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Abstract

Recent development in deep learning have achieved impressive results on image under-
standing tasks. However, the success of deep learning based approaches on such tasks
heavily depends on employing the appropriate deep neural network architecture for the
task of interest and having available a large-size manually labeled dataset for training. In
this context, the objective of this dissertation is to propose deep learning techniques and
architectures for core image understanding tasks in order to (1) drastically improve the
effectiveness (i.e., accuracy) with which those tasks are performed, and (2) make their
learning process more annotation ef cient, i.e., less dependent on the availability of large
amounts of manually labeled training data.

We rst focus on improving the state-of-the-art on object detection. More speci cally,
we attempt to boost the ability of object detection systems to recognize (even dif cult)
object instances by proposing a multi-region and semantic segmentation-aware ConvNet
based representation that captures a diverse set of discriminative appearance factors. Also,
we aim to improve the localization accuracy of object detection systems by proposing
iterative detection schemes and a novel localization model for estimating the bounding box
of the objects. We demonstrate that the proposed technical novelties lead to signi cant
improvements in the object detection performance of PASCAL and MS COCO benchmarks.

Another core image understanding task of which we wish to improve the state-of-the-art
is that of pixel-wise image labeling. Here we explore a family of deep neural network
architectures that perform structured prediction by learning to (iteratively) improve some
initial estimates of the output labels. The goal is to identify which is the optimal architecture
for implementing such deep structured prediction models. In this context, we propose to
decompose the label improvement task into three steps: detecting which initial labels are
incorrect, replacing those erroneous labels with new ones, an nally re ning the renewed
labels by predicting residual corrections w.r.t. them. We evaluate the explored architectures
on the disparity estimation task and we demonstrate that the proposed architecture achieves
state-of-the-art results on the KITTI 2015 benchmark.

In order to accomplish our goal for annotation ef cient learning, we propose a self-
supervised learning approach that learns ConvNet-based image representations by training
the ConvNet to recognize the 2d rotation that is applied to the image that it gets as input. We
empirically demonstrate that this apparently simple task actually provides a very powerful
supervisory signal for semantic feature learning. Speci cally, the image features learned
from this task exhibit very good results when transferred on the visual tasks of object
detection and semantic segmentation, surpassing prior unsupervised learning approaches
and thus narrowing the gap with the supervised case.

Finally, also in the direction of annotation ef cient learning, we proposed a few-shot
object recognition system that after its training is able to dynamically learn novel categories
from only a few samples (e.g., only one or ve examples) while it does not forget the
categories on which it was trained. In order to implement the proposed recognition system
we introduce two technical novelties, an attention based few-shot classi cation weight
generator, and implementing the classi er of the ConvNet model as a cosine similarity
function between feature representations and classi cation vectors. We demonstrate that the
proposed approach achieves state-of-the-art results on relevant few-shot benchmarks.






Resune

L'objectif de cette tlese est de faire progresser |'ef cagitle I'analyse d'image pour les
donrees et les applications du mondek. Plus pecigment, il se concentre sur léches

de reconnaissance d'objets, detelction d'objets et @tiquetage des imagesl'échelle

du pixel, qu'elles epondent “quoi” et “0” quelque chose est reggenée dans une image.
Perfectionner ce type de con@rension d'image est une conditioreptablea la mise au
point des systmes d'intelligence arti cielle, comme les voitures qui circulent dans les
rues de la ville, les robots autonomes qui effectuent delses d'entretien Bnager, ou
des dispositifs d'aide aux personnes malvoyantes qui aident leurs utilisatparsevoir
leur environnement. A n d'atteindre I'objectif susmentiomna trese est divise en deux
parties, intituées “Methodes d'apprentissage profond pour l'analyse ef cace d'images” (en
anglais “Effective Deep Learning for Image Understanding”) e€thdes d'apprentissage
profond pour lI'analyse ef cace d'images en limitant I'annotation humaine” (en anglais
“Annotation Ef cient Deep Learning for Image Understanding”), chacun d'entre eux poursuit

un sous-objectif difrent.

lere Partie: Méthodes d'apprentissage profond pour I'analayse ef cace d'images
L'objectif de la premere partie de la #hse est de faire progresseatht de I'art sur les
deux majeuresiches de I'analyse d'image, l&téction d'objets et @tiquetage des images

a |'échelle du pixel, en proposant des approches ef cacesdsasur I'apprentissage profond.

Représentations discriminantes pour la étection d'objets. Un élement central d'un
syseme de étection d'objets est un metk qui reconnasi une égion d'image contient
ou non un objet d'irkret. A n d'améliorer la pécision de ce magle, nous proposons

une repésentation deggion d'image enrichie bég sur ConvNet qui code I'apparence de
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plusieurs egions (autour de leegion d'image d'ente) ainsi que des fonctionn&g de
segmentationamantique. Ceci eséali® en concevant une architecture ConvNet multi-
composants w chaque composant déseau est foicde se concentrer sur un&gion
différente de I'objet d'intérét. L'objectif est de rendre la repsentation bas sur ConvNet
capable de capturer un ensemble divezsie facteurs d'apparence discriminants, telles que
les caradristiques d'apparence pure d' un objet, I'apparence distincte de sésedifés
regions (parties d'objet), I'apparence du contexte, I'apparence des désdes limites de
I'objet, ou l'information conscienta la segmentatiorésnantique. Nous pensons qu'une
representation aussi riche &fiorera les capa@s de reconnaissance du gyse de étection,
méme lorsqu'il est confro@ aux instances d'objets dif ciles que I'on rencontre souvent
dans la &che de dtection d'objets. De plus, la reggentation obtenue a une sensibilit
de localisation accrue, ce qui est essentiel poutelaation d'objets. Nous exploitons
ces prop@tes du module de reconnaissance prépasl'integrant dans un écanisme de
localisation ieratif qui,a partir de certainesgions initiales de I'image, alterne entre la
classi cation de cesagions et I'af nement de leurs emplacements a n de mieux localiser
les objets d'inéret. Giacea I'utilisation ef cace de nos modules, nouétéctons les objets
avec une s grande f@cision. Sur les@ls de détection de PASCAL VOC2007 et PASCAL
VOC2012, nous obtenons un mAP @& 2% et 73, 9% respectivement, surpassant de loin

tout ouvrage pubd anérieurement.

Localisation précise d'objet dans la @tection d'objets. En plus de l'aspect reconnais-
sance, nous essayons d@liorer la pécision de localisation des sgstes de étection
d'objets en concevant un nouveau netelde localisation qui prend comme @&#rune
région de recherche dans une image et qui aikxaliser peciement un objet dans cette
region. La majorié des approches a@rmteures, a n de mettre en ceuvre de tels eled
de localisation, adoptent le paradigme égression des s, qui utilise une fonction de
régression a n de f@dire directement les coordoges de la bite qui entoureetroitement
l'objet d'intérét. Cependant, nous croyons qu'essayerédgasser directement les coor-
donrees de la bte cible constitue unéthe d'apprentissage dif cile qui ne peut donner
des Esultats suf samment pcis. C'est pour cette raison que nous formulons le olel

de localisation avec une densétimode de classi cation. Plusgeiment,etant dong la
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région de recherche, notre nald attribue des probab#is conditionnellea chaque ligne
et colonne de cettégion. Ces probabibis fournissent des informations utiles concernant
I'emplacement des limites de I'objetl'intérieur de la&gion de recherche et permettent

I'inf érence pecise de la bte de I'objet dans un cadre probabiliste simple.

Nous impEmentons notre mate de localisation avec une architecture ConvNet cor-
rectement adape, appeie LocNet, et nous l'irlggrons sur une athodologie de localisation
itérative. Nous @montrons ex@rimentalement que LocNetgsente des performances de
localisation suprieures aux magles de egression en btes et qu'il permet d'araliorer
signi cativement la neétrique mAP lorsque I'on consile des valeurslevees pour le seuil
loU (intersection-over-union), i.e., unegmision de localisatioglevee. De plus, il peuktre
facilement coup# a des sygmes de I'etat de I'art enadection d'objets, ce qui leur permet
d'améliorer leurs performances. En n, nous adaptons &hodologie de localisatioa
la tache de grération de propositions de localisation d'objets. Le syt qui enésulte,
appeé “AttractionNet”, permet d'obtenir de€sultats d'etat de I'art dans ceti&che et,
lorsqu'il est coupk a un systme de étection bas sur LocNet, d'obtenir une excellente

performance de&tectiond d'objet.

Prédiction de structure ba€e sur les Eseaux de neurones profonds pour &tiquetage
d'images a I'échelle du pixelL'un des principaux @ s de |'étiquetage des images
I'eéchelle du pixel est d'apprendre I'espace commun des variables&seetide sortie. Une
approche fonée sur les dores pour I'apprentissage implicite de cet espace commun
consistea entréner un Eéseau neuronal profond de sorte que, en donnant edecumiie
estimation initiale degtiquettes de sortie et de lI'image d'eedy;, on puisse proir une
nouvelle estimation af Be pour legtiquettes. Nous appelons ceéthindes des “mades
d'entrées-sorties conjointes et profondes”. Dans ce contexte, la contribution de msiee th
est d'explorer quelle est I'architecture optimale poealiser cetteédche d'anglioration

du label. Nous soutenons que les approchesremires qui consistaient sa@tpédire
directement les nouvelles estimations daquettes, soid predire les correctiongsiduelles
par rapport augtiquettes initialea I'aide d'architectures deeseaux profonda propagation
avant sont sous-optimales. Nous proposongplute architectureapérique qui @compose

la tache d'anglioration destiquettes en troigtapes : (1) étecter les estimations initiales

7



incorrectes desétiquettes, (2) remplacer lésiquettes incorrectes par de nouvebdiguettes,

et en n (3) af ner lesétiguettes renouvees en pgrdisant les correctiongsiduelles. De
plus, nous explorons et comparons diverses architectures alternatives pour deke$mod
d'entrées-sorties conjointes et profondes” qui se composent des composatdstdy’,
“Remplacer” et “Af ner” mentionrés ci-dessus. Nowsvaluons de maare approfondie
les architectures explees dans leache dif cile de I'estimation de la dispaét(en anglais
“disparity estimation” or “stereo matching”) et nousepentons lesaisultats quantitatifs
et qualitatifs sur trois ensembles de déas diferents qui @montrent les avantages de
notre approche. En n, leéseau neuronal d'estimation des disgitui met en ceuvre
I'architecture @rérique propose obtient d'excellentssultats sur le benchmark KITTI

2015, cepassant largement les approche&sguientes.

2eme Partie: Méthodes d'apprentissage profond pour I'analayse ef cace d'images en

limitant I'annotation humaine

La deuxeme partie de la #/se porte sur I'exploration des techniques qui permettent
d'apprendre les maaes d'analyse d'images sans avoir besoin d'une grande q@alstit
donrees de formatiotiqueees manuellement. Deux approché&sggales qui tentent
de contourner la@endance des approches feas en apprentissage profoad eégard
d'ensembles de domes de grande tailletique€es manuellement sont I'apprentissage
I'aide de donies noretiquetees (i.e., I'apprentissage non supegyisu I'apprentissage
fondé sur des doreesetique€es de prol@mes diferents mais semblables pour lesquels
lesétiquettes sont plus facilesobtenir ou éja disponibles (i.e., I'apprentissage par trans-
fert). Dans notre cas, nous proposons deux approches, une approche d'apprentissage par
repesentation non superés, qui fait partie de I'approche plus large d'apprentissage non
supervig, et une approche d'apprentissages peu-instaat@m anglais “few-shot learning”),

qui fait partie de I'approche plus large d'apprentissage par transfert.

Apprentissage non supervig de la représentation d'images.Les eseaux de neurones
convolutifs (ConvNets) se sont @@s extemement ef caces poutesoudre lesédches
d'analyse d'images @rcea leur capacé inegake d'apprendre des rgggentations d'images

semantiques de haut niveau par un apprentissage supePRas exemple, les reggentations
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d'images obtenues par I'enfrement d'un ConvNet sur les ensembles de é@msnde
classi cation d'images de ImageNet29 ou Place205175, qui contiennent des millions
d'images annd@es manuellement, ont obtenu desultats remarquables lors de leur transfert
sur desaches d'analyse d'images en aval, telles quegzction d'objets et la segmentation
semantique d'images. Compte tenu de notre objectif, une questsrirteressante est
de savoir si I'apprentissage de la repentation @mantique d'images est possible sans
supervision humaine, i.e., sans kcessiter d'effort d'annotation manuelle. Une approche
prometteuse pou€soudre le proleime pogé par cette question est I'apprentissage auto-
supervig€. L'apprentissage auto-supe®isst une forme d'apprentissage non supéryisi

dé nit une tache de “petexte” sans annotation en utilisant I'information visuellegante

sur les images a n de fournir un signal de supervision de substitution pour lI'apprentissage

de la repesentation@mantique des images.

Suivant cette approche, notre contribution est de proposer d'apprendre kEserggations
d'images en entfaant un ConvNeéa reconndre la rotation 2D qui est appli@ea l'image
gu'il recoit en entee. Nous @montrons qualitativement et quantitativement que cette
simple &che fournit en fait un signal de supervisioasipuissant pour l'apprentissage de la
reptesentation@mantique d'images. Nowsaluons de maare exhaustive notre @&hodea
I'aide de differents benchmarks d'apprentissage non supes\esnous @montrons dans
chacun d'eux des performances d'etat de I'art. Plecg@ment, nosésultats par rappod
ces repres ewelent des aliorations importantes par rapport aux approchesrares
pour I'apprentissage non super@ide la repgsentation, ce quiduit consiérablement
I' écart avec I'apprentissage supeévies caraéristiques. Par exemple, dansdahe de
déetection PASCAL VOC 2007, le mede AlexNet qui est entfaé au peéalable avec notre
méthode d'apprentissage non supedwdteint une mAP d&4; 4%, soit seulement 2,4 points
de moins que dans le cas supegvidlous obtenons degsultats tous aussi bons lorsque
nous trangérons les ref@sentations d'images b&es sur notre gthode d'apprentissage non
supervige sur diverses autregches, telles que la classi cation ImageNet, la classi cation
PASCAL, la segmentation PASCAL, et la classi cation CIFAR-10.

L'apprentissage de nouvelles cdgories en utilisant peu d'exemplesL'apprentissage

peu-instanta@ (en anglais “few-shot learning”) estlau probéme plus large de I'apprentissage
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par transfert qui tente de stocker et d'exploiter les connaissances acquises tout en apprenant
a resoudre un prokime a n d'apprendre plus tara resoudre plus ef cacement un preihe
nouveau mais &. Dans le “few-shot learning” en particulier, I'objectif est d'exploiter les
connaissances acquises a n @eluire drastiguement le nombre d'exemples d'éngment

requis pour le nouveau pradshe ou, en d'autres termes, dsoudre plus ef cacement

le nouveau prol@me tout en ayant aesa tres peu d'exemples d'enfrement pour ce
probleme. Par exemple, dans la reconnaissance d'objets, les connaissances acquises en
apprenana reconndre les chats et les lions pourraigrite exploiees en apprenaatre-
conndtre la nouvelle catgorie tigrea partir de seulement quelques exemples d'émeraent,

e.g., un seul (1-shot) ou cinqg (5-shot). Le gyse visuel humain fait preuve d'une telle
capacié d'apprentissage par transfert ; il apprend sans effort de nouveaux conceptsavisuels
partir d'un ou de quelques exemplesigea sa capadi d'exploiter son ex@rience pase

du monde visuel. Limitation de ce comportement sur lesesysts de vision arti cielle est

un probeme de recherche itessant et dif cilea resoudre.

Dans ce contexte, notre contribution est de proposer un nouveamgyde reconnais-
sance d'objets qui, aps son entfaement, est capable d'apprendre dynamiquement de
nouvelles catgoriesa partir de quelques exemples seulement (typiquement, seulement un
ou cinq), sans oublier les @&gories sur lesquelles il&é forme. Pour ealiser cela, nous
proposons (a) @tendre un systme de reconnaissance d'objets avec une composante de
réseau neuronal sughentaire quia partir de quelques exemples d'efttement d'une
nouvelle cakgorie, grere les poids de classi cation pour cetteagtrie, et (b) de recon-
cevoir le classi cateur d'un moele ConvNet comme fonction de simil@itosinus entre
la repésentation d'images et des vecteurs poids de classi cation. Cetteederan plus
d'uni er la reconnaissance des émfories nouvelles et initiales, condéjalemena des
repesentations d'images qui donnent de meille@suitats sur les nouvelles égbries.
Nouseévaluons en profondeur notre approche sur MinilmageNefaus eussissona
aneliorer I'état de I'art arérieur sur la reconnaissance “few-shot” (i.e., que nous obtenons
56:20% et 73:00% respectivement sur legglages 1-shot et 5-shot) tout en ne sacri ant
aucune picision sur les cagories initiales, une cardetstique que la plupart des approches

angérieures manquent. Nous appliqu@galement notre approche sur le benchmark Ima-
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geNet de Hariharan et Girshick]] ou nous obtenongsgalement de€sultats de I'etat de

I'art.
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3-11 lllustration of the consecutive bounding box predictions made by our category
agnostic location re nement module. In each row, from left to right we depict a
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3-12 AttractioNet work- ow. The Attend Re ne Repeadlgorithm is implemented
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3-13 Attend & Re ne Network architecture. The Attend & Re ne Networks the
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4-1

4-2

In this gure we visualize two different types of erroneously labeled image
regions. On the left hand are the ground truth labels and on the right hand
are some initial label estimates. With the red rectangle we indicate a dense
concentration of “hard” mistakes in the initial labels that it is very dif cult to

be corrected by a residual re nement component. Instead, the most suitable
action for such a region is to replace them by predicting entirely new labels
for them. In contrast, the blue eclipse indicates an image region with “soft”
label mistakes. Those image regions are easier to be handled by a residual

renementcomponents. . . . . . . . ... 137

In this gure we demonstrate the generic architecture that we propose for the dense
image labeling task. In this architecture the task of the deep joint input-output

model is decomposed into three different sub-tasks that are: (1) detection of the
erroneous initial labels, (2) replacement of the erroneous labels with new ones
(leading to a renewed label majp), and then (3) re nemenY ° of the renewed

label map. The illustrated example is coming from the dense disparity labeling task

(stereomatching). . . . . . . ... 140



4-3 Here we provide an example that illustrates the functions performed by
the Detect, Replace, and Re ne steps in our proposed architecture. The
example is coming from the dense disparity labeling task (stereo matching).
Speci cally, sub gures(a), (b), and(c) depict respectively the input image
X, the initial disparity label estimatés, and the error probability map
that the detection componelRi(:) yields for the initial labels . Notice the
high similarity of mapE with the ground truth error map of the initial labels
Y depicted in sub gurgd), where the ground truth error map has been
computed by thresholding the absolute difference of the initial labdtem
the ground truth labels with a threshold®pixels (red are the erroneous
pixel labels). In sub gurge) we depict the label predictions of the Replace
component,(:). For visualization purposes we only depict thg:) pixel
predictions that will replace the initial labels that are incorrect (according to
the detection component) by drawing the remaining ones (i.e., those whose
error probability is less tha@x5) with black color. In sub gurgf) we depict
therenewed labeld = E  Fy(X;Y;E)+(1 E) Y. Insubgure(g)
we depict the residual corrections that the Re ne compofe() yields for
the renewed labeld. Finally, in the last sub guré€h) we depict the nal

label estimate¥ °= U + F,(X;Y;E;U) that the Re ne step yields. . . . . 144

4-4 Percentage of erroneously estimated disparity labels for a piasla function
of the percentage of erroneous initial disparity labels in the patch ofasizev
centered on the pixel of interest The patch sizev is set to65. An estimated pixel
labely®is considered erroneous if its absolute difference from the ground truth
label is more thang = 3 pixels. For the initial disparity labels in each patch, the
threshold of considering them incorrect is set(@) 3 pixels, (b) 5 pixels,(c) 8
pixels, andd) 15 pixels. The evaluation is performed 60images of the&Synthetic

teStSet.. . . . . e e e e e e e e e 154

4-5 Here we illustrate some examples of the disparity predictions that the “X-
Blind” architecture performs. The illustrated examples are from the Syn-

thetic and the Middlebury datasets. . . . . . . ... ... ... ... .... 156
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4-6

4-7

4-8

lllustration of the error probability mapgs that the error detection com-
ponentF¢(X;Y ) yields. The ground truth error maps are computed by
thresholding the absolute difference of the initial labélfom the ground

truth labels with a threshold & pixels (red are the erroneous pixel labels).
Note that in the case of the KITTI 2015 dataset, the available ground truth
labels are sparse and do not cover the entire image (e.g., usually there is no
annotation for the sky), which is why some obviously erroneous initial label
estimates are not coloured as incorrect (with red color) in the ground truth

EITOr MAPS. . . . o o e e e e e e e e 162

Here we provide more examples that illustrate the function performed by
the Replace step in our proposed architecture. Speci cally, sub- glaes

(b), and(c) depict the input imag , the initial disparity label estimates,

and the error probability malp that the detection componeri(:) yields

for the initial labelsY . In sub- gure(d) we depict the label predictions of
the replace componehfy,(:). For visualization purposes we only depict the
Fu(:) pixel predictions that will replace the initial labels that are incorrect
(according to the detection component) by drawing the remaining ones (i.e.,
those whose error probability is less tHah) with black color. Finally, in

the last sub- gurge) we depict the renewed labdls= E  F,(X;Y;E)+

(3 E) Y. We can readily observe that most of the “hard” mistakes of

the initial labelsY have now been crudely “ xed” by the Replace compone@3

Here we provide more examples that illustrate the function performed by
the Re ne step in our proposed architecture. Speci cally, in sub- gueds

(b), and(c) we depict the input imagk , the initial disparity label estimates

Y, and the renewed labels that the Replace step yields. In sub- gy

we depict the residual corrections that the Re ne compofe(n) yields for

the renewed labeld. Finally, in the last sub- gurde) we depict the nal

label estimate¥ °= U + F,(X;Y;E;U) that the Re ne step yields. . . . . 164

28



4-9

lllustration of the intermediate steps of tietect + Replace + Re ne
work- ow. We observe that the nal Re ne componeft (:), by predicting
residual corrections, manages to re ne the renewed ldbelad align the
output labelsy °with the ne image structures in imagé. Note that in the
case of the KITTI 2015 dataset, the available ground truth labels are sparse

and do not cover the entireimage. . . . . . . . . .. ... ... ... 165

4-10 lllustration of the estimated labels on each iteration ofible¢ect, Replace,

Re ne x2multi-iteration architecture. The visualised examples are from

zoomed-in patches from the Middlebury and the Synthetic datasets. . . . . . 166

4-11 Qualitative results in the validation set of KITTI 2015. From left to right,

we depict the left imag¥ , the initial labelsY , the labelsy °that our model

estimates, and nally the errors of our estimates w.r.t. ground truth. . . . . 167

4-12 Qualitative results in the validation set of Cityscapes dataset. From left to

right, we depict the input imag¥é , the initial labelsY , the re ned labelsy °

that our model estimates, and nally the ground truth labels. Note that the
black image regions in the ground truth labels correspond to the unknown
category. Those “unknown” image regions are ignored during the evaluation

of the segmentation performance. . . . . . . . .. ... .. ... ...... 168

4-13 Qualitative results in the Facade parsing dataset. From left to right, we

5-1

depict the input imag¥ , the initial labelsY , the re ned labelsy °that our

model estimates, and nally the ground truth labels. . . . . . ... ... .. 169

Images rotated by random multiples of 90 degrees (e.g., 0, 90, 180, or 270
degrees). The core intuition of our self-supervised feature learning approach
Is that if someone is not aware of the concepts of the objects depicted in the

images, he cannot recognize the rotation that was applied to them. . . . . . 173
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5-2 lllustration of the self-supervised task that we propose for semantic feature
learning. Given four possible geometric transformations, the 0, 90, 180,
and 270 degrees rotations, we train a ConvNet mbdel to recognize the
rotation that is applied to the image that it gets as inpt(X?Y ) is the
probability of rotation transformatioppredicted by modéF (:) when it gets

as input an image that has been transformed by the rotation transformpatibns

5-3 Attention maps generated by an AlexNet model traifegdo recognize
objects (supervised), arfld) to recognize image rotations (self-supervised).
In order to generate the attention map of a conv. layer we rst compute the
feature maps of this layer, then we raise each feature activation on the power
p, and nally we sum the activations at each location of the feature map. For
the conv. layers 1, 2, and 3 we used the povwersl, p=2,andp=4
respectively. For visualization of our self-supervised model's attention maps

for all the rotated versions of the images see Figure5-6. . . . . . ... ... 176

5-4 First layer Iters learned by a AlexNet model trained (@) the supervised
object recognition task an(®) the self-supervised task of recognizing rotated
images. We observe that the lters learned by the self-supervised task are
mostly oriented edge lIters on various frequencies and, remarkably, they

seem to have more variety than those learned on the supervised task. . . . . 177
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5-5 (a)Plot with the rotation prediction accuracy and object recognition accuracy
as a function of the training epochs used for solving the rotation prediction
task. The red curve is the object recognition accuracy of a fully supervised
model (a NIN model), which is independent from the training epochs on the
rotation prediction task. The yellow curve is the object recognition accuracy
of an object classi er trained on top of feature maps learned BpiiNet
model at different snapshots of the training procedybg.Accuracy as
a function of the number of training examples per category in CIFAR-10.
Ours semi-superviseid a NIN model whose rst 2 conv. blocks aRotNet
model that was trained in a self-supervised way on the entire training set
of CIFAR-10 and the 3rd conv. block along with a prediction linear layer

that was trained with the object recognition task only on the available set of

labeledimages. . . . . . . . . L 183

5-6 Attention maps of the Conv3 and Conv5 feature maps generated by an
AlexNet model trained on the self-supervised task of recognizing image

rotations. Here we present the attention maps generated for all the 4 rotated

copiesofanimage. . . . . . . . ... 189

6-1 Overview of our system. It consists of: (aC@anvNet based recognition mod#iat
includes a feature extractor and a classi er) and (BBve-shot classi cation weight
generator Both are trained on a set of base categories for which we have available
a large set of training data. During test time, the weight generator gets as input a
few training data of a novel category and the classi cation weight vectors of base
categories (green rectangle inside the classi er box) and generates a classi cation
weight vector for this novel category (blue rectangle inside the classi er box). This

allows the ConvNet to recognize both base and novel categories.. . . . . . . 197
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6-2 Here we visualize the t-SNB§] scatter plots of the feature representations learned
with (a) the cosine-similarity based ConvNet recognition model, @)dhe dot-
product based ConvNet recognition model. Note that in the case of the cosine-
similarity based ConvNet recognition model, we visualizelphrormalized fea-
tures. The visualized feature data points are from the “unseen” during training
validation categories of Mini-ImageNet (i.e., novel categories). Each data point in

the t-SNE scatter plots is colored according to its category.. . . . . . . . . . 199
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Chapter 1

Introduction

1.1 Obijective

The objective of this thesis is to propose deep learning based approaches that would advance
the effectiveness of machine image understanding to real-world data and applications.

But what do we mean by machine image understanding? In general, machine image

understanding can be de ned as any machine process that, given an image, extracts a
description from that image that is useful for the user of the process. Speci cally in this

thesis we are interested with the following image understanding tasks:

Object recognition and detection: The most simple and commonly studied image under-
standing task is that on which the machine process gets as input an image that is
assumed to be the picture of a single object, and it has to recognize if the object
belongs to one of several prede ned semantic categories (e.g., dogs, cats, cars, or
bikes). This type of image understanding task is typically called object recognition.
Due to its assumption about the input image, the usefulness of object recognition is
relatively limited in real-world applications where the processed images can depict
numerous objects and in various spatial positions in the image. Therefore, a much
more interesting image understanding task is that of object detection that given an
image requires to nd in that image all the object instances of one or more semantic

categories in form of bounding boxes that tightly enclose those objects. In Figure 1-1
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Figure 1-1: Object detection example. We draw the ground truth bounding boxes of the human and
horse objects depicted in the image.

we provide an object detection example for the semantic categories person and horse.

Pixel-wise image labeling: Another very important type of image understanding tasks is
that of assigning a descriptive label to each pixel of an image. For example, in
the semantic segmentation task each pixel of an image is labeled with a semantic
category that describes that pixel (e.g., road, person, car, or pavement; see example
in Figure 1-2). Another instance of the pixel-wise image labeling task that we are
interested with in this thesis is that of depth estimation from a stereo image (also
called disparity estimation). In depth estimation each pixel of the left image of the
stereo rig is assigned a continuous label that indicates its horizontal displacement in
the right image (i.e., disparity). Those disparity maps reveal the depth (from the stereo

camera) of the surface of the scene objects depicted in the image (see Figure 1-3).

It is evident that object recognition, object detection, and pixel-wise image labeling
tasks are answering “what” and “where” is something depicted in an image. Perfecting
such type of machine image understanding is prerequisite for being able to develop arti cial
intelligence systems, such as self-driving cars that navigate through city streets, autonomous
robots that perform household maintenance duties, assistance devices for visually impaired

people that describe the environment where their user moves, or augmented reality systems
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Figure 1-2: Pixel wise labeling - semantic segmentation example. We visualize the ground truth
semantic label of each pixel of the image.

Figure 1-3: Pixel wise labeling - depth estimation example. We visualize the ground truth depth
label of each pixel of the image.

that enhance or alter our visual perception with computer generated visual information.

1.2 Deep learning approach

As already mentioned, in order to accomplish our objective we employ deep learning
techniques. Deep learning belongs to the broader family of machine learning techniques that
learn from data the computational model that performs a certain task (as opposed to explicitly
programming it). In deep learning particularly, deep neural networks, which are cascades
of non-linear processing units arranged in sequential order, learn to gradually transform
the inputs to more abstract and composite representations till they end up with the nal

outputs. For example, in the object recognition case, a deep neural network might learn a
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rst representation level that transforms an image to oriented edges, a second representation
level that composes and encodes arrangements of oriented edges that form object parts (such
as nose, eyes, car wheel, etc), and a third representation level that composes and encodes
arrangements of object parts that form objects such as faces, cars, or elephants, and thus
recognizing the object depicted in the input image (see Figure 1-4). The most common type
of deep neural networks for learning image understanding tasks is that of convolutional
neural networks (ConvNets).

The most prominent approach with which deep neural networks learn to perform a task
is via supervised learning. In supervised learning, the deep neural network is trained to
approximate a function that maps inputs to outputs based on example input-output pairs.
This set of input-output pairs (aka training examples) consist the training data for learning
and are obtained by manually labeling input data with the desired outputs according to the
de nition of the task of interest. For instance, in object recognition a training example is an
image and its semantic category label, in object detection a training example is an image
and a list that includes the bounding box coordinates and the semantic category labels of
each object of interest in the image, and in pixel-wise image labeling a training example is
an image and the ground truth label values of each pixel. The goal is after training, the deep
neural network to be able to generalize well on new input data, for which their outputs are

unknown, and provide for them a good estimate of their ground truth outputs.

1.3 Challenges

Recent developments in supervised deep learning have achieved impressive results on
learning image understanding tasks. For instance, the (relatively simple) object recognition
task can be practically solved now if the proper ConvNet architecture is employed and
enough labeled training data are available. However, devising and deploying effective deep
learning based approaches for more complicated image understanding problems, such as
object detection and pixel-wise image labeling, is far from trivial. Furthermore, even for
object recognition, collecting large-size labeled datasets is a very laborious effort that limits

the employment of machine image understanding models in real world data and applications.
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Figure 1-4: Representation hierarchies learned by a deep neural network (source [85]).

Figure 1-5: Instances of the semantic object motorbike (indicated by red bounding boxes). The
motorbike in the red box of rst (from the left) image is easy to be recognized. In contrast, the
motorbikes in the red boxes of the remaining three images are much more dif cult to be recognized
due to the cluttered environment (second image), heavy occlusions (third image), or being on the
background of the image (fourth image).

In the remaining of this section we discuss in more detail those challenges.

1.3.1 Object detection challenges
1.3.1.1 Detecting dif cult object instances

Detecting objects in an image requires at minimum a recognition model that given an image
region (i.e., a rectangular image patch) predicts whether or not it contains an object of interest.
Despite the fact that ConvNet based approaches have achieved remarkable results on object
recognition benchmarks, the problem of recognizing objects in real-world object detection
applications is much more dif cult. Speci cally, most object recognition benchmarks

include images on which the objects are depicted in iconic-view. That means that the objects
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are on the foreground of the image, unobstructed by other items, and in neatly composed
scenes (see for example the motorbike instance in the rst from the left image of Figure 1-5).
Such object instances are very easy to be recognized by ConvNet based recognition models.
However, an object detection system should be able to process images from everyday life
scenes, which means that its recognition model should be able to recognize object instances
that might be in the background of the image, in “tricky” viewpoints, signi cantly occluded,

or in cluttered environments (see for example the motorbike instances in the last three from
the left images of Figure 1-5). Recognizing such dif cult object instances is a much more
challenging task that requires more powerful ConvNet based image representations. Even
more, in object detection the recognition model must be localization sensitive, in the sense
that if a given image region depicts an object but without localizing it accurately enough

in order to be considered that it detects it, then the recognition model should classify that
image region as negative (i.e., that it does not detect the object of interest). For instance, in
PASCAL VOC [33] detection challenge an image region is considered to detect an object

if the Intersection over Union (loU) between the bounding box of the image region and
the ground truth bounding box of the object is greater or equé@isoMaking ConvNet

based recognition models exhibit such localization sensitivity is a challenging problem due
to the built-in localization invariances of ConvNet models, which stem from the use of

max-pooling or other similar down-sampling layers.

1.3.1.2 Accurate object localization in object detection

Achieving accurate object localization is the ultimate goal of object detection and a very
daunting problem in practice. For instance, addressing the object localization aspect of
object detection by naively examining all possible locations (i.e., box sizes, aspect ratios, and
2D positions) with a recognition model is computationally prohibitive and likely to generate
many spurious detections. Instead, most prior approaches detect objects by classifying (with
the recognition model) and re ning (via bounding box regression) a few candidate bounding
boxes. Those initial candidate bounding boxes are generated either by sliding window
schemes or most commonly by other algorithmic components designed to generate for a

given image a set of bounding boxes that cover with high recall all the objects that appear
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in the image regardless of their semantic category, i.e., category agnostic box proposal
algorithms. However, if the initial candidate bounding boxes miss an object, i.e., if there is
no box proposal in the proximity of the object of interest, then the detection system would
fail to detect it. Therefore, in order to address this issue, considerable efforts must be given
in developing effective box proposal algorithms that rarely miss an object and / or detection
systems that are more robust with respect to quality of the initial bounding boxes.
Furthermore, although many detection benchmarks, such as in PASCAL ¥8C |
decide whether an object has been successfully detected using loose localization criteria
(e.g., in PASCAL VOC, a detection threshold @b IoU is used for deciding whether
an object has been successfully detected), in real life applications a higher localization
accuracy (e.g., lol 0:7) is normally required. Such a need is also re ected in the recently
introduced COCO detection challengH], which uses as evaluation metric the traditional
average precision (AP) measurement but averaged over multiple loU thresholds between
0.5 (loosely localized object) and 1.0 (perfectly localized object) so as to reward detectors
that exhibit good localization accuracy. Devising ConvNet-based detectors that exhibit such
highly accurate (and not loose) localization of ground truth objects makes the localization

aspect of object detection even more challenging.

1.3.2 Structured prediction in pixel-wise image labeling

Differently from the object recognition and object detection problems, in pixel-wise image
labeling problems there is rich structure not only on the input images but also on the output
labels. For example, see in Figure 1-3 how the output disparity labels form continuous
surfaces when their corresponding image pixels belong to the same object or how they
discontinue across object boundaries. This means that the output variables (pixel labels)
interrelate not only with the input variables (image pixels) but also with other (nearby)
output variables. Therefore, in order for a pixel-wise image labeling algorithm to be able to
achieve accurate and precise labeling results, it has to consider the dependencies that exist

in the joint space of both the input and the output variables.

Deep learning approaches that implement the pixel-wise image labeling task by simply
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employing independent ConvNet based patch predic®s92, 37, 101, 110, which

directly predict each pixel label given as input an image patch centered on it, cannot capture
those joint dependencies. In order to model such joint dependencies, several approaches
combine independent pixel-wise ConvNet predictors with Conditional Random Fields
(CRFs) BO, 73] that re ne and disambiguate their predictiori3p, 11, 174, 12]. CRFs

employ graphical models that encode the known structure of the label / output space with
pairwise edge potentials between the graph nodes of output variables, and predict the image
labels by performing maximum a posteriori inference in this graphical model. For example,
in the case of semantic segmentation, those pairwise potentials enforce label consistency
among similar or spatially adjacent pixels. However, a major drawback of most CRF based
approaches is that the pairwise potentials have to be carefully hand designed in order to
incorporate simple human assumptions about the structure of the output labels and at the
same time to allow for tractable inference. Instead, it would be more interesting and practical

to be able learn the joint structure of both input and output variables in a data-driven way.

1.3.3 Dependence on large volumes of annotated training data

Deep learning successes on image understanding tasks hugely depend on the availability
of massive amounts of manually labeled training data. However, having humans annotate
such large set of data is error prone, expensive, and very slow. Furthermore, for some types
of visual data, such as medical data, there is lack of quali ed human experts that are able
to annotate them. In contrast, there might be vast amounts of available unlabeled visual
data (e.g., 350 million images are uploaded on Facebook daily and 65 hours of video are
uploaded on YouTube per minute) that would remain unexploited if human supervision is
prerequisite. Even more, it is impractical to constantly have to annotate big volumes of new
visual data whenever the visual environment that an image understanding model perceives
change (e.g., in case of autonomous robots) or whenever new visual concepts need to be
taken into account (e.g., introducing to a recognition model novel semantic categories that
need to be recognized). Therefore, it would be desirable to being able to learn effective

image understanding models without requiring massive amount of manually labeled training
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data.

1.4 Thesis structure and contributions

Given the nature of the above challenges, we analyze our objective into two sub-objectives,
named “effective deep learning for image understanding” and “annotation ef cient learning”.
Therefore, we break our thesis into two parts with the subject of each of them being the
pursuit of the corresponding sub-objective. In the remaining of this section, we describe the
objective of each part, we introduce our work towards achieving it, and we highlight the

contributions.

1.4.1 Part 1: Effective deep learning for image understanding

The objective of the rst part of the thesis is to make progress to the state-of-the-art of two
core image understanding problems, object detection and pixel-wise image labeling, by

proposing effective deep learning based approaches.

1.4.1.1 Discriminative representations for object detection

As already explained, a core component of an object detection system is a recognition model
that given an image region recognizes whether or not it tightly encloses an object of interest.
In order to improve the accuracy of this model, we propose an enriched ConvNet-based
image region representation that encodes the appearance of multiple regions (around the
input image region) as well as semantic segmentation aware features. This is achieved
by designing a multi-component ConvNet architecture where each network component is
forced to focus on a different region of the object of interest. The goal is to make the learned
representation to be able to capture a diverse set of discriminative appearance factors, such
as its pure appearance characteristics, the distinct appearance of its different regions (object
parts), context appearance, the joint appearance on both sides of the object boundaries,
or semantic segmentation aware information. We believe that such a rich representation

will improve the recognition capabilities of the detection system even when faced with
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the dif cult object instances that are often encountered in the object detection task (see
discussionin 1.3.1.1). Furthermore, the learned representation exhibits increased localization
sensitivity, which is essential in object detection. We exploit these properties of the proposed
recognition module by integrating it on an iterative localization mechanism that starting
from some initial candidate regions in the image alternates between classifying them and
re ning their locations such that they more tightly enclose the objects of interest. Thanks to
the ef cient use of our modules, we detect objects with very high accuracy. On the detection
challenges of PASCAL VOC2007 and PASCAL VOC2012 we achieve mARB@% and
73.9% correspondingly, surpassing by a signi cant margin any prior or contemporaneous
published work.

This work was accepted for publication at ICCV 2015. Implementation code and models

are published dtttps://github.com/gidariss/mrcnn-object-detection

1.4.1.2 Accurate object localization in object detection

Apart from the recognition aspect, we attempt to boost the localization accuracy of object
detection systems by devising a novel localization model that, given a loosely localized
search region inside an image, aims to return the accurate location of an object in this
region. Most prior approaches, in order to implement such localization models, adopt the
bounding box regression paradigm, which uses a regression function to directly predict the
four object bounding box coordinates. However, we believe that trying to directly regress
the target bounding box coordinates, constitutes a dif cult learning task that cannot yield
accurate enough bounding boxes. Instead we formulate the localization problem in a dense
classi cation way. Speci cally, given the search region our model assigns conditional
probabilities to each row and column of this region, where these probabilities provide useful
information regarding the location of the boundaries of the object inside the search region
and allow the accurate inference of the object bounding box under a simple probabilistic
framework.

We implement our localization model with a properly adapted ConvNet architecture,
called LocNet, and we incorporate it on an iterative localization methodology. We show

experimentally that LocNet exhibits superior localization performance to bounding box

50



regression models, achieves a very signi cant improvement on the mAP for high loU
threshold on PASCAL VOC2007 test set, and that it can be very easily coupled with recent
state-of-the-art object detection systems, helping them to boost their performance. We
also demonstrate that our detection approach can achieve high detection accuracy even
when it is given as input a set of sliding windows, thus proving that it can be independent
of box proposal methods. Finally, we adapt the overall localization methodology to the
box proposal generation task and the resulting system, called “AttractionNet”, achieves
state-of-the-art box proposal results that when coupled with a LocNet based detection system
achieve excellent detection performance.

Parts of this work were accepted for publication at CVPR 2016 and BMVC 2016. Imple-
mentation code and relevant data are publishéxdtps:/github.com/gidariss/

LocNet and athttps://github.com/gidariss/AttractioNet

1.4.1.3 Deep structure prediction for pixel-wise image labeling

As already explained, one of the main challenges of pixel-wise image labeling is to learn
the joint space of both input and output variables. A data-driven approach for implicitly
learning this joint space is by training a deep neural network such that, given as input an
initial estimate of the output labels and the input image, it will be able to predict a new
re ned estimate for the labels. We refer to these methodieap joint input-output models

In that context, the contribution of our thesis on the pixel-wise image labeling problem is on
exploring what is the optimal architecture for performing the label improvement task. We
argue that the prior approaches of either directly predicting new label estimates or predicting
residual corrections w.r.t. the initial labels with feed-forward deep network architectures
are sub-optimal. Instead, we propose a generic architecture that decomposes the label
improvement task to three steff&) detectingthe initial label estimates that are incorrect,

(2) replacingthe incorrect labels with new ones, and na(ly) re ning the renewed labels

by predicting residual corrections w.r.t. them. Furthermore, we explore and compare
various other alternative architectures for deep joint input-output models that consist of
the aforementioneDetection ReplaceandRe necomponents. We extensively evaluate

the examined architectures in the challenging task of dense disparity estimation (stereo
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matching) and we report both quantitative and qualitative results on three different datasets
that demonstrate the advantages of our approach. Finally, our dense disparity estimation
network that implements the proposed generic architecture, achieves state-of-the-art results
on the KITTI 2015 benchmark surpassing prior approaches by a signi cant margin. We
also provide preliminary results of our approach in two semantic segmentation tasks, the
Cityscapes and the ECP facade parsing tasks, obtaining very promising experimental results.

This work was accepted for publication at CVPR 2017.

1.4.2 Part 2: Annotation ef cient deep learning for image understand-

ing
The second part of the thesis focuses on exploring techniques that will allow to learn image
understanding models without requiring extensive amount of manually labeled training data,
or as we call it, in an annotation ef cient learning way. Two broad approaches that try to
circumvent the dependence of deep learning models on large-size manually labeled datasets
are learning using unlabeled data (i.e, unsupervised learning) or learning using labeled data
of different but similar problems for which labels are easier to obtain or already available
(i.e., transfer learning). In our case, we propose two approaches for annotation ef cient
learning, an unsupervised representation learning approach, which belongs to the broader

unsupervised learning approach, and a few-shot learning approach, which belongs to the

broader transfer learning approach.

1.4.2.1 Unsupervised visual representation learning

ConvNets have been proven extremely successful at solving image understanding tasks
thanks to their unparalleled ability to learn high level semantic image features through
supervised learning. For instance, the image features learned by training a ConvNet on
the image classi cation datasets of ImageN&29g or Place205 175, which contain

millions of manually annotated images, have achieve remarkable results when transferred on
downstream image understanding tasks, such as object detection and semantic segmentation.

Given our goal for annotation ef cient learning, a very interesting question is whether
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semantic visual representation learning is possible without human supervision, i.e., without
requiring any manual annotation effort. A promising approach for the problem posed by this
guestion is self-supervised learning, which is a form of unsupervised learning that de nes
an annotation free pretext task, using only the visual information present on the images, in
order to provide a surrogate supervision signal for semantic feature learning.

Following this approach, our contribution is to propose to learn image representations
by training ConvNets to recognize the 2D rotation that is applied to the image that it gets
as input. We demonstrate both qualitatively and quantitatively that this apparently simple
task actually provides a very powerful supervisory signal for semantic feature learning. We
exhaustively evaluate our method in various unsupervised feature learning benchmarks and
we exhibit in all of them state-of-the-art performance. Speci cally, our results on those
benchmarks demonstrate dramatic improvements w.r.t. prior state-of-the-art approaches in
unsupervised representation learning and thus signi cantly close the gap with supervised
feature learning. For instance, in PASCAL VOC 2007 detection task our unsupervised pre-
trained AlexNet model achieves the state-of-the-art (among unsupervised methods) mAP
of 54:4%that is only 2.4 points lower from the supervised case. We get similarly striking
results when we transfer our unsupervised learned features on various other tasks, such as
ImageNet classi cation, PASCAL classi cation, PASCAL segmentation, and CIFAR-10
classi cation.

This work was accepted for publication at ICLR 2018. Implementation code and trained

models are published https://github.com/gidariss/FeatureLearningRotNet

1.4.2.2 Few-shot visual learning without forgetting

Few-shot learning is related to the broader transfer learning problem that attempts to store
and exploit the knowledge acquired while learning to solve one problem in order later on
to more ef ciently learn to solve a different / novel but related problem. In the few-shot
learning speci cally, the goal is the acquired knowledge to be exploited in order to drastically
reduce the amount training examples required for the novel problem or in other words to
more effectively solve the novel problem while having access to very few training examples

for that problem. For example, in the object recognition application, the knowledge acquired
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while learning to recognize cats and lions could be exploited when learning to recognize the
novel category tiger from only a few training examples of tigers, e.g., only one (1-shot) or
ve (5-shot) training examples. The human visual system exhibits such transfer learning
ability; it effortlessly learns novel visual concepts from only one or a few examples thanks
to its ability to exploit its past experience about the visual world. Mimicking that behavior
on arti cial vision systems is an interesting and challenging research problem. Solving it
moves us towards the direction of annotation ef cient learning.

In this context, our contribution is to propose a few-shot visual learning system that
is capable of dynamically learning novel categories from only a few training data (e.g.,
1 or 5 training examples per category) while at the same time is not forgetting the initial
categories on which it was trained (here called base categories). In order to achieve that
we propose (a) to extend an object recognition system with an attention based few-shot
classi cation weight generator, and (b) to redesign the classi er of a ConvNet model as
the cosine similarity function between feature representations and classi cation weight
vectors. The latter, apart from unifying the recognition of both novel and base categories,
also leads to feature representations that generalize better on “unseen” categories. We
extensively evaluate our approach on Mini-ImageNet where we manage to improve the prior
state-of-the-art on few-shot recognition (i.e., we achi&&@0%and73.00%accuracy on
the 1-shot and 5-shot settings respectively) while at the same time we do not sacri ce any
accuracy on the base categories, which is a characteristic that most prior approaches lack.
Finally, we apply our approach on the recently introduced few-shot benchmark of Hariharan
and Girshick [51] where we also achieve state-of-the-art results.

This work was accepted for publication at CVPR 2018. Implementation code and rele-

vant data are publishedfattps://github.com/gidariss/FewShotWithoutForgetting

1.5 Publications

The work during this PhD lead to the following publications:
» Spyros Gidaris and Nikos Komodakis. “Object detection via a multi-region and

semantic segmentation-aware cnn model.” Proceedings of the IEEE International
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Conference on Computer Vision (ICCV), 2015.

» Spyros Gidaris and Nikos Komodakis. “Locnet: Improving localization accuracy
for object detection.” Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

» Spyros Gidaris and Nikos Komodakis. “Attend Re ne Repeat: Active Box Proposal
Generation via In-Out Localization.” Proceedings of the British Machine Vision
Conference (BMVC), 2016.

» Spyros Gidaris and Nikos Komodakis. “Detect, replace, re ne: Deep structured
prediction for pixel wise labeling.” Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

» Spyros Gidaris, Praveer Singh, and Nikos Komodakis. “Unsupervised Representation
Learning by Predicting Image Rotations.” International Conference on Learning
Representations (ICLR), 2018.

» Spyros Gidaris and Nikos Komodakis. “Dynamic Few-Shot Visual Learning without
Forgetting.” Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

Also, under preparation for submission are the following journal papers:

» An extended version of our ICLR 2018 paper, “Unsupervised Representation Learning
by Predicting Image Rotations”.

» An extended version of our CVPR 2018 paper, “Dynamic Few-Shot Visual Learning
without Forgetting”.

» Extended versions of our CVPR 2016 and BMVC 2016 papers combined into a single

journal paper.

1.6 Outline

As already explained, this thesis is organized into two parts. The rst part includes chap-
ters 2, 3, and 4; in chapter 2 we present our work on devising a discriminative image
representation for the object detection task, in chapter 3 we focus on the localization aspect

of object detection and we propose a novel object localization model capable of boosting the
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localization accuracy of object detectors, and in chapter 4 we present our work on exploring
and devising deep structured prediction models for pixel-wise image labeling problems.
The second part includes chapters 5 and 6; in chapter 5 we present our unsupervised visual
representation learning approach, and in chapter 6 we present our few-shot visual learning
system. Finally, we conclude our thesis in chapter 7 where we also present possible avenues

for future work.
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Effective Deep Learning for Image

Understanding
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Chapter 2

Discriminative Representations for

Object Detection

2.1 Introduction

In this chapter we deal with the object detection task. Over the past few years, tremendous
progress has been achieved on the task of object detection thanks to the recent advances of
deep learning communityB, 6, 58, 78, 144. Among them, most notable is the work of
Sermanet et al1[37] with the Overfeat framework and the work of Girshick et @3] with

the R-CNN framework.

Overfeat [L37] uses two CNN models that are applied on a sliding window fashion on
multiple scales of an image. The rstis used to classify if a window contains an object and
the second to predict the true bounding box location of the object. Finally, the dense class
and location predictions are merged with a greedy algorithm in order to produce the nal set
of object detections.

R-CNN [43] uses Alex Krizhevsky's Netq8] to extract features from box proposals
provided by selective search43 and then classi es them with class speci c linear SVMs.

The authors manage to train networks with millions of parameters by rst pre-training on
the auxiliary task of classifying the images of ImageNet dataset [129] and then ne-tuning
on a small set of images annotated for the detection task. This simple pipeline surpasses by

a large margin the detection performance of all the previously published systems, such as
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Figure 2-1: Left: detecting the sheep on this scene is very dif cult without referring on the context,
mountainish landscap€enter: In contrast, the context on the right image can only confuse the
detection of the boat. The pure object characteristics is what a recognition model should focus on in
this caseRight: This car instance is occluded on its right part and the recognition model should
focus on the left part in order to con dently detect.

deformable parts model8%] or non-linear multi-kernel approachesi4]. Their success
comes from the fact that they replaced the hand-engineered features like 41D& |
SIFT [93] with the high level object representations produced from the last layer of a CNN
model. By employing an even deeper CNN model, such as the 16-layers VGGt |

they boosted the performance anotiA@oints.

In this chapter we aim to further advance the state-of-the-art on object detection by
improving on two key aspects that play a critical role in this task: object representation and

object localization.

Object representationOne of the lessons learned from the above-mentioned works is
that indeed powerful representations are essential on object detection. However, instead of
proposing only a network architecture that is deeper, here we also opt for an architecture of
greater width, i.e., one whose last hidden layers provide features of increased dimensionality.
In doing so, our goal is to build a richer and more discriminative candidate box representation.

This goal is accomplished at two levels:

(1). At a rst level, we want our object representation to capture several different
aspects of an object such as its pure appearance characteristics, the distinct appearance
of its different regions (object parts), context appearance, the joint appearance on both
sides of the object boundaries, and semantics. We believe that such a rich representation
will further facilitate the problem of recognizing (even dif cult) object instances under a
variety of circumstances (like, e.g., those depicted in Figure 2-1). In order to achieve our

goal, we propose a multi-component CNN model, caftadti-region CNNhereafter, each
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component of which is steered to focus on a different region of the object thus enforcing
diversi cation of the discriminative appearance factors captured by it.

Additionally, as we will explain shortly, by properly choosing and arranging some of
these regions, we aim also to help our representation in being less invariant to inaccurate
localization of an object. Note that this property, which is highly desirable for detection,
contradicts with the built-in invariances of CNN models, which stem from the use of
max-pooling layers.

(2). At a second level, inspired by the close connection that exists between segmentation
and detection, we wish to enrich the above representation so that it also captures semantic
segmentation information. To that end, we extend the above CNN model such that it also
learns novel CNN-based semantic segmentation-aware features. Importantly, learning these
features (i.e., training the extended uni ed CNN model) do not require having ground truth
object segmentations as training data.

Object localization. Besides object representation, our work is also motivated from
the observation that, due to the tremendous classi cation capability of the recent CNN
models |8, 167, 144, 66, 54, 147], the bottleneck for good detection performance is now
the accurate object localization. Indeed, it was noticed on R-CNNtpat the most common
type of false positives is the mis-localized detections. They x some of them by employing a
post processing step of bounding box regression that they apply on the nal list of detections.
However, their technique only helps on small localization errors. We believe that there is
much more space for improvement on this aspect. In order to prove it, we attempt to build a
more powerful localization system that relies on combining our multi-region CNN model
with a CNN-model for bounding box regression, which are used within an iterative scheme
that alternates between scoring candidate boxes and re ning their coordinates.

To summarize, the contributions of our work presented in this chapter, are as follows:

* We develop a multi-region CNN recognition model that yields an enriched object
representation capable to capture a diversity of discriminative appearance factors
and to exhibit localization sensitivity that is desired for the task of accurate object
localization.

» We furthermore extend the above model by proposing a uni ed neural network
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architecture that also learns semantic segmentation-aware CNN features for the task
of object detection. These features are jointly learnt in a weakly supervised manner,
thus requiring no additional annotation.

* We show how to signi cantly improve the localization capability by coupling the afore-
mentioned CNN recognition model with a CNN model for bounding box regression,
adopting a scheme that alternates between scoring candidate boxes and re ning their
locations, as well as modifying the post-processing step of non-maximum-suppression.

» Our detection system achieves mAP7&2% and 73.:9% on VOC 2007 B3] and
VOC2012 B2] detection challenges respectively, thus surpassing by a very signi cant
margin the previous state-of-the-art. (at the time of conducting the work presented in
this chapter).

The remainder of the chapter is structured as follows: We discuss related wg#Rin

We describe our multi-region CNN model $2.3. We show how to extend it to also learn
semantic segmentation-aware CNN feature§2id. Our localization scheme is described
in 82.5 and implementation details are provide@h6. We present experimental results in

82.7, qualitative results in 82.8 and conclude in §2.9.

2.2 Related Work

Apart from Overfeat137] and R-CNN R3], several other recent papers are dealing with the
object detection problem using deep neural networks. One is the work of ZhuET@l.

which shares some conceptual similarities with ours. Speci cally, they extract features
from an additional region in order to capture the contextual appearance of a candidate
box, they utilize a MRF inference framework to exploit object segmentation proposals
(obtained through parametric min-cuts) in order to improve the object detection accuracy,
and also use iterative box regression (based on ridge regression). More than them, we use
multiple regions designed to diversify the appearance factors captured by our representation
and to improve localization, we exploit CNN-based semantic segmentation-aware features
(integrated in a uni ed neural network architecture), and make use of a deep CNN model for

bounding box regression, as well as a box-voting scheme after non-max-suppression. Feature
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extraction from multiple regions has also been exploited for performing object recognition
in videos by Leordeanu et aBT]. As features they use the outputs of HOAJfFSVM

classi ers trained on each region separately and the 1000-class predictions of a CNN pre-
trained on ImageNet. Instead, we ne-tune our deep networks on each region separately
in order to accomplish our goal of learning deep features that will adequately capture their
discriminative appearance characteristics. Furthermore, our regions exhibit more variety on
their shape that, as we will see in section 2.3.1, helps on boosting the detection performance.
Szegedy et al.]49 designed a deep CNN model for object proposals generation and use
contextual features extracted by applying on large crops of the image a CNN model pre-
trained on the ImageNet classi cation task. Ouyang etldJ introduce a deep CNN with

a novel deformation constrained pooling layer, a new strategy for pre-training that uses the
bounding box annotations provided from ImageNet localization task, and contextual features
derived by applying a pre-trained on ImageNet CNN on the whole image and treating the
1000-class probabilities for ImageNet objects as global contextual features. In the SPP-
Net detection frameworloh], instead of applying their deep CNN on each candidate box
separately as R-CNN does, they extract the convolutional feature maps from the whole
image, project the candidate boxes on them, and then with an adaptive max-pooling layer,
which consists of multiple pooling levels, they produce xed length feature vectors that they
pass through the fully connected layers of the CNN model. Thanks to those modi cations,
they manage to speed up computation by a considerable factor while maintaining high

detection accuracy. Our work adopts this processing paradigm.

Contemporary to our work are the approachesl@g[ 42, 127] that are also based
on the SPP-Net framework. Ren et dl2f§ improve the SPP framework by replacing
the sub-network component that is applied on the convolutional features extracted from
the whole image with a deeper convolutional network. The Fast R-CNN framework of
Girshick [42] simpli es the training phase of SPP-Net and R-CNN and speeds up both the
testing and the training phases. Also, by ne-tuning the whole network and adopting a
multi-task objective that has both box classi cation loss and box regression loss, its manages
to improve the detection accuracy of the system. Finally, Shaoging €t2a]. jropose

the Faster R-CNN framework that extends Fast R-CHB by adding a new sub-network
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Figure 2-2: Multi Region CNN architecture. For clarity we present only four of the regions
that participate in it. An “adaptive max pooling” layer uses spatially adaptive pooling &5]in [

(but with a one-level pyramid). The above architecture can be extended to also learn semantic
segmentation-aware CNN features (see se@4) by including additional “activation-maps' and
‘region-adaptation' modules that are properly adapted for this task.

component for predicting class-independent proposals and thus making the system both

faster and independent of object proposal algorithms.

2.3 Multi-Region CNN Model

The recognition model that we propose consists of a multi-component CNN network, each
component of which is chosen so as to focus on a different region of an object. We call
this a Multi-Region CNN model. We begin by describing rst its overall architecture. To

that end, in order to facilitate the description of our model we introduce a general CNN

architecture abstraction that decomposes the computation into two different modules:

Activation maps module.This part of the network gets as input the entire image and outputs
activation maps (feature maps) by forwarding it through a sequence of convolutional

layers.

Region adaptation moduleGiven a regiorR on the image and the activation maps of the
image, this module projec® on the activation maps, crops the activations that lay
inside it, pools them with a spatially adaptive (max-)pooling lay#],[and then

forwards them through a multi-layer network.
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Under this formalism, the architecture of the Multi-Region CNN model can be seen
in Figure 2-2. Initially, the entire image is forwarded through the activation maps module.
Then, a candidate detection bBxis analyzed on a set of (possibly overlapping) regions
fRig<, each of which is assigned to a dedicated region adaptation module (note that these
regions are always de ned relatively to the bounding Bgx As mentioned previously, each
of these region adaptation modules passes the activations pooled from its assigned region
through a multilayer network that produces a high level feature. Finally, the candidate box
representation is obtained by concatenating the last hidden layer outputs of all the region
adaptation modules.

By steering the focus on different regions of an object, our aim is: (i) to force the network
to capture various complementary aspects of the object's appearance (e.g., context, object
parts, etc.), thus leading to a much richer and more robust object representation, and (ii)
to also make the resulting representation more sensitive to inaccurate localization (e.g., by
focusing on the border regions of an object), which is also crucial for object detection.

In the next section we describe how we choose the rediBngk.; to achieve the above

goals, and also discuss their role on object detection.

2.3.1 Region components and their role on detection

We utilize 2 types of region shapes: rectangles and rectangular rings, where the latter type is
de ned in terms of an inner and outer rectangle. We describe below all of the regions that
we employ, while their speci cations are given in the caption of Figure 2-3.

Original candidate boxthis is the candidate detection box itself as being used in R-
CNN [43] (Figure 2-3a). A network trained on this type of region is guided to capture the
appearance information of the entire object. When it is used alone, it consists the baseline
of our work.

Half boxes those are the left/right/up/bottom half parts of a candidate box (Figures 2-3b,
2-3c, 2-3d, and 2-3e). Networks trained on each of them, are guided to learn the appearance
characteristics present only on each half part of an object or on each side of the objects

borders, aiming also to make the representation more robust with respect to occlusions.
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(a) Original box (b) Half left (c) Half right (d) Half up (e) Half bottom

(f) Central Region (g) Central Region (h) Border Region (i) Border Region (j) Context. Region
Figure 2-3: lllustration of the regions used on the Multi-Region CNN model. With yellow solid lines
are the borders of the regions and with green dashed lines are the borders of the candidate detection
box. Region a:it is the candidate box itself as being used on R-CMB].[Region b, c, d, eithey
are the left/right/up/bottom half parts of the candidate bRexgion f: it is obtained by scaling the
candidate box by a factor of 0.Region g: the inner box is obtained by scaling the candidate box by
a factor of 0.3 and the outer box by a factor of (R&gion h: we obtain the inner box by scaling the
candidate box by a factor of 0.5 and the outer box has the same size as the candidRiegiarxi:
the inner box is obtained by scaling the candidate box by a factor of 0.8 and the outer box by a factor
of 1.5. Region j: the inner box is the candidate box itself and the outer box is obtained by scaling
the candidate box by a factor of 1.8.

Central Regionsthere are two type of central regions in our model (Figures 2-3f and 2-
30). The networks trained on them are guided to capture the pure appearance characteristics
of the central part of an object that is probably less interfered from other objects next to it or

its background.

Border Regions we include two such regions, with the shape of rectangular rings
(Figures 2-3h and 2-3i). We expect that the networks dedicated on them will be guided to
focus on the joint appearance characteristics on both sides of the object borders, also aiming

to make the representation more sensitive to inaccurate localization.

Contextual Regianthere is one region of this type that has rectangular ring shape
(Figure 2-3)). Its assigned network is driven to focus on the contextual appearance that

surrounds an object such as the appearance of its background or of other objects next to it.

Role on detection.Concerning the general role of the regions on object detection, we

brie y focus below on two of the reasons why using these regions helps:

Discriminative feature diversi cationOur hypothesis is that having regions that render

visible to their network-components only a limited part of the object or only its immediate
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surrounding forces each network-component to discriminate image boxes solely based on
the visual information that is apparent on them thus diversifying the discriminative factors
captured by our overall recognition model. For example, if the border region depicted on
Figure 2-3i is replaced with one that includes its whole inner content, then we would expect
that the network-component dedicated on it will not pay the desired attention on the visual
content that is concentrated around the borders of an object. We tested such a hypothesis by
conducting an experiment where we trained and tested two Multi-Region CNN models that
consist of two regions each. Model A included the original box region (Figure 2-3a) and the
border region of Figure 2-3i that does not contain the central part of the object. On model B,
we replaced the latter region (Figure 2-3i), which is a rectangular ring, with a normal box
of the same size. Both of them were trained on PASCAL VOC 2@3dJtfain+val set and
tested on the test set of the same challenge. Model A ach&&# mAP while Model B
achieved29% mAP which is1:2 points lower and validates our assumption.
Localization-aware representatiolVe argue that our multi-region architecture as well
as the type of regions included, address to a certain extent one of the major problems on the
detection task, which is the inaccurate object localization. We believe that having multiple
regions with network-components dedicated on each of them imposes soft constraints
regarding the visual content allowed on each type of region for a given candidate detection

box. We experimentally justify this argument in sections 2.7.2 and 2.7.3.

2.4 Semantic Segmentation-Aware CNN Model

To further diversify the features encoded by our representation, we extend the Multi-Region
CNN model so that it also learns semantic segmentation-aware CNN features. The mo-
tivation for this extension comes from the close connection between segmentation and
detection tasks as well as from the fact that segmentation related cues are empirically known
to often help object detectio7, 50, 106. In the context of our multi-region CNN network,

the incorporation of the semantic segmentation-aware features is done by adding properly
adapted versions of the two main modules of the network, i.e., the “activation-maps' and

‘region-adaptation' modules (see architecture in Figure 2-4). We hereafter refer to the
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Figure 2-4: Multi Region CNN architecture extended with the semantic segmentation-aware CNN
features.

resulting modules as:

* Activation maps module for semantic segmentation-aware features.

» Region adaptation module for semantic segmentation-aware features.
It is important to note that the modules for the semantic segmentation-aware features are
trainedwithout the use of any additional annotatidnstead, they are trained inngeakly
supervised mannarsing only the provided bounding box annotations for detection.

We combine the Multi-Region CNN features and the semantic segmentation aware CNN
features by concatenating them (see Figure 2-4). The resulting network thus jointly learns

deep features of both types during training.

2.4.1 Activation maps module for semantic segmentation-aware fea-

tures

Fully Convolutional Nets.In order to serve the purpose of exploiting semantic segmentation

aware features, for this module we adopt a Fully Convolutional Netw@kdrchitecture,
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Figure 2-5: lllustration of the weakly supervised training of the FC®used as activation maps
module for the semantic segmentation aware CNN featlwefscolumn: images with the ground

truth bounding boxes drawn on them. The classes depicted from top to down order are horse, human,
and dog.Middle column: the segmentation target values used during training of the FCN. They
are arti cially generated from the ground truth bounding box(es) on the left column. We use blue
color for the background and red color for the foregrouRaht column: the foreground masks
estimated from our trained FCN model. These clearly verify that, despite the weakly supervised
training, our extracted features carry signi cant semantic segmentation information.

abbreviated hereafter as FCN, trained to predict class speci ¢ foreground probabilities (we
refer the interested reader @2 for more details about FCN where it is being used for the

task of semantic segmentation).

Weakly Supervised TrainingTo train the activation maps module for the class-speci ¢
foreground segmentation task, we only use the annotations provided on object detection
challenges (so as to make the training of our overall system independent of the availability
of segmentation annotations). To that end, we follow a weakly supervised training strategy
and we create arti cial foreground class-speci ¢ segmentation masks using bounding box

annotations. More speci cally, the ground truth bounding boxes of an image are projected

69



on the spatial domain of the last hidden layer of the FCN, and the "pixels” that lay inside the
projected boxes are labeled as foreground while the rest are labeled as background (see left
and middle column in Figure 2-5). The aforementioned process is performed independently
for each class and yields as many segmentation target images as the number of our classes.
As can be seen in Figure 2-5 right column, despite the weakly supervised way of training,
the resulting activations still carry signi cant semantic segmentation information, enough
even to delineate the boundaries of the object and separate the object from its background.
Activation Maps.After the FCN has been trained on the auxiliary task of foreground
segmentation, we drop the last classi cation layer and we use the rest of the FCN network

in order to extract from images semantic segmentation aware activation maps.

2.4.2 Region adaptation module for semantic segmentation-aware fea-

tures

We exploit the above activation maps by treating them as mid-level features and adding
on top of them a single region adaptation module trained for our primary task of object
detection. In this case, we choose to use a single region obtained by enlarging the candidate
detection box by a factor di:5 (such a region contains semantic information also from

the surrounding of a candidate detection box). The reason that we do not repeat the same
regions as in the initial Multi-Region CNN architecture is for ef ciency as these are already

used for capturing the appearance cues of an object.

2.5 Object Localization

As already explained, the proposed Multi-Region CNN recognition model exhibits the
localization awareness property that is necessary for accurate object localization. However,
by itself it is not enough. In order to make full use of it, our recognition model needs
to be presented with well localized candidate boxes that in turn will be scored with high
con dence from it. The solution that we adopt consists of 3 main components:

CNN region adaptation module for bounding box regressioWe introduce an extra
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(a) Step 1 (b) Step 2 (c) Step 3 (d) Step 4 (e)Step 5
Figure 2-6: lllustration of the object localization scheme for instances of the clasStap.1: the
initial box proposal of the image. For clarity we visualize only the box proposals that are not rejected
after the rst scoring stepStep 2: the new box locations obtained after performing CNN based
bounding box regression on the boxes of Steftép 3: the boxes obtained after a second step of
box scoring and regressing on the boxes of Stept@p 4: the boxes of Step 2 and Step 3 merged
together.Step 5:the detected boxes after applying non-maximum-suppression and box voting on the
boxes of Step 4. On the nal detections we use blue color for the true positives and red color for the
false positives. Also, the ground truth bounding boxes are drawn with green color. The false positive
that we see after the last step is a duplicate detection that survived from non-maximum-suppression.

region adaptation module that, instead of being used for object recognition, is trained to
predict the object bounding box. It is applied on top of the activation maps produced from
the Multi-Region CNN model and, instead of a typical one-layer ridge regression el [
consists of two hidden fully connected layers and one prediction layer that odtpaiises

(i.e., a bounding box) per category. In order to allow it to predict the location of object
instances that are not in the close proximity of any of the initial candidate boxes, we use as
region a box obtained by enlarging the candidate box by a factbBof his combination

offers a signi cant boost on the detection performance of our system by allowing it to make
more accurate predictions and for more distant objects.

Iterative Localization.Our localization scheme starts from the selective search propos-
als [153 and works by iteratively scoring them and re ning their coordinates. Speci cally,
letB. = fBi‘;Cgi'\';il denote the set dfl.; bounding boxes generated on iterattdor class
c and imageX . For each iteratioht = 1;:::; T, the boxes from the previous iteration
B. ! are scored witls{, = FreC(Bi‘;C Yic; X) by the recognition modét () and re ned
intoB{, = Freg(Bit;C Yic; X) by the CNN regression mModEl¢q(:), thus forming the set of

candidate detectior®, = f(sl.; B};C)giN;l;t . For the rstiterationt = 1, the box proposals

I;,C?
B2 are coming from selective searctbd and are common between all the classes. Also,

those with score?, below a threshold; are rejectedlin order to reduce the computational

In practiceT =2 iterations were enough for convergence.
We use s = 2:1, which was selected such that the average number of box proposals per image from all
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burden of the subsequent iterations. This way, we obtain a sequence of candidate detection
setsf DLgl.; that all-together both exhibit high recall of the objects on an image and are
well localized on them.

Bounding box voting. After the last iteratioriT, the candidate detectioiLg_,
produced on each iteratigrare merged togeth@, = [ [, D.. Because of the multiple
regression steps, the generated boxes will be highly concentrated around the actual objects
of interest. We exploit this “by-product” of the iterative localization scheme by adding
a step of bounding box voting. First, standard non-max suppreségms[applied on
D. and produces the detectioNs = f(sSic;Bic)g using an loU overlap threshold of
0.3. Then, the nal bounding box coordinatBs. are further re ned by having each
neighboring boxB;. 2 N (Bi.) to vote for the bounding box location using as weight its

scorew;. = max(0; Sjc):

B

_ Wi .
0 irBic 2N (Bic) ' hC JiC
B' —_ F§J,C I,C

: 2.1
™ (2.1)

j :Bj;c 2N (B iic )

whereN (Bi.) is the set of boxes iD. that overlap withB;. by more thar0:5 on loU
metric. The nal set of object detections for claswill be Yz = f(Sic; Bﬁc)g.

In Figure 2-6 we provide a visual illustration of the object localization.

2.6 Implementation Details

For all the CNN models involved in our proposed system, we used the publicly available 16-
layers VGG model144 pre-trained on ImageNefp] for the task of image classi catioh
For simplicity, we ne-tuned only the fully connected layers (fc6 and fc7) of each model
while we preserved the pre-trained weights for the convolutional layers (cbtwtonvs3),
which are shared among all the models of our system.

Multi-Region CNN model. Its activation maps module consists of the convolutional
part (layers convll to convs3) of the 16-layers VGG-Net that outpuid 2feature channels.

The max-pooling layer right after the last convolutional layer is omitted on this module.

the classes together is around 250.
Shttps://gist.github.com/ksimonyan/
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Each region adaptation module inherits the fully connected layers of the 16-layers VGG-Net
and is ne-tuned separately from the others. Regarding the regions that are rectangular rings,
both the inner and outer box are projected on the activation maps and then the activations that
lay inside the inner box are masked out by setting them to zero (similar to the Convolutional
Feature Masking layer proposed drg]). In order to train the region adaptation modules, we
follow the guidelines of R-CNN43]. As an optimization objective we use the softmax-loss
and the minimization is performed with stochastic gradient descent (SGD). The momentum
is set t00:9, the learning rate is initially set @001and then reduced by a factor bd every

30k iterations, and the minibatch ha&8samples. The positive samples are de ned as the
selective search proposalof that overlap a ground-truth bounding box by at leaSt

As negative samples we use the proposals that overlap with a ground-truth bounding box on
the rangd0:1; 0:5). The labelling of the training samples is relative to the original candidate

boxes and is the same across all the different regions.

Activation maps module for semantic segmentation aware featurests architecture
consists of the 16-layers VGG-Net without the last classi cation layer and transformed to a
FCN [92] (by reshaping the fc6 and fc7 fully connected layers to convolutional ones with
kernel size o7 7andl 1 correspondingly). For ef ciency purposes, we reduce the output
channels of the fc7 layer fro#096to 512 In order to learn the semantic segmentation
aware features, we use an auxiliary fc8 convolutional classi cation layer (of kernel size
1 1) that outputs as many channels as our classes and a binary (foreground vs background)
logistic regression loss applied on each spatial cell and for each class independently. Initially,
we train the FCN with th&l096channels on the fc7 layer until convergence. Then, we
replace the fc7 layer with another one that Ba2 output channels, which is initialized
from a Gaussian distribution, and the training of the FCN starts from the beginning and is
continued until convergence again. For loss minimization we use SGD with minibatch of
size10. The momentum is set @9 and the learning rate is initialized @01 and decreased
by a factor ofl0 every20epochs. For faster convergence, the learning rate of the randomly

initialized fc7 layer with thés12channels is multiplied by a factor ab.

Region adaptation module for semantic segmentation aware featurefts architec-

ture consists of a spatially adaptive max-pooling lag#] fhat outputs feature maps 61.2
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channelson & 9grid, and a fully connected layer wi096channels. In order to train it,
we use the same procedure as for the region components of the Multi-Region CNN model.
During training, we only learn the weights of the region adaptation module layers that are
randomly initialized from a Gaussian distribution.

Classi cation SVMs. In order to train the SVMs we follow the same principles as in
[43]. As positive samples are considered the ground truth bounding boxes and as negative
samples are considered the selective search propd&fsipat overlap with the ground

truth boxes by less than 0.3. We use hard negative mining the same way as in [43, 35].

CNN region adaptation module for bounding box regression.The activation maps
module used as input in this case is common with the Multi-Region CNN model. The region
adaptation module for bounding box regression inherits the fully connected hidden layers of
the 16-layers VGG-Net. As a loss function we use the Euclidean distance between the target
values and the network predictions. For training samples we use the box proi&shtbgt
overlap by at leadd:4 with the ground truth bounding boxes. The target values are de ned
the same way as in R-CNMJ]. The learning rate is initially set t8:01 and reduced by a
factor of 10 every4(k iterations. The momentum is set@® and the minibatch size k28

Multi-Scale Implementation.In our system we adopt a similar multi-scale implementa-
tion as in SPP-Netd5]. More speci cally, we apply the activation maps modules of our
models on multiple scales of an image and then a single scale is selected for each region
adaptation module independently.

» Multi-Region CNN modelThe activation maps module is applied dacales of an

image with their shorter dimension beingfia80 576 688 874 120Q 160Q 2100y.

For training, the region adaptation modules are applied on a random scale and for

testing, a single scale is used such that the area of the scaled region is closest to
224 224pixels. In the case of rectangular ring regions, the scale is selected based

on the area of the scaled outer box of the rectangular ring.

» Semantic Segmentation-Aware CNN modéle activation maps module is applied

on 3 scales of an image with their shorter dimension beinighing 874 120@. For
training, the region adaptation module is applied on a random scale and for testing, a

single scale is selected such that the area of the scaled region is cld2@3t t288
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pixels.

» Bounding Box Regression CNN mod€ghe activation maps module is applied on
scales of an image with their shorter dimension beirfgi®0 576 688 874 120Q 160Q 210Qy.
Both during training and testing, a single scale is used such that the area of the scaled
region is closest t@24 224pixels.

Training/Test Time.On a Titan GPU and on PASCAL VOC 2007 train+val dataset, the
training time of each region adaptation module is approximately 12 hours, of the activation
maps module for the semantic segmentation features is approximately 4 days, and of the
linear SVM is approximately 16 hours. In order to speed up the above steps, the activation
maps (conv33 features and the fc7 semantic segmentation aware features) were pre-cashed

on a SSD. Finally, the per image runtime is around 30 seconds.

2.7 Experimental Evaluation

We evaluate our detection system on PASCAL VOC 2@H &nd on PASCAL VOC201232).
During the presentation of the results, we will use as baseline eith@rtgmal candidate
boxregion alone (Figure 2-3a) and/or the R-CNN framework with VGG-Néd]. We note

that, when thé@riginal candidate boxegion alone is used then the resulted model is a real-
ization of the SPP-NeBp| object detection framework with the 16-layers VGG-Nb44l.
Except if otherwise stated, for all the PASCAL VOC 2007 results, we trained our models on

the train+val set and tested them on the test set of the same year.

2.7.1 Results on PASCAL VOC 2007

First, we asses the signi cance of each of the region adaptation modules alone on the object
detection task. Results are reported in Table 2.1. As we expected, the best performing com-
ponent is theéDriginal candidate boxWhat is surprising is the high detection performance

of individual regions like thdorder Regionn Figure 2-3i54:8% or the Contextual Region

in Figure 2-3j47:2%. Despite the fact that the area visible by them includes limited or not

at all portion of the object, they outperform previous detection systems that were based on

hand crafted features. Also interesting, is the high detection performance of the semantic
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Adaptation Modules areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa trainmAR

Original Box g. 2-3a 0.729 0.715 0.593 0.478 0.405 0.713 0.725 0.741 0.418 0069@1 0.713 0.662 0.725 0.560 0.312 0.600.565 0.6690.731| 0.617

Left Half Box g. 2-3b 0.635 0.659 0.455 0.364 0.322 0.621 0.640 0.589 0.314 0.620 0.463 0.573 0.545 0.641 0.477 0.300 0.532 0.442 0.50618621
Right Half Box g. 2-3c  |0.626 0.605 0.470 0.331 0.314 0.607 0.616 0.641 0.278 0.487 0.513 0.548 0.564 0.585 0.459 0.262 0.469 0.465 0.50HMR620
Up Half Box g. 2-3d 0.591 0.651 0.470 0.266 0.361 0.629 0.656 0.641 0.305 0.604 0.511 0.604 0.643 0.588 0.466 0.220 0.545 0.528 0.59(6ZR570
Bottom Half Box g. 2-3e |0.607 0.631 0.406 0.397 0.233 0.594 0.626 0.559 0.285 0.417 0.404 0.520 0.490 0.649 0.387 0.233 0.457 0.344 0.5664T1617
Central Region g. 2-3f |0.552 0.622 0.413 0.244 0.283 0.502 0.594 0.603 0.282 0.523 0.424 0.516 0.495 0.584 0.386 0.232 0.527 0.358 0.583:6B587
Central Region g. 2-3g |0.674 0.705 0.547 0.367 0.337 0.678 0.698 0.687 0.381 0.630 0.538 0.659 0.667 0.679 0.507 0.309 0.557 0.530 0.50157B694
Border Region g. 2-3h  |0.694 0.696 0.552 0.470 0.389 0.687 0.706 0.703 0.398 0.631 0.515 0.660 0.643 0.686 0.539 0.307 0.582 0.537 0.50&&6717
Border Region g. 2-3i  |0.651 0.649 0.504 0.407 0.333 0.670 0.704 0.624 0.323 0.625 0.533 0.594 0.656 0.627 0.517 0.223 0.533 0.515 0.50%648663
Contextual Region g. 2-30.624 0.568 0.425 0.380 0.255 0.609 0.650 0.545 0.222 0.509 0.522 0.427 0.563 0.541 0.431 0.163 0.482 0.392 0.5047TR532
Semantic-aware region. |0.652 0.684 0.549 0.407 0.225 0.658 0.676 0.738 0.316 006685 0.705 0.670 0.689 0.545 0.230 0.52P.598 0.6800.548| 0.566

Table 2.1: Detection performance of individual regions on VOC 2007 test set. They were trained on

VOC 2007 train+va

| set.

Approach

areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa trai

nmAR

R-CNN with VGG-Net
R-CNN with VGG-Net & bbox reg
Best approach of [172]
Best approach of [172] & bbox reg

0.716 0.735 0.581 0.422 0.394 0.707 0.760 0.745 0.387 0.710 0.569 0.745 0.679 0.696 0.593 0.357 0.621 0.640 0.
0.734 0.770 0.634 0.454 0.446 0.751 0.781 0.798 0.405 0.737 0.622 0.794 0.781 0.731 0.642 0.356 0.668 0.672 0.
0.725 0.788 0.67 0.452 0.510 0.738 0.787 0.783 0.467 0.738 0.615 0.771 0.764 0.739 0.665 0.392 0.697 0.594 0.
0.7410.832 0.670 0.508 0.516 0.762 0.814 0.772 0.481 0.789 0.656 0.773 0.784 0.751 0.701 0.414 0.696 0.608 0.7

BOB2ZR712
[046E0711
66865729
00Q.6B337

Original Box g. 2-3a
MR-CNN

MR-CNN & S-CNN
MR-CNN & S-CNN & Loc.

0.729 0.715 0.593 0.478 0.405 0.713 0.725 0.741 0.418 0.694 0.591 0.713 0.662 0.725 0.560 0.312 0.601 0.565 0.
0.749 0.757 0.645 0.549 0.447 0.741 0.755 0.760 0.481 0.724 0.674 0.765 0.724 0.749 0.617 0.348 0.617 0.640 0.
0.768 0.757 0.676 0.551 0.456 0.776 0.765 0.784 0.467 0.747 0.688 0.793 0.742 0.770 0.625 0.374 0.643 0.638 0.
0.787 0.818 0.767 0.666 0.618 0.817 0.853 0.827 0.570 0.819 0.732 0.846 0.860 0.805 0.749 0.449 0.717 0.697 0.7

OB D731
[(8FBER760
[eBTE747
80.711999

Table 2.2: Detection performance of our modules on VOC 2007 test set. Each model was trained on

VOC 2007 train+val set.

Approach

areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa trai

nmAR

R-CNN with VGG-Net from [172]
Best approach of [172]
Best approach of [172] & bbox reg

0.402 0.433 0.234 0.144 0.133 0.482 0.445 0.364 0.171 0.340 0.279 0.363 0.268 0.282 0.212 0.103 0.337 0.366 0.
0.463 0.581 0.311 0.216 0.258 0.571 0.582 0.435 0.230 0.464 0.290 0.407 0.406 0.463 0.334 0.106 0.413 0.409 0.
0.4710.618 0.352 0.181 0.297.660 0.647 0.4800.253 0.504 0.349 0.437 0.508 0.494 0.368 0.137 0.447 0.436 004685

BOE3@B489
ABBIB563
0.437

Original Candidate Box

0.449 0.426 0.237 0.175 0.157 0.441 0.444 0.377 0.182 0.295 0.303 0.312 0.249 0.332 0.187 0.099 0.302 0.286 0.

BOBE499

MR-CNN 0.495 0.505 0.292 0.235 0.179 0.513 0.504 0.481 0.206 0.381 0.375 0.387 0.296 0.403 0.239 0.151 0.341 0.389 0.422B@6521
MR-CNN & S-CNN 0.507 0.523 0.316 0.266 0.177 0.547 0.513 0.492 0.210 0.450 0.361 0.433 0.309 0.408 0.246 0.151 0.359 0.427 0.48&8B8&B534

MR-CNN & S-CNN & Loc. 0.549 0.613 0.430 0.315 0.383).646 0.650 0.512 0.253 0.544 0.505 0.521 0.591 0.540 0.393 0.159 0.485 0.468 MHEH 0.484
Table 2.3: Detection performance of our modules on VOC 2007 test set. In this table, the loU

overlap threshold for positive detectiongig. Each model was trained on VOC 2007 train+val set.

segmentation aware regios6:.6%.

In Table 2.2, we report the detection performance of our proposed modules. The Multi-
Region CNN model without the semantic segmentation aware CNN featdR<CNN),
achieve$6:2% mAP, which is4:2 points higher thaR-CNN with VGG-Ne620%) and4:5
points higher than th@riginal candidate boxegion alone §1:7%). Moreover, its detection
performance slightly exceeds thatRfCNN with VGG-Neand bounding box regression
(66:0%). Extending the Multi-Region CNN model with the semantic segmentation aware
CNN features MR-CNN & S-CNN, boosts the performance of our recognition model
anotherl:3 points and reaches the total®f:5% mAP. Comparing to the recently published
method of Yuting et al.177, our MR-CNN & S-CNNmodel scored point higher than
their best performing method that includes generation of extra box proposals via Bayesian
optimization and structured loss during the ne-tuning of the VGG-Net. Signi cant is also

the improvement that we get when we couple our recognition model with the CNN model
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Figure 2-7: Top ranked false positive type$op row: our baseline which is theriginal candidate

box only model.

Bottom row: our overall system. We present only the graphs for the classes

boat, bottle, chair, and pottedplant (which are some of the most dif cult classes of PASCAL VOC
challenge) for space ef ciency reasons.

Approach

areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

Original candidate box-Baselin
MR-CNN

§0.7543 0.7325 0.6634 0.5816 0.5775 0.7109 0.7390 0.7277 0.5718 0.7112 0.6007 0.7000 0.7039 0.7194 0.6607 0.5339 0.6855 0.6461 0.6903 0.7359
0.7938 0.7864 0.7180 0.6424 0.6222 0.7609 0.7918 0.7758 0.6186 0.7483 0.6802 0.7448 0.7562 0.7569 0.7166 0.5753 0.7268 0.7148 0.7391 0.7556

Table 2.4: Correl

ation between the loU overlap of selective search box propd€Egs(jvith the

closest ground truth bounding box) and the scores assigned to them.

Approach

areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

Original candidate box-Baselin
MR-CNN

§0.9327 0.9324 0.9089 0.8594 0.8570 0.9389 0.9455 0.9250 0.8603 0.9237 0.8806 0.9209 0.9263 0.9317 0.9151 0.8415 0.8932 0.9060 0.9241 0.9125
0.9462 0.9479 0.9282 0.8843 0.8740 0.9498 0.9593 0.9355 0.8790 0.9338 0.9127 0.9358 0.9393 0.9440 0.9341 0.8607 0.9120 0.9314 0.9413 0.9210

Table 2.5: The Area-Under-Curve (AUC) measure for the well-localized box proposals against the
mis-localized box proposals.

for bounding box regression under the iterative localization scheme propgdse@€ QN &

S-CNN & Loc).

Speci cally, the detection performance is raised frémb%to 74:9%.

In Table 2.3, we report the detection performance of our system when the overlap

threshold for c

from [172] in or

onsidering a detection positive is se@:fib This metric was proposed

der to reveal the localization capability of their method. From the table

we observe that each of our modules exhibits very good localization capability, which was

our goal when designing them, and our overall system exceeds in that metric the approach

of [172].
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Figure 2-8: Fraction of top N detections (N=num of objs in category) that are correct (Cor; in
white color), or false positives due to poor localization (Loc; in blue color), confusion with similar
objects (Sim; in red color), confusion with other VOC objects (Oth; in green color), or confusion
with background or unlabeled objects (BG; in purple coldigp row: our baseline which is the
original candidate boxnly model.Middle row: Multi-Region CNN model without the semantic
segmentation aware CNN featur&ottom row: our overall system. We present only the pie charts

for the classes boat, bottle, chair, and pottedplant (which are some of the most dif cult classes of
PASCAL VOC challenge) for space ef ciency reasons.

2.7.2 Detection error analysis

We use the tool of Hoiem et al6]] to analyze the detection errors of our system. In Figure
2-8, we plot pie charts with the percentage of detections that are false positive due to bad

localization, confusion with similar category, confusion with other category, and triggered
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on the background or an unlabeled object. We observe that, by using the Multi-Region CNN
model instead of th®riginal Candidate Boxegion alone, a considerable reduction in the
percentage of false positives due to bad localization is achieved. This validates our argument
that focusing on multiple regions of an object increases the localization sensitivity of our
model. Furthermore, when our recognition model is integrated on the localization module
developed for it, the reduction of false positives due to bad localization is huge. A similar
observation can be deducted from Figure 2-7 where we plot the top-ranked false positive

types of the baseline and of our overall proposed system.

2.7.3 Localization awareness of Multi-Region CNN model

Two extra experiments are presented here that indicate the localization awareness of our
Multi-Region CNN model without the semantic segmentation aware CNN featuiRs (

CNN) against the model that uses only the original candidate Bag€ling.

Correlation between the scores and the loU overlap of box proposhighis experi-
ment, we estimate the correlation between the loU overlap of box propd&aq\vith the
closest ground truth bounding box) and the score assigned to them from the two examined
models. High correlation coef cient means that better localized box proposals will tend
to be scored higher than mis-localized ones. We report the correlation coef cients of the
aforementioned quantities both for tBaselineandMR-CNNmodels in Table 2.4. Because
with this experiment we want to emphasize on the localization aspect of the Multi-Region
CNN model, we use proposals that overlap with the ground truth bounding boxes by at least
0:1loU.

Area-Under-the-Curve of well-localized proposals against mis-localized proposals.
The ROC curves are typically used to illustrate the capability of a classi er to distin-
guish between two classes. This discrimination capability can be measured by computing
the Area-Under-the-Curve (AUC) metric. The higher the AUC measure is, the more discrim-
inative is the classi er between the two classes. In our case, the set of well-localized box
proposals is the positive class and the set of miss-localized box proposals is the negative

class. As well-localized are considered the box proposals that overlap with a ground-truth
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Approach trained on | areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa trainmA®R
R-CNN [43] with VGG-Net & bbox red.vOC12 0.792 0.723 0.629 0.437 0.451 0.677 0.667 0.830 0.393 0.662 0.517 0.822 0.732 0.765 0.642 0.337 0.667 0.561 0.583HI0610
Network In Network [90] VOC12 0.802 0.738 0.619 0.437 0.430 0.703 0.676 0.807 0.419 0.697 0.517 0.782 0.752 0.769 0.651 0.386 0.683 0.580 0.5876%B633
Best approach of [172] & bbox reg. | VOC12 0.829 0.761 0.641 0.446 0.494 0.703 0.70.346 0.427 0.686 0.558 0.827 0.771 0.799 0.687 0.41@90 0.600 0.720 0.662 0.664
MR-CNN & S-CNN & Loc. (Ours) VOocCo7 0.829 0.789 0.708 0.528 0.555 0.737 0.738 0.843 0.480 0.702 0.571 0.845 @.9BY 0.755 0.426 0.685 0.599 0.728 0.71]70.691
MR-CNN & S-CNN & Loc. (Ours) VOC12 0.850 0.796 0.715 0.553 0.577 0.760 0.739 0.846 0.505 0.743 0.617 0.855 @.9PP 0.764 0.4100.690 0.612 0.777 0.7210.707

Table 2.6: Comparative results on VOC 2012 test set.

Approach trainedon | areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa trainmAR
MR-CNN & S-CNN & Loc. (Ours)VOCO07+12 {0.803 0.841 0.785 0.708 0.685 0.880 0.859 0.878 0.603 0.852 0.737 0.872 0.865 @MBHH 0.485 0.7630.755 0.850 0.810 0.782
MR-CNN & S-CNN & Loc. (Ours)VOCO07 0.787 0.818 0.767 0.666 0.618 0.817 0.853 0.827 0.570 0.819 0.732 0.846 0.860 0.805 0.749 0.449 0.717 0.697 0.787749799

Faster R-CNN [127] VOCO07+12 |0.765 0.790 0.709 0.655 0.521 0.831 0.847 0.864 0.520 0.819 0.657 0.848 0.846 7K 0.388 0.736 0.739 0.830 0.726.732
NoC [128] VOCO07+12 |0.763 0.814 0.744 0.617 0.608 0.847 0.782 0.829 0.530 0.792 0.692 0.832 0.832 0.785 0.680 0.45M76.706822 0.757 0.733
Fast R-CNN [42] VOCO07+12 {0.770 0.781 0.693 0.594 0.383 0.816 0.786 0.867 0.428 0.788 0.689 0.847 0.820 0.766 0.699 0.318 0.701 0.748 0.B04M0704

Table 2.7: Comparative results on VOC 2007 test set for models trained with extra data.

Approach trained on areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa trainmAR
MR-CNN & S-CNN & Loc. (Ours)VOC07+12 0.855 0.829 0.766 0.578 0.627 0.794 0.70366 0.550 0.791 0.622.870 0.834 0.847 0.789 0.4530.734 0.658 0.8030.740| 0.739
MR-CNN & S-CNN & Loc. (Ours)VOC12 0.850 0.796 0.715 0.553 0.577 0.760 0.739 0.846 0.505 0.743 0.617 0.855 0.799 0.817 0.764 0.410 0.690 0.612 0.y07@7721
Faster R-CNN [127] VOCO07+12 0.849 0.798 0.743 0.539 0.498 0.775 0.759 0.885 0.456 0.771 0.553 0.869 0.817 @BW® 0.401 0.726 0.609 0.812 0.619.704
Fast R-CNN & YOLO [126] VOCO07+12 0.830 0.785 0.737 0.558 0.431 0.783 0.730 0.892 0.491 0.743 0.566 0.872 0.805 0.805 0.747 0.421 0.70830568870| 0.704
Deep Ensemble COCO [48] VOCO07+12, COCO [91]{0.840 0.794 0.716 0.519 0.511 0.741 0.721 0.886 0.483 0.734 0.578 0.861 0.800 0.807 00B64.696 0.688 0.759 0.714 0.701
NoC [128] VOCO07+12 0.828 0.790 0.716 0.523 0.537 0.741 0.690 0.849 0.469 0.743 0.531 0.850 0.813 0.795 0.722 0.389 0.724 0.595 0.767%&B681
Fast R-CNN [42] VOCO07+12 0.823 0.784 0.708 0.523 0.387 0.778 0.71.893 0.442 0.730 0.55(.8750.805 0.808 0.720 0.351 0.683 0.657 0.804 0.58%684

Table 2.8: Comparative results on VOC 2012 test set for models trained with extra data.

boxes in the rangf0:5; 1:0] and as mis-localized are considered the box proposals that
overlap with a ground truth bounding box in the rafi@4; 0:5). In Table 2.5, we report the
AUC measure for each class separately and both fotReCNNand theBaselinemodels.

2.7.4 Results on PASCAL VOC2012

In Table 2.6, we compare our detection system against other published work on the test set
of PASCAL VOC 2012 82]. Our overall system involves the Multi-Region CNN model
enriched with the semantic segmentation aware CNN features and coupled with the CNN
based bounding box regression under the iterative localization scheme. We tested two
instances of our system. Both of them have exactly the same components but they have
being trained on different datasets. For the rst one, the ne-tuning of the networks as well
as the training of the detection SVMs was performed on VOC 2007 train+val dataset that
includesb0l1lannotated images. For the second one, the ne-tuning of the networks was
performed on VOC 2012 train dataset that incluB@%7annotated images and the training

of the detection SVMs was performed on VOC 2012 train+val dataset that incli&d9
annotated images. As we observe from Table 2.6, we achieve excellent6@APo@and

70:7% correspondingly) in both cases setting the new state-of-the-art on this test set and for

those training sets.
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2.7.5 Training with extra data and comparison with contemporaneous

work

Approaches contemporary to oui?B, 42, 127, 126, train their models with extra data in

order to improve the accuracy of their systems. We follow the same practice and we report
results on Tables 2.7 and 2.8. Speci cally, we trained our models on VOC 2007 and 2012
train+val datasets using both selective seat&§[and EdgeBox177] proposals. During

test time we only use EdgeBox proposals that are faster to be computed. From the tables, it
is apparent that our method outperforms the other approaches even when trained with less
data. Finally, at the time of completing this work, our entries were ranked ranked 1st and
2nd on the leader board of PASCAL VOC 2012 object detection comp4 benchmark (see
Table 2.8) and the difference of our top performing entry from the 3rd3M@agoints.

2.8 Qualitative Results

In Figures 2-12, 2-13, and 2-14 we present some object detection examples obtained by
our approach. We use blue bounding boxes to mark the true positive detections and red
bounding boxes to mark the false positive detections. The ground truth bounding boxes are
marked with green color.

Failure cases.Accurately detecting multiple adjacent object instances remains in many
cases a dif cult problem even for our approach. In Figure 2-9 we present a few dif cult
examples of this type. In Figure 2-10 we show some other failure cases.

Missing annotations. There were also cases of object instances that were correctly
detected by our approach but which were not in the ground truth annotation of PASCAL

VOC 2007. Figure 2-11 presents a few such examples of non-annotated object instances.

2.9 Conclusions

In this chapter, we proposed a powerful CNN-based representation for object detection

that relies on two key factors: (i) diversi cation of the discriminative appearance factors
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(a) Aeroplane (b) Bicycle (c)Car (d) Sheep
Figure 2-9: Examples of multiple adjacent object instances where our approach fails to detect all of
them. We use blue bounding boxes to mark the true positive detections and red bounding boxes to
mark the false positive detections. The ground truth bounding boxes are drawn with green color.

Figure 2-10: Examples of false positive detections for the class boat due to the fact that the detected
bounding boxes do not include inside their borders the mast of the boat (it is worth noting that on

same cases also the annotation provided from PASCAL neglects to include them on its ground truth
bounding boxes). The false positive bounding boxes are drawn with red color and the ground truth
bounding boxes are drawn with green color.

(a) Bottle (b) Chair (c) Pottedplant (d) TV monitor
Figure 2-11 — Missing Annotations: Examples where our proposed detection system have truly
detected an object instance, but because of missed annotations it is considered false positive. For
those detections we used red bounding boxes. For any true positive detection on those images we use
blue bounding boxes and the corresponding ground truth bounding boxes are drawn with green color.

captured by it through steering its focus on different regions of the object, and (ii) the
encoding of semantic segmentation-aware features. By using it in the context of a CNN-
based localization re nement scheme, we show that it achieves excellent results that surpass

the state-of-the art by a signi cant margin.

82



(a) Aeroplane detections.

(b) Bicycle detections.

(c) Bird detections.

(d) Boat detections.

(e) Bottle detections.

(f) Bus detections.

(g) Car detections.

Figure 2-12: We use blue bounding boxes for the true positive detections and red bounding boxes (if
any) for the false positive detections. The ground truth bounding boxes are drawn with green color.
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(a) Cat detections.

(b) Chair detections.

(c) Cow detections.

(d) Dinningtable detections.

(e) Dog detections.

(f) Horse detections.

(g) Motorbike detections.

Figure 2-13: We use blue bounding boxes for the true positive detections and red bounding boxes (if
any) for the false positive detections. The ground truth bounding boxes are drawn with green color.
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(a) Person detections.

(b) Pottedplant detections.

(c) Sheep detection.

(d) Sofa detections.

(e) Train detections.

() TV monitor detections.
Figure 2-14: We use blue bounding boxes for the true positive detections and red bounding boxes (if
any) for the false positive detections. The ground truth bounding boxes are drawn with green color.
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Chapter 3

Improving Localization Accuracy for

Object Detection

3.1 Introduction

In this chapter we focus on the localization aspect of the object detection problem. The
localization accuracy by which a detection system is able to predict the bounding boxes
of the objects of interest is typically judged based on the Intersection over Union (loU)
between the predicted and the ground truth bounding box. Although in challenges such as
PASCAL VOC an IloU detection threshold 655 is used for deciding whether an object
has been successfully detected, in real life applications a higher localization accuracy (e.g.,
loU > 0:7) is normally required (e.g, consider the task of a robotic arm that must grasp
an object). Such a need is also re ected in the very recently introdG€adOdetection
challenge 91], which uses as evaluation metric the traditional average precision (AP)
measurement but averaged over multiple loU thresholds between 0.5 (loosely localized
object) and 1.0 (perfectly localized object) so as to reward detectors that exhibit good
localization accuracy.

Therefore, proposing detectors that exhibit highly accurate (and not loose) localization
of the ground truth objects should be one of the major challenges in object detection. The
aim of this work is to take a further step towards addressing this challenge. In practical

terms, our goal is to boost the bounding box detection AP performance across a wide range
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Figure 3-1: lllustration of the basic work- ow of our localization modulé&eft column: given a
candidate boB (yellow box), our model “looks” on a search regiBn(red box), which is obtained

by enlarging boxXB by a constant factor, in order to localize the bounding box of an object of interest.
Right column: to localize a bounding box the model assigns one or more probabilities on each row
and independently on each column of reg@nThose probabilities can be either the probability

of an element (row or column) to be one of the four object borders (see top-right image), or the
probability for being on the inside of an objects bounding box (see bottom-right image). In either
case the predicted bounding box is drawn with blue color.

of loU thresholds (i.e., not just for loU threshold @b but also for values well above
that). To that end, a main technical contribution of this work is to propose a pbyeit
localization modethat, given a loosely localized search region inside an image, aims to
return the accurate location of an object in this region (see Figure 3-1).

A crucial component of this new model is that it does not rely on the commonly used
bounding box regression paradigm, which uses a regression function to directly predict the
object bounding box coordinates. Indeed, the motivation behind our work stems from the
belief that trying to directly regress to the target bounding box coordinates, constitutes a

dif cult learning task that cannot yield accurate enough bounding boxes. We argue that it is
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far more effective to attempt to localize a bounding box by rst assigning a probability to
each row and independently to each column of the search region for being the left, right,
top, or bottom borders of the bounding box (see Fig. 3-1 top) or for being on the inside of
an object's bounding box (see Fig. 3-1 bottom). In addition, this type of probabilities can
provide a measure of con dence for placing the bounding box on each location and they
can also handle instances that exhibit multi-modal distributions for the border locations.
They thus yield far more detailed and useful information than the regression models that
just predict 4 real values that correspond to estimations of the bounding box coordinates.
Furthermore, as a result of this, we argue that the task of learning to predict these probabilities

is an easier one to accomplish.

To implement the proposed localization model, we rely on a convolutional neural network
model, which we calLocNet whose architecture is properly adapted such that the amount
of parameters needed on the top fully connected layers is signi cantly reduced, thus making

our LocNet model scalable with respect to the number of object categories.

Importantly, such a localization module can be easily incorporated into many of the
current state-of-the-art object detection syste#s42, 127], helping them to signi cantly
improve their localization performance. Here we use it in an iterative manner as part of a
detection pipeline that utilizes a recognition model for scoring candidate bounding boxes
provided by the aforementioned localization module, and show that such an approach

signi cantly boosts AP performance across a broad range of loU thresholds.

Furthermore, inspired by the high localization accuracy of our methodology in the
detection task, we decided to adapt it to the category agnostic object proposal generation
task. The de nition of this task is that for a given image a small set of bounding boxes
must be generated that will cover with high recall all the objects that appear in the image
regardless of their semantic category. In object detection, applying the recognition models
to such a reduced set of category independent location hypothe3esdtead of an
exhaustive scan of the entire ima@®[137], has the advantage of drastically reducing the
amount of recognition model evaluations and thus allowing the use of more sophisticated
machinery for that purpose. As a result, proposal based detection systems manage to achieve

state-of-the-art results and have become the dominant paradigm in the object detection
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literature @3, 55, 42, 40, 41, 127, 164, 5, 142]. However, the usefulness of object proposals
(aka box proposals) is not limited only to the object detection task. To the contrary, they
are are utilized as a core component in many image understanding tasks such as weakly-
supervised object detectiofq], exemplar 2D-3D detectionlpd, visual semantic role
labelling [49], caption generation7[0], or visual question answerind.3g. Due to that,

the box proposal generation task has received an increased amount of attention over the
last years. In our case, we exploit the two key ingredients of our overall object localization
methodology (devised for the detection task), which are iterative localization and the LocNet
bounding box localization module, in order to build an active box proposal generation
system that starts from a set of seed boxes, which are uniformly distributed on the image,
and then progressively (i.e., in iterative manner) moves its attention on the promising image
areas where it is more likely to discover well localized bounding box proposals. We call
our approach AttractioNet and a core component of it is a category agnostic version of the
LocNet module that is capable of yielding accurate and robust bounding box predictions

regardless of the object category.
To summarize, our contributions in this chapter are as follows:

» We cast the problem of localizing an object's bounding box as that of assigning
probabilities on each row and column of a search region. Those probabilities represent
either the likelihood of each element (row or column) to belong on the inside of the
bounding box or the likelihood to be one of the four borders of the object. Both cases
are studied and compared with the bounding box regression model. To implement the
above model, we propose a properly adapted convolutional neural network architecture
that has a reduced number of parameters and results in an ef cient and accurate object
localization network named LocNet.

* We extensively evaluate our approach on VOC2®EH &nd we show that it achieves
a very signi cant improvement over the bounding box regression with respect to the
mMAP for loU threshold of 0.7 and the COCO style of measuring the mAP. It also
offers an improvement with respect to the traditional way of measuring the mAP (i.e.,
for loU > 0:5), achieving in this casé84%and74:78% mAP on VOC200733] and
VOC2012 B2] test sets, which were the state-of-the-art when nishing the work of
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this chapter. Given those results we believe that our localization approach could very
well replace the existing bounding box regression paradigm in future object detection
systems.

» Furthermore, we adapted the overall localization methodology of our detection system
to the object box proposal generation task. The resulting box proposal system, which
we call AttractioNet (Att)end (R)e ne Repeat: (Act)ive Box Proposal Generation via
(Dn-(O)ut Localization (Net)workis evaluated both on PASCAL and on the more
challenging COCO datasets and it demonstrates signi cant improvement with respect
to the state-of-the-art on box proposal generation. Furthermore, we provide strong
evidence that our object location re nement module is capable of generalizing to
unseen categories by reporting results for the unseen categories of ImageNet detection
task and NYU-Depth dataset. Finally, we evaluate our box proposal generation
approach in the context of the object detection task using a VGG16-Net based detection
system and the achieved average precision performance on the COCO test-dev set
manages to signi cantly surpass all other VGG16-Net based detection systems while
even being on par with the ResNet-101 based detection system of He et al. [57].

The remainder of the chapter is structured as follows. We describe related wg8Rin

Then we present our localization methodology for the object detection task with its ex-
perimental evaluation i83.3. Its adaption to the box proposal generation task and the

corresponding experimental results are provided in 83.4. Finally, we conclude in 83.5.

3.2 Related work

Here we describe related work in the object detection and category agnostic box proposal
generation tasks.

Object detection. Most of the recent literature on object detection, treats the object
localization problem at pre-recognition level by incorporating category-agnostic object
proposal algorithms1b3 177, 120 2, 75, 76, 4, 150, 149. Those proposals are later
classi ed by a category-speci c recognition model in order to create the nal list of de-

tections f13]. Instead, in our work we focus on boosting the localization accuracy at
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post-recognition time, at which the improvements can be complementary to those obtained
by improving the pre-recognition localization. Till now, the work on this level has been
limited to the bounding box regression paradigm that was rst introduced by Felzenszwalb
et al. [35] and ever-since it has been used with success on most of the recent detection
systems43, 42, 127, 137,55, 172, 176, 128 113. Given an initial candidate box that is
loosely localized around an object, a regression model tries to predict the coordinates of its
ground truth bounding box. Lately this model is enhanced by high capacity convolutional
neural networks to further improve its localization capabil4®,[42, 137, 127]. There

are also some approaches that follow an iterative localization methodology for the object
detection task§, 44, 160. More notably, Caicedo et al8] and Yoo et al. 16Q attempt

to localize an object by sequentially choosing one among a few possible actions that either
transform the bounding box or stop the searching procedure. We also follow an iterative
localization methodology in our work that is based however on a very accurate bounding

box localization module.

Category agnostic box proposal generationSeveral approaches have been proposed
in the literature for this tasklp3 4, 177, 76, 75, 2, 94, 14, 13, 17]. Among them our
work is most related to the CNN-based objectness scoring approatha&9,[120 that
recently have demonstrated state-of-the-art restit§ [L21]. In the objectness scoring
paradigm, a large set of image boxes is ranked according to how likely it is for each image
box to tightly enclose an object — regardless of its category — and then this set is post-
processed with a non-maximum-suppression step and truncated to yield the nal set of
object proposals. In this context, Kuo et a19] with their DeepBox system demonstrated
that training a convolutional neural network to perform the task of objectness scoring can
yield superior performance over previous methods that were based on low level cues and
they provided empirical evidence that it can generalize to unseen categories. In order to
avoid evaluating the computationally expensive CNN-based objectness scoring model on
hundreds of thousands image boxes, which is necessary for achieving good localization
of all the objects in the image, they use it only to re-rank the proposals generated from a
faster but less accurate proposal generator thus being limited by its localization performance.

Instead, more recent CNN-based approaches apply their models only to ten of thousands
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image boxes, uniformly distributed in the image, and jointly with objectness prediction they
also infer the bounding box of the closest object to each input image box. Speci cally, the
Region Proposal Network in Faster-RCNN[7] performs bounding box regression for that
purpose while the DeepMask method predicts the foreground mask of the object centred in
the image box and then it infers the location of the object's bounding box by extracting the
box that tightly encloses the foreground pixels. The latter has demonstrated state-of-the-art
results and was recently extended with a top-down foreground mask re nement mechanism
that exploits the convolutional feature maps at multiple depths of a neural netbh&ijk [

Our work is also based on the paradigm of having a CNN model that, given an image
box, jointly predicts its objectness and a new bounding box that is better aligned on the
object that it contains. However, we advance the state-of-the-art on box proposal generation
by improving the aforementioned paradigm in two wagk): implementing the object's
bounding box prediction step with a category agnostic LocNet model(Zraltively

generating the set of image boxes that will be processed by the CNN model.

3.3 Object Localization Methodology

3.3.1 Overview

Algorithm 1: Object detection pipeline

Input : Imagel , initial set of candidate boxes
Output: Final list of detectiony
fort 1toT do

S RecognitioB!]l )

ift<T then
| B! Localizatior(B'jl )
end

end

D[ L,fS;B'g
Y  PostProced®d)

Our detection pipeline includes two basic components, the recognition and the local-

ization models, integrated into an iterative scheme (see Algorithm 1). This scheme starts
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from an initial set of candidate box@& (which could be, e.g, either dense sliding win-
dows [L37, 116 126, 86] or category-agnostic bounding box proposdlgq, 153 127]) and

on each iteration it uses the two basic components in the following way:

Recognition model: Given the current set of candidate bos= fB!g\ , it assigns a
con dence score to each of thegh = fs!g\y that represents how likely it is for those

boxes to be localized on an object of interest.

Localization model: Given the current set of candidate boBis= fB!gl! , it generates a
new set of candidate box&'™ = fB!**g'\\"* such that those boxes will be closer
(i.e., better localized) to the objects of interest (so that they are probably scored higher

from the recognition model).

In the end, the candidate boxes that were generated on each iteration from the localiza-
tion model along with the con dence scores that were assigned to them from the recognition
model are merged together and a post-processing step of non-max-suppré@sjsioh [
lowed by bounding box votingdf)] (which is described ir§2.5) applied to them. The
output of this post-processing step consists the detections set produced by our pipeline.
Both the recognition and the localization models are implemented as convolutional neu-
ral networks 83, 144, 78, 54]. More details about our detection pipeline are provided in
appendix A.1.

The focus of this section is to improve the localization model of this pipeline. The
abstract work- ow that we use for this localization model is that it gets as input a candidate
boxB in the image, it enlarges it by a factorto create a search regiéhand then it returns
a new candidate box that ideally will tightly enclose an object of interest in this region (see
right column of Figure 3-1). The crucial question is, of course, what is the most effective
approach for constructing a model that is able to generate a good box prediction. One choice
could be, for instance, to learn a regression function that directly predicts the 4 bounding
box coordinates (see for more details section 3.3.2). However, we argue that this is not
the most effective solution. Instead, we opt for a different approach, which is detailed in

section 3.3.4.2.
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Figure 3-2: The posterior probabilities that our localization model yields given a regioh.eft
Image: the in-out conditional probabilities that are assigned on eachpphafid column ) of R.
They are drawn with the blues curves on the right and on the bottom side of the search Rigibn.
Image: the conditional probabilitiepy, pr, pt, andp, of each column or row to be the lef)(right

(r), top () and bottom If) border of an object's bounding box. They are drawn with blue and red
curves on the bottom and on the right side of the search region.

3.3.2 Bounding box regression localization model

Here we describe in more detail the bounding box regression paradigm, which is used as a
baseline for our approach. In this case the localization model consists of four (ConvNet-
based) scalar regression functidnéR; c), f,(R; c), fw(R;c), andf,(R; c) that given a
regionsR ! and a category, they actually predict the coef cients of a geometric transfor-
mation that will ideally map the search regidR4o a ground truth bounding box of tize

object category43]. Speci cally, if R = (Rx; Ry; Rw; Rn) are the coordinates of the search
region in form of its top-left cornefRy; Ry) and its width and heighRy; Ry), then the
predicted candidate bd& = ( By; By; Bw; By) is given by the following equations:

By = Ry fy(R;0)+ Ry (3.1)
B, = R, fy(R;c)+ R, (3.2)
Bw = Ry exp(fu(R;0) (3.3)
Br = Ry exp(fn(R;C)). (3.4)

1In many bounding box regression implementations the reBigmidentical to the input candidate b&
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Hence, the four scalar target regression vallies fty;ty;ty;t,g for the ground truth

bounding box89 = (B, BY'; BY; B are de ned as:

_ B R, _ By Ry
B ot Bgt
tw = log(=%) th =log(=2)). (3.6)
Rw Rh

3.3.3 LocNet: proposed localization model

Instead of the bounding box regression approach, we opt to formulate the localization
problem in a dense classi cation way. More speci cally, given a search reBi@nd
object categoryc, our object localization model considers a divisionRofin M equal
horizontal regions (rows) as well as a divisionRin M equal vertical regions (columns),

and outputs for each of them one or more conditional probabilities. Each of these conditional
probabilities is essentially a vector of the fop®i© = fp(ijR; c)gM, (hereafter we drop the

R andc conditioning variables so as to reduce notational clutter). Two types of conditional

probabilities are considered here:

In-Out probabilities: These are vectorg, = fp(i)gM, andp, = fp,(i)g¥, that
represent respectively the conditional probabilities of each column and ré&vtofbe
inside the bounding box of an object of categoi(gee left part of Figure 3-2). A row or
column is considered to be inside a bounding box if at least part of the region corresponding
to this row or column is inside this box. For exampleBif' is a ground truth bounding
box with top-left coordinate€B ?'; B{') and bottom-right coordinaté8 9'; B2"),? then the
In-Out probabilitiegp = f py; pyg from the localization model should ideally be equal to the
following target probabilitie§ = f Ty; T,Q:

8
<1, ifB® i B¢

8i2fl:::;Mg; Ti(i)= . ,
* 0; otherwise

2We actually assume that the ground truth bounding box is projected on the output domain of our model
where the coordinates take integer values in the rddge : ; M g. This is a necessary step for the de nition
of the target probabilities
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8
<1, ifBY i B

- 0; otherwise

Border probabilities:These are vectos=fp(i)g™,, pr = fp()gM,, p = fpe(i)g¥,
andp, = fpy(i)g¥, that represent respectively the conditional probability of each column
or row to be the leftl(), right (r), top ¢) and bottom If) border of the bounding box of
an object of categorg (see right part of Figure 3-2). In this case, the target probabilities
T = fT,; T;; Ty; Tpg that should ideally be predicted by the localization model for a ground
truth bounding boxB 9 = (B; BY'; B9, BJ') are given by

8
_ <1 ifi=Bg

' 0. otherwise

wheres 2 f I;r;t; bg. Note that we assume that the left and right border probabilities are

independent and similarly for the top and bottom cases.

3.3.3.1 Bounding box inference

Given the above output conditional probabilities, we model the inference of the bounding

box locationB = (B,; B;; B, ; B}) using one of the following probabilistic models:

In-Out ML: Maximizes the likelihood of the-out elements oB

I—in—out(é) = px(l) py(')
i 2f B\|;:::;B\rg i2f B B\bg
Y Y

.....

px (1) By (i), (3.7)
i2f BB g i2f By;iBug
wherepy (i) =1  px(i) andpy(i) =1 py(i). The rsttwo terms in the right hand of
the equation represent the likelihood of the rows and columns oBb(ir-elements) to be
inside a ground truth bounding box and the last two terms the likelihood of the rows and

columns that are not part & (out-elements) to be outside a ground truth bounding box.
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Borders ML: Maximizes the likelihood of the borders of béx

Lborderié): pl(ﬁl) pt(é\t) pr(é\r) pb(§b)- (3-8)

Combined ML.: It uses both types of probability distributions by maximizing the likeli-

hood for both thdordersand thein-out elements of

I—combinet:(@) = Lborded@) Lin-out(ﬁ)- (39)

3.3.3.2 Discussion

The reason we consider that the proposed formulation of the problem of localizing an
object's bounding box is superior is because the In-Out or Border probabilities provide
much more detailed and useful information regarding the location of a bounding box
compared to the typical bounding box regression paradigm. In particular, in the latter case
the model simply directly predicts real values that corresponds to estimated bounding box
coordinates but it does not provide, e.g, any con dence measure for these predictions. On
the contrary, our model provides a conditional probability for placing the four borders or
the inside of an object's bounding box on each column and row of a search Rgsa

result, it is perfectly capable of handling also instances that exhibit multi-modal conditional
distributions (both during training and testing). During training, we argue that this makes
the per row and per column probabilities much easier to be learned from a convolutional
neural network that implements the model, than the bounding box regression task (e.g, see
Figure 3-3), thus helping the model to converge to a better training solution. Indeed, as we
demonstrate, e.qg, in Figure 3-4, our CNN-babke®ut ML localization model converges
faster and on higher localization accuracy (measured with the neédRnjetric) than a
CNN-based bounding box regression modt, [40]. This behaviour was consistently
observed in all of our proposed localization models. Furthermore, during testing, these
conditional distributions as we saw can be exploited in order to form probabilistic models

for the inference of the bounding box coordinates.

Alternatively to our approach, we could predict the probability of each pixel to belong
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Figure 3-3: We show the evolution during training. In the left image the green squares indicate
the two highest modes of the left border probabilities predicted by a network trained only for a
few iterations (5k). Despite the fact that the highest one is erroneous, the network also maintains
information for the correct mode. As training progresses (50k), this helps the network to correct its
mistake and recover a correct left border(right image).

on the foreground of an object, as Pinheiro et 82(J does. However, in order to learn
such a type of model, pixel-wise instance segmentation masks are required during training,
which in general is a rather tedious task to collect. In contrary, for our model to learn those
per row and per column probabilities, only bounding box annotations are required. Even
more, this independence is exploited in the design of the convolutional neural network that
implements our model in order to keep the number of parameters of the prediction layers
small (see8 3.3.3.3). This is signi cant for the scalability of our model with respect to the
number of object categories since we favour category-speci ¢ object localization that has

been shown to exhibit better localization accuracy [144].

3.3.3.3 Network architecture

Our localization model is implemented through the convolutional neural network that is
visualized in Figure 3-5 and which is called LocNet. The processing starts by forwarding the

entire imagd (of sizew, h,), through a sequence of convolutional layers (conv. layers
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Figure 3-4: mAR as a function of the training iteration for the bounding box regression model
(Bbox reg) and theln-Out ML localization model. In order to create this plot, we created a small
validation set of candidate boxes with a ground truth bounding box assigned on each of them, and
during training given those candidates as input to the models we measure the mAR of the predicted
boxes. We observe that the-Out ML localization model converges faster and to a higher mAR than
thebounding box regressidocalization model.

Figure 3-5: Visualization of the LocNet network architecture. In the input image, with yellow is
drawn the candidate bd& and with red the search regiéh In its output, the LocNet network
yields probabilities for each of the object categories. The paramekérthat controls the output
resolution is set to the vall&8in our experiments. The convolutional layers of the VGG16-Nd#]

that are being used in order to extract the image activa#igrare those from conv1 till conv5_3.
The new layers that are not derived from the VGG16-Ndd], are randomly initialized with a
Gaussian distribution with standard deviatior0diO1 for the hidden layers an@t01 for the nal

fully connected layers.

of VGG16 [144) that outputs the\, activation maps (of sizgt % 512. Then, the
regionR is projected oA, and the activations that lay inside it are cropped and pooled

with a spatially adaptive max-pooling laydiq). The resulting xed size activation maps
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(14 14 512 are forwarded through two convolutional layers (of kernel 8ize3 512,
each followed by ReLU non-linearities, that yield the localization-aware activation maps
Ar of regionR (with dimensions sizé4 14 512.

At this point, given the activation&r the network yields the probabilities that were
described in sectiof§3.3.3. Speci cally, the network is split into two branches, ¥and
Y, with each being dedicated for the predictions that correspond to the dimersiog (
respectively) that is assigned to it. Both start with a max-pool layer that aggregates the

activation maps across the dimension perpendicular to the one dedicated to them, i.e.,
ARG T) = max Ar(i;ji T ); (3.10)

ARG T ) = max Ar(i;jif ), (3.11)

wherei,j ,andf are the indices that span over the width, height, and feature channels of
Ar respectively. The resulted activatioA§ andAY, (both of sizel4 512 ef ciently
encode the object location only across the dimension that their branch handles. This
aggregation process could also be described as marginalizing-out localization cues irrelevant
for the dimension of interest. Finally, each of those aggregated features is fed into the nal
fully connected layer that is followed by sigmoid units in order to output the conditional
probabilities of its assigned dimension. Speci cally, ikdranch outputs thp, and/or

the (pi; pr) probability vectors whereas thé branch outputs the@, and/or the(p;; py)
probability vectors. Despite the fact that the last fully connected layers output category-
speci c predictions, their number of parameters remains relatively small due to the facts that:
1) they are applied on features of which the dimensionality has been previously drastically
reduced due to the max-pooling layers of equations 3.10 and 3.11, and 2) that each branch

yields predictions only for a single dimension.

3.3.3.4 Training

During training, the localization network learns to map a search redgio(seated by
enlarging a candidate bdX) in an imagd to the target probabilitie$ that are conditioned

on the object categony. Given a set oN " training sample$(By; Ty; C; Ik)gE:L1 the loss
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function that is minimized is

1 X .
NC Lioc( JBk; Ti; G 1), (3.12)
k=1
where are the network parameters that are learnedland jB; T;c; 1) is the loss for one
training sample.
Both for theln-Out and theBordersprobabilities we use the sum of binary logistic

regression losses per row and column. Speci cally, the per sample loss loF @t case is:

Ta(i) log(pa(i)) + Ta(i) log(pa(i)) ; (3.13)
a2f x;yg i=1
and for theBorderscase is:
"Ts(i)log(ps(i)) +  Ts(i) log(ps(i)) ; (3.14)
s2f linusbg i=1

whereT'=1 T. In objective function(3.14) * and represent the weightings of the

losses for misclassifying a border and a non-border element respectively. These are set as

M
=05 T T=(M 1) ;
so as to balance the contribution on the loss of those two cases (not&(hawill be
non-zeroM  1ltimes more thafs(i)). We observed that this leads to a model that yields
more “con dent” probabilities for the borders elements. For Beederscase we also tried
to use as loss function the Mean Square Error, while modifying the target probabilities to be
Gaussian distributions around the border elements, but we did not observe an improvement

in performance.

3.3.4 Experimental results

We empirically evaluate our localization models on PASCAL VOC detection challige [

Speci cally, we train all the recognition and localization models on VOC2007+2012 trainval
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Figure 3-6: Recall of ground truth bounding boxes as a function of the loU threshold on PASCAL
VOC2007 test set. Note that, because we perform class-speci ¢ localization the recall that those plots
report is obtained after averaging the per class recidig-Left: Recalls for theReduced MR-CNN
model after one iteration of the detection pipeliBottom-Left: Recalls for theReduced MR-CNN
model after four iterations of the detection pipelifap-Right: Recalls for thé=ast-RCNNmodel

after one iteration of the detection pipelirgottom-Right: Recalls for thd=ast-RCNNmodel after

four iterations of the detection pipeline.

Figure 3-7: mAP as a function of the loU threshold on PASCAL VOC2007 test keft plot:
includes the con gurations with thReduced-MR-CNNKecognition modelRight plot: includes the
con gurations with theFast-RCNNrecognition model.
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sets and we test them on the VOC2007 test set. As baseline we use a ConvNet-based
bounding box regression modél(]. The remaining components of the detection pipeline
include:

Initial set of candidate boxesWe examine three alternatives for generating the initial set of
candidate boxes: the Edge Box algoritht@ 7] (EB), the Selective Search algorithi89,

and a sliding windows scheme. In Table 3.1 we provide the recall statistics of the those
bounding box proposal methods.

Recognition model.For the recognition part of the detection system we use either the
Fast-RCNN #2] or theMR-CNNrecognition models that was presented in the previous
section. During implementing the latter one, we performed several simpli cations on its
architecture and thus we call the resulting md@etluced-MR-CNNthose modi cations

are detailed in the subsection that follows).

In the remaining of this subsection, we st provide implementation details of the local-
ization and recognition model§3.3.4.1), then we examine the performance of our approach
with respect to localizatiorg@.3.4.2) and detectiorg8.3.4.3) accuracy. We also report the
detection accuracy of our approach for the sliding windows c8&8.4.4) and nally, we
provide preliminary results of our approach on COCO detection challerg2 3.5 and

gualitative results in 83.3.4.6.

3.3.4.1 Implementation details

For the implementation code of this section we make use of the Caffe frame@drk [
During training of all the models (both the localization and the recognition ones) we ne-
tune only from the conv4 convolutional layer and above. As training samples we use
both selective searcii$3 and edge box177] proposals. Finally, both during training
and testing we use a single image scale that is obtained after resizing the image such as its
smallest dimension to b&00pixels.

Proposed localization modelsi6-Out ML, Borders ML, Combined ML): In order to
create the training samples we take proposals of which the loU with a ground truth bounding
box is at leas0:4, we enlarge them by a factor &f8 in order to obtain the search regidRs

and we assign to them the ground truth bounding box with which the original box proposal
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has the highest loU in order to obtain the target bounding boxes and the corresponding target
vectorsT. This process is performed independently for each category. The pardvheter
that controls the output resolution of our networks, is set to the \28uEor optimization

we use stochastic gradient descend (SGD) with mini-batch size of 128 training candidate
boxes. To speed up the training procedure we follow the paradigm of Fast-RE2jIAiNd

those 128 training candidate boxes are coming from only two images on each mini-batch.
The weight decay is set @00005and the learning rate is set@001and is reduced by a
factor of 10 after eact6(k iterations. The overall training procedure is continued for up to

15 iterations and it takes arourddb days in one NVIDIA Titan Black GPU.

Bounding box regression localization model:In our comparative experiments, for
the CNN architecture that implements the bounding box regression model we adopt the
one described in the previous chapter (i.e., in 2.6). As a loss function we use the sum of
sEuclidean distances between the target values and the predicted values of each training
sample. The nal fully connected layer is initialized from a Gaussian distribution with
standard deviation @01 The rest of training details (i.e., SGD, mini-batch, de nition of
training samples) are similar to those used for the proposed localization models. As proposed
in Fast-RCNN #2], when training the bounding box regression model we simultaneously
train the Fast-RCNN recognition model with the two models sharing their convolutional
layers. In our experiments, this way of training improves the accuracy of both the Fast-
RCNN recognition model and the bounding box regression model. On the contrary, (for
simplicity) the newly proposed localization models (i.Bgrders ML, In-Out ML, and
Combined Ml are not trained simultaneously with the recognition model. We expect that
the joint training of these models with the recognition model can help to further improve

their overall performance.

Reduced MR-CNN recognition model: We based the implementation of this model
on the MR-CNN detection system that was described in the previous chapter. In this
implementation however, for ef ciency reasons and in order to speed up the experiments,
we applied the following reductions: we include only six out of the ten regions proposed,
by skipping the half regions; we do not include the semantic segmentation-aware CNN

features; and we reduce the total amount of parameters on the region adaptation modules. In
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order to achieve the reduction of parameters on the hidden fully connected layers fc6 and
fc7 of the region adaptation modules, each of them is decomposed in two fully connected
layers without any non-linearities between them. Speci cally, the fc6 layer with weight
matrix Wg : 25088 4096is decomposed in the layers fdéand fc62 with weight matrices

We.1 1 25088 1024andWs., : 1024 4096correspondingly. The fc7 layer with weight
matrix W7 : 4096 4096is decomposed in the layers fd7and fc72 with weight matrices

W51 : 4096 256andW;., : 256 4096correspondingly. To train the Reduced MR-CNN
network, we rst train only the original candidate box region of it without reducing the
parameters of the fc6 and fc7 layers. Then, we apply the truncated SVD decomposition
on the aforementioned layers (for more details see sed®i of [42]) that results in

the layers fc6l, fc6.2, fc7.1, and fc72. We copy the parameters of the resulting fully
connected layers to the corresponding layers of the remaining region adaptation modules of

the model and we continue training.

Fast-RCNN recognition model: We re-implemented Fast-RCNN based on the publicly
available code provided from Fast-RCN#P] and Faster-RCNN127]. Here we will de-
scribe only the differences of our implementation with the original Fast-RCNN sysgi&m [

In our implementation, we have different branches for the recognition of a candidate box
and for its bounding box regression after the last convlutional layer (c8rebthe VGG16-

Net [144)) that do not share any weights. In contrary, the original Fast-RCNN model splits
to two branches after the last hidden layer. We applied this modi cation because, in our
case, the candidate box that is fed to the regression branch is enlarged by a fadt@

while the candidate box that is fed to recognition branch is not. Also, after the ne-tuning,
we remove the softmax layer of the recognition branch and we train linear SVMs on top of
the features that the last hidden layer of the recognition branch yields, just as R43NN [
does. Finally, we do not reduce the parameters of the fully connected layers by applying the
truncated SVD decomposition on them as in the original paper. In our experiments those

changes improved the detection performance of the model.

Both the Fast-RCNN and Reduced-MR-CNN models use as top classi cation layers

class-speci c linear SVMs [43].

106



Initial set of Recall

candidate boxeg "€’ loU 0.5 [loU 0.7 |[mAR
Sliding Windows around10k 0.920 0.389 [0.350
Edge Box around2k 0.928 0.755 |0.517

Sel. Search around2k 0.936 0.687 |0.528
Table 3.1: Recall statistics on VOC2007 test set of the box proposals methods that we use in our
work in order to generate the initial set of candidate boxes.

3.3.4.2 Localization performance

We rst evaluate merely the localization performance of our models, thus ignoring in this
case the recognition aspect of the detection problem. For that purpose we report the recall
that the examined models achieve. Speci cally, in Figure 3-6 we provide the recall as a
function of the loU threshold for the candidate boxes generated on the rst iteration and
the last iteration of our detection pipeline. Also, in the legends of these gures we report
the average recall (ARBH] that each model achieves. Note that, given the set of initial
candidate boxes and the recognition model, the input to the iterative localization mechanism
is exactly the same and thus any difference on the recall is solely due to the localization
capabilities of the models. We observe that for loU thresholds abé&%ethe proposed
models achieve higher recall than bounding box regression and that this improvement is
actually increased with more iterations of the localization module. Also, the AR of our

proposed models is on average 6 points higher than bounding box regression.

3.3.4.3 Detection performance

Here we evaluate the detection performance of the examined localization models when
plugged into the detection pipeline that was describegBi8.1. In Table 3.2 we report

the mAP on VOC2007 test set for loU thresholdsOd§ and0:7 as well as the COCO

style of mAP that averages the traditional mAP over various loU thresholds be@xeen
and1:0. The results that are reported are obtained after running the detection pipeline for
T = 4 iterations. We observe that the propose@ut ML, Borders ML, andCombined ML
localization models offer a signi cant boost on the mAP for l1oU0:7 and the COCO style

MAP, relative to the bounding box regression mo@dx reg) under all the tested cases.

The improvement on both of them is on averdgmoints. Our models also improve for the
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Detection Pipeline mAP
Localization |Recognition Initial Boxes |[loU 0.5 |loU 0.7 |COCOstyle
- Reduced-MR-CNN 2k Edge Box 0.747 0.434 0.362
InOut ML Reduced-MR-CNN 2k Edge Box 0.783 0.654 0.522
Borders ML |Reduced-MR-CNN 2k Edge Box 0.780 0.644 0.525
Combined ML| Reduced-MR-CNN 2k Edge Box 0.784 0.650 0.530
Bbox reg. Reduced-MR-CNN| 2k Edge Box 0.777 0.570 0.452
- Reduced-MR-CNN| 2k Sel. Search|| 0.719 0.456 0.368
InOut ML Reduced-MR-CNN 2k Sel. Search|| 0.782 0.654 0.529
Borders ML |Reduced-MR-CNN 2k Sel. Search|| 0.777 0.648 0.530
Combined ML|Reduced-MR-CNN 2k Sel. Search|{| 0.781 0.653 0.535
Bbox reg. Reduced-MR-CNN 2k Sel. Search|| 0.774 0.584 0.460
- Fast-RCNN 2k Edge Box 0.729 0.427 0.356
InOut ML Fast-RCNN 2k Edge Box 0.779 0.651 0.522
Borders ML | Fast-RCNN 2k Edge Box 0.774 0.641 0.522
Combined ML Fast-RCNN 2k Edge Box 0.780 0.648 0.530
Bbox reg. Fast-RCNN 2k Edge Box 0.773 0.570 0.453
- Fast-RCNN 2k Sel. Search|| 0.710 0.446 0.362
INnOut ML Fast-RCNN 2k Sel. Search|| 0.777 0.645 0.526
Borders ML |Fast-RCNN 2k Sel. Search|| 0.772 0.640 0.526
Combined ML Fast-RCNN 2k Sel. Search|| 0.775 0.645 0.532
Bbox reg. Fast-RCNN 2k Sel. Search|| 0.769 0.579 0.458

Table 3.2: mAP results on VOC2007 test set for loU thresholds of 0.5 and 0.7 as well as the COCO
style mAP that averages the traditional AP for various loU thresholds between 0.5 and 1 (speci cally
the thresholds 0.5:0.05:95 are being used). The hyphen symbol (-) indicates that the localization
model was not used at all and that the pipeline ran onlyfifer1 iteration. The other entries are
obtained after running the detection pipeline Tor 4 iterations.

Year |Metric
2007 |loU 0.5
2007 (loU 0.7
2007 |COCO style
2012|loU 0.5
2012(loU 0.5
2012|loU 0.5

Approach

Reduced-MR-CNN & Combined ML & E
Reduced-MR-CNN & In Out ML & EB  |0.707 0.742 0.622 0.481 0.452 0.840 0.747 0.786 0.429 0.730 0.670 0.754 0.779 0.669 0.581 0.309 0.655 0.693 0./B6BEU690
Reduced-MR-CNN & Combined ML & S$0.580 0.603 0.500 0.413 0.367 0.703 0.631 0.661 0.357 0.581 0.500 0.620 0.625 0.545 0.494 0.269 0.522 0.579 0.50536555
Reduced-MR-CNN & In Out ML & EB 0.863 0.830 0.761 0.608 0.546 0.799 0.790 0.906 0.543 0.816 0.620 0.890 0.857 0.855 0.828 0.497 0.766 0.675 0.8874B674
Reduced-MR-CNN & Borders ML & EB |0.865 0.827 0.755 0.602 0.535 0.791 0.785 0.902 0.533 0.800 0.607 0.886 0.857 0.848 0.826 0.496 0.765 0.673 0.88174B676
Reduced-MR-CNN & Combined ML & EB0.866 0.834 0.765 0.604 0.544 0.798 0.786 0.902 0.546 0.810 0.618 0.889 0.857 0.847 0.828 0.498 0.763 0.678 0.B80747679

Table 3.3: Per class AP results on VOC2007 and VO2012 test sets.

areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa trainmean
.804 0.855 0.776 0.729 0.622 0.868 0.875 0.886 0.613 0.860 0.739 0.861 0.870 0.826 0.791 0.517 0.794 0.752 0.86&7®4777

mAP with loU 0:5 case but with a smaller amount (arouhd points). In Figure 3-7 we

plot the mAP as a function of the loU threshold. We can observe that the improvement on
the detection performance thanks to the proposed localization models starts to clearly appear
on the0:65loU threshold and then grows wider till tfe9. In Table 3.3 we provide the per

class AP results on VOC2007 for the best approach on each metric. In the same table we

also report the AP results on VOC2012 test set but only for the 105 case since this is
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Detection Pipeline mAP
Localization |Recognition Initial Boxes loU 0.5 [loU 0.7 |COCOstyle
- Reduced-MR-CNN| 10k Sliding Windows|| 0.617 0.174 0.227
InOut ML Reduced-MR-CNN 10k Sliding Windows|| 0.770 0.633 0.513
Borders ML |Reduced-MR-CNN) 10k Sliding Windows|| 0.764 0.626 0.513
Combined ML|Reduced-MR-CNN 10k Sliding Windows|| 0.773 0.639 0.521
Bbox reg. Reduced-MR-CNN 10k Sliding Windows|| 0.761 0.550 0.436

Table 3.4: mAP results on VOC2007 test set when usiii sliding windowsas initial set of
candidate boxes. In order to generate the sliding windows we use the publicly available code that
accompanies the work of Hosang et &4][that includes a sliding window implementation inspired

by BING[14, 173]).

Figure 3-8: Plot of the mAP as a function of the iterations number of our detection pipeline on
VOC2007 test set. To generate this plot we usedRbduced-MR-CNIecognition model with the
In-Out ML localization model and Edge Box proposals.

the only metric that the evaluation server provides. In this dataset we achieve nTARB%f

which was the state-of-the-art at the time of working this chapter (6/11/2015). Finally, in
Figure 3-8 we examine the detection performance behaviour with respect to the number of
iterations used by our pipeline. We observe that as we increase the number of iterations,
the mAP for high loU thresholds (e.g., loU 0:8) continues to improve while for lower

thresholds the improvements stop on the rst two iterations.
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3.3.4.4 Sliding windows as initial set of candidate boxes

In Table 3.4 we provide the detection accuracy of our pipeline when, for generating the
initial set of candidate boxes, we use a simple sliding windows scheni€@aofindows per
image). We observe that:

» Even in this case, our pipeline achieves very high mAP results that are close to
the ones obtained with selective search or edge box proposals. We emphasize that
this is true even for the loU 0:7 or the COCO style of mAP that favour better
localized detections, despite the fact that in the case of sliding windows the initial set
of candidate boxes is considerably less accurately localized than in the edge box or in
the selective search cases (see Table 3.1).

* In the case of sliding windows, just scoring the candidate boxes with the recognition
model (hyphen (-) case) yields much worse mAP results than the selective search
or the edge box proposals case. However, when we use the full detection pipeline
that includes localization models and re-scoring of the new better localized candidate
boxes, then this gap is signi cantly reduced.

» The difference in the mAP results between the proposed localization makedsi{

ML, Borders ML, andCombined M. and thebounding box regressiomodel Bbox
reg.,) is even greater in the case of sliding windows.
We note that we had not experimented with increasing the number of sliding windows.
Also, the tested recognition model and localization models were not re-trained with sliding
windows in the training set. As a result, we foresee that by exploring those two factors one

might be able to further boost the detection performance for the sliding windows case.

3.3.4.5 Preliminary results on COCO

To obtain some preliminary results on COCO, we applied our training procedure on COCO
train set. The only modi cation was to u§2 iterations (no other parameter was tuned).
Therefore, LocNet results can still be signi cantly improved but the main goal was to show
the relative difference in performance between@uwenbined MLUocalization model and the

box regression model. Results are shown in Table 3.5, where it is observed that the proposed
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Detection Pipeline mAP
Localization |Recognition |Proposals Dataset loU 0.5 |loU 0.75 |COCOstyle
Combined ML| Fast R-CNN | Sel. Search||5K mini-val set | 0.424 0.282 0.264
Bbox reg. Fast R-CNN | Sel. Search{|5K mini-val set | 0.407 0.202 0.214
Combined ML| Fast R-CNN | Sel. Search|| test-dev set 0.429 0.279 0.263

Table 3.5 — Preliminary results on COCO.In those experiments thieast R-CNNrecognition
model uses a softmax classi e4]] instead of class-speci c linear SVM4J] that are being used
for the PASCAL experiments.

model boosts the mAP by 5 points in the COCO-style evaluation, 8 points Intthe 0:75
case and 1.4 points in theU  0:5 case. More detection results on the COCO dataset are
provided in §3.4.2.3.

3.3.4.6 Qualitative results

In Figure 3-9 we provide same qualitative results that compare the proposed localization
models (n-Out ML, Borders ML andCombined Ml with the bounding box regression

localization model.

3.4 Adaption to the box proposal generation task

3.4.1 AttractioNet box proposals

Algorithm 2: Attend Re ne Repeat Box Proposal Generation
Input : Imagel
Output : Bounding box proposalB

C ; ,B%° seedboxes
fort 1toT do
[+ Attend & Refine procedure * [

O'  ObjectnessScorir{®' ?jl)
B!  ObjectLocationRe neme(®' 1jl)
C CJ[f B O'g

end

P NonMaxSuppressigQ)

Here we adapt the object localization methodology presented in the previous section,

which was devised for the object detection task, to the box proposal generation task. So,
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(a) Initial box (b) Regression (c) In-Out ML (d) Borders ML (e) Combined ML

Figure 3-9: Qualitative results of the bounding box localization step given an initial candidate box
(column(a)) from the bounding box regression model (colu¢h)), theln-Out ML localization model
(column(c)), theBorders MLlocalization model (columid)), and theCombined MUocalization
model (column(e)). The candidate box is drawn with yellow color, the predicted boxes are drawn
with blue color, and the ground truth bounding box is drawn with green color.
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similarly to the object detection case, we employ an active box proposal generation strategy,
which we callAttend Re ne Repeatlgorithm, that starts from a set of seed boxes, which
only depend on the image size, and it then sequentially produces newer boxes that will better
cover the objects of the image while avoiding the “objectless” image areas (see Figure 3-10).
At the core of this algorithm lies a CNN-based box proposal network that implements two

models:

Category agnostic localization model.This is the LocNet model presented in the previous
section (i.e., in 83.3), and speci cally ita-Out ML version, adapted to the category
agnostic case. This means that, given an inlaged a candidate bd&, this model
must estimate the coordinates of a new IBxhat would be more tightly aligned
on the object closesto the input boxB regardless of what its semantic category
might be(as opposed to the LocNet model presente83i13 that performs category-
speci c object location re nement). The form of the In-Out probabilities that this

category-agnostic LocNet model must predict are de ned in §3.4.1.2.

Category agnostic objectness scoring modelGiven a candidate bo® and the imagé,
it scores the boB (with an objectness scof@) based on how likely it is to enclose

an object, regardless of its semantic category.

The pseudo-code of théttend Re ne Repeatlgorithm is provided in Algorithm 2.
Speci cally, it starts by initializing the set of candidate boxédo the empty set and
then creates a set of seed boB8dy uniformly distributing boxes of various xed sizes
in the image (similar to Cracking Bind.Y3). Then on each iteratiohit estimates the
objectnes®' of the boxes generated in the previous iteratih,!, and it re nes their
location (resulting in boxeB') by attempting to predict the bounding boxes of the objects
that are closest to them. The resilB; O'g of those operations are added to the candidates
setC and the algorithm continues. In the end, non-maximum-suppres3this[applied to
the candidate box proposdlsand the todK box proposals, s€, are returned.

The advantages of having an algorithm that sequentially generates new box locations

given the predictions of the previous stage are two-fold:

3By closest we mean the object whose bounding box has the highest intersection over union (loU) overlap
with the input boxB .
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Figure 3-10:lllustration of the image areas being attended by our box proposal generator algorithm
at each iteration. In the rst iteration the box proposal generator attends the entire image since the
seed boxes are created by uniformly distributing boxes across the image. However, as the algorithm
progresses its attention is concentrated on the image areas that actually contain objects.

 Attention mechanism: First, it behaves as an attention mechanism that, on each iter-
ation, focuses more and more on the promising locations (in terms of box coordinates)
of the image (see Figure 3-10). As a result of this, boxes that tightly enclose the
image objects are more likely to be generated and to be scored with high objectness
con dence.

* Robustness to initial boxesFurthermore, it allows to re ne some initially imperfect
box predictions or to localize objects that might be far (in terms of center location,
scale and/or aspect ratio) from any seed box in the image. This is illustrated via a few
characteristic examples in Figure 3-11. As shown in each of these examples, starting
from a seed box, the iterative bounding box predictions gradually converge to the
closest (in terms of center location, scale and/or aspect ratio) object without actually

being affected by any nearby instances.
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Figure 3-11:lllustration of the consecutive bounding box predictions made by our category agnostic
location re nement module. In each row, from left to right we depict a seed box (iteration 0) and

the bounding box predictions in each iteration. Despite the fact that the seed box might be quite far
from the object (in terms of center location, scale and/or aspect ratio) the re nement module has
no problem in converging to the bounding box closest to the seed box object. This capability is not
affected even in the case that the seed box contains also other instances of the same category as in
rows 3 and 4.

3.4.1.1 Network architecture

We call the overall network architecture that implementsAltend Re ne Repeatlgo-

rithm with its In-Out object location re nement module and its objectness scoring module,
AttractioNef. Given an imagé, our AttractioNetmodel will be required to process mul-
tiple image boxes of various sizes, by two different modules and repeat those processing
steps for several iterations of tAé¢tend Re ne Repeatigorithm. So, in order to have an

ef cient implementation we follow the SPP-N€&i%] and Fast-RCNN42] paradigm and

share the operations of the rst convolutional layers between all the boxes, as well as across
the two modules and all th&ttend Re ne Repeatlgorithm repetitions (see Figure 3-12).
Speci cally, ourAttractioNetmodel rst forwards the imagé through a rst sequence of
convolutional layers (conv. layers of VGG16-N&#H]) in order to extract convolutional

feature map$, from the entire image. Then, on each iteratidhe box-wise part of the

4AttractioNet : (Att)end (R)e ne Repeat: (Act)ive Box Proposal Generation via (I)n-(O)ut Localization
(Net)work
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Figure 3-12:AttractioNet work- ow. TheAttend Re ne Repeatigorithm is implemented through a
CNN model, calledAttractioNet whose run-time work- ow (when un-rolled over time) is illustrated
here. On each iteratianthe box-wise part of the architectur&t{end & Re ne Network: ARNgets

as input the image convolutional feature mé&pgextracted from the image-wise part of the CNN
architecture) as well as a set of box locati@is* and yields the re ned bounding box locatioBS
and their objectness scor@$ using itscategory agnostic object location re nemembdule and

its category agnostic objectness scorimgdule respectively. To avoid any confusion, note that our
AttractioNetmodel does not include any recurrent connections.

architecture, which we cafittend & Re ne Networkgets as input the image convolutional
feature map§, and a set of box locatior®' ! and yields the re ned bounding box locations

B! and their objectness scor@$ using its object location re nement module sub-network
and its objectness scoring module sub-network respectively. In Figure 3-13 we provide
the work- ow of the Attend & Re ne Networkvhen processing a single input bBx The

architecture of its two sub-networks is described in more detail in the rest of this section:

Object location re nement module sub-network. Differently from the localization

model architecture presented§.3.3.3, the convolutional layers of this sub-network output
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Figure 3-13:Attend & Re ne Networkarchitecture. TheAttend & Re ne Networlks the box-wise

part of theAttractioNetarchitecture. In this gure we depict the work- ow for a single input box

B. Speci cally, given an input bo® and the image convolutional feature maps the Attend &

Re ne Networkyields (1) the in-out location probability vectorpy andpy, (using its object location

re nement sub-network) an(2) the objectness scalar probabiliy,; (using its objectness scoring
sub-network). Given thm-out probabilities,px andpy, the object location inference is formulated as

a simple maximum likelihood estimation problem that results in the re ned bounding box coordinates
B.

128 feature channels instead of 512, which speeds up the processing by a factor of 4 without
affecting the category-agnostic localization accuracy. Also, in order to yield a xed size
feature for theR region, instead of region adaptive max-pooling this sub-network uses
region bilinear pooling19, 17] that in our initial experiments gave slightly better results.
Finally, our version is designed to yield two probability vectors of $izg instead ofC 2
vectors of sizVl (whereC is the number of categories), given that in our case we aim for

category-agnostic object location re nement.

Objectness scoring module sub-networkGiven the image feature maps and the
window B it rst performs region adaptive max pooling of the features indédthat yields a
xed size feature{ 7 512. Then it forwards this feature through two linear+ReLU hid-
den layers oi096channels each (f6 and fc7 layers of VGG16) and a nal linear+sigmoid
layer with one output that corresponds to the probabgity of the boxB tightly enclosing
an object. During training the hidden layers are followed by Dropout units with dropout

probabilityp = 0:5.

SHere we uséVl = 56.
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3.4.1.2 Training

Training loss: During training the following multi-task loss is optimized:

1 X _ 1 X° |
Ne Lol BioTichd + 55 Lo 1BiYic 1) (3.15)
|—= {2 b —={z }
localization task loss objectness scoring task loss

where are the learnable network parameté®,; Ty; | g, areN" training triplets for
learning the localization task amd; yg; | kgE:)l areN © training triplets for learning the
objectness scoring task. Each training trilBt T; | g of the localization task includes the
imagel , the boxB and the target localization probability vectdrs= f T,; Tyg. If (B, ; B, )
and(B,; B,) are the top-left and bottom-right coordinates of the target®oxhen the
target probability vector$y = f Ty g, andT,=fT,.g", are de ned as:
8 8
<1 ifB, i B <1 ifB, i B,

T = . "andTy; = | ,8i2f1;:::;Mg (3.16)
* 0; otherwise * 0; otherwise

The lossLoc( jB; T;1) of this triplet is the sum of binary logistic regression losses:

1 X W
ol Tai 10g(Pa;i) + (1 Tai)log(l  pai); (3.17)
a2f x;yg i=1
wherep, are the output probability vectors of the localization module for the image
the boxB and the network parameters The training tripletf B;y; | g for the object-
ness scoring task includes the imagethe boxB and the target valug 2 f 0;1g of
whether the boB contains an object (positive triplet with= 1) or not (negative triplet
with y = 0). The lossLq( jB;Y; 1) of this triplet is the binary logistic regression loss
ylog(pon) + (1 y)log(1l pobj), Wherepoy; is the objectness probability for the imalge

the boxB and the network parameters

Creating training triplets: In order to create the localization and objectness training

triplets of one image we rst arti cially create a pool of boxes that our algorithm is likely to
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see during test time. Hence we start by generating seed boxes (as the test time algorithm)
and for each of them we predict the bounding boxes of the ground truth objects that are
closest to them using an ideal object location re nement module. This step is repeated one
more time using the previous ideal predictions as input. Because of the nite search area of
the search regioR the predicted boxes will not necessarily coincide with the ground truth
bounding boxes. Furthermore, to account for prediction errors during test time, we repeat
the above process by jittering this time the output probability vectors of the ideal location
re nement module witl20%noise. Finally, we merge all the generated boxes (starting from
the seed ones) to a single pool. Given this pool, the positive training boxes in the objectness
scoring task are those that théaU with any ground truth object is at lea®6 and the
negative training boxes are those that their maxinhabh with any ground truth object is

less tharD:4. For the localization task we use as training boxes those thatl tiiéiwith

any ground truth object is at lea&b.

Optimization: To minimize the objective we use stochastic gradient descent (SGD)
optimization with an image-centric strategy for sampling training triplets. Speci cally, in
each mini-batch we rst sample 4 images and then for each image we sample 64 training
triplets for the objectness scoring tafiOfo are positive and0% are negative) and 32
training triplets for the localization task. The momentum is se@:foand the learning
schedule includes training f@2C iterations with a learning rate &f = 0:001and then
for another26(k iterations withl, = 0:0001 The training time is around 7 days (although
we observed that we could have stopped training on the 5th day with insigni cant loss in

performance).

Scale and aspect ratio jittering: During test time our model is fed with a single image
scaled such that its shortest dimension tdlBb80pixels or its longest dimension to not
exceed thel400pixels. However, during training each image is randomly resized such
that its shortest dimension to be one of the following number of pix@@® : 50 : 1009
(using Matlab notation) taking care, however, the longest dimension to not ex666d

pixels. Also, with probability0:5 we jitter the aspect ratio of the image by altering the image
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dimensions frorW Hto(W ) HorW (H )wherethe value of is uniformly
sampled fron22%10 (Matlab notation). We observed that this type of data augmentation

gives a slight improvement on the results.

3.4.2 Experimental results

Here we perform an exhaustive evaluation of our box proposal generation approach, which
we callAttractioNet under various test scenarios. Speci cally, we rst evaluate our approach
with respect to its object localization performance by comparing it with other competing
methods and we also provide an ablation study of its main novel componegsti. 1.

Then, we study its ability to generalize to unseen categorig3.#4v2.2, we evaluate it in the
context of the object detection task88.4.2.3 and nally, we provide qualitative results

in 83.4.2.4.

Training set: In order to train ouAttractioNetmodel we use the training set of MS
COCO P1] detection benchmark dataset that inclu8&k images and it is labelled wit80
different object categories. Note that the MSCOCO dataset is an ideal candidate for training
our box proposal model sincél) it is labelled with a decent number of different object
categories an@) it includes images captured from complex real-life scenes containing
common objects in their natural context. The aforementioned training set properties are
desirable for achieving good performance on dif cult test images (a.k.a. images in the wild)

and generalizing to unseen during training object categories.

Implementation details: In the active box proposal algorithm we ulgk seed boxes
generated with a technique similar to Cracking Bitg@3®°. To reduce the computational
cost of our algorithm, after the rst repetition we only keep the Bipscored boxes and
we continue with this number of candidate box proposals for four more extra iterations.
In the non-maximum-suppressioBy (NMS) step the optimal loU threshold (in terms

of the achieved AR) depends on the desired number of box-proposals. For example, for

5We use seed boxes of 3 aspect ratios2, 2 : 1and1 : 1, and 9 different sizes of the smallest seed box
dimensionf 16; 32, 50; 72; 96; 128 192, 256, 384g.
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10, 100, 1000 and 2000 proposals the optimal IoU thresholda a5e0:75, 0:90and0:95
respectively (note that the aforementioned loU thresholds were cross validated on a set
different from the one used for evaluation). For practical purposes and in order to have a
uni ed NMS process, we rst apply NMS with the loU threshold equalDt85and get the

top 2000 box proposals, and then follow a multi-threshold NMS strategy that re-orders this
set of 2000 boxes such that for any given nunmieithe topK box proposals in the set

better cover (in terms of achieved AR) the objects in the image (see appendix A.2).

3.4.2.1 Object box proposal generation evaluation

Here we evaluate ouktractioNetmethod in the end task of box proposal generation. For that
purpose, we test it on the r&k images of the COCO validation set and the PASCAL][
VOC2007 test set (that also includes aro®kkdmages).

Evaluation Metrics: As evaluation metric we use the average recall (AR) which, for a
xed number of box proposals, averages the recall of the localized ground truth objects for
several Intersection over Union (loU) thresholds in the range .5:.05:.95 (Matlab notation).
The average recall metric has been proposed from Hosang éda6J where in their
work they demonstrated that it correlates well with the average precision performance of
box proposal based object detection systems. In our case, in order to evaluate our method
we report the AR results for 10, 100 and 1000 box proposals using the notdRi@L0
AR@100andAR@100Cespectively. Also, in the case of 100 box proposals we also report
the AR of the small (< 32°), medium 82 96%) and large (> 96°) sized objects
using the notatiolAR@100-SmallAR@100-Mediunand AR@ 100-Largeaespectively,
where is the area of the object. For extracting those measurements we use the COCO API

(https://github.com/pdollar/coco ).

Average recall evaluation.In Table 3.6 we report the average recall (AR) metrics of
our method as well as of other competing methods in the COCO validation set. We observe

that the average recall performance achieved by our method exceeds all the previous work
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Method AR@10 AR@100 AR@1000 AR@100-Small AR@100-Medium AR@100-Large
EdgeBoxes [177] 0.074 0.178 0.338 0.015 0.134 0.502
Geodesic [75] 0.040 0.180 0.359 - - -
Selective Search [153] 0.052 0.163 0.357 0.012 0.0132 0.466
MCG [4] 0.101 0.246 0.398 0.008 0.119 0.530
DeepMask [120] 0.153 0.313 0.446 - - -
DeepMaskZoom [120] 0.150 0.326 0.482 - - -
Co-Obj [53] 0.189 0.366 0.492 0.107 0.449 0.686
SharpMask [121] 0.192 0.362 0.483 0.060 0.510 0.665
SharpMaskZoom [121] | 0.192 0.390 0.532 0.149 0.507 0.630
SharpMaskZoorh[121] 0.178 0.391 0.555 0.221 0.454 0.588
AttractioNet (Ours) 0.328 0.533 0.662 0.315 0.622 0.777

Table 3.6:Average Recall results on the r&k images of COCO validation set.

Method AR@10 AR@100 AR@1000 AR@100-Small AR@100-Medium AR@100-Large
EdgeBoxes [177] 0.203 0.407 0.601 0.035 0.159 0.559
Geodesic [75] 0.121 0.364 0.596 - - -

Selective Search [153] 0.085 0.347 0.618 0.017 0.134 0.364

MCG [4] 0.232 0.462 0.634 0.073 0.228 0.618
DeepMask [120] 0.337 0.561 0.690 - - -

Best of Co-Obj [53] 0.430 0.602 0.745 0.453 0.517 0.654
AttractioNet (Ours) 0.554 0.744 0.859 0.562 0.670 0.794

Table 3.7:Average Recall results on the PASCAL VOC2007 test set.

in all the AR metrics by a signi cant margin (around 10 absolute points in the percentage
scale). Similar gains are also observed in Table 3.7 where we report the average recall
results of our methods in the PASCAL VOC2007 test set. Furthermore, in Figure 3-14
we provide for our method the recall as a function of the loU overlap of the localized
ground truth objects. We see that the recall decreases relatively slowly as we increase the
loU from 0.5 to 0.75 while for loU above 0.85 the decrease is faster. In Figure 3-15 we
compare the box proposals generated fromAitractioNetmodel Oursentry) against those
generated from the previous state-of-the-a#t1] (entriesSharpMaskSharpMaskZoorand
SharpMaskZoo#) w.r.t. the recall versus loU trade-off and average recall versus proposals
number trade-off that they achieve. Also, in Table 3.6 we report the AR results both for our
method and for the SharpMask entries. We observe that the model proposed in our work has

clearly superior performance over the SharpMask entries under all test cases.

Ablation study. We perform an ablation study of the two key ideas for improving
the state-of-the-art on the bounding box proposal generation task, the location re nement

module and the active box generation strategy. In order to assess the importance of our
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Figure 3-14:Recall versus loU overlap plots of oAttractioNetapproach under different test cases:
10 proposalsR@10, 100 proposalsR@100, 1000 proposalsR@100(, 100 proposals and small
sized objectsR@100-Sma)] 100 proposals and medium sized obje&&(100-Mediumand 100
proposals and large sized objed&@100-Large (Left) Results in the rsttk images of COCO
validation set(Right) Results in the PASCAL VOC2007 test set.

Box re nement  Active box generatior] # attended boxes AR@10 AR@100 AR@1000 AR@100-Small AR@100-Medium AR@100-Large
18k 0.147 0.260 0.326 0.122 0.317 0.412
v 18k 0.298 0.491 0.622 0.281 0.583 0.717
v v 18k 0.328 0.533 0.662 0.315 0.622 0.777

Table 3.8:Ablation study of our AttractioNetbox proposal system.In the rst row we simply

apply the objectness scoring module on a sett8f seed boxes. In the second row we apply on the
same set 018k seed boxes both the objectness scoring module and the box re nement module. In
the last row we utilize our full active box generation strategy that in total atté8dsoxes of which

10k are seed boxes and the r8ktboxes are actively generated. The reported results are from the
rst 5k images of COCO validation set.

object location re nement module we evaluated two test cases for generating box proposals:
(1) simply applying the objectness scoring module on a sédi8kfseed boxes ( rst row

of Table 3.8) and?2) applying both the objectness scoring module and the object location

re nement module on the same setkik seed boxes (second row of Table 3.8). Note that in
none of them is the active box generation strategy being used. The average recall results of
those two test cases are reported in the rst two rows of Table 3.8. We observe that without
the object location re nement module the average recall performance of the box proposal
system is very poor. In contrast, the average recall performance of the test case that involves
the object location re nement module but not the active box generation strategy is already
better than the previous state-of-the-art as reported in Table 3.6, which demonstrates the
very good localization accuracy of our category agnostic location re nement module. The

active box generation strategy, which we gsitend Re ne Repeatlgorithm, attends in
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Figure 3-15:Comparison with previous state-of-the-art. Comparison of ouAttractioNetbox
proposal model@ursentry) against the previous state-of-the-ag]] (SharpMaskSharpMaskZoom

and SharpMaskZoofentries) w.r.t. the recall versus loU trade-off and average recall versus
proposals number trade-off that they achieve under various test scenarios. Speci cally, the sub-
gures (a), (b) and (c) plot the recall as a function of the loU threshold for 10, 100 and 1000 box
proposals respectively and the sub- gures (d), (e) and (f) plot the recall as a function of the loU
threshold for 100 box proposals and with respect to the small, medium and large sized objects
correspondingly. Also, the sub- gures (g), (h), (i) and (j) plot the average recall as a function of
the proposals number for all the objects regardless of their size as well as for the small, medium
and large sized objects respectively. The reported results are from trek nstages of the COCO
validation set.

total 18k boxes before it outputs the nal list of box proposals. Speci cally, it attebhs

seed boxes in the rst repetition of the algorithm a@dactively generated boxes in each

of the following four repetitions. A crucial question is whether actively generating those
extra8k boxes is really essential in the task or we could achieve the same average recall
performance by directly attendirigk seed boxes and without continuing on the active box

generation stage. We evaluated such test case and we report the average recall results in
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Figure 3-16:Average recall versus the repetitions number of the active box proposal generation
algorithm in the COCO validation set. Note that O repetitions is the scenario of simply applying the
objectness module on the seed boxes.

Table 3.8 (see rows 2 and 3). We observe that employing the active box generation strategy
(3rd row in Table 3.8) offers a signi cant boost in the average recall performance (between

3 and 6 absolute points in the percentage scale) thus proving its importance on yielding well
localized bounding box proposals. Also, in the right side of Figure 3-16 we plot the average
recall metrics as a function of the repetitions number of our active box generation strategy.
We observe that the average recall measurements are increased as we increase the repetitions
number and that the increase is steeper on the rst repetitions of the algorithm while it starts

to converge after the 4th repetition.

Run time: In the current work we did not focus on providing an optimized implementa-
tion of our approach. There is room for signi cantly improving computational ef ciency. For

instance, just by using SVD decomposition on the fully connected layers of the objectness
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Method Runtime‘ AR@10 AR@100 AR@1000 AR@100-Small AR@100-Medium AR@100-Large
COCO validation set

AttractioNet (Ours) 4.00 sec 0.328 0.533 0.662 0.315 0.622 0.777

AttractioNet (Ours, fast version) 1.63sec | 0.326 0.532 0.660 0.317 0.621 0.771
VOC2007 test set

AttractioNet (Ours) 4.00sec | 0.554 0.744 0.859 0.562 0.670 0.794

AttractioNet (Ours, fast version) 1.63sec | 0.547 0.740 0.848 0.575 0.666 0.788

Table 3.9:Run time of our approach on a GTX Titan X GPU. The reported results are from the
rst 5k images of COCO validation set and the PASCAL VOC2007 test set.

module at post-training time (similar to Fast-RCN&P]) and early stopping a sequence of
bounding box location re nements in the case it has already convertfedruntime drops

from 4.0 seconds to 1.63 seconds with losing almost no accuracy (see Table 3.9). There are
also several other possibilities that we have not yet explored such as tuning the number of
feature channels and/or network layers of the CNN architecture (similar to the Deep#ox [

and the SharpMasK 1] approaches). In the remainder of this section we will use the fast

version of ourAttractioNetapproach in order to provide experimental results.

3.4.2.2 Generalization to unseen categories

So far we have evaluated oéittractioNetapproach — in the end task of object box proposal
generation — on the COCO validation set and the PASCAL VOC2007 test set that are
labelled with the same or a subset of the object categories seen in the training set. In order to
assess thAttractioNets capability to generalize to unseen categories, as it is suggested by
Chavali et al. 10|, we evaluate ouAttractioNetmodel on two extra datasets that are labelled

with object categories that are not present in its training set (unseen object categories).

From COCO to ImageNet [129]. Here we evaluate our COCO trainédtractioNet
box proposal model on the ImageNagp ILSVRC2013 detection task validation set
that is labelled with 200 different object categories and we report average recall results in
Table 3.10. Note that among the 200 categories of ImageNet detection task, 60 of them,
as we identi ed, are also present in td¢tractioNets training set (see Appendix A.3).
Thus, for a better insight on the generalization capabilitiestofictioNet we divided the

ImageNet detection task categories on two groups, the categories sA#raoyioNetand

" A sequence of bounding box re nements is considered that it has converged when the loU between the
two lastly predicted boxes in the sequence is greater than 0.9.
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All categories Seen categories Unseen categories
AR@10 AR@100 AR@1000 AR@10 AR@100 AR@1000 AR@10 AR@100 AR@1000

Method

AttractioNet (Ours) 0.412 0.618 0.748 0.474 0.671 0.789 0.299 0.521 0.673
EdgeBoxes [177] 0.182 0.377 0.550 0.194 0.396 0.566 0.160 0.344 0.519
Selective Search [153] 0.132 0.358 0.562 0.143 0.372 0.568 0.111 0.332 0.551
MCG [4] 0.219 0.428 0.603 0.228 0.447 0.623 0.205 0.395 0.568

Table 3.10:Generalization to unseen categories: from COCO to ImageNetln this table we
report average recall results on the ImageNef] ILSVRC2013 detection task validation set that
includes aroun@0k images and it is labelled with 200 object categor®sen categorieare the set

of object categories that our COCO train&tiractioNetmodel "saw” during training. In contrast,
unseen categoriess the set of object categories that were not present in the training set of our
AttractioNetmodel.

Method AR@10 AR@100 AR@1000 AR@100-Small AR@100-Medium AR@100-Large
AttractioNet (Ours) 0.159 0.389 0.579 0.205 0.419 0.498
EdgeBoxes [177] 0.049 0.160 0.362 0.020 0.131 0.332
Selective Search [153] 0.024 0.143 0.422 0.008 0.085 0.362
MCG [4] 0.078 0.237 0.441 0.045 0.195 0.476

Table 3.11:Generalization to unseen categories: from COCO to NYU-Depth V2 datasein

this table we report average recall results on the 1449 labelled images of the NYU-Depth V2
dataset]43. Note that the NYU-Depth V2 dataset is densely labelled with more than 800 different
categories.

the unseen categories, and we report the average recall results separately for those two
groups of object categories in Table 3.10. For comparison purposes we also report the
average recall performance of a few indicative other box proposal methods whose code is
publicly available. We observe that, despite the performance difference of our approach
between the seen and the unseen object categories (which is to be expected), its average
recall performance on the unseen categories is still quite high and signi cantly better than the
other box proposal methods. Note that even the non-learning based approaches of Selective
Search and EdgeBoxes exhibit a performance drop on the unse¥itrégtioNetgroup

of object categories, which we assume is because this group contains more intrinsically

dif cult to discover objects.

From COCO to NYU Depth dataset [143]. The NYU Depth V2 datasetlp3 pro-
vides 1449 images (recorded from indoor scenes) that are densely pixel-wise annotated with
864 different categories. We used the available instance-wise segmentations to create ground
truth bounding boxes and we tested our COCO traizttichctioNetmodel on them (see

Table 3.11). Note that among the 864 available pixel categories, a few of them are “stuff”
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categories (e.g., wall, oor, ceiling or stairs) or in general non-object pixel categories that
our object box proposal method should by de nition not recall. Thus, during the process of
creating the ground truth bounding boxes, those non-object pixel segmentation annotations
were excluded (see Appendix A.4). In Table 3.11 we report the average recall results of our
AttractioNetmethod as well as of a few other indicative methods whose code is publicly
available. We again observe that our method surpasses all other approaches by a signi cant
margin. Furthermore, in this case the superiority of our approach is more evident on the

average recall of the small and medium sized objects.

To conclude we argue that our learning bagdttactioNetapproach exhibits good
generalization behaviour. Speci cally, its average recall performance on the unseen object
categories remains very high and is also much better than other competing approaches,
including both learning-based approaches such as the MSG and hand-engineered ones such
as the Selective Search or the EdgeBoxes methods. A performance drop is still observed
while going from seen to unseen categories, but this is something to be expected given that
any machine learning algorithm will always exhibit a certain performance drop while going

from seen to unseen data (i.e., training set accuracy versus test set accuracy).

3.4.2.3 Evaluation in the context of the object detection task

Here we evaluate oukttractioNetbox proposals in the context of the object detection task
by training and testing a box proposal based object detection system on them (speci cally

we use the fast version éfttractioNe).

Detection systemOur box proposal based object detection network consists of a Fast-
RCNN [42] category-speci ¢ recognition module and a LocNet Combined ML category-
speci ¢ bounding box re nement module that share the same image-wise convolutional
layers (conv1l till conv5_3 layers of VGG16-Net). The detection network is trained on
the union of the COCO train set that includes aro8tklimages and on a subset of the
COCO validation set that includes arouBik images (the remainingk images of COCO

validation set are being used for evaluation). For training we useéititacctioNetbox
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proposals and we de ne as positives those that have loU overlap with any ground truth
bounding box at least 0.5 and as negatives the remaining proposals. For training we use
SGD where each mini-batch consists of 4 images with 64 box proposals each (256 boxes
per mini-batch in total) and the ratio of negative-positive boxes is 3:1. We train the detection
network for50k SGD iterations starting with a learning rate@®01and dropping it to
0:0001after32(k iterations. We use the same scale and aspect ratio jittering technique that is
used onAttractioNetand is described in section 3.4.1.2. During test time, as post-processing
we use a non-max-suppression step (with loU threshold of 0.35) that is enhanced with the
box voting technique described 2.5 with IoU threshold of 0.75. Note that we did not
include iterative object localization since the bounding box proposals are already very well
localized and we did not get any signi cant improvement from running the detection system
for extra iterations. Using the same trained model we provide results for two test (Bses:
using a single scale of 600 pixels during test time @)dising two scales of 500 and 1000

pixels during test time.

Detection evaluation setting. The detection evaluation metrics that we use are the
average precision (AP) for the IoU thresholdsOd0 (AP@050), 0:75 (AP@075) and
the COCO style of average precision (@®50 : Q95) that averages the traditional AP
over several loU thresholds betwe@b0 and0:95. Also, we report the COCO style of
average precision with respect to the small @&mall), medium (ARMedium) and large
(AP@Large) sized objects. We perform the evaluatiorbknmages of COCO 2014 valida-

tion set and we provide nal results on the COCO 2015 test-dev set.

Detection results.In Figure 3-17 we provide plots of the achieved average precision
(AP) as a function of the used box proposals number and in Table 3.12 we provide the
average precision results for 10, 100, 1000 and 2000 box proposals. We observe that in
all cases, the average precision performance of the detection system seems to converge
after the 200 box proposals. Furthermore, for single scale test case our best COCO-style
average precision is 0.320 and for the two scales test case our best COCO-style average

precision is 0.337. By including horizontal image ipping augmentation during test time
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our COCO-style average precision performance is increased to 0.343. Finally, in Table 3.13
we provide the average precision performance in the COCO test-dev 2015 set where we
achieve a COCO-style AP of 0.341. By comparing with the average precision performance

of the other competing methods, we observe that:

» Comparing with the other VGG16-Net based object detection systems 8[2xd
MultiPath [164] systems), our detection system achieves the highest COCO-style
average precision with its main novelties w.r.t. the Fast R-CAl}jllhaseline being
(1) the use of théttractioNetbox proposals that are introduced in this chapter and
(2) the LocNet category speci c object location re nement technique that replaces
the bounding box regression step.

» Comparing with the ION] detection system, which is also VGG16-Net based, our
approach is better on the COCO-style AP metric (that favours good object localization)
while theirs is better on the typical A@.50 metric. We hypothesize that this is due
to the fact that our approach targets to mainly improve the localization aspect of
object detection by improving the box proposal generation step while theirs targets to
improve the recognition aspect of object detection. The above observation suggests
that many of the novelties introduced on the I3\ g4nd MultiPath L64] systems
w.r.t. object detection could be orthogonal to our box proposal generation work.

» The achieved average precision performance of our VGG16-Net based detection
system is close to the state-of-the-8dsNet-101 basdeaster R-CNN+++ detection
system 7] that exploits the (more) recent successes in deep representation learning
introduced — under the name Deep Residual Networks — in the same work by He
et al. B7]. Presumably, our overall detection system could also bene t from being
based on the Deep Residual Networkg] [or the more recent wider variant called
Wide Residual Networks [163].

* Finally, our detection system has the highest average precision performance w.r.t. the
small sized objects, which is a challenging problem, surpassing by a healthy margin
even the ResNet-101 based Faster R-CNN+++ detection syS#&nT his is thanks
to the high average recall performance of our box proposal method on the small sized

objects.
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Figure 3-17:Detection results: Average precision versugttractioNetbox proposals number.
(a) During test time a single scale of 600 pixels is being ugbyDuring test time two scales of 500
and 1000 pixels are being used. The reported results areSkamages of COCO validation set.

Test scale(s) # proposals|| AP@0.50 ARa0.75 AR@0.50:0.95 AR@Small AR@Medium APRa@lLarge
600px 10 0.397 0.283 0.256 0.099 0.282 0.397
600px 100 0.509 0.330 0.313 0.140 0.345 0.472
600px 1000 0.514 0.334 0.320 0.141 0.356 0.485
600px 2000 0.510 0.334 0.319 0.133 0.357 0.485

500px; 1000px 10 0.404 0.293 0.264 0.105 0.290 0.401
500px; 1000px 100 0.519 0.351 0.325 0.165 0.354 0.473
500px; 1000px 1000 0.533 0.360 0.336 0.176 0.371 0.486
500px; 1000px 2000 0.532 0.358 0.336 0.175 0.371 0.489
500px; 1000px F 2000 0.540 0.364 0.343 0.184 0.382 0.491

Table 3.12:Detection results: Average precision performance usindittractioNetbox propos-
als. The reported results are frobk images of COCO validation set. The last entry with Ehe
symbol uses haorizontal image ipping augmentation during test time.

3.4.2.4 Qualitative results

In Figure 3-18 we provide qualitative results of dttractioNetbox proposal approach on
images coming from the COCO validation set. Note that our approach manages to recall
most of the objects in an image, even in the case that the depicted scene is crowded with

multiple objects that heavily overlap with each other.

3.5 Conclusions

We proposed a novel object localization methodology that is based on assigning probabilities

related to the localization task on each row and column of the region in which it searches
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Figure 3-18:Qualitative results in COCO. The blue rectangles are the box proposals generated

by our approach that best localize (in terms of loU) the ground truth boxes. The red rectangles are the
ground truth bounding boxes that were not discovered by our box proposal approach (their loU with
any box proposal is less than 0.5). Note that not all the object instances on the images are annotated.
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Method Base CNN AP@0.50 AR@0.75 AR@0.50:0.95 AR@Small AR@Medium AR@Large
AttractioNetbased detection system (Ours) VGG16-Net [144] 0.537 0.363 0.341 0.175 0.365 0.469
ION [5] VGG16-Net [144] 0.557 0.346 0.331 0.145 0.352 0.472
MultiPath [164] VGG16-Net [144] - 0.315 - -

Faster R-CNN+++ [57] ResNet-101 [57] 0.557 - 0.349 0.156 0.387 0.509

Table 3.13:Detection results in COCO test-dev 2015 setln this table we report the average
precision performance of owttractioNetbox proposals based detection system that uses 2000
proposals and two test scales of 500 and 1000 pixels. Note that: (1) all methods in this table
(including ours) use horizontal image ipping augmentation during test time, (2) the Bpahgd
MultiPath [164] detection systems use a single test scale of 600 and 800 pixels respectively while the
Faster R-CNN+++ entry uses the scdl@f0, 400, 600, 800, 1000(3) apart from the ResNet-101
based Faster R-CNN++57] entry, all the other methods are based on the VGG16-Netwiaty [

(4) the reported results of all the competing methods are from the single model versions of their
systems (and not the model ensemble versions) and (5) the reported results of the MultPath system
are coming fromrbk images of the COCO validation set (however, we expect the AR metrics on the
test-dev set to be roughly similar).

the object. Those probabilities provide useful information regarding the location of the
object inside the search region and they can be exploited in order to infer its boundaries
with high accuracy. We implemented our model via using a convolutional neural network
architecture properly adapted for this task, called LocNet, and we extensively evaluated it
on PASCAL VOC2007 test set. We demonstrate that it outperforms CNN-based bounding
box regression on all the evaluation metrics and it leads to a signi cant improvement on
those metrics that reward good localization. Importantly, LocNet can be easily plugged into
existing state-of-the-art object detection methods, in which case we show that it contributes
to signi cantly boosting their performance. Also, we demonstrate that our object detection
methodology can achieve very high mAP results even when the initial set of candidate boxes

is generated by a simple sliding windows scheme.

Furthermore, we adapted the object localization methodology (devised for the detection
task) to the box proposal generation task and built a novel box proposal generation system
called AttractioNet We extensively evaluate our system on several image datasets (i.e.,
COCO, PASCAL, ImageNet detection and NYU-Depth V2 datasets) demonstrating in
all cases average recall results that surpass the previous state-of-the-art by a signi cant
margin while also providing strong empirical evidence about the generalization ability of our
approach w.r.t. unseen categories. Even more, we show the signi cance AftragtioNet

approach in the object detection task by coupling it with a VGG16-Net based detector
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and thus managing to surpass the detection performance of all other VGG16-Net based
detectors while even being on par with a heavily tuned ResNet-101 based detector. We note
that, apart from object detection, there exist several other vision tasks, such as exemplar
2D-3D detection 100, visual semantic role labellingtP], caption generation/[0] or visual
guestion answerindlBg, for which a box proposal generation step can be employed. We
are thus con dent that oukttractioNetapproach could have a signi cant value with respect

to many other important applications as well.
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Chapter 4

Deep structured prediction for

pixel-wise image labeling

4.1 Introduction

While the previous two chapters focused on the object detection problem, in this one we
deal with the pixel-wise image labeling problem (also called dense image labeling). Dense
image labeling is a problem of paramount importance in the computer vision community as
it encompasses many low or high level vision tasks including stereo matct6sjy pptical
ow [ 62], surface normals estimatio29], and semantic segmentatid®?], to mention
a few characteristic examples. As already explained, the goal is to assign a discrete or
continuous value for each pixel in the image. Due to its importance, there is a vast amount
of work on this problem. Recent methods can be roughly divided into three main classes of
approaches.

The rst class focuses on developing independent patch classi ers/regredddrs [
139, 140 34, 92, 37, 101, 110 that would directly predict the pixel label given as input
an image patch centered on it or, in cases like stereo matching and optical ow, would
be used for comparing patches between different images in order to pick pairs of best
matching pixels 96, 162, 165 166]. Deep convolutional neural networks (DCNNSY]
have demonstrated excellent performance in the aforementioned tasks thanks to their ability

to learn complex image representations by harnessing vast amount of training&jdx4
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57]. However, despite their great representational power, just applying DCNNs on image
patches, does not capture the structure of output labels, which is an important aspect of
dense image labeling tasks. For instance, independent feed-forward DCNN patch predictors
do not take into consideration the correlations that exist between nearby pixel labels. In
addition, feed-forward DCNNs have the extra disadvantages that they usually involve
multiple consecutive down-sampling operations (i.e., max-pooling or strided convolutions)
and that the top most convolutional layers do not capture factors such as image edges or
other ne image structures. Both of the above properties may prevent such methods from

achieving precise and accurate results in dense image labeling tasks.

Another class of methods tries to model the joint dependencies of both the input and
output variables by use of probabilistic graphical models such as Conditional Random Fields
(CRFs) BQ]. In CRFs, the dense image labeling task is performed through maximum a
posteriori (MAP) inference in a graphical model that incorporates prior knowledge about
the nature of the task in hand with pairwise edge potential between the graph nodes of
the label variables. For example, in the case of semantic segmentation, those pairwise
potentials enforce label consistency among similar or spatially adjacent pixels. Thanks to
their ability to jointly model the input-output variables, CRFs have been extensively used in
pixel-wise image labeling task33, 13(. Recently, a number of methods has attempted
to combine them with the representational power of DCNNSs by getting the former (CRFs)
to re ne and disambiguate the predictions of the later di85[11, 174, 12]. Particularly,
in semantic segmentation, DeepLdld][uses a fully connected CRF to post-process the
pixel-wise predictions of a convolutional neural network while in CRF-RNIY], they
unify the training of both the DCNN and the CRF by formulating the approximate mean- eld
inference of fully connected CRFs as Recurrent Neural Networks (RNN). However, a major
drawback of most CRF based approaches is that the pairwise potentials have to be carefully
hand designed in order to incorporate simple human assumptions about the structure of the

output labelsy and at the same time to allow for tractable inference.

A third class of methods relies on a more data-driven approach for learning the joint
space of both the input and the output variables. More speci cally, in this case a deep

neural network gets as input an initial estimate of the output labels and (optionally) the
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Figure 4-1: In this gure we visualize two different types of erroneously labeled image regions. On
the left hand are the ground truth labels and on the right hand are some initial label estimates. With
the red rectangle we indicate a dense concentration of “hard” mistakes in the initial labels that it is
very dif cult to be corrected by a residual re nement component. Instead, the most suitable action
for such a region is to replace them by predicting entirely new labels for them. In contrast, the blue
eclipse indicates an image region with “soft” label mistakes. Those image regions are easier to be
handled by a residual re nement components.

input image and it is trained to predict a new re ned estimate for the labels, thus being
implicitly enforced to learn the joint space of both the input and the output variables. The
network can learn either to predict new estimates for all pixel labels (transform-based
approaches)l6l, 52, 88|, or alternatively, to predict residual corrections w.r.t. the initial
label estimates (residual-based approacts)¥e will hereafter refer to these methods as
deep joint input-output model$hese are, loosely speaking, related to the CRF models in
the sense that the deep neural network is enforced to learn the joint dependencies of both
the input image and output labels, but with the advantage of being less constrained about the

complexity of the input-output dependencies that it can capture.

Our work belongs to this last category of dense image labeling approaches, thus it is not
constrained on the complexity of the input-output dependencies that it can capture. However,
here we argue that prior approaches in this category use a sub-optimal strategy. For instance,
the transform-based approaches (that always learn to predict new label estimates) often
have to learn something more dif cult than necessary since they must often simply learn to

operate as identity transforms in case of correct initial labels, yielding the same label in their
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output. On the other hand, for the residual based approaches it is easier to learn to predict
zero residuals in the case of correct initial labels, but it is more dif cult for them to re ne
“hard” mistakes that deviate a lot from the initial labels (see gure 4-1). Due to the above
reasons, in our work we propose a deep joint input-output model that decomposes the label
estimation/re nement process as a sequence of the following easier to execute operations:
(1) detectionof errors in the input labels, (2gplacementf the erroneous labels with new

ones (i.e., directly predicting new pixel labels for the pixels detected as erroneously labeled),
and nally (3) an overallre nementof all output labels by predicting residual corrections
w.r.t. the labels generated by step (2). Each of the described operations in our framework is
executed by a different component implemented with a deep neural network. Even more,
those components are embedded in a uni ed architecture that is fully differentiable thus
allowing for an end-to-end learning of the dense image labeling task by only applying the
objective function on the nal output. As a result of this, we are also able to explore a variety
of novel deep network architectures by considering different ways of combining the above
components, including the possibility of performing the above operations iteratively, as it
is done in B8], thus enabling our model to correct even large, in area, regions of incorrect
labels. It is also worth noting that the error detection component in the proposed architecture,
by being forced to detect the erroneous pixel labels (given both the input and the initial
estimates of the output labels), implicitly learns the joint structure of the input-output space,
which is an important requirement for a successful application of any type of structured

prediction model.
To summarize, the contribution of the work presented in this chapter are as follows:

» We propose a deep structured prediction framework for the dense image labeling task,
which we callDetect, Replace, Re néhat relies on three main building blocks: (1)
recognizing errors in the input label maps, (2) replacing the erroneous labels, and
(3) performing a nal re nement of the output label map. We show that all of the
aforementioned steps can be embedded in a uni ed deep neural network architecture
that is end-to-end trainable.

* In the context of the above framework, we also explore a variety of other network

architectures for deep joint input-output models that result from utilizing different
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combinations of the above building blocks.

» We implemented and evaluated our framework on the disparity prediction (stereo
matching) and semantic segmentation tasks and we provide both qualitative and
guantitative evidence about the advantages of the proposed approach.

» We show that our disparity estimation model that implements the propioststt,
Replace, Re narchitecture achieved state of the art results in the KITTI 2015 test
set outperforming (at the time of completing this work) all prior published work by a
signi cant margin.

The remainder of the chapter is structured as follows: We rst describe our structured
dense label prediction framework .2 and its implementation w.r.t. the dense disparity
estimation task (stereo matching)8a.3. Then, we provide experimental results for the
disparity estimation and semantic segmentation tasgd.4h andg4.5 respectively and we

nally conclude the paper in 84.6.

4.2 Methodology

LetX = fx;g, " be the inputimageof sizeH W, wherex; are the image pixels, and

Y = fy,dgl, " be some initial label estimates for this image, whgris the label for the i-th

pixel. Our dense image labeling methodology belongs on the broader category of approaches
that consist of a deep joint input-output model moé¢l) that given as input the imagé

and the initial label¥ , learns to predict new, more accurate lab&ls= F(X;Y ). Note

that in this setting the initial labelé could come from another modEg}(:) that depends

only on the imageX . Also, in the general case, the pixel lab¥lsan be of either discrete

or continuous nature. In this work, however, we focus on the continuous case where greater
variety of architectures can be explored. Note that in the discrete case (e.g., in the semantic
segmentation task), in label map= fy;gl," the labely; of the i-th pixel, instead of

being a continuous value as in the continues case, is de ned as a probability vector with

the probability distribution of the possible discrete values. For example, in the semantic

IHere, for simplicity, we consider images de ned on a 2D domain, but our framework can be readily
applied to images de ned on any domain.
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Figure 4-2: In this gure we demonstrate the generic architecture that we propose for the dense
image labeling task. In this architecture the task of the deep joint input-output model is decomposed
into three different sub-tasks that are: (1) detection of the erroneous initial labels, (2) replacement of
the erroneous labels with new ones (leading to a renewed labeUyamd then (3) re nemeny °

of the renewed label map. The illustrated example is coming from the dense disparity labeling task
(stereo matching).

segmentation taslky; is the probability distribution over the available semantic categories
for the i-th pixel.

The crucial question is what is the most effective way of implementing the deep joint
input-output modeF (:). The two most common approaches in the literature involve a
feed-forward deep convolutional neural netwdflgcnn (2), that either directly predicts
new labelsy °= Fpcnn (X;Y) or it predicts the residual correction w.r.t. the input labels:
YO =Y + Fpenn (X;Y). We argue that both of them are sub-optimal solutions for
implementing thd- (:) model. Instead, in our work we opt for a decomposition of the task
of modelF () (i.e., predicting new, more accurate lab¥l3 in three different sub-tasks that
are executed in sequence.

In the remainder of this section, we rst describe the proposed architect@dearl,
then we discuss the intuition behind it and its advantag&g.i®.2, and nally we describe

other alternative architectures that we explored in 84.2.3.

4.2.1 Detect, Replace, Re ne architecture

The generic dense image labeling architecture that we propose decomposes task of the
deep joint input-output model in three sub-tasks each of them handled by a different learn-
able network component (see Figure 4-2). Those network components are: the error

detection componeriig(:), the label replacement componéit(:), and the label re nement
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component, (:). The sub-tasks that they perform, are:

Detect: The rst sub-task in our generic pipeline is to detect the erroneously labeled pixels
of Y by discovering which pixel labels are inconsistent with the remaining labéfs of
and the input imag&X . This sub-task is performed by the error detection component
Fe(:) that basically needs to yield a probability map= F¢(X;Y ) of the same size as
the input label%’ that will have high probabilities for the “hard” mistakes¥n These
mistakes should ideally be forgotten and replaced with entirely new label values in the
processing step that follows (see Figures 4-3a, 4-3b, and 4-3c). As we will see below,
the topology of our generic architecture allows the error detection compBaeht
to learn its assigned task (i.e., detecting the incorrect pixel labels) without explicitly
being trained for this, e.qg., through the use of an auxiliary loss. The error detection
functionF¢(:) can be implemented with any deep (or shallow) neural network with

the only constraint being that its output mBapmust take values in the ranf@ 1].

Replace: In the second sub-task, a new label aldis produced by the convex combination
of the initial label eldY and the output of the label replacement compoilrg():
U=E F(XY;E)+(@1 E) Y (see Figures 4-3e and 4-3f). We observe
that the error probabilities generated by the error detection compBaehhow act
as gates that control which pixel labelsYofwill be forgotten and replaced by the
outputs off,(:), which will be all pixel labels that are assigned high probability of
being incorrect. In this context, the task of the Replace compdnagnk is to replace
the erroneous pixel labels with new ones that will be in accordance both w.r.t. the
input imageX and w.r.t. the non-erroneous labelsYof Note that for this task the
Replace componef, (:) gets as input also the error probability mapThe reason
for doing this is to help the Replace component to focus its attention only on those
image regions that their labels need to be replaced. The compBpghtan be
implemented by any neural network whose output has the same size as the input labels
Y.

Re ne: The purpose of the erroneous label detection and label replacement steps so far

was to perform a crude “ x” of the “hard” mistakes in the label mépIn contrast,
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the purpose of the current step is to do a nal re nement of the entire output label
mapU, which is produced by the previous steps, in the form of residual corrections:
Y%= U+ F(X;Y;E;U) (see Figures 4-3g and 4-3h). Intuitively, the purpose of this
step is to correct the “soft” mistakes of the label ntajand to better align the output
labelsY °with the ne structures in the imagé . The Re ne componen, (:) can

be implemented by any neural network whose output has the same size as the input
labelsU.

The above three steps can be applied for more than one iterations which, as we will see
later, allows our generic framework to recover a good estimate of the ground truth labels
or, in worst case, to yield more plausible results even when the initial |abale severely
corrupted (see Figure 4-10 in the experiments section 84.4.3.5).

To summarize, the workings of our dense labeling generic architecture can be concisely

described by the iterative application of the following three equations:

E = Fe(X;Y); (4.1)
U=E FJXY;E)+(1 E) Y; (4.2)
Y°= U+ F(X:Y;E;U): (4.3)

We observe that the above generic architecture is fully differentiable as long as the function
components=¢(:), Fu(:), andF,(;) are also differentiable. Due to this fact, the overall
proposed architecture is end-to-end learnable by directly applying an objective function
(e.g., Absolute Difference or Mean Square Error loss functions) on the nal output label

mapsY °.

4.2.2 Discussion

Role of the Detection component,(:) and its synergy with the Replace component
Fu(:): The error detection componelRi(:) is a key element in our generic architecture and
its purpose is to indicate which are the image regions whose labels are incorrect. This type

of information is exploited in the next step of label replacement in two ways. Firstly, the
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Replace componefi, (:) that gets as input the error m&p which is generated bly.(:), is

able to know which are the image regions whose labels need to be replaced and thus it is able
to focus its attention only on those image regions. At this point note that, in equation 4.2,
the error map&, apart from being given as input attention maps to the Replace component
Fu(:), also act as gates that control which way the information will ow both during the
forward propagation and during the backward propagation. Speci cally, during the forward
propagation case, in the cases that the error map probabilities areGeithirit holds that:

8

2y: if Fo(X;Y) = 0;
U= _ (4.4)
- Fu(X Y E); ifFe(X YY) = 1

which basically means that the Replace compoRg() is being utilized mainly for the
erroneously labeled image regions. Also, during the backward propagation, it is easy to
see that the gradients of the replace function w.r.t. thello§s the cases that the error

probabilities are eithed or 1) are:

N/ QO

L _ 20 if Fe(X;Y )= 0; (4.5)
dFy() 2. Fo(X;Y) = 1;

\%

du’

which means that gradients are back-propagated through the Replace contpdrjeoly

for the erroneously labeled image regions. So, in a nutshell, during the learning procedure
the Replace componef,(:) is explicitly trained to predict new values mainly for the
erroneously labeled image regions. The second advantage of giving the erroE raaps
input to the Replace compondrj(:), is that this allows the Replace component to know
which image regions contain “trusted” labels that can be used for providing information on

how to Il the erroneously labeled regions.

Estimated error probability maps by the Detection componentF¢(:): Thanks to the
topology of our generic architecture, by optimizing the reconstruction of the ground truth
labels¥, the error detection compone®d(:) implicitly learns to act as a joint probability

model for patches ok andY centered on each pixel of the input image, assigning a high
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(a) Image X (b) Initial labels Y (c) Predicted errors E  (d) Ground truth errors

(e)Fy(©) predictions (f) Renewed labeldJ (9) F: (©) residuals (h) Final labels Y °

Figure 4-3: Here we provide an example that illustrates the functions performed by the Detect,
Replace, and Re ne steps in our proposed architecture. The example is coming from the dense
disparity labeling task (stereo matching). Speci cally, sub gufa}k (b), and(c) depict respectively

the input imageX , the initial disparity label estimates, and the error probability mag that

the detection componeht(:) yields for the initial labelsr . Notice the high similarity of mag

with the ground truth error map of the initial labédsdepicted in sub gurdd), where the ground

truth error map has been computed by thresholding the absolute difference of the initiavabels
from the ground truth labels with a threshold3pixels (red are the erroneous pixel labels). In

sub gure (e) we depict the label predictions of the Replace compoRgKit). For visualization
purposes we only depict tHe,(:) pixel predictions that will replace the initial labels that are
incorrect (according to the detection component) by drawing the remaining ones (i.e., those whose
error probability is less tha@.5) with black color. In sub gure(f) we depict the renewed labels
U=E FyXY;E)+( E) Y.Insubgure(g)we depictthe residual corrections that the

Re ne component, (:) yields for the renewed labels. Finally, in the last sub gurégh) we depict

the nal label estimatey °= U + F,(X;Y;E;U) that the Re ne step yields.

probability of error for patches that do not appear to belong to the joint input-output space
(X;Y). In Figures 4-3c and 4-3d we visualize the estimated by the Detection component
Fe(:) error maps and the ground truth error maps in the context of the disparity estimation
task (more visualizations are provided in Figure 4-6). It is interesting to note that the
estimated error probability maps are very similar to the ground truth error maps despite the
fact that we are not explicitly enforcing this behaviour, e.g., through the use of an auxiliary

loss.

Error detection component and Highway Networks: Note that the way the Detection
component¢(:) and Replace componeh(:) interact bears some resemblance to the basic
building blocks of the Highway Network4.f1§] that are being utilized for training extremely
deep neural network architectures. Brie y, each highway building block gets as input some

hidden feature maps and then predicts transform gates that control which feature values will
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be carried on the next layer as is and which will be transformed by a non-linear function.
There are however some important differences. For instance, in our case the error gate
prediction and the label replacement steps are executed in sequence with the latter one
getting as input the output of the former one. Instead, in Highway Networks the gate
prediction and the non-linear transform of the input feature maps are performed in parallel.
Furthermore, in Highway Networks the components of each building block are implemented
by simple af ne transforms followed by non-linearities and the purpose is to have multiple
building blocks stacked one on top of the other in order to learn extremely deep image
representations. In contrast, the components of our generic architecture are themselves deep

neural networks and the purpose is to learn to reconstruct the input Mbels

Two stage re nement approach: Another key element in our architecture is that the
step of predicting new, more accurate labéfs given the initial labelsy, is broken in
two stages. The rst stage is handled by the error detection compé&iaéhtand the label
replacement componeht, (:). Their job is to correct only the “hard” mistakes of the input
labelsY. They are not meant to correct “soft” mistakes (i.e., errors in the label values of
small magnitude). In order to learn to correct those “soft” mistakes, it is more appropriate to
use a component that yields residual corrections w.r.t. its input. This is the purpose of our
Re ne componenk, (:), in the second stage of our architecture, from which we expect to
improve the “details” of the output label$ by better aligning them with the ne structures
of the input images. This separation of roles between the rst and the second re nement
stages (i.e., coarse re nement and then ne-detail re nement) has the potential advantage,
which is exploited in our work, to perform the actions of the rst stage in lower resolution
thus speeding up the processing and reducing the memory footprint of the network. Also,
the end-to-end training procedure allows the components in the rst stagd-((g.and
Fu(:)) to make mistakes as long as those are corrected by the second stage. This aspect
of our architecture has the advantage that each component can more ef ciently exploit its

available capacity.
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4.2.3 Explored architectures

In order to evaluate the proposed architecture we also devised and tested various other
architectures that consist of the same core components as those that we propose. In total,

the architectures that are explored in our work are:

Detect + Replace + Re narchitecture: This is the architecture that we proposed in

section 4.2.1.

Replacebaseline architecture: In this case the model directly replaces the old labels
with new onesY = F,(X;Y).

Re ne baseline architecture:In this case the model predicts residual corrections w.r.t.
the input labelsY %= Y + F,(X;Y).

Replace + Re nearchitecture: Here the model rst replaces the entire label méap
with new valuedJ = F(X;Y ) and then residual corrections are predicted w.r.t. the updated
valuesU, Y°= U + F,(X;Y;U).

Detect + Replacarchitecture: Here the model rst detects errors on the input label
mapsE = F¢(X;Y ) and then replace those erroneous pixel labéls E  F,(X;Y;E)+
1 E) Y.

Detect + Re nearchitecture: In this case, after the detection of the err&s=
Fe(X;Y ), the erroneous pixel labels are masked out by setting them to the mean label
valuel,,,U=E Iy +(@ E) Y. Thenthe masked label maps are given as input to
a residual re nement mod&f°= U + F,(X;Y;E;U). Note that this architecture can also
be considered as a speci ¢ instance of the general Detect + Replace + Re ne architecture
where the Replace compondnf(:) does not have any learnable parameters and constantly

returns the mean label value, i.B,() = Iny.

Parallel architecture: Here, after the detection of the errors, the erroneous labels are
replaced by the Replace componé&g(:) while the rest labels are re ned by the Re ne
component~, (:). More speci cally, the operations performed by this architecture are

described by the following equations:

E = Fe(X;Y); (4.6)
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U= Fu(GYSE) U= Y + F (XY E); (4.7)
Y= E U+(1 E) U (4.8)

Basically, in this architecture the componehts:) andF, (;) are applied in parallel instead

of the sequential topology that is chosen in the Detect + Replace + Re ne architecture.

Detect + Replace + Re ne T: This is basically the Detect + Replace + Re ne ar-
chitecture but applied iteratively fdr iterations. Note that the model implementing this
architecture is trained in a multi-iteration manner (i.e., by feeding the output labels generated

at one iteration as input to the network at the next iteration).

X-Blind Detect + Replace + Re narchitecture: This is a “blind” w.r.t. the image
X version of theDetect + Replace + Re narchitecture. Speci cally, the “X-Blind”
architecture is exactly the same as the prop@etect + Replace + Re narchitecture with
the only difference being that it gets as input only the initial labeknd not the imagX
(i.e., none of thé=¢(:), Fy(:), andF, (:) components depends on the image Hence, the
model implemented by the “X-Blind” architecture must learn to reconstruct the ground truth

labels by only “seeing” a corrupted version of them.

4.3 Detect, Replace, Re ne for disparity estimation

In order to evaluate the proposed dense image labeling architecture, as well as the other
alternative architectures that are explored in our work, we use the dense disparity estimation
(stereo matching) task, according to which, given a left and right image, one needs to assign
to each pixel of the left image a continuous label that indicates its horizontal displacement in
the right image (disparity). Such a task forms a very interesting and challenging testbed for
the evaluation of dense labeling algorithms since it requires dealing with several challenges
such as accurately preserving disparity discontinuities across object boundaries, dealing
with occlusions, as well as recovering the ne details of disparity maps. At the same time

it has many practical applications on various autonomous driving and robot navigation or

grasping tasks.
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4.3.1 Initial disparities

Generating initial disparity eld: In all the examined architectures, in order to generate
the initial disparity label¥ we used the deep patch matching approach that was proposed
by W. Luo et al. P6] and speci cally their architecture with i@87. We then train our models
to reconstruct the ground truth labels given as input only the left inxagad the initial
disparity labelsy . We would like to stress out that the right image of the stereo pair is not
provided to our models. This practically means that the trained models cannot rely only
on the image evidence for performing the dense disparity labeling task — since disparity
prediction from a single image is an ill-posed problem — but they have to learn the joint
space of both inpuX and output label¥ in order to perform the task.

Image & disparity eld normalization: Before we feed an image and its initial dispar-
ity eld to any of our examined architectures, we normalize them to zero mean and unit
variance (i.e., mean subtraction and division by the standard deviation). The mean and
standard deviation values of the RGB colors and disparity labels are computed on the entire
training set. The disparity target labels are also normalized with the same mean and standard
deviation values and during inference the normalization effect is inverted on the disparity

elds predicted by the examined architectures.

4.3.2 Deep neural network architectures

Each component of our generic architecture can be implemented by a deep neural network.
For our disparity estimation experiments we chose the following implementations:

Error detection component: It is implemented by 5 convolutional layers of which the
last one yields the error probability m&a All the convolutional layers, apart from the
last one, are followed by batch normalizati@®] plus ReLU P7] units. Instead, the last
convolutional layer is followed by a sigmoid unit. The rst two convolutions are followed
by max-pooling layers of kernel size 2 that in total reduce the input resolution by a factor
of 4. To compensate, a bi-linear up-sampling layer is placed on top of the last convolution
layer in order the output probability m&pto have the same resolution as the input image.

The number of output feature planes of each of the 5 convolutional lay8gs 6gl, 128
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256 andl correspondingly.

Replace component:It is implemented with a convolutional architecture that rst
“compress” the resolution of the feature map%%;mf the input resolution and then “de-
compress” the resolution tﬁ) of the input resolution. For its implementation we follow
the guidelines of A. Newel et al1p9 which are to use residual blocks7] on each layer
and parametrized (by residual blocks) skip connection between the symmetric layers in the
“compressing” and the “decompressing” parts of the architecture. The “compressing” part of
the architecture uses max-pooling layers with kernel size 2 to down-sample the resolution
while the “decompressing” part uses nearest-neighbor up-sampling (by a factor of 2). We
refer for more details to A. Newel et alLlQ9. In our case, during the “compression” part
there are in total 6 down-sampling convolutional blocks and during the “decompression”
part 4 up-sampling convolutional blocks. The number of output feature planes in the rst
layer is32 and each time the resolution is down-sampled the number of feature planes is
increased by a factor & For GPU memory ef ciency reasons, we do not allow the number
of output feature planes of any layer to exceed thd&l# During the “decompression”
part, each time we up-sample the resolution we also decrease by a factor of 2 the number of
feature planes. The last convolution layer yields a single feature plane with the new disparity
labels (without any non-linearity). As already explained, during the “decompressing” part
the resolution is increased till that éfof the input resolution. The reason for early-stopping
the “decompression” is that the Replace component is needed to only perform crude “ xes”
of the initial labels and thus further “decompression” steps are not necessary. Before the
disparity labels are fed to the next processing steps, bi-linear up-sampling by a factor of 4
(without any learn-able parameter) is being used in order to restore the resolution to that of

the input resolution.

Re ne component: It follows the same architecture as the replace component with the
exception that during the “compressing” part the resolution of the feature maps is reduced
till % of the input resolution and then during the “decompressing” part the resolution is
restored to that of the input resolution.

Alternative architectures: In case the alternative architectures have missing compo-

nents, then the number of layers and/or the number of feature planes per layer of the
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remaining components is being increased such that the total capacity (i.e., number of learn-
able parameters) remains the same. For the architectures that include only the Replace or
Re ne components (i.eReplaceRe ne, Detect+ReplaceandDetect+Re nearchitectures)
the “compression” - “decompression” architecture of this component “compresses” the
resolution till 6i4 of the input resolution and then “decompresses” it to the same resolution as
the input image.

Weight initialization: In order to initialize the weights of each convolutional layer we

use the initialization scheme proposed by K. He et al. [54].

4.3.3 Training details

We used thd.1 loss as objective function and the networks were optimized using the
Adam [71] method with ; =0:9and , = 0:99. The learning ratér was set td0 * and
was decreased after 20 epochd@* and then aftefl5epochs tdl0 °. We then continued
optimizing for anotheb epochs. Each epoch lasted approximag&l@Obatch iterations
where each batch consistedZftraining samples. Each training sample consists of patches
with spatial siz256 256and4 channels (3 RGB color channels + 1 initial disparity label
channel). The patches are generated by randomly cropping with uniform distribution an
image and its corresponding initial disparity labels.

Augmentation: During training we used horizontal ip augmentation and chromatic

transformations such as color, contrast, and brightness transformations.

4.4 Experimental results

In this section we present an exhaustive experimental evaluation of the proposed architecture
as well as of the other explored architectures in the task of dense disparity estimation.
Speci cally, we rst describe the evaluation settings used in our experiments (section 4.4.1),
then we report detailed quantitative results w.r.t. the examined architectures (section 4.4.2),
and nally we provide qualitative results of the propod2etect, Replace, Re narchitecture

and all of its components, trying in this way to more clearly illustrate their role (section
4.4.3).
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4.4.1 Experimental settings

Training set: In order to train the explored architectures we used the large scale synthetic
dataset for disparity estimation that was recently introduced by N. Mayer &04]. We

call this dataset the Synthetic dataset. It consists of three different type of synthetic image
sequences and includes arolB#t stereo images. Also, we enriched this training set with
160images from the training set of the KITTI 2015 dataset [103, 1.04]

Evaluation sets: We evaluated our architectures on three different datasets. On 2000
images from the test split of the Synthetic dataset, on 40 validation images coming from
KITTI 2015 training dataset, and on 15 images from the training set of the Middlebury
dataset133. Prior to evaluating the explored architectures in the KITTI 2015 validation
set, we ne-tuned the models that implement them only onl@mage of the KITTI 2015
training split. In this case, we start training 20 epochs with a learning rate & #, we
then reduce the learning rate16 ° and continue training fot5epochs, and then reduce
again the learning rate tt0 © and continue training fos more epochs (in tota#0 epochs).

The epoch size is set &D0batch iterations.

Evaluation metrics: For evaluation we used the end-point-error (EPE), which is the
averaged Euclidean distance from the ground truth disparity, and the percentage of disparity
estimates whose absolute difference from the ground truth disparity is more pheats ¢
t pixel). Those metrics are reported for the non-occluded pixels (Non-Occ), all the pixels

(All), and only the occluded pixels (Occ).

4.4.2 Quantitative results
4.4.2.1 Disparity estimation performance

In Tables 4.1, 4.2, and 4.3 we report the stereo matching performance of the examined
architectures in the Synthetic, Middlebury, and KITTI 2015 evaluation sets correspondingly.
Single-iteration results: We rst evaluate all the examined architectures when they are

applied for a single iteration. We observe that all of them are able to improve the initial

2The entire training set of KITTI 2015 includ@90images. In our case we split tha2@0images inl160
images that were used for training purposes 4biinages that were used for validation purposes
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> 2 pixel || > 3pixel || > 4pixel || > 5 pixel EPE
Architectures All All All All All
Initial labelsY 24.3175 22.9004 21.9140 21.1680 ||12.0218
Single-iteration results
Replacgbaseline) 12.8007 10.4512 8.8966 7.7467 || 2.4456
Re ne(baseline) 14.5996 12.2246 10.3046 8.7873 || 2.1235
Replace + Re ne 11.1152 9.1821 7.8430 6.8550 || 2.2356
Detect + Replace 11.6970 9.2419 7.6812 6.6018 || 2.1504
Detect + Re ne 10.5309 8.5565 7.2154 6.2186 || 1.8210
Parallel 11.0146 8.9261 7.5029 6.4742 || 2.0241
Detect + Replace + Re ne 9.5981 7.9764 6.7895 5.9074 || 1.8569
Multi-iteration results
Detect + Replace +Renex¥  8.8411[] 7.2187] 6.0087] 5.2853 [ 1.6899

Table 4.1: Stereo matching results on the Synthetic dataset.

> 2 pixel > 3 pixel > 4 pixel > 5 pixel EPE
Architectures Non-Occ‘ All ‘ Occ Non-Occ‘ All ‘ Occ Non-Occ‘ All ‘ Occ Non-Occ‘ All ‘ Occ Non-Occ‘ All ‘ Occ
Initial labelsY 18.243 |26.714 [86.125 || 15.664 |23.986 |82.330 | 14.208 [22.282 [78.758 || 13.237 [21.044 [75.579 ||  6.058 |8.709 |25.598
Single-iteration results
Replace(baseline) 15.767 [21.08957.197 || 12.323[16.793 [46.303 ]| 10.312 [14.020[37.922 || 9.032 [12.147 [31.770[| 2.731[3.221 | 5.818
Re ne (baseline) 13.981 [19.742[58.030 || 11.110[16.042 [47.732|| 9.266 [13.406 [39.218 || 7.889 [11.302 |32.467 || 1.953 |2.551 | 5.665
Replace + Re ne 14.262 |19.257 |52.036 || 11.297 |15.701 [43.905 || 9.552 [13.459 [37.910 | 8.408 [11.891 |33.125 || 2.292 |2.908 | 6.216
Detect + Replace 15.368 |20.984 [58.745 || 11.243 |16.169 |48.568 || 8.957 [13.176 [40.663 || 7.571 [11.179 [34.482 || 2.013 |2.676 | 6.462
Detect + Re ne 13.732 [19.37556.383 || 10.718 15.552 [46.281 || 8.893 [12.975[38.197 | 7.600 [11.012 |31.478 || 2.105 |2.626 | 5.389
Parallel 14.917 |20.345 |57.459 || 11.36315.907 [46.221 || 9.234 [12.941[37.218 || 7.840 [10.940 |30.854 || 2.012 |2.552 | 5.607
Detect + Replace + Rene || 12.845 |17.825 |50.407 || 10.096 |14.379 [41.704 || 8.285 [11.957 |34.801 || 7.057 [10.253 |20.560 ||  1.774 |2.368 | 5.457

Multi-iteration results

Detect + Replace + Re ne xfg‘

11.529 [16.414 [47.922 ||

8.757 [12.874 [37.977 ||

6.997 [10.482 [30.634

5.911 | 8.916 [25.514 ||

1.789 [2.321 | 4.971

Table 4.2: Stereo matching results on Middlebury.

> 2 pixel > 3 pixel > 4 pixel > 5 pixel EPE
Architectures Non-Occ‘ All ‘ Occ Non-Occ‘ All ‘ Occ Non-Occ‘ All ‘ Occ Non-Occ‘ All ‘ Occ Non-Occ‘ All ‘ Occ
Initial labelsY 8.831 [10.649 [98.098 | 6.412 [8.253 [96.559 || 5.222 | 7.059 |94.742 || 4.514 |6.339 |93.139 || 1.700 [2.457 [31.214
Single-iteration results
Replace(Baseline) 4.997 | 5.668 |37.327 3.329 |3.888 |27.890 2.452 | 2.892 |19.643 1.924 12.292 |15.226 0.858 |0.923 | 3.165
Re ne (Baseline) 4.429 | 5.165 |33.028 3.075 |3.714 |25.107 2.370 | 2.924 |19.610 1.933 |2.404 |15.978 0.867 |0.953 | 3.384
Replace + Re ne 3.963 | 4.529 |27.411 2.712 |3.209 |21.465 2.082 | 2.507 |16.481 1.735 |2.098 {13.611 0.802 |0.865 | 2.859
Detect + Replace 5.126 | 5.751 |35.554 3.469 |4.005 |27.656 2.517 | 2.953 |20.519 1.911 |2.269 |15.947 0.886 |0.943 | 3.108
Detect + Re ne 4.482 | 5.169 |34.992 3.054 |3.634 |26.453 2.328 | 2.799 |19.004 1.865 |2.258 |14.686 0.863 |0.926 | 2.952
Parallel 5.239 | 5.952 |38.392 3.530 |4.139 |29.436 2.522 | 3.017 |21.208 1.943 |2.338 |15.748 0.904 10.962 | 3.095
Detect + Replace + Re ne 3.919 | 4.610 |33.947 2.708 |3.294 |25.697 2.082 | 2.570 |19.123 1.699 |2.112 |15.140 0.790 |0.858 | 3.056

Multi-iteration results

Detect + Replace + Re ne xﬂ

3.685 | 4.277 [28.164 |

2577 [3.075 [20.762 ||

2.001 [ 2.424 [16.086

1.652 [2.004 [13.056 ]|

0.779 [0.835 | 2.723

Table 4.3: Stereo matching results on KITTI 2015 validation set.

label estimate¥ . However, they do not all of them achieve it with the same success. For

instance, the baseline mod&eplaceandRe netend to be less accurate than the other

models. Compared to them, tBetect + Replacend theDetect + Re nearchitectures

perform considerably better in two out of three datasets, the Synthetic and the Middlebury
datasets. This improvement can only be attributed to the error detection step, which is
what distinguishes them from the baselines, and indicates the importance of having an
error detection component in the dense labeling task. Overall, the best single-iteration
performance is achieved by tibetect + Replace + Re narchitecture that we propose

here and which combines both the merits of the error detection component and the two

stage re nement strategy. Compared to it, Bagallel architecture has considerably worse
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performance, which indicates that the sequential order in the proposed architecture is
important for achieving accurate results.

Multi-iteration results: We also evaluated our best performing architecture, which
is the Detect + Replace + Re narchitecture that we propose, in the multiple iteration
case. Speci cally, the last entiyetect + Replace + Re ne xih Tables 4.1, 4.2, and 4.3
indicates the results of the proposed architecture for 2 iterations and we observe that it further
improves the performance w.r.t. the single iteration case. For more than 2 iterations we did
not see any further improvement and for this reason we chose not to include those results.
Note that in order to train this two iterations model, we rst pre-train the single iteration
version and then ne-tune the two iterations version by adding the generated disparity labels

from the rstiteration in the training set.

4.4.2.2 Label prediction accuracy Vs initial labels quality

In Figure 4-4 we evaluate the ability of each architecture to predict the correct disparity

label for each pixek as a function of the “quality” of the initial disparity labels ima  w

neighborhood of that pixel. To that end, we plot for each architecture the percentage of

erroneously estimated disparity labels as a function of the percentage of erroneous initial

disparity labels that exist in the patch of siwe w centered on the pixel of interest In

our case, the size of the neighborhawib set to65. An estimated pixel labei®for the pixel

x is considered erroneous if its absolute difference from the ground truth label is more than
o = 3 pixels. For the initial disparity labels in the patch centerex ptine threshold of

considering them incorrect is set to= 3 (Fig. 4-4.a), =5 (Fig. 4-4.b), =8 (Fig. 4-4.c),

or =15 (Fig. 4-4.d). We make the following observations (that are more clearly illustrated

from sub- gures 4-4.c and 4-4.d):

* In the case of th®eplaceandRe nearchitectures, when the percentage of erroneous
initial labels is low (e.g., less thatD% then theRe nearchitecture (which predicts
residual corrections) is considerably more accurate thaiRémacearchitecture
(which directly predicts new label values). However, when the percentage of erroneous
initial labels is high (e.g., more tha2D% then theReplacearchitecture is more

accurate than thBRe neone. This observation supports our argument that residual
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(a) Error threshold = 3 pixels (b) Error threshold =5 pixels

(c) Error threshold =8 pixels (d) Error threshold = 15 pixels

Figure 4-4. Percentage of erroneously estimated disparity labels for ayiasla function of the
percentage of erroneous initial disparity labels in the patch ofvgizen centered on the pixel of
interestx. The patch sizev is set to65. An estimated pixel label®is considered erroneous if its
absolute difference from the ground truth label is more than 3 pixels. For the initial disparity
labels in each patch, the threshol@f considering them incorrect is set(@) 3 pixels, (b) 5 pixels,
(c) 8 pixels, and(d) 15 pixels. The evaluation is performed 6Aimages of thesynthetidest set.

corrections are more suitable for “soft” mistakes in the initial labels while predicting
an entirely new label value is a better choice for the “hard” mistakes.

* By introducing the error detection component, both Beene and theReplace
architectures manage to signi cantly improve their predictions. IMDb&ect+Re ne
case, the improvement is due to the fact that the error detection component sets the
“hard” mistakes to the mean label values (see the description @é¢kect+Re ne
architecture) thus allowing tHee ne component to ignore the values of the “hard”
mistakes of the initial labels and instead make residual predictions w.r.t. the mean
label values (these mean values are xed and known in advance and thus it is easier

for the network to learn to make residual predictions w.r.t. them). In the case of the
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All/ All All / Est Noc / All Noc / Est Runtime
Architectures |D1-bg |D1-fg |D1l-all |D1-bg |D1-fg |D1-all |D1-bg |D1-fg |D1-all |D1-bg [D1-fg |D1-all (secs)
Ours 258 | 6.04| 316 | 258 | 6.04 | 3.16 | 234 | 487 | 276 | 234 | 487 | 276 0.4
DispNetC [101]| 4.32 | 441 | 434 | 432 | 441 | 434 | 411 | 3.72| 4.05| 411 | 3.72 | 4.05 0.06
PBCB [136] 258 | 874 | 361 | 258 | 8.74 36| 227 | 771 | 317 | 227 | 7.71| 3.17 68
Displets v2 [47]| 3.00 | 556 | 3.43 | 3.00 | 556 | 343 | 273 | 495| 3.09 | 273 | 495 | 3.09 265
MC-CNN [166]| 2.89 | 888 | 3.89 | 289 | 888 | 388 | 248 | 7.64| 333 | 248 | 7.64 | 3.33 67
SPS-St [158] 3.84 {1267 | 531 | 3.84|1267| 531 | 350 |11.61| 484 | 350 |11.61| 4.84 2
MBM [30] 469 |13.05| 6.08 | 4.69 |13.05| 6.08 | 4.33 |12.12| 561 | 4.33 |12.12 | 561 0.13

Table 4.4: Stereo matching results on KITTI 2015 test set.

Detect+Replacarchitecture, the error detection component “dictates’Raplace
component to predict new label values for the incorrect initial labels while allowing
the propagation of the correct ones in the output.

 Finally, the bestlabel prediction accuracy Vs initial labels qualitybehavior is
achieved by the proposé&aktect + Replace + Re narchitecture, which ef ciently
combines the error detection component with the two-stage label improvement ap-
proach. Interestingly, the improvement margins w.r.t. the rest architectures is increased

as the quality of the initial labels is decreased.

4.42.3 KITTI 2015 test set results

We submitted our best solution, which is the propddetect + Replace + Re narchitecture
applied for two iterations, on the KITTI 2015 test set evaluation server and we achieved
state-of-the-art results in the main evaluation metric, D1-all, surpassing at the time of
submission all prior work by a signi cant margin. The results of our submission, as well as
of other competing methods, are reported in Tablé.Abte that our improvement w.r.t. the

best prior approach corresponds to a more tt#brelative reduction of the error rate. Our

total execution time is 0.4 secs, of which around 0.37 secs is used by the patch matching
algorithm for generating the initial disparity labels and the rest 0.03 bypetsct + Replace

+ Re ne x2architecture (measured in a Titan X GPU). For this submission, after having
train theDetect + Replace + Re ne xthodel on the training split (160 images), we further

ne-tuned it on both the training and the validation splits (in which we divided the 200

3The link to our KITTI 2015 submission that contains more thorough test set results — both qualitative and
guantitative — is:
http://www.cvlibs.net/datasets/kitti/eval_scene_flow_detail.php?
benchmark=stereo&result=365eacbfleffa76led07aaa674a9b61c60fe9300
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(a) ImageX (b) Initial labels Y (c) Final labels Y © (d) Target labels
Figure 4-5: Here we illustrate some examples of the disparity predictions that the “X-Blind”
architecture performs. The illustrated examples are from the Synthetic and the Middlebury datasets.

I > 2 pixel I > 3 pixel I > 4 pixel I > 5 pixel | EPE
Architectures H Non-Occ ‘ All ‘ Occ HNon-Occ ‘ All ‘ Occ H Non-Occ ‘ All ‘ Occ H Non-Occ ‘ All ‘ Occ HNon-Occ ‘ All ‘ Occ
Synthetic dataset
Initial labelsY 24.3175 22.9004 21.9140 21.1680 12.0218
Detect + Replace + Re n¢ 9.5981 7.9764 6.7895 5.9074 1.8569
“X-Blind” 16.0014 14.0196 12.5170 11.3758 3.8810
Middlebury dataset
Initial labelsY 18.243 | 26.714 |86.125 15.664 | 23.986 |82.330 14.208 | 22.282 |78.758 13.237 | 21.044 |75.579 6.058 8.709 | 25.598
Detect + Replace + Re ng| 12.845| 17.825 |50.407 10.096 | 14.379 |41.704 8.285 | 11.957 |34.801 7.057 | 10.253 |29.560 1.774 2.368 | 5.457
“X-Blind” 16.845 | 22.037 |57.324 14.038 | 18.562 |48.356 12.212 | 16.217 |41.941 10.914 | 14.509 |37.022 2.878 3.656 | 7.945
KITTI 2015 dataset
Initial labelsY 8.831 | 10.649 (98.098 6.412 8.253 | 96.559 5.222 7.059 |94.742 4.514 6.339 |93.139 1.700 2.457 |31.214
Detect + Replace + Re ng 3.919 4.610 [33.947 2.708 3.294 | 25.697 2.082 2.570 [19.123 1.699 2.112 |15.140 0.790 0.858 | 3.056
“X-Blind” 5.040 | 5.602 |32.575 3.671 | 4.135|24.566 2.722 | 3.099 |18.069 2.191| 2.505 |14.359 0.910 | 0.966 | 2.997

Table 4.5: Stereo matching results for the “X-Blind” architecture. We also include the corresponding
results of the proposeietect + Replace + Re narchitecture to facilitate their comparison.

images of KITTI 2015 training dataset).

4.4.2.4 “X-Blind” Detect + Replace + Re ne architecture

Here we evaluate the “X-Blind” architecture that, as already explained, it is exactly the same
as the proposebDetect + Replace + Re narchitecture with the only difference being that as
input it gets only the initial label¥ and not the imagX . The purpose of evaluating such an
architecture is not to examine a competitive variant of the rietect + Replace + Re ne
architecture, but rather to explore the capabilities of the latter one in such a scenario. In
Table 4.5 we provide the stereo matching results of the “X-Blind” architecture. We observe

that it might not be able to compete the origistect + Replace + Re narchitecture
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but it still can signi cantly improve the initial disparity label estimates. In Figure 4-5 we
illustrate some disparity prediction examples generated by the “X-Blind” architecture. We
observe that the “X-Blind” architecture manages to considerably improve the quality of the
initial disparity label estimates, however, since it does not have the iXageguide it, it is

not able to accurately reconstruct the disparity eld on the borders of the objects.

4.4.3 Qualitative results

This section includes qualitative examples that help illustrating the role of the various

components of our proposed architecture.

4.4.3.1 Error Detection step

In Figure 4-6 we provide additional examples of error probability ntagtat the error
detection componerii,(X; Y ) generated w.r.t. the initial labe¥) and compare them with

the ground truth error maps of the initial labels. The ground truth error maps are computed
by thresholding the absolute difference of the initial labésom the ground truth labels

with a threshold o8 pixels (red are the erroneous pixel labels in the gure). Note that this is
the logic that is usually followed in the disparity task for considering a pixel label erroneous.
We observe that, despite the fact the error detection compénéntis not explicitly trained

to produce such ground truth error maps, its predictions still highly correlate with them.
This implies that the error detection componEgt:) seems to have learnt to recognize the
areas that look abnormal/atypical with respect to the joint input-output $p&céqg (i.e., it

has learnt the “structure” of that space).

4.4.3.2 Replace step

In Figure 4-7 we provide several examples that more clearly illustrate the function performed
by the Replace step in our proposed architecture. Speci cally, in sub- gures 4-7a, 4-7b,
and 4-7c we depict the input imade, the initial disparity label estimates, and the error
probability mapE that the detection componeRi(:) yields for the initial labelsf . In sub-

gure 4-7d we depict the label predictions of the replace compoReg(). For visualization

157



purposes we only depict thg, (;) pixel predictions that will replace the initial labels that are
incorrect (according to the detection component) by drawing the remaining ones (i.e., those
whose error probability is less th&b) with black color. Finally, in the last sub- gure 4-7e

we depict the renewed labdls= E  Fy (X;Y;E)+(1 E) Y. We canreadily observe

that most of the “hard” mistakes of the initial lab&shave now been crudely “ xed” by the

Replace component.

4.4.3.3 Renestep

In Figure 4-8 we provide several examples that more clearly illustrate the function performed
by the Re ne step in our proposed architecture. Speci cally, in sub- gures 4-8a, 4-8b, and
4-8c we depict the input image, the initial disparity label estimates, and the renewed
labelsU that the Replace step yields. In sub- gure 4-8d we depict the residual corrections
that the Re ne componeri;, (:) yields for the renewed labeld. Finally, in last sub- gure

4-8e we depict the nal label estimaty®= U + F,(X;Y; E; U) that the Re ne step yields.

We observe that most of residual corrections that the Re ne compdnéntyields are
concentrated on the borders of the objects. Furthermore, by adding those residuals on the
renewed labeld), the Re ne step manages to re ne the renewed lakekEnd align the

estimated label¥ °with the ne image structures iX .

4.4.3.4 Detect, Replace, Re ne pipeline

In Figure 4-9 we illustrate the entire work- ow of tHeetect + Replace + Re narchitecture

that we propose and we compare its predictigfsvith the ground truth disparity labels.

4.4.3.5 Multi-iteration architecture

In Figure 4-10, we illustrate the estimated disparity labels after each iteration of our multi-
iteration architectur®etect + Replace + Re ne xthat in our experiments achieved the
most accurate results. We observe that theit2ration further improves the ne details

of the estimated disparity labels delivering a higher delity disparity eld. Furthermore,

applying the model for a"® iteration results in a disparity eld that looks more “natural”,
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i.e., visually plausible.

4.4.3.6 KITTI 2015 qualitative results

We provide qualitative results from KITTI 2015 validation set in Figure 4-11. In order to
generate them we used tBetect + Replace + Re ne xarchitecture that gave the best
guantitative results. We observe that our model is able to recover a good estimate of the

actual disparity map even when the initial label estimates are severely corrupted.

4.5 EXxperiments on semantic segmentation

In this section we provide some preliminary results obtained by applying the proposed
dense image labeling architecture to two semantic segmentation tasks. Note that in semantic
segmentation, each pixel of an image must be labeled with a semantic category (e.g., road,

building, window, door, fence, etc.).

4.5.1 Implementation details for the semantic segmentation case

In order to generate the initial labe¥sin the semantic segmentation case we used an FCN
like architecture 92] based on the ResNet567] network backbone. The proposed deep
joint input-output model, apart from the ima¥eand the initial label%’, also takes as input
feature maps generated by the FCN model during the label initialization step. We found that
this modi cation improves the quality of the generated labels. We also found advantageous
to apply a binary cross entropy loss on the error detection outputs using ground truth error
maps (de ned from the initial label maps and the ground truth label maps) in order to better
force the network to learn the error detection step. Finally, in order to speed-up inference
time, the Detect, Replace, Re ne steps are implemented with a single network that predicts

all those three outputs simultaneously.
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4.5.2 Cityscape results

We applied the proposed dense image labeling algorithm in the Cityscapes dbhaet]

our algorithm manages to improve the segmentation accuracy (measured with the mean
Intersection-over-Union metric) from0:09% (the Initial labels Y case) t073:23% (the

Detect + Replace + Re nease). In Figure 4-12 we visualize the initial labels and the labels
estimated by ouDetect + Replace + Re narchitecture. We observe that the proposed
dense labeling algorithm has managed to improve the labeling accuracy on the borders of
the objects and also to recover objects with thin elongated structures (e.g., poles) that were

lost in the initial labels.

4.5.3 Facade Parsing results

We applied the proposddetect + Replace + Re né&abeling algorithm on the facade parsing
ECP datasetl51] and we provide visualizations in Figure 4-13. We observe again that our
dense labeling algorithms manages to signi cantly improve the labeling accuracy on the

borders of the objects.

4.6 Conclusions

In this chapter we explored a family of architectures that performs the structured prediction
problem of dense image labeling by learning a deep joint input-output model that (iteratively)
improves some initial estimates of the output labels. In this context our main focus was
on what is the optimal architecture for implementing this deep model. We argued that
the prior approaches of directly predicting the new labels with a feed-forward deep neural
networks are sub-optimal and we proposed to decompose the label improvement step in
three sub-tasks: (1) detection of the incorrect input labels, 2) their replacement with new
labels, and 3) the overall re nement of the output labels in the form of residual corrections.
All three steps are embedded in a uni ed architecture, which weletiect + Replace +

Re ne, that is end-to-end trainable. We evaluated our architecture in the disparity estimation

(stereo matching) task and we report state-of-the-art results in the KITTI 2015 test set. We
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also performed preliminary experiments in the semantic segmentation tasks and we report

some very promising results.
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Middlebury dataset

Synthetic Dataset

KITTI 2015 Dataset

(a) Image X (b) Initial labels Y (c) Predicted errors E (d) Actual errors
Figure 4-6: lllustration of the error probability magds that the error detection compondrd(X; Y )
yields. The ground truth error maps are computed by thresholding the absolute difference of the
initial labelsY from the ground truth labels with a threshold3ypixels (red are the erroneous pixel
labels). Note that in the case of the KITTI 2015 dataset, the available ground truth labels are sparse
and do not cover the entire image (e.qg., usually there is no annotation for the sky), which is why
some obviously erroneous initial label estimates are not coloured as incorrect (with red color) in the

ground truth error maps.
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Middlebury dataset

Synthetic Dataset

KITTI 2015 Dataset

(a) Image X (b) Initial labels Y  (C)Errormap E  (d) Fy(;) outputs  (€) New labelsU
Figure 4-7: Here we provide more examples that illustrate the function performed by the Replace
step in our proposed architecture. Speci cally, sub- guga} (b), and(c) depict the input imag ,
the initial disparity label estimates, and the error probability map that the detection component
Fe(?) yields for the initial labelsr . In sub- gure(d) we depict the label predictions of the replace
component, (:). For visualization purposes we only depict the(:) pixel predictions that will
replace the initial labels that are incorrect (according to the detection component) by drawing the
remaining ones (i.e., those whose error probability is less @&rwith black color. Finally, in the
last sub- gure(e) we depict the renewed labdls= E  F (X;Y;E)+(1 E) Y. Wecan
readily observe that most of the “hard” mistakes of the initial lalyelsave now been crudely “ xed”
by the Replace component.
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Middlebury dataset

Synthetic Dataset

KITTI 2015 Dataset

(@) ImageX (b) Initial labels Y (c) LabelsU (d) F, () residuals (e) Final labels Y °
Figure 4-8: Here we provide more examples that illustrate the function performed by the Re ne
step in our proposed architecture. Speci cally, in sub- gufay (b), and(c) we depict the input
imageX , the initial disparity label estimates, and the renewed labels that the Replace step
yields. In sub- gure(d) we depict the residual corrections that the Re ne compofre) yields
for the renewed labels. Finally, in the last sub- gurge) we depict the nal label estimates
YO= U+ F,(X;Y;E;U) that the Re ne step yields.
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Middlebury dataset

Synthetic Dataset

KITTI 2015 Dataset

(@) Image x (b) nit. labels Y (C) Errors E (d) Labelsu  (€)Final labels Y © () Targets
Figure 4-9: Illustration of the intermediate steps of tbetect + Replace + Re nevork- ow. We
observe that the nal Re ne componeht (:), by predicting residual corrections, manages to re ne
the renewed labeld and align the output labed with the ne image structures in imagé. Note
that in the case of the KITTI 2015 dataset, the available ground truth labels are sparse and do not

cover the entire image.
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Middlebury Dataset

Synthetic Dataset

(a) Image X (b) Initial labels Y  (c) 1stiter. labels (d) 2nd iter. labels (e) Target labels
Figure 4-10: lllustration of the estimated labels on each iteration offe¢ect, Replace, Re ne
x2 multi-iteration architecture. The visualised examples are from zoomed-in patches from the
Middlebury and the Synthetic datasets.
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Figure 4-11: Qualitative results in the validation set of KITTI 2015. From left to right, we depict
the left imageX , the initial labelsyY , the labelsy °that our model estimates, and nally the errors of
our estimates w.r.t. ground truth.
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Figure 4-12: Qualitative results in the validation set of Cityscapes dataset. From left to right, we
depict the input imag , the initial labelsY , the re ned labelsy °that our model estimates, and
nally the ground truth labels. Note that the black image regions in the ground truth labels correspond
to the unknown category. Those “unknown” image regions are ignored during the evaluation of the

segmentation performance.
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Figure 4-13: Qualitative results in the Facade parsing dataset. From left to right, we depict the input
imageX , the initial labelsy , the re ned labelsy °that our model estimates, and nally the ground
truth labels.
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Chapter 5

Unsupervised Visual Representation

Learning

5.1 Introduction

The subject of this chapter is unsupervised visual representation learning, i.e., learning
high level ConvNet based representations in an unsupervised manner that avoids manual
annotation of visual data. Lately, there is an increased interest for this problem due to
the desire for a more annotation ef cient learning of ConvNet based image understanding
models, which is also one of the main goals of this thesis.

Among the various approaches for unsupervised feature learning, a prominent paradigm
is the so-calledelf-supervised learnintpat de nes an annotation free pretext task, using
only the visual information present on the images or videos, in order to provide a surrogate
supervision signal for feature learning. For example, in order to learn featliv€kahd [81]
train ConvNets to colorize gray scale imageXf][and [L11] predict the relative position
of image patches, and] predict the egomotion (i.e., self-motion) of a moving vehicle
between two consecutive frames. The rationale behind such self-supervised tasks is that
solving them will force the ConvNet to learn semantic image features that can be useful
for other vision tasks. In fact, image representations learned with the above self-supervised
tasks, although they have not managed to match the performance of supervised-learned

representations, they have proved to be good alternatives for transferring on other vision
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tasks, such as object recognition, object detection, and semantic segmeritafidil]
171, 82,24, 111, 112 117, 25]. Other successful cases of unsupervised feature learning
are clustering based metho@8] 89, 159, reconstruction based methods 5, 99|, and

methods that involve learning generative probabilistic models [45, 26, 123].

Our work follows the self-supervised paradigm and proposes to learn image represen-
tations by training ConvNets to recognize the geometric transformation that is applied to
the image that it gets as input. More speci cally, we rst de ne a small set of discrete
geometric transformations, then each of those geometric transformations is applied to each
image in the dataset and the produced transformed images are fed to the ConvNet model
that is trained to recognize the transformation of each image. In this formulation, it is the
set of geometric transformations that actually de nes the classi cation pretext task that the
ConvNet model has to learn. Therefore, in order to achieve unsupervised semantic feature
learning, it is of crucial importance to properly choose those geometric transformations (we
further discuss this aspect of our methodology in section 5.2.2). What we propose is to
de ne the geometric transformations as the image rotations by 0, 90, 180, and 270 degrees.
Thus, the ConvNet model is trained on the 4-way image classi cation task of recognizing
one of the four image rotations (see Figure 5-2). We argue that in order for a ConvNet
model to be able recognize the rotation transformation that was applied to an image it will
require to understand the concept of the objects depicted in the image (see Figure 5-1),
such as their location in the image, their type, and their pose. Throughout this chapter we
support that argument both qualitatively and quantitatively. Furthermore we demonstrate in
the experimental section of this chapter that despite the simplicity of our self-supervised
approach, the task of predicting rotation transformations provides a powerful surrogate
supervision signal for feature learning and leads to signi cant improvements on the relevant

benchmarks.

Note that our self-supervised task is different from the work of Dosovitskiy e2g|. |
and Agrawal et al.J] that also involve geometric transformations. Dosovitskiy et28] [
train a ConvNet model to yield representations that are discriminative between images and
at the same time invariant on geometric and chromatic transformations. In contrast, we train

a ConvNet model to recognize the geometric transformation applied to an image. It is also
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90 rotation 270 rotation 180 rotation O rotation 270 rotation

Figure 5-1: Images rotated by random multiples of 90 degrees (e.g., 0, 90, 180, or 270 degrees). The
core intuition of our self-supervised feature learning approach is that if someone is not aware of the
concepts of the objects depicted in the images, he cannot recognize the rotation that was applied to
them.

fundamentally different from the egomotion method of Agrawal etld).\Wwhich employs

a ConvNet model with siamese like architecture that takes as input two consecutive video
frames and is trained to predict (through regression) their camera transformation. Instead, in
our approach, the ConvNet takes as input a single image to which we have applied a random
geometric transformation (i.e., rotation) and is trained to recognize (through classi cation)

this geometric transformation without having access to the initial image.
To summarize, the contribution of the work presented in this chapter are as follows:

» We propose a new self-supervised task that is very simple and at the same time, as we
demonstrate throughout this chapter, offers a powerful supervisory signal for semantic
feature learning.

» We exhaustively evaluate our self-supervised method under various settings (e.g. semi-
supervised or transfer learning settings) and in various vision tasks (i.e., CIFAR-10,
ImageNet, Places, and PASCAL classi cation, detection, or segmentation tasks).

* In all of them, our novel self-supervised formulation demonstrates state-of-the-art
results with dramatic improvements w.r.t. prior unsupervised approaches.

» As a consequence we show that for several important vision tasks, our self-supervised
learning approach signi cantly narrows the gap between unsupervised and supervised

feature learning.

In the following sections, we describe our self-supervised methodolag, we provide

experimental results in 83, and nally we conclude in 84.
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5.2 Methodology

5.2.1 Overview

The goal of our work is to learn ConvNet based semantic features in an unsupervised manner.
To achieve that goal we propose to train a ConvNet mbédél to estimate the geometric
transformation applied to an image that is given to it as input. Speci cally, we de ne a set
of K discrete geometric transformatio@s= fg(:jy)g{le , Whereg(:jy) is the operator that
applies to imag& the geometric transformation with labethat yields the transformed
imageX Y = g(X]jy). The ConvNet moddF (:) gets as input an imageY (where the label

y is unknown to modef (:)) and yields as output a probability distribution over all possible

geometric transformations:
F(XYj)=fF/ (XY ] )gy; (5.1)

whereFY (XY j ) is the predicted probability for the geometric transformation with lgbel

and are the learnable parameters of moe@él).

Therefore, given a set &f training image® = fX;gl,, the self-supervised training
objective that the ConvNet model must learn to solve is:
1 X
min N loss(Xi; ); (5.2)

i=1
where the loss functioloss(:) is de ned as:

X

loss(Xi; ) = log(F” (9(Xijy)j )): (5.3)

1
K

In the following subsection we describe the type of geometric transformations that we

propose in our work.
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Figure 5-2: Illustration of the self-supervised task that we propose for semantic feature learning.
Given four possible geometric transformations, the 0, 90, 180, and 270 degrees rotations, we train
a ConvNet modeF (:) to recognize the rotation that is applied to the image that it gets as input.
FY(XY ) is the probability of rotation transformatignpredicted by modeF (:) when it gets as

input an image that has been transformed by the rotation transfornyation

5.2.2 Choosing geometric transformations: image rotations

In the above formulation, the geometric transformati@must de ne a classi cation
task that should force the ConvNet model to learn semantic features useful for visual
perception tasks (e.g., object detection or image classi cation). In our work we propose
to de ne the set of geometric transformatioBsas all the image rotations by multiples of
90 degrees, i.e., 2d image rotations by 0, 90, 180, and 270 degrees (see Figure 5-2). More
formally, if Rot(X; ) is an operator that rotates imageby degrees, then our set of
geometric transformations consists of te= 4 image rotationss = fg(X jy)g;-, , where
g(Xjy) = Rot(X; (y 1)90).

Forcing the learning of semantic features: The core intuition behind using these
image rotations as the set of geometric transformations relates to the simple fact that it
is essentially impossible for a ConvNet model to effectively perform the above rotation

recognition task unless it has rst learnt to recognize and detect classes of objects as well
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Input images on the models

Convl27 27 Conv31l3 13 Conv56 6 Convl27 27 Conv31l3 13 Conv56 6

(a) Attention maps of supervised model (b) Attention maps of self-supervised model

Figure 5-3: Attention maps generated by an AlexNet model trai@do recognize objects (super-
vised), andb) to recognize image rotations (self-supervised). In order to generate the attention map
of a conv. layer we rst compute the feature maps of this layer, then we raise each feature activation
on the powep, and nally we sum the activations at each location of the feature map. For the conv.
layers 1, 2, and 3 we used the powprs 1, p = 2, andp = 4 respectively. For visualization of our
self-supervised model's attention maps for all the rotated versions of the images see Figure 5-6.

as their semantic parts in images. More speci cally, to successfully predict the rotation
of an image the ConvNet model must necessarily learn to localize salient objects in the
image, recognize their orientation and object type, and then relate the object orientation with
the dominant orientation that each type of object tends to be depicted within the available
images. In Figure 5-3b we visualize some attention maps generated by a model trained on
the rotation recognition task. These attention maps are computed based on the magnitude
of activations at each spatial cell of a convolutional layer and essentially re ect where the
network puts most of its focus in order to classify an input image. We observe, indeed, that

in order for the model to accomplish the rotation prediction task it learns to focus on high
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(a) Supervised model (b) Our self-supervised model

Figure 5-4: First layer lters learned by a AlexNet model trained ¢aj the supervised object
recognition task an¢b) the self-supervised task of recognizing rotated images. We observe that the
Iters learned by the self-supervised task are mostly oriented edge Iters on various frequencies and,
remarkably, they seem to have more variety than those learned on the supervised task.

level object parts in the image, such as eyes, nose, tails, and heads. By comparing them
with the attention maps generated by a model trained on the object recognition task in a

supervised way (see Figure 5-3a) we observe that both models seem to focus on roughly the
same image regions.

In Figure 5-6 we visualize the attention maps for all the rotated copies of the images. We
observe that the attention maps of all the rotated copies of an image are roughly the same,
i.e., the attention maps are equivariant w.r.t. the image rotations. This practically means that
in order to accomplish the rotation prediction task the network focuses on the same object
parts regardless of the image rotation. Furthermore, in Figure 5-4 we visualize the rst layer

Iters that were learnt by an AlexNet model trained on the proposed rotation recognition
task. As can be seen, they appear to have a big variety of edge Iters on multiple orientations
and multiple frequencies. Remarkably, these Iters seem to have a greater amount of variety

even than the lIters learnt by the supervised object recognition task.

Absence of low-level visual artifacts: An additional important advantage of using

image rotations by multiples of 90 degrees over other geometric transformations, is that they
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can be implemented by ip and transpose operations (as we will see below) that do not leave
any easily detectable low-level visual artifacts that will lead the ConvNet to learn trivial
features with no practical value for the vision perception tasks. In contrast, had we decided
to use as geometric transformations, e.g., scale and aspect ratio image transformations, in
order to implement them we would need to use image resizing routines that leave easily

detectable image artifacts.

Well-posedness:Furthermore, human captured images tend to depict objects in an
“up-standing” position, thus making the rotation recognition task well de ned, i.e., given an
image rotated by 0, 90, 180, or 270 degrees, there is usually no ambiguity of what is the
rotation transformation (with the exception of images that only depict round objects). In
contrast, that is not the case for the object scale that varies signi cantly on human captured
images.

Implementing image rotations: In order to implement the image rotations by 90, 180,
and 270 degrees (the 0 degrees case is the image itself), we use ip and transpose operations.
Speci cally, for 90 degrees rotation we rst transpose the image and then ip it vertically
(upside-down ip), for 180 degrees rotation we ip the image rst vertically and then
horizontally (left-right ip), and nally for 270 degrees rotation we rst ip vertically the

image and then we transpose it.

5.2.3 Discussion

The simple formulation of our self-supervised task has several advantages. It has the
same computational cost as supervised learning, similar training convergence speed (that
is signi cantly faster than image reconstruction based approaches; our AlexNet model
trains in around 2 days using a single Titan X GPU), and can trivially adopt the ef cient
parallelization schemes devised for supervised learrfly inaking it an ideal candidate

for unsupervised learning on internet-scale data (i.e., billions of images). Furthermore, our
approach does not require any special image pre-processing routine in order to avoid learning
trivial features, as many other unsupervised or self-supervised approaches do. Despite the

simplicity of our self-supervised formulation, as we will see in the experimental section of
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this chapter, the features learned by our approach achieve dramatic improvements on the

unsupervised feature learning benchmarks.

5.3 Experimental Results

In this section we conduct an extensive evaluation of our approach on the most com-
monly used image datasets, such as CIFAR7I) [mageNet 129, PASCAL [3]], and
Places205175, as well as on various vision tasks, such as object detection, object seg-
mentation, and image classi cation. We also consider several learning scenarios, including
transfer learning and semi-supervised learning. In all cases, we compare our approach with

corresponding state-of-the-art methods.

5.3.1 CIFAR experiments

We start by evaluating on the object recognition task of CIFAR-10 the ConvNet based
features learned by the proposed self-supervised task of rotation recognition. We will here
after call a ConvNet model that is trained on the self-supervised task of rotation recognition
RotNetmodel.

Implementation details: In our CIFAR-10 experiments we implement tRetNet
models with Network-In-Network (NIN) architecturegd. In order to train them on the
rotation prediction task, we use SGD with batch si2Z& momentun0:9, weight decay
5e 4 andlr of 0.1. We drop the learning rates by a factobdafter epochs 30, 60, and
80. We train in total for 100 epochs. In our preliminary experiments we found that we get
signi cant improvement when during training we train the network by feeding it all the four
rotated copies of an image simultaneously instead of each time randomly sampling a single
rotation transformation. Therefore, at each training batch the network sees 4 times more
images than the batch size.

Evaluation of the learned feature hierarchies:First, we explore how the quality of
the learned features depends on their depth (i.e., the depth of the layer that they come from)
as well as from the total depth of tiRotNetmodel. For that purpose, we rst train using the

CIFAR-10 training images threRotNetmodels which have 3, 4, and 5 convolutional blocks

179



Model \Coanl ConvB2 ConvB3 ConvB4 ConvB5

RotNet with 3 conv. blocks 85.45 88.26 62.09 - -
RotNet with 4 conv. blocks 85.07 89.06 86.21 61.73 -
RotNet with 5 conv. blocks 85.04 89.76 86.82 74.50 50.37

Table 5.1: Evaluation of the unsupervised learned features by measuring the classi cation accuracy
that they achieve when we train a non-linear object classi er on top of them. The reported results
are from CIFAR-10. The size of the ConvB1 feature map@6is 16 16 and the size of the other
feature mapsig92 8 8.

respectively (note that each conv. block in the NIN architectures that implemeRiotNet
models have 3 conv. layers; therefore, the total number of conv. layers of the examined
RotNetmodels is 9, 12, and 15 for 3, 4, and 5 conv. blocks respectively). Afterwards, we
learn classi ers on top of the feature maps generated by each conv. block dReti¢ét

model. Those classi ers are trained in a supervised way on the object recognition task of
CIFAR-10. They consist of 3 fully connected layers; the 2 hidden layers have 200 feature
channels each and are followed by batch-norm and relu units. We report the accuracy results
of CIFAR-10 test set in Table 5.1. We observe that in all cases the feature maps generated
by the 2nd conv. block (that actually has depth 6 in terms of the total number of conv.
layer till that point) achieve the highest accuracy, i.e., between 88.26% and 89.06%. The
features of the conv. blocks that follow the 2nd one gradually degrade the object recognition
accuracy, which we assume is because they start becoming more and more speci c on the
self-supervised task of rotation prediction. Also, we observe that increasing the total depth
of the RotNet models leads to increased object recognition performance by the feature maps
generated by earlier layers (and after the 1st conv. block). We assume that this is because
increasing the depth of the model and thus the complexity of its head (i.e., top ConvNet

layers) allows the features of earlier layers to be less speci c to the rotation prediction task.

Exploring the quality of the learned features w.r.t. the number of recognized ro-
tations: In Table 5.2 we explore how the quality of the self-supervised features depends
on the number of discrete rotations used in the rotation prediction task. For that purpose
we de ned three extra rotation recognition tasks: (a) one with 8 rotations that includes all
the multiples of 45 degrees, (b) one with only theand180 rotations, and (c) one with

only the90 and270 rotations. In order to implement the rotation transformation of the
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# Rotations| Rotations | Classi cation Accuracy

4 0,90, 180, 270 89.06
8 0,45,90, 135,180, 225, 270, 315 88.51
2 0,180 87.46
2 90, 270 85.52

Table 5.2: Exploring the quality of the self-supervised learned features w.r.t. the number of recog-
nized rotations. For all the entries we trained a non-linear classi er with 3 fully connected layers

(similar to Table 5.1) on top of the feature maps generated by the 2nd conv. block of a RotNet model
with 4 conv. blocks in total. The reported results are from CIFAR-10.

45,135,225, 270, and315 rotations (in the 8 discrete rotations case) we used an image
wrapping routine and then we took care to crop only the central square image regions that
do not include any of the empty image areas introduced by the rotation transformations
(and which can easily indicate the image rotation). We observe that indeed for 4 discrete
rotations (as we proposed) we achieve better object recognition performance than the 8
or 2 cases. We believe that this is because the 2 orientations case offers too few classes
for recognition (i.e., less supervisory information is provided) while in the 8 orientations
case the geometric transformations are not distinguishable enough and furthermore the 4
extra rotations introduced may lead to visual artifacts on the rotated images. Moreover, we
observe that among the RotNet models trained with 2 discrete rotations, the RotNet model
trained with90 and270 rotations achieves worse object recognition performance than
the model trained with thé and180 rotations, which is probably due to the fact that the
former model does not “see” during the unsupervised phase ttregation that is typically

used during the object recognition training phase.

Comparison against supervised and other unsupervised methodsn Table 5.3 we
compare our unsupervised learned features against other unsupervised (or hand-crafted)
features on CIFAR-10. For our entries we use the feature maps generated by the 2nd conv.
block of a RotNet model with 4 conv. blocks in total. On top of those RotNet features we
train 2 different classi ers: (a) a non-linear classi er with 3 fully connected layers as before
(entry(Ours) RotNet + non-linegt and (b) three conv. layers plus a linear prediction layer
(entry (Ours) RotNet +cony.note that this entry is basically a 3 blocks NIN model with

the rst 2 blocks coming from a RotNet model and the 3rd being randomly initialized and
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Method Classi cation Accuracy

Supervised NIN | 92.80
Random Init. + conv | 72.50
(Ours) RotNet + non-linear 89.06
(Ours) RotNet + conv 91.16
(Ours) RotNet + non-linear ( ne-tuned) 91.73
(Ours) RotNet + conv ( ne-tuned) 92.17
Roto-Scat + SVM [115] 82.3
ExemplarCNN [28] 84.3
DCGAN [123] 82.8
Scattering [114] 84.7

Table 5.3: Evaluation of unsupervised feature learning methods on CIFAR-10StUpervised NIN

and the(Ours) RotNet + conentries have exactly the same architecture but the rst was trained fully
supervised while on the second the rst 2 conv. blocks were trained unsupervised with our rotation
prediction task and the 3rd block only was trained in a supervised manner. Rattdom Init. +
conventry a conv. classi er (similar to that gOurs) RotNet + conyis trained on top of two NIN

conv. blocks that are randomly initialized and stay frozen. Note that each of the prior approaches has
a different ConvNet architecture and thus the comparison with them is just indicative.

Classes \aero car bird cat deer dog frog horse ship truck
Supervised NIN J93.7 96.3 89.4 824 93.6 89.7 950 943 957 0952

(Ours) RotNet + cony 91.7 95.8 87.1 835 915 853 942 0919957 94.2
Table 5.4: Per class CIFAR-10 classi cation accuracy.

trained on the recognition task). We observe that we improve over the prior unsupervised
approaches and we achieve state-of-the-art results in CIFAR-10 (note that each of the prior
approaches has a different ConvNet architecture thus the comparison with them is just
indicative). More notablythe accuracy gap between the RotNet based model and the fully
supervised NIN model is very smaihly 1.64 percentage points (92.80% vs 91.16%). We
provide per class breakdown of the classi cation accuracy of our unsupervised model as
well as the supervised one in Table 5.4. In Table 5.3 we also report the performance of the
RotNet features when, instead of being kept frozen, they are ne-tuned during the object
recognition training phase. We observe that ne-tuning the unsupervised learned features
further improves the classi cation performance, thus reducing even more the gap with the
supervised case.

Correlation between object classi cation task and rotation prediction task: In Fig-
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(@) (b)

Figure 5-5: (a) Plot with the rotation prediction accuracy and object recognition accuracy as a
function of the training epochs used for solving the rotation prediction task. The red curve is the
object recognition accuracy of a fully supervised model (a NIN model), which is independent from
the training epochs on the rotation prediction task. The yellow curve is the object recognition
accuracy of an object classi er trained on top of feature maps learnedRogNetmodel at different
snapshots of the training procedugl) Accuracy as a function of the number of training examples
per category in CIFAR-100urs semi-superviseid a NIN model whose rst 2 conv. blocks are
RotNetmodel that was trained in a self-supervised way on the entire training set of CIFAR-10 and
the 3rd conv. block along with a prediction linear layer that was trained with the object recognition
task only on the available set of labeled images.

ure 5-5a, we plot the object classi cation accuracy as a function of the training epochs used
for solving the self-supervised task of recognizing rotations, which learns the features used
by the object classi er. More speci cally, in order to create the object recognition accuracy
curve, in each training snapshot of RotNet (i.e., every 20 epochs), we pause its training
procedure and we train from scratch (until convergence) a non-linear object classi er on
top of the so far learnt RotNet features. Therefore, the object recognition accuracy curve
depicts the accuracy of those non-linear object classi ers after the end of their training
while the rotation prediction accuracy curve depicts the accuracy of the RotNet at those
shapshots. We observe that, as the ability of the RotNet features for solving the rotation
prediction task improves (i.e., as the rotation prediction accuracy increases), their ability
to help solving the object recognition task improves as well (i.e., the object recognition
accuracy also increases). Furthermore, we observe that the object recognition accuracy
converges fast w.r.t. the number of training epochs used for solving the pretext task of

rotation prediction.
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Semi-supervised settingMotivated by the very high performance of our unsupervised
feature learning method, we also evaluate it on a semi-supervised setting. More speci cally,
we rst train a 4 blockRotNetmodel on the rotation prediction task using the entire image
dataset of CIFAR-10 and then we train on top of its feature maps object classi ers using
only a subset of the available images and their corresponding labels. As feature maps we
use those generated by the 2nd conv. block oRb&tNetmodel. As a classi er we use a set
of convolutional layers that actually has the same architecture as the 3rd conv. block of a
NIN model plus a linear classi er, all randomly initialized. For training the object classi er
we use for each category 20, 100, 400, 1000, or 5000 image examples. Note that 5000
image examples is the extreme case of using the entire CIFAR-10 training dataset. Also, we
compare our method with a supervised model that is trained only on the available examples
each time. In Figure 5-5b we plot the accuracy of the examined models as a function of the
available training examples. We observe that our unsupervised trained model exceeds in this
semi-supervised setting the supervised model when the number of examples per category
drops below 1000. Furthermore, as the number of examples decreases, the performance gap
in favor of our method is increased. This empirical evidence demonstrates the usefulness of

our method on semi-supervised settings.

5.3.2 Evaluation of self-supervised features trained in ImageNet

Here we evaluate the performance of our self-supervised ConvNet models on the ImageNet,

Places, and PASCAL VOC datasets. Speci cally, we rst traiRatNetmodel on the

training images of the ImageNet dataset and then we evaluate the performance of the self-

supervised features on the image classi cation tasks of ImageNet, Places, and PASCAL

VOC datasets and on the object detection and object segmentation tasks of PASCAL VOC.
Implementation details: For those experiments we implemented &atNetmodel

with an AlexNet architecture. Our implementation of the AlexNet model does not have

local response normalization units, dropout units, or groups in the colvolutional layers while

it includes batch normalization units after each linear layer (either convolutional or fully

connected) In order to train the AlexNet basdRbtNetmodel, we use SGD with batch

1For the de nition of the AlexNet model that we used see:
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Method | Conv4  Convs
ImageNet labels from [7] 59.7  59.7

Random from [111] | 271 120
Tracking [156] 38.8 29.8
Context [24] 45.6 30.4
Colorization [170] 40.7 35.2
Jigsaw Puzzles [111] 45.3 34.6
BIGAN [26] 41.9 32.2
NAT [7] - 36.0
(Ours) RotNet | 50.0 4338

Table 5.5: Task Generalization: ImageNet top-1 classi cation with non-linear layers We
compare our unsupervised feature learning approach with other unsupervised approaches by training
non-linear classi ers on top of the feature maps of each layer to perform the 1000-way ImageNet
classi cation task, as proposed by1[1]. For instance, for the conv5 feature map we train the layers
that follow the conv5 layer in the AlexNet architecture (i.e., fc6, fc7, and fc8). Similarly for the conv4
feature maps. We implemented those non-linear classi ers with batch normalization units after each
linear layer (fully connected or convolutional) and without employing drop out units. All approaches
use AlexNet variants and were pre-trained on ImageNet without labels except the ImageNet labels
and Random entries. During testing we use a single crop and do not perform ipping augmentation.
We report top-1 classi cation accuracy.

size192 momentunD:9, weight decaype 4 andlr of 0.01. We drop the learning rates
by a factor ofl0after epochs 10, and 20 epochs. We train in total for 30 epochs. As in the
CIFAR experiments, during training we feed tRetNetmodel all four rotated copies of an
image simultaneously (in the same mini-batch).

ImageNet classi cation task: We evaluate the task generalization of our self-supervised
learned features by training on top of them non-linear object classi ers for the ImageNet
classi cation task (following the evaluation scheme d1]). In Table 5.5 we report the
classi cation performance of our self-supervised features and we compare it with the other
unsupervised approachade observe that our approach surpasses all the other methods by
a signi cant margin For the feature maps generated by the Conv4 layer, our improvement
is more than 4 percentage points and for the feature maps generated by the Conv5 layer,
our improvement is even bigger, around 8 percentage points. Furthermore, our approach

signi cantly narrows the performance gap between unsupervised features and supervised

https://github.com/gidariss/FeatureLearningRotNet/blob/master/
architectures/AlexNet.py
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Method \Convl Conv2 Conv3 Conv4 Convs

ImageNet labels | 193 363 442 483 505
Random 11.6 171 16.9 16.3 14.1
Random rescaled [74] 17.5 23.0 24.5 23.2 20.6
Context [24] 16.2 23.3 30.2 31.7 29.6
Context Encoders [118] 14.1 20.7 21.0 19.8 15.5
Colorization [170] 12.5 24.5 30.4 31.5 30.3
Jigsaw Puzzles [111] (from [112]) 18.2 28.8 34.0 33.9 27.1
BIGAN [26] 17.7 24.5 31.0 29.9 28.0
Split-Brain [171] 17.7 29.3 354 352 32.8
Counting [112] 18.0 30.6 34.3 32,5 25.7
(Ours) RotNet | 188 317 387 382 365

Table 5.6: Task Generalization: ImageNet top-1 classi cation with linear layers We compare

our unsupervised feature learning approach with other unsupervised approaches by training logistic
regression classi ers on top of the feature maps of each layer to perform the 1000-way ImageNet
classi cation task, as proposed b¥y7(. All weights are frozen and feature maps are spatially
resized (with adaptive max pooling) so as to have ardf@Delements (as proposed bi/7[Q).

All approaches use AlexNet variants and were pre-trained on ImageNet without labels except the
ImageNet labels and Random entries.

features. In Table 5.6 we report similar results but for linear (logistic regression) classi ers
(following the evaluation scheme df7(). Again, our unsupervised method demonstrates

signi cant improvements over prior unsupervised methods.

Transfer learning evaluation on PASCAL VOC: In Table 5.8 we evaluate the task
and dataset generalization of our unsupervised learned features by ne-tuning them on the
PASCAL VOC classi cation, detection, and segmentation tasks. As with the ImageNet
classi cation task, we outperform by signi cant margin all the competing unsupervised
methods in all tested tasks, signi cantly narrowing the gap with the supervised case. Notably,
the PASCAL VOC 2007 object detection performance that our self-supervised model
achieves i$4:4% mAP, which is only 2.4 points lower than the supervised case. We provide

the per class detection performance of our method in Table 5.9).

Places classi cation task:In Table 5.7 we evaluate the task and dataset generalization
of our approach by training linear (logistic regression) classi ers on top of the learned
features in order to perform the 205-way Places classi cation task. Note that in this case the

learnt features are evaluated w.r.t. their generalization on classes that were “unseen” during
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Method \Convl Conv2 Conv3 Conv4 Convs

Places labels [175] 22.1 35.1 40.2 43.3 44.6
ImageNet labels 22.7 34.8 384 394 38.7
Random 15.7 20.3 19.8 19.1 17.5
Random rescaled [74] 21.4 26.2 27.1 26.1 24.0
Context [24] 19.7 26.7 31.9 32.7 30.9
Context Encoders [118] 18.2 23.2 234 21.9 18.4
Colorization [170] 16.0 25.7 29.6 30.3 29.7
Jigsaw Puzzles [111] (from [112]) 23.0 319 35.0 34.2 29.3
BIGAN [26] 22.0 28.7 31.8 31.3 29.7
Split-Brain [171] 21.3 30.7 34.0 341 325
Counting [112] 23.3 33.9 36.3 34.7 29.6
(Ours) RotNet 21.5 31.0 351 346 337

Table 5.7: Task & Dataset Generalization: Places top-1 classi cation with linear layers We
compare our unsupervised feature learning approach with other unsupervised approaches by training
logistic regression classi ers on top of the feature maps of each layer to perform the 205-way scene
classi cation task of Places205 datas&7§. All unsupervised methods are pre-trained (in an
unsupervised way) on ImageNet. All weights are frozen and feature maps are spatially resized (with
adaptive max pooling) so as to have aro@@d0elements. All approaches use AlexNet variants and
were pre-trained on ImageNet without labels except the Place labels, ImageNet labels, and Random
entries.

the unsupervised training phase. As can be seen, even in this case our method manages
to either surpass or achieve comparable results w.r.t. prior state-of-the-art unsupervised

learning approaches.

5.4 Conclusions

In this chapter we proposed a novel formulation for self-supervised feature learning that
trains a ConvNet model to be able to recognize the image rotation that has been applied to
its input images. Despite the simplicity of our self-supervised task, we demonstrated that it
successfully forces the ConvNet model trained on it to learn semantic features that are useful
for a variety of visual perception tasks, such as object recognition, object detection, and
object segmentation. We exhaustively evaluated our method in various unsupervised and
semi-supervised benchmarks and we achieved in all of them state-of-the-art performance.

Speci cally, our self-supervised approach managed to drastically improve the state-of-the-art
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Classi cation Detection Segmentation
(%omAP) (%omAP) (%omloU)

Trained layers | fc6-8  all all all
ImageNet labels \ 789 79.9 56.8 48.0
Random 53.3 43.4 19.8
Random rescaled [74] | 39.2 56.6 45.6 32.6
Egomotion [1] 31.0 542 43.9

Context Encoders [118] 34.6 56.5 445 29.7
Tracking [156] 55.6 63.1 47.4

Context [24] 55.1 65.3 51.1

Colorization [170] 61.5 65.6 46.9 35.6
BIGAN [26] 52.3 60.1 46.9 34.9
Jigsaw Puzzles [111] - 67.6 53.2 37.6
NAT [7] 56.7 65.3 49.4

Split-Brain [171] 63.0 67.1 46.7 36.0
ColorProxy [82] 65.9 384
Counting [112] - 67.7 51.4 36.6
(Ours) RotNet | 709 73.0 54.4 39.1

Table 5.8: Task & Dataset Generalization: PASCAL VOC 2007 classi cation and detection
results, and PASCAL VOC 2012 segmentation resultsWe used the publicly available testing
frameworks of ¥4] for classi cation, of [42] for detection, and of92] for segmentation. For

classi cation, we either x the features before conv5 (colufu6-8) or we ne-tune the whole model
(columnall). For detection we use multi-scale training and single scale testing. All approaches
use AlexNet variants and were pre-trained on ImageNet without labels except the ImageNet labels
and Random entries. After unsupervised training, we absorb the batch normalization units in the
linear layers and we use the weight rescaling technique proposé&dianhich is common among

the unsupervised methods). As customary, we report the mean average precision (mAP) on the
classi cation and detection tasks, and the mean intersection over union (mloU) on the segmentation
task.

Classes \aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

ImageNet labels 64.0 69.6 53.2 44.4 249 657 69.6 69.289 636 628 639 733 646 558 257 505 554 69.3 56.4
(Ours) RotNet | 65.5 65.3 43.8 39.8 20.2 654 69.2 63.80.2 56.3 623 56.8 716 672 563 227 456 595 71.6 55.3

Table 5.9: Per class PASCAL VOC 2007 detection performances usual, we report the average
precision metric. The results of the supervised model (i.e., ImageNet labels entry) come from [24].

results on unsupervised feature learning for ImageNet classi cation, PASCAL classi ca-
tion, PASCAL detection, PASCAL segmentation, and CIFAR-10 classi cation, surpassing
prior approaches by a signi cant margin and thus drastically reducing the gap between

unsupervised and supervised feature learning.
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0 rotation 90 rotation 180 rotation 270 rotation
(a) Attention maps of Conv3 feature maps (sizel3 13

0 rotation 90 rotation 180 rotation 270 rotation
(b) Attention maps of Conv5 feature maps (size6 6)

Figure 5-6: Attention maps of the Conv3 and Conv5 feature maps generated by an AlexNet model
trained on the self-supervised task of recognizing image rotations. Here we present the attention
maps generated for all the 4 rotated copies of an image.
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Chapter 6

Few-Shot Visual Learning without

Forgetting

6.1 Introduction

Over the last few years, deep convolutional neural networks [78, 144, 148, 57] (ConvNets)
have achieved impressive results on image classi cation tasks, such as object recogni-
tion [129 or scene classi cation]75. However, in order for a ConvNet to successfully
learn to recognize a set of visual categories (e.g., object categories or scene types), it requires
to manually collect and label thousands of training examples per target category and to apply
on them an iterative gradient based optimization rout8# that is extremely computation-
ally expensive, e.g., it can consume hundreds or even thousands of GPU hours. Moreover,
the set of categories that the ConvNet model can recognize remains xed after training. In
case we would like to expand the set of categories that the ConvNet can recognize, then we
need to collect training data for the novel categories (i.e., those that they were not in the
initial training set) and restart the aforementioned computationally costly training procedure
this time on the enhanced training set such that we will avoid catastrophic interference. Even
more, it is of crucial importance to have enough training data for the novel categories (e.g.,
thousands of examples per category) otherwise we risk over tting on them.

In contrast, the human visual system exhibits the remarkably ability to be able to

effortlessly learn novel concepts from only one or a few examples and reliably recognize
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them later on It is assumed that the reason the human visual system is so ef cient when
learning novel concepts is that it exploits its past experiences about the (visual) world. For
example, a child, having accumulated enough knowledge about mammal animals and in
general the visual world, can easily learn and generalize the visual concept of “rhinoceros”
from only a single image. Mimicking that behavior on arti cial vision systems is an
interesting and very challenging research problem with many practical advantages, such as
developing real-time interactive vision applications for portable devices (e.g., cell-phones),

and aligned with our goal of annotation ef cient learning.

Research on this subject is usually ternfed-shot learning However, most prior
methods neglect to ful Il two very important requirements for a good few-shot learning
system:(a) the learning of the novel categories needs to be fast(laneb not sacri ce
any recognition accuracy on the initial categories that the ConvNet was trained on, i.e., to
not “forget” (from now on we will refer to those initial categories by calling them base
categories). Motivated by this observation, in this work we propose to tackle the problem
of few-shot learning under a more realistic setting, where a large set of training data is
assumed to exist for a set of base categories and, using these data as the sole input, we want
to develop an object recognition learning system that, not only is able to recognize these
base categories, but also learns to dynamically recognize novel categories from only a few
training examples (provided only at test time) while also not forgetting the base ones or
requiring to be re-trained on therdy(namic few-shot learning without forgettingCcompared
to prior approaches, we believe that this setting more closely resembles the human visual
system behavior (w.r.t. how it learns novel concepts). In order to achieve our goal, we

propose two technical novelties.

Few-shot classi cation-weight generator based on attention.A typical ConvNet
based recognition model, in order to classify an image, rst extracts a high level feature
representation from it and then computes per category classi cation scores by applying a set
of classi cation weight vectors (one per category) to the feature. Therefore, in order to be
able to recognize novel categories we must be able to generate classi cation weight vectors
for them. In this context, the rst technical novelty of our work is that we enhance a typical

object recognition system with an extra component, cdd@dshot classi cation weight
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generatorthat accepts as input a few training examples of a novel category (e.g., no more
than ve examples) and, based on them, generates a classi cation weight vector for that novel
category. Its key characteristic is that in order to compose novel classi cation weight vectors,
it explicitly exploits the acquired past knowledge about the visual world by incorporating

an attention mechanism over the classi cation weight vectors of the base categories. This
attention mechanism offers a signi cant boost on the recognition performance of novel

categories, especially when there is only a single training example available for learning

them.

Cosine-similarity based ConvNet recognition modelln order for thefew-shot clas-
si cation weight generatoto be successfully incorporated into the rest of the recognition
system, it is essential the ConvNet model to be able to simultaneously handle the classi-
cation weight vectors of both base and novel categories. However, as we will explain
in the methodology, this is not feasible with the typical dot-product based classi er (i.e.,
the last linear layer of a classi cation neural network). Therefore, in order to overcome
this serious issue, our second technical novelty is to implement the classi er as a cosine
similarity function between the feature representations and the classi cation weight vectors.
Apart from unifying the recognition of both base and novel categories, features learned
with the cosine-similarity based classi er turn out to generalize signi cantly better on novel
categories than those learned with a dot-product based classi er. Moreover, we demonstrate
in the experimental section that, by simply training a cosine-similarity based ConvNet recog-
nition model, we are able to learn feature extractors that, when used for image matching,

they surpass prior state-of-the-art approaches on the few-shot recognition task.
To summarize, the contribution of the work presented in this chapter are as follows:

* We propose a few-shot object recognition system that is capable of dynamically
learning novel categories from only a few training data while at the same time is not
forgetting the base categories on which it was trained.

* In order to achieve that we introduced two technical novelties, an attention based
few-shot classi cation weight generator, and the implementation of the classi er of a
ConvNet model as a cosine similarity function between feature representations and

classi cation vectors.
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* We extensively evaluate our object recognition system on Mini-ImageNet, both w.r.t.
its few-shot object recognition performance and its ability to not forget the base
categories, and we report state-of-the-art results that surpass prior approaches by a
very signi cant margin.

 Finally, we apply our approach on the recently introduced fews-shot benchmark of
Hariharan and Girshick [51] where we achieve state-of-the-art results.

In the following sections, we provide related work8§6.2, we describe our few-shot

object learning methodology 6.3, we provide experimental results§é.4, and nally

we conclude in 86.5.

6.2 Related work

Recently, there is resurgence of interest on the few-shot learning problem. In the following
we brie y discuss the most relevant approaches to our work.

Meta-learning based approachesMeta-learning approaches typical involve a meta-
learner model that, given a few training examples of a new task, tries to quickly learn a
learner model that “solves” this new taskGy, 152 3, 107, 132. Speci cally, Ravi and
Larochelle 124 propose an LSTM%9] based meta-learner that is trained given as input
a few training examples of a new classi cation task to sequentially generate parameter
updates that will optimize the classi cation performance of a learner model on that task.
Their LSTM also learns the parameter initialization of the learner model. Finn &aal. [
simpli ed the above meta-learner model and only learn the initial learner parameters such
that only a few gradient descent steps w.r.t. those initial parameters will achieve the maximal
possible performance on the new task. Mishra etl@l5[ instead propose a generic temporal
convolutional network that, given as input a sequence of a few labeled training examples
and then an unlabeled test example, predicts the label of that test example. Our system also
includes a meta-learner network component, the few-shot classi cation weight generator.

Metric-learning based approacheslin general, metric learning approaches attempt to
learn feature representations that preserve the class neighborhood structure (i.e., features

of the same object are closer than features of different objects). Speci cally, Koch et
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al. [72] formulated the one-shot object recognition task as image matching and train Siamese
neural networks to compute the similarity between a training example of a novel category
and a test example. Vinyals et al55 proposed Matching Networks that, in order to
classify a test example, employs a differentiable nearest neighbor classi er implemented
with an attention mechanism over the learned representations of the training examples.
Prototypical NetworksJ45 learn to classify test examples by computing distances to
prototype feature vectors of the novel categories. They propose to learn the prototype
feature vector of a novel category as the average of the feature vectors extracted by the
training examples of that category. A similar approach was proposed before by Mensink et
al. [102 and Prototypical Networks can be viewed as an adaption of that work for ConvNets.
Despite their simplicity, Prototypical Networks demonstrated state-of-the-art performance.
Our few-shot classi cation weight generator also includes a feature averaging mechanism.
However, more than that, it also explicitly exploits past knowledge about the visual world
with an attention based mechanism and the overall framework allows us to perform uni ed
recognition of both base and novel categories without altering the way base categories are

learned and recognized.

In a different line of work, Hariharan and Girshickl] propose to use during training a

I, regularization loss on the feature representations that forces them to better generalize on
“unseen” categories. In our case, the cosine-similarity based classi er, apart from unifying
the recognition of both base and novel categories, also leads to feature representations
that are able to better generalize on “unseen” categories. Also, their framework is able
to recognize both base and novel categories as ours. However, to achieve that goal they
re-train the classi er on both the base categories (with a large set of training data) and the
novel categories (with few training data), which is in general slow and requires constantly

maintaining in disc a large set of training data.
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6.3 Methodology

As an input to our object recognition learning system we assume that there exists a dataset

of K pase base categories:

base
Dirain = be;igiN:ti ) (6.1)
b=1

whereNy is the number of training examples of th¢h category anay,; is itsi-th training
example. Using this as the only input, the goal of our work is to be able to both learn to
accurately recognize base categories and to learn to perform few-shot learning of novel
categories in a dynamic manner and without forgetting the base ones. An overview of our
framework is provided in Figure 6-1. It consists of two main componen@grasNet-based
recognition modethat is able to recognize both base and novel categories favad shot
classi cation weight generatothat dynamically generates classi cation weight vectors for
the novel categories at test time:

ConvNet-based recognition modellt consists of(a) a feature extractdf (:j ) (with
learnable parameter3 that extracts a-dimensional feature vectar= F(xj ) 2 RY from
an input imagex, and(b) a classi erC(;jW ), whereW = fw, 2 Rigk, are a set of
K classi cation weight vectors - one per object category, that takes as input the feature
representatioz and returns & -dimensional vector with the probability classi cation
scoresp = C(zjwW ) of theK categories. Note that in a typical convolutional neural
network the feature extractor is the part of the network that starts from the rst layer and
ends at the last hidden layer while the classi er is the last classi cation layer. During the
single training phase of our algorithm, we learn thparameters and the classi cation
weight vectors of the base categorilg,se = fwkgE;’fse such that by settinlV = Wyase
the ConvNet model will be able to recognize the base object categories.

Few-shot classi cation weight generator.This comprises a meta-learning mechanism
that, during test time, takes as input a seKgf,e hovel categories with few training

examples per category

KFovel
0
Dnovel = fXg;i g.N=”1 ) (6.2)

n=1

whereNp is the number of training examples of theth novel category ang?; is its
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Figure 6-1. Overview of our system. It consists of: (alCanvNet based recognition modéiat
includes a feature extractor and a classi er) and (Bve-shot classi cation weight generataBoth

are trained on a set of base categories for which we have available a large set of training data.
During test time, the weight generator gets as input a few training data of a novel category and
the classi cation weight vectors of base categories (green rectangle inside the classi er box) and
generates a classi cation weight vector for this novel category (blue rectangle inside the classi er
box). This allows the ConvNet to recognize both base and novel categories.

i-th training example, and is able to dynamically assimilate the novel categories on the
repertoire of the above ConvNet model. More speci cally, for each novel categ@ry

[1; Nnovel], the few-shot classi cation weight genera@(:;:j ) gets as input the feature
vectorsZ? = fz,?;igi'\':ﬁ of its N? training examples, whergd;, = F(x2;j ), and the
classi cation weight vectors of the base categoNéss. and generates a classi cation
weight vectom? = G(Z?2; Whas ) for that novel category. Note thatare the learnable
parameters of the few-shot weight generator, which are learned during the single training
phase of our framework. Therefore Whove = fw,?gﬁ:“gve' are the classi cation weight
vectors of the novel categories inferred by the few-shot weight generator, then by setting
W = Wpase[ Whovel ON the classi erC(:;jW ) we enable the ConvNet model to recognize

both base and novel categories.

A key characteristic of our framework is that it is able to effortlessly (i.e., quickly

during test time) learn novel categories and at the same time recognize both base and novel
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categories in a uni ed manner. In the following subsections, we will describe in more detalil
the ConvNet-based recognition modeB®.3.1 and the few-shot weight generatog8613.2.

Finally, we will explain the training procedure in 86.3.3.

6.3.1 Cosine-similarity based recognition model

A crucial difference of our ConvNet based recognition model compared to a standard one
is that it should be able to dynamically incorporate at test time a variable number of novel
categories (through the few-shot weight generator).

The standard setting for classi cation neural networks is, after having extracted the
feature vector, to estimate the classi cation probability vectpr= C(zjW ) by rst
computing the raw classi cation scosg of each categork 2 [1; K ] using the dot-product
operator:

sc = zlw, (6.3)

wherewy is thek-th classi cation weight vector iWW , and then applying the softmax
operator across all the classi cation scores, i.ep = softmax (s;), wherepy is thek-th

classi cation probability ofp. In our case the classi cation weight vectavs could come

both from the base categories, i\®,, 2 Wpase, and the novel categories, i.@y, 2 Wyoyel .-
However, the mechanisms involved during learning those classi cation weights are very
different. The base classi cation weights, starting from their initial state, are slowly modi ed
(i.e., slowly learned) with small SGD steps and thus their magnitude changes slowly over
the course of their training. In contrast, the novel classi cation weights are dynamically
predicted (i.e., quickly learned) by the weight generator based on the input training feature
vectors and thus their magnitude depends on those input features. Due to those differences,
the weight values in those two cases (i.e., base and novel classi cation weights) can be
completely different, and so the same applies to the raw classi cation scores computed with
the dot-product operation, which can thus have totally different magnitudes depending on
whether they come from the base or the novel categories. This can severely impede the
training process and, in general, does not allow to have a uni ed recognition of both type

of categories. In order to overcome this critical issue, we propose to modify the classi er
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(a) Cosine-similarity based features (b) Dot-product based features
Figure 6-2: Here we visualize the t-SNER§] scatter plots of the feature representations learned with
(a) the cosine-similarity based ConvNet recognition model, @) dhe dot-product based ConvNet
recognition model. Note that in the case of the cosine-similarity based ConvNet recognition model,
we visualize thé,-normalized features. The visualized feature data points are from the “unseen”
during training validation categories of Mini-ImageNet (i.e., novel categories). Each data point in the
t-SNE scatter plots is colored according to its category.

C(:jW ) and compute the raw classi cation scores using the cosine similarity operator:
s« = cosg;w)= Zz'w,, (6.4)

Wy
kw, k

wherez = 2 andw, = are thel,-normalized vectors (from now on we will use the
overline symbok to indicate that a vectaris |,-normalized), and is a learnable scalar
valué'. Since the cosine similarity can be implemented by Igshormalizing the feature
vectorz and the classi cation weight vectav, and then applying the dot-product operator,
the absolute magnitudes of the classi cation weight vectors can no longer affect the value of

the raw classi cation score (as a result of ta@ormalization that took place).

In addition to the above modi cation, we also choose to remove the ReLU non-

linearity [108 after the last hidden layer of the feature extractor, which allows the feature

1 The scalar parameteris introduced in order to control the peakiness of the probability distribution
generated by the softmax operator since the range of the cosine similarity is fed;td]. In all of our
experiments is initialized to 10.
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vectorz to take both positive and negative values, similar to the classi cation weight vectors.
Note that the removal of the ReLU non-linearity does not make the composition of the
last hidden layer with the classi cation layer a linear operation, sinc&wermalize the
feature vectors, which is a non-linear operation. In our initial experiments with the cosine
similarity based classi er we found that such a modi cation can signi cantly improve the

recognition performance of novel categories.

We note that, although cosine similarity is already well established as an effective
similarity function for classifying a test feature by comparing it with the available training
features vectorslp5 102 125, in this work we use it for a different purpose, i.e., to
replace the dot-product operation of the last linear layer of classi cation ConvNets used
for applying the learnable weights of that layer to the test feature vectors. The proposed
modi cation in the architecture of a classi cation ConvNet allows us to unify the recognition
of base and novel categories without signi cantly altering the classi cation pipeline for the
recognition of base categories (in contrast64 125). To the best of our knowledge,
employing the cosine similarity operation in such a way is novel in the context of few shot
learning. Interestingly, concurrently to us, Qi et dl2f] also propose to use the cosine
similarity function in a similar way for the few-shot learning task. In a different line of work,
very recently Chunjie et al9f] also explored cosine similarity for the typical supervised

classi cation task.

Advantages of cosine-similarity based classi er. Apart from making possible the
uni ed recognition of both base and novel categoribg, cosine-similarity based classi er
leads the feature extractor to learn features that generalize signi cantly better on novel
categories than features learned with the dot-product based clasg\ possible explanation
for this is that, in order to minimize the classi cation loss of a cosine-similarity based
ConvNet model, thé&-normalized feature vector of an image must be very closely matched
with the I,-normalized classi cation weight vector of its ground truth category. As a
consequence, the feature extractor is forced to (a) learn to encode on its feature activations
exactly those discriminative visual cues that also the classi cation weight vectors of the
ground truth categories learn to look for, and (b) learn to genératermalized feature

vectors with low intraclass variance, since all the feature vectors that belong to the same
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category must be very closely matched with the single classi cation weight vector of that
category. This is visually illustrated in Figure 6-2, where we visualize t-SNE scatter plots of
cosine-similarity-based and dot-product-based features related to categories “unseen” during
training. As can be clearly observed, the features generated from the cosine-similarity-
based ConvNet form more compact and distinctive category-speci c clusters (i.e., they
provide more discriminative features). Moreover, our cosine-similarity based classi cation
objective resembles the training objectives typically used by metric learning appro@6hes [

In fact, it turns out thatour feature extractor trained solely on cosine-similarity based
classi cation of base categories, when used for image matching, manages to surpass all

prior state-of-the-art approaches on the few-shot object recognition task

6.3.2 Few-shot classi cation weight generator

The few-shot classi cation weight generatGi(:;:j ) gets as input the feature vectors
7%= fz%\; of the N°training examples of a novel category (typicaMy®  5) and
(optionally) the classi cation weight vectors of the base categdffgse. Based on them, it
infers a classi cation weight vectan®= G(Z% W,.sd ) for that novel category. Here we
explain how the above few-shot classi cation weight generator is constructed.

Feature averaging based weight inferenceSince, as we explained in sectig%.3.1,
the cosine similarity based classi er of the ConvNet model forces the feature extractor to
learn feature vectors that form compact category-wise clusters and the classi cation weight
vectors to learn to be representative feature vectors of those clusters, an obvious choice is
to infer the classi cation weight vectav®by averaging the feature vectors of the training

examples (after they have belgmormalized):

z°. (6.5)

is:

wWo= g WY (6.6)



where is the Hadamard product, andyq 2 RY is a learnable weight vector. Similar
strategy has been previously proposed by Snell efdb [and has demonstrated very good
results. However, it does not fully exploit the knowledge about the visual world that the
ConvNet model acquires during its training phase. Furthermore, in case there is only a single
training example for the novel category, the averaging cannot infer an accurate classi cation

weight vector.

Attention-based weight inference We enhance the above feature averaging mechanism
with an attention based mechanism that composes novel classi cation weight vectors by
“looking” at a memory that contains the base classi cation weight vedMys. = fwbgt*;bf‘se .

More speci cally, an extra attention-based classi cation weight veatfyr is computed as:

)(\| 0 Mase

1
Wgtt = N Att ( qzio; Kp) Wp, (6.7)

i=1 b=1

where 4 2 RY 9 is a learnable weight matrix that transforms the feature vextto

guery vector used for querying the memdrly, 2 Rdgg vase s a set 0K pase l€ArNable keys

(one per base category) used for indexing the memoryA#n(d, :) is an attention kernel
implemented as a cosine similarity functfdollowed by a softmax operation over thg,ase

base categories. The nal classi cation weight vector is computed as a weighted sum of the

average based classi cation vects},, and the attention based classi cation veady, :
0 0
W™= avg Wayqgt att Wa (6.8)

where is the Hadamard product, angdyg, at 2 RY are learnable weight vectors.

Why using an attention-based weight compositionThanks to the cosine-similarity
based classi er, the base classi cation weight vectors learn to be representative feature
vectors of their categories. Thus, the base classi cation weight vectors also encode vi-
sual similarity, e.g., the classi cation vector of a mammal animal should be closer to the

classi cation vector of another mammal animal rather than the classi cation vector of a

2The cosine similarity scores are also scaled by a learnable scalar parariretgder to increase the
peakiness of the softmax distribution. This scalar learnable parameter is initializ8@iothe experiments of
section 6.4.1 and t80 on the experiments of section 6.4.2.
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vehicle. Therefore, the classi cation weight vector of a novel category can be composed
as a linear combination of those base classi cation weight vectors that are most similar to
the few training examples of that category. This allows our few-shot weight generator to
explicitly exploit the acquired knowledge about the visual world (here represented by the
base classi cation weight vectors) in order to improve the few-shot recognition performance.
This improvement is very signi cant especially in the one-shot recognition setting where

averaging cannot provide an accurate classi cation weight vector.

6.3.3 Training procedure

In order to learn the ConvNet-based recognition model (i.e. the feature extrgctoy as

well as the classi elC(;jW )) and the few-shot classi cation weight genera:;:j ),

we use as the sole input a training Bgty, = Stf:bfsefxb;igi'\';’l of Kpase base categories.

We split the training procedure into 2 stages and at each stage we minimize a different

cross-entropy loss of the following form:

1 I§Qa\se 1 )%lb

K N
base |, bi_q1

loss(Xp;i; D); (6.9)

whereloss(x; y) is the negative log-probability log(py) of they-th category in the proba-
bility vector:
p= C(F(xj )jW ): (6.10)

The meaning oV is different on each of the training stages, as we explain below.

1st training stage: During this stage we only learn the ConvNet recognition model
without the few-shot classi cation weight generator. Speci cally, at this stage we learn
the parameters of the feature extractd¥ (:j ) and the base classi cation weight vectors
Whase = fwbg{;"fse. This is done in exactly the same way as for any other standard
recognition model. Thus, during the 1st training stage the set of classi cation weight vectors
W in equation 6.10 is equal to the base classi cation weight veyse.

2nd training stage: During this stage we train the learnable parametevfthe few-

shot classi cation weight generator while we continue training the base classi cation weight
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vectorsWyase (in our experiments during that training stage we froze the feature extractor).
In order to train the few-show classi cation weight generator, during each training iteration

we form the following two-step “training episodés”

 First, we randomly piclK e “fake” novel categories from the existing base cate-
gories and we treat them in the same way as we will treat the actual novel categories
after training. Speci cally, instead of using the classi cation weight vectoré/jase
(which are learned with stochastic gradient descent) for those “fake” novel categories,
we sampleN °training examples (typicalliN® 5) for each of them, compute their
feature vectorg °= fzY\; , and give those feature vectors to the few-shot classi ca-
tion weight generato®(:;:j ) in order to compute novel classi cation weight vectors
of those “fake” novel categories Note that during this process we take care to exclude
from the base classi cation weight vectors that are given as a second argument to
the few-shot weight generat@(:;:j ) those classi cation vectors that correspond
to the “fake” novel categories. The inferred classi cation weight vectors are used
for recognizing the “fake” novel categories. Thus, during this 2nd training stage the
set of classi cation weight vectord/ in equation 6.10 is the union of the “fake”
novel classi cation weight vectors generated®y;:j ) and the classi cation weight
vectors of the remaining base categories.

» The second step of the “training episode” is to samplge test image examples
from the “fake” novel categories, afn@ s test image examples from the remaining
base categories and then classify them using the set of classi cation weight vectors

W that was formed from the 1st step of the training episode.

Both the step of generating classi cation weights vectors from training examples and the step
of applying the classi cation weight vectors to test examples are end-to-end differentiable.
Thus, by applying the cross entropy loss (equation 6.9) on the classi cation probabilities of
theT = Thovel + Thase t€St EXamples we are able to train both the learnable parameters of
the few-shot classi cation weight generator and the learnable parameters of the recognition

model (i.e., the base classi cation weight vectiVg,se).

3Note that during each training iteration of stochastic gradient descent the mini-batch that is formed could
include multiple different instances of such “training episodes”.
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5-Shot learning K novel =5 1-Shot learning K povel =5

Models

Novel Base Both Novel Base Both
Matching-Nets [155] 68.87 0.38% - - |155.53 0.48% - -
Prototypical-Nets [145] 7267 0.37% 62.10% 32.709%454.44 0.48% 52.35% 26.68%
Ours
Cosine Classi er 72.83 0.35% 70.68% 51.899%454.55 0.44% 70.68% 39.17%

Cosine Classi er & Avg. Weight Gerl 74.66 0.35% 70.92% 60.269455.33 0.46% 70.45% 48.56%
Cosine Classi er & Att. Weight Gen |74.92 0.36% 70.88% 60.50%|58.55 0.50% 70.73% 50.50%

Ablations
Dot Product 64.58 0.38% 63.59% 31.80%46.09 0.40% 63.59% 24.76%
Dot Product & Avg. Weight Gen 60.30 0.39% 62.15% 46.41%44.31 0.40% 61.99% 39.05%
Dot Product & Att. Weight Gen 67.81 0.37% 62.11% 48.709953.88 0.48% 62.28% 42.41%

Ablations
Cosine w/ ReLU. 71.04 0.36% 72.51% 58.16% |52.91 0.45% 72.51% 43.17%
Cosine w/ ReLU. & Avg. Weight Gen71.30 0.38% 72.47% 59.339453.19 0.45% 71.70% 49.53%
Cosine w/ ReLU. & Att. Weight Gen| 73.03 0.38% 72.26% 61.05% |56.09 0.54% 72.34% 51.25%

Table 6.1: Average classi cation accuracies on the validation set of Mini-ImageNet. The Novel
columns report the average 5-way and 1-shot or 5-shot classi cation accuracies of novel categories
(with 95% con dence intervals), the Base and Both columns report the classi cation accuracies
of base categories and of both type of categories respectively. In order to report those results we
sampled 2000 tasks each with 5 test examples of novel categories drfd 5 test examples of

base categories.

6.4 Experimental results

We extensively evaluate the proposed few-shot recognition system w.r.t. both its few-shot
recognition performance of novel categories and its ability to not “forget” the base categories

on which it was trained.

6.4.1 Mini-ImageNet experiments

Evaluation setting for recognition of novel categoriesWe evaluate our few-shot object
recognition system on the Mini-ImageNet datadétq that includes 100 different categories
with 600 images per category, each of 8Ze 84. For our experiments we used the splits by
Ravi and Larochel24] that include 64 categories for training, 16 categories for validation,
and 20 categories for testing. The typical evaluation setting on this dataset is rstto train a
few-shot model on the training categories and then during test time to use the validation (or

the test) categories in order to form few-shot tasks on which the trained model is evaluated.

205



Models Feature 5-Shot learning K povel =5 1-Shot learning K povel =5
Extractor Novel Base Both Novel Base Both
Matching-Nets [155] C64F 55.30% - - 43.60% - -
Ravi and Laroche [124] C32F | 60.20 0.71% - -143.40 0.77% - -
Finn et al. [36] C64F | 63.10 0.92% - -148.70 1.84% - -
Prototypical-Nets [145] C64F | 68.20 0.66% - -149.42 0.78% - -
Mishra et al. [105] RESNET | 68.88 0.92% - -155.71 0.99% - -
Ours C32F | 70.27 0.64% 61.08% 52.45% 54.33 0.81% 61.09% 43.05%
Ours C64F | 72.81 0.62% 68.13% 57.729956.20 0.86% 68.08% 48.09%
Ours C128F [73.00 0.64% 70.90% 59.35% |55.95 0.84% 70.72% 49.08%
Ours RESNET | 70.13 0.68% 80.16% 56.04% | 55.45 0.89% 80.24% 51.23%

Table 6.2: Average classi cation accuracies on the test set of Mini-ImageNet. In order to report
those results we sampled 600 tasks in a similar fashion as for the validation set of Mini-ImageNet.

Those few-shot tasks are formed by rst sampliig.e Categories and one or ve training
example per category (1-shot and 5-shot settings respectively), which the trained model uses
for meta-learning those categories, and then evaluating it on some test examples that come
from the same novel categories but do not overlap with the training examples.

Evaluation setting for the recognition of the base categoriesaVhen we evaluate our
model w.r.t. few-shot recognition task on the validation / test categories, we consider as base
categories thé4 training categories on which we trained the model. Since the proposed
few-shot object recognition system has the ability to not forget the base categories, we would
like to also evaluate the recognition performance of our model on those base categories.
Therefore, we sampled 300 extra images for each training category that we use as validation
image set for the evaluation of the recognition performance of the base categories and also
another 300 extra images that are used for the same reason as test image set. Therefore, when
we evaluate our model w.r.t. the few-shot learning task on the validation / test categories we
also evaluate w.r.t. recognition performance of the base categories on the validation / test
image set of the training categories.

Implementation details of training procedure of the proposed approach.During
the 1st training stage, the recognition model was trained for 60 epochs using a stochastic
gradient descent optimizer with moment@® and weight decage 4. The learning
rate was set t0:1 for the rst 20 epochs, then dropped @006 for the next 20 epochs,
then again dropped @0012for the next 10 epochs, and nally again dropped®100024
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for the remaining 10 epochs. Each training epoch lasted for 1000 training batches of size
256. During the 2nd training stage, our model was trained for 60 epochs using a stochastic
gradient descent optimizer with moment® and weight decage 4. The learning rate

was set td:1 for the rst 20 epochs, then dropped @006 for the next 20 epochs, then
again dropped t0:0012for the next 10 epochs, and nally again droppedt00024for the
remaining 10 epochs. Each training epoch lasted for 1000 training batches. Each training
batch included 8 “training episodes”. For each “training episode” 5 “fake” novel categories
were sampled from the 64 base categorigs,e; = 15 test images were sampled from

the “fake” novel categories, and,se = 15 test images were sampled from the remaining
base categories. Note that despite the fact that both training stages last for 60 training
epochs, because the training split of Mini-Imagenet is relatively small and there is a danger
of over tting, the training snapshot (i.e., the model parameters at the end of each training
epoch) that “survives” from each training stage is that that achieves the highest accuracy
on the novel categories of the validation split of Mini-Imagenet. For more implementation

details we refer to the implementation code of this chapter.

6.4.1.1 Ablation study

In Table 6.1 we provide an ablation study of the proposed object recognition framework
on the validation set of mini-ImageNet. We also compare with two prior state-of-the-art
approaches, Prototypical Networki#h and Matching Nets]55, that we re-implemented
ourselves in order to ensure a fair comparison. The feature extractor used in all cases is a
ConvNet model that has 4 convolutional modules, v@ith 3 convolutions, followed by
batch normalization, ReLU nonlinearftyand2 2 max-pooling. Given as input images of
size84 84ityields feature maps with spatial sise 5. The rst two convolutional layers
have64 feature channels and the latter two haa8feature channels.

Cosine-similarity based ConvNet model.First we examine the performance of the
cosine-similarity based ConvNet recognition model (entry Cosine Classi er) without training

the few-shot classi cation weight generator (i.e., we only perform the 1st training stage as

4Unless otherwise stated, our cosine-similarity based models as well as the re-implementation of Matching-
Nets do not have a ReLU nonlinearity after the last convolutional layer, since in both cases this modi cation
improved the recognition performance on the few-shot recognition task
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was described in section 6.3.3). In order to test its performance on the novel categories,
during test time we estimate classi cation weight vectors using feature averaffemgiant

to stress out that in this case there are no learnable parameters involved in the generation
of the novel classi cation weight vectors and also the ConvNet model it was never trained
on the few-shot recognition task. Despite that, the features learned by the cosine-similarity
based ConvNet model match or even surpass the performance of the Matching-Nets and
Prototypical Networks, which are explicitly trained on the few-shot object recognition task.
By comparing the cosine-similarity based ConvNet models (Cosine Classi er entries) with
the dot-product based models (Dot Product entries) we observe that the former drastically
improve the few-shot object recognition performance, which means that the feature extractor
that is learned with the cosine-similarity classi er generalizes signi cantly better on “unseen”
categories than the feature extractor learned with the dot-product classi er. Notably, the
cosine-similarity classi er signi cantly improves also the recognition performance on the

base categories.

Removing the last ReLU unit. In our work we propose to remove the last ReLU
non-linearity from the feature extractor when using a cosine classi er. Instead, keeping the
ReLU units (Cosine w/ ReLU entries) decreases the accuracy on novel categories while

increasing it on base categories.

Few-shot classi cation weight generator.Here we examine the performance of our
system when we also incorporate on it the proposed few-shot classi cation weight generator.
In Table 6.1 we provide two solutions for the few-shot weight generator: the entry Cosine
Classi er & Avg. Weight Gen that uses only the feature averaging mechanism described in
section 6.3.2 and the entry Cosine Classi er & Att. Weight Gen that uses both the feature
averaging and the attention based mechanism. Both types of few-shot weight generators
are trained during the 2nd training stage that is described in section 6.3.3. We observe
that both of them offer a very signi cant boost on the few-shot recognition performance of
the cosine similarity based model (entry Cosine Classi er). Among the two, the attention
based solution exhibits better few-shot recognition behavior, especially in the 1-shot setting
where it has more than 3 percentage points higher performance. Also, it is easy to see that

the few-shot classi cation weight generator does not affect the recognition performance
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Novel All All with prior
Approach N&1L 2 5 10 20 N&L 2 5 10 20 N&1L 2 5 10 20

Prior work
Prototypical-Nets [145] (from [157]) 39.3 544 66.3 712 739 495 61.0 69.7 729 746 53.6 614 688 720 738
Matching Networks [155] (from [157]) | 43.6 54.0 66.0 725 76.9 544 61.0 69.0 73.7 76.5 545 60.7 682 726 75.6
Logistic regression (from [157]) 384 511 648 716 76.6 40.8 499 642 719 76.9 529 604 686 729 76.3
Logistic regression w/ H [51] (from [157])40.7 50.8 62.0 69.3 76.5 52.2 59.4 676 728 76.9 53.2 59.1 66.8 717 76.3

SGM w/ H [51] - 543 621 713 758 78.1

Batch SGM [51] - - - - - 49.3 605 714 758 785

Concurrent work

Prototype Matching Nets w/ H [157] 458 57.8 69.0 743 774 576 647 719 752 775 56.4 63.3 70.6 74.0 76.2

Prototype Matching Nets [157] 433 557 684 740 77.0 558 63.1 711 750 77.1 547 62.0 70.2 739 759

Ours

Cosine Classi er & Avg. Weight Gen  |45.23 56.90 68.68 74.36 77.69 57.65 64.69 72.35 76.18 78.46 56.43 63.41 70.95 74.75 77.00
25 .16 .09 .06 .06 15 .10 .06 .04 .04 15 .10 .06 .04 .03

Cosine Classi er & Att. Weight Gen 46.02 57.51 69.16 74.83 78.11 58.16 65.21 72.72 76.50 78.74 56.76 63.80 72.72 75.02 77.25
25 .15 .09 .06 .05 15 .09 .06 .04 .03 15 .10 .06 .04 .04

Table 6.3: Top-5 accuracy on the novel categories and on all categories (with and without priors)
fot the ImageNet based few-shot benchmark propose8ilijn(for more details about the evaluation
metrics we refer to57]). For each novel category we us’= 1, 2, 5, 10 or 20 training examples.
Methods with “w/ H” use mechanisms that hallucinate extra training examples for the novel categories.
The second rows in our entries report 8% con dence intervals.

of the base categories, which is aroutb0%in all the cosine-similarity based models.
Moreover, by introducing the few-shot weight generator, the recognition performance in both
type of categories (columns Both) increases signi cantly, which means that the ConvNet
model achieves better behavior w.r.t. our goal of uni ed recognition of both base and novel
categories. The few-shot recognition performance of our full system, which is the one that
includes the attention based few-shot weight generator (entry Cosine classi er & Att. Weight
Gen), offers a very signi cant improvement w.r.t. the prior state-of-the-art approaches on
the few-shot object recognition task, i.e., frai67%to 74:92%in the 5-shot setting and
from 55:53%to 5855%in the 1-shot setting. Also, our system achieves signi cantly higher

performance on the recognition of base categories compared to Prototypical Nétworks

6.4.1.2 Comparison with state-of-the-art

Here we compare the proposed few-shot object recognition system with other state-of-the-art
approaches on the Mini-ImageNet test set.
Explored feature extractor architectures. Because prior approaches use several dif-

ferent network architectures for implementing the feature extractor of the ConvNet model,

5In order to recognize base categories with Prototypical Networks, the prototypes for the base categories
are computed by averaging all the available training features vectors
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we evaluate our model with each of those architectures. Speci cally the architectures that
we evaluated areC32Fis a 4 module ConvNet network (which was describef 614.1.1)

with 32 feature channels on each convolutional lag84F has 64 feature channels on
each layer, and i€ 128Fthe rst two layers have 64 channels and the latter two have 128
channels (exactly the same as the model that was usefl.th1.1). WithRESNET we refer

to the ResNetg7] like network that was used from Mishra et al05 (for more details we

refer to [105]).

In Table 6.2 we provide the experimental results. In all cases, our models (that include the
cosine-similarity based ConvNet model and the attention-based few-shot weight generator)
achieve better few-shot object recognition performance than prior approdtbesover, it
is very important to note that our approach is capable to achieve such excellent accuracy on
the novel categories while at the same time not sacri cing the recognition performance of

the base categories, which is an ability that prior methods lack.

6.4.1.3 Qualitative evaluation with t-SNE scatter plots

Here we compare qualitatively the feature representations learned by the proposed cosine-
similarity based ConvNet recognition model with those learned by the typical dot-product
based ConvNet recognition model. For that purpose in Figure 6-2 we provide the t98NE [
scatter plots that visualize the local-structures of the feature representations learned in those
two cases. Note that the visualized features are from the validation categories of the Mini-
ImageNet dataset that are “unseen” during training. Also, in the case of the cosine-similarity
based ConvNet recognition model, we visualizeltheormalized features, which are the
features that are actually learned by the feature extractor.

We observe that the feature extractor learned with the cosine-similarity based ConvNet
recognition model, when applied on the images of “unseen” categories (in this case the
validation categories of Mini-ImageNet), generates features that form more compact and
distinctive category-speci c clusters (i.e., more discriminative features). Due to that, as it
was argued in sectiog6.3.1, the features learned with the proposed cosine-similarity based
recognition model generalize better on the “unseen” categories than the features learned

with the typical dot-product based recognition model.
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6.4.2 Few-shot benchmark of Hariharan & Girshick [51]

Here we evaluate our approach on the ImageNet based few-shot benchmark proposed by
Hariharan and Girshicl&fl] using the improved evaluation metrics proposed by Wang et
al. [157). Brie y, this benchmark splits the ImageNet categories into 389 base categories
and 611 novel categories; 193 of the base categories and 300 of the novel categories are used
for cross validation and the remaining 196 base categories and 311 novel categories are used
for the nal evaluation (for more details we refer t6]]). We use the same categories split
as they did. However, because it was not possible to use the same training images that they
did for the novel categori€swe sample ourselvestraining images per novel category
and, similar to them, evaluate using the images in the validation set of ImageNet. We repeat
the above experiment 100 times (sampling each time a different set of training images for
the novel categories) and report in Table 6.3 the mean accuracies éfsftloen dence
intervals for the recognition accuracy metrics proposed in [157].

Implementation details of training procedure of the proposed approach.During
the 1st training stage, the recognition model was trained for 100 epochs using a stochastic
gradient descent optimizer with moment@® and weight decage 4. The learning
rate was set td0 ! for the rst 30 epochs, then dropped 1@ 2 for the next 30 epochs,
then again dropped tb0 3 for the next 30 epochs, and nally again droppedLt * for
the remaining 10 epochs. Each training epoch lasted for 4000 training batches of size
400. During the 2nd training stage, our model was trained for 6 epochs using a stochastic
gradient descent optimizer with moment@® and weight decage 4. The learning
rate was set ta0 2 for the rst 4 epochs and then dropped10 2 for the nal 2 epochs.
Each training epoch lasted for 4000 training batches. Each training batch included a single
“training episode” during which, 250 “fake” novel categories were sampled from the 389
base categorie3, e = 1500 test images were sampled from the “fake” novel categories,
andTpase = 750 test images were sampled from the remaining base categories. Since the
feature extractor remains “frozen” during the 2nd training stage, we speed-up this training

stage by pre-computing and cashing to the hard disk the feature vectors of all ImageNet

6t was not possible to establish a correspondence between the index les that they provide and the
ImageNet images

211



images. For more implementation details we refer to the implementation code of this chapter.
Comparison to prior and concurrent work. We compare our full system (Cosine
Classi er & Att. Weight Gen entry) against prior work, such as Prototypical-N&4§)|[
Matching Networks [155], and the work of Hariharan and Girshick [51]. We also compare
against the work of Wang et all$7], which is concurrent to ours. We observe that in all
cases our approach achieves superior performance than prior approaches and even exceeds
(in all but one cases) the Prototype Matching N8| based approaches that are concurrent
to our work.
Feature extractor: The feature extractor of all approaches is implemented with a
ResNet-1(057] network architecturethat gets as input images 224 224size. Also,
when training the attention based few-shot classi cation weight generator component of our
model (2nd training stage) we found helpful to apply dropout Wighprobability on the

feature vectors generated by the feature extractor.

6.5 Conclusions

In this chapter we proposed a dynamic few-shot object recognition system that is able
to quickly learn novel categories without forgetting the base categories on which it was
trained, a property that most prior approaches on the few-shot learning task neglect to ful Il.
To achieve that goal we proposed a novel attention based few-shot classi cation weight
generator as well as a cosine-similarity based ConvNet classi er. This allows our system to
recognize in a uni ed way both novel and base categories and also leads to learn feature
representations with better generalization capabilities. We evaluated our framework on Mini-
ImageNet and the recently introduced fews-shot benchmark of Hariharan and Gi&ljick |
where we demonstrate that our approach is capable of both maintaining high recognition
accuracy on base categories and to achieve excellent few-shot recognition accuracy on novel

categories that surpasses prior state-of-the-art approaches by a signi cant margin.

’Similar to what it is already explained, our model does not include the last ReLU non-linearity of the
ResNet-1@eature extractor
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Chapter 7

Conclusions

7.1 Contributions

In this thesis we developed a series of deep learning based approaches that aimed on
improving the effectiveness of image understanding tasks (such as object recognition, object
detection, and pixel-wise image labeling) as well as making them less dependent on the
availability of large-size manually labeled training datasets.

More speci cally, in order to boost the recognition aspect of object detection systems
we proposed a multi-region and semantic segmentation aware ConvNet-based image rep-
resentation. We integrated this recognition module on an iterative localization mechanism
and the resulting detection system achieved state-of-the-art results on PASCAL detection
challenge, surpassing prior approaches by a signi cant margin. The proposed idea of using
multiple regions in order to enhance the recognition performance of object detectors, has in-
spired subsequent work in object detecti®64, 169 as well as in action recognitiori]L9
and weakly supervised object localizati®@®]. Furthermore, key ingredients of the lo-
calization methodology that was proposed in this work has been used from several object
detectors$, 168 56, 20] in order to boost their detection performance when participating
in the COCO detection challenge [91, 23].

We improved the localization accuracy of object detection systems by proposing a
novel localization model, calledocNet that formulates the bounding box localization

problem as a dense classi cation task (instead of a bounding box regression one). The

213



proposed.ocNetbased detection systems managed to achieve signi cant improvements on
the mAP for high loU thresholds while also being more robust w.r.t. the quality of the box
proposals used as input to the detection system. We also adapted the above two localization
techniques (i.e, iterative localization and the LocNet module) to the category agnostic box
proposal generation task and the resulting system, cAlieactioNet achieved excellent

box proposal results. By feeding tho&#ractioNetbox proposals to one of olwocNet

based detection systems we achieved state-of-the-art result among the VGG16-Net based
methods in the COCO detection challenge. In the COCO 2016 detection chalkshge [

our submission based dxttractioNetbox proposals and thieocNetlocalization model
achieved state-of-the-art results among single model submissions (i.e., submissions that do
not use ensemble of models), while some other top-ranked entries alsAttrsetionNet
proposals [23].

In the pixel-wise labeling problem, we explored several deep neural network architectures
that perform structured prediction by learning to (iteratively) improve some initial (but
inaccurate) estimates of the output labels. The goal is to identify what is the optimal
architecture for implementing such deep structured prediction models. In this context, we
propose to decompose the label improvement task into three steps: 1) detecting the initial
label estimates that are incorrect, 2) replacing the incorrect labels with new ones, and nally
3) re ning the renewed labels by predicting residual corrections w.r.t. them. We extensively
evaluated those architectures to the disparity estimation task (stereo matching) and the
proposed one, calledetect, Replace, Re nachieved state-of-the-art results on the KITTI
2015 benchmark.

In order to reduce the dependence of deep learning based approaches on large-size
manually labeled training dataset, we proposed a self-supervised representation learning
approach that learns semantic ConvNet-based image features by training the ConvNet to
recognize the 2d rotation applied to an image. Despite the simplicity of the proposed
approach, the learned features exhibit very good results when transferred on the vision
tasks of object detection and semantic segmentation, surpassing prior unsupervised learning

approaches and thus narrowing the gap with the supervised case.

Finally, in order to achieve our goal of annotation ef cient learning we also worked

214



on the subject of few-shot object recognition. Speci cally, we proposed a few-shot object
recognition system that learns to dynamically generate classi cation weights of visual
categories given as input a few examples of them. Thanks to this meta-learning mechanism
our system is able after its training to learn novel (unseen during training) categories
from only a few training data. Furthermore, unlike most previous approaches, our system
has the ability to not forget the categories on which it was trained when learning novel
ones. Experimental results on few-shot benchmarks showed that our approach outperforms

previous state-of-the-art methods.

7.2 Future work

In this thesis we focused our efforts on advancing the state-of-the-art on the image under-
standing tasks of object detection and pixel-wise image labeling w.r.t. the accuracy with
which those tasks are performed. However, in order to effectively employ deep learning
based solutions to mobile devices or other embedded systems (e.q., in self-driving cars,
or autonomous robots) it is also very crucial to decrease the computational and memory
complexity of such approaches without signi cantly hurting their accuracy. For example,
in case such image understanding models are going to be applied to videos, a promising
research avenue is to explore how to exploit the temporal dimension of the data in order
to decrease the per-frame computational cost of the models while at the same time their
accuracy remains the same. Apart from their speed, another practical limitation of deep
neural networks is that the are highly specialized to a single task and visual domain. Instead,
it would be desirable to have image understanding models that perform well on multi-
ple tasks and domains simultaneously without any performance loss compared to image
understanding models dedicated to a speci ¢ task and domain.

Many opportunities for improvement and alternatives to be explored exist also in the
annotation ef cient objective of our work. For instance, more research should be conducted
on the problem of unsupervised image representation learning using still images. Also, very
interesting and promising research directions for unsupervised image representation learning

are those of exploiting the structure present in the temporal dimension of videos, exploiting
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extra sensor modalities, such as audio and / or textual inputs, together with the visual
modality, or by employing autonomous agents that learn to interact with their environment
(instead of only passively observing it). In the topic of few-shot learning, further research
is required on how to effectively store and exploit past visual experiences in memory
augmented neural networks. Related work has mostly focused on storing and exploiting
short-term memorieslp5 105, 38, 68, 131], i.e., storing the few training examples of

a novel category in order to facilitate its recognition when a test example is presented.
However, the visual experiences seen during the training phase of the network (i.e., the
training examples of training categories) usually do not participate in the learning process
of a novel category. In our work we attempted to exploit such past visual experiences by
proposing to infer the classi cation weights of a novel category via an attention mechanism
over the corresponding weights of the training categories. Despite the success of our
approach we believe that there is still large room for improvement at this subject. Another
interesting research direction is on devising learning mechanisms that would adapt also
the feature representations when learning to recognize novel categories without over- tting
on its few-training examples and without forgetting the categories already learned by the
model. Although, there is already important work in this subj&2# 36], we believe that

it necessitates further exploration. Finally, it is important to extend such few-shot object
recognition approaches to other (more complex) image understanding tasks, such as object

detection and semantic segmentation.
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Appendix A

Improving object localization accuracy

In object detection

A.1 Object detection pipeline

In Algorithm 1 of sectior83.3 we provide the pseudo-code of the object detection pipeline
that we adopt. For clarity purposes, the pseudo-code that is given corresponds to the single
object category detection case and not the multiple object categories case that we are dealing
with. Moreover, the actual detection algorithm, after scoring the candidate boxes for the
rst time t = 1, prunes the candidate boxes with low con dence in order to reduce the
computational burden of the subsequent iterations. For that purpose, we threshold the
candidate boxes of each category such that their average number per image and per category
is aroundl8 boxes. Also, during this step, non-max-suppression with [0Qt@6is applied
in order to remove near duplicate candidate boxes (in the case of using sliding windows
to generate the initial set of candidate boxes this loU threshold is €8% A more
detailed algorithm of our detection pipeline is presented in Algorithm 2. Note that, since the
initial candidate boxeBlgS, are coming from a category-agnostic bounding box proposal
algorithm, those boxes are the same for all the categories and when applying on them (during
t = 1 iteration) the recognition module, the computation between all the categories can be

shared.
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Algorithm 2: Object detection pipeline

Input : Imagel, initial set of candidate boxd®Bg%,
Output : Final list of per category detectiohy .S,
fort 1toT do
forc 1toCdo
S.  RecognitioBLjl; ¢)
ift==1 then
| fS;Blg PruneCandidateBoxedf S;; BLg)
end
nd
t<T then
forc 1toCdo
| BY*'  Localizatior(Bijl; c)
end
end
end
forc 1toCdo
De [ {1fSiBg
Y. PostProcedd.)
end

= D

A.2 Multi-threshold non-max-suppresion re-ordering

As already described in section 3.4.1, at the end of our active box proposal generation
strategy we include a non-maximum-suppressis) (NMS) step that is applied on the
setC of scored candidate box proposals in order then to take the naKtautput box
proposals (see algorithm 2). However, the optimal loU threshold (in terms of the achieved
AR) for the NMS step depends on the desired numbesf output box-proposals. For
example, for 10, 100, 1000 and 2000 proposals the optimal l1oU threshol@$5r6:75,

0:90 and0:95 respectively. Since our plan is to make our box proposal system publicly
available, we would like to make its use easier for the end user. For that purpose, we
rst apply on the selC of scored candidate box proposals a simple NMS step with loU
threshold equal t6:95in order to then get the top 2000 box proposals and then we follow a
multi-threshold non-max-suppression technique that re-orders this set of 2000 box proposals
such that for any given numb#&r the topK box proposals in the set better cover (in terms

of achieved AR) the objects in the image.
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Speci cally, assume thafttigi'\‘:k1 are the optimal loU thresholds fdt, different desired
numbers of output box propodeig?‘:kl, where both the thresholds and the desired
number of box proposals are in ascending ord®ur multi-threshold NMS strategy starts
by applying on the aforementioned ¢ebf 2000 box proposals simple single-threshold
NMS steps with loU threshold‘stigiN:k1 that results oy different lists of box proposals
fL(t;))g\ (note that all the NMS steps are applied on the samé latd not in consecutive
order). Then, starting from the lowest threshbldwhich also is the more restrictive one)
we take from the list. (t;) the topK ; box proposals and we add them to the set of output
box proposal$. For the next thresholth we get the tofK, j Pj box proposals from
the setf L (t;) n Pg and again add them on the $&t This process continues till the last
thresholdy, at which point the size of the output box proposals/setK y, = 2000. Each
timei = 1;:::; Ny we add box proposals on the $&ttheir objectness scores are altered
according to the formula= o+ (N i) (whereoandeare the initial and after re-ordering
objectness scores correspondingly) such that their new objectness scores to correspond to
the order at which they are placed in the BeNote that this technique does not guarantee
an optimal re-ordering of the boxes (in terms of AR), however it works suf ciently well in

practice.

A.3 Common categories between ImageNet and COCO

In this section we list the ImageNet detection task object categories that we identi ed to be
present also in the COCO dataset. Those are:

airplane, apple, backpack, baseball, banana, bear, bench, bicycle, bird, bowl, bus,

car, chair, cattle, computer keyboard, computer mouse, cup or mug, dog, domestic

cat, digital clock, elephant, horse, hotdog, laptop, microwave, motorcycle, orange,
person, pizza, refrigerator, sheep, ski, tie, toaster, traf c light, train, zebra, racket,
remote control, sofa, tv or monitor, table, watercraft, washer, water bottle, wine

bottle, ladle, ower pot, purse, stove, koala bear, volleyball, hair dryer, soccer ball,

We used the loU thresholds b®:55; 0:60; 0:65; 0:75; 0:80; 0:85; 0:90; 0:95g for the desired numbers of
output box proposals10; 20; 40; 100 200, 400, 1000 2000Qy. Those loU thresholds were cross-validated on a
validation set different than this used for the evaluation of our approach.
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rugby ball, croquet ball, basketball, golf ball, ping-pong ball, tennis ball.

A.4 Ignored NUY Depth dataset categories

In this section we list the 12 most frequent non-object categories that we identi ed on the
NUY Depth V2 dataset:
curtain, cabinet, wall, oor, ceiling, room divider, window shelf, stair, counter, window,

pipe and column.
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