. Combining and . .. Sdoct,

, Eye safety analysis

. .. , System performance validation with artificial eye model, p.99

, 100 7.5.2 FFOCT retinal imaging of retinal near periphery, p.103

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, G. William et al., Science, vol.254, issue.5035, p.1178, 1991.

A. Joseph, S. Izatt, B. Boppart, J. Bouma, W. De-boer et al., Introduction to the feature issue on the 25 year anniversary of optical coherence tomography, Biomedical Optics Express, vol.8, issue.7, pp.3289-3291, 2017.

E. Beaurepaire, C. Boccara, M. Lebec, H. Blanchot, and . Saint-jalmes, Full-field optical coherence microscopy, Optics letters, vol.23, issue.4, pp.244-246, 1998.

L. Vabre, A. Dubois, and C. Boccara, Thermal-light full-field optical coherence tomography, Optics letters, vol.27, issue.7, pp.530-532, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00627979

A. Vogel and V. Venugopalan, Mechanisms of pulsed laser ablation of biological tissues, Chemical reviews, vol.103, issue.2, pp.577-644, 2003.

W. Rudolph and M. Kempe, Trends in optical biomedical imaging. journal of modern optics, vol.44, issue.9, pp.1617-1642, 1997.

. Ba-van-tiggelen, Green function retrieval and time reversal in a disordered world, Physical review letters, vol.91, issue.24, p.243904, 2003.

A. Badon, D. Li, G. Lerosey, C. Boccara, M. Fink et al., Smart optical coherence tomography for ultra-deep imaging through highly scattering media, Science advances, vol.2, issue.11, p.1600370, 2016.

G. Indebetouw and P. Klysubun, Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography, Optics Letters, vol.25, issue.4, pp.212-214, 2000.

J. B. Pawley and . Barry-r-masters, Handbook of biological confocal microscopy, Optical Engineering, vol.35, issue.9, pp.2765-2766, 1996.

F. Adolf and . Fercher, Optical coherence tomography, Journal of Biomedical Optics, vol.1, issue.2, pp.157-173, 1996.

W. Drexler, G. James, and . Fujimoto, Optical coherence tomography: Technology and applications, 2015.

R. Wayne, D. L. Hedrick, D. E. Hykes, and . Starchman, Ultrasound physics and instrumentation, 2005.

C. A. Joel-s-schuman, J. G. Puliafito, J. S. Fujimoto, and . Duker, Optical coherence tomography of ocular diseases, 2004.

A. Carmen, . Puliafito, R. Michael, . Hee, P. Charles et al., Imaging of macular diseases with optical coherence tomography, Ophthalmology, vol.102, issue.2, pp.217-229, 1995.

J. Thomas, M. Wolfensberger, and . Gonvers, Optical coherence tomography in the evaluation of incomplete visual acuity recovery after macula-off retinal detachments

, Graefe's archive for clinical and experimental ophthalmology, vol.240, pp.85-89, 2002.

A. Felipe, L. M. Medeiros, C. Zangwill, . Bowd, M. Roberto et al., Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography, American journal of ophthalmology, vol.139, issue.1, pp.44-55, 2005.

P. Hsiung, R. Darshan, Y. Phatak, A. D. Chen, J. G. Aguirre et al., Benign and malignant lesions in the human breast depicted with ultrahigh resolution and three-dimensional optical coherence tomography 1, Radiology, vol.244, issue.3, pp.865-874, 2007.

A. M. Freddy-t-nguyen, E. J. Zysk, J. G. Chaney, . Kotynek, J. Uretz et al., Intraoperative evaluation of breast tumor margins with optical coherence tomography, Cancer research, vol.69, issue.22, pp.8790-8796, 2009.

C. Zhou, W. David, Y. Cohen, H. Wang, A. E. Lee et al., Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues, Cancer research, vol.70, issue.24, pp.10071-10079, 2010.

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, Optical coherence tomography of the human skin, Journal of the American Academy of Dermatology, vol.37, issue.6, pp.958-963, 1997.

C. Blatter, J. Weingast, A. Alex, B. Grajciar, W. Wieser et al., In situ structural and microangiographic assessment of human skin lesions with high-speed oct, Biomedical optics express, vol.3, issue.10, pp.2636-2646, 2012.

G. Kevin, Y. Phillips, D. Wang, N. Levitz, E. Choudhury et al., Dermal reflectivity determined by optical coherence tomography is an indicator of epidermal hyperplasia and dermal edema within inflamed skin, Journal of biomedical optics, vol.16, issue.4, pp.40503-040503, 2011.

H. Morsy, S. Kamp, L. Thrane, N. Behrendt, B. Saunder et al., Optical coherence tomography imaging of psoriasis vulgaris: correlation with histology and disease severity. Archives of dermatological research, vol.302, pp.105-111, 2010.

C. Mark, J. Pierce, H. Strasswimmer, B. Park, J. Cense et al., Advances in optical coherence tomography imaging for dermatology, Journal of investigative dermatology, vol.123, issue.3, pp.458-463, 2004.

K. Kim, C. Mark, G. Pierce, H. Maguluri, S. J. Park et al., In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography, Journal of biomedical optics, vol.17, issue.6, pp.66012-066012, 2012.

. Bill-w-colston, S. Ujwal, . Sathyam, B. Luiz, . Dasilva et al., Dental oct. Optics express, vol.3, issue.6, pp.230-238, 1998.

T. Yoshioka, H. Sakaue, H. Ishimura, A. Ebihara, H. Suda et al., Detection of root surface fractures with swept-source optical coherence tomography (ss-oct). Photomedicine and laser surgery, vol.31, pp.23-27, 2013.

J. Guillermo, M. E. Tearney, . Brezinski, E. Brett, . Bouma et al., In vivo endoscopic optical biopsy with optical coherence tomography. Science, vol.276, issue.5321, pp.2037-2039, 1997.

Y. Pan, H. Xie, and G. K. Fedder, Endoscopic optical coherence tomography based on a microelectromechanical mirror, Optics letters, vol.26, issue.24, pp.1966-1968, 2001.

. Patrick-r-pfau, V. Michael, A. Sivak, M. Chak, . Kinnard et al., Criteria for the diagnosis of dysplasia by endoscopic optical coherence tomography, Gastrointestinal endoscopy, vol.58, issue.2, pp.196-202, 2003.

M. Joseph and . Schmitt, Oct elastography: imaging microscopic deformation and strain of tissue, Optics express, vol.3, issue.6, pp.199-211, 1998.

X. Liang, M. Orescanin, K. S. Toohey, F. Michael, S. A. Insana et al., Acoustomotive optical coherence elastography for measuring material mechanical properties, Optics letters, vol.34, issue.19, pp.2894-2896, 2009.

B. F. Steven-g-adie, J. J. Kennedy, . Armstrong, D. Sergey-a-alexandrov, and . Sampson, Audio frequency in vivo optical coherence elastography, Physics in medicine and biology, vol.54, issue.10, p.3129, 2009.

C. Li, Z. Huang, and R. Wang, Elastic properties of soft tissuemimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry, Optics express, vol.19, issue.11, pp.10153-10163, 2011.

T. Nguyen, A. Zorgani, M. Lescanne, C. Boccara, M. Fink et al., Diffuse shear wave imaging: toward passive elastography using lowframe rate spectral-domain optical coherence tomography, Journal of Biomedical Optics, vol.21, issue.12, pp.126013-126013, 2016.

J. Boer, T. E. Milner, J. C. Martin, J. Van-gemert, and . Nelson, Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography, Optics letters, vol.22, issue.12, pp.934-936, 1997.

J. Mathieu-g-ducros, H. Boer, . Huang, C. Lawrence, Z. Chao et al., Polarization sensiReferences tive optical coherence tomography of the rabbit eye, IEEE Journal of Selected Topics in Quantum Electronics, vol.5, issue.4, pp.1159-1167, 1999.

K. Christoph, E. Hitzenberger, M. Götzinger, M. Sticker, A. F. Pircher et al., Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography, Optics Express, vol.9, issue.13, pp.780-790, 2001.

K. Ruikang, A. Wang, and . Nuttall, Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of corti at a subnanometer scale: a preliminary study, Journal of biomedical optics, vol.15, issue.5, pp.56005-056005, 2010.

. Taner-akkin, P. Digant, T. E. Davé, H. Milner, and I. Grady-rylander, Detection of neural activity using phase-sensitive optical low-coherence reflectometry, Optics Express, vol.12, issue.11, pp.2377-2386, 2004.

J. Emily, A. K. Mcdowell, . Ellerbee, A. Michael, B. E. Choma et al., Spectral domain phase microscopy for local measurements of cytoskeletal rheology in single cells, Journal of biomedical optics, vol.12, issue.4, pp.44008-044008, 2007.

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang et al., Splitspectrum amplitude-decorrelation angiography with optical coherence tomography, Optics express, vol.20, issue.4, pp.4710-4725, 2012.

Y. Jia, T. Steven, D. J. Bailey, O. Wilson, . Tan et al., Quantitative optical coherence tomography angiography of choroidal neovascularization in agerelated macular degeneration, Ophthalmology, vol.121, issue.7, pp.1435-1444, 2014.

F. Richard, J. G. Spaide, N. K. Fujimoto, and . Waheed, Optical coherence tomography angiography, Retina, vol.35, issue.11, p.2161, 2015.

Z. Chen, E. Thomas, D. Milner, J. Dave, and . Nelson, Optical doppler tomographic imaging of fluid flow velocity in highly scattering media, Optics letters, vol.22, issue.1, pp.64-66, 1997.

A. Joseph, M. D. Izatt, S. Kulkarni, J. K. Yazdanfar, A. Barton et al., In vivo bidirectional color doppler flow imaging of picoliter blood volumes using optical coherence tomography, Optics letters, vol.22, issue.18, pp.1439-1441, 1997.

Y. Wang, A. Bradley, J. A. Bower, O. Izatt, D. Tan et al., In vivo total retinal blood flow measurement by fourier domain doppler optical coherence tomography, Journal of biomedical optics, vol.12, issue.4, pp.41215-041215, 2007.

K. Ruikang, L. Wang, and . An, Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo, Optics express, vol.17, issue.11, pp.8926-8940, 2009.

S. Tang, B. Tatiana, Z. Krasieva, B. J. Chen, and . Tromberg, Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source, Journal of biomedical optics, vol.11, issue.2, pp.20502-020502, 2006.

E. Beaurepaire, . Moreaux, J. Amblard, and . Mertz, Combined scanning optical coherence and two-photon-excited fluorescence microscopy, Optics Letters, vol.24, issue.14, pp.969-971, 1999.

S. Yuan, C. A. Roney, J. Wierwille, C. Chen, B. Xu et al., Coregistered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging, Physics in medicine and biology, vol.55, issue.1, p.191, 2009.

B. Jeong, B. Lee, M. S. Jang, H. Nam, S. J. Yoon et al., Combined two-photon microscopy and optical coherence tomography using individually optimized sources, Optics express, vol.19, issue.14, pp.13089-13096, 2011.

J. Barrick, A. Doblas, R. Michael, P. R. Gardner, L. E. Sears et al., High-speed and high-sensitivity parallel spectraldomain optical coherence tomography using a supercontinuum light source, Optics Letters, vol.41, issue.24, pp.5620-5623, 2016.

Y. Aaron-d-aguirre, B. Chen, H. Bryan, Q. Mashimo, . Huang et al., Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy, Journal of biomedical optics, vol.15, issue.1, pp.16025-016025, 2010.

J. Boer, B. Cense, H. Park, C. Mark, G. J. Pierce et al., Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography, Optics letters, vol.28, issue.21, pp.2067-2069, 2003.

. Michael-a-choma, V. Marinko, C. Sarunic, J. A. Yang, and . Izatt, Sensitivity advantage of swept source and fourier domain optical coherence tomography, Optics express, vol.11, issue.18, pp.2183-2189, 2003.

R. Leitgeb, A. F. Hitzenberger, and . Fercher, Performance of fourier domain vs. time domain optical coherence tomography, Optics express, vol.11, issue.8, pp.889-894, 2003.

N. Nassif, B. Cense, . B-hyle-park, H. Seok, T. C. Yun et al., In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography, Optics letters, vol.29, issue.5, pp.480-482, 2004.

M. Wojtkowski, J. Vivek, T. H. Srinivasan, J. G. Ko, A. Fujimoto et al., Ultrahigh-resolution, high-speed, fourier domain optical coherence tomography and methods for dispersion compensation, Optics express, vol.12, issue.11, pp.2404-2422, 2004.

B. Cense, A. Nader, T. C. Nassif, . Chen, C. Mark et al., Ultrahighresolution high-speed retinal imaging using spectral-domain optical coherence tomography, Optics Express, vol.12, issue.11, pp.2435-2447, 2004.

. Sr-chinn, J. G. Swanson, and . Fujimoto, Optical coherence tomography using a frequency-tunable optical source, Optics letters, vol.22, issue.5, pp.340-342, 1997.

F. Lexer, C. K. Hitzenberger, M. Fercher, and . Kulhavy, Wavelength-tuning interferometry of intraocular distances, Applied Optics, vol.36, issue.25, pp.6548-6553, 1997.

A. Mariampillai, A. Beau, E. H. Standish, M. Moriyama, N. R. Khurana et al., Speckle variance detection of microvasculature using swept-source optical coherence tomography, Optics letters, vol.33, issue.13, pp.1530-1532, 2008.

S. Bourquin, R. P. Seitz, and . Salathé, Optical coherence topography based on a twodimensional smart detector array, Optics Letters, vol.26, issue.8, pp.512-514, 2001.

A. Knüttel, J. R. Schmitt, and . Knutson, Low-coherence reflectometry for stationary lateral and depth profiling with acousto-optic deflectors and a ccd camera, Optics Letters, vol.19, issue.4, pp.302-304, 1994.

E. Bordenave, . Abraham, . Jonusauskas, . Tsurumachi, C. Oberle et al., Wide-field optical coherence tomography: imaging of biological tissues, Applied optics, vol.41, issue.10, pp.2059-2064, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01550807

M. Laubscher, M. Ducros, B. Karamata, T. Lasser, and R. Salathé, Video-rate three-dimensional optical coherence tomography, Optics Express, vol.10, issue.9, pp.429-435, 2002.

Y. Watanabe and M. Sato, Three-dimensional wide-field optical coherence tomography using an ultrahigh-speed cmos camera, Optics Communications, vol.281, issue.7, pp.1889-1895, 2008.

B. Karamata, M. Lambelet, . Laubscher, T. Salathé, and . Lasser, Spatially incoherent illumination as a mechanism for cross-talk suppression in wide-field optical coherence tomography, Optics letters, vol.29, issue.7, pp.736-738, 2004.

B. Karamata, P. Lambelet, M. Laubscher, M. Leutenegger, S. Bourquin et al., Multiple scattering in optical coherence tomography. i. investigation and modeling, JOSA A, vol.22, issue.7, pp.1369-1379, 2005.

B. Karamata, P. Lambelet, M. Leutenegger, M. Laubscher, S. Bourquin et al., Multiple scattering in optical coherence tomography. ii. experimental and theoretical investigation of cross talk in wide-field optical coherence tomography, JOSA A, vol.22, issue.7, pp.1380-1388, 2005.

A. Dubra and Y. Sulai, Reflective afocal broadband adaptive optics scanning ophthalmoscope, Biomedical optics express, vol.2, issue.6, pp.1757-1768, 2011.

Z. Liu, P. Omer, D. Kocaoglu, and . Miller, In-the-plane design of an off-axis ophthalmic adaptive optics system using toroidal mirrors, Biomedical optics express, vol.4, issue.12, pp.3007-3030, 2013.

S. Lee, J. S. Werner, and R. J. Zawadzki, Improved visualization of outer retinal morphology with aberration cancelling reflective optical design for adaptive optics-optical coherence tomography, Biomedical optics express, vol.4, issue.11, pp.2508-2517, 2013.

J. Robert and . Noll, Zernike polynomials and atmospheric turbulence, JOsA, vol.66, issue.3, pp.207-211, 1976.

G. Dai, Modal compensation of atmospheric turbulence with the use of zernike polynomials and karhunen-loève functions, JOSA A, vol.12, issue.10, pp.2182-2193, 1995.

J. Liang, B. Grimm, S. Goelz, and J. F. Bille, Objective measurement of wave aberrations of the human eye with the use of a hartmann-shack wavefront sensor, JOSA A, vol.11, issue.7, pp.1949-1957, 1994.

J. Liang and . David-r-williams, Aberrations and retinal image quality of the normal human eye, JOSA A, vol.14, issue.11, pp.2873-2883, 1997.

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 1980.

W. Horace and . Babcock, The possibility of compensating astronomical seeing, Publications of the Astronomical Society of the Pacific, vol.65, issue.386, pp.229-236, 1953.

F. Rigaut, P. Rousset, J. C. Kern, . Fontanella, . Gaffard et al., Adaptive optics on a 3.6-m telescope-results and performance, Astronomy and Astrophysics, vol.250, pp.280-290, 1991.

J. Liang, R. David, D. Williams, and . Miller, Supernormal vision and highresolution retinal imaging through adaptive optics, JOSA A, vol.14, issue.11, pp.2884-2892, 1997.

A. Roorda, F. Romero-borja, W. J. Donnelly, I. , H. Queener et al., Adaptive optics scanning laser ophthalmoscopy, Optics express, vol.10, issue.9, pp.405-412, 2002.

K. Robert and . Tyson, Principles of adaptive optics, 2015.

P. Ronald, M. Grosso, and . Yellin, The membrane mirror as an adaptive optical element, JOSA, vol.67, issue.3, pp.399-406, 1977.

E. Steinhaus and . Sg-lipson, Bimorph piezoelectric flexible mirror, JOSA, vol.69, issue.3, pp.478-481, 1979.

A. Fuschetto, Three-actuator deformable water-cooled mirror, International Society for Optics and Photonics, pp.17-27, 1979.

T. Donald, . Miller, N. Larry, X. Thibos, and . Hong, Requirements for segmented correctors for diffraction-limited performance in the human eye, Optics express, vol.13, issue.1, pp.275-289, 2005.

, D3128 spatial light modulator, Meadowlark Optics

B. Berge and J. Peseux, Variable focal lens controlled by an external voltage: An application of electrowetting, The European Physical Journal E, vol.3, issue.2, pp.159-163, 2000.

C. Cheng, A. Chang, and J. Yeh, Variable focus dielectric liquid droplet lens, Optics Express, vol.14, issue.9, pp.4101-4106, 2006.

W. Wang and J. Fang, Design, fabrication and testing of a micromachined integrated tunable microlens, Journal of Micromechanics and Microengineering, vol.16, issue.7, p.1221, 2006.

. Seok-woo-lee, S. Seung, and . Lee, Focal tunable liquid lens integrated with an electromagnetic actuator, Applied physics letters, vol.90, issue.12, p.121129, 2007.

A. Pouydebasque, C. Bridoux, F. Jacquet, S. Moreau, E. Sage et al., Varifocal liquid lenses with integrated actuator, high focusing power and low operating voltage fabricated on 200mm wafers, Sensors and actuators A: physical, vol.172, issue.1, pp.280-286, 2011.

H. Oku and M. Ishikawa, High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error, Applied Physics Letters, vol.94, issue.22, p.221108, 2009.

, Adaptive liquid lens

F. Roddier, Curvature sensing and compensation: a new concept in adaptive optics, Applied Optics, vol.27, issue.7, pp.1223-1225, 1988.

J. Francois, E. Roddier, E. J. Graves, and . Limburg, Seeing monitor based on wavefront curvature sensing, International Society for Optics and Photonics, pp.474-479, 1990.

R. Ragazzoni and . Bonaccini, The adaptive optics system for the telescopio nazionale galileo, European Southern Observatory Conference and Workshop Proceedings, vol.54, p.17, 1996.

W. Donald, K. Phillion, and . Baker, Two-sided pyramid wavefront sensor in the direct phase mode, International Society for Optics and Photonics, pp.627228-627228, 2006.

M. Rueckel, J. A. Mack-bucher, and W. Denk, Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing, Proceedings of the National Academy of Sciences, vol.103, issue.46, pp.17137-17142, 2006.

W. Sensing, Adaptive Optics for Biological Imaging, p.253, 2013.

C. Ben, R. Platt, and . Shack, History and principles of shack-hartmann wavefront sensing, Journal of Refractive Surgery, vol.17, issue.5, pp.573-577, 2001.

S. Thomas, Optimized centroid computing in a shack-hartmann. Cerro Tololo Inter-American Observatories, Casilla, p.603

R. Cubalchini, Modal wave-front estimation from phase derivative measurements, JOSA, vol.69, issue.7, pp.972-977, 1979.

Y. Jian, Adaptive optics optical coherence tomography for in vivo retinal imaging. PhD these, Simon fraser university, 2014.

. Pn-marsh, J. M. Burns, and . Girkin, Practical implementation of adaptive optics in multiphoton microscopy, Optics Express, vol.11, issue.10, pp.1123-1130, 2003.

L. Sherman, . Ye, . Albert, and . Norris, Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror, Journal of microscopy, vol.206, issue.1, pp.65-71, 2002.

J. Kayvan-f-tehrani, Y. Xu, P. Zhang, P. Shen, and . Kner, Adaptive optics stochastic optical reconstruction microscopy (ao-storm) using a genetic algorithm, Optics express, vol.23, issue.10, pp.13677-13692, 2015.

J. R. Fienup and . Miller, Aberration correction by maximizing generalized sharpness metrics, JOSA A, vol.20, issue.4, pp.609-620, 2003.

D. Débarre, J. Edward, T. Botcherby, S. Watanabe, . Srinivas et al., Image-based adaptive optics for two-photon microscopy, Optics letters, vol.34, issue.16, pp.2495-2497, 2009.

J. Martin, . Booth, A. A. Mark, T. Neil, and . Wilson, New modal wave-front sensor: application to adaptive confocal fluorescence microscopy and two-photon excitation fluorescence microscopy, JOSA A, vol.19, issue.10, pp.2112-2120, 2002.

J. Martin and . Booth, Wave front sensor-less adaptive optics: a model-based approach using sphere packings, Optics express, vol.14, issue.4, pp.1339-1352, 2006.

S. Bonora and . Zawadzki, Wavefront sensorless modal deformable mirror correction in adaptive optics: optical coherence tomography, Optics letters, vol.38, issue.22, pp.4801-4804, 2013.

D. Débarre, J. Martin, T. Booth, and . Wilson, Image based adaptive optics through optimisation of low spatial frequencies, Optics Express, vol.15, issue.13, pp.8176-8190, 2007.

N. Baba, K. Terayama, T. Yoshimizu, N. Ichise, and N. Tanaka, An auto-tuning method for focusing and astigmatism correction in haadfstem, based on the image contrast transfer function, Journal of Electron Microscopy, vol.50, issue.3, pp.163-176, 2001.

M. Bridget, . Hanser, G. L. Mats, . Gustafsson, J. W. Da-agard et al., Phaseretrieved pupil functions in wide-field fluorescence microscopy, Journal of microscopy, vol.216, issue.1, pp.32-48, 2004.

A. Robert and . Gonsalves, Phase retrieval and diversity in adaptive optics, Optical Engineering, vol.21, issue.5, pp.829-832, 1982.

T. J. Richard-g-paxman, J. R. Schulz, and . Fienup, Joint estimation of object and aberrations by using phase diversity, JOSA A, vol.9, issue.7, pp.1072-1085, 1992.

N. Ji, E. Daniel-e-milkie, and . Betzig, Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues, Nature methods, vol.7, issue.2, pp.141-147, 2010.

E. Daniel-e-milkie, N. Betzig, and . Ji, Pupil-segmentation-based adaptive optical microscopy with full-pupil illumination, Optics letters, vol.36, issue.21, pp.4206-4208, 2011.

R. Liu, E. Daniel, A. Milkie, B. Kerlin, N. Maclennan et al., Direct phase measurement in zonal wavefront reconstruction using multidither coherent optical adaptive technique, Optics express, vol.22, issue.2, pp.1619-1628, 2014.

. Steven-g-adie, W. Benedikt, A. Graf, S. Ahmad, S. A. Carney et al., Computational adaptive optics for broadband optical interferometric tomography of biological tissue, Proceedings of the National Academy of Sciences, vol.109, issue.19, pp.7175-7180, 2012.

A. Kumar, W. Drexler, and R. A. Leitgeb, Subaperture correlation based digital adaptive optics for full field optical coherence tomography, Optics express, vol.21, issue.9, pp.10850-10866, 2013.

. Steven-g-adie, D. Nathan, . Shemonski, W. Benedikt, A. Graf et al., Guide-star-based computational adaptive optics for broadband interferometric tomography, Applied physics letters, vol.101, issue.22, p.221117, 2012.

D. Nathan, . Shemonski, A. Fredrick, Y. South, . Liu et al., Computational high-resolution optical imaging of the living human retina, Nature photonics, vol.9, issue.7, pp.440-443, 2015.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke et al., Aberration-free volumetric high-speed imaging of in vivo retina, Scientific reports, vol.6, p.35209, 2016.

A. Kumar, M. Lara, M. Wurster, L. Salas, W. Ginner et al., In-vivo digital wavefront sensing using swept source oct, Biomedical Optics Express, vol.8, issue.7, pp.3369-3382, 2017.

F. H. Paul-l-kaufman, L. A. Adler, A. Levin, and . Alm, Adler's Physiology of the Eye, 2011.

P. Artal, Optics of the eye and its impact in vision: a tutorial, Advances in Optics and Photonics, vol.6, issue.3, pp.340-367, 2014.

F. W. Campbell and . Gubisch, Optical quality of the human eye, The Journal of Physiology, vol.186, issue.3, pp.558-578, 1966.

G. Walsh, W. N. Howland, and . Charman, Objective technique for the determination of monochromatic aberrations of the human eye, JOSA A, vol.1, issue.9, pp.987-992, 1984.

J. William, A. Donnelly, and . Roorda, Optimal pupil size in the human eye for axial resolution, JOSA A, vol.20, issue.11, pp.2010-2015, 2003.

A. Roorda, J. A. Garcia, . Martin, H. Poonja, . Queener et al., What can adaptive optics do for a scanning laser ophthalmoscope?, BULLETIN-SOCIETE BELGE D OPHTALMOLOGIE, vol.302, p.231, 2006.

J. Porter, A. Guirao, G. Ian, D. Cox, and . Williams, Monochromatic aberrations of the human eye in a large population, JOSA A, vol.18, issue.8, pp.1793-1803, 2001.

J. Francisco-castejón-mochón, N. López-gil, A. Benito, and P. Artal, Ocular wave-front aberration statistics in a normal young population, Vision Research, vol.42, issue.13, pp.1611-1617, 2002.

X. Hong, L. Thibos, A. Bradley, D. Miller, X. Cheng et al., Statistics of aberrations among healthy young eyes, Vision Science and its Applications, page SuA5, 2001.

J. Jarosz, P. Mecê, J. Conan, C. Petit, M. Paques et al., High temporal resolution aberrometry in a 50-eye population and implications for adaptive optics error budget, Biomedical Optics Express, vol.8, issue.4, pp.2088-2105, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01559286

G. Wn-charman and . Heron, Fluctuations in accommodation: a review. Ophthalmic and Physiological Optics, vol.8, pp.153-164, 1988.

H. Hofer, P. Artal, B. Singer, J. Luis-aragón, and D. Williams, Dynamics of the eye's wave aberration, JOSA A, vol.18, issue.3, pp.497-506, 2001.

L. Diaz-santana, C. Torti, I. Munro, P. Gasson, and C. Dainty, Benefit of higher closed-loop bandwidths in ocular adaptive optics, Optics express, vol.11, issue.20, pp.2597-2605, 2003.

A. Lorrin, . Riggs, F. John-c-armington, and . Ratliff, Motions of the retinal image during fixation, JOSA, vol.44, issue.4, pp.315-321, 1954.

M. Ezenman, R. C. Hallett, and . Frecker, Power spectra for ocular drift and tremor, Vision research, vol.25, issue.11, pp.1635-1640, 1985.

J. Roy-de-kinkelder, D. J. Kalkman, O. Faber, . Schraa, H. B. Pauline et al., Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina, Investigative ophthalmology & visual science, vol.52, issue.6, pp.3908-3913, 2011.

D. Lafaille, Study of a prototype applicable to ophtalmology. Theses, 2005.
URL : https://hal.archives-ouvertes.fr/tel-00010421

T. Donald, . Miller, R. David, M. Williams, J. Morris et al., Images of cone photoreceptors in the living human eye, Vision research, vol.36, issue.8, pp.1067-1079, 1996.

A. Roorda and . David-r-williams, The arrangement of the three cone classes in the living human eye, Nature, vol.397, issue.6719, p.520, 1999.

M. Glanc, F. Gendron, D. Lacombe, J. Lafaille, P. Le-gargasson et al., Towards wide-field retinal imaging with adaptive optics, Optics Communications, vol.230, issue.4, pp.225-238, 2004.

S. Stacey, N. Choi, . Doble, L. Joseph, . Hardy et al., vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function. Investigative ophthalmology & visual science, vol.47, pp.2080-2092, 2006.

Y. Kitaguchi, K. Bessho, T. Yamaguchi, N. Nakazawa, T. Mihashi et al., In vivo measurements of cone photoreceptor spacing in myopic eyes from images obtained by an adaptive optics fundus camera, Japanese journal of ophthalmology, vol.51, issue.6, pp.456-461, 2007.

, Fundus photograph with diabetic retinopathy

H. Robert, G. W. Webb, F. C. Hughes, and . Delori, Confocal scanning laser ophthalmoscope, Applied optics, vol.26, issue.8, pp.1492-1499, 1987.

Z. R-daniel-ferguson, . Zhong, X. Daniel, M. Hammer, . Mujat et al., Adaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking, JOSA A, vol.27, issue.11, pp.265-277, 2010.

A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis et al., Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope, Biomedical optics express, vol.2, issue.7, pp.1864-1876, 2011.

E. M. Wells-gray, . Choi, N. Bries, and . Doble, Variation in rod and cone density from the fovea to the mid-periphery in healthy human retinas using adaptive optics scanning laser ophthalmoscopy, Eye, vol.30, issue.8, pp.1135-1143, 2016.

A. Roorda, Y. Zhang, and J. L. Duncan, High-resolution in vivo imaging of the rpe mosaic in eyes with retinal disease, Investigative Ophthalmology & Visual Science, vol.48, issue.5, pp.2297-2303, 2007.

M. Wojtkowski, V. Srinivasan, G. James, T. Fujimoto, J. S. Ko et al., Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography, Ophthalmology, vol.112, issue.10, pp.1734-1746, 2005.

W. Drexler, . Morgner, C. Kärtner, . Pitris, . Boppart et al., In vivo ultrahigh-resolution optical coherence tomography, Optics letters, vol.24, issue.17, pp.1221-1223, 1999.

W. Drexler, U. Morgner, K. Ravi, . Ghanta, X. Franz et al., Ultrahigh-resolution ophthalmic optical coherence tomography, Nature medicine, vol.7, issue.4, p.502, 2001.

W. Drexler, Ultrahigh-resolution optical coherence tomography, Journal of biomedical optics, vol.9, issue.1, pp.47-74, 2004.

G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz et al., Ultrahigh-resolution optical coherence tomography in glaucoma, Ophthalmology, vol.112, issue.2, pp.229-237, 2005.

H. Tony, J. G. Ko, J. S. Fujimoto, L. A. Duker, W. Paunescu et al., Comparison of ultrahigh-and standard-resolution optical coherence tomography for imaging macular hole pathology and repair, Ophthalmology, vol.111, issue.11, pp.2033-2043, 2004.

H. Tony, J. G. Ko, J. S. Fujimoto, L. A. Schuman, A. M. Paunescu et al., Comparison of ultrahigh-and standard-resolution optical coherence tomography for imaging macular pathology, Ophthalmology, vol.112, issue.11, pp.1922-1923, 2005.

. Dt, . Miller, . Op-kocaoglu, S. Wang, and . Lee, Adaptive optics and the eye (super resolution oct), Eye, vol.25, issue.3, p.321, 2011.

S. K. Kevin, Y. Wong, M. Jian, S. Cua, . Bonora et al., In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography, Biomedical optics express, vol.6, issue.2, pp.580-590, 2015.

J. Robert, B. Zawadzki, Y. Cense, . Zhang, S. Stacey et al., Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction, Optics express, vol.16, issue.11, pp.8126-8143, 2008.

T. Donald, J. Miller, . Qu, S. Ravi, K. Jonnal et al., Coherence gating and adaptive optics in the eye, Proc. SPIE, vol.4956, pp.65-72, 2003.

B. Hermann, . Fernández, H. Unterhuber, . Sattmann, . Fercher et al., Adaptive-optics ultrahigh-resolution optical coherence tomography, Optics letters, vol.29, issue.18, pp.2142-2144, 2004.

Y. Zhang, J. Rha, S. Ravi, D. Jonnal, and . Miller, Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina, Optics Express, vol.13, issue.12, pp.4792-4811, 2005.

J. Robert, . Zawadzki, M. Steven, S. S. Jones, M. Olivier et al., Adaptive-optics optical coherence tomography for high-resolution and high-speed 3d retinal in vivo imaging, Optics express, vol.13, issue.21, pp.8532-8546, 2005.

Z. Liu, P. Omer, D. Kocaoglu, and . Miller, 3d imaging of retinal pigment epithelial cells in the living human retina3d imaging of rpe cells in living human retina, Investigative ophthalmology & visual science, vol.57, issue.9, pp.533-543, 2016.

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre et al., Ultrahigh-resolution full-field optical coherence tomography, Applied optics, vol.43, issue.14, pp.2874-2883, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00533151

O. Thouvenin, M. Fink, and C. Boccara, Dynamic multimodal full-field optical coherence tomography and fluorescence structured illumination microscopy, Journal of Biomedical Optics, vol.22, issue.2, pp.26004-026004, 2017.

A. Dubois, G. Moneron, and C. Boccara, Thermal-light full-field optical coherence tomography in the 1.2 µm wavelength region, Optics Communications, vol.266, issue.2, pp.738-743, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00520541

. Wy-oh, . Bouma, . Iftimia, . Sh-yun, G. J. Yelin et al., Ultrahigh-resolution full-field optical coherence microscopy using ingaas camera, Optics express, vol.14, issue.2, pp.726-735, 2006.

S. Labiau, . David, A. C. Gigan, and . Boccara, Defocus test and defocus correction in full-field optical coherence tomography, Optics letters, vol.34, issue.10, pp.1576-1578, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00448239

A. Dubois, Handbook of full-field optical coherence microscopy: technology and applications, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01758479

O. Thouvenin, Optical 3D imaging of subcellular dynamics in biological cultures and tissues: Applications to ophthalmology and neuroscience, 2017.
URL : https://hal.archives-ouvertes.fr/tel-02079619

E. Auksorius and C. Boccara, Dark-field full-field optical coherence tomography, Optics letters, vol.40, issue.14, pp.3272-3275, 2015.

O. Thouvenin, K. Grieve, P. Xiao, C. Apelian, and C. Boccara, En face coherence microscopy, Biomedical optics express, vol.8, issue.2, pp.622-639, 2017.

. Lltech and . Scanner,

O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud et al., Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography, NeuroImage: Clinical, vol.2, pp.549-557, 2013.

M. Jain, N. Shukla, M. Manzoor, S. Nadolny, and S. Mukherjee, Modified full-field optical coherence tomography: A novel tool for rapid histology of tissues, Journal of pathology informatics, vol.2, 2011.

K. Grieve, K. Mouslim, O. Assayag, E. Dalimier, F. Harms et al., Assessment of sentinel node biopsies with full-field optical coherence tomography, Technology in cancer research & treatment, vol.15, issue.2, pp.266-274, 2016.

M. Jain, D. Brian, B. Robinson, O. Salamoon, C. Thouvenin et al., Rapid evaluation of fresh ex vivo kidney tissue with full-field optical coherence tomography, Journal of pathology informatics, vol.6, 2015.

O. Assayag, M. Antoine, B. Sigal-zafrani, M. Riben, F. Harms et al., Large field, high resolution full-field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment, Technology in cancer research & treatment, vol.13, issue.5, pp.455-468, 2014.

T. A. Inge, . Peters, L. Paulien, R. Stegehuis, F. L. Peek et al., Noninvasive detection of metastases and follicle density in ovarian tissue using full-field optical coherence tomography, Clinical Cancer Research, vol.22, issue.22, pp.5506-5513, 2016.

C. Apelian, F. Harms, O. Thouvenin, and C. Boccara, Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis, Biomedical optics express, vol.7, issue.4, pp.1511-1524, 2016.

J. Binding, J. B. Arous, J. Léger, S. Gigan, C. Boccara et al., Brain refractive index measured in vivo with high-na defocuscorrected full-field oct and consequences for two-photon microscopy, Optics express, vol.19, issue.6, pp.4833-4847, 2011.

A. Nahas, M. Bauer, S. Roux, and C. Boccara, 3d static elastography at the micrometer scale using full field oct, Biomedical optics express, vol.4, issue.10, pp.2138-2149, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01709281

A. Perea-gomez, A. Camus, A. Moreau, K. Grieve, G. Moneron et al., Initiation of gastrulation in the mouse embryo is preceded by an apparent shift in the orientation of the anteriorposterior axis, Current Biology, vol.14, issue.3, pp.197-207, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00533179

D. Jing-gao-zheng, T. Lu, C. Chen, N. Wang, F. Tian et al., Label-free subcellular 3d live imaging of preimplantation mouse embryos with full-field optical coherence tomography, Journal of biomedical optics, vol.17, issue.7, pp.705031-0705033, 2012.

K. Wiesauer, M. Pircher, E. Götzinger, S. Bauer, R. Engelke et al., Enface scanning optical coherence tomography with ultra-high resolution for material investigation, Optics Express, vol.13, issue.3, pp.1015-1024, 2005.

E. Auksorius and C. Boccara, Fingerprint imaging from the inside of a finger with full-field optical coherence tomography, Biomedical optics express, vol.6, issue.11, pp.4465-4471, 2015.

O. Thouvenin, C. Apelian, A. Nahas, M. Fink, and C. Boccara, Full-field optical coherence tomography as a diagnosis tool: Recent progress with multimodal imaging, Applied Sciences, vol.7, issue.3, p.236, 2017.

E. Auksorius, Y. Bromberg, R. Motiej?nait?, A. Pieretti, L. Liu et al., Dual-modality fluorescence and full-field optical coherence microscopy for biomedical imaging applications, Biomedical optics express, vol.3, issue.3, pp.661-666, 2012.

A. Nahas, M. Varna, E. Fort, and C. Boccara, Detection of plasmonic nanoparticles with full field-oct: optical and photothermal detection, Biomedical optics express, vol.5, issue.10, pp.3541-3546, 2014.

G. Moneron, A. Boccara, and A. Dubois, Polarization-sensitive fullfield optical coherence tomography, Optics letters, vol.32, issue.14, pp.2058-2060, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00520535

L. Yu and . Kim, Full-color three-dimensional microscopy by wide-field optical coherence tomography, Optics express, vol.12, issue.26, pp.6632-6641, 2004.

A. Dubois, J. Moreau, and C. Boccara, Spectroscopic ultrahigh-resolution full-field optical coherence microscopy, Optics express, vol.16, issue.21, pp.17082-17091, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00520533

A. Bossen, R. Lehmann, and C. Meier, Internal fingerprint identification with optical coherence tomography, IEEE photonics technology letters, vol.22, issue.7, pp.507-509, 2010.

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 2013.

. Joseph-w-goodman, Introduction to Fourier optics, 2005.

P. Xiao, M. Fink, and C. Boccara, Full-field spatially incoherent illumination interferometry: a spatial resolution almost insensitive to aberrations, Optics letters, vol.41, issue.17, pp.3920-3923, 2016.

M. Interferometer,

P. Hendrik-van-cittert, Die wahrscheinliche schwingungsverteilung in einer von einer lichtquelle direkt oder mittels einer linse beleuchteten ebene, Physica, pp.201-210, 1934.

F. Zernike, The concept of degree of coherence and its application to optical problems, Physica, vol.5, issue.8, pp.785-795, 1938.

P. Xiao, M. Fink, H. Amir, C. Gandjbakhche, and . Boccara, A resolution insensitive to geometrical aberrations by using incoherent illumination and interference imaging, The European Physical Journal Special Topics, vol.226, issue.7, pp.1603-1621, 2017.

P. Xiao, M. Fink, and A. C. Boccara, Adaptive optics full-field optical coherence tomography, Journal of biomedical optics, vol.21, issue.12, pp.121505-121505, 2016.

J. Enrique, B. Fernández, B. Hermann, A. Pova?ay, H. Unterhuber et al., Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina, Optics Express, vol.16, issue.15, pp.11083-11094, 2008.

P. Omer, D. Kocaoglu, R. S. Ferguson, Z. Jonnal, Q. Liu et al., Adaptive optics optical coherence tomography with dynamic retinal tracking, Biomedical optics express, vol.5, issue.7, pp.2262-2284, 2014.

J. Mertz, H. Paudel, and T. G. Bifano, Field of view advantage of conjugate adaptive optics in microscopy applications, Applied optics, vol.54, issue.11, pp.3498-3506, 2015.

N. Doble, T. Donald, G. Miller, D. Yoon, and . Williams, Requirements for discrete actuator and segmented wavefront correctors for aberration compensation in two large populations of human eyes, Applied optics, vol.46, issue.20, pp.4501-4514, 2007.

D. Gordon and . Love, Wave-front correction and production of zernike modes with a liquidcrystal spatial light modulator, Applied optics, vol.36, issue.7, pp.1517-1524, 1997.

A. Vyas, R. Mb-roopashree, B. Kumar-banyal, and . Prasad, Spatial light modulator for wavefront correction, 2009.

N. Larry, A. Thibos, and . Bradley, Use of liquid-crystal adaptive-optics to alter the refractive state of the eye, Optometry & Vision Science, vol.74, issue.7, pp.581-587, 1997.

F. Vargas-mart?n, P. M. Prieto, and P. Artal, Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance, JOSA A, vol.15, issue.9, pp.2552-2562, 1998.

G. Dai, Wavefront optics for vision correction, vol.179, 2008.

P. Xiao, M. Fink, and C. Boccara, Retinal imaging with adaptive optics full-field oct, Proc. of SPIE, vol.10053, pp.100530-100531, 2017.

K. Christoph, A. Hitzenberger, W. Baumgartner, A. F. Drexler, and . Fercher, Dispersion effects in partial coherence interferometry: implications for intraocular ranging, Journal of Biomedical Optics, vol.4, issue.1, pp.144-151, 1999.

, Artificial eye model

K. Christy, Q. Sheehy, . Yang, P. David-w-arathorn, J. Tiruveedhula et al., High-speed, image-based eye tracking with a scanning laser ophthalmoscope, Biomedical optics express, vol.3, issue.10, pp.2611-2622, 2012.

, Template matching and slice alignment

P. Xiao, M. Fink, and C. Boccara, Combining ff-oct with sd-oct for retinal imaging, Optical Coherence Imaging Techniques and Imaging in Scattering Media II, vol.10416, 2017.

. Ansi-standard, Z136. 1. american national standard for the safe use of lasers, 2014.

Y. L. Grand, Light, colour, and vision, 1957.

. Ansi-standard, Z80. 36. american national standard for ophthalmics-light hazard protection for ophthalmic instruments, 2016.

, Spectralis imaging platform

. John-i-yellott, Spectral analysis of spatial sampling by photoreceptors: topological disorder prevents aliasing, Vision research, vol.22, issue.9, pp.1205-1210, 1982.

L. Ginner, A. Kumar, D. Fechtig, M. Lara, M. Wurster et al., Noniterative digital aberration correction for cellular resolution retinal optical coherence tomography in vivo, Optica, vol.4, issue.8, pp.924-931, 2017.

, Adaptive optics retinal camera

K. Grieve, O. Thouvenin, A. Sengupta, M. Vincent, M. Borderie et al., Appearance of the retina with full-field optical coherence tomographyffoct and the retina, Investigative ophthalmology & visual science, vol.57, issue.9, pp.96-104, 2016.

O. Thouvenin, C. Boccara, M. Fink, J. Sahel, M. Pâques et al., Cell motility as contrast agent in retinal explant imaging with full-field optical coherence tomography, Investigative Ophthalmology & Visual Science, vol.58, issue.11, pp.4605-4615, 2017.

. Bliblio and . Bib,