcus lactis and related streptococci to the genus Lactococcus gen-nov, Syst Appl Microbiol, vol.6, issue.2, pp.183-195, 1985.

A. Schoug, J. Fischer, H. J. Heipieper, J. Schnuerer, and S. Hakansson, Impact of fermentation pH and temperature on freeze-drying survival and membrane lipid composition of Lactobacillus coryniformis Si3, J Ind Microbiol Biotechnol, vol.35, issue.3, pp.175-181, 2008.

C. Schwab, R. Vogel, and M. G. Ganzle, Influence of oligosaccharides on the viability and membrane properties of Lactobacillus reuteri TMW1.106 during freeze-drying, Cryobiology, vol.55, issue.2, pp.108-114, 2007.

M. Sinensky, Homeoviscous adaptation -a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli, P Natl Acad Sci, vol.71, issue.2, pp.522-527, 1974.

R. B. Smittle, S. E. Gilliland, M. L. Speck, W. M. Walter, and J. , Relationship of cellular fatty acid composition to survival of Lactobacillus bulgaricus in liquid nitrogen, Appl microbiol, vol.27, issue.4, pp.738-781, 1974.

H. E. Spinnler and G. Corrieu, Automatic method to quantify starter activity based on pH measurement, J Dairy Res, vol.56, issue.5, pp.755-764, 1989.

F. Streit, G. Corrieu, and C. Beal, Acidification improves cryotolerance of Lactobacillus delbrueckii subsp. bulgaricus CFL1, J Biotechnol, vol.128, issue.3, pp.659-667, 2007.

H. Teixeira, M. G. Goncalves, N. Rozes, A. Ramos, S. Romao et al., Lactobacillic acid accumulation in the plasma membrane of Oenococcus oeni: A response to ethanol stress?, Microb Ecol, vol.43, issue.1, pp.146-153, 2002.

P. Teixeira, H. Castro, and R. Kirby, Evidence of membrane lipid oxidation of spray-dried Lactobacillus bulgaricus during storage, Lett Appl Microbiol, vol.22, issue.1, pp.34-38, 1996.

T. Mai-huong, T. Grandvalet, C. Tourdot-marechal, and R. , Cyclopropanation of membrane unsaturated fatty acids is not essential to the acid stress response of Lactococcus lactis subsp. cremoris, Appl Environ Microbiol, vol.77, issue.10, pp.3327-3334, 2011.

T. M. Cogan, M. Barbosa, E. Beuvier, B. Bianchi-salvadori, P. S. Cocconcelli et al., Characterization of the lactic acid bacteria in artisanal dairy products, J. Dairy Res, vol.64, pp.409-421, 1997.

M. S. Salama, T. Musafijajeknic, W. E. Sandine, and S. J. Giovannoni, An ecological study of lactic acid bacteria: Isolation of new strains of Lactococcus including Lactococcus lactis subspecies cremoris, J. Dairy Sci, vol.78, pp.1004-1017, 1995.

E. Ayad, A. Verheul, C. De-jong, J. Wouters, and G. Smit, Flavour forming abilities and amino acid requirements of Lactococcus lactis strains isolated from artisanal and nondairy origin, Int. Dairy J, vol.9, pp.725-735, 1999.

I. Ayala-hernandez, A. Hassan, H. D. Goff, R. M. De-orduna, and M. Corredig, Production, isolation and characterization of exopolysaccharides produced by Lactococcus lactis subsp. cremoris JFR1 and their interaction with milk proteins: Effect of pH and media composition, Int. Dairy J, vol.18, pp.1109-1118, 2008.

M. Cocaign-bousquet, C. Garrigues, P. Loubiere, and N. D. Lindley, Physiology of pyruvate metabolism in Lactococcus lactis, A. Van Leeuw, vol.70, pp.253-267, 1996.

C. Daly, G. F. Fitzgerald, L. O'connor, and D. R. , Technological and health benefits of dairy starter cultures, Int. Dairy J, vol.8, pp.195-205, 1998.

J. C. Piard, P. M. Muriana, M. J. Desmazeaud, and T. R. Klaenhammer, Purification and partial characterization of lacticin 481, a lanthionine containing bacteriocin produced by Lactococcus lactis subsp. lactis CNRZ 481, Appl. Environ. Microbiol, vol.58, pp.279-284, 1992.

A. Bolotin, P. Wincker, S. Mauger, O. Jaillon, K. Malarme et al., The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403, Genome Res, vol.11, pp.731-753, 2001.

R. J. Siezen, J. Bayjanov, B. Renckens, M. Wels, S. Van-hijum et al., , 2010.

, Complete genome sequence of Lactococcus lactis subsp. lactis KF147, a plant associated lactic acid bacterium, J. Bacteriol, vol.192, pp.2649-2650

Y. Gao, Y. Lu, K. L. Teng, M. L. Chen, H. J. Zheng et al., Complete genome sequence of Lactococcus lactis subsp. lactis CV56, a probiotic strain isolated from the vaginas of healthy women, J. Bacteriol, vol.193, pp.2886-2887, 2011.

U. Wegmann, M. O'connell-motherway, A. Zomer, G. Buist, C. Shearman et al., , 2007.

, Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363, J. Bacteriol, vol.189, pp.3256-3270

, Résultats et discussion

K. Makarova, A. Slesarev, Y. Wolf, A. Sorokin, B. Mirkin et al., , 2006.

, Comparative genomics of the lactic acid bacteria, P. Natl. Acad. Sci. USA, vol.103, pp.15611-15616

K. Bryson, V. Loux, R. Bossy, P. Nicolas, S. Chaillou et al., AGMIAL: implementing an annotation strategy for prokaryote genomes as a distributed system, Nucleic Acids Res, vol.34, pp.3533-3545, 2006.

I. Coulibaly, R. Dubois-dauphin, S. Danthine, L. Majad, T. Mejoub et al., Preservation of industrial's lactic acid bacteria (probiotics) by freeze-drying, Biotechnol. Agron. Soc, vol.15, pp.287-299, 2011.

H. Bank and P. Mazur, Visualization of freezing damage, J. Cell Biol, vol.57, pp.729-742, 1973.

F. Dumont, P. A. Marechal, and P. Gervais, Cell size and water permeability as determining factors for cell viability after freezing at different cooling rates, Appl. Environ. Microbiol, vol.70, pp.268-272, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01668041

H. Oldenhof, W. F. Wolkers, F. Fonseca, S. P. Passot, and M. Marin, Effect of sucrose and maltodextrin on the physical properties and survival of air-dried Lactobacillus bulgaricus: An in situ Fourier transform infrared spectroscopy study, Biotechnol. Prog, vol.21, pp.885-892, 2005.

R. J. Heckly and J. Quay, A brief review of lyophilization damage and repair in bacterial preparations, Cryobiology, vol.18, pp.592-597, 1981.

G. Font-de-valdez, G. Savoy-de-giori, R. Holgado-apd, and G. Oliver, Rehydration conditions and viability of freeze-dried lactic acid bacteria, Cryobiology, vol.22, pp.574-577, 1985.

B. Higl, L. Kurtmann, C. U. Carlsen, J. Ratjen, P. Forst et al., Impact of water activity, temperature, and physical state on the storage stability of Lactobacillus paracasei ssp. paracasei freeze-dried in a lactose matrix, Biotechnol. Prog, vol.23, pp.794-800, 2007.

S. Passot, S. Cenard, I. Douania, I. C. Trelea, and F. Fonseca, Critical water activity and amorphous state for optimal preservation of lyophilised lactic acid bacteria, Food Chem, vol.132, pp.1699-1705, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01536691

G. Q. Zhao and G. Zhang, Influence of freeze-drying conditions on survival of Oenococcus oeni for malolactic fermentation, Int. J. Food Microbiol, vol.135, pp.64-67, 2009.

R. Carcoba and A. Rodriguez, Influence of cryoprotectants on the viability and acidifying activity of frozen and freeze-dried cells of the novel starter strain Lactococcus lactis ssp. lactis CECT 5180, Eur. Food Res. Technol, vol.211, pp.433-437, 2000.

. Résultats, A. S. Carvalho, J. Silva, P. Ho, P. Teixeira et al., Survival of freezedried Lactobacillus plantarum and Lactobacillus rhamnosus during storage in the presence of protectants, Biotechnol. Lett, vol.24, pp.1587-1591, 2002.

C. Li, J. L. Zhao, Y. T. Wang, X. Han, and N. Liu, Synthesis of cyclopropane fatty acid and its effect on freeze-drying survival of Lactobacillus bulgaricus L2 at different growth conditions, 2009.

, World J. Microbiol. Biotechnol, vol.25, pp.1659-1665

H. Velly, F. Fonseca, S. Passot, A. Delacroix-buchet, and M. Bouix, Cell growth and resistance of Lactococcus lactis subsp. lactis TOMSC161 following freezing, drying and freeze-dried storage are differentially affected by fermentation conditions, J. Appl. Microbiol, pp.1-12, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01194098

A. S. Carvalho, J. Silva, P. Ho, P. Teixeira, F. X. Malcata et al., Effect of various growth media upon survival during storage of freeze-dried Enterococcus faecalis and Enterococcus durans, J. Appl. Microbiol, vol.94, pp.947-952, 2003.

A. S. Carvalho, J. Silva, P. Ho, P. Teixeira, F. X. Malcata et al., Effects of various sugars added to growth and drying media upon thermotolerance and survival throughout storage of freeze-dried Lactobacillus delbrueckii ssp. bulgaricus, Biotechnol. Prog, vol.20, pp.248-254, 2004.

A. Siaterlis, G. Deepika, and D. Charalampopoulos, Effect of culture medium and cryoprotectants on the growth and survival of probiotic lactobacilli during freeze drying, 2009.

, Appl. Microbiol, vol.48, pp.295-301

J. R. Broadbent and C. Lin, Effect of heat shock or cold shock treatment on the resistance of Lactococcus lactis to freezing and lyophilization, Cryobiology, vol.39, pp.88-102, 1999.

L. Hua, W. Y. Zhao, H. Wang, Z. C. Li, and A. L. Wang, Influence of culture pH on freezedrying viability of Oenococcus oeni and its relationship with fatty acid composition, Food Bioprod. Process, vol.87, pp.56-61, 2009.

J. Palmfeldt and B. Hahn-hagerdal, Influence of culture pH on survival of Lactobacillus reuteri subjected to freeze-drying, Int. J. Food Microbiol, vol.55, pp.235-238, 2000.

C. Schwab, R. Vogel, and M. G. Ganzle, Influence of oligosaccharides on the viability and membrane properties of Lactobacillus reuteri TMW1.106 during freeze-drying, Cryobiology, vol.55, pp.108-114, 2007.

A. Schoug, J. Fischer, H. J. Heipieper, J. Schnuerer, and S. Hakansson, Impact of fermentation pH and temperature on freeze-drying survival and membrane lipid composition of Lactobacillus coryniformis Si3, J. Ind. Microbiol. Biotechnol, vol.35, pp.175-181, 2008.

H. Velly, F. Fonseca, S. Passot, C. Penicaud, H. Beinsteiner et al., Cyclopropanation of unsaturated fatty acids and membrane rigidification improve the freezeRésultats et discussion drying resistance of Lactococcus lactis subsp. lactis TOMSC161, Appl. Microbiol. Biotechnol, 2014.

W. Y. Zhao, H. Li, H. Wang, Z. C. Li, and A. L. Wang, The effect of acid stress treatment on viability and membrane fatty acid composition of Oenococcus oeni SD-2a, Agric. Sci. China, vol.8, pp.311-316, 2009.

W. S. Kim, N. Khunajakr, and N. W. Dunn, Effect of cold shock on protein synthesis and on cryotolerance of cells frozen for long periods in Lactococcus lactis, Cryobiology, vol.37, pp.86-91, 1998.

J. Prasad, M. Jarrow, P. Gopal, and P. , Heat and osmotic stress responses of probiotic Lactobacillus rhamnosus HN001 (DR20) in relation to viability after drying, Appl. Environ. Microbiol, vol.69, pp.917-925, 2003.

F. Streit, J. Delettre, G. Corrieu, and C. Beal, Acid adaptation of Lactobacillus delbrueckii subsp. bulgaricus induces physiological responses at membrane and cytosolic levels that improves cryotolerance, J. Appl. Microbiol, vol.105, pp.1071-1080, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01560799

Y. Wang, G. Corrieu, and C. Beal, Fermentation pH and temperature influence the cryotolerance of Lactobacillus acidophilus RD758, J. Dairy Sci, vol.88, pp.21-29, 2005.

Y. Wang, J. Delettre, G. Corrieu, and C. Beal, Starvation induces physiological changes that act on the cryotolerance of Lactobacillus acidophilus RD758, Biotechnol. Prog, vol.27, pp.342-350, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01001017

J. A. Wouters, H. Frenkiel, W. M. De-vos, O. P. Kuipers, and T. Abee, Cold shock proteins of Lactococcus lactis MG1363 are involved in cryoprotection and in the production of coldinduced proteins, Appl. Environ. Microbiol, vol.67, pp.5171-5178, 2001.

M. A. Azcarate-peril, R. Tallon, and T. R. Klaenhammer, Temporal gene expression and probiotic attributes of Lactobacillus acidophilus during growth in milk, J. Dairy Sci, vol.92, pp.870-886, 2009.

D. Cohen, J. Renes, F. G. Bouwman, E. G. Zoetendal, E. Mariman et al., Proteomic analysis of log to stationary growth phase Lactobacillus plantarum cells and a 2-DE database, Proteomics, vol.6, pp.6485-6493, 2006.

K. M. Koistinen, C. Plumed-ferrer, S. J. Lehesranta, S. O. Karenlampi, V. Wright et al., Comparison of growth-phase-dependent cytosolic proteomes of two Lactobacillus plantarum strains used in food and feed fermentations, FEMS Microbiol. Lett, vol.273, pp.12-21, 2007.

K. Laakso, K. Koskenniemi, J. Koponen, M. Kankainen, A. Surakka et al., Growth phaseassociated changes in the proteome and transcriptome of Lactobacillus rhamnosus GG in industrial-type whey medium, Microbial Biotechnology, vol.4, pp.746-766, 2011.

Z. Wang, M. Gerstein, and M. Snyder, RNA-Seq: a revolutionary tool for transcriptomics, Nature Reviews Genetics, vol.10, pp.57-63, 2009.

, Résultats et discussion

S. J. Geromanos, J. Vissers, J. C. Silva, C. A. Dorschel, G. Li et al., The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependant LC-MS/MS, Proteomics, vol.9, pp.1683-1695, 2009.

A. Miyoshi, T. Rochat, J. Gratadoux, L. Loir, Y. Oliveira et al., Oxidative stress in Lactococcus lactis, Genet. Mol. Res, vol.2, pp.348-359, 2003.

J. W. Sanders, G. Venema, and J. Kok, Environmental stress responses in Lactococcus lactis, Fems Microbiol. Rev, vol.23, pp.483-501, 1999.

H. P. Castro, P. M. Teixeira, and R. Kirby, Changes in the cell membrane of Lactobacillus bulgaricus during storage following freeze-drying, Biotechnol. Lett, vol.18, pp.99-104, 1996.

H. P. Castro, P. M. Teixeira, and R. Kirby, Evidence of membrane damage in Lactobacillus bulgaricus following freeze drying, J. Appl. Microbiol, vol.82, pp.87-94, 1997.

P. Teixeira, H. Castro, and R. Kirby, Evidence of membrane lipid oxidation of spray-dried Lactobacillus bulgaricus during storage, Lett. Appl. Microbiol, vol.22, pp.34-38, 1996.

R. J. Heckly and R. L. Dimmick, Correlations between free radical production and viability of lyophilized bacteria, Appl. Microbiol, vol.16, pp.1081-1085, 1968.

R. J. Heckly, R. L. Dimmick, and J. J. Windle, Free radical formation and survival of lyophilized microorganisms, J. Bacteriol, vol.85, pp.961-966, 1963.

M. F. Glatron and G. Rapoport, Biosynthesis of the parasporal inclusion of Bacillus thuringiensis: half-life of its corresponding messenger RNA, Biochimie, vol.54, pp.1291-1301, 1972.

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biology, vol.10, 2009.

S. Anders and W. Huber, Differential expression analysis for sequence count data, Genome Biology, vol.11, pp.1-12

Y. Benjamini and Y. Hochberg, Controlling the False Discovery Rate -a practical and powerful approach to multiple testing, J. Roy. Stat. Soc. B Met, vol.57, pp.289-300, 1995.

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem, vol.72, pp.248-254, 1976.

L. Poidevin, J. Berrin, C. Bennati-granier, A. Levasseur, I. Herpoel-gimbert et al., Comparative analyses of Podospora anserina secretomes reveal a large array of lignocellulose-active enzymes, Appl. Microbiol. Biotechnol, pp.1-13, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01070025

A. Gomes, E. Fernandes, and J. Lima, Fluorescence probes used for detection of reactive oxygen species, J. Biochem. Biophys. Methods, vol.65, pp.45-80, 2005.

, Résultats et discussion

H. E. Spinnler and G. Corrieu, Automatic method to quantify starter activity based on pH measurement, J.Dairy Res, vol.56, pp.755-764, 1989.

F. Streit, G. Corrieu, and C. Beal, Acidification improves cryotolerance of Lactobacillus delbrueckii subsp. bulgaricus CFL1, J. Biotechnol, vol.128, pp.659-667, 2007.

L. Kurtmann, C. U. Carlsen, J. Risbo, and L. H. Skibsted, Storage stability of freeze-dried Lactobacillus acidophilus (La-5) in relation to water activity and presence of oxygen and ascorbate, Cryobiology, vol.58, pp.175-180, 2009.

F. Fonseca, C. Beal, F. Mihoub, M. Marin, and G. Corrieu, Improvement of cryopreservation of Lactobacillus delbrueckii subsp. bulgaricus CFL1 with additives displaying different protective effects, Int. Dairy J, vol.13, pp.917-926, 2003.

A. Bolotin, P. Wincker, S. Mauger, O. Jaillon, K. Malarme et al., The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403, Genome Res, vol.11, pp.731-753, 2001.

M. H. Charon, A. Volbeda, E. Chabriere, L. Pieulle, and J. C. Fontecilla-camps, Structure and electron transfer mechanism of pyruvate : ferredoxin oxidoreductase, Curr. Opin. Struc. Biol, vol.9, pp.663-669, 1999.

M. Cocaign-bousquet, C. Garrigues, P. Loubiere, and N. D. Lindley, Physiology of pyruvate metabolism in Lactococcus lactis, Anton. Leeuw, vol.70, pp.253-267, 1996.

J. G. Ferry, Acetate kinase and phosphotransacetylase, Methods in Enzymology: Methods in Methane Metabolism, Pt A, vol.494, pp.219-231, 2011.

P. Goffin, L. Muscariello, F. Lorquet, A. Stukkens, D. Prozzi et al.,

P. Hols, Involvement of pyruvate oxidase activity and acetate production in the survival of Lactobacillus plantarum during the stationary phase of aerobic growth, Appl. Environ. Microbiol, vol.72, pp.7933-7940, 2006.

A. Kletzin and M. Adams, Molecular and phylogenetic characterization of pyruvate and 2-ketoisovalerate ferredoxin oxidoreductases from Pyrococcus furiosus and pyruvate ferredoxin oxidoreductase from Thermotoga maritima, J. Bacteriol, vol.178, pp.248-257, 1996.

C. Marty-teysset, F. De-la-torre, and J. R. Garel, Increased production of hydrogen peroxide by Lactobacillus delbrueckii subsp. bulgaricus upon aeration: Involvement of an NADH oxidase in oxidative stress, Appl. Environ. Microbiol, vol.66, pp.262-267, 2000.

E. Van-niel, K. Hofvendahl, and B. Hahn-hagerdal, Formation and conversion of oxygen metabolites by Lactococcus lactis subsp. lactis ATCC 19435 under different growth conditions, Appl. Environ. Microbiol, vol.68, pp.4350-4356, 2002.

R. Brooijmans, B. Poolman, G. K. Schuurman-wolters, W. M. De-vos, and J. Hugenholtz, Generation of a membrane potential by Lactococcus lactis through aerobic electron transport, J. Bacteriol, vol.189, pp.5203-5209, 2007.

L. Flohe, S. Toppo, G. Cozza, and F. Ursini, A comparison of thiol peroxidase mechanisms, 2011.

, Antioxidants & Redox Signaling, vol.15, pp.763-780

J. W. Sanders, K. J. Leenhouts, A. J. Haandrikman, G. Venema, and J. Kok, Stress response in Lactococcus lactis -Cloning, expression, analysis, and mutation of the lactococcal superoxide dismutase gene, J. Bacteriol, vol.177, pp.5254-5260, 1995.

D. Frees and H. Ingmer, ClpP participates in the degradation of misfolded protein in Lactococcus lactis, Mol. Microbiol, vol.31, pp.79-87, 1999.

M. O'connell-motherway, D. Van-sinderen, F. Morel-deville, G. F. Fitzgerald, and S. D. Ehrlich,

P. Morel, Six putative two-component regulatory systems isolated from Lactococcus lactis subsp. cremoris MG1363. Microbiol, vol.146, pp.935-947, 2000.

K. Vido, N. Diemer, A. Van-dorsselaer, E. Leize, V. Juillard et al., Roles of thioredoxin reductase during the aerobic life of Lactococcus lactis, J. Bacteriol, vol.187, pp.601-610, 2005.

M. Mermod, F. Mourlane, S. Waltersperger, A. E. Oberholzer, U. Baumann et al., Structure and function of CinD (YtjD) of Lactococcus lactis, a copper induced nitroreductase involved in defense against oxidative stress, J. Bacteriol, vol.192, pp.4172-4180, 2010.

D. Touati, Iron and oxidative stress in bacteria, Arch. Biochem. Biophys, vol.373, pp.1-6, 2000.

M. S. Turner, Y. P. Tan, and P. M. Giffard, Inactivation of an iron transporter in Lactococcus lactis results in resistance to tellurite and oxidative stress, Appl. Environ. Microbiol, vol.73, pp.6144-6149, 2007.

M. Achour, N. Mtimet, C. Cornelius, S. Zgouli, A. Mahjoub et al., , 2001.

, Application of the accelerated shelf life testing method (ASLT) to study the survival rates of freezedried Lactococcus starter cultures, Journal of Chemical Technology and Biotechnology, vol.76, pp.624-628

K. Adamberg, S. Kask, T. M. Laht, and T. Paalme, The effect of temperature and pH on the growth of lactic acid bacteria: a pH-auxostat study, International Journal of Food Microbiology, vol.85, pp.171-183, 2003.

C. Akerberg, K. Hofvendahl, G. Zacchi, and B. Hahn-hagerdal, Modelling the influence of pH, temperature, glucose and lactic acid concentrations on the kinetics of lactic acid production by Lactococcus lactis ssp. lactis ATCC 19435 in whole-wheat flour, Applied Microbiology and Biotechnology, vol.49, pp.682-690, 1998.

A. Ampatzoglou, B. Schurr, G. Deepika, S. Baipong, and D. Charalampopoulos, Influence of fermentation on the acid tolerance and freeze drying survival of Lactobacillus rhamnosus GG, Biochemical Engineering Journal, vol.52, pp.65-70, 2010.

S. Anders and W. Huber, Differential expression analysis for sequence count data, Genome Biology, vol.11, pp.1-12, 2010.

A. B. Andersen, M. S. Fog-petersen, H. Larsen, and L. H. Skibsted, Storage stability of freezedried starter cultures (Streptococcus thermophilus) as related to physical state of freezing matrix, Food Science and Technology-Lebensmittel-Wissenschaft & Technologie, vol.32, pp.540-547, 1999.

M. Aschenbrenner, U. Kulozik, and P. Foerst, Evaluation of the relevance of the glassy state as stability criterion for freeze-dried bacteria by application of the Arrhenius and WLF model, Cryobiology, vol.65, pp.308-318, 2012.

I. Ayala-hernandez, A. Hassan, H. D. Goff, R. M. De-orduna, and M. Corredig, Production, isolation and characterization of exopolysaccharides produced by Lactococcus lactis subsp. cremoris JFR1 and their interaction with milk proteins: Effect of pH and media composition, International Dairy Journal, vol.18, pp.1109-1118, 2008.

L. Baati, C. Fabre-gea, D. Auriol, and P. J. Blanc, Study of the cryotolerance of Lactobacillus acidophilus: effect of culture and freezing conditions on the viability and cellular protein levels, International Journal of Food Microbiology, vol.59, pp.241-247, 2000.

H. Bank and P. Mazur, Visualization of freezing damage, The Journal of cell biology, vol.57, pp.729-771, 1973.

C. Beal and G. Corrieu, Viability and acidification activity of pure and mixed starters of Streptococcus salivarius ssp. thermophilus 404 and Lactobacillus delbrueckii ssp. bulgaricus 398 at the different steps of their production, Lebensmittel-Wissenschaft und -Technologie, vol.27, pp.86-92, 1994.

C. Beal, F. Fonseca, and G. Corrieu, Resistance to freezing and frozen storage of Streptococcus thermophilus is related to membrane fatty acid composition, Journal of Dairy Science, vol.84, pp.2347-2356, 2001.

C. Beal, M. Marin, F. Fonseca, and G. Corrieu, Procédé de préparation d'une compostion lyophilisée contenant des bactéries lactiques à viabilité et activité bactériennes améliorées lors d'un stockage à température ambiante et composition obtenue, INRA. FR Pat, 2001.

C. Beal, M. Marin, E. Fontaine, F. Fonseca, J. P. Obert et al., Production et conservation des ferments lactiques et probiotiques, Bactéries lactiques, de la génétique aux ferments, pp.661-785, 2008.

L. Beney and P. Gervais, Influence of the fluidity of the membrane on the response of microorganisms to environmental stresses, Applied Microbiology and Biotechnology, vol.57, pp.34-42, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02291708

Y. Benjamini and Y. Hochberg, Controlling the False Discovery Rate -a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B-Methodological, vol.57, pp.289-300, 1995.

B. R. Bhandari and T. Howes, Implication of glass transition for the drying and stability of dried foods, Journal of Food Engineering, vol.40, pp.71-79, 1999.

B. Bibal, G. Goma, Y. Vayssier, and A. Pareilleux, Influence of pH, lactose and lactic acid on the growth of Streptococcus cremoris : a kinetic study, Applied Microbiology and Biotechnology, vol.28, pp.340-344, 1988.

J. C. Bischof, W. F. Wolkers, N. M. Tsvetkova, A. E. Oliver, and J. H. Crowe, Lipid and protein changes due to freezing in dunning AT-1 cells, Cryobiology, vol.45, pp.22-32, 2002.

A. Bolotin, P. Wincker, S. Mauger, O. Jaillon, K. Malarme et al., The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403, Genome Research, vol.11, pp.731-753, 2001.

J. W. Borst, N. V. Visser, O. Kouptsova, and A. Visser, Oxidation of unsaturated phospholipids in membrane bilayer mixtures is accompanied by membrane fluidity changes, Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids, vol.1487, pp.61-73, 2000.

J. L. Bouty and J. C. Mouchot, Utilization of a freeze-dried culture for direct inoculation in the manufacture of a pressed cheese (Tomme de Savoie), Revue Laitiere Francaise, vol.401, pp.19-25, 1981.

J. Bouvier, P. Bordes, Y. Romeo, A. Fourcans, I. Bouvier et al., Characterization of, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00427480

, OpuA, a glycine-betaine uptake system of Lactococcus lactis, Journal of Molecular Microbiology and Biotechnology, vol.2, pp.199-205

T. F. Bozoglu, M. Ozilgen, and U. Bakir, Survival kinetics of lactic acid starter cultures during and after freeze drying, Enzyme and Microbial Technology, vol.9, pp.531-537, 1987.

J. R. Broadbent and C. Lin, Effect of heat shock or cold shock treatment on the resistance of Lactococcus lactis to freezing and lyophilization, Cryobiology, vol.39, pp.88-102, 1999.

K. Bryson, V. Loux, R. Bossy, P. Nicolas, S. Chaillou et al.,

M. Hoebeke, P. Bessieres, and J. F. Gibrat, AGMIAL: implementing an annotation strategy for prokaryote genomes as a distributed system, Nucleic Acids Research, vol.34, pp.3533-3545, 2006.

A. S. Carvalho, J. Silva, P. Ho, P. Teixeira, F. X. Malcata et al., Effect of various growth media upon survival during storage of freeze-dried Enterococcus faecalis and Enterococcus durans, Journal of Applied Microbiology, vol.94, pp.947-952, 2003.

A. S. Carvalho, J. Silva, P. Ho, P. Teixeira, F. X. Malcata et al., Effects of addition of sucrose and salt, and of starvation upon thermotolerance and survival during storage of freeze-dried Lactobacillus delbrueckii ssp. bulgaricus, Journal of Food Science, vol.68, pp.2538-2541, 2003.

A. S. Carvalho, J. Silva, P. Ho, P. Teixeira, F. X. Malcata et al., Protective effect of sorbitol and monosodium glutamate during storage of freeze-dried lactic acid bacteria, Lait, vol.83, pp.203-210, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00895495

A. S. Carvalho, J. Silva, P. Ho, P. Teixeira, F. X. Malcata et al., Effects of various sugars added to growth and drying media upon thermotolerance and survival throughout storage of freeze-dried Lactobacillus delbrueckii ssp. bulgaricus, Biotechnology Progress, vol.20, pp.248-254, 2004.

E. Casalta and M. C. Montel, Safety assessment of dairy microorganisms: The Lactococcus genus, International Journal of Food Microbiology, vol.126, pp.271-273, 2008.

H. P. Castro, P. M. Teixeira, and R. Kirby, Storage of lyophilized cultures of Lactobacillus bulgaricus under different relative humidities and atmospheres, Applied Microbiology and Biotechnology, vol.44, pp.172-176, 1995.

H. P. Castro, P. M. Teixeira, and R. Kirby, Changes in the cell membrane of Lactobacillus bulgaricus during storage following freeze-drying, Biotechnology Letters, vol.18, pp.99-104, 1996.

J. Cerning, Exocellular polysaccharides produced by lactic acid bacteria, Fems Microbiology Reviews, vol.7, pp.113-143, 1990.

C. P. Champagne, F. Mondou, Y. Raymond, and D. Roy, Effect of polymers and storage temperature on the stability of freeze-dried lactic acid bacteria, Food Research International, vol.29, pp.555-562, 1996.

C. P. Champagne, D. Gagnon, D. St-gelais, and J. C. Vuillemard, Interactions between Lactococcus lactis and Streptococcus thermophilus strains in Cheddar cheese processing conditions, International Dairy Journal, vol.19, pp.669-674, 2009.

M. P. Chapot-chartier, E. Vinogradov, I. Sadovskaya, G. Andre, M. Y. Mistou et al.,

S. Furlan, E. Bidnenko, P. Courtin, C. Pechoux, P. Hols et al., , 2010.

, Cell surface of Lactococcus lactis is covered by a protective polysaccharide pellicle, Journal of Biological Chemistry, vol.285, pp.10464-10471

F. J. Chavarri, M. Depaz, and M. Nunez, Optimization of fermentation parameters for the production of concentrated starters from nonbitter Streptococcus lactis Inia-12, Journal of Food Science, vol.53, pp.1854-1857, 1988.

M. Cocaign-bousquet, C. Garrigues, P. Loubiere, and N. D. Lindley, Physiology of pyruvate metabolism in Lactococcus lactis, Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, vol.70, pp.253-267, 1996.

T. M. Cogan, M. Barbosa, E. Beuvier, B. Bianchi-salvadori, P. S. Cocconcelli et al., , 1997.

, Characterization of the lactic acid bacteria in artisanal dairy products, Journal of Dairy Research, vol.64, pp.409-421

P. B. Conrad, D. P. Miller, P. R. Cielenski, and J. J. De-pablo, Stabilization and preservation of Lactobacillus acidophilus in saccharide matrices, Cryobiology, vol.41, pp.17-24, 2000.

B. M. Corcoran, R. P. Ross, G. F. Fitzgerald, and C. Stanton, Comparative survival of probiotic lactobacilli spray-dried in the presence of prebiotic substances, Journal of Applied Microbiology, vol.96, pp.1024-1039, 2004.

D. Corroler, I. Mangin, N. Desmasures, and M. Gueguen, An ecological study of lactococci isolated from raw milk in the Camembert cheese Registered Designation of Origin area, Applied and Environmental Microbiology, vol.64, pp.4729-4735, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02087666

E. Costa, J. Usall, N. Teixido, N. Garcia, and I. Vinas, Effect of protective agents, rehydration media and initial cell concentration on viability of Pantoea agglomerans strain CPA-2 subjected to freeze-drying, Journal of Applied Microbiology, vol.89, pp.793-800, 2000.

N. E. Costa, L. Wang, M. E. Auty, J. A. Hannon, M. Sweeney et al., , 2012.

. Rheological, microscopic and primary chemical characterisation of the exopolysaccharide produced by Lactococcus lactis subsp. cremoris DPC6532, Dairy Science & Technology, vol.92, pp.219-235

I. Coulibaly, R. Dubois-dauphin, S. Danthine, L. Majad, T. Mejoub et al.,

J. P. Wathelet and P. Thonart, Preservation of industrial's lactic acid bacteria (probiotics) by freeze-drying, vol.15, pp.287-299, 2011.

J. E. Cronan, Phospholipid modifications in bacteria, Current Opinion in Microbiology, vol.5, pp.202-205, 2002.

J. H. Crowe, L. M. Crowe, and D. Chapman, Infrared spectroscopic studies on interactions of water and carbohydrates with a biological membrane, Archives of biochemistry and biophysics, vol.232, pp.400-407, 1984.

J. H. Crowe, F. A. Hoekstra, L. M. Crowe, T. J. Anchordoguy, and E. Drobnis, Lipid phase transitions measured in intact cells with Fourier transform infrared spectroscopy, Cryobiology, vol.26, pp.76-84, 1989.

J. H. Crowe, B. D. Mckersie, and L. M. Crowe, Effects of free fatty acids and transition temperature on the stability of dry liposomes, Biochimica et biophysica acta, vol.979, pp.7-10, 1989.

J. H. Crowe, J. F. Carpenter, and L. M. Crowe, The role of vitrification in anhydrobiosis, Annual Review of Physiology, vol.60, pp.73-103, 1998.

L. N. Csonka, Physiological and genetic responses of bacteria to osmotic stress, 1989.

, Microbiological Reviews, vol.53, pp.121-147

J. Delcour, T. Ferain, M. Deghorain, E. Palumbo, and P. Hols, The biosynthesis and functionality of the cell-wall of lactic acid bacteria, Proceedings of the Sixth Symposium on Lactic Acid Bacteria: Genetics, Metabolism and Applications, vol.76, pp.159-184, 1999.

T. J. Denich, L. A. Beaudette, H. Lee, and J. T. Trevors, Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes, Journal of Microbiological Methods, vol.52, pp.149-182, 2003.

S. Desmons, H. Krhouz, P. Evrard, and P. Thonart, Improvement of lactic cell production, Applied Biochemistry and Biotechnology, pp.70-72, 1998.

P. De-urraza and A. G. De, Induced cryotolerance of Lactobacillus delbrueckii subsp, 1997.

, bulgaricus LBB by preincubation at suboptimal temperatures with a fermentable sugar, Cryobiology, vol.35, pp.159-164

P. Duwat, R. Deoliveira, S. D. Ehrlich, and S. Boiteux, Repair of oxidative DNA damage in Gram positive bacteria : the Lactococcus lactis Fpg protein, Microbiology-Uk, vol.141, pp.411-417, 1995.

M. L. Fernandez-murga, G. M. Cabrera, G. Font-de-valdez, A. Disalvo, and A. M. Seldes, , 2000.

, Influence of growth temperature on cryotolerance and lipid composition of Lactobacillus acidophilus, Journal of Applied Microbiology, vol.88, pp.342-348

V. Ferreira, V. Soares, C. Santos, J. Silva, P. Gibbs et al., Survival of Lactobacillus sakei during heating, drying and storage in the dried state when growth has occurred in the presence of sucrose or monosodium glutamate, Biotechnology Letters, vol.27, pp.249-252, 2005.

P. Foerst, U. Kulozik, M. Schmitt, S. Bauer, and C. Santivarangkna, Storage stability of vacuum-dried probiotic bacterium Lactobacillus paracasei F19. Food and Bioproducts Processing, vol.90, pp.295-300, 2012.

F. Fonseca, C. Beal, and G. Corrieu, Method of quantifying the loss of acidification activity of lactic acid starters during freezing and frozen storage, Journal of Dairy Research, vol.67, pp.83-90, 2000.

F. Fonseca, C. Beal, and G. Corrieu, Operating conditions that affect the resistance of lactic acid bacteria to freezing and frozen storage, Cryobiology, vol.43, pp.189-198, 2001.

F. Fonseca, J. P. Obert, C. Beal, and M. Marin, State diagrams and sorption isotherms of bacterial suspensions and fermented medium, Thermochimica Acta, vol.366, pp.167-182, 2001.

F. Fonseca, S. Passot, O. Cunin, and M. Marin, Collapse temperature of freeze-dried Lactobacillus bulgaricus suspensions and protective media, Biotechnology Progress, vol.20, pp.229-238, 2004.

F. Fonseca, S. Passot, P. Lieben, and M. Marin, Collapse temperature of bacterial suspensions: The effect of cell type and concentration, Cryoletters, vol.25, pp.425-434, 2004.

G. Font-de-valdez, G. S. Degiori, A. Holgado, and G. Oliver, Protective effect of adonitol on lactic acid bacteria subjected to freeze-drying, Applied and Environmental Microbiology, vol.45, pp.302-304, 1983.

G. Font-de-valdez, G. Savoy-de-giori, A. Pesce-de-ruiz-holgado, and G. Oliver, Comparative study of the efficiency of some additives in protecting lactic acid bacteria against freeze-drying, 1983.

, Cryobiology, vol.20, pp.560-566

G. Font-de-valdez, G. Savoy-de-giori, A. P. Ruiz-holgado, and G. Oliver, Rehydration conditions and viability of freeze-dried lactic acid bacteria, Cryobiology, vol.22, pp.574-577, 1985.

M. B. Franca, A. D. Panek, and E. C. Eleutherio, Oxidative stress and its effects during dehydration, Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology, vol.146, pp.621-631, 2007.

C. Garrigues, M. Mercade, P. Loubiere, N. D. Lindley, and M. Cocaign-bousquet, Metabolic behaviour of Lactococcus lactis in response to environmental conditions, Lait, vol.78, pp.145-155, 1998.

J. Gautier, S. Passot, C. Penicaud, H. Guillemin, S. Cenard et al., A low membrane lipid phase transition temperature is associated with a high cryotolerance of Lactobacillus delbrueckii subspecies bulgaricus CFL1, Journal of Dairy Science, vol.96, pp.5591-5602, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01001061

V. Gautier, Développement de méthodes quantitatives sans marquage pour l'étude protéomique des cellules endothéliales, vol.203, 2012.

S. J. Geromanos, J. P. Vissers, J. C. Silva, C. A. Dorschel, G. Z. Li et al., The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependant LC-MS/MS, Proteomics, vol.9, pp.1683-1695, 2009.

I. Goldberg and L. Eschar, Stability of lactic acid bacteria to freezing as related to their fatty acid composition, Applied and Environmental Microbiology, vol.33, pp.489-496, 1977.

A. Gomes, E. Fernandes, and J. Lima, Fluorescence probes used for detection of reactive oxygen species, Journal of Biochemical and Biophysical Methods, vol.65, pp.45-80, 2005.

P. L. Graumann and M. A. Marahiel, A superfamily of proteins that contain the cold-shock domain, Trends in Biochemical Sciences, vol.23, pp.286-290, 1998.

D. W. Grogan and J. E. Cronan, Cyclopropane ring formation in membrane lipids of bacteria, Microbiology and Molecular Biology Reviews, vol.61, pp.429-441, 1997.

A. Guillot, D. Obis, and M. Y. Mistou, Fatty acid membrane composition and activation of glycine-betaine transport in Lactococcus lactis subjected to osmotic stress, International Journal of Food Microbiology, vol.55, pp.47-51, 2000.

R. J. Heckly and J. Quay, A brief review of lyophilization damage and repair in bacterial preparations, Cryobiology, vol.18, pp.592-597, 1981.

B. Higl, L. Kurtmann, C. U. Carlsen, J. Ratjen, P. Forst et al., Impact of water activity, temperature, and physical state on the storage stability of Lactobacillus paracasei ssp. paracasei freeze-dried in a lactose matrix, Biotechnology Progress, vol.23, pp.794-800, 2007.

K. Hofvendahl, E. W. Van-niel, and B. Hahn-hagerdal, Effect of temperature and pH on growth and product formation of Lactococcus lactis ssp. lactis ATCC 19435 growing on maltose, Applied Microbiology and Biotechnology, vol.51, pp.669-672, 1999.

H. Holo, O. Nilssen, and I. F. Nes, Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris : Isolation and characterization of the protein and its gene, Journal of Bacteriology, vol.173, pp.3879-3887, 1991.

G. Horn, R. Hofweber, W. Kremer, and H. R. Kalbitzer, Structure and function of bacterial cold shock proteins, Cellular and Molecular Life Sciences, vol.64, pp.1457-1470, 2007.

L. Hua, W. Y. Zhao, H. Wang, Z. C. Li, and A. L. Wang, Influence of culture pH on freezedrying viability of Oenococcus oeni and its relationship with fatty acid composition, Food and Bioproducts Processing, vol.87, pp.56-61, 2009.

L. J. Huang, Z. X. Lu, Y. J. Yuan, F. X. Lu, and X. M. Bie, Optimization of a protective medium for enhancing the viability of freeze-dried Lactobacillus delbrueckii subsp. bulgaricus based on response surface methodology, Journal of Industrial Microbiology & Biotechnology, vol.33, pp.55-61, 2006.

P. R. Jensen and K. Hammer, Minimal requirements for exponential growth of Lactococcus lactis, Applied and Environmental Microbiology, vol.59, pp.4363-4366, 1993.

J. A. Johnson and M. R. Etzel, Properties of Lactobacillus helveticus CNRZ-32 attenuated by spray-drying, freeze-drying, or freezing, Journal of Dairy Science, vol.78, pp.761-768, 1995.

T. Johnsson, P. Nikkila, L. Toivonen, H. Rosenqvist, and S. Laakso, Cellular fatty acid profiles of Lactobacillus and Lactococcus strains in relation to the oleic acid content of the cultivation medium, Applied and Environmental Microbiology, vol.61, pp.4497-4499, 1995.

K. Jouppila, J. Kansikas, and Y. H. Roos, Glass transition, water plasticization, and lactose crystallization in skim milk powder, Journal of Dairy Science, vol.80, pp.3152-3160, 1997.

V. Juillard, C. Foucaud, M. Desmazeaud, and J. Richard, Utilization of nitrogen sources during growth of Lactococcus lactis in milk, Lait, vol.76, pp.13-24, 1996.

E. P. Kets, P. J. Teunissen, and J. A. De-bont, Effect of compatible solutes on survival of lactic acid bacteria subjected to drying, Applied and Environmental Microbiology, vol.62, pp.259-261, 1996.

H. Keweloh and H. J. Heipieper, Trans unsaturated fatty acids in bacteria, Lipids, vol.31, pp.129-137, 1996.

M. Kilstrup, S. Jacobsen, K. Hammer, and F. K. Vogensen, Induction of heat shock proteins, 1997.

. Dnak, GroEL, and GroES by salt stress in Lactococcus lactis, Applied and Environmental Microbiology, vol.63, pp.1826-1837

W. S. Kim and N. W. Dunn, Identification of a cold shock gene in lactic acid bacteria and the effect of cold shock on cryotolerance, Current Microbiology, vol.35, pp.59-63, 1997.

W. S. Kim, N. Khunajakr, and N. W. Dunn, Effect of cold shock on protein synthesis and on cryotolerance of cells frozen for long periods in Lactococcus lactis, Cryobiology, vol.37, pp.86-91, 1998.

S. Koch, E. Eugster-meier, G. Oberson, L. Meile, and C. Lacroix, Effects of strains and growth conditions on autolytic activity and survival to freezing and lyophilization of Lactobacillus delbrueckii ssp. lactis isolated from cheese, International Dairy Journal, vol.18, pp.187-196, 2008.

S. Koch, G. Oberson, E. Eugster-meier, L. Melle, and C. Lacroix, Osmotic stress induced by salt increases cell yield, autolytic activity, and survival of lyophilization of Lactobacillus delbrueckii subsp. lactis, International Journal of Food Microbiology, vol.117, pp.36-42, 2007.

W. N. Konings, B. Poolman, and A. J. Driessen, Bioenergetics and solute transport in lactococci, Crc Critical Reviews in Microbiology, vol.16, pp.419-476, 1989.

A. K. Konstantinidis, W. Kuu, L. Otten, S. L. Nail, and R. R. Sever, Controlled nucleation in freeze-drying: effects on pore size in the dried product layer, mass transfer resistance, and primary drying rate, Journal of Pharmaceutical Sciences, vol.100, pp.3453-3470, 2011.

L. Kurtmann, C. U. Carlsen, J. Risbo, and L. H. Skibsted, Storage stability of freeze-dried Lactobacillus acidophilus (La-5) in relation to water activity and presence of oxygen and ascorbate, Cryobiology, vol.58, pp.175-180, 2009.

L. Kurtmann, L. H. Skibsted, and C. U. Carlsen, Browning of freeze-dried probiotic bacteria cultures in relation to loss of viability during storage, Journal of Agricultural and Food Chemistry, vol.57, pp.6736-6741, 2009.

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biology, vol.10, pp.1-10, 2009.

J. Law and A. Haandrikman, Proteolytic enzymes of lactic acid bacteria, International Dairy Journal, vol.7, pp.1-11, 1997.

H. Leclerc, D. Izard, M. O. Husson, P. Wattre, and E. Jakubczak, Microbiologie générale. Doin éditeurs, pp.45-84, 1988.

D. A. Lee and E. B. Collins, Influences of temperature on growth of Streptococcus cremoris and Streptococcus lactis, Journal of Dairy Science, vol.59, pp.405-409, 1976.

S. B. Leslie, E. Israeli, B. Lighthart, J. H. Crowe, and L. M. Crowe, Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying, Applied and Environmental Microbiology, vol.61, pp.3592-3597, 1995.

H. Levine and L. Slade, Thermomechanical properties of small-carbohydrate water glasses and rubbers -kinetically metastable systems at sub-zero temperatures, Journal of the Chemical SocietyFaraday Transactions I, vol.84, pp.2619-2633, 1988.

B. K. Li, F. W. Tian, X. M. Liu, J. X. Zhao, H. Zhang et al., Effects of cryoprotectants on viability of Lactobacillus reuteri CICC6226, Applied Microbiology and Biotechnology, vol.92, p.609, 2011.

C. Li, J. L. Zhao, Y. T. Wang, X. Han, and N. Liu, Synthesis of cyclopropane fatty acid and its effect on freeze-drying survival of Lactobacillus bulgaricus L2 at different growth conditions, World Journal of Microbiology & Biotechnology, vol.25, pp.1659-1665, 2009.

Y. Li, J. Hugenholtz, T. Abee, and D. Molenaar, Glutathione protects Lactococcus lactis against oxidative stress, Applied and Environmental Microbiology, vol.69, pp.5739-5745, 2003.

D. M. Linares, J. Kok, and B. Poolman, Genome sequences of Lactococcus lactis MG1363 (Revised) and NZ9000 and comparative physiological studies, Journal of Bacteriology, vol.192, pp.5806-5812, 2010.

L. J. Linders, G. I. De-jong, G. Meerdink, and K. Van't-riet, Carbohydrates and the dehydration inactivation of Lactobacillus plantarum: The role of moisture distribution and water activity, Journal of Food Engineering, vol.31, pp.237-250, 1997.

L. J. Linders, W. F. Wolkers, F. A. Hoekstra, and K. Van't-riet, Effect of added carbohydrates on membrane phase behavior and survival of dried Lactobacillus plantarum, Cryobiology, vol.35, pp.31-40, 1997.

L. J. Linders, E. P. Kets, J. A. De-bont, and K. Van't-riet, Combined influence of growth and drying conditions on the activity of dried Lactobacillus plantarum, Biotechnology Progress, vol.14, pp.537-539, 1998.

W. Liu and J. N. Hansen, Some chemical and physical properties of nisin, a small protein antibiotic produced by Lactococcus lactis, Applied and Environmental Microbiology, vol.56, pp.2551-2558, 1990.

B. Loffeld and H. Keweloh, cis/trans Isomerization of unsaturated fatty acids as possible control mechanism of membrane fluidity in Pseudomonas putida P8, Lipids, vol.31, pp.811-815, 1996.

P. J. Looijesteijn and J. Hugenholtz, Uncoupling of growth and exopolysaccharide production by Lactococcus lactis subsp. cremoris NIZO B40 and optimization of its synthesis, Journal of Bioscience and Bioengineering, vol.88, pp.178-182, 1999.

G. L. Lorca and G. Font-de-valdez, The effect of suboptimal growth temperature and growth phase on resistance of Lactobacillus acidophilus to environmental stress, Cryobiology, vol.39, pp.144-149, 1999.

M. Madigan and J. Martinko, Biologie des micro-organismes, p.77, 2006.

C. Magni, D. De-mendoza, W. N. Konings, and J. S. Lolkema, Mechanism of citrate metabolism in Lactococcus lactis: Resistance against lactate toxicity at low pH, Journal of Bacteriology, vol.181, pp.1451-1457, 1999.

K. Makarova, A. Slesarev, Y. Wolf, A. Sorokin, B. Mirkin et al.,

V. Karamychev, N. Polouchine, V. Shakhova, I. Grigoriev, Y. Lou et al.,

K. Baldwin, J. H. Lee, I. Diaz-muniz, B. Dosti, V. Smeianov et al.,

F. Breidt, J. Broadbent, R. Hutkins, D. O'sullivan, J. Steele et al., Comparative genomics of the lactic acid bacteria, vol.103, pp.15611-15616, 2006.

M. Marin and F. Rene, Lyophilisation. Techniques de l'ingénieur, document F 3 240, pp.1-9, 2008.

S. I. Martins, W. M. Jongen, and M. A. Van-boekel, A review of Maillard reaction in food and implications to kinetic modelling, Trends in Food Science & Technology, vol.11, pp.364-373, 2001.

G. I. Martos, C. J. Minahk, G. Font-de-valdez, and R. Morero, Effects of protective agents on membrane fluidity of freeze-dried Lactobacillus delbrueckii ssp. bulgaricus, Letters in Applied Microbiology, vol.45, pp.282-288, 2007.

P. Mazur, Role of intracellular freezing in death of cells cooled at supraoptimal rates, Cryobiology, vol.14, pp.251-272, 1977.

M. Gann and L. E. , Differing actions of penetrating and nonpenetrating cryoprotective agents, Cryobiology, vol.15, pp.382-390, 1978.

M. Mercade, N. D. Lindley, and P. Loubiere, Metabolism of Lactococcus lactis subsp. cremoris MG 1363 in acid stress conditions, International Journal of Food Microbiology, vol.55, pp.161-165, 2000.

M. Mermod, F. Mourlane, S. Waltersperger, A. E. Oberholzer, U. Baumann et al., , 2010.

, Structure and function of CinD (YtjD) of Lactococcus lactis, a copper-induced nitroreductase involved in defense against oxidative stress, Journal of Bacteriology, vol.192, pp.4172-4180

S. Mills, O. E. Mc-auliffe, A. Coffey, G. F. Fitzgerald, and R. P. Ross, Plasmids of lactococcigenetic accessories or genetic necessities?, Fems Microbiology Reviews, vol.30, pp.243-273, 2006.

D. Molenaar, A. Hagting, H. Alkema, A. J. Driessen, and W. N. Konings, Characteristics and osmoregulatory roles of uptake systems for proline and glycine betaine in Lactococcus lactis, Journal of Bacteriology, vol.175, pp.5438-5444, 1993.

J. Munoz-rojas, P. Bernal, E. Duque, P. Godoy, A. Segura et al., Involvement of cyclopropane fatty acids in the response of Pseudomonas putida KT2440 to freeze-drying, Applied and Environmental Microbiology, vol.72, pp.472-477, 2006.

N. C. Mykytczuk, J. T. Trevors, L. G. Leduc, and G. D. Ferroni, Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress, Progress in Biophysics & Molecular Biology, vol.95, pp.60-82, 2007.

J. O'callaghan and S. Condon, Growth of Lactococcus lactis strains at low water activity: correlation with the ability to accumulate glycine betaine, International Journal of Food Microbiology, vol.55, pp.127-131, 2000.

D. Obis, A. Guillot, J. C. Gripon, P. Renault, A. Bolotin et al., Genetic and biochemical characterization of a high-affinity betaine uptake system (BusA) in Lactococcus lactis reveals a new functional organization within bacterial ABC transporters, Journal of Bacteriology, vol.181, pp.6238-6246, 1999.

D. Obis, A. Guillot, and M. Y. Mistou, Tolerance to high osmolality of Lactococcus lactis subsp. lactis and cremoris is related to the activity of a betaine transport system, Fems Microbiology Letters, vol.202, pp.39-44, 2001.

H. Oldenhof, W. F. Wolkers, F. Fonseca, S. P. Passot, and M. Marin, Effect of sucrose and maltodextrin on the physical properties and survival of air-dried Lactobacillus bulgaricus: An in situ Fourier transform infrared spectroscopy study, Biotechnology Progress, vol.21, pp.885-892, 2005.

J. Palmfeldt and B. Hahn-hagerdal, Influence of culture pH on survival of Lactobacillus reuteri subjected to freeze-drying, International Journal of Food Microbiology, vol.55, pp.235-238, 2000.

J. M. Panoff, B. Thammavongs, J. M. Laplace, A. Hartke, P. Boutibonnes et al., , 1995.

, Cryotolerance and cold adaptation in Lactococcus lactis subsp. lactis IL1403. Cryobiology, vol.32, pp.516-520

D. Passerini, C. Beltramo, M. Coddeville, Y. Quentin, P. Ritzenthaler et al.,

P. L. Bourgeois, Genes but not genomes reveal bacterial domestication of Lactococcus lactis, Plos One, vol.5, pp.1-12, 2010.

S. Passot, S. Cenard, I. Douania, I. C. Trelea, and F. Fonseca, Critical water activity and amorphous state for optimal preservation of lyophilised lactic acid bacteria, Food Chemistry, vol.132, pp.1699-1705, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01536691

S. Phadtare, Recent developments in bacterial cold-shock response, Current Issues in Molecular Biology, vol.6, pp.125-136, 2004.

N. Philippe, Développement de méthodes et d'algorithmes pour la caractérisation et l'annotation des transcriptomes avec les séquenceurs haut débit, 2011.

J. C. Piard, F. Delorme, G. Giraffa, J. Commissaire, and M. Desmazeaud, Evidence for a bacteriocin produced by Lactococcus lactis CNRZ-481, Netherlands Milk and Dairy Journal, vol.44, pp.143-158, 1990.

J. C. Piard, P. M. Muriana, M. J. Desmazeaud, and T. R. Klaenhammer, Purification and partial characterization of lacticin 481, a lanthionine containing bacteriocin produced by Lactococcus lactis subsp. lactis CNRZ 481, Applied and Environmental Microbiology, vol.58, pp.279-284, 1992.

D. Picque, B. Perret, E. Latrille, and G. Corrieu, Characterization and classification of lactic acid bacteria based on their acidification kinetics, vol.25, pp.181-186, 1992.

B. Poolman, Transporters and their roles in LAB cell physiology, Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, vol.82, pp.147-164, 2002.

M. Potts, Desiccation tolerance of prokaryotes, Microbiological Reviews, vol.58, pp.755-805, 1994.

J. Prasad, P. Mc-jarrow, and P. Gopal, Heat and osmotic stress responses of probiotic Lactobacillus rhamnosus HN001 (DR20) in relation to viability after drying, Applied and Environmental Microbiology, vol.69, pp.917-925, 2003.

S. J. Prestrelski, N. Tedeschi, T. Arakawa, and J. F. Carpenter, Dehydration induced conformational transitions in proteins and their inhibition by stabilizers, Biophysical Journal, vol.65, pp.661-671, 1993.

A. Ramos, K. N. Jordan, T. M. Cogan, and H. Santos, 13C Nuclear magnetic resonance studies of citrate and glucose cometabolism by Lactococcus lactis, Applied and Environmental Microbiology, vol.60, pp.1739-1748, 1994.

A. Rault, M. Bouix, and C. Beal, Cryotolerance of Lactobacillus delbrueckii subsp. bulgaricus CFL1 is influenced by the physiological state during fermentation, International Dairy Journal, vol.20, pp.792-799, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01195462

L. Rey, Glimpses into the realm of freeze-drying: Classical issues and new ventures. In Freezedrying/lyophilization of pharmaceutical and biological products. Rey L. and May J.C. (ed), pp.231-265, 1999.

Y. Romeo, D. Obis, J. Bouvier, A. Guillot, A. Fourcans et al., Osmoregulation in Lactococcus lactis: BusR, a transcriptional repressor of the glycine betaine uptake system BusA. Molecular Microbiology, vol.47, pp.1135-1147, 2003.

Y. Romeo, J. Bouvier, and C. Gutierrez, Osmotic regulation of transcription in Lactococcus lactis: Ionic strength-dependent binding of the BusR repressor to the busA promoter, Febs Letters, vol.581, pp.3387-3390, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00211496

N. Rozes, S. Garbay, M. Denayrolles, and A. Lonvaud-funel, A rapid method for the determination of bacterial fatty acid composition, Letters in Applied Microbiology, vol.17, pp.126-131, 1993.

P. Ruas-madiedo, J. Hugenholtz, and P. Zoon, An overview of the functionality of exopolysaccharides produced by lactic acid bacteria, International Dairy Journal, vol.12, pp.163-171, 2002.

S. Ruckold, K. H. Grobecker, and H. D. Isengard, The effects of drying on biological matrices and the consequences for reference materials, Food Control, vol.12, pp.401-407, 2001.

E. Ruhr and H. G. Sahl, Mode of action of the peptide antibiotic nisin and influence on the membrane potential of whole cells and on cytoplasmic and artifical membrane vesicles, Antimicrobial Agents and Chemotherapy, vol.27, pp.841-845, 1985.

M. P. Ryan, M. C. Rea, C. Hill, and R. P. Ross, An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147, Applied and Environmental Microbiology, vol.62, pp.612-619, 1996.

M. Saarela, I. Virkajarvi, H. L. Alakomi, T. Mattila-sandholm, A. Vaari et al., Influence of fermentation time, cryoprotectant and neutralization of cell concentrate on freeze-drying survival, storage stability, and acid and bile exposure of Bifidobacterium animalis ssp. lactis cells produced without milk-based ingredients, Journal of Applied Microbiology, vol.99, pp.1330-1339, 2005.

M. S. Salama, T. Musafijajeknic, W. E. Sandine, and S. J. Giovannoni, An ecological study of lactic acid bacteria: Isolation of new strains of Lactococcus including Lactococcus lactis subspecies cremoris, Journal of Dairy Science, vol.78, pp.1004-1017, 1995.

J. W. Sanders, K. J. Leenhouts, A. J. Haandrikman, G. Venema, and J. Kok, Stress response in Lactococcus lactis: Cloning, expression analysis, and mutation of the lactococcal superoxide dismutase gene, Journal of Bacteriology, vol.177, pp.5254-5260, 1995.

C. Santivarangkna, U. Kulozik, and P. Foerst, Inactivation mechanisms of lactic acid starter cultures preserved by drying processes, Journal of Applied Microbiology, vol.105, pp.1-13, 2008.

C. Santivarangkna, U. Kulozik, H. Kienberger, and P. Foerst, Changes in membrane fatty acids of Lactobacillus helveticus during vacuum drying with sorbitol, Letters in Applied Microbiology, vol.49, pp.516-521, 2009.

C. Santivarangkna, M. Aschenbrenner, U. Kulozik, and P. Foerst, Role of glassy state on stabilities of freeze-dried probiotics, Journal of Food Science, vol.76, pp.152-156, 2011.

M. Savini, C. Cecchini, M. C. Verdenelli, S. Silvi, C. Orpianesi et al., Pilot-scale production and viability analysis of freeze-dried probiotic bacteria using different protective agents, Nutrients, vol.2, pp.330-339, 2010.

K. H. Schleifer, J. Kraus, C. Dvorak, R. Kilpperbalz, M. D. Collins et al., Transfer of Streptococcus lactis and related streptococci to the genus Lactococcus gen-nov, Systematic and Applied Microbiology, vol.6, pp.183-195, 1985.

A. Schoug-bergenholtz, P. Wessman, A. Wuttke, and S. Hakansson, A case study on stress preconditioning of a Lactobacillus strain prior to freeze-drying, Cryobiology, vol.64, pp.152-159, 2012.

A. Schoug, J. Olsson, J. Carlfors, J. Schnurer, and S. Hakansson, Freeze-drying of, 2006.

, Lactobacillus coryniformis Si3 -effects of sucrose concentration, cell density, and freezing rate on cell survival and thermophysical properties, Cryobiology, vol.53, pp.119-127

A. Schoug, J. Fischer, H. J. Heipieper, J. Schnuerer, and S. Hakansson, Impact of fermentation pH and temperature on freeze-drying survival and membrane lipid composition of Lactobacillus coryniformis Si3, Journal of Industrial Microbiology & Biotechnology, vol.35, pp.175-181, 2008.

A. Schroeder, O. Mueller, S. Stocker, R. Salowsky, M. Leiber et al.,

W. Menzel, M. Granzow, and T. Ragg, The RIN: an RNA integrity number for assigning integrity values to RNA measurements, Bmc Molecular Biology, vol.7, pp.1-14, 2006.

C. Schwab, R. Vogel, and M. G. Ganzle, Influence of oligosaccharides on the viability and membrane properties of Lactobacillus reuteri TMW1.106 during freeze-drying, Cryobiology, vol.55, pp.108-114, 2007.

C. Scott, H. Rawsthorne, M. Upadhyay, C. A. Shearman, M. J. Gasson et al., Zinc uptake, oxidative stress and the FNR-like proteins of Lactococcus lactis, Fems Microbiology Letters, vol.192, pp.85-89, 2000.

A. Siaterlis, G. Deepika, and D. Charalampopoulos, Effect of culture medium and cryoprotectants on the growth and survival of probiotic lactobacilli during freeze drying, Letters in Applied Microbiology, vol.48, pp.295-301, 2009.

R. J. Siezen, J. Bayjanov, B. Renckens, M. Wels, S. Van-hijum et al., , 2010.

, Complete genome sequence of Lactococcus lactis subsp. lactis KF147, a plant associated lactic acid bacterium, Journal of Bacteriology, vol.192, pp.2649-2650

M. Sinensky, Homeoviscous adaptation -a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli, Proceedings of the National Academy of Sciences of the United States of America, vol.71, pp.522-527, 1974.

S. J. Singer and G. L. Nicolson, The fluid mosaic model of the structure of cell membranes, Science, vol.175, pp.720-751, 1972.

G. Smit, A. Verheul, R. Van-kranenburg, E. Ayad, R. Siezen et al., Cheese flavour development by enzymatic conversions of peptides and amino acids, Food Research International, vol.33, pp.153-160, 2000.

R. B. Smittle, S. E. Gilliland, M. L. Speck, W. M. Walter, and . Jr, Relationship of cellular fatty acid composition to survival of Lactobacillus bulgaricus in liquid nitrogen, Applied Microbiology, vol.27, pp.738-781, 1974.

H. Souzu, Basic aspects and industrial strategies for the preservation of microorganisms by freezing and drying. In Freeze-drying/lyophilization of pharmaceutical and biological products, pp.231-265, 1999.

H. E. Spinnler and G. Corrieu, Automatic method to quantify starter activity based on pH measurement, Journal of Dairy Research, vol.56, pp.755-764, 1989.

G. Storz and J. A. Imlay, Oxidative stress, Current Opinion in Microbiology, vol.2, pp.188-194, 1999.

S. Strasser, M. Neureiter, M. Geppl, R. Braun, and H. Danner, Influence of lyophilization, fluidized bed drying, addition of protectants, and storage on the viability of lactic acid bacteria, Journal of Applied Microbiology, vol.107, pp.167-177, 2009.

F. Streit, J. Delettre, G. Corrieu, and C. Beal, Acid adaptation of Lactobacillus delbrueckii subsp. bulgaricus induces physiological responses at membrane and cytosolic levels that improves cryotolerance, Journal of Applied Microbiology, vol.105, pp.1071-1080, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01560799

F. Streit, V. Athes, A. Bchir, G. Corrieu, and C. Beal, Microfiltration conditions modify Lactobacillus bulgaricus cryotolerance in response to physiological changes, Bioprocess and Biosystems Engineering, vol.34, pp.197-204, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01001450

S. Sugimoto, A. Al, M. Sonomoto, and K. , Molecular chaperones in lactic acid bacteria: Physiological consequences and biochemical properties, Journal of Bioscience and Bioengineering, vol.106, pp.324-336, 2008.

P. C. Teixeira, M. H. Castro, F. X. Malcata, and R. M. Kirby, Survival of Lactobacillus delbrueckii ssp. bulgaricus following spray-drying, Journal of Dairy Science, vol.78, pp.1025-1031, 1995.

B. C. To and M. R. Etzel, Spray-drying, freeze-drying, or freezing of three different lactic acid bacteria species, Journal of Food Science, vol.62, pp.576-585, 1997.

B. Turchi, M. L. Van-tassell, A. Lee, R. Nuvoloni, D. Cerri et al., Phenotypic and genetic diversity of wild Lactococcus lactis isolated from traditional Pecorino cheeses of Tuscany, Journal of Dairy Science, vol.96, pp.3558-3563, 2013.

M. S. Turner, Y. P. Tan, and P. M. Giffard, Inactivation of an iron transporter in Lactococcus lactis results in resistance to tellurite and oxidative stress, Applied and Environmental Microbiology, vol.73, pp.6144-6149, 2007.

H. T. Van-der and B. Poolman, Osmoregulated ABC-transport system of Lactococcus lactis senses water stress via changes in the physical state of the membrane, Proceedings of the National Academy of Sciences of the United States of America, vol.97, pp.7102-7106, 2000.

R. Van-kranenburg, M. Kleerebezem, J. Van-hylckama-vlieg, B. M. Ursing, J. Boekhorst et al., Flavour formation from amino acids by lactic acid bacteria: predictions from genome sequence analysis, International Dairy Journal, vol.12, pp.111-121, 2002.

E. W. Van-niel and B. Hahn-hagerdal, Nutrient requirements of lactococci in defined growth media, Applied Microbiology and Biotechnology, vol.52, pp.617-627, 1999.

E. W. Van-niel, K. Hofvendahl, and B. Hahn-hagerdal, Formation and conversion of oxygen metabolites by Lactococcus lactis subsp. lactis ATCC 19435 under different growth conditions, Applied and Environmental Microbiology, vol.68, pp.4350-4356, 2002.

W. M. Verhue and F. S. Tjan, Study of the citrate metabolism of Lactococcus lactis subsp, 1991.

, lactis biovar diacetylactis by means of C13 nuclear magnetic resonance, Applied and Environmental Microbiology, vol.57, pp.3371-3377

K. Vido, N. Diemer, A. Van-dorsselaer, E. Leize, V. Juillard et al., Roles of thioredoxin reductase during the aerobic life of Lactococcus lactis, Journal of Bacteriology, vol.187, pp.601-610, 2005.

J. Wagman, Evidence of cytoplasmic membrane injury in the drying of bacteria, Journal of Bacteriology, vol.80, pp.558-64, 1960.

Y. C. Wang, R. C. Yu, and C. C. Chou, Viability of lactic acid bacteria and bifidobacteria in fermented soymilk after drying, subsequent rehydration and storage, International Journal of Food Microbiology, vol.93, pp.209-217, 2004.

Y. Wang, G. Corrieu, and C. Beal, Fermentation pH and temperature influence the cryotolerance of Lactobacillus acidophilus RD758, Journal of Dairy Science, vol.88, pp.21-29, 2005.

Y. Wang, M. Delettre, A. Guillot, G. Corrieu, and C. Beal, Influence of cooling temperature and duration on cold adaptation of Lactobacillus acidophilus RD758, Cryobiology, vol.50, pp.294-307, 2005.

Y. Wang, Préadaptation et cryotolérance chez Lactobacillus acidophilus : effet des conditions opératoires, vol.214, 2005.

Y. Wang, J. Delettre, G. Corrieu, and C. Beal, Starvation induces physiological changes that act on the cryotolerance of Lactobacillus acidophilus RD758, Biotechnology Progress, vol.27, pp.342-350, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01001017

U. Wegmann, M. O'connell-motherwy, A. Zomer, G. Buist, C. Shearman et al.,

M. Ventura, A. Goesmann, M. J. Gasson, O. P. Kuipers, D. Van-sinderen et al., , 2007.

, Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363, Journal of Bacteriology, vol.189, pp.3256-3270

P. Wessman, D. Mahlin, S. Akhtar, S. Rubino, K. Leifer et al., Impact of matrix properties on the survival of freeze-dried bacteria, Journal of the Science of Food and Agriculture, vol.91, pp.2518-2528, 2011.

J. A. Wouters, B. Jeynov, F. M. Rombouts, W. M. De-vos, O. P. Kuipers et al., , 1999.

, Analysis of the role of 7 kDa cold-shock proteins of Lactococcus lactis MG1363 in cryoprotection, Microbiology-Uk, vol.145, pp.3185-3194

J. A. Wouters, M. Mailhes, F. M. Rombouts, W. M. De-vos, O. P. Kuipers et al., , 2000.

, Physiological and regulatory effects of controlled overproduction of five cold shock proteins of Lactococcus lactis MG1363, Applied and Environmental Microbiology, vol.66, pp.3756-3763

J. A. Wouters, H. Frenkiel, W. M. De-vos, O. P. Kuipers, and T. Abee, Cold shock proteins of Lactococcus lactis MG1363 are involved in cryoprotection and in the production of cold-induced proteins, Applied and Environmental Microbiology, vol.67, pp.5171-5178, 2001.

Y. Xie, L. S. Chou, A. Cutler, and B. Weimer, DNA macroarray profiling of Lactococcus lactis subsp. lactis IL1403 gene expression during environmental stresses, Applied and Environmental Microbiology, vol.70, pp.6738-6747, 2004.

G. Yang, K. Gilstrap, A. L. Zhang, L. X. Xu, and X. M. He, Collapse temperature of solutions important for lyopreservation of living cells at ambient temperature, Biotechnology and Bioengineering, vol.106, pp.247-259, 2010.

A. A. Yao, B. Wathelet, and P. Thonart, Effect of protective compounds on the survival, electrolyte leakage, and lipid degradation of freeze-dried Weissella paramesenteroides LC11 during storage, Journal of Microbiology and Biotechnology, vol.19, pp.810-817, 2009.

J. Zhang, G. C. Du, Y. P. Zhang, X. Y. Liao, M. Wang et al., Glutathione protects Lactobacillus sanfranciscensis against freeze-thawing, freeze-drying, and cold treatment, Applied and Environmental Microbiology, vol.76, pp.2989-2996, 2010.

Y. Zhang and C. O. Rock, Membrane lipid homeostasis in bacteria, Nature Reviews Microbiology, vol.6, pp.222-233, 2008.

G. Zhao and G. Zhang, Effect of protective agents, freezing temperature, rehydration media on viability of malolactic bacteria subjected to freeze-drying, Journal of Applied Microbiology, vol.99, pp.333-338, 2005.

G. Q. Zhao and G. Zhang, Influence of freeze-drying conditions on survival of Oenococcus oeni for malolactic fermentation, International Journal of Food Microbiology, vol.135, pp.64-67, 2009.

W. Y. Zhao, H. Li, H. Wang, Z. C. Li, and A. L. Wang, The effect of acid stress treatment on viability and membrane fatty acid composition of Oenococcus oeni SD-2a, Agricultural Sciences in China, vol.8, pp.311-316, 2009.

M. Ziadi, Y. Touhami, M. Achour, P. Thonart, and A. Hamdi, The effect of heat stress on freeze-drying and conservation of Lactococcus, Biochemical Engineering Journal, vol.24, pp.141-145, 2005.

. °c, Cette seconde culture est incubée une nuit à 30 °C. Enfin, 100 mL de cette seconde culture servent à ensemencer 2 L de lait. Cette dernière culture est incubée à 30 °C pendant 19 h pour atteindre un pH de 4,84 et une acidité de 55 ° Dornic. La culture est stockée une nuit à 4 °C avant utilisation pour la fabrication fromagère