, 47 7.1.2 Investigation of the spectral range 655-745 nm

, Effect of the gate delay time

, 2.1.1 Polar molecules in a DC electric field

, How does the extinction change as a function of the applied DC bias, vol.54

. .. Trajectory-simulations, 62 7.6 Characterization of deposited silicon nanoparticles

.. .. Conclusion,

B. Haberl, T. A. Strobel, and J. E. Bradby, Pathways to exotic metastable silicon allotropes, Appl. Phys. Rev, vol.3, issue.4

J. C. Jamieson, Crystal structures at high pressures of metallic modifications of silicon and gemanium

M. I. Mcmahon and R. J. Nelmes, New high-pressure phase of Si, Phys. Rev. B, vol.4, issue.8

H. Olijnyk, S. K. Sikka, and W. B. Holzapfel, Structural phase transitions in Si and Ge under pressures up to 50 GPa, Phys. Lett. A, vol.1, pp.0-3

M. Hanfland, U. Schwarz, K. Syassen, and K. Takemura, Crystal structure of the high-pressure phase silicon VI, Phys. Rev. Lett, vol.8, issue.6, pp.1-9

S. J. Duclos, Y. K. Vohra, and A. L. Ruoff, E x p e r imental study of the crystal stability and equation of state of Si to 248 GPa, Phys. Rev. B, vol.41, p.12021, 1990.

S. Wippermann, Y. He, M. Vörös, and G. Galli, Novel silicon phases and nanostructures for solar energy conversion, Appl. Phys. Rev, vol.3, 2016.

R. West, M. J. Fink, and J. Michl, Tetramesityldisilene, a stable compound containing a silicon-silicon double bond, Science, vol.2, p.4

M. Kira and T. Iwamoto, Progress in the chemistry of stable disilenes, Adv. Organomet. Chem, vol.5, issue.3, 2006.

A. Sekiguchi, R. Kinjo, and M. Ichinohe, A stable compound containing a silicon-silicon triple bond

, Science, vol.3, issue.0, pp.1-7, 0757.

A. Kekulé, Sur la constitution des substances aromatique, Bull. Soc. Chim, vol.3, pp.9-17

A. Kekulé, Note sur quelques produits de substitution de la benzine, Bull. Acad. Roy. Belg,1 1, vol.9, 0551.

A. Kekulé, Untersuchungen uber aromatische verbindungen, Ann. Chem, vol.1, p.7

E. Hückel, Quantum-theoretical contributions to the benzene problem. I. the electron configuration of benzene and related compounds, Z. Physik, p.204, 1931.

E. Hückel, Quantum theoretical contributions to the problem of aromatic and non-saturated compounds

Z. Physik, , vol.7, pp.1-9

T. Iwamoto, D. Tsushima, E. Kwon, S. Ishida, and H. Isobe, Persilastaffanes: Design, synthesis, structure, and conjugation between silicon cages

. Chem, . Int, and . Ed,

A. I. Boldyrev and L. Wang, Beyond organic chemistry: Aromaticity in atomic clusters, Phys. Ch.em

, Chem. Phys, vol.1, p.8

K. Abersfelder, A. J. White, H. S. Rzepa, and D. Scheschkewitz, A tricyclic aromatic isomer of hexasilabenzene, Science, vol.3, issue.2

H. Vach, Electron-deficiency aromaticity in silicon nanoclusters, J. Chem. Theory Comput, vol.8, issue.6, 1988.

J. T. Okada, P. H. Sit, Y. Watanabe, Y. J. Wand, B. Barbiellini et al., Persistence of covalent bonding in liquid silicon probed by inelastic x-ray scattering, Phys. Rev. Lett

H. Vach and Q. Brulin, Controlled growth of silicon nanocrystals in a plasma reactor, Phys. Rev. Lett, vol.95, p.165502, 2005.

H. Vach, Ultrasrable silicon nanocrystals due to electron delocalization, Nano Lett, vol.1, pp.5-9, 0481.

H. Vach, Q. Brulin, N. Chaabane, T. Novikova, P. Ro-ca-i-cabarro-cas et al., Growth dynamics of hydrogenated silicon nanoparticles under realistic conditions of a plasma reactor, Comput. Mater. Sci, vol.35, issue.3, pp.216-222, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00018085

P. Ro-ca-i-cabarro-cas, A. Fontcub-erta-i-morral, and Y. Poissant, Growth and optoelectronic properties of polymorphous silicon thin films, Thin Solid Films, pp.39-46, 2002.

Y. Poissant, P. Chatterjee, and P. Roca-i-cabarrocas, Analysis and optimization of the performance of polymorphous silicon solar cells: experimental characterization and computer modeling, J. Appl. Phys, vol.94, issue.11, pp.7305-7316, 2003.

L. Boufendi, M. Ch, E. Jouanny, J. Kovacevic, M. Berndt et al., Dusty plasma for nanotechnology, J. Phys. D: Appl. Phys, vol.4, p.174035, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00612665

, Dusty plasma: Physics, chemistry, and technological impact in plasma processing, pp.1-9

L. Boufendi and A. Bouchoule, Particle nucleation and growth in a low-pressure argon-silane discharge

, Plasma Sources Sci. Technol, vol.3, 0262.

G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using aplane-w a v ebasisset, Phys. Rev. B, vol.54, p.11169, 1996.

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method

, Phys. Rev. B, vol.5, pp.1-9

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett, vol.7, pp.1-9

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al.,

D. Sundholm, H. Fliegl, and R. J. Berger, Calculations of magnetically induced current densities: theory and applications, Interdiscip. Rev.: Comput. Mol. Sci, vol.6, pp.6-9

J. Jusélius, D. Sundholma, and J. Gauss, Calculation of current densities using gauge-including atomic orbitals, J. Chem. Phys, vol.1

J. Gauss and H. J. Werner, NMR chemical shift calculations within local correlation methods : the giaolmp2 approach, Phys. Chem. Chem. Phys, vol.2, 2000.

J. Stanton, J. Gauss, M. Harding, and P. Szalay,

, A quantum-chemical program package, 2012.

F. Jensen, Introduction to Computational Chemistry, p.6

A. D. Becke and K. E. Edgecombe, A simple measure of electron localization in atomic and molecular systems, J. Chem. Phys, vol.9, p.5

A. Savin, O. Jepsen, J. Flad, O. K. Andersen, H. Preuss et al., Electron localization in solid-state structures of the elements -the diamond structure, Angew. Chem., Int. Ed. Engl, vol.31, pp.187-188, 1992.

T. Lu and F. Chen, A multifunctional wavefunction analyzer, J. Comp. Chem

D. Sheppard, R. Terell, and G. Henkelman, Optimization methods for finding minimum energy paths

, J. Chem. Phys, vol.1, p.8

H. Jónsson, G. Mills, and K. W. Jacobsen, Classical and quantum dynamics in condensed phase simu

J. Kästner, J. M. Carr, T. W. Keal, W. Thiel, A. Wander et al., Dl-find: An open-source geometry optimizer for atomistic simulations, J. Phys

, Chem. A, vol.1, pp.1-3

H. P. Hratchian and H. B. Schlegel, Using Hessian updating to increase the efficiency of a Hessian based Predictor-Corrector reaction path following method

, J. Chem. Theory Comput, vol.1, issue.1, pp.6-7, 2005.

H. P. Hratchian and H. B. Schlegel, Accurate reaction paths using hessian based predictor-corrector integrator, J. Chem. Phys

P. W. Atkins and R. Friedman, Molecular Quantum Mechanics.O x f o r dU n i v e r s i t yP r e s s, 2010.

H. Vach, Symmetric and irregular aromatic silicon nanoclusters, Chem. Phys. Lett

Q. Brulin, N. Ning, and H. Vach, Hydrogen-induced crystallization of amorphous silicon clusters in a plasma reactor, J. Non-Cryst. Solids, 0352.

S. Rao, K. Mantey, J. Therrien, A. Smith, and M. Nayfeh, Molecular behavior in the vibronic and excitonic properties of hydrogenated silicon nanoparticles, Phys. Rev. B, vol.7, 2007.

G. Belomoin, J. Therrien, A. Smith, S. Rao, R. Twesten et al., Observation of a magic discrete family of ultrabright Si nanoparticles, Appl. Phys. Lett, vol.80, pp.841-843, 2002.

O. Akcakir, J. Therrien, G. Belomoin, N. Barry, J. D. Muller et al., Detection of luminescent single ultrasmall silicon nanoparticles using fluctuation correlation spectroscopy, Appl. Phys

. Lett, , vol.7, p.6

S. Magill, M. Nayfeh, M. Fizari, J. Malloy, Y. Maximenko et al., Enhanced UV light detection using wavelength-shifting properties of silicon nanoparticles, Journal of Instrumentation, vol.1, p.5008, 2015.

A. D. Zdetsis, Stabilization of large silicon fullerenes and related nanostructures through puckering and poly(oligo)merization, Phys. Rev. B, vol.8, pp.0-1, 2009.

A. Puzder, A. J. Williamson, F. A. Reboredo, and G. Galli, Structural stability and optical properties of nanomaterials with reconstructed surfaces

, Rev. Lett, vol.9, p.1

J. E. Northrup, Structure of Si(100)H: Dependence on the H chemical potential, Phys. Rev. B, vol.4, pp.4-5, 1991.

H. Vach, Terahertz and gigahertz emission from an all-silicon nanocrystal, Phys. Rev. Lett, vol.1, pp.1-2, 2014.

S. Bulusu and X. C. Zeng, Structures and relative stability of neutral gold clusters: Aun (n=15-19), J

, Chem. Phys, vol.1, p.5

P. Gruene, D. M. Rayner, B. Redlich, A. F. Van-der-meer, J. T. Lyon et al., Structures of neutral Au7,A u 1 9

J. P. Doye and S. C. Hendy, On the structure of small lead clusters, Eur. Phys. J. D, vol.2, issue.2, 2003.

R. Fournier, J. B. Cheng, and A. Wong, Theoretical study of the structure of lithium clusters

, Chem. Phys, vol.1, issue.1, p.3

N. J. Juster, Color and chemical constitution, J. Chem. Educ, vol.3, pp.5-9

M. A. Lieberman and A. J. Lichtenberg, Plasma discharges and materials processing, 2005.

G. Bruno, P. Capezzuto, and A. Madan, Plasma deposition of amorphous silicon-based materials, pp.1-9

T. Roschek, Microcrystalline Silicon Solar cells prepared by 13.56 PECVD.P h Dt h e s i s, 2003.

A. Bouchoule, A. Plain, L. Boufendi, and J. Ph, Blondeau, and C. Laure. Particle generation and behavior in a silane-argon low-pressure discharge under continuous or pulsed radio-frequency excitation

, Appl. Phys, vol.7, issue.4, p.0

A. A. Fridman, L. Boufendi, T. Hbid, B. V. Potapkin, and A. Bouchoule, Dusty plasma formation: Physics and critical phenomena. theoretical approach

, Appl. Phys, vol.7, issue.3

. Ch, J. Hollenstein, J. Dorier, L. Dutta, A. A. Sansonnens et al., Diagnostics of particle genesis and growth in RF silane plasmas by ion mass spectrometry and light scattering, Plasma Sources Sci. Technol, vol.3, 0278.

M. Mikikian, L. Couëdel, M. Cavarroc, Y. Tessier, and L. Boufendi, Dusty plasma: synthesis, structure and dynamics of a dust cloud in a plasma
URL : https://hal.archives-ouvertes.fr/hal-00406335

, Phys. J. Appl. Phys, vol.4, 2010.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles, 1983.

S. E. Fiedler, A. Hese, and A. A. Ruth, Incoherent broad-band cavity-enhanced absorption spectroscopy, Chem. Phys. Lett

R. A. Washenfelder, A. O. Langford, H. Fuchs, and S. S. Brown, Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer, Atmos. Chem. Phys, vol.8, p.7

P. Debye, Polar Molecules, pp.1-9

K. D. Bleecker, Modeling of the formation and behavior of the nanoparticles in dusty plasma, 2006.

G. Viera, M. Mikikian, E. Bertran, P. Roca-i-cabarrocas, and L. Boufendi, Atomic structure of the nanocrystalline si particles appearing in nanostructured si thin films produced in low-temperature radiofrequency plasmas, J. Appl. Phys, vol.9
URL : https://hal.archives-ouvertes.fr/hal-00432375

A. Fontcuberta-i-morral, R. Brenot, E. A. Hamers, R. Vanderhanghen, and P. Roca-i-cabarrocas, In situ investigation of polymorphous silicon deposition, J. Non-Cryst. Solids, vol.2, pp.6-8, 2000.

S. Veprek, Z. Iqbal, and F. Sarott, A thermodynamic criterion of the crystalline-to-amorphous transition in silicon, Phil. Mag. B,4, vol.5, pp.1-9

S. T. Ceyer, New mechanisms for chemistry at surfaces, Science, vol.2, p.9

H. Vach, N. Nguyen, Q. Timerghazin, and G. , Peslherbe. Nonadiabatic ladder climbing during molecular collisions, Phys. Rev. Lett, vol.9

T. Nguyen, Q. Timerghazin, H. Vach, and G. , Peslherbe. Mechanically-induced generation of highly reactive excited-state oxygen molecules in clustersurface scattering, J. Chem. Phys, vol.1, pp.3-4, 2011.

R. P. Feynman, Plenty of Room at the Bottom. Presentation to, 1959.

R. F. Frindt, Single crystals of MoS2 several molecular layers thick, J. Appl. Phys, vol.3, issue.1, pp.1-9, 1966.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films, Science, vol.3, issue.5, pp.6-6, 2004.

S. Balendhran, S. Walia, H. Nili, J. Z. Ou, S. Zhuiykov et al., Twodimensional molybdenum trioxide and dichalcogenides, Adv. Funct. Mater, vol.2, 2013.

Q. H. Wang, K. Kalantar-zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional electronic and optoelectronics of two-dimensional transition metal dichalcogenides

, Nat. Nanotechnol, vol.7, issue.6, 2012.

Q. Tang and Z. Zhou, Graphene-analogous lowdimensional materials, Prog. Mater. Scienc, vol.5, pp.1244-1315, 2013.

M. Houssa, A. Dimoulas, and A. Molle, Silicene: a review of recent experimental and theoretical investigations, J. Phys.: Condens. Matter, vol.2, issue.2, 2015.

H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu et al., Phosphorene: An unexplored 2D semiconductor with a high hole mobility

, ACS Nano, vol.8, issue.4

A. Acun, L. Zhang, P. Bampoulis, M. Farmanbar, A. Van-houselt et al., Germanene: the germanium analogue of graphene, J. Phys.: Condens. Matter, vol.2, issue.7, p.443002, 2015.

F. Zhu, W. Chen, Y. Xu, C. Gao, D. -d.-guan et al., Epitaxial growth of two-dimensional stanene, Nat. Mater, vol.14, pp.1020-1025, 2015.

K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro-neto, 2D materials and van der Waals heterostructures, Science

S. Das, J. A. Robinson, M. Dubey, H. Terrones, and M. Terrones, Beyond graphene: Progress in novel two-dimensional materials and van der Waals solids

, Annu. Rev. Mater. Res, vol.4, pp.1-2, 2015.

H. Gleiter, Nanostructured materials: Basic concepts and microstructure, Acta Mater, vol.4, pp.1-2, 2000.

V. V. Pokropivny and V. V. Skorokhod, Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science

, Mater. Sci. Eng., C, vol.2, issue.9, p.7

L. D. Landau, Zur theorie der phasenumwandlungen II, Phys. Z. Sowjetunion,1, vol.1, issue.2 6 -3 5, pp.1-9

R. E. Peierls, Quelques proprietes typiques des corpses solides, Ann. I. H. Poincare, vol.5, 0177.

N. D. Mermin, Crystalline order in two dimensions

, Phys. Rev, 0176.

J. A. Venables, G. D. Spiller, and M. Hanbucken, Nucleation and growth of thin films, Rep. Prog. Phys, vol.4, pp.1-9

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg et al., Ultrahigh electron mobility in suspended graphene, Solid State Commun

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu et al., Opening the band gap of graphene through silicon doping for the improved performance of graphene GaAs heterojunction solar cells, Nanoscale, vol.8, issue.2, pp.6-232, 2016.

H. Zhang, E. Bekyarova, J. Huang, Z. Zhao, W. Bao et al., Aryl functionalization as a route to band gap engineering in single layer graphene devices, Nano Lett, vol.1, pp.4047-4051, 2011.

S. Y. Zhou, G. Gweon, A. V. Fedorov, P. N. First, W. A. De-heer et al., Substrate-induced bandgap opening in epitaxial graphene, Nat. Mater, vol.6, pp.7-7, 2007.

P. Miro, M. Audiffred, and T. Heine, An atlas of twodimensional materials, Chem. Soc. Rev, vol.4, pp.3-6, 2014.

B. K. Teo and X. H. Sun, Silicon-based lowdimensional nanomaterials and nanodevices

L. C. Lew-yan-voon and G. G. Guzman-verri, Is silicene the next graphene?

P. Vogt, P. De-padova, C. Quaresima, J. Avila, E. Frantzeskakis et al., Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon
URL : https://hal.archives-ouvertes.fr/hal-00724321

, Phys. Rev. Lett, 0108.

K. Takeda and K. Shiraishi, Theoretical possibility of stage corrugation in Si and Ge analogs of graphite

, Phys. Rev. B, vol.5, p.1

C. Leandri, G. L. Lay, B. Aufray, C. Girardeaux, J. Avila et al., Self-aligned silicon quantum wires on Ag (110), Surf. Sci. Lett
URL : https://hal.archives-ouvertes.fr/hal-02045012

G. G. Guzmán-verri and L. C. Lew-yan-voon, Electronic structure of silicon-based nanostructures

, Phys. Rev. B, vol.7, p.6

S. Cahangirov, M. Topsakal, E. Aktürk, H. ?ahin, and S. Ciraci, Two-and one-dimensional honeycomb structures of silicon and germanium, Phys. Rev. Lett

A. Kara, C. Léandri, M. E. Dávila, P. De-padova, B. Ealet et al., Physics of silicene stripes, J. Supercond. Novel Magn
URL : https://hal.archives-ouvertes.fr/hal-00386953

G. L. Lay, B. Aufray, C. Léandri, H. Oughaddou, J. Biberian et al., Physics and chemistry of silicene nanoribbons, Appl. Surf. Sci

P. De-padova, C. Quaresima, C. Ottaviani, P. M. Sheverdyaeva, P. Moras et al., Evidence of graphene-like electronic signature in silicene nanoribbons, Appl. Phys. Lett, vol.9, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00523869

M. Houssa, E. Scalise, K. Sankaran, G. Pourtois, V. V. et al., Electronic properties of hydrogenated silicene and germanene

, Phys. Lett, vol.9, 2011.

Z. Ni, Q. Liu, K. Tang, J. Zheng, J. Zhou et al., Tunable bandgap in silicene and germanene, Nano Lett, vol.1, 0113.

C. Liu, W. Feng, and Y. Yao, Quantum spin hall effect in silicene and two-dimensional germanium

, Phys. Rev. Lett, 0107.

B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini et al., Epitaxial growth of a silicene sheet, Appl. Phys. Lett, vol.9, p.9, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00566385

B. Feng, Z. Ding, S. Meng, Y. Yao, X. He et al., Evidence of silicene in honeycomb structures of silicon on Ag, vol.12, pp.3507-3511, 2012.

C. Lin, R. Arafune, K. Kawahara, N. Tsukahara, E. Minamitani et al., Structure of silicene grown on Ag(111), Appl. Phys. Express, vol.5, 2012.

A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang et al., Experimental evidence for epitaxial silicene on diboride thin films

, Phys. Rev. Lett, 2010.

L. Meng, Y. Wang, L. Zhang, S. Du, R. Wu et al., Nano Lett, vol.1, issue.111, pp.3-6

L. Li, S. Lu, J. Pan, Z. Qin, Y. Wang et al., Buckled germanene formation on Pt(111), Adv. Mater

M. E. Dávila, L. Xian, S. Cahangirov, A. Rubio, and G. Lay, Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene, New J. Phys

P. Bamp-oulis, L. Zhang, A. Safaei, R. Van-gastel, B. Poelsema et al., Germanene termination of Ge2Pt crystals on Ge(110), J. Phys

. Condens and . Matter, , vol.2, p.6

M. Derivaz, D. Dentel, R. Stephan, M. Hanf, A. Mehdaoui et al., Continuous germanene layer on Al, 2015.

S. Cahangirov, M. Audiffred, P. Tang, A. Iacomino, W. Duan et al., Electronic structure of silicene on Ag(111): Strong hybridization effects, Phys. Rev. B, vol.8

P. Gori, O. Pulci, F. Ronci, S. Colonna, and F. Bechstedt, Origin of Dirac-cone-like features in silicon structures on Ag(111) and Ag(110), J. Appl. Phys, vol.114, p.113710, 2013.

Z. Guo, S. Furuya, J. Iwata, and A. Oshiyama, Absence and presence of Dirac electrons in silicene on substrates, Phys. Rev. B, vol.8

G. Prévot, R. Bernard, H. Cruguel, and Y. Borensztein, Monitoring Si growth on Ag(111) with scanning tunneling microscopy reveals that silicene structure involves silver atoms, Appl. Phys. Lett, 0105.

M. Satta, S. Colonna, R. Flammini, A. Cricenti, and F. Ronci, Silicon reactivity at the Ag(111) surface

, Phys. Rev. Lett, 0115.

F. Ronci, G. Serrano, P. Gori, A. Cricenti, and S. Colonna, Silicon-induced faceting at the Ag(110) surface, Phys. Rev. B, vol.8, 2014.

L. Zhang, P. Bampoulis, A. N. Rudenko, A. Van-houselt, Q. Yao et al., Structural and electronic properties of germanene on MoS2, Phys. Rev. Lett, vol.116, p.256804, 2016.

S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys, pp.1-9, 0511.

S. Grimme, Semiempirical gga-type density functional constructed with a long-range dispersion correction, J. Comp. Chem, vol.2, p.6

Y. Cai, C. Chuu, C. M. Wei, and M. Y. Chou, Stability and electronic properties of two-dimensional silicene and germanene on graphene, Phys. Rev. B, vol.88, p.245408, 2013.

P. Scheier, B. Marsen, M. Lonfat, W. Schneider, and K. Sattler, Growth of silicon nanoclusters on graphite, Surf. Sci

J. Sone, T. Yamagami, K. Nakatsuji, and H. Hirayama, Si growth on graphenen surfaces on 6H-SiC(0001) substrates, Jpn. J. Appl. Phys, vol.5, p.35502, 2016.

M. De-crescenzi and M. N. Piancastelli, Electron scattering and related spectroscopies, 1996.

A. Koma, Van der waals epitaxy-anew growth

Y. J. Hong and T. Fukui, Controlled van der Waals heteroepitaxy of InAs nanowires on carbon honeycomb lattices, ACS Nano, vol.5, issue.9

X. Li, S. Wu, S. Zhou, and Z. Zhu, Structural and electronic properties of germanene/MoS2 monolayer and silicene/MoS2 monolayer superlattices

, Nanoscale Res. Lett, vol.9, 0110.

G. Wang, M. Zhang, Y. Zhu, G. Ding, D. Jiang et al., Direct growth of graphene film on germanium substrate, Sci. Rep, vol.3, issue.2

D. H. Lee, J. Yi, J. M. Lee, S. J. Lee, Y. Doh et al., Engineering electronic properties of graphene by coupling with Si-rich, two-dimensional islands, ACS Nano, vol.7, 0301.

H. S. Wong, C. Durkan, and N. Chandrasekhar, Tailoring the local interaction between graphene layers in graphite at the atomic scale and above using scanning tunneling microscopy, ACS Nano, vol.3, pp.3-4, 2009.

D. Chiappe, E. Scalise, E. Cinquanta, C. Grazianetti, B. Van-den-broek et al., Two-dimensional Si nanosheets with local hexagonal structure on a MoS2 surface, Adv. Mater, vol.26, pp.2096-2101, 2014.

L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli et al., Silicene field-effect transistors operating at room temperature, Nat. Nanotechnol, 0227.

G. Pacchioni and J. Koutecky, Silicon and germanium clusters. a theoretical study of their electronic structures and properties, J. Chem. Phys, vol.84, pp.3301-3310, 1986.

R. Iftimie, P. Minary, and M. E. Tuckerman, Ab initio molecular dynamics: Concepts, recent developments, and future trends, PNAS

M. Born and R. Oppenheimer, Zur quantentheorie der molekeln, Ann. Phys, vol.8, issue.4 5 7, pp.1-9

P. Hohenb and W. Kohn, Inhomogeneous electron gas, Phys. Rev

W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev

J. P. Perdew and W. Yue, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation, Phys. Rev. B, vol.33, p.8800, 1986.

J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson et al., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B, vol.46, p.6671, 1992.

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A

C. Lee, W. Yang, and R. G. Parr, Development of the colle-salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, vol.3, pp.5-789, 1988.

J. P. Perdew, Density-functional approximation for the correlation energy of the inhomogeneous electron gas, Phys. Rev. B, pp.1-9

S. H. Vosko, L. Wilk, and M. Nusair, Accurate spindependent electron liquid correlation energies for local spin density calculations: a critical analysis

, J. Phys, vol.5, p.1

J. C. Slater, Atomic shielding constants, Phys. Rev, vol.36, p.57, 1930.

S. F. Boys, Electronic wave functions. i. a general method of calculation for the stationary states of any molecular system, Proc. Math. Phys. Eng. Sci, vol.2, issue.0, p.542, 1950.

J. C. Phillips and L. Kleinman, New method for calculating wave functions in crystals and molecules

, Phys. Rev, 0116.

P. E. Blöchl, Pro jector augmented-wave metho d, Phys. Rev. B, vol.5, p.1

E. Wimmer and A. J. Freeman, Fundamentals of the electronic structure of surfaces, 2000.

E. Runge and E. K. Gross, Density-functional theory for time-dependent systems, Phys. Rev. Lett, vol.52, p.997, 1984.

R. Bauernschmitt and R. Ahlrichs, Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory

, Chem. Phys. Lett, vol.2, pp.5-6

A. Castro, M. A. Marques, and A. Rubio, Propagators for the time-dependent kohn-sham equations

, Am. Chem. Soc, vol.7, p.7

F. Nogueira, A. Rubio, K. Burke, E. K. Gross, M. A. Marques et al., Time-dependent density-functional theory, Lecture notes in physics, vol.706, 2006.

M. E. Casida, Time-dependent density functional response theory of molecular systems: Theory, computational methods, and functionals,v o l u m e4, 1996.

R. R. Alfano and S. L. Shapiro, Observation of selfphase modulation and small-scale filaments in crystals and glasses, Phys. Rev. Lett, vol.2, 0592.

R. R. Alfano and S. L. Shapiro, Emission in the region 4000 to 7000 Å via four-photon coupling in glass

, Phys. Rev. Lett, vol.2, pp.4-5

J. M. Dudley and G. Genty, Supercontinuum light, Phys. Today, vol.6, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00905994

E. Heicht and A. Zajac, Optics.A d d i s o n -W i s e l e y, 1979.

A. Yefet and A. Pe'er, A review of cavity design for kerr lens mode-locked solid-state lasers, Appl. Sci, vol.3, pp.694-724, 2013.

S. Uhlig, Self-organized surface structures with ultrafast white-light. Chapter 2: Generation of white light supercontinuum, 2015.

R. R. Alfano, The supercontinuum laser source, p.6
URL : https://hal.archives-ouvertes.fr/hal-01321484

H. P. Wong and D. Akinwande, Carbon Nanotube and Graphene Device Physics, 2010.

F. Bloch, Über die quantenmechanik der elektronen in kristallgittern, Z. Physik, 0555.

N. W. Ashcroft and N. D. Mermin,

H. J. Monkhorst and J. D. Pack, Special points for brillouin-zone integrations, Phys. Rev. B, vol.1, pp.3-5, 1976.

G. Binning, H. Rohrer, C. Gerber, and E. Weibel, Tunneling through a controllable vacuum gap

, Phys. Lett, vol.4, pp.0-1

Ø. Fischer, M. Kulger, I. Maggio-aprile, C. Berthod, and C. Renner, Scanning tunneling spectroscopy of high-temperature superconductors, Rev. Mod. Phys, vol.7, 0353.

M. De-crescenzi, I. Berbezier, M. Scarselli, P. Castrucci, M. Abbarchi et al., Formation of Silicene Nanosheets on Graphite, ACS Nano, vol.10, pp.11163-11171, 2016.

L. Persichetti, F. Jardali, H. Vach, A. Sgarlata, I. Berbezier et al., Van der Waals heteroepitaxy of germanene islands on graphite, J. Phys. Chem. Lett, vol.7, pp.3246-3251, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01435208

, Des composants électroniques en germanène : une réalité, March issue of the Journal of the CNRS

H. Vach, L. V. Ivanova, Q. K. Timerghazin, F. Jardali, and H. T. Le, Metallic-like bonding in plasma-born silicon nanocrystals for nanoscale bandgap engineering, Nanoscale, vol.8, p.42, 2016.

H. Vach, L. V. Ivanova, Q. K. Timerghazin, F. Jardali, and H. T. Le, A deeper insight into strain for the sila-bi[6]prismane Si 18 H 12 cluster with its endohedrally trapped silicon atom, Si 19 H 12, Journal of Computational Chemistry, vol.36, p.28, 2015.