Z. Zheng, J. S. Lauritzen, E. Perlman, C. G. Robinson, M. Nichols et al., A complete electron microscopy volume of the brain of adult drosophila melanogaster, BioRxiv, p.140905, 2017.

D. G. Hildebrand, M. Cicconet, R. M. Torres, W. Choi, T. M. Quan et al., Whole-brain serial-section electron microscopy in larval zebrafish, Nature, vol.545, issue.7654, p.345, 2017.

W. R. Zipfel, R. M. Williams, and W. W. Webb, Nonlinear magic: multiphoton microscopy in the biosciences, Nature biotechnology, vol.21, issue.11, p.1369, 2003.

S. Herculano-houzel, The human brain in numbers: a linearly scaled-up primate brain, Frontiers in human neuroscience, vol.3, p.31, 2009.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise et al., In vivo three-photon microscopy of subcortical structures within an intact mouse brain, Nature photonics, vol.7, issue.3, p.205, 2013.

T. Ragan, L. R. Kadiri, K. U. Venkataraju, K. Bahlmann, J. Sutin et al., Serial two-photon tomography for automated ex vivo mouse brain imaging, Nature methods, vol.9, issue.3, p.255, 2012.

D. S. Richardson and J. W. Lichtman, Clarifying tissue clearing, Cell, vol.162, issue.2, pp.246-257, 2015.

R. J. Vigouroux, M. Belle, and A. Chédotal, Neuroscience in the third dimension: shedding new light on the brain with tissue clearing, vol.10, p.33, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01567366

E. A. Susaki, K. Tainaka, D. Perrin, H. Yukinaga, A. Kuno et al., Advanced cubic protocols for whole-brain and whole-body clearing and imaging, Nature protocols, vol.10, issue.11, p.1709, 2015.

E. Potma and X. Xie, Handbook of biological nonlinear optical microscopy, 2008.

C. Sheppard and R. Kompfner, Resonant scanning optical microscope, Applied optics, vol.17, issue.18, pp.2879-2882, 1978.

W. Denk, J. H. Strickler, and W. W. Webb, Two-photon laser scanning fluorescence microscopy, Science, vol.248, issue.4951, pp.73-76, 1990.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, Two-photon microscopy in brain tissue: parameters influencing the imaging depth, Journal of neuroscience methods, vol.111, issue.1, pp.29-37, 2001.

D. Oron, E. Tal, and Y. Silberberg, Scanningless depth-resolved microscopy, Optics express, vol.13, issue.5, pp.1468-1476, 2005.

K. Bahlmann, P. T. So, M. Kirber, R. Reich, B. Kosicki et al., Multifocal multiphoton microscopy (mmm) at a frame rate beyond 600 hz, Optics express, vol.15, issue.17, pp.10991-10998, 2007.

N. Olivier, Contrast mechanism and wavefront control in coherent nonlinear microscopy, 2009.

J. Pawley, Handbook of biological confocal microscopy

W. Supatto, T. V. Truong, D. Débarre, and E. Beaurepaire, Advances in multiphoton microscopy for imaging embryos, Current opinion in genetics & development, vol.21, pp.538-548, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00803777

T. V. Truong, W. Supatto, D. S. Koos, J. M. Choi, and S. E. Fraser, Deep and fast live imaging with two-photon scanned light-sheet microscopy, Nature methods, vol.8, issue.9, p.757, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00803780

M. D. Young, J. J. Field, K. E. Sheetz, R. A. Bartels, and J. Squier, A pragmatic guide to multiphoton microscope design, Advances in optics and photonics, vol.7, pp.276-378, 2015.

J. D. Lechleiter, D. Lin, and I. Sieneart, Multi-photon laser scanning microscopy using an acoustic optical deflector, Biophysical Journal, vol.83, issue.4, pp.2292-2299, 2002.

R. Salome, Y. Kremer, S. Dieudonne, J. Léger, O. Krichevsky et al., Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors, Journal of neuroscience methods, vol.154, issue.1-2, pp.161-174, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00140134

Q. Nguyen, N. Callamaras, C. Hsieh, and I. Parker, Construction of a two-photon microscope for video-rate ca2+ imaging, Cell calcium, vol.30, issue.6, p.140, 2001.

G. Fan, H. Fujisaki, A. Miyawaki, R. Tsay, R. Y. Tsien et al., Videorate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons, Biophysical journal, vol.76, issue.5, pp.2412-2420, 1999.

K. H. Kim, C. Buehler, and P. T. So, High-speed, two-photon scanning microscope, Applied Optics, vol.38, issue.28, pp.6004-6009, 1999.

J. Cheng, C. Gu, D. Zhang, D. Wang, and S. Chen, Ultrafast axial scanning for twophoton microscopy via a digital micromirror device and binary holography, Optics letters, vol.41, issue.7, pp.1451-1454, 2016.

H. Miyajima, N. Asaoka, T. Isokawa, M. Ogata, Y. Aoki et al., A mems electromagnetic optical scanner for a commercial confocal laser scanning microscope, Journal of microelectromechanical systems, vol.12, issue.3, pp.243-251, 2003.

W. Piyawattanametha, R. P. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker et al., Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two-dimensional scanning mirror, Optics letters, vol.31, issue.13, 2006.

W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. Barretto, J. C. Jung et al., In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror, Optics letters, vol.34, issue.15, pp.2309-2311, 2009.

J. N. Stirman, I. T. Smith, M. W. Kudenov, and S. L. Smith, Wide field-of-view, multiregion, two-photon imaging of neuronal activity in the mammalian brain, Nature biotechnology, vol.34, issue.8, p.857, 2016.

P. Mahou, G. Malkinson, É. Chaudan, T. Gacoin, E. Beaurepaire et al., Metrology of multiphoton microscopes using second harmonic generation nanoprobes, Small, vol.13, issue.42, p.1701442, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01760698

A. Singh, J. D. Mcmullen, E. A. Doris, and W. R. Zipfel, Comparison of objective lenses for multiphoton microscopy in turbid samples, Biomedical optics express, vol.6, issue.8, pp.3113-3127, 2015.

V. Marx, Microscopy: seeing through tissue, 2014.

N. J. Sofroniew, D. Flickinger, J. King, and K. Svoboda, A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging, Elife, vol.5, p.141, 2016.

G. Mcconnell, J. Trägårdh, R. Amor, J. Dempster, E. Reid et al., A novel optical microscope for imaging large embryos and tissue volumes with sub-cellular resolution throughout, Elife, vol.5, p.18659, 2016.

N. Olivier, M. A. Luengo-oroz, L. Duloquin, E. Faure, T. Savy et al., Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy, Science, vol.329, issue.5994, pp.967-971, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00519834

D. Débarre, W. Supatto, A. Pena, A. Fabre, T. Tordjmann et al., Imaging lipid bodies in cells and tissues using thirdharmonic generation microscopy, Nature methods, vol.3, issue.1, p.47, 2006.

M. Strupler, A. Pena, M. Hernest, P. Tharaux, J. Martin et al.,

. Schanne-klein, Second harmonic imaging and scoring of collagen in fibrotic tissues, Optics express, vol.15, issue.7, pp.4054-4065, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00824058

A. Rebane, N. S. Makarov, M. Drobizhev, B. Spangler, E. S. Tarter et al.,

F. Spangler, Z. Meng, and . Suo, Quantitative prediction of two-photon absorption cross section based on linear spectroscopic properties, The Journal of Physical Chemistry C, vol.112, issue.21, pp.7997-8004, 2008.

M. Drobizhev, S. Tillo, N. Makarov, T. Hughes, and A. Rebane, Absolute two-photon absorption spectra and two-photon brightness of orange and red fluorescent proteins, The Journal of Physical Chemistry B, vol.113, issue.4, pp.855-859, 2009.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, Two-photon absorption properties of fluorescent proteins, Nature methods, vol.8, issue.5, p.393, 2011.

C. Sheppard, J. Gannaway, R. Kompfner, and D. Walsh, The scanning harmonic optical microscope, IEEE Journal of Quantum electronics, vol.13, issue.9, pp.912-912, 1977.

D. Dombeck, K. Kasischke, H. Vishwasrao, M. Ingelsson, B. Hyman et al., Second harmonic generation microscopy of uniformly oriented microtubules in native brain tissue, vol.100, pp.7081-7086, 2003.

V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi et al., Probing myosin structural conformation in vivo by second-harmonic generation microscopy, Proceedings of the National Academy of Sciences, vol.107, issue.17, pp.7763-7768, 2010.

A. C. Kwan, D. A. Dombeck, and W. W. Webb, Polarized microtubule arrays in apical dendrites and axons, Proceedings of the National Academy of Sciences, vol.105, issue.32, pp.11370-11375, 2008.

N. Olivier, D. Débarre, and E. Beaurepaire, Thg microscopy of cells and tissues: contrast mechanisms and applications, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00945224

C. L. Evans and X. S. Xie, Coherent anti-stokes raman scattering microscopy: chemical imaging for biology and medicine, Annu. Rev. Anal. Chem, vol.1, pp.883-909, 2008.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, Coherent nonlinear optical imaging: beyond fluorescence microscopy, Annual review of physical chemistry, vol.62, pp.507-530, 2011.

D. Débarre, Microscopie par génération de troisième harmonique appliquée à la biologie, 2006.

H. J. Van-staveren, C. J. Moes, J. Van-marie, S. A. Prahl, and M. J. Van-gemert, Light scattering in lntralipid-10% in the wavelength range of 400-1100 nm, Applied optics, vol.30, issue.31, pp.4507-4514, 1991.

D. Debarre, N. Olivier, W. Supatto, and E. Beaurepaire, Mitigating phototoxicity during multiphoton microscopy of live drosophila embryos in the 1.0-1.2 µm wavelength range, PLoS One, vol.9, issue.8, p.104250, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01079004

W. Supatto, A. Mcmahon, S. E. Fraser, and A. Stathopoulos, Quantitative imaging of collective cell migration during drosophila gastrulation: multiphoton microscopy and computational analysis, Nature protocols, vol.4, issue.10, p.1397, 2009.

X. Liu, P. Wang, J. Fu, D. Lv, D. Chen et al., Two-photon fluorescence real-time imaging on the development of early mouse embryo by stages, Journal of microscopy, vol.241, issue.2, pp.212-218, 2011.

A. Hopt and E. Neher, Highly nonlinear photodamage in two-photon fluorescence microscopy, Biophysical journal, vol.80, issue.4, pp.2029-2036, 2001.

K. Podgorski and G. Ranganathan, Brain heating induced by near-infrared lasers during multiphoton microscopy, Journal of neurophysiology, vol.116, issue.3, pp.1012-1023, 2016.

E. M. Schmidt and M. Oheim, Two-photon imaging induces brain heating and calcium microdomain hyper-activity in cortical astrocytes, p.321091, 2018.

K. Svoboda and R. Yasuda, Principles of two-photon excitation microscopy and its applications to neuroscience, Neuron, vol.50, issue.6, p.143, 2006.

R. Mostany, A. Miquelajauregui, M. Shtrahman, and C. Portera-cailliau, Two-photon excitation microscopy and its applications in neuroscience, Advanced Fluorescence Microscopy, pp.25-42, 2015.

C. Grienberger and A. Konnerth, Imaging calcium in neurons, Neuron, vol.73, issue.5, pp.862-885, 2012.

K. F. Ahrens, B. Heider, H. Lee, E. Y. Isacoff, and R. M. Siegel, Two-photon scanning microscopy of in vivo sensory responses of cortical neurons genetically encoded with a fluorescent voltage sensor in rat, Frontiers in neural circuits, vol.6, p.15, 2012.

F. Pan and W. Gan, Two-photon imaging of dendritic spine development in the mouse cortex, Developmental neurobiology, vol.68, issue.6, pp.771-778, 2008.

J. Lecoq, A. Parpaleix, E. Roussakis, M. Ducros, Y. G. Houssen et al., Simultaneous two-photon imaging of oxygen and blood flow in deep cerebral vessels, Nature medicine, vol.17, issue.7, p.893, 2011.

D. L. Pettit, S. S. Wang, K. R. Gee, and G. J. Augustine, Chemical two-photon uncaging: a novel approach to mapping glutamate receptors, Neuron, vol.19, issue.3, pp.465-471, 1997.

L. Fenno, O. Yizhar, and K. Deisseroth, The development and application of optogenetics, Annual review of neuroscience, vol.34, 2011.

M. N. Economo, N. G. Clack, L. D. Lavis, C. R. Gerfen, K. Svoboda et al., A platform for brain-wide imaging and reconstruction of individual neurons, Elife, vol.5, p.10566, 2016.

R. Y. Tsien, The green fluorescent protein, 1998.

D. M. Chudakov, M. V. Matz, S. Lukyanov, and K. A. Lukyanov, Fluorescent proteins and their applications in imaging living cells and tissues, Physiological reviews, vol.90, issue.3, pp.1103-1163, 2010.

R. N. Day and M. W. Davidson, The fluorescent protein palette: tools for cellular imaging, Chemical Society Reviews, vol.38, issue.10, pp.2887-2921, 2009.

A. S. Mishin, V. V. Belousov, K. M. Solntsev, and K. A. Lukyanov, Novel uses of fluorescent proteins, Current opinion in chemical biology, vol.27, pp.1-9, 2015.

A. D. Almeida, H. Boije, R. W. Chow, J. He, J. Tham et al., Spectrum of fates: a new approach to the study of the developing zebrafish retina, vol.141, pp.1971-1980, 2014.

D. L. Coutu, K. D. Kokkaliaris, L. Kunz, and T. Schroeder, Multicolor quantitative confocal imaging cytometry, Nature methods, vol.15, issue.1, p.39, 2018.

M. Dickinson, G. Bearman, S. Tille, R. Lansford, and S. Fraser, Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy, Biotechniques, vol.31, issue.6, pp.1272-1279, 2001.

W. Jahr, B. Schmid, C. Schmied, F. O. Fahrbach, and J. Huisken, Hyperspectral light sheet microscopy, Nature communications, vol.6, p.7990, 2015.

A. Rakhymzhan, R. Leben, H. Zimmermann, R. Günther, P. Mex et al., Synergistic strategy for multicolor twophoton microscopy: Application to the analysis of germinal center reactions in vivo, Scientific reports, vol.7, issue.1, p.7101, 2017.

F. Cutrale, V. Trivedi, L. A. Trinh, C. Chiu, J. M. Choi et al., Hyperspectral phasor analysis enables multiplexed 5d in vivo imaging, Nature methods, vol.14, issue.2, p.149, 2017.

J. Livet, T. A. Weissman, H. Kang, R. W. Draft, J. Lu et al., Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system, Nature, vol.450, issue.7166, p.56, 2007.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-peck, Q. T. Nguyen et al., Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of gfp, Neuron, vol.28, issue.1, pp.41-51, 2000.

C. S. Branda and S. M. Dymecki, Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice, Developmental cell, vol.6, issue.1, pp.7-28, 2004.

T. Saito and N. Nakatsuji, Efficient gene transfer into the embryonic mouse brain using in vivo electroporation, Developmental biology, vol.240, issue.1, pp.237-246, 2001.

H. Tabata and K. Nakajima, Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex, Neuroscience, vol.103, issue.4, pp.865-872, 2001.

H. Tabata and K. Nakajima, Labeling embryonic mouse central nervous system cells by in utero electroporation, Development, growth & differentiation, vol.50, issue.6, p.145, 2008.

C. N. Bedbrook, B. E. Deverman, and V. Gradinaru, Viral strategies for targeting the central and peripheral nervous systems, Annual review of neuroscience, issue.0, 2018.

M. D. Weitzman and R. M. Linden, Adeno-associated virus biology, Adeno-Associated Virus, pp.1-23, 2012.

K. Y. Chan, M. J. Jang, B. B. Yoo, A. Greenbaum, N. Ravi et al., Engineered aavs for efficient noninvasive gene delivery to the central and peripheral nervous systems, Nature neuroscience, vol.20, issue.8, p.1172, 2017.

L. Luo, E. M. Callaway, and K. Svoboda, Genetic dissection of neural circuits: a decade of progress, Neuron, vol.98, issue.2, pp.256-281, 2018.

S. W. Oh, J. A. Harris, L. Ng, B. Winslow, N. Cain et al., A mesoscale connectome of the mouse brain, Nature, vol.508, issue.7495, p.207, 2014.

T. A. Weissman and Y. A. Pan, Brainbow: new resources and emerging biological applications for multicolor genetic labeling and analysis, Genetics, vol.199, issue.2, pp.293-306, 2015.

J. W. Lichtman, J. Livet, and J. R. Sanes, A technicolour approach to the connectome, Nature Reviews Neuroscience, vol.9, issue.6, p.417, 2008.

G. S. Jefferis and J. Livet, Sparse and combinatorial neuron labelling, Current opinion in neurobiology, vol.22, issue.1, pp.101-110, 2012.

B. Richier and I. Salecker, Versatile genetic paintbrushes: Brainbow technologies, Wiley Interdisciplinary Reviews: Developmental Biology, vol.4, issue.2, pp.161-180, 2015.

H. J. Snippert, L. G. Van-der-flier, T. Sato, J. H. Van-es, M. Van-den-born et al., Intestinal crypt homeostasis results from neutral competition between symmetrically dividing lgr5 stem cells, Cell, vol.143, issue.1, pp.134-144, 2010.

V. Gupta and K. D. Poss, Clonally dominant cardiomyocytes direct heart morphogenesis, Nature, vol.484, issue.7395, p.479, 2012.

K. Weber, M. Thomaschewski, M. Warlich, T. Volz, K. Cornils et al., Rgb marking facilitates multicolor clonal cell tracking, Nature medicine, vol.17, issue.4, p.146, 2011.

O. Kanca, E. Caussinus, A. S. Denes, A. Smith, and M. Affolter, Raeppli: a whole-tissue labeling tool for live imaging of drosophila development, Development, p.102913, 2012.

D. Hadjieconomou, S. Rotkopf, C. Alexandre, D. M. Bell, B. J. Dickson et al., Flybow: genetic multicolor cell labeling for neural circuit analysis in drosophila melanogaster, Nature methods, vol.8, issue.3, p.260, 2011.

S. Hampel, P. Chung, C. E. Mckellar, D. Hall, L. L. Looger et al., Drosophila brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns, Nature methods, vol.8, issue.3, p.253, 2011.

Y. A. Pan, T. Freundlich, T. A. Weissman, D. Schoppik, X. C. Wang et al., Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish, Development, vol.140, issue.13, pp.2835-2846, 2013.

D. Cai, K. B. Cohen, T. Luo, J. W. Lichtman, and J. R. Sanes, Improved tools for the brainbow toolbox, Nature methods, vol.10, issue.6, p.540, 2013.

K. Loulier, R. Barry, P. Mahou, Y. L. Franc, W. Supatto et al., Multiplex cell and lineage tracking with combinatorial labels, Neuron, vol.81, issue.3, pp.505-520, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01086032

I. Tabansky, A. Lenarcic, R. W. Draft, K. Loulier, D. B. Keskin et al., Developmental bias in cleavage-stage mouse blastomeres, Current Biology, vol.23, issue.1, pp.21-31, 2013.

J. Ma, Z. Shen, Y. Yu, and S. Shi, Neural lineage tracing in the mammalian brain, Current opinion in neurobiology, vol.50, pp.7-16, 2018.

K. Kretzschmar and F. M. Watt, Lineage tracing, Cell, vol.148, issue.1-2, pp.33-45, 2012.

J. Fink, A. Andersson-rolf, and B. Koo, Adult stem cell lineage tracing and deep tissue imaging, BMB reports, vol.48, issue.12, p.655, 2015.

A. Alemany, M. Florescu, C. S. Baron, J. Peterson-maduro, and A. Van-oudenaarden, Whole-organism clone tracing using single-cell sequencing, Nature, vol.556, issue.7699, p.108, 2018.

D. E. Wagner, C. Weinreb, Z. M. Collins, J. A. Briggs, S. G. Megason et al., Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo, Science, vol.360, issue.6392, pp.981-987, 2018.

A. Mckenna, G. M. Findlay, J. A. Gagnon, M. S. Horwitz, A. F. Schier et al., Whole-organism lineage tracing by combinatorial and cumulative genome editing, Science, vol.353, issue.6298, p.7907, 2016.

E. Shapiro, T. Biezuner, and S. Linnarsson, Single-cell sequencing-based technologies will revolutionize whole-organism science, Nature Reviews Genetics, vol.14, issue.9, p.618, 2013.

S. D. Perli, C. H. Cui, and T. K. Lu, Continuous genetic recording with self-targeting crispr-cas in human cells, Science, vol.353, issue.6304, p.511, 2016.

P. Pantazis and W. Supatto, Advances in whole-embryo imaging: a quantitative transition is underway, Nature Reviews Molecular Cell Biology, vol.15, issue.5, p.327, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00998245

Y. Rinkevich, P. Lindau, H. Ueno, M. T. Longaker, and I. L. Weissman, Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip, Nature, vol.476, issue.7361, p.409, 2011.

T. L. Tay, D. Mai, J. Dautzenberg, F. Fernández-klett, G. Lin et al., A new fate mapping system reveals context-dependent random or clonal expansion of microglia, Nature neuroscience, vol.20, issue.6, p.793, 2017.

K. Weber, M. Thomaschewski, D. Benten, and B. Fehse, Rgb marking with lentiviral vectors for multicolor clonal cell tracking, nature protocols, vol.7, issue.5, p.839, 2012.

S. Lamprecht, E. M. Schmidt, C. Blaj, H. Hermeking, A. Jung et al., Multicolor lineage tracing reveals clonal architecture and dynamics in colon cancer, Nature communications, vol.8, issue.1, p.1406, 2017.

F. García-moreno, N. A. Vasistha, J. Begbie, and Z. Molnár, Clone is a new method to target single progenitors and study their progeny in mouse and chick, Development, vol.141, issue.7, pp.1589-1598, 2014.

J. García-marqués and L. López-mascaraque, Clonal identity determines astrocyte cortical heterogeneity, Cerebral cortex, vol.23, issue.6, pp.1463-1472, 2013.

M. I. Worley, L. Setiawan, and I. K. Hariharan, Tie-dye: a combinatorial marking system to visualize and genetically manipulate clones during development in drosophila melanogaster, Development, p.96057, 2013.

E. Roy, Z. Neufeld, J. Livet, and K. Khosrotehrani, Concise review: understanding clonal dynamics in homeostasis and injury through multicolor lineage tracing, Stem Cells, vol.32, issue.12, p.148, 2014.

K. Cornils, L. Thielecke, S. Hüser, M. Forgber, M. Thomaschewski et al., Multiplexing clonality: combining rgb marking and genetic barcoding, Nucleic acids research, vol.42, issue.7, pp.56-56, 2014.

D. Gomez-nicola, K. Riecken, B. Fehse, and V. H. Perry, In-vivo rgb marking and multicolour single-cell tracking in the adult brain, Scientific reports, vol.4, p.7520, 2014.

R. , Histology of the Nervous System of Man and Vertebrates, History of Neuroscience, issue.6

. Oxford, , 1995.

J. Wang, M. L. O'sullivan, D. Mukherjee, V. M. Puñal, S. Farsiu et al., Anatomy and spatial organization of müller glia in mouse retina, Journal of Comparative Neurology, vol.525, issue.8, pp.1759-1777, 2017.

E. Robles, A. Filosa, and H. Baier, Precise lamination of retinal axons generates multiple parallel input pathways in the tectum, Journal of Neuroscience, vol.33, issue.11, pp.5027-5039, 2013.

L. Dumas, C. Heitz-marchaland, S. Fouquet, U. Suter, J. Livet et al., Multicolor analysis of oligodendrocyte morphology, interactions, and development with brainbow, Glia, vol.63, issue.4, pp.699-717, 2015.

F. N. Zaidi, V. Cicchini, D. Kaufman, E. Ko, A. Ko et al., Innervation of taste buds revealed with brainbow-labeling in mouse, Journal of anatomy, vol.229, issue.6, pp.778-790, 2016.

S. Hammer, A. Monavarfeshani, T. Lemon, J. Su, and M. A. Fox, Multiple retinal axons converge onto relay cells in the adult mouse thalamus, Cell reports, vol.12, issue.10, pp.1575-1583, 2015.

Y. Hadas, A. Etlin, H. Falk, O. Avraham, O. Kobiler et al., A 'tool box'for deciphering neuronal circuits in the developing chick spinal cord, Nucleic acids research, vol.42, issue.19, pp.148-148, 2014.

P. Mahou, These de doctorat de l'ecole polytechnique

R. S. Pillai, C. Boudoux, G. Labroille, N. Olivier, I. Veilleux et al., Multiplexed two-photon microscopy of dynamic biological samples with shaped broadband pulses, Optics express, vol.17, issue.15, pp.12741-12752, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00818488

G. Labroille, R. S. Pillai, X. Solinas, C. Boudoux, N. Olivier et al., Dispersion-based pulse shaping for multiplexed two-photon fluorescence microscopy, Optics letters, vol.35, issue.20, p.149, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00805068

J. P. Gordon, Theory of the soliton self-frequency shift, Optics letters, vol.11, issue.10, pp.662-664, 1986.

K. Wang, T. Liu, J. Wu, N. G. Horton, C. P. Lin et al., Three-color femtosecond source for simultaneous excitation of three fluorescent proteins in two-photon fluorescence microscopy, Biomedical optics express, vol.3, issue.9, pp.1972-1977, 2012.

K. Li, L. L. Huang, J. Liang, and M. Chan, Simple approach to three-color twophoton microscopy by a fiber-optic wavelength convertor, Biomedical optics express, vol.7, issue.11, pp.4803-4815, 2016.

C. Zhang, V. Bucklew, P. Edwards, C. Janisch, and Z. Liu, Divided pulse soliton selffrequency shift: a multi-color, dual-polarization, power-scalable, broadly tunable optical source, Optics letters, vol.42, issue.3, pp.502-505, 2017.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille et al., Multicolor two-photon tissue imaging by wavelength mixing, Nature methods, vol.9, issue.8, p.815, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00324345

C. Stringari, L. Abdeladim, G. Malkinson, P. Mahou, X. Solinas et al.,

W. Galey, R. Supatto, and . Legouis, Multicolor two-photon imaging of endogenous fluorophores in living tissues by wavelength mixing, Scientific Reports, vol.7, issue.1, p.3792, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01617700

P. Mahou, J. Vermot, E. Beaurepaire, and W. Supatto, Multicolor two-photon light-sheet microscopy, Nature methods, vol.11, issue.6, p.600, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01048680

N. Dray, S. Bedu, N. Vuillemin, A. Alunni, M. Coolen et al., Large-scale live imaging of adult neural stem cells in their endogenous niche, Development, p.123018, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01304080

E. P. Perillo, J. W. Jarrett, Y. Liu, A. Hassan, D. C. Fernée et al., Two-color multiphoton in vivo imaging with a femtosecond diamond raman laser, Light: Science & Applications, vol.6, issue.11, p.17095, 2017.

J. Trägårdh, M. Murtagh, G. Robb, M. Parsons, J. Lin et al., Two-color, two-photon imaging at long excitation wavelengths using a diamond raman laser, Microscopy and Microanalysis, vol.22, issue.4, pp.803-807, 2016.

H. Kennedy, D. Van-essen, and Y. Christen, Micro-, Meso-and Macro-connectomics of the Brain

. Springer, , p.150, 2016.

D. C. Van-essen, S. M. Smith, D. M. Barch, T. E. Behrens, E. Yacoub et al., The wu-minn human connectome project: an overview, Neuroimage, vol.80, pp.62-79, 2013.

M. Helmstaedter, K. L. Briggman, S. C. Turaga, V. Jain, H. S. Seung et al., Connectomic reconstruction of the inner plexiform layer in the mouse retina, Nature, vol.500, issue.7461, p.168, 2013.

D. B. Chklovskii, S. Vitaladevuni, and L. K. Scheffer, Semi-automated reconstruction of neural circuits using electron microscopy, Current opinion in neurobiology, vol.20, issue.5, pp.667-675, 2010.

H. Hintiryan, N. N. Foster, I. Bowman, M. Bay, M. Y. Song et al.,

B. Bienkowski, M. Zingg, and . Zhu, The mouse cortico-striatal projectome, Nature neuroscience, vol.19, issue.8, p.1100, 2016.

B. J. Hunnicutt, B. C. Jongbloets, W. T. Birdsong, K. J. Gertz, H. Zhong et al., A comprehensive excitatory input map of the striatum reveals novel functional organization, Elife, vol.5, p.19103, 2016.

X. Li, B. Yu, Q. Sun, Y. Zhang, M. Ren et al., Generation of a whole-brain atlas for the cholinergic system and mesoscopic projectome analysis of basal forebrain cholinergic neurons, Proceedings of the National Academy of Sciences, p.201703601, 2017.

A. Hoerder-suabedissen, S. Hayashi, L. Upton, Z. Nolan, D. Casas-torremocha et al., Subset of cortical layer 6b neurons selectively innervates higher order thalamic nuclei in mice, Cerebral Cortex, vol.28, issue.5, pp.1882-1897, 2018.

D. Kleinfeld, A. Bharioke, P. Blinder, D. D. Bock, K. L. Briggman et al., Large-scale automated histology in the pursuit of connectomes, Journal of Neuroscience, vol.31, issue.45, pp.16125-16138, 2011.

J. Kornfeld and W. Denk, Progress and remaining challenges in high-throughput volume electron microscopy, Current opinion in neurobiology, vol.50, pp.261-267, 2018.

G. Paxinos and K. B. Franklin, The mouse brain in stereotaxic coordinates. Gulf professional publishing, 2004.

G. Paxinos and K. W. , Atlas of the developing rat nervous system, 2018.

A. W. Toga, K. Ambach, B. Quinn, M. Hutchin, and J. S. Burton, Postmortem anatomy from cryosectioned whole human brain, Journal of neuroscience methods, vol.54, issue.2, pp.239-252, 1994.

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. Lev-ram et al., All-optical histology using ultrashort laser pulses, Neuron, vol.39, issue.1, pp.27-41, 2003.

T. Ragan, J. D. Sylvan, K. H. Kim, H. Huang, K. Bahlmann et al., High-resolution whole organ imaging using two-photon tissue cytometry, Journal of biomedical optics, vol.12, issue.1, p.14015, 2007.

M. Oberlaender, V. J. Dercksen, R. Egger, M. Gensel, B. Sakmann et al., Automated three-dimensional detection and counting of neuron somata, Journal of neuroscience methods, vol.180, issue.1, pp.147-160, 2009.

M. Oberlaender, C. P. De-kock, R. M. Bruno, A. Ramirez, H. S. Meyer et al., Cell type-specific three-dimensional structure of thalamocortical circuits in a column of rat vibrissal cortex, Cerebral cortex, vol.22, issue.10, pp.2375-2391, 2011.

K. S. Matho, Connectomic analysis of the binaural circuit and investigation of mechanisms controlling its development

A. Li, H. Gong, B. Zhang, Q. Wang, C. Yan et al., Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain, Science, vol.330, issue.6009, pp.1404-1408, 2010.

H. Gong, D. Xu, J. Yuan, X. Li, C. Guo et al., High-throughput dual-colour precision imaging for brain-wide connectome with cytoarchitectonic landmarks at the cellular level, Nature communications, vol.7, p.12142, 2016.

H. Gong, S. Zeng, C. Yan, X. Lv, Z. Yang et al., Continuously tracing brain-wide long-distance axonal projections in mice at a onemicron voxel resolution, Neuroimage, vol.74, pp.87-98, 2013.

M. A. Neil, R. Ju?kaitis, and T. Wilson, Method of obtaining optical sectioning by using structured light in a conventional microscope, Optics letters, vol.22, issue.24, p.152, 1997.

C. Guo, J. Peng, Y. Zhang, A. Li, Y. Li et al., Single-axon level morphological analysis of corticofugal projection neurons in mouse barrel field, Scientific reports, vol.7, issue.1, p.2846, 2017.

T. Ragan, Systems and methods for imaging and processing tissue, US Patent, vol.8, p.978, 2014.

S. P. Amato, F. Pan, J. Schwartz, and T. M. Ragan, Whole brain imaging with serial two-photon tomography, Frontiers in neuroanatomy, vol.10, p.31, 2016.

Y. Kim, G. R. Yang, K. Pradhan, K. U. Venkataraju, M. Bota et al., Brain-wide maps reveal stereotyped cell-typebased cortical architecture and subcortical sexual dimorphism, Cell, vol.171, issue.2, pp.456-469, 2017.

P. Delafontaine-martel, J. Lefebvre, R. Damseh, A. Castonguay, P. Tardif et al., Large scale serial two-photon microscopy to investigate local vascular changes in whole rodent brain models of alzheimer's disease, p. 104982O, International Society for Optics and Photonics, vol.10498, 2018.

J. A. Harris, S. Mihalas, K. E. Hirokawa, J. D. Whitesell, J. Knox et al., The organization of intracortical connections by layer and cell class in the mouse brain, p.292961, 2018.

K. Seiriki, A. Kasai, T. Hashimoto, W. Schulze, M. Niu et al.,

S. Inoue, M. Uezono, and . Takada, High-speed and scalable whole-brain imaging in rodents and primates, Neuron, vol.94, issue.6, pp.1085-1100, 2017.

A. Narasimhan, J. Mizrachi, K. U. Venkatraju, D. F. Albeanu, and P. Osten, A high resolution whole brain imaging using oblique light sheet tomography, p.132423, 2017.

J. Lefebvre, A. Castonguay, P. Pouliot, M. Descoteaux, and F. Lesage, Whole mouse brain imaging using optical coherence tomography: reconstruction, normalization, segmentation, and comparison with diffusion mri, Neurophotonics, vol.4, issue.4, p.41501, 2017.

T. T. Wong, R. Zhang, C. Zhang, H. Hsu, K. I. Maslov et al., Label-free automated three-dimensional imaging of whole organs by microtomy-assisted photoacoustic microscopy, Nature communications, vol.8, issue.1, p.1386, 2017.

M. Jeong, Y. Kim, J. Kim, D. D. Ferrante, P. P. Mitra et al., Comparative three-dimensional connectome map of motor cortical projections in the mouse brain, Scientific reports, vol.6, p.20072, 2016.

W. Guo, X. Liu, Y. Liu, Y. Gang, X. He et al., Chemical reactivation of resin-embedded phuji adds red for simultaneous two-color imaging with egfp, Biomedical optics express, vol.8, issue.7, pp.3281-3288, 2017.

A. Negrean and H. D. Mansvelder, Optimal lens design and use in laser-scanning microscopy, Biomedical optics express, vol.5, issue.5, pp.1588-1609, 2014.

S. Chen and M. L. Culpepper, Oscillating microtome with flexure drive, p.700

K. Chung and K. Deisseroth, Clarity for mapping the nervous system, Nature methods, vol.10, issue.6, p.508, 2013.

B. Hsueh, V. M. Burns, P. Pauerstein, K. Holzem, L. Ye et al., Pathways to clinical clarity: volumetric analysis of irregular, soft, and heterogeneous tissues in development and disease, Scientific reports, vol.7, issue.1, p.5899, 2017.

S. Preibisch, S. Saalfeld, and P. Tomancak, Globally optimal stitching of tiled 3d microscopic image acquisitions, Bioinformatics, vol.25, issue.11, pp.1463-1465, 2009.

D. Hörl, F. R. Rusak, F. Preusser, P. Tillberg, N. Randel et al.,

H. Keller, H. Harz, and . Leonhardt, Bigstitcher: Reconstructing high-resolution image datasets of cleared and expanded samples, p.343954, 2018.

M. Ducros, L. Moreaux, J. Bradley, P. Tiret, O. Griesbeck et al., Spectral unmixing: analysis of performance in the olfactory bulb in vivo, PLoS One, vol.4, issue.2, p.4418, 2009.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, Nonlinear scanning laser microscopy by third harmonic generation, Applied Physics Letters, vol.70, issue.8, pp.922-924, 1997.

A. Zumbusch, G. R. Holtom, and X. S. Xie, Three-dimensional vibrational imaging by coherent anti-stokes raman scattering, Physical review letters, vol.82, issue.20, p.4142, 1999.

B. Weigelin, G. Bakker, and P. Friedl, Third harmonic generation microscopy of cells and tissue organization, J Cell Sci, p.154, 2016.

M. J. Farrar, F. W. Wise, J. R. Fetcho, and C. B. Schaffer, In vivo imaging of myelin in the vertebrate central nervous system using third harmonic generation microscopy, Biophysical journal, vol.100, issue.5, pp.1362-1371, 2011.

S. Witte, A. Negrean, J. C. Lodder, C. P. De-kock, G. T. Silva et al., Label-free live brain imaging and targeted patching with third-harmonic generation microscopy, Proceedings of the National Academy of Sciences, vol.108, issue.15, pp.5970-5975, 2011.

H. Lim, D. Sharoukhov, I. Kassim, Y. Zhang, J. L. Salzer et al., Label-free imaging of schwann cell myelination by third harmonic generation microscopy, Proceedings of the National Academy of Sciences, vol.111, issue.50, pp.18025-18030, 2014.

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J. Cheng, Coherent anti-stokes raman scattering imaging of axonal myelin in live spinal tissues, Biophysical journal, vol.89, issue.1, pp.581-591, 2005.

T. B. Huff and J. Cheng, In vivo coherent anti-stokes raman scattering imaging of sciatic nerve tissue, Journal of microscopy, vol.225, issue.2, pp.175-182, 2007.

Y. Shi, R. Shi, J. Cheng, D. Zhang, T. B. Huff et al., Longitudinal in vivo coherent anti-stokes raman scattering imaging of demyelination and remyelination in injured spinal cord, Journal of biomedical optics, vol.16, issue.10, p.106012, 2011.

Y. Fu, H. Wang, T. B. Huff, R. Shi, and J. Cheng, Coherent anti-stokes raman scattering imaging of myelin degradation reveals a calcium-dependent pathway in lyso-ptdchoinduced demyelination, Journal of neuroscience research, vol.85, issue.13, pp.2870-2881, 2007.

P. Gasecka, A. Jaouen, F. Bioud, H. B. De-aguiar, J. Duboisset et al., Lipid order degradation in autoimmune demyelination probed by polarized coherent raman microscopy, Biophysical journal, vol.113, issue.7, pp.1520-1530, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01643501

Y. Fu, T. B. Huff, H. Wang, H. Wang, and J. Cheng, Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-stokes raman scattering microscopy, Optics express, vol.16, issue.24, pp.19396-19409, 2008.

T. Hellerer, A. M. Enejder, and A. Zumbusch, Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses, Applied Physics Letters, vol.85, issue.1, p.155, 2004.

J. P. Day, K. F. Domke, G. Rago, H. Kano, H. Hamaguchi et al., Quantitative coherent anti-stokes raman scattering (cars) microscopy, The Journal of Physical Chemistry B, vol.115, issue.24, pp.7713-7725, 2011.

S. Abeytunge, Y. Li, R. Toledo-crow, B. A. Larson, and M. Rajadhyaksha, Rapid confocal imaging of large areas of excised tissue with strip mosaicing, Journal of biomedical optics, vol.16, issue.5, p.50504, 2011.

E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Débarre, M. J. Booth et al., Aberration-free three-dimensional multiphoton imaging of neuronal activity at khz rates, Proceedings of the National Academy of Sciences, vol.109, issue.8, pp.2919-2924, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00681944

L. Madisen, A. R. Garner, D. Shimaoka, A. S. Chuong, N. C. Klapoetke et al., Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance, Neuron, vol.85, issue.5, pp.942-958, 2015.

S. Murphy, K. Rokicki, C. Bruns, Y. Yu, L. Foster et al., The janelia workstation for neuroscience, Keystone Big Data in Biology

M. M. Halassa, T. Fellin, H. Takano, J. Dong, and P. G. Haydon, Synaptic islands defined by the territory of a single astrocyte, Journal of Neuroscience, vol.27, issue.24, pp.6473-6477, 2007.

D. D. Wang and A. Bordey, The astrocyte odyssey, Progress in neurobiology, vol.86, issue.4, pp.342-367, 2008.

N. J. Abbott, L. Rönnbäck, and E. Hansson, Astrocyte-endothelial interactions at the blood-brain barrier, Nature Reviews Neuroscience, vol.7, issue.1, p.41, 2006.

M. Bélanger, I. Allaman, and P. J. Magistretti, Brain energy metabolism: focus on astrocyteneuron metabolic cooperation, Cell metabolism, vol.14, issue.6, pp.724-738, 2011.

L. E. Clarke and B. A. Barres, Emerging roles of astrocytes in neural circuit development, Nature Reviews Neuroscience, vol.14, issue.5, p.311, 2013.

N. J. Allen, Annual review of cell and developmental biology, vol.30, pp.439-463, 2014.

E. A. Newman, New roles for astrocytes: regulation of synaptic transmission, Trends in neurosciences, vol.26, issue.10, p.156, 2003.

M. Pabst, O. Braganza, H. Dannenberg, W. Hu, L. Pothmann et al., Astrocyte intermediaries of septal cholinergic modulation in the hippocampus, Neuron, vol.90, issue.4, pp.853-865, 2016.

C. M. Alberini, E. Cruz, G. Descalzi, B. Bessières, and V. Gao, Astrocyte glycogen and lactate: New insights into learning and memory mechanisms, Glia, vol.66, issue.6, pp.1244-1262, 2018.

L. E. Clarke, S. A. Liddelow, C. Chakraborty, A. E. Münch, M. Heiman et al., Normal aging induces a1-like astrocyte reactivity, Proceedings of the National Academy of Sciences, vol.115, issue.8, pp.1896-1905, 2018.

D. T. Lioy, S. K. Garg, C. E. Monaghan, J. Raber, K. D. Foust et al., A role for glia in the progression of rett's syndrome, Nature, vol.475, issue.7357, p.497, 2011.

Y. Koyama, Functional alterations of astrocytes in mental disorders: pharmacological significance as a drug target, Frontiers in cellular neuroscience, vol.9, p.261, 2015.

D. Lanjakornsiripan, B. Pior, D. Kawaguchi, S. Furutachi, T. Tahara et al., Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers, Nature communications, vol.9, issue.1, p.1623, 2018.

Y. Zhang and B. A. Barres, Astrocyte heterogeneity: an underappreciated topic in neurobiology, Current opinion in neurobiology, vol.20, issue.5, pp.588-594, 2010.

A. Kriegstein and A. Alvarez-buylla, The glial nature of embryonic and adult neural stem cells, Annual review of neuroscience, vol.32, pp.149-184, 2009.

M. Torigoe, K. Yamauchi, Y. Zhu, H. Kobayashi, and F. Murakami, Association of astrocytes with neurons and astrocytes derived from distinct progenitor domains in the subpallium, Scientific reports, vol.5, p.12258, 2015.

W. Ge, A. Miyawaki, F. H. Gage, Y. N. Jan, and L. Y. Jan, Local generation of glia is a major astrocyte source in postnatal cortex, Nature, vol.484, issue.7394, p.376, 2012.

C. Wang, L. Zhang, Y. Zhou, J. Zhou, X. Yang et al., Activity-dependent development of callosal projections in the somatosensory cortex, Journal of Neuroscience, vol.27, issue.42, pp.11334-11342, 2007.

M. López-hidalgo, W. B. Hoover, and J. Schummers, Spatial organization of astrocytes in ferret visual cortex, Journal of Comparative Neurology, vol.524, issue.17, p.157, 2016.

E. A. Bushong, M. E. Martone, Y. Z. Jones, and M. H. Ellisman, Protoplasmic astrocytes in ca1 stratum radiatum occupy separate anatomical domains, Journal of Neuroscience, vol.22, issue.1, pp.183-192, 2002.

C. J. Niedworok, A. P. Brown, M. J. Cardoso, P. Osten, S. Ourselin et al., amap is a validated pipeline for registration and segmentation of highresolution mouse brain data, Nature communications, vol.7, p.11879, 2016.

D. Fürth, T. Vaissière, O. Tzortzi, Y. Xuan, A. Märtin et al., An interactive framework for whole-brain maps at cellular resolution, Nature neuroscience, vol.21, issue.1, p.139, 2018.

P. Mailly, V. Aliane, H. J. Groenewegen, S. N. Haber, and J. Deniau, The rat prefrontostriatal system analyzed in 3d: evidence for multiple interacting functional units, Journal of Neuroscience, vol.33, issue.13, pp.5718-5727, 2013.

S. Tsuriel, S. Gudes, R. W. Draft, A. M. Binshtok, and J. W. Lichtman, Multispectral labeling technique to map many neighboring axonal projections in the same tissue, nAture methods, vol.12, issue.6, p.547, 2015.

J. Zhou, Y. Wen, L. She, Y. Sui, L. Liu et al., Axon position within the corpus callosum determines contralateral cortical projection, Proceedings of the National Academy of Sciences, vol.110, issue.29, pp.2714-2723, 2013.

L. Pessoa, Emotion and cognition and the amygdala: from "what is it?" to "what's to be done?, Neuropsychologia, vol.48, issue.12, pp.3416-3429, 2010.

M. Sarter and H. J. Markowitsch, Involvement of the amygdala in learning and memory: a critical review, with emphasis on anatomical relations, Behavioral neuroscience, vol.99, issue.2, p.342, 1985.

N. Otsu, A threshold selection method from gray-level histograms, IEEE transactions on systems, man, and cybernetics, vol.9, pp.62-66, 1979.

E. A. Susaki and H. R. Ueda, Whole-body and whole-organ clearing and imaging techniques with single-cell resolution: toward organism-level systems biology in mammals, Cell chemical biology, vol.23, issue.1, pp.137-157, 2016.

P. J. Keller and H. Dodt, Light sheet microscopy of living or cleared specimens, Current opinion in neurobiology, vol.22, issue.1, pp.138-143, 2012.

R. Tomer, M. Lovett-barron, I. Kauvar, A. Andalman, V. M. Burns et al., Sped light sheet microscopy: fast 158 BIBLIOGRAPHY mapping of biological system structure and function, Cell, vol.163, issue.7, pp.1796-1806, 2015.

O. A. Bayraktar, L. C. Fuentealba, A. Alvarez-buylla, and D. H. Rowitch, Cold Spring Harbor perspectives in biology, p.20362, 2014.

S. Pontes-quero, L. Heredia, V. Casquero-garcía, M. Fernández-chacón, W. Luo et al., Dual ifgmosaic: a versatile method for multispectral and combinatorial mosaic gene-function analysis, Cell, vol.170, issue.4, pp.800-814, 2017.

E. Beaurepaire, M. Oheim, and J. Mertz, Ultra-deep two-photon fluorescence excitation in turbid media, Optics Communications, vol.188, issue.1-4, pp.25-29, 2001.

P. Theer, M. T. Hasan, and W. Denk, Two-photon imaging to a depth of 1000 µm in living brains by use of a ti: Al 2 o 3 regenerative amplifier, Optics letters, vol.28, issue.12, pp.1022-1024, 2003.

J. Ying, F. Liu, and R. Alfano, Spatial distribution of two-photon-excited fluorescence in scattering media, Applied optics, vol.38, issue.1, pp.224-229, 1999.

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer et al., Deep tissue multiphoton microscopy using longer wavelength excitation, Optics express, vol.17, issue.16, pp.13354-13364, 2009.

D. Kobat, N. G. Horton, and C. Xu, In vivo two-photon microscopy to 1.6-mm depth in mouse cortex, Journal of biomedical optics, vol.16, issue.10, p.106014, 2011.

D. Shcherbo, C. S. Murphy, G. V. Ermakova, E. A. Solovieva, T. V. Chepurnykh et al.,

V. V. Shcheglov, V. Z. Verkhusha, K. L. Pletnev, P. M. Hazelwood, and . Roche, Far-red fluorescent tags for protein imaging in living tissues, Biochemical journal, vol.418, issue.3, pp.567-574, 2009.

C. Tischbirek, A. Birkner, H. Jia, B. Sakmann, and A. Konnerth, Deep two-photon brain imaging with a red-shifted fluorometric ca2+ indicator, Proceedings of the National Academy of Sciences, vol.112, issue.36, pp.11377-11382, 2015.

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton et al.,

J. Cheng, A. S. Reimer, N. Tolias, and . Nishimura, In vivo three-photon imaging of activity of gcamp6-labeled neurons deep in intact mouse brain, Nature methods, vol.14, issue.4, p.388, 2017.

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy, Proceedings of the National Academy of Sciences, vol.93, issue.20, pp.10763-10768, 1996.

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. M. Malak et al., Three-photon excitation in fluorescence microscopy, Journal of Biomedical Optics, vol.1, issue.1, pp.71-75, 1996.

D. L. Wokosin, V. E. Centonze, S. Crittenden, and J. White, Three-photon excitation fluorescence imaging of biological specimens using an all-solid-state laser, vol.4, pp.208-214, 1996.

I. Gryczynski, H. Malak, and J. R. Lakowicz, Three-photon excitation of a tryptophan derivative using a fs-ti: Sapphire laser, Biospectroscopy, vol.2, issue.1, pp.9-15, 1996.

S. Maiti, J. B. Shear, R. Williams, W. Zipfel, and W. W. Webb, Measuring serotonin distribution in live cells with three-photon excitation, Science, vol.275, issue.5299, pp.530-532, 1997.

L. Shi, L. A. Sordillo, A. Rodríguez-contreras, and R. Alfano, Transmission in near-infrared optical windows for deep brain imaging, Journal of biophotonics, vol.9, issue.1-2, pp.38-43, 2016.

J. Binding, J. B. Arous, J. Léger, S. Gigan, C. Boccara et al., Brain refractive index measured in vivo with high-na defocus-corrected full-field oct and consequences for two-photon microscopy, Optics express, vol.19, issue.6, pp.4833-4847, 2011.

C. Xu and W. W. Webb, Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm, JOSA B, vol.13, issue.3, pp.481-491, 1996.

N. G. Horton and C. Xu, Dispersion compensation in three-photon fluorescence microscopy at 1,700 nm, Biomedical optics express, vol.6, issue.4, pp.1392-1397, 2014.

C. J. Rowlands, D. Park, O. T. Bruns, K. D. Piatkevich, D. Fukumura et al., Wide-field three-photon excitation in biological samples, Light: Science & Applications, vol.6, issue.5, p.16255, 2017.

C. Rodriguez, Y. Liang, R. Lu, and N. Ji, Three-photon fluorescence microscopy with an axially elongated bessel focus, Optics letters, vol.43, issue.8, pp.1914-1917, 2018.

B. Chen, X. Huang, D. Gou, J. Zeng, G. Chen et al., Rapid volumetric imaging with bessel-beam three-photon microscopy, Biomedical optics express, vol.9, issue.4, p.160, 1992.

X. Tao, H. Lin, T. Lam, R. Rodriguez, J. W. Wang et al., Transcutical threephoton fluorescence imaging of drosophila brain at subcellular resolution with adaptive optics, CLEO: Applications and Technology, pp.1-2, 2017.

M. Yildirim, N. Durr, and A. Ben-yakar, Tripling the maximum imaging depth with thirdharmonic generation microscopy, Journal of biomedical optics, vol.20, issue.9, p.96013, 2015.

L. Cheng, N. G. Horton, K. Wang, S. Chen, and C. Xu, Measurements of multiphoton action cross sections for multiphoton microscopy, Biomedical optics express, vol.5, issue.10, pp.3427-3433, 2014.

K. Wang, N. G. Horton, K. Charan, and C. Xu, Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics, IEEE J. Sel. Top. Quantum Electron, vol.20, issue.2, p.6800311, 2014.

T. Noronen, S. Firstov, E. Dianov, and O. G. Okhotnikov, 1700 nm dispersion managed mode-locked bismuth fiber laser, Scientific reports, vol.6, p.24876, 2016.

A. Khegai, M. Melkumov, K. Riumkin, V. Khopin, S. Firstov et al., Nalm-based bismuth-doped fiber laser at 1.7 µm, Optics letters, vol.43, issue.5, pp.1127-1130, 2018.

T. Noronen, O. Okhotnikov, and R. Gumenyuk, Electronically tunable thulium-holmium mode-locked fiber laser for the 1700-1800 nm wavelength band, Optics Express, vol.24, issue.13, pp.14703-14708, 2016.

F. M. Mitschke and L. F. Mollenauer, Discovery of the soliton self-frequency shift, Optics letters, vol.11, issue.10, pp.659-661, 1986.

P. Cadroas, L. Abdeladim, L. Kotov, M. Likhachev, D. Lipatov et al., All-fiber femtosecond laser providing 9 nj, p.50
URL : https://hal.archives-ouvertes.fr/hal-01611185

, mhz pulses at 1650 nm for three-photon microscopy, Journal of Optics, vol.19, issue.6, p.65506, 2017.

J. H. Lee, J. Van-howe, C. Xu, and X. Liu, Soliton self-frequency shift: experimental demonstrations and applications, IEEE Journal of Selected Topics in Quantum Electronics, vol.14, issue.3, pp.713-723, 2008.

L. Rishøj, G. Prabhakar, J. Demas, and S. Ramachandran, 30 nj, 50 fs all-fiber source at 1300 nm using soliton shifting in lma hom fiber, Lasers and Electro-Optics (CLEO), 2016 Conference on, pp.1-2, 2016.

H. Chung, W. Liu, Q. Cao, F. X. Kärtner, and G. Chang, Er-fiber laser enabled, energy scalable femtosecond source tunable from 1.3 to 1.7 µm, Optics Express, vol.25, issue.14, pp.15760-15771, 2017.

W. Supatto, Imagerie multiphoton quantitative et ablation laser par impulsions femtosecondes pour l'étude de l'expression génétique mécano-sensible chez l'embryon de drosophile sauvage, vol.7, 2005.

S. Adachi, H. Ishii, T. Kanai, N. Ishii, A. Kosuge et al., 1.5 mj, 6.4 fs parametric chirped-pulse amplification system at 1 khz, Optics letters, vol.32, issue.17, pp.2487-2489, 2007.
URL : https://hal.archives-ouvertes.fr/jpa-00216519

H. Ishizuki and T. Taira, Improvement of laser-beam distortion in large-aperture ppmgln device by using x-axis czochralski-grown crystal, Optics express, vol.22, issue.16, pp.19668-19673, 2014.

Z. Wang, C. Liu, Z. Shen, Q. Zhang, H. Teng et al., High-contrast 1.16 pw ti: sapphire laser system combined with a doubled chirped-pulse amplification scheme and a femtosecond optical-parametric amplifier, Optics letters, vol.36, issue.16, pp.3194-3196, 2011.

N. Kuzmin, P. Wesseling, P. De-witt, D. Hamer, G. Noske et al., Third harmonic generation imaging for fast, label-free pathology of human brain tumors, Biomedical optics express, vol.7, issue.5, pp.1889-1904, 2016.

X. Morin, F. Jaouen, and P. Durbec, Control of planar divisions by the g-protein regulator lgn maintains progenitors in the chick neuroepithelium, Nature neuroscience, vol.10, issue.11, p.1440, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00306564

J. S. Barbosa, R. Sanchez-gonzalez, R. D. Giaimo, E. V. Baumgart, F. J. Theis et al., Live imaging of adult neural stem cell behavior in the intact and injured zebrafish brain, Science, vol.348, issue.6236, pp.789-793, 2015.

A. Alunni and L. Bally-cuif, A comparative view of regenerative neurogenesis in vertebrates, Development, vol.143, issue.5, pp.741-753, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01304110

C. Satou, Y. Kimura, and S. Higashijima, Generation of multiple classes of v0 neurons in zebrafish spinal cord: progenitor heterogeneity and temporal control of neuronal diversity, Journal of Neuroscience, vol.32, issue.5, pp.1771-1783, 2012.

R. Madelaine and P. Blader, A cluster of non-redundant ngn1 binding sites is required for regulation of deltaa expression in zebrafish, Developmental biology, vol.350, issue.1, p.162, 2011.

R. M. White, A. Sessa, C. Burke, T. Bowman, J. Leblanc et al., Transparent adult zebrafish as a tool for in vivo transplantation analysis, Cell stem cell, vol.2, issue.2, pp.183-189, 2008.

A. Schönle and S. W. Hell, Heating by absorption in the focus of an objective lens, Optics letters, vol.23, issue.5, pp.325-327, 1998.

P. Qiu, R. Liang, J. He, and K. Wang, Estimation of temperature rise at the focus of objective lens at the 1700 nm window, Journal of Innovative Optical Health Sciences, vol.10, issue.02, p.1650048, 2017.

K. König, T. Becker, P. Fischer, I. Riemann, and K. Halbhuber, Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes, Optics letters, vol.24, issue.2, pp.113-115, 1999.

K. König, Intracellular nanosurgery with near infrared femtosecond laser pulses k. könig ", i. riemann, p. fischer and k.-j. halbhuber, Cellular and molecular biology, vol.45, issue.2, pp.195-201, 1999.

A. Facomprez, E. Beaurepaire, and D. Débarre, Accuracy of correction in modal sensorless adaptive optics, Optics express, vol.20, issue.3, pp.2598-2612, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00681943

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig et al., Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue, Nature communications, vol.6, p.7276, 2015.

L. Kong and M. Cui, In vivo neuroimaging through the highly scattering tissue via iterative multi-photon adaptive compensation technique, Optics Express, vol.23, issue.5, pp.6145-6150, 2015.

N. Ji, Adaptive optical fluorescence microscopy, Nature methods, vol.14, issue.4, p.374, 2017.

J. Park, W. Sun, and M. Cui, High-resolution in vivo imaging of mouse brain through the intact skull, Proceedings of the National Academy of Sciences, vol.112, issue.30, pp.9236-9241, 2015.

N. Olivier, D. Débarre, and E. Beaurepaire, Dynamic aberration correction for multiharmonic microscopy, Optics letters, vol.34, issue.20, pp.3145-3147, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00681948

D. Sinefeld, H. P. Paudel, D. G. Ouzounov, T. G. Bifano, and C. Xu, Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence, Optics express, vol.23, issue.24, pp.31472-31483, 2015.

O. Katz, E. Small, Y. Guan, and Y. Silberberg, Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers, Optica, vol.1, issue.3, pp.170-174, 2014.

R. Lu, W. Sun, Y. Liang, A. Kerlin, J. Bierfeld et al., Video-rate volumetric functional imaging of the brain at synaptic resolution, Nature neuroscience, vol.20, issue.4, p.620, 2017.