, = X1 =, pp.1-2

, = cx1b = ?Integrate?X1 * Exp?-I * 2 * Pi * 1 * z / 4?, {z

, = aalfa = 2 * ?tth -thb? * Sin?2 * thb? * k ? 2

, = ddta = ?u0 + aalfa?^2 -4 * ?u1 * u1b -u0 + ?u0 + aalfa??

, = w1 = ?-aalfa + Sqrt?aalfa^2 + 4 * ?u0^2 + u0 * aalfa -u1 * u1b??? ?

, La solution expérimentale proposée pour palier au problème de la largeur à mi-hauteur des courbes de réflectivité des miroirs multicouches

, De part la largeur à mi-hauteur de la fonction de transmission, le cristal devient un filtre directionnel des rayons X réfléchis (par la multicouche)

L. , En absorbant le faisceau réfléchi par un voxel lorsque l'angle de réflexion est différent de l'angle de Bragg (du voxel) le cristal évite que le voxel illumine (hors condition de Bragg) plusieurs pixels du détecteur. Ainsi, un voxel illumine un seul pixel et le cristal permet de retrouver le lien bi

, Le cristal doit être positionné dans le faisceau réfléchi et en condition de diffraction de Laue pour les faisceaux réfléchis à l'angle de Bragg de la multicouche

, Un cristal présente l'avantage d'une fonction de transmission dont la largeur à mi-hauteur est cent fois inférieure à la largeur à mi-hauteur des courbes de réflectivité des multicouches. Cependant, les cristaux ne sont pas parfaits et peuvent introduire des imperfections dans le faisceau réflé-chi. Mais ces imperfections pourront être supprimées lors du traitement des données pour le retrait des imperfections du faisceau (voir §C.1, annexe C)

, Les modules de modélisation développés dans cette thèse permettent de simuler les défauts de hauteur dans un miroir multicouche, de prévoir les effets induits dans le faisceau réfléchi après propagation et de considé-rer les effets de cohérence spatiale de la source. L'ensemble des scripts sont disponibles sur la plate-forme github

, La mention "filemane" correspond à un nom de fichier qui doit être défini avec la variable "Fe" dans le fichier setup

. Le, en cas de calcul avec les largeurs de cohérence spatiale de la source, ce afin d'identifier les résultats. Pour effectuer ces simulations, il est nécessaire de travailler sur une machine Linux (pour les fichiers .sh), d'avoir un compilateur pour langage C (pour les fichiers .c)

, Tous les modules peuvent fonctionner seuls ou ensembles. Le schéma de la figure (E.1) montre l'algorithme de fonctionnement des différents modules. Trois programmes composent cet algorithme (tt-int.c, Pro_F.py, Coh.py

, ils simulent (respectivement), la multicouche, la propagation de Fresnel et la cohérence de la source (considération des intensités mutuelles). Deux autres fichiers bashs (runjob.sh, setup.sh) permettent la coordination des programmes et leur exécution

E. , Simulation des multicouches avec défauts La simulation des multicouches avec défauts se fait avec le programme tt-int.c. Ce programme est orienté objet et utilise les fichiers tt-int.h et params.h lors de la compilation, Le programme a besoin de charger les données de défaut de hauteur présentes dans un fichier

, Celle ci sera chargée dans le shell et téléchargée par le programme tt-int. La compilation et l'exécution du programme se fait à partir du fichier setup.sh. Il y a plusieurs options dans l'exécution de l'exécutable : takagi-taupin. Celles ci sont renseignées dans les annexes de la thèse de Markus Osterhoff, Lors d'une simulation, la configuration expérimentale doit être définie dans le fichier shell (bash) : setup.sh, vol.1

. De-pixels-dans-la-caméra, direction verticale, 12. nombre de pixels dans la caméra, direction horizontale, 13. taille verticale des pixels (µm), 14. taille horizontale des pixels (µm), 15. FWHM de la fonction d

E. Spiller, A. Segmüller, J. Rife, and R. Haelbich, Controlled fabrication of multilayer soft-x-ray mirrors, Applied Physics Letters, vol.37, issue.11, pp.1048-1050, 1980.

H. James and T. Underwood, Soft x-ray imaging with a normal incidence mirror, Nature, vol.294, issue.5840, p.429, 1981.

X. Reflectivity and . Multilayer,

J. Daillant and A. Gibaud, X-ray and neutron reflectivity : principles and applications, vol.770, 2008.

K. Vestli and . Ziegler, Optimization of multilayer reflectivity and bandpass for soft to hard x-ray applications, Review of Scientific Instruments, vol.67, issue.9, pp.3356-3356, 1996.

C. K. Carniglia, H. Joseph, and . Apfel, Maximum reflectance of multilayer dielectric mirrors in the presence of slight absorption, JOSA, vol.70, issue.5, pp.523-534, 1980.

V. Aleksandr and . Vinogradov, Multilayer x-ray optics, Quantum electronics, vol.32, issue.12, p.1113, 2002.

P. Berning, Physics of thin films, 1963.

M. Yamamoto and T. Namioka, Layer-by-layer design method for soft-x-ray multilayers, Applied optics, vol.31, issue.10, pp.1622-1630, 1992.

V. Igor, C. Kozhevnikov, and . Montcalm, Design of x-ray multilayer mirrors with maximal integral efficiency, Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment, vol.624, issue.1, pp.192-202, 2010.

I. N. Igor-v-kozhevnikov, E. Bukreeva, and . Ziegler, Design of x-ray supermirrors, Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment, vol.460, issue.2-3, pp.424-443, 2001.

C. Morawe, E. Ziegler, J. Peffen, and I. V. Kozhevnikov, Design and fabrication of depth-graded x-ray multilayers, Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment, vol.493, issue.3, pp.189-198, 2002.

C. Morawe and M. Osterhoff, Curved graded multilayers for x-ray nano-focusing optics, Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment, vol.616, issue.2-3, pp.98-104, 2010.

C. Morawe, . Guigay, C. Mocella, and . Ferrero, An analytical approach to estimating aberrations in curved multilayer optics for hard x-rays : 2. interpretation and application to focusing experiments, Optics express, vol.16, issue.20, pp.16138-16150, 2008.

C. Jp-guigay, . Morawe, C. Mocella, and . Ferrero, An analytical approach to estimating aberrations in curved multilayer optics for hard x-rays : 1. derivation of caustic shapes, Optics Express, vol.16, issue.16, pp.12050-12059, 2008.

M. Osterhoff, C. Morawe, C. Ferrero, and J. Guigay, Optimized x-ray multilayer mirrors for single nanometer focusing, Optics letters, vol.38, issue.23, pp.5126-5129, 2013.

C. Morawe and M. Osterhoff, Hard x-ray focusing with curved reflective multilayers. X-ray Optics and Instrumentation, 2010.

J. Peter and . Kelly, Magnetron sputtering : a review of recent developments and applications, Vacuum, vol.56, issue.3, pp.159-172, 2000.

H. Hans, H. L. Andersen, and . Bay, Sputtering yield measurements, Sputtering by particle bombardment I, pp.145-218, 1981.

P. Townsend, J. C. Kelly, and N. Hartley, Ion implantation, sputtering and their applications, 1976.

J. Shen, Z. Gai, and J. Kirschner, Growth and magnetism of metallic thin films and multilayers by pulsed-laser deposition, Surface science reports, vol.52, issue.5-6, pp.163-218, 2004.

B. Heinrich, J. Anthony, and C. Bland, Ultrathin magnetic structures II : Measurement techniques and novel magnetic properties, vol.2, 2006.

G. James and . Lunney, Pulsed laser deposition of metal and metal multilayer films, Applied surface science, vol.86, issue.1-4, pp.79-85, 1995.

R. Dietsch, T. Holz, H. Mai, . Hopfe, . Scholz et al., X-ray optical properties of c/c-multilayers prepared by pulsed laser deposition (pld), MRS Online Proceedings Library Archive, vol.382, 1995.

C. Montcalm, A. Patrick, J. M. Kearney, . Slaughter, T. Brian et al., Survey of ti-, b-, and y-based soft x-ray-extreme ultraviolet multilayer mirrors for the 2-to 12-nm wavelength region, Applied optics, vol.35, issue.25, pp.5134-5147, 1996.

E. Ziegler, Multilayers for high heat load synchrotron applications, Optical Engineering, vol.34, issue.2, pp.445-453, 1995.

, Development of laser deposited multilayer zone plate structures for soft x-ray radiation, Applied Surface Science, vol.257, issue.12, pp.5138-5141, 2011.

C. Morawe and J. Peffen, Thickness control of large area x-ray multilayers, Advances in X-Ray/EUV Optics and Components IV, vol.7448, p.74480, 2009.

C. Morawe, C. Borel, and J. Peffen, The new esrf multilayer deposition facility, Advances in X-Ray/EUV Optics and Components II, vol.6705, p.670504, 2007.

C. Morawe and M. Osterhoff, Curved graded multilayers for x-ray nano-focusing optics, Nuclear Instruments and Methods in Physics Research Section A, vol.616, pp.98-104, 2009.

P. Kirkpatrick and A. Baez, Formation of optical images by x-rays, J. Opt. Soc. Am, vol.38, pp.766-773, 1948.

S. Bajt, G. Daniel, P. Stearns, and . Kearney, Investigation of the amorphous-to-crystalline transition in mo/si multilayers, Journal of Applied Physics, vol.90, issue.2, pp.1017-1025, 2001.

A. John and . Thornton, High rate thick film growth. Annual review of materials science, vol.7, pp.239-260, 1977.

. Vv-kondratenko, . Yu-p-pershin, A. I. Poltseva, . Fedorenko, . En-zubarev et al., Thermal stability of soft x-ray mo-si and mosi 2-si multilayer mirrors, Applied optics, vol.32, issue.10, pp.1811-1816, 1993.

H. Takenaka and T. Kawamura, Thermal stability of mo/c/si/c multilayer soft x-ray mirrors, Journal of electron spectroscopy and related phenomena, vol.80, pp.381-384, 1996.

Z. Jiang, X. Jiang, W. Liu, and Z. Wu, Thermal stability of multilayer films pt/si, w/si, mo/si, and w/c, Journal of applied physics, vol.65, issue.1, pp.196-200, 1989.

S. Jb-kortright, E. Joksch, and . Ziegler, Stability of tungsten/carbon and tungsten/silicon multilayer x-ray mirrors under thermal annealing and x-radiation exposure, Journal of applied physics, vol.69, issue.1, pp.168-174, 1991.

B. Kjornrattanawanich and S. Bajt, Structural characterization and lifetime stability of mo/y extreme-ultraviolet multilayer mirrors, Applied optics, vol.43, issue.32, pp.5955-5962, 2004.

C. Morawe, Mirror and multilayer x-ray optics, 2007.

D. K. Bowen and . Tanner, Characterization of engineering surfaces by grazing-incidence x-ray reflectivity, Nanotechnology, vol.4, issue.4, p.175, 1993.

B. K. Tanner and . Hudson, Characterization of magnetic multilayers by grazing incidence x-ray reflectivity, IEEE transactions on magnetics, vol.28, issue.5, pp.2736-2741, 1992.

L. Nevot, J. Pardo, and . Corno, Characterization of x-uv multilayers by grazing incidence x-ray reflectometry, vol.23, pp.1675-1686, 1988.
URL : https://hal.archives-ouvertes.fr/jpa-00245996

E. Spiller, Characterization of multilayer coatings by x-ray reflection, vol.23, pp.1687-1700, 1988.
URL : https://hal.archives-ouvertes.fr/jpa-00245997

G. Lyman and . Parratt, Surface studies of solids by total reflection of x-rays, Physical review, vol.95, issue.2, p.359, 1954.

. Sk-ghose and . Dev, X-ray standing wave and reflectometric characterization of multilayer structures, Physical Review B, vol.63, issue.24, p.245409, 2001.

M. Wormington, . Bowen, and . Tanner, Principles and performance of a pc-based program for simulation of grazing incidence x-ray reflectivity profiles, MRS Online Proceedings Library Archive, vol.238, 1991.

. Dl-beke, . Langer, . Kis-varga, P. Dudas, L. Nemes et al., Thermal stability of amorphous and crystalline multilayers produced by magnetron sputtering, Vacuum, vol.50, issue.3-4, pp.373-383, 1998.

R. Soufli, L. Sherry, . Baker, L. David, E. M. Windt et al., Atomic force microscopy characterization of zerodur mirror substrates for the extreme ultraviolet telescopes aboard nasa's solar dynamics observatory, Applied optics, vol.46, issue.16, pp.3156-3163, 2007.

A. Rack, T. Weitkamp, M. Riotte, D. Grigoriev, T. Rack et al., Comparative study of multilayers used in monochromators for synchrotron-based coherent hard x-ray imaging, Journal of synchrotron radiation, vol.17, issue.4, pp.496-510, 2010.

P. Spanne, L. Mark, and . Rivers, Computerized microtomography using synchrotron radiation from the nsls, Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with Materials and Atoms, vol.24, pp.1063-1067, 1987.

U. Bonse, . Nusshardt, R. Busch, . Pahl, J. H. Johnson et al., Optimization of ccd-based energy-modulated x-ray microtomography, Review of Scientific Instruments, vol.60, issue.7, pp.2478-2481, 1989.

W. Graeff and . Engelke, Handbook on synchrotron radiation, vol.4, 1991.

U. Bonse and F. Busch, X-ray computed microtomography (µct) using synchrotron radiation (sr), vol.65, pp.133-169, 1996.

P. Cloetens, R. Barrett, J. Baruchel, J. Guigay, and M. Schlenker, Phase objects in synchrotron radiation hard x-ray imaging, Journal of Physics D : Applied Physics, vol.29, issue.1, p.133, 1996.

A. Koch, Lens coupled scintillating screen-ccd x-ray area detector with a high detective quantum efficiency, Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment, vol.348, issue.2-3, pp.654-658, 1994.

H. Lee, P. Barry, W. Lai, . Yun, C. Derrick et al., X-ray microtomography as a fast three-dimensional imaging technology using a ccd camera coupled with a cdwo4 singlecrystal scintillator, Developments in X-ray tomography, vol.3149, pp.257-264, 1997.

. C-raven, . Snigirev, P. Snigireva, . Spanne, V. Souvorov et al., Phase-contrast microtomography with coherent high-energy synchrotron x rays, Applied Physics Letters, vol.69, issue.13, pp.1826-1828, 1996.

P. Spanne, . Raven, A. Snigireva, and . Snigirev, In-line holography and phase-contrast microtomography with high energy x-rays, Physics in Medicine & Biology, vol.44, issue.3, p.741, 1999.

P. Brian, W. G. Flannery, and . Roberge, Observational strategies for three-dimensional synchrotron microtomography, Journal of applied physics, vol.62, issue.12, pp.4668-4674, 1987.

P. Brian, . Flannery, W. Harry, . Deckman, G. Wayne et al., Three-dimensional x-ray microtomography, Science, vol.237, issue.4821, pp.1439-1444, 1987.

R. Conley, C. Liu, J. Qian, M. Cameron, A. T. Kewish et al., Wedged multilayer laue lens, Review of Scientific Instruments, vol.79, issue.5, p.53104, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01909415

J. Sijbers and A. Postnov, Reduction of ring artefacts in high resolution micro-ct reconstructions, Physics in Medicine & Biology, vol.49, issue.14, p.247, 2004.

A. Rack, T. Weitkamp, C. Zanette, . Morawe, P. Vivo-rommeveaux et al., Coherence preservation and beam flatness of a single-bounce multilayer monochromator

, Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment, vol.649, issue.1, pp.123-127, 2011.

A. Rack, W. Assoufid, . Lee, C. Shi, C. Liu et al., Hard x-ray multilayer mirror round-robin on the wavefront preservation capabilities of w/b4c coatings. Radiation Physics and Chemistry, vol.81, pp.1696-1702, 2012.

A. Rack, L. Assoufid, R. Dietsch, T. Weitkamp, T. Bauer-trabelsi et al., Study of multilayer-reflected beam profiles and their coherence properties using beamlines id19 (esrf) and 32-id (aps), AIP Conference Proceedings, vol.1437, pp.15-17, 2012.

A. Rack, C. Morawe, D. Mancini, . Dreossi, . Dy-parkinson et al., Reflection on multilayer mirrors : beam profile and coherence properties, page 92070V. International Society for Optics and Photonics, vol.9207, 2014.

A. Rack, . Weitkamp, . Assoufid, . Rack, C. Zanette et al., Protocol to study wavefront preservation capabilities of reflective x-ray optics with coherent synchrotron light, Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment, vol.710, pp.101-105, 2013.

R. Kluender, F. Masiello, P. Van-vaerenbergh, and J. Härtwig, Measurement of the spatial coherence of synchrotron beams using the talbot effect, pp.1842-1845, 2009.

A. Rack, M. Weitkamp, . Riotte, . Rack, . Dietsch et al., Micro-imaging performance of multilayers used as monochromators for coherent hard x-ray synchrotron radiation, Advances in X-Ray/EUV Optics and Components V, vol.7802, p.78020, 2010.

A. Anatoly and . Snigirev, Coherent properties of the third-generation synchrotron radiation sources : optical requirements, Optics for High-Brightness Synchrotron Radiation Beamlines II, vol.2856, pp.26-34, 1996.

C. Morawe, . Barrett, . Friedrich, A. Klünder, and . Vivo, Spatial coherence studies on x-ray multilayers, Advances in X-Ray/EUV Optics and Components VI, vol.8139, p.813909, 2011.

E. Ziegler, . Morawe, P. Hignette, R. Cloetens, and . Tucoulou, Multilayer x-ray optics for high energy third-generation synchrotron sources : the state of the art, Ninth International Conference on Production Engineering, Precision Science and Technology for Perfect Surfaces, vol.3, pp.285-291, 1999.

K. Yamauchi, K. Yamamura, H. Mimura, Y. Sano, A. Saito et al., Wave-optical evaluation of interference fringes and wavefront phase in a hard-x-ray beam totally reflected by mirror optics, Applied optics, vol.44, issue.32, pp.6927-6932, 2005.

A. Barty, R. Soufli, T. Mccarville, L. Sherry, . Baker et al., Predicting the coherent x-ray wavefront focal properties at the linac coherent light source (lcls) x-ray free electron laser, Optics express, vol.17, issue.18, pp.15508-15519, 2009.

S. Oliver and . Heavens, Optical properties of thin solid films. Courier Corporation, 1991.

F. Abelès, La théorie générale des couches minces, Journal de Physique et le Radium, vol.11, issue.7, pp.307-309, 1950.

L. Nevot and P. Croce, Caractérisation des surfaces par réflexion rasante de rayons x. application à l'étude du polissage de quelques verres silicates, vol.15, pp.761-779, 1980.

M. Born and E. Wolf, Principles of Optics, 7th, 2008.

W. Dwight and . Berreman, Computing x-ray reflectance of focusing multilayer films, Optical Engineering, vol.25, issue.8, p.258933, 1986.

. Dw-berreman, Dynamical theory of x-ray diffraction in flat, focusing, and distorted crystals by abelés's matrix method, Physical Review B, vol.14, issue.10, p.4313, 1976.

. At-macrander, D. W. Minami, and . Berreman, Dynamical x-ray rocking curve simulations of nonuniform ingaas and ingaasp using abeles' matrix method, Journal of applied physics, vol.60, issue.4, pp.1364-1368, 1986.

K. Stoev and K. Sakurai, Recent theoretical models in grazing incidence x-ray reflectometry, The Rigaku Journal, vol.14, issue.2, pp.22-37, 1997.

P. Mikul?k and T. Baumbach, X-ray reflection by multilayer surface gratings, Physica B : Condensed Matter, vol.248, issue.1-4, pp.381-386, 1998.

X. Shi, R. Reininger, M. Sanchez-del-rio, and L. Assoufid, A hybrid method for x-ray optics simulation : combining geometric ray-tracing and wavefront propagation, Journal of synchrotron radiation, vol.21, issue.4, pp.669-678, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01573008

A. Authier, Dynamical theory of x-ray diffraction. International Tables for Crystallography, pp.626-646, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00130752

A. Guinier, Théorie et technique de la radiocristallographie

. Dunod, , 1964.

D. Lübbert, . Baumbach, . Härtwig, E. Boller, and . Pernot, µm-resolved high resolution x-ray diffraction imaging for semiconductor quality control, Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with Materials and Atoms, vol.160, pp.521-527, 2000.

J. Hoszowska, E. Freund, . Boller, G. Sellschop, . Level et al., Characterization of synthetic diamond crystals by spatially resolved rocking curve measurements, Journal of Physics D : Applied Physics, vol.34, issue.10A, p.47, 2001.

D. Lübbert, C. Ferrari, P. Mikulík, P. Pernot, L. Helfen et al., Distribution and burgers vectors of dislocations in semiconductor wafers investigated by rocking-curve imaging, Journal of applied crystallography, vol.38, issue.1, pp.91-96, 2005.

M. Calamiotou, G. Chrysanthakopoulos, J. Papaioannou, and . Baruchel, Dynamics of photodeformations and space charge field in photorefractive fe : Li nb o 3 studied with synchrotron area diffractometry, Journal of Applied Physics, vol.102, issue.8, p.83527, 2007.

A. Rafael-t-kluender, J. Philip, J. Meyssonnier, and . Baruchel, Three-dimensional distortion measurements by section rocking curve imaging : Application to ice crystals. physica status solidi (a), vol.208, pp.2505-2510, 2011.

T. Thi, S. Dubois, J. Baruchel, N. Enjalbert, B. Fernandez et al., Czochralski and mono-like p-type and n-type silicon solar cells : Relationship between strain and stress induced by the back contact, and photovoltaic performance, Solar Energy Materials and Solar Cells, vol.135, pp.17-21, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01764765

A. Momose, Recent advances in x-ray phase imaging, Japanese Journal of Applied Physics, vol.44, issue.9R, p.6355, 2005.

U. Bonse and . Hart, An x-ray interferometer, Applied Physics Letters, vol.6, issue.8, pp.155-156, 1965.

A. Momose, T. Takeda, Y. Itai, and K. Hirano, Phase-contrast x-ray computed tomography for observing biological soft tissues, Nature medicine, vol.2, issue.4, pp.473-475, 1996.

A. Snigirev, . Snigireva, S. Kohn, I. Kuznetsov, and . Schelokov, On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation, Review of scientific instruments, vol.66, issue.12, pp.5486-5492, 1995.

S. Berujon, H. Wang, S. Alcock, and K. Sawhney, At-wavelength metrology of hard x-ray mirror using near field speckle, Optics express, vol.22, issue.6, pp.6438-6446, 2014.

P. Guigay, Fourier-transform analysis of fresnel diffraction patterns and in-line holograms, Optik, vol.49, pp.121-125, 1977.

P. Cloetens, Contribution to phase contrast imaging, reconstruction and tomography with hard synchrotron radiation : principles, implementation and applications, 1999.

J. Pierre-guigay and M. Langer, Renaud Boistel, and Peter Cloetens. Mixed transfer function and transport of intensity approach for phase retrieval in the fresnel region, Optics letters, vol.32, issue.12, pp.1617-1619, 2007.

S. Bérujon, E. Ziegler, R. Cerbino, and L. Peverini, Two-dimensional x-ray beam phase sensing, Physical review letters, vol.108, issue.15, p.158102, 2012.

. Kaye-s-morgan, K. David-m-paganin, and . Siu, X-ray phase imaging with a paper analyzer, Applied Physics Letters, vol.100, issue.12, p.124102, 2012.

S. Berujon and E. Ziegler, Grating-based at-wavelength metrology of hard x-ray reflective optics, Optics letters, vol.37, issue.21, pp.4464-4466, 2012.

S. Berujon and E. Ziegler, Near-field speckle-scanningbased x-ray imaging, Physical Review A, vol.92, issue.1, p.13837, 2015.

M. Osterhoff, Wave optical simulations of x-ray nano-focusing optics, Universitätsverlag Göttingen, vol.9, 2012.

M. Osterhoff, C. Morawe, C. Ferrero, and J. Guigay, Wave-optical theory of nanofocusing x-ray multilayer mirrors, Optics letters, vol.37, issue.17, pp.3705-3707, 2012.

F. Michael, D. Cohen, and . Greenberg, The hemi-cube : A radiosity solution for complex environments, In ACM Siggraph Computer Graphics, vol.19, pp.31-40, 1985.

L. Robert, T. Cook, L. Porter, and . Carpenter, Distributed ray tracing, ACM SIGGRAPH computer graphics, vol.18, pp.137-145, 1984.

T. Nishita and E. Nakamae, Continuous tone representation of three-dimensional objects taking account of shadows and interreflection, ACM SIGGRAPH Computer Graphics, vol.19, pp.23-30, 1985.

J. Cho and S. Na, Implementation of real-time multiple reflection and fresnel absorption of laser beam in keyhole, Journal of Physics D : Applied Physics, vol.39, issue.24, p.5372, 2006.

J. Gregory, . Ward, R. D. Francis-m-rubinstein, and . Clear, A ray tracing solution for diffuse interreflection, ACM SIGGRAPH Computer Graphics, vol.22, issue.4, pp.85-92, 1988.

N. Rawlinson and M. Sambridge, Multiple reflection and transmission phases in complex layered media using a multistage fast marching method, Geophysics, vol.69, issue.5, pp.1338-1350, 2004.

S. Takagi, A dynamical theory of diffraction for a distorted crystal, J. Phys. Soc. Jap, vol.26, pp.1239-1253, 1969.

D. Taupin, Prévision de quelques images de dislocations par transmission des rayons x (cas de laue symétrique), Acta Cryst, vol.23, pp.25-35, 1967.

. Vv-protopopov and . Kalnov, X-ray multilayer mirrors with an extended angular range, Optics communications, vol.158, issue.1-6, pp.127-140, 1998.

D. Charles-galton, The theory of x-ray reflection, part ii, Phil. Mag, vol.27, pp.675-690, 1914.

N. Kato, Pendellösung fringes in distorted crystals ii. application to two-beam cases, J.Phys. Soc. Jap, vol.19, issue.1, p.67, 1964.

. William-h-zachariasen, Theory of X-ray Diffraction in Crystals. Courier Corporation, 2004.

A. André, Dynamical Theory of X-Ray Diffraction, 2001.

. Zinovi-i-grigor'evich-pinsker, Dynamical Scattering of X-Rays in Crystals, 1978.

J. Härtwig, Hierarchy of dynamical theories of x-ray diffraction for deformed and perfect crystals, J. Phys. D : Appl. Phys, vol.34, issue.10A, 2001.

H. Schlangenotto, Dynamische theorie der röntgenbeugung für deformierte kristalle zeitschrift für physik, vol.203, pp.17-36, 1967.

J. Gronkowski, Propagation of x-rays in distorted crystals under dynamical diffraction, Physics Reports, vol.206, issue.1, pp.1-41, 1991.

A. T. Macrander-qun-shen-stefan, G. Vogt, J. Brian-stephenson-hanfei-yan, H. C. Maser, and . Kang, Takagi-taupin description of x-ray dynamical diffraction from diffractive optics with large numerical aperture, Physical Review B, vol.76, p.115438, 2007.

S. Takagi, Dynamical theory of diffraction applicable to crystals with any kind of small distortion, Acta Cryst, vol.15, pp.1311-1312, 1962.

Y. Epelboin, A varying-step algorithm for numerical integration of takagi-taupi equations, Acta Crystallography Section A, vol.39, issue.5, pp.761-767, 1983.