Minimum complexity principle for knowledge transfer in artificial learning - PASTEL - Thèses en ligne de ParisTech Accéder directement au contenu
Thèse Année : 2018

Minimum complexity principle for knowledge transfer in artificial learning

Principe de minimum de complexité pour le transfert de connaissances en apprentissage artificiel

Résumé

Classical learning methods are often based on a simple but restrictive assumption: The present and future data are generated according to the same distributions. This hypothesis is particularly convenient when it comes to developing theoretical guarantees that the learning is accurate. However, it is not realistic from the point of view of applicative domains that have emerged in the last years.In this thesis, we focus on four distinct problems in artificial intelligence, that have mainly one common point: All of them imply knowledge transfer from one domain to the other. The first problem is analogical reasoning and concerns statements of the form "A is to B as C is to D". The second one is transfer learning and involves classification problem in situations where the training data and test data do not have the same distribution (nor even belong to the same space). The third one is data stream mining, ie. managing data that arrive one by one in a continuous and high-frequency stream with changes in the distributions. The last one is collaborative clustering and focuses on exchange of information between clustering algorithms to improve the quality of their predictions.The main contribution of this thesis is to present a general framework to deal with these transfer problems. This framework is based on the notion of Kolmogorov complexity, which measures the inner information of an object. This tool is particularly adapted to the problem of transfer, since it does not rely on probability distributions while being able to model the changes in the distributions.Apart from this modeling effort, we propose, in this thesis, various discussions on aspects and applications of the different problems of interest. These discussions all concern the possibility of transfer in multiple domains and are not based on complexity only.
Les méthodes classiques d'apprentissage automatique reposent souvent sur une hypothèse simple mais restrictive: les données du passé et du présent sont générées selon une même distribution. Cette hypothèse permet de développer directement des garanties théoriques sur la précision de l'apprentissage. Cependant, elle n'est pas réaliste dans un grand nombre de domaines applicatifs qui ont émergé au cours des dernières années.Dans cette thèse, nous nous intéressons à quatre problèmes différents en intelligence artificielle, unis par un point commun: tous impliquent un transfer de connaissance d'un domaine vers un autre. Le premier problème est le raisonnement par analogie et s'intéresse à des assertions de la forme "A est à B ce que C est à D". Le second est l'apprentissage par transfert et se concentre sur des problèmes de classification dans des contextes où les données d'entraînement et de test ne sont pas de même distribution (ou n'appartiennent même pas au même espace). Le troisième est l'apprentissage sur flux de données, qui prend en compte des données apparaissant continument une à une à haute fréquence, avec des changements de distribution. Le dernier est le clustering collaboratif et consiste à faire échanger de l'information entre algorithmes de clusterings pour améliorer la qualité de leurs prédictions.La principale contribution de cette thèse est un cadre général pour traiter les problèmes de transfer. Ce cadre s'appuie sur la notion de complexité de Kolmogorov, qui mesure l'information continue dans un objet. Cet outil est particulièrement adapté au problème de transfert, du fait qu'il ne repose pas sur la notion de probabilité tout en étant capable de modéliser les changements de distributions.En plus de cet effort de modélisation, nous proposons dans cette thèse diverses discussions sur d'autres aspects ou applications de ces problèmes. Ces discussions s'articulent autour de la possibilité de transfert dans différents domaines et peuvent s'appuyer sur d'autres outils que la complexité.
Fichier principal
Vignette du fichier
78227_MURENA_2018_archivage.pdf (9.52 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-02298695 , version 1 (27-09-2019)

Identifiants

  • HAL Id : tel-02298695 , version 1

Citer

Pierre-Alexandre Murena. Minimum complexity principle for knowledge transfer in artificial learning. Artificial Intelligence [cs.AI]. Université Paris Saclay (COmUE), 2018. English. ⟨NNT : 2018SACLT019⟩. ⟨tel-02298695⟩
523 Consultations
714 Téléchargements

Partager

Gmail Facebook X LinkedIn More