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Résumé 

 

Dans cette thèse, nous nous sommes intéressés à la statique et la dynamique du mouillage de 

gouttes d’eau sur des substrats mous tels que des gels, encore connu sous le nom 

d’élastomouillage. Pour ce faire, nous avons d'abord développé une méthode quantitative de 

visualisation par strioscopie permettant de mesurer la déformation de la surface d'un film de gel 

transparent avec une précision élevée quelque soit l'épaisseur du substrat et sur de grandes 

distances. Nous montrons que la déformation superficielle de films mous de silicone (PDMS) 

dépend de la taille des gouttelettes déposées ainsi que de l'épaisseur et de l’élasticité de ces 

films. Nous avons construit un modèle basé sur la théorie de l'élasticité linéaire tenant compte 

de la tension superficielle des gels qui prédit bien la forme et l’amplitude de la déformation de 

surface. Nous apportons aussi la preuve expérimentale et l'analyse théorique de l’importance 

de l'hystérèse de l’angle de contact dans la description de la déformation en démontrant que la 

force tangentielle due à la tension superficielle entre liquide et vapeur à la ligne de contact, 

souvent négligé, contrôle la déformation de la surface. La dynamique de mouillage est étudiée 

en dégonflant des gouttelettes sur des films de PDMS avec une épaisseur bien contrôlée. Il est 

démontré que la dissipation d'énergie dans le gel dépend fortement de l'épaisseur lorsque cette 

dernière est inférieure à 100 𝜇𝑚. L'effet de freinage viscoélastique et l'effet d'épaisseur sont 

bien rationalisés avec un modèle basé sur la viscoélasticité linéaire et une simple loi l'échelle 

qui tient compte de l'effet d'épaisseur capture très bien nos expériences. Enfin, nous démontrons 

que nous pouvons dériver et guider les gouttelettes en mouvement avec la conception de 

surfaces couvertes de couches de gels ayant des gradients d'épaisseur. 

Mots-clés – Elastomouillage, optique de Schlieren, déformation de surface, élasticité linéaire, 

dissipation, viscoélasticité. 
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Abstract 

 

In this thesis, we aim at obtaining a better understanding of the statics and dynamics of the 

wetting of liquids on soft gels, otherwise known as elastowetting. First, we develop a 

quantitative Schlieren set-up to measure the surface deformation of a transparent gel film with 

a high precision over large areas and for all thicknesses in real time. The long-range surface 

deformation of soft PDMS films is found to be dependent on the sessile droplet size, and the 

thickness and elasticity of soft films. We build a model based on linear elasticity theory that 

accounts for the surface tension of soft materials. It predicts the long-range surface deformation 

in excellent agreement with the experimental data. We also bring the experimental proof and 

theoretical analysis of the importance of contact angle hysteresis in the description of the 

deformation of the surface of the gel. We demonstrate that the tangential component of the 

liquid-vapor surface tension at the contact line, whose contribution are often neglected, 

significantly affects the surface deformation. Wetting dynamics is investigated by deflating 

droplets on PDMS films with well-controlled thickness. It is shown that energy dissipation in 

the soft gel depends on the thickness when the latter is smaller than 100 𝜇𝑚. The viscoelastic 

braking effect and the thickness effect are both well rationalized with a model based on the 

theory of linear viscoelasticity and a simple scaling law accounting for the thickness effect 

captures very well our experiments. Finally, we demonstrate that we are able to guide moving 

droplets with coatings having a gradient of their thickness. 

Keywords -  Elastowetting, Schlieren optics, surface deformation, linear elasticity, dissipation, 

viscoelasticity. 
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8 Chapter 1 State of the ART 

Chapter 1 State of the ART 

1.1 Introduction 

The spreading of liquids on solid substrates and more generally any motion of a liquid with a 

dry/wet front is called wetting1–5. The quest for a thorough  physical understanding of this topic 

started two centuries ago1,6,7. However, the description and use of wetting precedes by a long 

time its academic understanding. Around 1300 years ago, a Chinese poet, named Xin LI8, 

portraited in Figure 1.1(a), wrote in a temple after he quitted his official position: 

粲公院各赋一物得初荷 

微 风 和 众 草 ， 大 叶 长 圆 阴 。  

晴 露 珠 共 合 ， 夕 阳 花 映 深 。  

从 来 不 著 水 ， 清 净 本 因 心 。  

For the nascent lotus of CanGong Temple 

Across grasses flows breeze, grand and round are the leaves. 

Blinking dewdrops merge, through flowers the setting sunshine goes deep. 

Water it never touches, purity it is for its own nature. 

In this poem, he makes a precise observation of water droplets on lotus leaves: in the second 

line, he states that the dewdrops blink like sunshine, meaning much of the light is reflected back 

by the bottom of the drop where a liquid-gas interface actually dominates the cross section 

between the liquid and solid according to the modern observations9,10; in the third line, he tells 

us that the droplet does not stick to the lotus leaf.  This observation is a testimony of the super-

hydrophobicity of lotus leaves - high apparent contact angle and very low contact angle 

hysteresis11–13. Li and his contemporaries did not provide an understanding of the underlying 

mechanism. Nonetheless, people still took advantage of this peculiar phenomenon. For example, 

tea experts discussed the choice of water for making tea at length, and they compared water 

collected from rainfalls, snow and dewdrops14 as soon as the eighth century of our era, during 

the Tang Dynasty. Dewdrop water, Figure 1.1(b), was believed to be one of the best because 

Yin nature of them brings faint scent to tea15,16, according to Taoism. Dewdrop water was 

collected by shaking plant leaves over a bamboo vessel after overnight condensation. Ancient 

artisans were thus taking advantage of the low contact angle hysteresis of water droplets on 

plant leaves even without noticing it. Nevertheless, how to understand and increase dew 

collection efficiency remained an unsolved issue until almost 1000 years later1,6,7,17. 

 

FIGURE 1.1: (a) Poet, Xin LI (690？—751？), Tang Dynasty. (b) Dew collection for tea-making. 

The previous story from ancient China is only one case where human beings took advantage of 

wetting for their well-being without noticing. In fact, wetting is everywhere. Plants and animals  

have developed special biological organs with hydrophilicity features to intake water to 

maintain their livings18,19. Mosquito’s eyes are superhydrophobic in order to keep eyes clean 

and dry in moist conditions20. Feathers of many insects and animals, such duck, butterflies and 

(a) (b) 
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water striders, are of hierarchy structures to ensure the hydrophobicity/superhydrophobicity to 

prevent the water intruding into their body and to keep the body from dessication21,22. When a 

stone is thrown into the water, splashes are created depending on the surface wettability23. When 

we take a shower, water flows down our body in the form of rivulets and droplets because of 

the high contact angle of water on the skins24. In contrast, lipidic materials will tend to wet our 

skin and form thin films. In the coating industry, engineers want to insulate the surface from 

the surrounding environment to protect underlying materials from erosion or to pattern the 

surface for the specific wettability (superhydrophilicity and superhydrophobicity). Thus, they 

coat surfaces with adhesive layers, from molecular up to macroscopic thickness, from the liquid 

phase. The performance of the intersection line among liquid-gas-solid phases is crucial to the 

coating quality25–27. 

Many applications rely on wetting. For instance, to attain high conversion and achieve better 

heat transfer, petroleum industry use trickle-bed reactors, the efficiency of which is controlled 

by the catalyst wettability28. In living bodies, cells and tissues assemble themselves together in 

certain spatial organization to gain their functions. Wettability between cell wall and tissue 

boundary is critical to those structure formations, which now can be manipulated by 

biologists29–31. Surface hydrophobicity promotes the cell-cell adhesion and cell-substratum 

adhesion is dominated on hydrophilic surfaces which leads to new approaches to the 

development of biomaterials. Besides, scientists and engineers now are able to make use of the 

wetting on deformable materials. For example, running droplets can slow down due to the 

viscoelasticity of substrates32–42; an elastic sheet can fold into an origami because of capillary 

forces43,44; micro-rheometer and surface tension/stress tester can be achieved with very low 

price45–61; micro-vessels and micro-lenses could be fabricated from polymers by solvent drops62; 

surface patterns can be created by spreading droplets or dipping technique63–69; droplets and 

cells can be distributed by rigidity70–72. 

The ubiquity of wetting has generated a tremendous interest in the fundamental understanding 

of its statics and dynamics, both on rigid and deformable substrates. In this thesis, we will cast 

our eyes on the wetting of soft materials, which is coined “elastowetting”56–58,73,74. The aim of 

the present chapter is to introduce the basics of elastowetting and interface science. First, how 

the contact between a liquid droplet and a substrate is described, for substrates that are liquid, 

rigid and compliant solids (section 1.2). Then, the state of the art of the statics of wetting on 

soft materials, including static contact angle, contact angle hysteresis and surface deformation, 

is summed up (section 1.3). Section 1.4 deals with the dynamics of wetting and spreading on 

soft substrates, with a comparison to spreading on rigid surfaces. Finally, section 1.5 exposes 

questions we are going to deal with in this thesis and the structure of the manuscript.  

1.2 Wetting fundamentals: from Young to Neumann 

When a liquid is deposited on a surface, a geometrical angle, measured from the liquid-vapor 

interface to the liquid-solid interface, is usually observed when the drop reaches its equilibrium. 

This angle is defined as the static contact angle2,3,5,21,75,76, 휃𝑒. The intersection line where liquid, 

solid and vapor meet is called the triple line, the contact line, or the wetting line2,3,5,21,75,76, as is 

illustrated in Figure 1.2(a). Wetting can be characterized as the complete or total wetting (휃𝑒 =

0°), partial wetting (0° < 휃𝑒 < 180°), and non-wetting (휃𝑒 = 180°). For elastowetting in this 

thesis, we are always in the regime of partial wetting. For most of cases, the static contact angle 

is hardly found to be a single value. There are in general two observed bounds for it2,3,5,21,75,76: 

one is a maximum, advancing contact angle, above which the contact line starts to move out; 

another one is a minimum, receding contact angle, below which the contact line will retract 

back. This non-uniqueness of static contact angle is known as the contact angle 
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hysteresis2,3,5,21,75,76. When the contact line is in motion, the angle from the liquid-vapor 

interface to the liquid-solid interface is named as dynamic contact angle2,3,5,21,75,76, 휃𝑑, while the 

contact line is known as the moving contact line or the dynamic contact line2,3,5,21,75,76.  

 

FIGURE 1.2: (a) A resting droplet on a rigid, smooth surface. (b) Drop of liquid 1 floats on another immiscible 

liquid 2. 

1.2.1 Rigid wetting: Young’s equation 

The static contact angle characterizing a droplet sitting on a perfectly rigid, flat, smooth, 

chemically homogeneous substrate adopts a single unique value, known as Young’s contact 

angle1–3,5,21,75,76. A simple way to understand comes from the force balance at the contact line: 

𝛾𝑆𝐿⃑⃑ ⃑⃑  ⃑ + 𝛾𝑆𝑉⃑⃑ ⃑⃑ ⃑⃑ + 𝛾𝐿𝑉⃑⃑ ⃑⃑ ⃑⃑ = 0 (1.1) 

𝛾𝑆𝐿, 𝛾𝑆𝑉 and 𝛾𝐿𝑉 are the solid-liquid, solid-vapor, and liquid-vapor surface tension, respectively. 

Since the solid is perfectly rigid, the vertical force balance is dropped and only the balance in 

the horizontal direction is kept: 

𝛾𝑆𝑉 = 𝛾𝑆𝐿 + 𝛾𝐿𝑉 cos휃𝑌 (1.2) 

This equation is also known as Young equation, which can be equivalently recovered from 

theomodynamics5,21,77. Note that the vertical equilibrium cannot be satisfied from Equation 

(1.2), with a vertical traction, 𝛾𝐿𝑉 sin 휃𝑌, pulling the solid normally on its surface, which is 

essential in the elastowetting shown below. 

1.2.2 Wetting of a liquid on another immiscible liquid: Neumann’s triangle  

When a liquid drop is floating on another immiscible liquid, a liquid meniscus appears at the 

three-phase junction (Figure 1.2(b)). The force balance at the contact line is similar to Equation 

(1.1): 

𝛾𝑉1⃑⃑ ⃑⃑ ⃑⃑ + 𝛾𝑉2⃑⃑ ⃑⃑ ⃑⃑ + 𝛾12⃑⃑⃑⃑⃑⃑ = 0 (1.3) 

here 𝛾𝑉1 , 𝛾𝑉2 , and 𝛾12  are the liquid 1-vapor, liquid 2-vapor and liquid 1-liquid 2 surface 

tension, respectively. This equation leads to the following relation: 

𝛾𝑉1
sin (휃2)

=
𝛾𝑉2

sin (휃1)
=

𝛾12
sin (휃3)

 (1.4) 

That defines what is known as Neumann’s triangle. 
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1.2.3 Wetting of a liquid on a compliant substrate: elastowetting 

In the elastowetting case, as mentioned above, the surface tension of the liquid-vapor interface 

exerts a pulling force to the substrate. Because of the deformability of the material, part of the 

substrate will be drawn up, leading to the growth of a bump at the wetting line, the “wetting 

ridge”35,36,53,56,57,78–80. This ridge has been directly observed by micro-X ray techniques as is 

shown in Figure 1.3(a)80, in which the elastomer has a Young modulus of 3 kPa. Once a traction 

is applied to the surface of a soft slab, the gel in the vicinity of the contact is deformed. The 

surface area increases, and the associated energy does so too, and the mechanical response in 

the bulk results into an increase of the elasticity energy. How the surface phenomenon is related 

to the two channels of gathering energy will be simply considered as follows. 

 

FIGURE 1.3: (a) Image of a wetting ridge of a PDMS gel acquired by the X ray microscopy80. The scale bar is 

5 µm. (b) An initially flat slab under a sinusoidal surface deformation. L is the wavelength, and 𝛾𝑠 is the surface 

tension of the slab. 

Suppose an initially flat slab of surface tension 𝛾𝑠, and of Young modulus E, having a sinusoidal 

surface deformation with a wavelength L (Figure 1.3(b)). The elastic restoring stress is 

estimated as: 𝐸ℎ/𝐿, and the capillary restoring stress is scaled as: 𝛾𝑠ℎ 𝐿
2⁄ . The ratio of the two 

gives out a length: 

𝑙𝑠 = 𝛾𝑠 𝐸⁄  (1.5) 

It is one kind of what is called as elastocapillary length52,55–57,72, the other kind being related to 

the bending mode of an unbounded compliant sheet44. This relation compares the magnitude of 

surface tension with elastic stresses. When the length scale of the deformation is smaller than 

𝑙𝑠, solid surface tension 𝛾𝑠 dominates while elasticity dominates at larger length scales. Coming 

back to the elastowetting, it has been shown that a wetting ridge develops at the three-phase 

junction, and the length scale of the tip of this ridge is smaller than 𝑙𝑠 . Its geometry 

configuration among the three phases will be a Neumann-like one, decided by the surface 

tensions48,52,53,57,58.  

1.3 Statics in elastowetting 

This section will review progresses on three issues in elastowetting: static contact angle, its 

hysteresis and soft material deformation. One difficulty of such a review is that the domain has 

been known with a major change recently. Researchers realize that the vertical action of 

substrate surface tension was forgotten by ancient theoretical works, or at least treated in a 

questionable way via very complex minimization calculations. A possible reason for this is that: 

qualitatively, Young horizontal equilibrium is supposed to balance exactly what happens in the 

(a) (b) 

L 

𝛾𝑠 

E h 
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horizontal direction, with the unbalanced vertical contribution only being to be considered 

within additional deformation calculations performed on the nondeformed reference state of a 

“flat” solid.  Now, when the substrate distortion becomes large, this assumption is no longer 

valid, the substrate surface tension having a nonnegligible effect even vertically. As a result, if 

one except a few precursor works (Long et al among others), most papers published before 

2010 are of questionable applicability to real situations. Inversely, the complexity introduced 

by the substrate surface tension is such that only the case of “symmetrical” surface tensions on 

each side of the contact line is exactly solved, i.e. the case of a “natural” contact angle of 90°. 

Again, there is possibly one exception with a very recent paper from Bostwick et al81, trying to 

solve the asymmetrical, in a more general case, but via integral equations whose solutions are 

of questionable validity [J. Dervaux and L. Limat, private comunication].  It is also important 

to say that the 2000’s were also the beginning of a new period for experiments, in which more 

and more accurate techniques emerged, which has greatly catalyzed in turn the theoretical 

efforts. 

1.3.1 Static contact angle and its hysteresis 

Static contact angle is taken as the equilibrium contact angle, 휃𝑒, measured from the liquid-

vapor interface to the horizontal planar and contact angle hysteresis, 휃ℎ , is referred as the 

difference between the advancing contact angle, 휃𝑎, and receding contact angle, 휃𝑟, from a 

macroscopic view. Both are illustrated in Figure 1.4. 

 

FIGURE 1.4: A resting droplet on a soft substrate. 

Static contact angle 

A resting droplet on a perfectly rigid, smooth and chemically homogeneous material attains the 

Young’s relation at the contact line as has been demonstrated in section 1.2.1. However, when 

the underlying material is soft, there is a vertical unbalanced component of surface tension that 

pulls the solid, which can become highly deformed: “The resultant of these tensions is 𝛾12𝑠𝑖𝑛휃. 

As long as this force is not balanced, no equilibrium can exist.”, as was firstly pointed out by J. 

J. Bikerman77 in 1959, who even directly denied the validity of Young’s relation on soft 

materials. However, no models in describing how this unbalanced force is acting at the contact 

line are proposed by him. Two years later, G. R. Lester78 solved the case of a drop sitting on a 

deformable substrate with infinite thickness analytically using linear elasticity theory. The static 

contact angle was found from the surface deformation. And according to Lester, it was neither 

Young’s angle nor Neumann’s angle because of the incoherence between the elastic 

deformation condition and surface tension balance. Later on, another contribution comes from 

A. I. Rusanov82 who introduced a concept  of “linear tension”, incorporating the elastic 

deformation energy of soft materials, into the minimization of the global energy. Rusanov found 
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that the equilibrium contact angle is Young’s angle plus a correction originating from the elastic 

deformation and it goes to Young’s value when the substrate is rigid, which was experimentally 

confirmed by Yuk et al83. In addition, compared to the research of his precursors, Rusanov’s 

work might be the first one addressing the real case in that both the normal and tangential 

components of the traction imposed by the surface tension on the deformable slab are 

considered. In the following, Shanahan et al36,79, used a similar approach as A. Rusanov, 

variation method to minimize the system free energy and unveiled a mesoscopic solution for 

the static contact angle consisting of a Young’s angle with a deviation due to elasticity and 

Laplace pressure (droplet volume confinement). M. Fortes84 came up with a similar result later 

for a drop deposition on a membrane.  

However, as has been stated above, all those researches missed a very subtle point that is as 

follows. Usually the substrate surface tension affects mainly the tangent situation, in particular 

by a Young condition that will still hold for very small deformations. Now, when the substrate 

deformation becomes large, one can no longer neglect the slope of the solid near the contact 

line, that introduces substrate surface tension effects in the “vertical” equilibrium of the surface. 

This can be understood in two ways: (1) as the solid surface inclines itself, the tangent force 

𝛾𝑠𝑡  develops a component normal to the solid surface of order 𝛾𝑠𝜕휁 𝜕𝑥⁄  where 휁(𝑥) is the 

profile of the deformed solid surface, supposed here in 1D; (2) as the solid becomes highly 

curved too, there is a Laplace pressure that appears between both side of the solid surface of 

intensity 𝛾𝑠𝜕
2휁 𝜕𝑥2⁄  that also “pulls” or “pushes” this surface normally to itself. Both 

arguments are in fact the same, one being the derivative of the other upon 𝑥. As a result, a new 

term is hatched in the surface equilibrium equations: the direct coupling of the surface effect 

(surface tension/energy/stress)40–42,53,56–58 into elastic deformation equations for the surface 

deformation. This idea is in fact implicit in precursors’ model developed by G. Fredrickson, D. 

Long et al40–42, who investigated the wetting of liquids on polymer brushes, polymer layer and 

thin rubber films while accounting for the surface effect into deformations. However, how the 

static contact angle of soft materials is defined by the elastowetting system is not discussed by 

them and they rather focus on scaling laws developed for the elastowetting dynamics. However, 

as we shall see these precursor woks will be extremely important for understanding the 

dynamics. The decisive idea of incorporating the unexpected substrate surface effect (surface 

tension/energy/stress) spreads throughout the following researches up to now. Several 

groups48,56,57,85 (Style and Dufresne in Yale, Snoeijer and Andreotti in Twente and 

PMMH/ESPCI, Limat and Dervaux in MSC lab, among others) develop theoretical calculations 

including this effect, and simultaneously discover that contact angles stick to the Neumann’s 

triangle at the tip of the ridge and Young’s angle in the far field for compliant solids (at least 

for macroscopic drops on an infinitely deep substrate). Besides, droplet size and thickness of 

soft film comes into play for the static contact angle as well. Style et al72, reported a strong 

dependence of 휃𝑒 on the droplet size and soft film thickness (Figure 1.5) due to the surface 

effect. Those results are strengthened further from theoretical calculations from Lubbers et al86, 

and Dervaux et al57.  
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FIGURE 1.5: Droplets deform soft substrates, causing Young’s law to fail. (a) X-ray image of the contact line 

of a water droplet on a soft, silicone gel substrate. The ridge is pulled up by the droplet surface tension. 𝐸 =

3 𝑘𝑃𝑎, and the substrate is 22 𝜇𝑚 thick. The droplet radius is ∼ 1 𝑚𝑚. (b) The equilibrium of a sessile droplet 

on a soft surface with 𝑅 ≫ 𝛾𝑉𝐿/𝐸. (c) A resting droplet on a soft surface with 𝑅 ≪ 𝛾𝑉𝐿/𝐸. (d) Symbols show 

measured contact angles of glycerol droplets on a silicone gel as a function of droplet radius. Data are shown 

for thin silicone gel layers of ℎ =  3 𝜇𝑚 (red) and thicker layers of ℎ =  35, 38 𝜇𝑚 (blue). Filled/open points 

were measured by laser scanning (LS)/white-light optical profilometry (WLP). (e) Schematic profile of a droplet 

on a soft surface of varying thickness, ℎ. (f) Droplets deposited by condensation onto soft, flat surface. 

Contact angle hysteresis 

Contact angle hysteresis results from the pinning of the contact line2,5,76,   because of surface 

roughness, chemical heterogeneities and solutes. They may arise from reorientation of surface 

groups, machining, surface deformation, absorption and so on87,88. Many researchers have been 

focusing on the hysteresis of wetting on rigid surfaces while very few tried to tackle the 

elastowetting hysteresis56,88–90. To the best of our knowledge, there is only one model89, by 

Extrand et al, and another refined one56, by L. Limat, to account for it, which will be briefly 

reviewed. 

 

FIGURE 1.6: (a) Schematic of the elastomer deformation, pinning post, at the contact line. (b) Hysteresis of 

water droplets on cis-polybutadiene elastomer as a function of rigidity. 

A series of Extrand and Kumagai’s experiments showed that static contact angle hysteresis, 휃ℎ, 

was affected by the elasticity of soft materials once the height, of the wetting ridge, ℎ depicted 

in Figure 1.6(a), exceeds the surface roughness88–90. Liquids such as acetophenone, ethylene 

glycol, methylene iodide, formamide, distilled water were spread on polymers of 

poly(tetrafluoroethylene) (PTFE), poly(chlorotrifluoroethylene) (PCTFE), poly(styrene) (PS), 
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poly(ethylene terephthalate) (PET), natural rubber (NR), cis-poly(butadiene) (BR) with 

controlled elastic modulus. Surfaces of those materials were characterized and handled with 

great care. All those polymers gave a similar result on the contact angle hysteresis as is shown 

in Figure 1.6(b): the hysteresis increases with a decrease of the elasticity modulus. The 

illustration for this is that the surface tension of the liquid pulls up a local deformation of the 

soft surface, forming a bump, wetting ridge, at the contact line, which acts as a pinning post for 

the contact line. Hysteresis is related to the height of this pinning post by: 

휃𝑎 ≈ 휃𝑎̅̅ ̅ +
6𝛾𝑠𝑖𝑛휃𝑎
𝑏𝐸

 

휃𝑟 ≈ 휃𝑟̅̅̅ +
6𝛾𝑠𝑖𝑛휃𝑟
𝑏𝐸

 

(1.6) 

휃𝑎, 휃𝑟, and 휃𝑎̅̅ ̅, 휃𝑟̅̅̅ are the observed advancing, recending contact angle on soft substrates, and 

the true advancing, receding contact angle on polymers without the surface deformation, 

respectively. 𝛾, 𝐸 and 𝑏 are the surface tension of liquid, elastic modulus and a typical length 

scale of micron order that remained unspecified. This set of equations is approximated from the 

linear elastic theory. L. Limat56 pushed it forwards with a more physical description of the 

surface deformation by taking account into the surface effect, arriving at a relation similar to 

Equation (1.6), in which 𝑏  should be given by some elastocapillary lengh. However, both 

models are inherently problematic because the hysteresis was deduced from pure elasticity 

theory, which never predicts an energy barrier to the spreading of liquids84. As is stated by L. 

Limat56: some plasticity is essential to explain why the ridge could remain static while the liquid 

explores its sides; The influence of yield and plasticity in Extrand and Kumagai’s description 

is certainly the first missing link to this theory. This claim was also supported by M. Fortes and 

Lee R.White91. No further convincing models have been made since L. Limat56. How the 

viscoelasticity, poroelasticity and plasticity affect the hysteresis remains to be elucidated. 

1.3.2 Deformation at the contact line 

All throughout the following discussions on both experiments and models, we assume that the 

soft material is incompressible, the deformation of it can be accounted by the linear elasticity 

theory, and gravity is not important and will be neglected if it is not specially specified. This 

section will first present a qualitative description of the deformation and then it gives a review 

on both experiments and models. Finally, we elaborate on a recent model by L. Limat, that 

allows us to establish some link between “modern” elastowetting approaches and previous 

approaches, of which a typical one is developed by Shanahan et al32,35,38,92. 

A qualitative description 

A qualitative description of the problem which we will be faced with in our experiments, is 

suggested in Figure 1.7. We will have to investigate the surface deformation induced by a 

contact line of a droplet on a soft substrate with finite thickness ℎ: First, surface tension, 𝛾𝐿𝑉, 

from the liquid-vapor interface exerts a pull-up traction on the soft substrate, resulting into a 

local bump, wetting ridge, at the contact line; The easiest way to estimate the height of this 

ridge is35,56,58: 𝛾𝐿𝑉𝑠𝑖𝑛휃/𝐸, in which 𝐸 is the elastic modulus. For instance, in Figure 1.3(a), the 

surface tension of water is 72 𝑚𝑁/𝑚 and the elastic modulus of the soft gel is 3 kPa and the 

contact angle is around 105°. Then the height of the ridge is estimated to be 23 𝜇𝑚, which falls 

into the mesoscopic region of a rigid wetting case3,4,76. The ridge could then have a non-

negligible impact on liquid spreading. The growth of the ridge leads also to the pulling-up of 

the substrate. Incompressibility imposes that the volume of the substrate displaced due to the 

ridge growth must be compensated by the motion of an identical volume. Hence, a surface 



 
16 Chapter 1 State of the ART 

depression is expected around the contact line (Figure 1.7). Third, Laplace pressure, due to the 

liquid interface curvature, is pushing down the liquid-solid interface inside the drop. Visually, 

it seems that the droplet sinks into the soft substrate57,72,86, as is drawn in Figure 1.4 and Figure 

1.5. 

 

FIGURE 1.7:  A 2D schematic of surface deformation at the contact line.  

Review on both experiments and models 

It will be difficult to compare quantitatively our experiments with existing models, though we 

will succeed in this, using a generalization of the one developed by Dervaux and Limat57. As 

explained above, there were two successive periods for modeling, separated by the discovery 

that substrate surface tension plays an essential role, even in the vertical displacement of the 

deformed surface. In addition to this parameter, i.e. substrate surface tension, there are other 

more geometrical issues that must be considered, as depicted in Figure 1.8. First, if there is a 

horizontal pinning of the contact line, the tangent component of the force applied at contact line 

by the liquid must be taken into account, as in Figure 1.8(b), in contrary to the initial guess of 

Figure 1.8(a) (postulated long ago by Lester78).  Then, in addition to the substrate surface 

tension effect suggested in Figure 1.8(c), there is the finite depth of the substrate that will matter 

as in Figure 1.8(d). And finally, the best would be also to add a possible difference between the 

substrate surface tensions in the “dry” and “wet” regions of the solid (Figure 1.8(e)). We now 

comment what is available in the literature and what could hold or not in our case.  

Prior to the model by G. Fredrickson, D. Long et al40–42, the surface deformation had always 

and solely been described as the balance between the liquid surface tension and substrate 

elasticity (Figure 1.8(a-b)). Figure 1.8(a) shows the elastic deformation induced by a resting 

droplet on a half-infinite slab with a contribution from the Laplace pressure on the solid-liquid 

interface32–38,61,78,79,91,92. In most theories, this Laplace pressure is missing but can be treated by 

using the response to the vertical pulling as a Green function for the pressure distribution. The 

traction force on the soft slab was taken as the vertical component of the liquid-vapor surface 

tension. G. Lester78 simplified the problem into a 2D problem and assumed that the divergent 

surface tension spread on a ring within a finite width (divergent resolved, being like the Laplace 

pressure), and finally arrived at an explicit solution for the surface deformation which 
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originated from the elastic solution for a constant pressure spreading on a circle applied on a 

half infinite solid. Shanahan et al38,79,92, considered an even simpler case: 2D elastic solution for 

a vertical traction on an elastic solid with infinite thickness. In his model, the horizontal 

component of liquid-vapor surface tension was dropped and the Laplace pressure on the liquid-

solid interface was neglected as well. An analytical solution for the surface deformation, a 

logarithmic profile, on both sides of the ridge was recovered based on the linear solution for a 

concentrated force acting vertically on a flat surface of an infinitely large thin plate. L. White91 

found the surface deformation similar to that by Shanahan et al38,79,92. A further understanding 

of the geometrical effect on the elastowetting is studied by Yu et al61, they found a finite 

thickness effect from numerical modelling with an integral transform method and dimples on 

both sides of the ridge were identified. However, in all those models, solutions for 

stress/strain/displacement diverge at the contact line. Shanahan et al34,38,79,92, removed this 

singularity by introducing a cut-off at the contact line by saying “local behavior is of some other 

type, either non-linearly elastic, or plastic.”. However, the singularity still exists in the model. 

In the next stage, Figure 1.8(b) indicates the surface deformation by a resting droplet on a half-

infinite elastic solid with the Laplace pressure contribution considered and the traction is taken 

from the surface tension, of which both the normal and tangential components are taken into 

account82,93. Like G. Lester78, A. Rusanov82,93 took the liquid-vapor surface tension as constant 

“pressure” spreading on an annulus over which the liquid-vapor interface is defined. All those 

models try to find the surface deformation from the linear elastic theory without taking the 

surface effect (surface tension/energy/stress) into account, and the same singularity was 

recovered in the outlet. Besides, it is questionable to derive the local contact angle at the wetting 

line from the surface tension balance or from minimizing the global energy since the surface 

deformation is already defined by a balance between the liquid-vapor surface tension (sometime 

with the Laplace pressure) and the elasticity32,78,84,91–93. We will thus avoid any use of those 

models in the interpretation of our experiments. 

When it comes to the new period, surface effect (surface tension/energy/stress) is directly 

coupled into the solution of surface deformation40–42,48,51,53,55–57,81,85,94–100. Figure 1.8(c) 

demonstrates the surface deformation on a soft material with infinite thickness is caused by the 

surface tension of liquid-vapor interface, 𝛾𝐿𝑉, and the Laplace pressure, 𝑃, on the liquid-solid 

interface with another contribution from the liquid-solid and solid-vapor surface tension, 𝛾𝑠. 
Figure 1.8(d) denotes the same conditions for surface deformation as Figure 1.8(c) except that 

the soft material has a finite thickness and is bounded on a rigid solid surface. Figure 1.8(e) 

illustrates the asymmetry of surface tension between the solid-liquid and solid-vapor interfaces 

is modeled as an advancement of the model from Figure 1.8(d). Fredrickson et al40, firstly 

derived the energy contribution from increasing surface area, strained bulk by imposing a 

sinusoid deformation on a thin polymer brush from polymer physics and found the kernel of 

the first order for the deformation. Then this solution was applied to thin rubber film with finite 

thickness where the surface tension was the same on the wet and dry side of the ridge. The 

traction was taken as the vertical component of the 𝛾𝐿𝑉, and the Laplace pressure was neglected. 

Later, Long et al41,42, reported two results from this model: the singularity at the contact line is 

automatically removed and the solution converges to the linear elastic solution at the limit of 

long wavelength. A further advance was made by coupling the surface effect and horizontal 

traction component of the liquid-vapor surface tension into the linear elastic model56,57. Limat 

et al56,57, assumed a symmetry of surface energies in the plane of the substrate surface with 

respect to the contact line. They arrived at an analytical solution of full orders from mechanics 

while the very first one40–42 is a first order approximation. Jerison et al94, and Style et al53,85, 

took the surface effect into the generalized spring constant and hided it in their linear elastic 

equations. Later on, they discovered and verified from models and experiments that a cusp is 

determined by surface stresses at the ridge tip. In the frame work of Marchand et al95–97, and C. 
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Hui48, how the force at the ridge tip is balanced and transmitted was discussed. C. Hui48 found 

the liquid surface tension is balanced by the elastic stress and solid interface tensions, and 

Neumann’s triangle holds only for very compliant materials. To break the limit of symmetry 

surface tension condition, very recently, Bostwich et al101, and Bardall et al100, developed an 

integral method to solve this complicated situation and found good agreement when one 

compares to the situation with very low asymmetry. However, there are problems in their 

solution of the “Fredholm equation involved” and their model must be taken with caution for 

large asymmetries [Dervaux and Limat, private communication]. 

 

FIGURE 1.8: Models for elastowetting statics. Dashed line indicates infinite thickness of the soft substrates; 𝑃, 

small arrows, represents the Laplace pressure pushing on the soft substrate surface inside the liquid.  𝐿, 𝑉 and 

𝑆 read as the liquid, vapor and solid phase. Parameters of models are categized into five groups: (a)78 

Thickness: infinite; surface traction: only the vertical component of surface tension is considered; surface 

tension of solids: no. (b)35,79,82,84,92 Thickness: infinite; surface traction: both the vertical and horizontal 

components of surface tension are considered; surface tension of solids: no. (c)40–42,56 Thickness: infinite; 

surface traction: both the vertical and horizontal components of surface tension are considered; surface tension 

of solids: yes. (d) 53,85Thickness: finite; surface traction: both the vertical and horizontal components of surface 

tension are considered; surface tension of solids: yes, and symmetry. (e) Thickness: finite; surface traction: 

both the vertical and horizontal components of surface tension are considered; surface tension of solids: yes, 

and asymmetry. 

Experiments went on slowly before the year 2000 due to the high requirement for experimental 

techniques. There is only one result on the shape of the deformation by Carré et al35, which 

confirms the logarithmic profile on the dry side as they predicted from their model. After 2000, 

the first notable results on the surface deformation come from Pericet-Cámara et al59,60. They 

used laser scanning confocal microscopy and a white-light confocal profilometer with 

fluorescence dying of droplets to identify the location of the liquid-solid and solid-vapor 

interfaces of small droplets, with a radius of tens of microns, on thin soft films. Depletion under 

the liquid was found to be increasing with an increment of the film thickness to a saturation 

predicted by Rusanov’s model on a half infinite solid. Microtrough ouside the droplet moves 

further away from the triple line as the film becomes thicker and it scales as the film thickness. 

Pu et al63–66, reported a detailed shape of the dynamic ridge on thermally stripped acrylic 

polymer films which are highly viscoelastic. In his experiment, he found a stick-break behavior 

of the moving contact line, from which the shape of the “stick ridge” is detected as two orders 
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of magnitude taller than elastic predictions and depends on the wetting line speed. The 

significant point is the high stress at the contact line induces a viscoelastic or plastic growth of 

the wetting ridge which had never been reported before and this growth causes the contact angle 

hysteresis. A similar growth of the ridge was also discovered by Kajiya et al68, who performed 

droplet advancing experiments on viscoelastic SBS-paraffin gels. Besides, the diffusion effect 

of liquids, on the local deformation of soft PAMPS-PAAM hydrogels, at the contact line was 

also investigated by Kajiya et al67: when the hydrogel substrate is in contact with water, water 

starts to diffuse into the polymer network and the gel becomes swollen at the contact line until 

the surface slope measured from the gel phase is the same with that measured from the liquid 

phase. In parallel to those experiments, the micro-scale surface deformation at the wetting cusp 

by water droplets on the highly elastic silicone gels was measured by Jerison et al94, and Style 

et al53,85 with a fluorescence confocal microscopy. A universal opening angle selected by the 

surface stress balance at the tip was observed. Although those techniques are highly sensitive 

and of high precision, they are still non-direct observation. The first direct view of the wetting 

tip was performed with the X-ray technique by Park et al80, as has already been put in the Figure 

1.3(a) and 1.5(a). Not only the shape of the ridge was measured, but also the growth of the 

deformation was tracked. Their measurement also revealed a rotated wetting cusp due to 

Laplace pressure and allowed a discussion of various models between models and experiments.  

An analytical model by L. Limat56: Green function solution for a single contact  line  

To address the 3D problem of a resting droplet on a soft film with finite thickness, the first step 

is to consider a single contact line on a half-infinite elastic solid for a 2D case. The solution will 

be taken as a Green function for the real 3D problem and it lays out the theoretical foundation 

for our current studies. The schematic of this single contact line problem corresponds to the 

Figure 1.8(c) once its Laplace pressure is neglected. 

The assumptions of the model are: 1. 𝛾𝑆𝐿 = 𝛾𝑆𝑉, and both will be denoted as 𝛾𝑆; 2. The surface 

slope is everywhere smaller than 1; 3. Surface tension is transmitted to the soft material both 

horizontally and vertically. 

The displacement field of an elastic slab can be described in analogy with the Stokes equation 

when the trace of the stress tensor is mathematically substituted with a pressure 𝑃 to avoid the 

complex infinity of the Lamé coefficients:  

∇ ∙ �⃑� = 0 (1.7) 

𝐺′∆�⃑� − ∇⃑⃑ 𝑃 = 0 (1.8) 

where �⃑� , 𝐺′ are the displacement field and elastic shear modulus. Equation (1.7) describes the 

impressibility of the material. Equation (1.8) denotes the equilibrium of forces. This set of 

equations is completed by the condition of stress continuity at the surface: 

𝜎 ∙ �⃑� = 𝑡  (1.9) 

in which 𝜎 , �⃑⃑�  and 𝑡  are the stress tensor, surface normal vector and traction, 

respectively.  

If a line force 𝑓 (𝑓𝑥𝛿(𝑥)𝛿(𝑦), 𝑓𝑦𝛿(𝑥)𝛿(𝑦), 0) is applied to the free surface of an elastic 

slab, the boundary condition, Equation (1.9), will take the following form in the small 

surface slope limit: 
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𝜎𝑦𝑦 = 2𝐺
′
𝜕𝑢𝑦

𝜕𝑦
− 𝑃 = 𝑓𝑦𝛿(𝑥) + 𝛾𝑠

𝑑2휁

𝑑𝑥2
 (1.10) 

𝜎𝑥𝑦 = 𝐺
′(
𝜕𝑢𝑦

𝜕𝑥
+
𝜕𝑢𝑥
𝜕𝑦
) = 𝑓𝑥𝛿(𝑥) (1.11) 

By introducing a potential function, 𝜓 , the incompressibility condition will be 

automatically satisfied: 

𝑢𝑥 = −
𝜕𝜓

𝜕𝑦
,    𝑢𝑦 = 

𝜕𝜓

𝜕𝑥
 (1.12) 

Using a Fourier transform to solve this set of equations, Limat et al56,57, found the  

following solutions for the interface deformation: 

𝑢𝑦(𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒) = 𝜍𝑥 =
𝜕𝜓

𝜕𝑥
=

𝑓𝑦

2𝜋𝐺′
∫  

cos 𝑘𝑥

𝑘 +
𝛾𝑆
2𝐺′ 𝑘

2
𝑑𝑘

∞

1 ∆⁄

 

𝑢𝑥(𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒) =  −
𝜕𝜓

𝜕𝑦
=

𝑓𝑥
2𝜋𝐺′

∫  
cos𝑘𝑥

𝑘
𝑑𝑘

∞

1 ∆⁄

 

(1.13) 

where ∆ is a macroscopic cut-off length. 

To seek for an analytical expression, Equation (1.13) can be equivalently read as follows: 

휁𝑥 =
𝑓𝑦

2𝜋𝐺′
{−𝐶𝑖

|𝑥|

∆
+ 𝑐𝑜𝑠

|𝑥|

𝑙𝑠
𝐶𝑖 (

|𝑥|

∆
+
|𝑥|

𝑙𝑠
) + 𝑠𝑖𝑛

|𝑥|

𝑙𝑠
(𝑆𝑖 (

|𝑥|

∆
+
|𝑥|

𝑙𝑠
) −

𝜋

2
)}, 

𝑢𝑥(𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒) =  
𝑓𝑥
2𝜋𝐺′

{−𝐶𝑖
|𝑥|

∆
} 

(1.14) 

here, 𝑙𝑠 = 𝛾𝑆 2𝐺
′⁄  is defined as a solid elastocapillary length, and 휁𝑥 , 𝑢𝑥(𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒) 

indicate the vertical and the horizontal surface deformation on the surface. 𝐶𝑖 and 𝑆𝑖 are 

the Sine integral and Cosine integral functions, defined as follows: 

𝑆𝑖(𝑥) = ∫
sin 𝑡

𝑡
𝑑𝑡

𝑥

0

,    𝐶𝑖(𝑥) = −∫
cos 𝑡

𝑡
𝑑𝑡

+∞

𝑥

 (1.15) 

As explained in Limat’s paper, these complex expressions are very close to a simpler 

expression that reads: 

휁(𝑥) ≈  
𝑓𝑦

2𝜋𝐺′
𝑙𝑜𝑔

Δ

|𝑥| + 𝑙𝑆
 (1.16) 

and it reduces to Shanahan Green function in the limit 𝑙𝑠 → 0. In the limit 𝑥 → 0, one 

finds a Neumann equilibrium of the vertical components of surface tension that reads: 

𝑓𝑦 = 𝛾𝐿𝑉𝑠𝑖𝑛휃 = 2𝛾𝑆𝑠𝑖𝑛휃𝑆 (1.17) 

where 𝑓𝑦  is the slope of the substrate and 휃 the contact angle. As one can see, it is 

essential to not miss the 𝛾𝑠휁𝑥𝑥 term in the local model, to recover correctly Neumann 
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equilibrium at small scale, as the limit 𝑙𝑠 = 0 leads to a logarithmic divergence of the 

profile for 𝑥 = 0, for which Shanahan had to invoke contestable cut-offs. In our case, 

we will develop a finte depth variant of this approach for the substrate thickness that will 

be sufficient to interpret our data. The above model is, however, important as an 

intermediate step into this direction.  

1.4 Dynamics in elastowetting 

Spreading of liquids on soft materials is distinguished from the spreading on rigid substrates, 

as have been demonstrated by Carré et al35,38, shown in Figure 1.9. When a formamide liquid, 

with 𝛾 of 45.9 𝑚𝑁/𝑠 and 휂 of 3.2𝑐𝑃, is deposited on a silica surface which is almost perfectly 

rigid, it takes around 20 seconds to reach its equilibrium state. In sharp contrast to this, the 

equilibrium state is attained 1 hour later when the silica surface is replaced with an aexpoxidized 

natural rubber with a shear elastic modulus of 0.37 𝑀𝑃𝑎. Reflecting on what is going on in the 

two cases, one may find: for the spreading on silica surface, liquid-vapor surface tension causes 

no deformation on the substrate. It is only the liquid inside the drop that is active in the system. 

There is only one channel that is dissipating energy in the system. However, for the spreading 

on the ENR 50 surface, a wetting ridge is formed at the triple line. As a result, not only the 

liquid is sheared, but also the small ridge propagates with the advancing contact line. As a 

consequence, there will be two dissipation channels, one in the liquid and one in the viscoelastic 

material. In the end, dissipation during the spreading of liquids on rubber is larger compared to 

that on the silica surface and it looks as if the motion of spreading is slowed down by a higher 

friction. This phenomena is known as viscoelastic braking34,35,37,39,45,79. In the following, the two 

dissipation mechanisms will be reviewed and discussed. 

 

FIGURE 1.9: Spreading of a drop of formamide liquid, 2 𝜇𝐿, on a flat, smooth, horizontal expoxidized natural 

rubber (ENR 50) after deposition. Insert is a cartoon showing the spreading process. 

1.4.1 Dissipation in rigid wetting 

Huh and Scriven’s paradox102 

If we assume the liquid is incompressible and Newtonian and the solid is perfectly smooth, 

rigid and flat, the flow at the contact line can be described as a corner flow. In a simplified 2D 

case, a biharmonic equation, ∇𝜓4 = 0, is used to characterize the shearing of the liquid. 𝜓 is a 

stream function under the polar coordinate system (𝑟, 휃). With the no-slip boundary condition, 

Liquid 

Substrate 

Vapor 
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the viscous stress near the contact line is:  

𝜏𝑟,𝜃 =
2𝜇

𝑟
(𝑐𝑐𝑜𝑠 휃 − 𝑑𝑠𝑖𝑛 휃), 𝜏𝜃,𝜃 = 𝜏𝑟,𝑟 = 0 (1.18) 

𝜇 is the viscosity of the liquid, c and d are pre-factor determined from boundary conditions. It 

can be easily seen the stress has a singularity at the contact line when 𝑟 → 0. In this situation, 

“not even Herakles could sink a solid”, as is put by Huh and Scriven102. 

Besides, De Gennes2 and Bonn et al3, calculated the energy dissipation for the unit length of the 

contact line, on a scale from 𝑟 to 𝑟 + 𝑑𝑟, it is estimated as: 

𝑑�̇�~𝜇𝑈2
𝑑𝑟

𝑟
 (1.19) 

where 𝑈 is the wetting velocity of the contact line. It indicates the overall energy dissipation 

diverges both at 𝑟 → 0 and 𝑟 → ∞ and each order contributes equally to the energy dissipation. 

In order to cancel the divergence, cut-off needs to be introduced for both macroscopic and 

microscope scales3,4,102,103. In general, the macroscopic is on the scale of capillary length 

(10−3𝑚) and the microscopic one is on the scale of molecules (10−9𝑚). The mechanisms in 

eliminating the singularities are the presence of precursor films2, hydrodynamic slip102, non-

linear slip104, surface roughness105, diffuse interface106, shearing thinning107, etc. Eyes will only 

be casted onto the hydrodynamic one concerning of complexity of the problem. 

Hydrodynamic model with a cut-off 

Hydrodynamic models can properly capture the liquid flow on another surface with the 

presence of a third phase. However, the singularity at the three-phase line prohibits a correct 

prediction of the viscous stress at the wetting line. To resolve it, one way is to impose a cut-off 

at molecule scale at the hydrodynamic solution. For example, boundary slip is allowed by Huh 

et al102,108, Dussan103,109, and Oliver et al108,  By adding a cutoff to the Equation (1.16) and 

Equation (1.17), the stress goes to a finite value. In general, the hydrodynamic models hold at 

small capillary number and the liquid-vapor interface will adopt a static solution when it is far 

away from the contact line and dynamic contact angle can be acquired by the asymptotic 

solution. Hence, the bending of liquid-vapor interface in the mesoscopic region is crucial in 

connecting the microscopic condition with the macroscopic observation, as is shown in Figure 

1.10. 

 

FIGURE 1.10: (a) Interface bending of the hydrodynamic model, reproduced from T.D.Blake76. (b) Schematic 

(a) 

 

(b) 
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of liquid spreading at different scales, reproduced from D. Bonn et al3. 

Three regions are usually defined in hydrodynamic models: the microscopic region, the 

mesoscopic region and the macroscopic region. In the microscopic region, the liquid meets with 

the solid and a microscopic contact angle, 휃𝑚, is found to account the liquid-solid interactions. 

This angle can be either a constant, like an intensive parameter of the system which assumes 

the molecule jump is much faster than the moving of the contact line, or a variable, like an 

extensive parameter, which considers the moving contact line is comparable to the 

rearrangement of local molecules at surface sites. In the mesoscopic region, the liquid-vapor 

interface is strongly curved to accompany the microscopic and the macroscopic region. For the 

macroscopic region, the apparent contact angle is observed and used to characterize the 

dynamic behavior of the system. 

To have a good estimation of the dissipation for the liquid spreading on a rigid surface and at 

the same to be simple, we stick to Voinov’s solution110: 

𝜒(휃𝑑) − 𝜒(휃𝑚) = Ca𝑙𝑛 (
𝐿

𝐿𝑚
) 

𝜒(휃) =
1

2
∫ [

휃̂

𝑠𝑖𝑛휃̂
− 𝑐𝑜𝑠휃̂] 𝑑휃̂

𝜃

0

 

(1.20) 

Here 𝐶𝑎 , 𝐿  and 𝐿𝑚  are the capillary number defined as 𝐶𝑎 =  𝜇𝑈/𝛾 , macroscopic and 

microscopic cut off to remove the singularity of the integrand. As has been stated before, the 

macroscopic cut-off, 𝐿,  is on the scale of capillary length (10−3𝑚) and the microscopic one, 

𝐿𝑚, is on the scale of molecules (10−9𝑚). By using the Taylor expansion, the integrand is 

approximated as 2휃2 3⁄  when 휃𝑑 < 3𝜋 4⁄ . Then the Equation (1.18) takes the form: 

휃𝑑
3 − 휃𝑚

3 = 9𝐶𝑎𝑙𝑛 (
𝐿

𝐿𝑚
) , 휃𝑑 < 3𝜋 4⁄  (1.21) 

1.4.2 Dissipation in elastowetting 

For soft materials, a small ridge, shown in Figure 1.4, forms at the wetting line. When the liquid 

spreads, this ridge will accompany the motion of the contact line, inducing a cycling motion of 

soft material32,34,79. Usually, hysteresis occurs on the loading-unloading curves of materials, 

meaning that at the same strain, stress response of the material is different according to its 

loading history. The area difference between two curves, stress versus strain, is the energy 

dissipation in the process. This principle is applied to elastowetting materials as well. As a 

consequence, certain amount of energy is dissipated as the contact line is moving. In general, 

there are mainly two ways to predict energy dissipation: one is initiated and refined by M. 

Shanahan et al32–38,79,92. It is also used by the other researchers, including Voué et al39; the other 

one is developed by G. Fredrickson, D. Long et al40–42. The latter one is not widely used because 

of its complicated calculations. Details of the two will be summarized in the following. 
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FIGURE 1.11: (a) Surface deformation at the moving contact line32. (b) Polymer brush of thickness ℎ0 under a 

sinusoidal surface deformation40. 

Dissipation from “elastic” model 

Calculation for the surface deformation of an elastic solid by Shanahan et al, has been briefly 

introduced in section 1.3.2. The elastic deformation is not assumed to be modified by the 

moving of the contact line but is simply decided by the vertical component of the traction force, 

𝛾𝐿𝑉𝑠𝑖𝑛휃. The ridge accompanying the spreading of liquid is shown in Figure 1.11(a): the radius 

of the non-linear region at the wetting tip is 휀; the vertical surface deformation outside the 

droplet is denoted by 휁 and the horizontal displacement is 𝜎; spreading velocity is indicated as 

𝑉. The main results are presented in the following. The surface deformation at the moving 

contact line is: 

휁 =
2𝛾𝐿𝑉(1 − 𝜈

2)

𝜋𝐸
[𝑠𝑖𝑛휃 ln (

Δ

𝑥 − 𝑥0
) −

𝑠𝑖𝑛휃

2(1 − 𝜈)
+
(1 − 2𝜈)휃𝑐𝑜𝑠휃

2(1 − 𝜈)
] 

𝜎 =
2𝛾𝐿𝑉(1 − 𝜈

2)

𝜋𝐸
[
(1 − 2𝜈)휃𝑠𝑖𝑛휃

2(1 − 𝜈)
− 𝑐𝑜𝑠휃 ln (

Δ

𝑥 − 𝑥0
)] 

(1.22) 

where 𝐸  and 𝜈 are the Young elastic modulus and Poisson ratio of the elastic solid. Δ is a 

macroscopic cut-off, beyond which zero surface deformation is assumed. Then the work done 

per second per unit length of the contact line is: 

𝑊 = 𝛾𝐿𝑉𝑉(
𝑑𝜎

𝑑𝑥
|𝑥0+𝜀  𝑐𝑜𝑠휃 −

𝑑휁

𝑑𝑥
|𝑥0+𝜀  𝑠𝑖𝑛휃) (1.23) 

At small contact angle, Equation (1.21) goes to: 

𝑊 ≅
2𝛾𝐿𝑉
2 (1 − 𝜈2)𝑉

𝜋𝐸
{
1

휀
+
6휃

𝑟
𝑠𝑖𝑛휃𝑐𝑜𝑠휃 ln (

𝑑

휀
)

−
3휃

2(1 − 𝜈)𝑟
[휃(1 − 2𝜈) + 𝑠𝑖𝑛휃𝑐𝑜𝑠휃]} 

(1.24) 

For the straining cycling of elastomers, Ω fraction of the input energy is dissipated and 1 − Ω 

fraction is conserved as the elastic energy in the material. Thus, for the elastowetting dynamics, 

the energy dissipated into heat is similar to the straining cycling result when high orders are 

dropped: 

(a) (b) 

Liquid Vapor 

Solid 

𝜎 
2휀 

휁 

x
0
 x 

𝑉 

휃 
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𝑊Ω ≅
2Ω𝛾𝐿𝑉

2 (1 − 𝜈2)𝑉

𝜋𝐸
{
1

휀
+
3휃2

𝑟
[2𝑙𝑛 (

𝑑

휀
) − 1]} (1.25) 

In fact, Ω is frequency dependent thus should also be velocity dependent. To keep simple, for 

a certain system, Ω is normally taken as (𝑉 𝑉0⁄ )𝑛, where 𝑉0 and 𝑛 are material constants which 

characterize the damping properties of solids. 

Dissipation from viscoelastic model 

Although relative good agreements between experiments and the “elastic” dissipation have 

been observed, there are still several intrinsic flaws in this “elastic” dissipation: 1. The surface 

deformation is deduced from linear elastic theory and the surface effect is discarded. 2. Only 

the vertical component of the surface tension is taken as the traction on the elastic slab. 3. The 

thickness of the elastic slab is assumed to be infinite. 4. Rigidity of the soft material is constantly 

taken as Young’s modulus. Moreover, dissipation is included in an ad-hoc fashion, with no 

clear origin. However, it is not true for a viscoelastic material. Difficulties are how to take the 

surface effect into the model for the surface deformation, and how to correctly predict the 

surface deformation and dissipation by obeying the viscoelastic nature of the material. Those 

concerns are partly addressed in the framework of the viscoelastic model developed by G. 

Fredrickson, D. Long et al40–42, as will be stated in the following. 

(A) Dynamic deformation40–42 

When a molten polymer brush of thickness, ℎ0, is forced with a surface sinusoidal deformation: 

ℎ(𝑥) = ℎ0 + 𝜖cos (𝑞𝑥) , as is demonstrated in Figure 1.11(b), the free energy in x and z 

directions was calculated. Then for an arbitrary perturbation on the surface, the elastic free 

energy of the first order in the limit of long wavelength is given by: 𝑓𝑙𝑜𝑛𝑔 ≈ 3𝐺𝜖
2/4𝑞2ℎ0

3; in 

the limit of short wavelength: 𝑓𝑠ℎ𝑜𝑟𝑡 ≈ 𝐺𝜖
2𝑞/2. The free energy for increasing the surface area: 

 𝑓𝑎𝑟𝑒𝑎 ≈ 𝛾(𝑞𝜖)
2/4; 𝐺 is the instantaneous shear modulus felt by the traction. Then the free 

energy in causing an arbitrary distortion, 𝛿ℎ, is: 

𝐹(𝛿ℎ) =
1

4𝜋
∫ 𝜒−1(𝑞)ℎ̂(𝑞)ℎ̂(−𝑞)𝑑𝑞
+∞

−∞

 (1.26) 

where, 𝜒−1(𝑞) = 𝛾𝑞2 + 3𝐺𝑞−2ℎ0
−3 + 2𝑞𝐺; The surface deformation,  𝛿ℎ, due to a traction 𝑓 

can be obtained by minimizing 𝐹(𝛿ℎ) − 𝑓𝛿ℎ(0) and it yields: 

𝛿ℎ(𝑥) =
1

2𝜋
∫ 𝜒(𝑞)𝑓𝑒𝑥𝑝(−𝑖𝑞𝑥)𝑑𝑞
+∞

−∞

 (1.27) 

The picture of liquid spreading on gels can be simplified as the following in a 2D picture: 

Laplace pressure will be neglected; A point traction force which has an angle of 휃𝑑  to the 

horizontal direction, is propagating at a constant velocity 𝑉 on a viscoelastic substrate with the 

thickness of ℎ0; The material will be considered to be incompressible. Surface deformation 

follows a similar result as the above expression except the surface traction 𝑓 is substituted by 

𝛾𝐿𝑉𝑠𝑖𝑛휃. 

(B) Energy dissipation from the Chasset-Thirion model (Figure 1.12) 
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FIGURE 1.12: Dynamic surface deformation of a viscoelastic material with a moving contact line at speed 𝑉. 

𝑓0 = 𝛾𝐿𝑉𝑠𝑖𝑛휃𝑑. 

The energy dissipation in a viscoelastic material is40–42: 

𝑃𝑓𝑖𝑙𝑚 =∬ 𝜎: 휀̇
𝐵

𝑑2𝑥 (1.28) 

This integration is for the overall body of the material. The above equation can be rewritten in 

temporal Fourier space: 

𝑃𝑓𝑖𝑙𝑚 =∬ 𝜎𝑖𝑗(𝑥, 𝑡)𝜕𝑖𝜕𝑡𝑢𝑗(𝑥, 𝑡)
𝐵

𝑑2𝑥                                   

=
1

2𝜋2
∫ 𝑑2𝑥∫ 𝑑𝜔

+∞

−∞

∫ 𝑑𝜔′
+∞

−∞𝐵

× (𝑖𝜔′)𝑒𝑖(𝜔+𝜔
′)𝑡𝐺(𝜔)𝑢𝑖𝑗(𝑥, 𝜔)𝑢𝑖𝑗(𝑥, 𝜔

′) 

(1.29) 

If the viscoelasticity of the gel can be described by the Chasset-Thirion model,  
𝐺(𝜔) = 𝐺0 + 𝑖𝑠𝑖𝑔𝑛(𝜔)𝐺0|𝜔𝜏𝑚|

𝑚𝛽, one would arrive at the following for the dissipation at 

low speed: 

𝑃𝑓𝑖𝑙𝑚 ≅
1

𝜋
∫ 𝑑𝑥2∫ 𝑑𝜔𝐺0

|𝜔||𝜔𝜏𝑚|
𝑚

𝑉
�̂�𝑖𝑗
𝑠 (
𝜔

𝑉
, 𝑥2)

+∞

−∞

ℎ0

0

�̂�𝑖𝑗
𝑠 (
−𝜔

𝑉
, 𝑥2) (1.30) 

�̂�𝑖𝑗
𝑠 (𝑞, 𝑥2) is the spatial Fourier of the static deformation at the wavenumber 𝑞. There are four 

terms associated with the summation of �̂�𝑖𝑗
𝑠  and the contribution of each is equal. Dropping the 

prefactor and using the result for the surface deformation from Equation (1.25) with a temporal 

Fourier transform from  𝐺(𝑡) to 𝐺(𝜔), one gets an estimation of dissipation in the soft material 

phase: 

𝑃𝑓𝑖𝑙𝑚 ≅ 𝐺0𝑉(𝑉𝜏𝑚)
𝑚(
𝛾𝐿𝑉𝑠𝑖𝑛휃𝑑
𝛾𝑠

)2∫ |𝑞|𝑚𝑑𝑞
𝑞2

𝑞1

 (1.31) 

𝑞1 and 𝑞2 are two cut-offs between which the deformation penetrates to a depth 𝑞−1, and 𝑞1 =

ℎ0
−1, 𝑞2 = 𝐺′ 𝛾𝑠⁄ . In the end, the dissipation power is: 

  
𝑉 

ℎ0 

𝑥1 

𝑥2 

휃𝑑 

𝑓0 
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𝑃𝑓𝑖𝑙𝑚 ≅
(𝛾𝐿𝑉𝑠𝑖𝑛휃𝑑)

2

𝛾𝑠
𝑚+1

(𝜏𝑚𝐺0)
𝑚𝑉𝑚+1 (1.32) 

Here, the viscoelastic model, developed by G. Fredrickson, D. Long et al40–42, adheres closer to 

the real in that the viscoelasticity is directly injected into the model. However, it lacks a true 

and full order prediction for the viscoelastic surface deformation for its over simplified 

conditions: first order approximation; horizontal force transmission neglected, symmetry 

surface tension, etc. No further model responsible for viscoelastic dissipation on elastowetting 

dynamics appears after this “dissipation” one though there is one phenomenological model 

which forces a local stress balance at the wetting tip45. 

1.5 Open questions and the structure 

Open questions are categorized in the order of elastowetting statics and spreading dynamics. 

Elastowetting statics 

(A). Static contact angle hysteresis 

Very few reports on contact angle hysteresis in an elastowetting case can be seen up to now.  

On the one hand, very good knowledge of the elastowetting surface deformation was lacking 

until the very last decade. This impedes a further understanding of the connection between the 

deformation and the contact angle hysteresis. For example, singularity and surface effect at the 

contact line has confused scientists for decades and developing proper models53,55,56,85 for 

deformation only happens recently; on the other hand, hysteresis itself is a very difficult topic 

because of its complex origins87. In general, it is believed that certain degree of plasticity is 

responsible for it56,84,91. With the micro-X ray technique, it has been directly observed that the 

wetting ridge grows with time80. However, no discussion has been made in relating this growth 

with the contact angle hysteresis. As to the precise mechanism, nothing has been experimentally 

and theoretically proposed. 

(B). Static surface deformation 

Experimentally, a full description of the deformation both at small scale and large scale is 

lacking, though there are a set of measurements in the microscopic scale53,80,85 and one 

measurement on a large scale59,60. Those measurements are either on very thin layer53,80 or with 

very small droplets59,60. How the thickness of the film, the droplet size and elasticity 

systematically affect the static deformation is still missing from an experimental point of view. 

Theoretically, models including the surface effect appear recently and it is usually assumed the 

thickness of the soft substrate is infinite and a full comparison between new models and 

experiments of the long-range deformation is in demand. Besides, how to model a 3D droplet 

and how each component of applied stresses contributes to the overall surface deformation 

remain to be solved. 

Spreading dynamics 

Very rare models have been built to account the elastowetting spreading. To name all of them: 

the “elastic” model by Shanahan et al32–35,38,39,79; the viscoelastic model by G. Fredrickson, D. 

Long et al40–42, the phenomenological model by Karpitschka et al45. For the “elastic” model, it 

is a very primitive one: 1. The surface deformation is calculated from linear elasticity theory. 

2. The surface effect is missing. 3. The horizontal component of the liquid-vapor surface tension 

is neglected. 4. Dissipation is over simplified for certain types of polymers. For the viscoelastic 
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model, the dynamic surface deformation is a first-order solution and still the horizontal 

component of the liquid-vapor surface tension is dropped. As to the phenomenological model, 

a local surface tension/stress balance is forced at the wetting tip and the liquid-vapor interface 

has to bend to accompany the rotation of wetting ridge at spreading, which is in debate. How 

to correctly predict the spreading is to be addressed. 

To address all the above concerns, the thesis will consist three main parts: the first part is 

about the experimental techniques (Chapter 2), in which materials’ fabrication 

(polydimethylsiloxane gel, PVA hydrogel, and SBS-paraffin gel) and their rheology, 

techniques of measuring surface deformation (home-made quantitative Schlieren optics), 

controlling thickness of soft films, detecting contact angle/contact line velocity will be 

discussed. The second part is on elastowetting statics (Chapter 3), where we will focus on 

elastic substrates (PDMS): measurement of surface deformation as a function of droplet size, 

thickness of the soft layer and elasticity; modeling for the surface deformation from the theory 

of linear elasticity; how the tangential component of the liquid-vapor surface tension affects the 

long-range surface deformation; contact angle hysteresis. The third part is on elastowetting 

dynamics (Chapter 4 and 5). Chapter 4 elaborates on effects of the thickness of soft gels, droplet 

size, and flux rate on the spreading dynamics, which will be experimentally and theoretically 

explored. Energy dissipation from the soft gel phase will be calculated based on the theory of 

linear viscoelasticity. Two scaling laws for the spreading dynamics at small velocity limit and 

at small thickness limit will be derived and verified. Chapter 5 uses the main results from a 

fundamental understanding of elastowetting dynamics from Chapter 4 to applications: sliding 

and drifting of droplets, in which droplet size effect and thickness effect will be experimentally 

investigated. Chapter 6 will draw a general conclusion of this thesis and present perspectives 

on elastowetting on complex gels.  
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Chapter 2 Experimental techniques and 

materials 

2.1 General review of experiments 

In this thesis, several main experiments are conducted to investigate the statics and dynamics 

of elastowetting:  

- Measurement of the contact angle and surface deformation. The monitoring of both the static 

and dynamic contact angle is usually accomplished by side view cameras, from which the 

contact line velocity can also be deduced; for the surface deformation, a detection platform, 

called the quantitative Schlieren optics, is developed to enable the direct observation of surface 

deformation in real time. By combining the two, a system, being able to detect the contact angle, 

wetting velocity and the surface deformation at the same time, is built and used to study 

elastowetting.  

- Preparation of soft materials and substrates with well-defined thickness. In this thesis, we will 

use three types of soft materials: PDMS gel, SBS-paraffin gel and the PVA_SbQ/GA hydrogel. 

The fabrication and precise control of the mechanical properties of those materials are important 

ingredients in this study. How the properties of these materials affect wetting will be explored. 

Besides, thickness effect on elastowetting is investigated, which demands excellent control of 

the thickness of soft substrates. 

Experimental techniques and materials relating to the two general experiments (measurements 

of the elastowetting and material preparation) will be broken up into pieces and each of them 

will be discussed in the following.  

2.2 Quantitative Schlieren optics 

Ordinary experimental techniques have difficulties in observing surface deformations in 

elastowetting. As elastic interactions are long-ranged, the deformation induced by a resting 

droplet on a soft substrate can extend to several millimeters away from the contact line while 

there is a sharp cusp at the contact line53,58,111. The elastowetting deformation needs to be tracked 

in real time because most materials are viscoelastic in dynamics, in which case the dynamic 

deformation is different from a static one. The two require an experimental technique which is 

sensitive to both the short-range and long-range surface deformation in real time. Confocal 

microscopy is frequently used to study the wetting ridge53,59,85,94. This technique offers excellent 

vertical precision and it is clearly able to detect the 3D topology of materials. However, it takes 

time to do a full 3D scanning of the object. The higher the resolution is, the longer it takes. 

Hence, it is not applicable to the dynamic case. In static cases, deformation on viscoelastic 

materials may grow with time58,63–66, and it might be questionable whether the deformation from 

time-averaged surface scanning techniques, such as confocal microscopy, is the real surface 

deformation or not. Bearing the two requirements of great lateral extent and vertical precision 

in mind and with the fact that all the soft materials in this thesis are transparent, we propose to 

use Schlieren optics, which is sensitive to the light deflection induced by the change in the 

surface slope of the sample112–117.  

2.2.1 Principle and setup 

Before setting out all the details of our quantitative Schlieren optics set-up, we will start with a 
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simple description of the principle of the Schlieren technique.  

When a camera is targeting at a transparent object with the surface deformation with a uniform 

surface slope at certain region under the natural illumination (Figure 2.1(a)), a picture with 

homogeneous light intensity will be acquired. Equivalently, nothing will be observed on the 

acquired picture. The amount of light received by the CCD or CMOS sensors inside the camera 

from the deformed part and flat part is the same because the natural light is of all directions thus 

the overall sum of light beams that go to the camera from any point on the surface is almost the 

same. However, if the illumination light beam is collimated (Figure 2.1(b)), there are two 

changes compared to the case under the natural illumination: first, only a small part of the object 

is visible to the camera because the light beam, after passing through the part outside the yellow 

region (Figure 2.1(b)), is out of the camera lens’ range; second, if the transparent object is flat, 

only the part that is right in front of the camera, as is drawn in red line, can be sensed. However, 

the deformed region deflects light beams, leading them with a new path into the camera’s range, 

blue line in Figure 2.1(b). With the parallel light beam, the surface slope of the deformed part 

can be calculated through Snell’s law once the distance between the camera and the object, and 

the size of the camera lens are known. 

 

FIGURE 2.1: (a) How a camera takes a picture in the natural illumination. The size of the arrow stands for the 

light intensity. (b) Shadowgraphy under the collimated light. (c) Snell’s law when a light beam travels through 

a titled surface 

The advantage of parallel light beam illumination is obvious in determining the surface slope 

compared to the natural light illumination. However, the proposed mean in Figure 2.1(b) is only 

able to detect a constant surface slope while the real surface slope is varying spatially. It is not 

possible to directly apply this method to the elastowetting case. One step to move forwards is 

to address how to let the camera be sensitive to the different surface slope continuously. By 

using the dependence of light bending on the surface slope, one strategy is shown in Figure 2.2. 

A convex lens and a knife cut-off are added to the previous solution: all the collimated light 

beams will go through the focal plane of the convex lens with the focal length 𝑓0 before they 

arrive at the camera, and the deviation from the focal point is: ∆𝑎 = 휀𝑓0 at the small angle 

approximation112,114(see Appendix A), where 휀  is the deflection angle when the light beam 

passes through the object.  All light sources have a certain size, leading to that the conjugated 

휃1 
휃2 

휃1 
(a) 

(b) 

(c) 
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image of the light source on the focal plane has a finite size, ℎ × 𝑏, as is shown in the insert of 

Figure 2.2. On the focal plane, a knife cut-off is applied and ∆𝑎 can be tuned so that different 

light intensity sensed by the camera, 𝐼 = 𝐼0
𝑎+∆𝑎

ℎ
, is ensured according to different light beam 

deflection ∆𝑎, where 𝐼0 is the background light intensity. In this way, different surface slope 

will finally induce different light intensity on the camera sensors, granting this design an ability 

to detect a continuous change of the surface slope, which can be deduced from the following 

equations: 

∆𝑎 = 휀𝑓0 

휀 = 휃2 − 휃1 

𝑛 =
sin 휃2
sin 휃1

 

(2.1) 

in which 𝑛 is the refractive index of the material. 

 

FIGURE 2.2: Optical set that is sensitive to the surface slope. The insert one is to show how the light deflection 

is related to the light intensity, reprinted from G. S. SETTLES112. 

Based on the core idea from Figure 2.2, a full set of solutions is proposed by improving the 

light source and path design as is sketched in Figure 2.3(a) and this system is called quantitative 

Schlieren optics based on the lens-type Schlieren112. 

 

FIGURE 2.3: (a) Schematics of the quantitative Schlieren optical platform. (b) Surface deformation detected by 

𝑓0 

Lens 

Transparent object 

Cut-off Camera 

휀 
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the Schlieren. The shear elastic modulus is 1.2 𝑘𝑃𝑎; thickness of the soft substrate is 228 µ𝑚; and the diameter 

of the droplet is 1.51 𝑚𝑚. 

This setup consists of four parts: I, SLC (slit light source), indicated as the dotted rectangle; II, 

the Schlieren field, including CL (collimating lens), TGC (transparent glass chamber to control 

the humidity) and DL (de-collimating lens); III, knife cut-off, i.e., KC (knife cut-off); IV, 

camera and post-computing. A white LED light source (LUXEON, LUMILEDS, USA) is used 

and refocused on a mechanical slit (VA100/M, THORLABS, USA) by a condenser. Thus, we 

obtain a slit light source (1 𝑚𝑚 × 13.6 𝑚𝑚) that is conjugated at the focal plane of a second 

Schlieren lens (DL). Afterwards, the light beam goes to part II and is collimated by CL (Φ =

 25.4 𝑚𝑚 , 𝑓0 =  101.6 𝑚𝑚 ; MPD149-P01, THORLABS, USA). This parallel light beam 

traverses the TGC (transparent glass chamber) and the sample. It is later collected by DL 

(LB1374-B, THORLABS, USA) and reimaged on the KC plane. Finally, all the light beam falls 

onto CCD sensors of the camera (DFK 23UX174, IMAGING SOURCE, Germany) with a lens 

(AVENIR TV ZOOM LENS F1.8, JAPAN), which exactly focuses on the sample plane. The 

size of the camera sensor is 1280 × 960 pixel2, resulting in a lateral resolution of 10.2 𝜇𝑚/𝑝𝑖𝑥𝑒𝑙. 

In principle, the slit light source is perfectly refocused on the KC plane as marked by the red 

solid arrow in insert of Figure 2.3(a), as long as no light beam is disturbed. If there is any 

disturbance on the focal plane of the camera (sample surface), such as the light beam deflection 

induced by interface undulation and density variation, etc., the conjugated image will be shifted 

by a distance ∆𝑎 at the KC plane. At the small angle approximation: ∆𝑎 = 휀𝑓0 where 𝑓0 is the 

focal length of the second lens. ∆𝑎 can be acquired either from a standard calibration lens in 

the presence of Schlieren object112,116,117 or from a pre-calibration process as will be discussed 

in the next section. In our studies here, the deflection will be considered to be only due to the 

surface slope. With Snell’s law, the local surface slope will be recovered from 휀.  

Our system is sensitive to a deflection angle of 0.0007 𝑟𝑎𝑑, with the total range of 0.05 𝑟𝑎𝑑 

with the pre-mentioned configuration. Sensitivity is extracted from our camera and the range is 

computed by applying a 50% cut-off because surface slope of the substrate could be positive 

and negative: ℎ 2𝑓⁄ . An example of a visualization obtained with our Schlieren set-up is 

showed in Figure 2.3(b), where a droplet of diameter 1.51 𝑚𝑚, sits on a PDMS layer of 

thickness 228𝜇𝑚. Light intensity around the contact line varies regarding to the distance from 

the contact line, which indicates a changing surface slope. Vertical displacement of the soft 

material is reached by the integration from the surface slope. It is plotted as the blue solid line 

in Figure 2.3(b).  
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FIGURE 2.4: Reflection, refraction, deflection and shading of light beams passing through a liquid 

drop on a soft substrate. 

Three factors restrict our measurement scope (Figure 2.4): 

(1) The high refraction of the liquid drop. The different refractive index among liquid, air and 

soft substrate not only dims the light intensity, but also deflects light beam by an angle, 휃𝑜𝑢𝑡. 
To evaluate the light intensity decrease, we assume that the incident light is unpolarized. 

Consider the liquid to be water with a refraction index of 1.33 and soft substrate to be PDMS 

with a refraction index of 1.4, the intensity of the light beam after passing through the drop is 

0.95𝐼0 from Fresnel equations where 𝐼0 is the intensity of the incident light beam. Hence, it is 

a small effect. However, the parallel light beam, which passes through the wetted part, is 

strongly deflected away. The incident light beam is related to its outgoing by: 

sin 휃𝑖𝑛
sin(휃𝑖𝑛 − 휃𝑜𝑢𝑡)

= 𝑛 (2.2) 

where 𝑛  is the refractive index of the liquid. At the limit of the Schlieren optics’ sensitivy (0.05 

rad), the maximum 휃𝑖𝑛 that can be sensed is around 10° for water. As a result, most part of the 

drop is invisible because those light beams are deflected too much to be out of the range of the 

Schlieren.  

(2) The shading of the liquid drop. When the static contact angle is larger than 90°, the parallel 

light beam is partly shaded by the droplet, shown in dotted black line of Figure 2.4. For all the 

water drops on PDMS and SBS-paraffin substrates we will use, the static contact angle, 휃𝑒, is 

larger than 90°, meaning that shading is always present in the vicinity of the contact point. This 

region is unreachable to our set-up.  

(3) The systematic capacity of Schlieren optics because of the finite lens dimension112. Only 

the surface slope smaller than 0.124 𝑟𝑎𝑑 can be captured if the refraction index of PDMS is 

taken as 1.4 (Guidance book, Dow Corning, US). 
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As we are only interested in the region, outside the droplet, typically larger than the 

elastocapillary length, where the surface slope is smaller than that in the inner region (< 𝑙𝑠), 

the experimental results in chapter 3 tell us the capacity of technique is enough for our research. 

2.2.2 Calibration and validation 

For quantifying purposes, ∆𝑎 must be detected. However, the only data we can directly get 

from the Schlieren optics is the picture taken by the camera. The question becomes how to 

deduce ∆𝑎 the from those pictures. A simple strategy is to put a standard lens with known 

surface slope with the presence of the Schlieren object112,116,117 and surface deformation can be 

deduced from a comparison between grayscale values of object surface and those from the 

calibration lens.  However, it is not practical to always follow this routine in our measurement 

in that the presence of the calibration lens on soft materials would induce long range 

deformation and the size of this thin lens is comparable to our camera observation window. To 

resolve this, an alternative way for calibration is proposed based on the unequivocal relation 

between the local grayscale value of pictures (light intensity received by the camera) and the 

cut-off (Δ𝑎 + 𝐿𝑐) (Figure 2.5). If the background light intensity is 𝐼0 and the length of the slit 

light source is ℎ, the light intensity, 𝐼𝑐, sensed by the camera is (ℎ − 𝐿𝑐̅̅ ̅)𝐼0 ℎ⁄  with a total cut-

off  𝐿𝑐̅̅ ̅ at the focal plane (insert of Figure 2.5); This relation always holds regardless the origin 

of the cut-off112, which could come either from the blocking of the knife edge, 𝐿𝑐, or from the 

shifting of the light beam in addition to the knife edge cut-off, Δ𝑎 + 𝐿𝑐. If the surface of the 

Schlieren object is flat, light beams collectively focus onto the conjugation image of the slit 

light source (solid black line in Figure 2.5) and 𝐼𝑐 = (ℎ − 𝐿𝑐)𝐼0 ℎ⁄ . Nevertheless, light beams 

going through a tilted surface would be deflected by a distance, Δ𝑎 , at KC and 𝐼𝑐 =

(ℎ − 𝐿𝑐 − Δ𝑎)𝐼0 ℎ⁄  (solid red line in Figure 2.5). By comparing the relation of 𝐼𝑐 =

(ℎ − 𝐿𝑐̅̅ ̅)𝐼0 ℎ⁄  and 𝐼𝑐 = (ℎ − 𝐿𝑐 − Δ𝑎)𝐼0 ℎ⁄ , Δ𝑎 can be determined when 𝐿𝑐  is known which 

can be easily defined experimentally. 

 
FIGURE 2.5: Diagram of the deflection and cut-off 

Hence, a three-step measurement is carried out: First, a sequence of pictures is recorded by 

applying different cut-off positions at the KC and a map relating the pixel grayscale value (light 

intensity) to the deflection by the knife cut-off will be built. During this step, object of interest 
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is absent; second, all the camera parameters are kept the same, pictures are taken after the drop 

is deposited; third, the grayscale value of the Schlieren picture is compared to the calibration 

map and the deflection, ∆𝑎, is obtained. Further, by employing the deflection relation and 

Snell’s law (Equation (2.1)), the surface slope can be recovered and the vertical surface 

deformation is obtained by integrating it from the far to the near. Additionally, one side benefit 

of this calibration is that the background noise, including the uneven illumination, dust shadows, 

etc., is removed as well because the local dependence of light intensity (grayscale value of each 

pixel) is determined in the first step. 

This method is validated by a plano-concave lens (#45-376, Edmund) which is placed on the 

Schlieren object plane. The lens is of diameter 3 𝑚𝑚 and has an effective focal lens of 9 𝑚𝑚. 

Its deflection, 휀 defined in Figure 2.2 and Figure 2.3, can be conveniently acquired from its 

geometry. And  휀 acquired from the calibration method and its comparison with the standard 

lens is as follows:  

- A plano-concave lens is placed on the Schlieren object plane. Then different cut-offs are 

applied and the corresponding images are recorded. A representative picture from the Schlieren 

camera at one blade cut-off is shown in Figure 2.6(a). The yellow spot is the lens’ geometrical 

center from a circle fitting.  Outside of the lens is the homogenous background because the 

same amount of light beams is blocked at the blade cut-off plane. In the middle of the lens, a 

region of the white can be found, which is due to the small deflection of light beams (part of 

light beams still can reach the camera sensor). However, this white region is not a circular in 

that blade blocks all the light beams that are deflected by a distance to the blade side longer 

than ℎ − 𝐿𝑐. 

- The light intensity (grayscale value) profiles on both the lens and the background (red line in 

Figure 2.6(a)) are plotted at different cut-off length as is shown in Figure 2.6(b). The profile is 

plotted from one end I to the other end II (red line with two red stars at each end). When the 

cut-off distance, 𝐿𝑐, is increasing, the background light intensity in the end of I and II is equally 

decreasing, as is shown in Figure 2.6(b) that the grayscale of two ends of a single grayscale 

profile for any cut-off is dropping and of the same value. At the center of the lens, the surface 

slope is zero so that the light intensity at this point is expected to be changing identically with 

the background light intensity. Hence, the point on the light intensity profile that is 

simultaneously changing with the background light intensity is tracked for all the cut-off. Those 

points are indicated as red points in the region 1.5 𝑚𝑚 < 𝑋 < 2 𝑚𝑚 on Figure 2.6(b) and the 

position of the lens geometrical center is displayed as the yellow solid line in Figure 2.6(b). 

Good agreement between the location of center points detected from the grayscale profile and 

that from the geometrical fitting is recovered. This is the first evidence that the designed 

Schlieren method can be validated. 



 
36 Chapter 2 Experimental techniques and materials 

 
FIGURE 2.6:  Validation of the quantitative Schlieren optics. (a) A standard plano-concave lens is placed on 

the objective plane and various cut-offs from the knife edge are applied. (b) The light intensity (grayscale value) 

variation along the selected line (red solid line in (a)) at different cut-offs. The profile of it is plotted from the I 

(red star in (a-b)) to II (red star in (a-b)). (c) The background light intensity (grayscale value) at different blade 

cut-offs. (d) Comparison of the light deflection calculated from the knife edge cur-off and that from the 

calibration lens.  

- The background light intensity from the red points (Figure 2.6(b)) at 𝑋 = 0.026 𝑚𝑚 is drawn 

in Figure 2.6(c) at different blade displacement, 𝐷𝑘. However, it has to be pointed out that 𝐷𝑘 

in Figure 2.6(c) is not 𝐿𝑐 in Figure 2.5. It simply indicates the displacement of the knife edge. 

The true relation between them is 𝐿𝑐 = 𝐷𝑘 + 𝑐, where 𝑐 is a constant. A good linear relation 

between 𝐿𝑐  or 𝐷𝑘  and light intensity (grayscale value) is uncovered, as is expected by the 

geometrical optics from Figure 2.2, Figure 2.3 and Figure 2.5. This is the second evidence that 

the proposed method is valid. 

- Deflection, 휀, is independently calculated from the geometry of the lens, and from the relation 

of the light intensity and the cut-off (proposed method). 휀, based on the geometry of the lens, 

is drawn as blue dot in Figure 2.6(d) with the known distance from the lens center. For 휀 from 

the proposed method, the lens center, 𝑋𝑐, is detected from the comparison of the light intensity 

profile with the background light intensity in the first place. Then, the light intensity around 

this center is compared with the relation (calibration map) from Figure 2.6(c), and the 

corresponding displacement of the knife edge, 𝐷𝑘, can be found. The reference displacement 

of the knife edge, 𝐷𝑟, can also be recovered where 𝐿𝑐 = ℎ 2⁄  in Figure 2.5 (equivalently at the 

point 𝑋 = 𝑋𝑐). Afterwards, the deflection distance of light beam at the blade plane is ∆𝑎 =

(c) 
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𝐷𝑘 −𝐷𝑟 . Then the deflection, 휀 =  ∆𝑎 𝑓0⁄ , is obtained (blue circles in Figure 2.6(d)) and 

compared with its counterpart from the geometry of the lens (black solid line in Figure 2.6(d)). 

The ultimate step for the validation is shown in Figure 2.6(d) in which a good collapse between 

the proposed method and the standard lens is revealed. 

The surface deformation of a droplet standing on a thick PDMS soft substrate, shown in Figure 

2.7(a), is detected by the two methods, respectively. The light intensity along the orange solid 

line around the contact line is varying, which indicates a changing of the surface slope of the 

soft substrate. Surface deformation from the standard lens is shown as black solid curve in 

Figure 2.7(b) and the other by the proposed method is drawn as green solid line in Figure 2.7(b). 

There is no difference between the two methods. As a result, all throughout this thesis, 

measurements of the surface deformation in the following will adopt our proposed method 

without presence of the standard lens. 

 
FIGURE 2.7: (a) A water droplet sits on a PDMS substrate which is attached to a rigid glass slide. The 

thickness of the substrate is around 1 𝑚𝑚. (b) Comparison of the surface deformation detected by the two 

methods. 

2.3 Contact angle detection 

Both for elastowetting statics and dynamics, how the contact between liquid and the soft 

materials needs to be experimentally characterized. From a thermodynamic point of view, the 

contact angle measured from the current experiments is conveniently referred to as the 

macroscopic contact angle, because this angle is associated to the capillary energy release in 

dynamics for the system12,21,118. Thus, all throughout this thesis, when the experimental contact 

angle is referred, we always mean the macroscopic contact angle unless it is specifically defined. 
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FIGURE 2.8: Contact angle detection. (a) Water droplet sitting on a soft PDMS substrate with Young’s 

modulus of 3.6 𝑘𝑃𝑎. The thickness of the soft film is 242 µ𝑚 and the droplet diameter is 1.52 𝑚𝑚. The edge of 

the liquid-vapor interface in the white square around the contact line is fitted into a circle and the contact angle 

is taken as the intersection angle between the fitted circle and the substrate surface. (b) Schematic of how the 

experimental contact angle is detected. As can be seen from both (a) and (b), A small ridge forms at the contact 

line, the apparent contact angle, 휃, is defined as the angle measured from the imaginary flat soft substrate 

interface to the extrapolated liquid-vapor interface into the soft substrate. 

Figure 2.8 (a) is a typical picture from experiments showing the contact between the liquid 

(water) and soft substrate (PDMS, 𝐸 = 3.6 𝑘𝑃𝑎). A small ridge can be observed with naked 

eye at the contact line. Its details have been reviewed in section 1.2.3 and 1.3.2. A manifestation 

of this contact is sketched in Figure 2.8(b). The liquid not only induces a short-range ridge and 

a long-range deformation around the contact line, but also penetrates into the soft material57,59,86. 

Close to the contact line, the soft material rises. There are several contact angles defined at this 

cusp (Figure 2.9). Right at the tip, the contact angle between each neighbor interface is selected 

by the surface tension/stress53,80. However, these several angles are not relevant to this thesis in 

that: 1. We are not able to directly visualize those angles from our experimental setup. 2. The 

overall interfacial energy release is not strongly affected by those angle relations for large 

droplets. As a result, we only detect the macroscopic contact angle experimentally and use this 

angle to quantify the elastowetting statics and spreading dynamics. 

To measure this macroscopic angle, we first define a region around the contact line to find the 

liquid-vapor interface, as is the white rectangular shown in Figure 2.8(a); then liquid-vapor 

interface, red cross marked in Figure 2.8(a), is detected by Canny edge detection technique and 

those edge pixels are fitted into a circle with the least square algorithm, with the fact that the 

droplet size is in general smaller than the capillary length, √𝛾𝐿𝑉 𝜌𝑔⁄ ≈ 2.7𝑚𝑚; finally, the 

experimental contact angle is measured from the flat surface to the tangential line at the point 

where the fitted circle meets the flat surface. 

0.5 mm 

(a) 

Soft substrate 

Vapor 

  

Liquid 

  

Liquid 

휃 

(b) 



 
39 Chapter 2 Experimental techniques and materials 

 
FIGURE 2.9: Contact angle relations at the small scale of a water droplet on a PDMS film from the micro-X 

ray techinique80. (a)-(b) Zoom-in of the wetting ridge. (c) Surface stress balance at the cusp tip. 

Figure 2.10 shows a water droplet evaporation and the corresponding contact angle is measured 

with this local circle fitting technique. Contact angle decreases fast initially because of the 

strong non-equilibrium of the contact angle, equivalently large capillary driving force for the 

system. After 300 seconds, the droplet dynamics is slowed down and determined by the liquid 

evaporation (a small driving force proportional to the surface area). 

 
FIGURE 2.10: Evaporation of a water droplet in an open chamber at the ambient temperature (~25°𝐶). (a), 

superimposition of image sequence of droplet after its deposition by a micropipette. The initial volume is 3 𝜇𝐿. 

(b), time evolution of the contact angle measured with the proposed method. 

2.4 Wetting velocity measurement 

As part of this thesis is to investigate the spreading dynamics of liquids on soft materials, two 

sets of elastowetting dynamics are designed: droplet deflation, and droplet sliding and drifting 

on a titled substrate. We describe now how the contact line velocity is extracted with a sub-

pixel precision. 

Droplet deflation 

The experimental setup for droplet deflation, Figure 2.11(a), is part of the quantitative Schlieren 

system (Figure 2.3(a)) so that not only the contact line velocity/angle can be measured by a side 

view camera, which is equivalently shown as SC in Figure 2.3(a) and the camera in Figure 

2.11(a), but also the simultaneous surface deformation is monitored by the Schlieren camera. 
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Liquid spreads on a horizontal, flat soft layer that is coated on the rigid glass slide. The side 

view camera is mounted in perpendicular to the parallel light beam plane and is on the same 

altitude to the soft substrate surface. The spreading velocity is tuned by the flux rate of a pump.  

 

FIGURE 2.11: (a) Experimental setup for droplet inflation and deflation. (b) Superimposition of water droplet 

images at receding where the flow rate is 120 𝜇𝐿/𝑚𝑖𝑛. The black pipe in the middle is the needle for sucking 

liquid. The start-up diameter of the droplet is 4.2 𝑚𝑚. The time interval between each image is 24.25 𝑠, 14.5 𝑠, 
3.65 𝑠, 1.55 𝑠. 

Figure 2.11(b) is the superimposition of images of a deflating droplet by the side view camera. 

White dotted line stands for the initially flat surface. The contact line velocity is determined by 

a three-step procedure: 

- Following the circle fitting technique in the contact angle detection, a rough location which 

comes from the intersection of the fitting circle (red line in Figure 2.12(a-b)) and the substrate 

surface is calculated, as is marked as the green cross in Figure 2.12(a-b);  

- As the position found in the first step is not the real location where the contact line lies, shown 

in Figure 2.8(b) and sub-pixel technique is difficult to implement at the green cross because of 

the shading of wetting ridge and its sensitivity to the light illumination, it needs to find the real 

three phase line or at least a location where the wetting velocity can be the best approximated. 

An estimation for the height of the wetting ridge is 𝛾𝐿𝑉𝑠𝑖𝑛휃/𝐸
35,56,58,79, thus a profile, white 

solid line in Figure 2.12(b), in parallel to the substrate interface above white dotted line shifted 

by a distance 𝛾𝐿𝑉𝑠𝑖𝑛휃/𝑃𝑟𝐸 (yellow arrow in Figure 2.12(b)), is selected so that the edge on it 

is taken as the position of the contact line. Here, 𝑃𝑟 is the spatial resolution of each pixel. 

- Sub-pixel technique is applied on the selected line. For the edge of an object, it can be 

represented by an Erf function because of the defocusing and blurring due to the integration of 

the image sensors (CCD and COMOS) and the point spreading function of the optical 

element119–121: 

𝐼(𝑥) =
∆𝐼

2
{𝐸𝑟𝑓 (

𝑥 − 𝑋𝑒

√2𝜎
) + 1} + 𝐼0  (2.3) 
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𝐸𝑟𝑓(𝑥) =  
2

√𝜋
∫𝑒−𝑡

2
𝑑𝑡

𝑥

0

 

here, 𝐼(𝑥) is the light intensity (grayscale value) across the edge of each pixel; ∆𝐼 is the edge 

contrast; 𝑋𝑒 is the real edge location; 𝐼0 is the background light intensity (background scale 

value). It is described in Figure 2.12(c) which is a plot of the light intensity (grayscale value) 

along the selected white solid line from Figure 2.12 (b). As this function’s first derivative is a 

Gaussian function, we fit the difference of the grayscale value of pixels with a Gaussian, as can 

be observed in the Figure 2.12(d). The scatted dotted data is the difference of the grayscale 

value between each neighbor pixels and the solid blue line is the Gaussian fitting. The peak of 

the fitted Gaussian curve corresponds to 𝑋𝑒 from Equation (2.3) and is taken as the location of 

the wetting contact line. This method has been validated elsewhere by the author with a 

sinusoidal motion of a spherical head on a Fatigue Testing Machine (FTM)122. This technique 

gives us a precision of 0.1-0.3 pixel for the position depending on the quality of the illumination 

though higher precision is reported elsewhere123–125.   

 
FIGURE 2.12: Contact line position detection with the sub-pixel detection technique. (a) A macroscopic view of 

a droplet on a soft material. White dotted line denotes the surface of the substrate. The red curved line indicates 

the fitting of a circle close to the contact line and the green cross marks the position where the fitted circle 

meets with the substrate surface. (b) Zoom-in at the contact line. White dotted line represents the surface of the 

soft material and the white solid line cuts across the tip of the wetting ridge and the grayscale value on this 

profile will be detected for the sub-pixel technique. (c) Plot of the light intensity of the selected white solid line 

and a demonstration of the edge model (Erf function). (d) The first derivative distribution of the light intensity 

and its fitting with a Gaussian function. 

The deflation dynamics of droplet in Figure 2.12 is proceeded with proposed sub-pixel location 

detection technique and the corresponding result and its comparison with the direct edge 

detection technique from the circle fitting are shown in Figure 2.13. For the displacement, there 

is a small deviation between the two methods. This might be due to the existence of the ridge 

which makes one or two pixels’ shifting from the soft substrate surface to the real contact in 

Figure 2.12(b); later when the contact line moves and the dynamic contact angle decreases so 

that the shifting distance, 𝛾𝐿𝑉𝑠𝑖𝑛휃/𝐸 , becomes small, the substrate interface line and the 

selected solid white line collapse together.  As a result, the difference between the two methods 
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is smaller than one pixel. However, for the contact line velocity which is the first derivative of 

the location, the difference is very pronounced: red solid line from the direct edge detection 

algorithm in Figure 2.13(b) is very noisy, 0.13 mm/s, while small fluctuation, 0.015 mm/s, is 

observed for the velocity from the sub-pixel method. This significant improve of the signal falls 

in our expectation: 3-10 times. 

 
FIGURE 2.13: Receding dynamics of a water droplet. (a) Comparison of the contact line position from the 

direct edge detection method and that from the sub-pixel edge detection method. (b) Comparison of the contact 

line velocity from the direct edge detection method and that from the sub-pixel edge detection method. 

Sliding and drifting 

Figure 2.14 is the experimental apparatus for sliding and drifting experiments. Humidity and 

illumination are well controlled (details in section 5.1). A LED array is used to provide 

homogenous illumination. Droplet slides down the soft film layer which is coated on a rigid 

glass slide along the gravity direction. A front view camera is placed in perpendicular to the 

droplet sliding plane. A video is recorded when the droplet is in motion. 

 
FIGURE 2.14: Experimental setup for sliding and drifting experiments.  

Representative pictures of the sliding are shown in Figure 2.15. The volume of those droplets 

changes from 1 𝜇𝐿 to 20 𝜇𝐿. The shape of all those droplets is found to be the same because 

each droplet finds its steady state during the sliding. Assuming that those droplets are all in 

steady sliding state, the shape of each droplet and the velocity will be the same during its sliding. 

To detect the velocity, a possible solution is to use the unchanging front of each droplet and fit 

it into any defined shape with the least square method. The displacement of this defined shape 
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is taken as the displacement of the droplet and its first derivative will be the velocity of the 

droplet, that we are interested in. 

 
FIGURE 2.15: Sliding of water droplets on a vertically titled soft substrate of thickness 117 𝜇𝑚 with Young’s 

modulus of 3.6 𝑘𝑃𝑎. The red arrow indicates the motions of droplets that follow the gravity. (a) 

Superimposition of two images with the time interval of 10 mins; The droplet volume ranges from 1 𝜇𝐿 to 4 𝜇𝐿 

(b) Superimposition f two images with the time interval of 19 seconds; droplet volume is 18 and 20 𝜇𝐿. 

It is reasonable to take the defined shape, to be fitted into a circle from the shape of the sliding 

droplet for the following reasons: 

(1). This defined shape doesn’t matter as long as the fitting gives a single solution, 𝐹(𝑥, 𝑦, 𝑡)̃ , 

from the drop shape, 𝐼(𝑥, 𝑦, 𝑡), at any moment 𝑡. When there is a displacement 𝑉𝑑𝑡, the new 

drop will be fitted into 𝐹(𝑥, 𝑦, 𝑡 + 𝑑𝑡)̃  which is simply a combination of 𝐹(𝑥, 𝑦, 𝑡)̃  and its 

translation 𝑉𝑑𝑡 in the following form: 

𝐼(𝑥, 𝑦, 𝑡)
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐹(𝑥, 𝑦, 𝑡)̃  

𝐼(𝑥, 𝑦, 𝑡) + 𝑉𝑑𝑡
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐹(𝑥, 𝑦, 𝑡 + 𝑑𝑡)̃ = 𝐹(𝑥, 𝑦, 𝑡)̃ +𝑉𝑑𝑡 

(2.4) 

Equation (2.4) tells that the displacement and the velocity can be acquired from the new fitting 

at the moment  𝑡 + 𝑑𝑡 and the old fitting at the moment 𝑡. 

(2). The camera targets at a front view (plane 𝐶 ). Along the gravity direction (𝐺 ), the droplet 

experiences a force balance between friction from the soft material and the gravity, which 

stretches the droplet, as can be observed from a side view (plane 𝐶 × 𝐺 ). Thus, the drop shape 

adapts to the pressure gradient which drives the sliding, in balancing with the friction from the 

solid-liquid wall. Since the droplet is sliding only along the gravity on a uniform thick film, 

there should not be a net force in the plane 𝐺 , which ensures the symmetry of the interfacial 

shape in the plane 𝐺 . What’s more, no direct force is exerted on the droplet in plane 𝐶  except 

there are some confinements from the plane 𝐶 × 𝐺 . It is expected that the droplet will keep a 

local circle shape in plane 𝐶  to minimize the capillary interfacial energy in a steady sliding. 

Those can be observed in the head of droplets shown in Figure 2.15. 

Therefore, our strategy to detect the motion of a sliding droplet from the camera is the following: 

first, the edge of the sliding droplet is found by the Canny edge detection algorithm; then a 

group of pixels in the front of the sliding droplet edge are used for the circle fitting to 

quantitatively locate the droplet (red dotted line in Figure 2.16(a)) and the center of the fitted 

circle (red cross in Figure 2.16(a)) is taken as the position, 𝑃(𝑥, 𝑦, 𝑡) of the droplet (Figure 

2.16(b)); next, the difference of 𝑃(𝑥, 𝑦, 𝑡) with respect to time 𝑡 is regarded as the sliding 

velocity (Figure 2.16(c-d)).  
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FIGURE 2.16: Detection of the location and the velocity of a sliding droplet. The volume is 4 𝜇𝐿. The thickness 

of the soft substrate is 117 𝜇𝑚 with Young’s modulus of 3.6 𝑘𝑃𝑎. (a) Edge detection and fitting of the front of 

the droplet; Red dotted line is the front edge that is used to fit a circle; The red cross is the center of the fitted 

circle, and it is taken as the position of the droplet. Gravity direction is along the -X. (b) The trajectory of the 

sliding droplet in 12 𝑚𝑖𝑛𝑢𝑡𝑒𝑠. (c) Sliding velocity along the gravity direction in respect to the sliding time. (d) 

Sliding velocity in perpendicular to the gravity direction. 

2.5 Thickness control of soft films 

Liquid droplets sit or spread on soft films and the thickness of those films needs to be well 

controlled. In this thesis, we deal with three types of soft materials:  polydimethylsiloxane 

(PDMS) gel, PVA hydrogel and SBS-paraffin gel. All those gels are prepared and crosslinked 

on the surface of glass slide. The preparation of those gels is very different and their thickness 

control should also be different. However, to investigate the elastowetting properties of soft 

materials, we pay most of our attention to the PDMS gel. For the PVA hydrogel and SBS-

paraffin gel, we only look at their contact angle hysteresis and spreading of liquid on very thick 

film. Consequently, thickness control technique concerns only the PDMS gel if it is not 

specifically specified. For the PDMS soft film, its thickness ranges from several microns to 

several millimeters. Two techniques are employed for the thin and thick film, respectively. The 

thickness is measured with a 3D profiler (Microsurf 3D, Fogal Nanotech, France) at a precision 

of nanometers with the white light scanning mode. For drifting experiments of sliding droplets, 

a soft film with thickness gradient is needed. Its preparation will be described in the third part 

and the thickness measurement is performed by a side view microscopic camera with a 

precision of 3.3 𝜇𝑚. 

Thin film (< 𝟏𝟎𝟎 𝝁𝒎): spin coating 

(a) (b) 

(c) (d) 
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To obtain soft film with small thickness, we adopt the spin coating technique. The procedure 

and the setup are demonstrated in Figure 2.17. A glass slide is fixed onto the horizontal 

rotational plate of a home-made spin coater. The polymer melt, Sylgard 527, is deposited onto 

the glass slide as is shown in Figure 2.17(a). The angular speed, 𝜔, of the spin coater can be 

tuned from 0 𝑅𝑃𝑀 to 3640 𝑅𝑃𝑀. After a spinning time 𝑇, a homogeneous liquid film forms 

and its thickness ℎ is predicted from the centrifugal force and the viscous force as126,127: ℎ =

𝑘𝜔𝛼, where 𝑘 and 𝛼 are determined from experiments.  

 
FIGURE 2.17: Preparation of thin soft films. (a) Deposition of Sylgard liquid onto a glass slide which is fixed 

on the coating plate of spin coater. (b) After certain time 𝑇, a homogeneous soft film with a thickness ℎ is 

obtained on the surface of the glass slide. 

Figure 2.18(a) shows our experimental setup: I (yellow square), the rotational plate with a 

closed wall to avoid spilling of liquid during spinning; II (red square), motor to drive the 

spinning; III (purple square), controller for adjusting the spinning speed. The thickness of soft 

PDMS layer after crosslinking is plotted with respect to the angular speed in Figure 2.18(b) 

with a good prediction of ℎ = 2993𝜔−1.069 at fixed spinning time 𝑇 = 180 𝑠. 
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FIGURE 2.18: Picture of the setup(a) and relation of the rotational speed and thickness (b) 

Thick film (> 𝟏𝟎𝟎 𝝁𝒎) 

For the preparation of PDMS thick film, a pre-layer needs to be coated so that the Sylgard will 

have a complete wetting condition and is able to spread all over the glass surface to form a flat 

interface. This pre-layer is obtained with the angular speed 350 𝑟𝑎𝑑/𝑠 for 2 𝑚𝑖𝑛𝑠 and is of 

several microns thick. Then the volume of the Sylgard, 𝑉 , is carefully controlled and the 

thickness, ℎ, is roughly regulated as: ℎ = 𝑉 𝑆⁄ , where 𝑆 is the surface area. 

 
FIGURE 2.19: Preparation of thick soft films by controlling the liquid volume. (a) Deposition of polymer 

solutions. (b) After a period, liquid spontaneously spreads out and forms a liquid film. 

For the thick films for paraffin gel and hydrogel, their thickness is not strictly controlled as the 

PDMS films. Their polymer solutions before the crosslinking are poured directly on clean glass 

slides and those solutions spread all over the glass slide surface. When the liquid reaches the 

glass slide edge, it stops spreading because of the edge pinning effect2,21. Then the thickness is 

determined similarly as the PDMS film except that it is not possible to have thin flat film 

because of the partial wetting conditions. 
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Film with thickness gradient 

Principle of preparing soft films with thickness gradient is shown in Figure 2.20: in the first 

step, a glass slide is tilted by an angle 𝛼 from one side; next, liquid solution for crosslinking 

gels is deposited onto the titled glass slide from the side with a lower height as is sketched in 

Figure 2.20(a); in the following, the tilted glass slide with the liquid solution is enclosed with a 

clean chamber to avoid the surrounding contaminations and around 20 minutes is needed to 

wait for the liquid spreading to the case of Figure 2.20(b) in which static wetting condition and 

gravity are the driving force. After the liquid solution fully spreads, two edges are obtained: 

one is the edge on a higher altitude on the left and the other one is the edge of the glass slide of 

a lower altitude as can be seen in Figure 2.20(b); finally, this glass slide with the wedge-like 

liquid covered on is moved into the oven for the liquid solution to crosslink. 

 
FIGURE 2.20: Preparation of soft films with thickness gradient. (a) Deposition of Sylgard liquid onto a tilted 

glass slide. (b) Sylgard liquid spreading due to the gravity and the edge pinning. 

PDMS films form after 24 hours baking in the oven and they are of the same shape as the liquid 

wedge from Figure 2.20(b). When the glass slide is placed horizontally, the thickness profile of 

this soft film (Figure 2.21(a)) on the glass slide looks like the cross-section of the film shown 

in Figure 2.21(b). The side view of the thickness profile in Figure 2.21(b) comes from a slice 

of the soft film in its waist and is taken by a horizontally continuously translating camera. The 

pictures by this translating camera are superimposed and the full side view of the whole film 

on which a thickness gradient is designed can only be visualized. When the titled angle 𝛼 is 

tuned, the corresponding thickness profile and gradient is consequently regulated as is 

demonstrated in Figure 2.21(b). Sample I and II in Figure 2.21(b) correspond to the black solid 

curve and red solid curve in Figure 2.21(a), respectively. 

 
FIGURE 2.21: Thickness of soft films. (a) Profile of the soft films with different thickness gradient. (b) Side 

view of the cross-section of soft films from experiments. 
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2.6 Materials 

2.6.1 PDMS fabrication and its rheology 

In order to prepare chemically crosslinked soft PDMS gel samples having controlled 

mechanical properties, we use two commercially available silicone elastomer kits (Sylgard 184 

and Sylgard 527 from Dow Corning company). Their mechanical properties are tuned by 

controlling the mass ratio of the two Sylgard128, 𝛼 = 𝑚𝑆184 (𝑚𝑆184 +𝑚𝑆527)⁄ , where 𝑚𝑆184 

and 𝑚𝑆527 are the mass of the Sylgard 184 and Sylgard 527, respectively. The two Sylgards are 

prepared according to the manufacturer’s guide: Sylgard 184 is obtained from mixing the base 

and curing agent with a mass ratio of 10:1; Sylgard 527 is achieved by mixing part A and part 

B at a mass ratio of 1:1. As a result, the stoichiometry of each is always kept the same even 

when the proportion of them is different for different stiffness. 

 
FIGURE 2.22: Synthesis of PDMS gel. (a) Formulation of Sylgard blend. (b) Mixing of the blend. (c) Gas 

removing with the vacuum. (d) Liquid layer preparation. (e) Crosslinking in the oven. (f) PDMS gel after 

crosslinking. 

The preparation process of the PDMS gel is shown in Figure 2.22. First, Sylgard 527 and 

Sylgard 184 are separately prepared at stoichiometric rates and they are poured together into a 

beaker (Figure 2.22(a)). Second, the Sylgard blend is stirred with a magnetic stirrer (DC 180, 

Froilabo, France) for around 30 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 at a rotation speed 100 𝑅𝑃𝑀 to ensure the complete 

mixing (Figure 2.22(b)).  Third, the fully mixed blend is degassed in a vacuum of 50 𝑚𝑏𝑎𝑟 for 

1 hour (Figure 2.22(c)).  The degassed blend is then deposited onto glass slides which have 

already been treated in a UV Ozone cleaner (PSD Pro Series, Digital UV Ozone System with 

an OES-1000D Ozone Elimination System, Novscan Technologies, Inc, USA) for 15 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 

(Figure 2.22(d)) and the required coating technique has been put in Section 2.5 in line with the 

desired thickness. The glass slides coated with the blend is transferred to the oven reserved for 

PDMS to avoid contamination of the surface at a constant temperature 65°C for 24 hours 

(Figure 2.22(e)). Finally, the transparent crosslinked PDMS is obtained with the crosslinking 

network shown in Figure 2.22(f). 
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The mechanical properties of the PDMS gels are characterized by small amplitude oscillatory 

shear measurements by using a strain-controlled rheometer (Physica MCR 500; Anton Paar, 

Austria) with a parallel plate geometry (PP20-MRD) at controlled temperature, 25 ± 0.2°𝐶. 

The gap was set at 0.6 𝑚𝑚 and the strain was fixed as 1%. The gel sample is directly prepared 

in the geometry. The viscoelastic moduli of the PDMS of different 𝛼 are plotted as a function 

of frequency in Figure 2.23(a). For all the gels studied, the storage modulus 𝐺′  is found 

independent of the frequency, while the loss modulus 𝐺′′ shows a weak frequency dependence 

𝐺′′~𝜔𝑚. The power 𝑚 ranges from 0.615 for the softest one to 0.323 for the most rigid one. In 

Figure 2.23(b) the value of 𝐺′ at the elastic plateau was plotted as a function of 𝛼. The color of 

each point corresponds to the color in Figure 2.23(a). The value of 𝐺′ increases with the fraction 

of Sylgard 184 from 1 to 600 𝑘𝑃𝑎, indicating that we are able to tune the elastic modulus of 

PDMS gel by 3 orders’ magnitude. One can conclude from the rheological measurements that 

the chemically crosslinked PDMS is elastic at low frequency (elastowetting statics) because of 

the large ratio of 𝐺′ 𝐺′′⁄  while it is viscoelastic in the full spectrum (elastowetting dynamics). 

What’s more, those types of gel contain certain amount of free chains, which can be extracted 

by a paper tissue covering on the gel surface. 

 
FIGURE 2.23: Mechanical properties of the PDMS. (a) Rheology of PDMS at different formulation of Sylgard 

184 and Sylgard 527. Solid line with a triangle stands for the storage modulus, 𝐺′, and solid line with a circle 

represents the loss modulus, 𝐺′′. Different color means the PDMS of different 𝛼. (b) Storage modulus when the 

oscillating frequency 𝑓 = 1 𝐻𝑧 as a function of the mass ratio of Sylgard 184 in the Sylgard blend. 

2.6.2 SBS-paraffin gel fabrication and its rheology 

SBS-paraffin gel is developed from mixing the commercial SBS powder (Styrene Butadiene 

Styrene; G1682, Kraton Polymers, USA) with paraffin liquid (Norpar15, ExxonMobil, USA) 

at different concentrations. SBS powder is dissolved into the paraffin oil under stirring at 90°𝐶 

for 2 hours. After the full mixing of the two, the solution is poured onto a glass slide at ambient 

temperature (~25°𝐶) in a fashion as described in section 2.5.  

The rheological properties of SBS-paraffin gels are measured by T. Kajiya at fixed temperature 

of 25°𝐶 by a strain-controlled rheometer (Physica MCR 500; Anton Paar, Austria)68,69. The 

rheological response is that of entangled polymer solution: the loss modulus dominates at very 

low frequency thus the gel flows at a long-time scale, while at high frequency the storage 

modulus dominates and the system is elastic due to the entanglement of the chain.  

(a) (b) 
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2.6.3 Hydrogel fabrication and its rheology 

Hydrogels are synthesized from a commercially available photocrosslinkable polymer 

(PVA_SbQ, Poly (vinyl alcohol), N-methyl-4 (4’-formylstyryl) pyridinium methosulfate acetal, 

Polysciences, Inc, USA) and a crosslinker GA (Glutaraldehyde solution, Grade II, 25% in H2O, 

Sigma-Aldrich Co, USA). The preparation procedures are in the following: Firstly, the PVA 

SbQ solution, GA, distilled water (Milli-Q Integral; Millipore, USA) and acid HCl are mixed 

with the designed stoichiometry at the ambient temperature. HCl is used as catalyst of the PVA-

GA crosslinking reaction. The reaction rate depends on the HCl concentration: we use 

0.03 𝑚𝑜𝑙/𝐿 for gelation time about several hours. The mixture solution is placed under the UV 

light (VL-206.BLB, 2 × 6 𝑊 - 365 𝑛𝑚 Tube, France) at a distance of 9 𝑐𝑚 for 18 ℎ𝑜𝑢𝑟𝑠 to 

ensure the completion of the gelation. The sample is enclosed with a specifically designed 

chamber saturated with water to avoid drying during the crosslinking reactions. Figure 2.24 

shows the crosslinking reactions during the UV light exposure. Not only is the PVA_SbQ 

polymer itself crosslinked (reaction in Figure 2.24(a)), but also they are crosslinked by the GA 

crosslinker through the hydroxyl group (reaction in Figure 2.24(b)). 

 
FIGURE 2.24: Crosslinking of PVA SbQ polymer. (a) Network crosslinking due to UV light. (b) Network 

crosslinking due to GA. 

The mechanical property can be tuned by varying the concentration of PVA SbQ and GA, as is 

shown in the Figure 2.25. The small amplitude oscillatory shear measurements were performed 

by a stress-controlled rheometer (DHR3, TA Instruments, USA) with a parallel plate geometry 

(108060, TA Instruments, UK) at fixed strain 1%. PVA hydrogel disc prepared on a plate is 

immediately tested after the crosslinking reaction under UV. It is insulated from surroundings 

and saturated with water inside to avoid the drying during the rheology test. As is seen in Figure 

2.25(a), an elastic plateau is observed for all the gels tested. The values of 𝐺′′ are very low 

compared to those of 𝐺′, indicating that these hydrogels are practically purely elastic. In Figure 

2.25(b), the value of G’ at the plateau are plotted as a function of the GA concentration. Though 

the data are rather dispersed, we see that the crosslinker, GA, hardens the polymer network by 

inducing extra crosslinks from the reaction shown in Figure 2.24(b). A magnitude of 2 for 𝐺′ 

can be tuned by manipulating GA concentration.  

PVA SbQ 

UV light 

(a) 

GA 

PVA SbQ 

+ 
HCl 

(b) 
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FIGURE 2.25: (a) Viscoelastic moduli of PVA hydrogel of different GA concentration (mol/L) at fixed mass 

concentration 4.4% of PVA SbQ. Different color stands for different GA concentration. Circle and triangle 

represent the shear storage modulus 𝐺′ and loss modulus 𝐺′′, respectively. (b) Storage modulus at plateau as a 

function of GA concentration when 𝑓 = 1 𝐻𝑧. Scattered circles are from experiments and the blue solid line is 

the linear fit of them. Circle color corresponds to the color in (a). 
 

  

(a) (b) 
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Chapter 3 Statics: surface deformation and 

contact angle on elastic materials 

3.1 Introduction 

Elastowetting on soft materials has been studied for many years. Various models have been 

proposed to rationalize the surface deformation induced by capillary forces on soft 

materials35,40–42,53,57,79,81,85,93,96,129–131. However, the play of the surface effect into the 

elastocapillary problem is only a recent event42,45,53,56,57. There is still a gap in the understanding 

of the long-range surface deformation53 and the short-scale surface deformation53: Different 

values of surface tension/stress have to be used to predict the shape of a gel depending on the 

chosen system. Besides, surfaces tensions deduced from a study of the shape of the surfaces 

over long distances are of order of several hundred 𝑚𝑁/𝑚 and are usually considered to be 

unphysical94. Moreover, many studies on elastowetting are conducted either with small droplets 

(~ 100 𝜇𝑚) or with thin layers53,59,80 (< 100 𝜇𝑚). Finally, the wetting ridge (< 𝑙𝑠) has received 

most of attention in the past few decades. The deformation outside of this area has never been 

systematically investigated and well characterized. 

In this chapter, we will cast our attention on the surface deformation on elastic gels, and the 

observation of the contact angle hysteresis of resting droplets on soft gels will be briefly 

summarized in the end. Rheology tests in the previous chapter show us that the chemically 

crosslinked PDMS gel can be regarded as elastic in statics (very small tan 𝛿 = 𝐺′′ 𝐺′⁄  in the 

low frequency). All throughout this chapter, we solely use PDMS gel as the soft gel to study 

the elastowetting except when specified, and distilled water (Milli-Q Integral; Millipore, USA) 

is the single liquid employed in all the following experiments. We are going to address several 

questions in the following: 

- What is the long-range surface deformation induced by resting droplets on soft substrates?  

How is it determined by the mechanics of the gel, including elasticity and surface tension, and 

geometry of the system, such as the droplet size, and the thickness of soft films? Can we develop 

a thorough model to predict the surface deformation? As is shown in Figure 3.1 and section 1.3, 

the surface deformation (black dotted rectangle in Figure 3.1(a)) can be divided in two regions, 

between which a cross-over is described by the elastocapillary length, 𝑙𝑠 . The first region, 

whose size is smaller than 𝑙𝑠, is located around the wetting ridge induced by the pulling of the 

liquid-vapor surface tension35,53,58,79. It is characterized by a universal cusp at the ridge tip whose 

shape is believed to be dictated by the Neumann's law53,80. This region is dominated by the 

surface tension. The second region encompasses the gel surface beyond 𝑙𝑠 (red solid curve on 

the gel interface), dominated by the elasticity of the gel. Here we will focus on the latter one. 

For this purpose, we will use a home-developed quantitative Schlieren optics set-up to visualize 

and quantify this deformation. Its cut-off, where the Schlieren setup loses sensitivity for the 

surface deformation, is drawn at the intersection point between the black interface and the red 

interface in Figure 3.1(b). The distance of this stop-point from the contact line will be discussed 

later. In addition, we are going to rationalize our experiments with a model based on the linear 

elasticity theory that accounts for surface tension. Besides, we will analyze more about the exact 

contribution from each component of stresses in the system to the surface deformation, 

including the Laplace pressure, traction from nearby contact line and that from the far away 

contact line, vertical and tangential/translational components of the surface tension traction 

(𝛾𝐿𝑉). This part will be a combined study including experiments and theoretical calculations. 
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- We will also show that many of our experimental observations demonstrate that the contact 

angle hysteresis (translation force at the contact line), in fact, plays a pronounced role. Hence, 

we will study the static contact angle and its hysteresis for water on the soft PDMS substrate. 

How is the growth of the local deformation induced by a sessile drop at the contact line related 

to the contact angle hysteresis or the pinning of the contact line? The corresponding contact 

angle measurement technique has been detailed in section 2.3. The definition of both is shown 

in Figure 3.1(a) and they are defined in the same way as in Figure 1.4. This part will be 

demonstrated from the experimental point of view. 

 
FIGURE 3.1: Surface deformation detection of a resting droplet on a soft layer of thickness ℎ0. (a) 

Macroscopic view of an elastowetting drop. D is the diameter of the droplet, which is experimentally 

approximated as the diameter of the liquid-gel interface area. Contact angles are of the same definition as in 

Figure 1.4. 휃𝑒 is the static contact angle at 𝑉𝑑 < 4 𝜇𝑚/𝑠, where 𝑉𝑑 is the wetting velocity of the contact line. 

(b) Magnification of the dotted square from (a). Surface deformation in the vicinity of the contact line can be 

classified into two regimes by the elastocapillay length, 𝑙𝑠, according to the prevalence of stresses: elastic 

stress and surface tension/stress. A dimple is usually observed close to the contact line because of the 

incompressibility of the PDMS gel. The depth of it is called dimple depth, 𝐷𝑝. 휁 is the out of plane surface 

deformation. (c) Camera view of the resting droplet. The contact angle 휃𝑒 is identically defined as (a). (d) 

Schlieren camera view of the surface deformation. The black is water droplet and the light intensity varies with 

respect to the distance to the contact line along the blue line, which is a direct indication of the changing 

surface slope. (e) Out of plane surface deformation acquired from the quantitative Schlieren optics along the 

blue line in (d). 

3.2 Measurements of the surface deformation  

We will use the home-made Schlieren optics to study the static elastowetting surface 

deformation (details in section 2.2 and in Figure 2.3). As a short summary, it is able to measure 

the surface slope up to ~7° (deflection angle 0.05 𝑟𝑎𝑑) for PDMS (refractive index 1.4) with 

a sensitivity of ~0.1° (deflection angle sensitivity 0.0007 𝑟𝑎𝑑). For the following experiments, 

the Schlieren camera resolution is 10.2 𝜇𝑚/𝑝𝑖𝑥𝑒𝑙 , which gives a spatial sensitivity of the 

vertical displacement as tan(0.0007) × 10.2𝜇𝑚 ≈ 7.1 𝑛𝑚. As the current study mainly targets 
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statics, the moving of contact line, solely due to the evaporation in our experiments, should be 

strongly avoided. Hence a transparent glass chamber (75𝑚𝑚 × 50𝑚𝑚 × 8𝑚𝑚) is assembled 

so as to control the humidity. The cover of it can be removed when droplets are to be deposited. 

Extra water is deposited around glass slide-supported PDMS films, which will be embedded in 

the chamber before sealing the vessel with the top cover. All the measurements are performed 

around 5 mins after the deposition. A side view camera (DMK23UV024 IMAGING SOURCE, 

Germany) with a lens (TV LENS-50mm-1:2.8, RICOH, Japan) is also employed to monitor the 

contact line motion at a speed of 1 𝑓𝑝𝑠 and the equilibrium contact angle 휃𝑒. The resolution of 

the camera is 13.9 𝜇𝑚/𝑝𝑖𝑥𝑒𝑙, thus granting us a sensitivity of the wetting velocity around 

4 𝜇𝑚/𝑠  with the sub-pixel technique. This limit of wetting velocity is applied to all the 

following static deformation measurements at 𝑉𝑑 < 4 𝜇𝑚/𝑠 if it is specifically pointed out. 

In the following, we will first experimentally investigate the effects of the thickness of a soft 

layer ℎ0, the shear storage modulus 𝐺′ of a soft layer, and the droplet diameter 𝐷 on the static 

elastowetting surface deformation. The definitions are also drawn in Figure 3.1. Figure 3.1(c) 

is the experimental view of the Figure 3.1(a). Figures 3.1(d-e) correspond to Figure 3.1(b).  

3.2.1 Thickness effect 

Interface profiles of the dry part of the surface of PDMS gels (red solid line on the interface 

from Figure 3.1(b)) with various thickness are plotted in Figure 3.2, for similar droplet size. 

The extent of the profiles is limited by both the hydrophobic shading (휃𝑒 > 90°) and by the 

Schlieren cut-off (surface slope is sensible up to 7°),). As our results show, the surface slope is 

typically smaller than the Schlieren capacity (7°), meaning that those profiles are mainly cut by 

the shading (Figure 2.4).  

 
FIGURE 3.2: Surface deformation on substrates with different thickness. 𝐺′ for all the samples is the same, i.e, 

1.2 kPa. The dotted line corresponds to the flat surface. These curves are horizontally translated in order to be 

well separated and compared. The x-axis simply marks the scale of the deformation. 

To know how far away those profiles acquired from the Schlieren optics are from the contact 

line, a simple geometry estimation is done as follows: since the representative droplet radius, 

𝑅~1.4 𝑚𝑚, is smaller than the capillary length, 𝑙𝑐~√𝛾 𝜌𝑔⁄ ~2.7 𝑚𝑚 in which 𝜌 is the water 

density and 𝑔 is the gravitational acceleration, all the drops are supposed to have a spherical 

cap and the gravity doesn’t play much role here. Hence the gapping, 𝑙𝑔, from the measured 
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profile to the tip of the deformed ridge can be written as 𝑅(1 − 𝑠𝑖𝑛휃𝑒). If we take 휃𝑒 as 100° 

and 𝑅  as 1.4 𝑚𝑚 , 𝑙𝑔  is about 21 𝜇𝑚 . Morever, as the solid elastocapillary length is56,57: 

𝑙𝑠~𝛾𝑠 2𝐺⁄
′~17 𝜇𝑚 if we take 𝛾𝑠  as 40 𝑚𝑁/𝑚. The interface profiles, that we are able to 

extract, fall very close to the elastocapillary regime. 𝑙𝑔 should coincide with 𝑙𝑠 in Figure 3.1(b) 

and the detectable surface deformation in red line from 3.1(b) stops close to the surface tension 

dominated region where a universal tip exists45,53,80, which will be seen in Figure 3.3. 

Figure 3.2 shows the finite thickness effect on the interface deformation. The gel used here is 

chemically the same. Its wettability and mechanical property can be taken identical on the 

whole. Nevertheless, a dimple forms on the thin layer when ℎ0 < 380 𝜇𝑚, and it disappears on 

the thick layer when ℎ0 > 530 𝜇𝑚. The response of gel is different due to this geometrical 

confinement. The depth of the dimple, 𝐷𝑝 , is decreasing from 0.57 𝜇𝑚  to ~ 0 𝜇𝑚  as the 

thickness is increasing from 170 𝜇𝑚 to 2970 𝜇𝑚. A transition for the disappearance of the 

dimple can be found at 380 𝜇𝑚 < ℎ0 < 530 𝜇𝑚. Qualitatively, the existence of the dimple can 

be rationalized as follows: because of the incompressibility of the PDMS gel, the pulling-up of 

the ridge (Figure 3.1(b)) must be compensated by the motion of the same amount of volume 

around it; hence, a dimple appears for thin soft layers: however, for the very thick layer, the 

pulled-up volume maybe compensated by the gel from beneath the droplet and surface 

undulation can be so small that it is not detectable with our Schlieren technique. The dimple 

extends over several hundreds of microns, which is large compared to the “universal tip”, that 

extends over tens of microns45,53,80. Additionally, for the interface with the presence of dimple, 

the surface slope gently changes when it is still away from the contact line. Once it approaches 

the elastocapillary length scale regime, it increases logarithmically as will be shown in Figure 

3.3(b). 

3.2.2 Droplet size effect 

On each PDMS layer, droplets of various size are deposited. The surface deformation after the 

full relaxation of droplets is shown in Figure 3.3. For each gel layer, the interface profiles are 

horizontally translated and superimposed in Figure 3.3(a). We checked the distribution of the 

deformation for droplet diameter ranging from 0.42 𝑚𝑚  to 2.95 𝑚𝑚 . Each 0.5 𝑚𝑚  is 

clustered and indicated as the same color and symbol. 

 
FIGURE 3.3: (a) Droplet size effect on the surface deformation. The curves are horizontally translated and 

superimposed. The dotted line is the unaffected surface. (b) Logarithmic surface profile in the capillarity 

dominated region for the soft layer of 343 𝜇𝑚 thick. 𝑥 = 0 𝜇𝑚 is the location of the tip of the wetting ridge. It 

is estimated from the static contact angle and the size of the droplet. 

(a) 
(b) 
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For the gel layer with the same thickness, droplet size modifies the shape of the ridge in several 

ways: For thin layers, the dimple depth and its longitudinal size increases with the size of the 

droplets; From ℎ0 =  670 𝜇𝑚, the profile is almost independent of droplet size and the dimple 

is hardly observed; For very thick layer, ℎ0 =  1840 𝜇𝑚, the whole interface seems to be 

continuously pulled up and the lateral scale of the disturbed interface increases from hundreds 

microns to millimeters, as the droplet size increases. In this case, no dimple is detected.  

Furthermore, when all the curves for the same thickness are superimposed, a well aligned 

profile is found in the near region of contact line (Figure 3.3(a)). This points to the universal 

cusp at the wetting tip that has been demonstrated by Style, etc.53. And the deformation in the 

close region of the contact line is logarithmic35,56, as is shown in Figure 3.3(b). 

3.2.3 Rigidity effect 

By fixing the droplet size and controlling the PDMS layer thickness, we investigate the effect 

of substrate rigidity on the deformation. We performed three runs on three PDMS layers with 

different shear elastic modulus, i.e., 1.2 𝑘𝑃𝑎, 7.0 𝑘𝑃𝑎 and 15.7 𝑘𝑃𝑎. Details of the rheology of 

those three PDMS gels is shown in Figure 3.4(a). The experimental result is demonstrated as 

scattered symbols in Figure 3.4(b). It is observed that both the scale and the amplitude of the 

dimple decrease with an increase of the rigidity. For all the three gel layers, the interface slope 

changes slowly when it is far from the contact line and once it approaches the elastocapillarity 

length, it increases sharply. 𝐷𝑝 decreases by a factor of 3 and the scale of the deformation (from 

the profile cut-off to the non-perturbated interface) changes from around 250 𝜇𝑚 to 150 𝜇𝑚 

when 𝐺′ increases from 1.2 𝑘𝑃𝑎 to 7.0 𝑘𝑃𝑎. However, when 𝐺′ increases further, the surface 

deformation doesn’t change significantly. This is due to the fact that the static contact angle 

decreases from 102° to 93°. The gel outside of drops experiences not only the pulling in the 

out of plane direction but also a squeezing or stretching in the in-plane direction depending on 

the static contact angle.  The pulling can be expressed as 𝛾𝐿𝑉𝑠𝑖𝑛휃𝑒 and the in-plane stretching 

or squeezing will be read as 𝛾𝐿𝑉𝑐𝑜𝑠휃𝑒, where the negative indicates squeezing and positive is 

stretching. Larger 𝐺′ tends to make a smaller dimple while the in-plane stretching and out-of-

plane pulling-up make a larger dimple because of gel incompressibility. As a result, when 𝐺′ 

increases from 7.0 𝑘𝑃𝑎 to 15.7 𝑘𝑃𝑎, no apparent growth of the dimple is observed. How the 

static contact angle modifies the surface deformation will be discussed in the following. 

 
FIGURE 3.4: Rigidity effect on the surface deformation. (a) Rheology of the three types of PDMS gel. The 

number is the mass ratio of Sylgard 184 in the formulation. The 𝐺′ of them is 1.2 𝑘𝑃𝑎, 7.0 𝑘𝑃𝑎 and 15.7 𝑘𝑃𝑎 

at 𝑓 = 1 𝐻𝑧, respectively. (b) Surface deformation for three soft layers with different 𝐺′. Drop size, 𝐷, for 

PDMS layers with 𝐺′ of 1.2 𝑘𝑃𝑎, 7.0 𝑘𝑃𝑎 and 15.7 𝑘𝑃𝑎 is 0.75 𝑚𝑚, 0.76 𝑚𝑚 and 0.76 𝑚𝑚, respectively. 

Scattered dot, triangle and square are experimental results and solid lines are the calculation results when 𝛾𝑠 is 

(a) (b) 
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taken as 40 𝑚𝑁/𝑚. The contact angles are 100°, 102°, and 93° for 𝐺′ of 1.2 𝑘𝑃𝑎, 7.0 𝑘𝑃𝑎 and 15.7 𝑘𝑃𝑎, 

respectively. 

3.3 Model from the linear elastic theory 

To rationalize the observations reported in the previous section, we have developed a model 

based on an extension to the finite thickness of a model built by Dervaux and Limat56,57. In the 

limit of small strain, the displacement, 𝑢𝑖(𝑥𝑗), of an elastic material can be described by an 

expression of Newton’s second law: 

𝜌
𝜕2𝑢𝑖
𝜕𝑡2

=
𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
 (3.1) 

here 𝜌 is the density of the elastic material and 𝜎𝑖𝑗 is the stress tensor. It can be decomposed 

into normal and shear component: 

𝜎𝑖𝑗 = 𝜆휀𝑘𝑘𝛿𝑖𝑗 + 2𝐺
′휀𝑖𝑗 

휀𝑖𝑗 =
1

2
(
∂𝑢𝑖
𝜕𝑥𝑗

+
∂𝑢𝑗

𝜕𝑥𝑖
) 

(3.2) 

where 휀 is the strain tensor and 𝛿𝑖𝑗  is the Kronecker delta symbol. In general, 𝜆 and 𝐺′ are 

referred to as Lamé’s first parameter and Lamé’s second parameter, respectively. In the context 

of elasticity, 𝐺′ is called shear modulus. By substituting Equation (3.2) to Equation (3.1), one 

gets: 

𝜌
𝜕2�⃑� 

𝜕𝑡2
= 𝐺′Δ�⃑� + (𝜆 + 𝐺′)∇(∇ ∙ �⃑� ) (3.3) 

In statics, the above equation equals 0. We assume that the material is incompressible, thus the 

Poisson ratio 𝜈 should be 0.5. However, Lamé’s first parameter, 𝜆 = 𝜈𝐺′/(0.5 − 𝜈), goes to 

an infinite in this case. For the Equation (3.3), the second term (𝜆 + 𝐺′)∇(∇ ∙ �⃑� ) now becomes 

cumbersome in that (𝜆 + 𝐺′) is an infinity while ∇ ∙ �⃑� = 0 as a result of incompressibility. To 

seek a simple solution, we introduce an effective pressure with the trace component: 

𝑃 = −
1

3
𝜎𝑘𝑘 = −(𝜆 + 2𝐺

′)(∇ ∙ �⃑� ) (3.4) 

Hence, 

∇ ∙ �⃑� = 0 (3.5) 

𝐺′Δ�⃑� − ∇𝑃 = 0 (3.6) 

Equation (3.5) stands for the incompressibility of the soft gel. Equation (3.6) represents the 

static condition and it can be solved in analogy to the Stokes equation in fluid mechanics. This 

set of equations is completed by the condition of stress continuity at the boundary: 

𝜎 ∙ �⃑� = 𝑡 + 𝛾𝑠�⃑� (∇ ∙ �⃑� ) (3.7) 

in which 𝜎, �⃑⃑�  and 𝑡  are stress tensor, surface normal vector and traction force exerted at 

the substrate boundary, respectively. 𝛾𝑠 is the surface tension of the elastic gel and we 
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assume the surface tension between liquid-solid and that between solid-vapor to be the 

same and equal to a constant 𝛾𝑠. We will not try to differentiate the concept of surface 

tension, surface energy and surface stress in our context either and they will be always 

referred to as the surface tension. 

In addition, the elastic layer is bounded on the rigid glass slide, thus at the bottom of this soft 

layer: 

�⃑� (𝑥, −ℎ0) = 0 (3.8) 

Let us denote the surface profile of the soft gel to be 휁(𝑥) . If a line force 

𝑓 (𝑓𝑥𝛿(𝑥)𝛿(𝑦), 𝑓𝑦𝛿(𝑥)𝛿(𝑦), 0) is applied to free surface of the elastic slab, the boundary 

condition, Equation (3.7) and (3.8), will take the following form within the small surface 

slope limit, i.e 휁′(𝑥) ≪ 1: 

𝜎𝑦𝑦 = 2𝐺
′
𝜕𝑢𝑦

𝜕𝑦
− 𝑃 = 𝑓𝑦𝛿(𝑥) + 𝛾𝑠

𝑑2휁

𝑑𝑥2
 (3.9) 

𝜎𝑥𝑦 = 𝐺
′(
𝜕𝑢𝑦

𝜕𝑥
+
𝜕𝑢𝑥
𝜕𝑦
) = 𝑓𝑥𝛿(𝑥) (3.10) 

𝑢𝑥(𝑥, −ℎ0) = 0 (3.11) 

𝑢𝑦(𝑥, −ℎ0) = 0 (3.12) 

The above equation set can be solved by using a potential function 𝜙 for the displacement field 

defined as: 

𝑢𝑥 = −
𝜕𝜙

𝜕𝑦
 

𝑢𝑦 = −
𝜕𝜙

𝜕𝑥
 

(3.13) 

Zero divergence or the incompressibility condition of the elastic gel at deformation is assumed. 

Equation (3.5) is hence automatically satisfied. By combined Equation (3.13) and the 

equilibrium condition of the Equation (3.6), one gets the biharmonic equation: 

∆2𝜙 = 0 (3.14) 

It will be solved by the Fourier transform. Hence, 𝜙 is defined in Fourier form as: 

𝜙(𝑥, 𝑧) =
1

2𝜋
∫ �̃�(𝑘, 𝑧)𝑒𝑖𝑘𝑥𝑑𝑘
+∞

−∞

 (3.15) 

Inserting this Fourier definition of 𝜙 into the biharmonic equation yields a fourth order linear 

differential equation: 

𝜕4�̃�

𝜕𝑧4
− 2𝑘2

𝜕2�̃�

𝜕𝑧2
+ 𝑘4�̃� = 0 (3.16) 

The general solution for this linear differential equation is: 

�̃�(𝑘, 𝑦) = 𝐴𝑒𝑘𝑦 + 𝐵𝑒−𝑘𝑦 + 𝐶𝑦𝑒𝑘𝑦 + 𝐷𝑦𝑒−𝑘𝑦 (3.17) 
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With the boundary condition from Equation (3.9) to Equation (3.12), four unknown parameters, 

𝐴, 𝐵, 𝐶, 𝐷 can be determined. The sets of boundary conditions can be expressed in Fourier form: 

2𝐺′𝑖𝑘
𝜕�̃�

𝜕𝑦
−
𝜇𝑖

𝑘
(
𝜕3�̃�

𝜕𝑦3
− 𝑘2

𝜕�̃�

𝜕𝑦
) = 𝑓𝑦 − 𝛾𝑠𝑖𝑘

3𝜙, 𝑦 = 0 (3.18) 

𝐺′ (−𝑘2�̃� +
𝜕�̃�

𝜕𝑥
) = 𝑓𝑥, 𝑦 = 0 (3.19) 

𝜕�̃�

𝜕𝑦
= 0, 𝑦 = −ℎ0 (3.20) 

�̃�(x) = 0, 𝑦 = −ℎ0 (3.21) 

This system of equation leads to the following expression for the Fourier transform 휁̃ of the 

surface displacement field 휁: 

휁̃(𝑘) =
𝑓𝑦 sinh(2ℎ0𝑘) − 2𝐻𝑘(𝑓𝑦 + 𝑖𝑓𝑥ℎ0𝑘)

𝑘{2[ℎ0𝑘
2(2ℎ0𝐺

′ − 𝛾𝑠) + 𝐺
′] + 𝛾𝑠𝑘𝑠𝑖𝑛ℎ(2ℎ0𝑘) + 2𝐺

′cosh (2ℎ0𝑘)}
 (3.22) 

or in a more compact form: 

휁̃(𝑘) =
1

𝛾𝑠
[𝑘2 +

𝜇

𝛾𝑠𝐾(𝑘)
]
−1

[𝑓𝑦 − 𝑖𝑓𝑥
2ℎ0

2𝑘2

sinh(2ℎ0𝑘) − 2ℎ0𝑘
] (3.23) 

here,  

𝐾(𝑘) =
1

2𝑘
[

sinh(2ℎ0𝑘) − 2ℎ0𝑘

2ℎ0
2𝑘2 + cosh(2ℎ0𝑘) + 1

] (3.24) 

Finally, the interface deformation of the elastic gel is: 

휁(𝑥) =
1

2𝜋
∫ 휁̃(𝑘)𝑒𝑖𝑘𝑥𝑑𝑘
+∞

−∞

 (3.25) 

Single contact line on an elastic layer with finite thickness 

As is drawn in Figure 3.5(a), a single contact line with infinite extension into the third-

dimension acts on an elastic slab with finite thickness ℎ0 at an angle of 휃𝑒. The traction will be 

as follows if the surface tension is 𝛾𝐿𝑉: 

𝑓𝑥 = 𝛾𝐿𝑉 cos 휃𝑒 

𝑓𝑦 = 𝛾𝐿𝑉 sin휃𝑒 
(3.26) 

As a result, the interface deformation of the elastic slab is: 

휁(𝑥) =
𝛾𝐿𝑉 sin휃𝑒
2𝜋𝛾𝑠

∫ [𝑘2 +
𝜇

𝛾𝑠𝐾(𝑘)
]
−1

cos(𝑘𝑥)𝑑𝑘
+∞

−∞

+
𝛾𝐿𝑉 cos 휃𝑒
2𝜋𝛾𝑠

∫
2ℎ0
2𝑘2

sinh(2ℎ0𝑘) − 2ℎ0𝑘
[𝑘2

+∞

−∞

+
𝜇

𝛾𝑠𝐾(𝑘)
]
−1

sin(𝑘𝑥) 𝑑𝑘 

(3.27) 
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FIGURE 3.5: Theoretical models. (a) A single contact line on a soft layer of finite thickness ℎ0. (b) A 2D 

resting droplet on soft gel with the 3D correction for the Laplace pressure 𝑓𝑝. 

Solution for a 3D droplet  

When an infinite long 2D rivulet sits on an elastic gel layer at equilibrium (Figure 3.5(b)), the 

force experienced by the layer can be classified into two: the liquid-vapor surface tension, 𝛾𝐿𝑉, 

which is pulling the gel interface outwards, and the Laplace pressure that is pushing the gel 

phase inwards. If we set the centerline of the rivulet as the 0 for 𝑥, this rivulet will exert two 

lines of surface tension and an area of Laplace pressure on the elastic gel interface: 

𝑓1 = (𝛾𝐿𝑉𝑐𝑜𝑠휃𝑒𝛿(𝑥 − 𝐷/2), 𝛾𝐿𝑉𝑠𝑖𝑛휃𝑒𝛿(𝑥 − 𝐷/2),0) 

𝑓2 = (𝛾𝐿𝑉𝑐𝑜𝑠휃𝑒𝛿(𝑥 + 𝐷/2), 𝛾𝐿𝑉𝑠𝑖𝑛휃𝑒𝛿(𝑥 + 𝐷/2),0) 

𝑓𝑝 =
2𝛾𝐿𝑉
𝐷
𝐻 (𝑥 +

𝐷

2
)𝐻 (

𝐷

2
− 𝑥) 

(3.28) 

where 𝐻 is the Heaviside step function. However, for a 3D droplet to be resting on a substrate, 

the Laplace pressure will be twice as large as 𝑓𝑝 from Equation (3.28). Hence, when we apply 

Equation (3.27) as a Green function in the condition of Equation (3.28), we will correct the 
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Laplace pressure contribution by reducing the droplet diameter by half. Then the explicit 

solution for a 3D droplet resting on an elastic layer with finite thickness ℎ0 analytically reads: 

휁(𝑥)

=
𝛾𝐿𝑉
𝜋𝐺′

∫
𝑒
𝑖𝑘(𝑥−

𝐷
4
)[2ℎ0𝑘(𝑖ℎ0𝑘𝑐𝑜𝑠휃𝑒 − 𝑠𝑖𝑛휃𝑒) + 𝑠𝑖𝑛휃𝑒sinh (2ℎ0𝑘)]

𝑘[2 + 2ℎ0𝑘
2(2ℎ0 − 𝑙𝑠) + 2cosh(2ℎ0𝑘) + 𝑘𝑙𝑠 sinh(2ℎ0𝑘)]

𝑑𝑘
+∞

0

+
𝛾𝐿𝑉
𝜋𝐺′

∫
𝑒
𝑖𝑘(𝑥+

𝐷
4
)[2ℎ0𝑘(−𝑖ℎ0𝑘𝑐𝑜𝑠휃𝑒 − 𝑠𝑖𝑛휃𝑒) + 𝑠𝑖𝑛휃𝑒sinh (2ℎ0𝑘)]

𝑘[2 + 2ℎ0𝑘
2(2ℎ0 − 𝑙𝑠) + 2cosh(2ℎ0𝑘) + 𝑘𝑙𝑠 sinh(2ℎ0𝑘)]

𝑑𝑘
+∞

0

+
4𝛾𝐿𝑉
𝜋𝐷𝐺′

∫
2cosh(𝑘𝑥) sin (𝑘𝐷/4)𝑠𝑖𝑛휃𝑒(−2ℎ0𝑘 + sinh (2ℎ0𝑘))

𝑘2[1 + 2ℎ0𝑘
2(ℎ0 − 𝑙𝑠/2) + cosh(2ℎ0𝑘) + 𝑘𝑙𝑠 sinh(2ℎ0𝑘) /2]

𝑑𝑘
+∞

0

 

(3.29) 

here 𝑙𝑠 = 𝛾𝑠 2𝐺
′⁄ . The three terms on the right side indicate contributions to the overall 

surface deformation from the contact line 𝐶1, contact line 𝐶2 and Laplace pressure. 

3.4 Results 

The above equation can be integrated once the experimental parameters are all known. However, 

there is still one undetermined constant, 𝛾𝑠 , which is a tanglesome concept to describe the 

surface of soft materials132–138. As we are not aiming at a thorough understanding of it, we will 

take the simplest approach: the surface of the soft material is liquid-like and there will be a 

Laplace pressure inside the gel when its interface is curved; the liquid-gel surface tension and 

the gel-vapor surface tension can be equally accounted by a constant 𝛾𝑠. When we try to find 

the surface deformation, we will leave it free as a fitting parameter. 

 
FIGURE 3.6: (a) Static contact angle observed for the surface deformation measurements. (b) Comparison of 

the interface deformation of soft layers from experiments and that from calculations. 

Each detection of the static contact angle was recorded and further summarized in Figure 3.6(a). 

It has to be mentioned that the error bar is not the contact angle hysteresis because we didn’t 

try to inject liquid into those droplets and observe an advancing contact angle. It is the 

measurement error of the static contact angle, which in the ideal case (perfectly smooth, purely 

elastic, etc.) should be of a single value. However, in the real case, contact angle hysteresis can 

be introduced by many factors2,3,5,21, one of which will be discussed later in section 3.6. When 

the experiment starts, a droplet is deposited onto the soft layer in the open environment and 

then immediately transferred into the closed chamber which is saturated with water vapor. 

However, there will be more or less liquid loss during its stay (5 𝑚𝑖𝑛𝑠) onto the substrate, 

(b) (a) 
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although the contact line velocity is not detectable (𝑉𝑑 < 0.45 𝜇𝑚/𝑠). It is expected that smaller 

droplets tend to have a smaller contact angle, which is exactly what we see in experiments. 

 
FIGURE 3.7: Comparison of experiment and calculations for a resting water droplet (𝐷 = 1.51 𝑚𝑚) on a 

PDMS layer film (𝐺′ = 1.2 𝑘𝑃𝑎) of  ℎ0 = 228 𝜇𝑚. (a) Surface tension effect on the surface deformation from 

calculations at fixed 휃𝑒 = 98°. (b) Dimple depth 𝐷𝑝 as a function of surface tension from calculations. 

When all experimental parameters of a thin layer (ℎ0 = 228 𝜇𝑚) and a thick layer (ℎ0 =

670 𝜇𝑚) are injected into Equation (3.29), it is found the experimental deformation can be very 

well reproduced by calculations when 𝛾𝑠 = 40 𝑚𝑁/𝑚. The good agreement is shown in Figure 

3.6(b). To demonstrate how the surface tension 𝛾𝑆 plays a role in the interface deformation, a 

resting water droplet (𝛾𝐿𝑉 = 72 𝑚𝑁/𝑚) of diameter 1.51 𝑚𝑚 on a soft PDMS layer (𝐺′ =

1.2 𝑘𝑃𝑎) of thickness 228 𝜇𝑚 is experimentally observed and numerically analyzed. We give 

the value of 𝛾𝑆 from 10 𝑚𝑁/𝑚 to 300 𝑚𝑁/𝑚. As is shown in Figure 3.7(a), the deformation 

is well predicted by 𝛾𝑠 = 40 𝑚𝑁/𝑚. Besides, we choose one specific parameter, the depth of 

dimple 𝐷𝑝 to evaluate how the surface tension changes the deformation. As is addressed in 

Figure 3.7(b): the larger is the surface tension, the less the surface is deformed and the smaller 

the dimple depth is. This effect is reasonable because the surface tension tends to flatten a 

curved interface98,139, thus alleviate the dimple. 

Next, we will address the thickness effect, rigidity effect and droplet size effect from our 

calculations. The static contact angle is fitted as a function of thickness and droplet size from 

the dataset shown in Figure 3.6(a) so that we will have a smooth curve for the droplet size effect 

in calculations. Equation (3.29) is integrated from 10−7 to 106 for 𝑘. As is the same in Figure 

3.7(b), a specific parameter, the dimple depth 𝐷𝑝, is chosen to assess our calculations. The best 

fit of our model gives 𝛾𝑠 = 40 𝑚𝑁/𝑚. This value is very close to other values reported in the 

literature based on visualizations at the ridge scale, i.e., much smaller scale than our 

observations53. It is in sharp contrast to the model which doesn’t take the translation force into 

account94: an unphysically large surface tension/stress of PDMS gel, 514 𝑚𝑁/𝑚, is needed to 

rationalize the surface deformation when it is measured at more macroscopic scales. Figure 

3.8(a) demonstrates that our model successfully captures all our experimental results: smaller 

is the thickness and larger is the droplet, deeper the dimple depth is. In addition, as has been 

put in Figure 3.4(b), rigidity effect is also recovered. However, for very big droplet (𝐷 > 𝑙𝑐), a 

considerable deviation is observed in Figure 3.8(a), this is probably due to the gravity effect 

and the increase of 휃𝑒. Gravity increases the pressure inside the drop and thus can be taken as 

an extra Laplace pressure. In our model, this is equivalent to the decrease of droplet size. 

Besides, the increase of 휃𝑒 results into a smaller pulling force (normal direction) and a larger 

squeezing force (tangential direction) in the dry part of gels. The details will be discussed in 

(a) (b) 
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section 3.5.  Both leads to a shallow dimple.  Another prominent phenomenon is the 

disappearing of the dimple in the dry part of gels, we have observed in Figure 3.2 and Figure 

3.3 that the dimple fades away at large thickness. This is also verified by our calculations as is 

shown by Figure 3.8(b): increasing thickness decreases the dimple depth. To some critical value, 

here 420 µ𝑚, dimple totally vanishes for fixed droplet size (𝐷 = 1.3 𝑚𝑚). Red circles are from 

experiments and green dotted line is from calculations.  

 
FIGURE 3.8: (a) Comparison of the dimple depth between experiments and calculations. (b) Dimple depth as a 

function of the thickness of the soft film at fixed droplet size 1.3 𝑚𝑚. 

3.5 Discussions 

3.5.1 Contributions from two contact lines and the Laplace pressure 

Our solution Equation (3.29) consists of three terms: the first term can be interpreted as the 

contribution to the interface deformation from the contact line on the right side if we refer to 

the cartesian coordinate in Figure 3.5(b); the second term represents the contribution from the 

contact line on the left side; the third term refers to the contribution from the Laplace pressure. 

To understand how those three terms compare with each other and how important they might 

be to the overall surface deformation, we will study the case depicted in Figure 3.7. 

Since the surface deformation around the droplet should be axisymmetric, we will only focus 

on the left side surface deformation which lies outside the droplet in Figure 3.5(b). The overall 

deformation from calculation has been compared with the experiment result in Figure 3.6(b). 

Now the contribution to it will be decomposed into three parts: the one comes from the right-

side contact line in Figure 3.5(b), which will be referred to “Contact line-1” or C1 later on; the 

one originates from the close side (left-side) contact line as is drawn in Figure 3.5(b), which 

will be called as “Contact line-2” or C2 afterwards; the one roots from the Laplace pressure 

(LP) inside the droplet. Surface deformation will be the sum of the three. They are shown in 

Figure 3.9(a). Solid curves are from the calculation and they are 10 𝜇𝑚 away from the contact 

line. We observe that: the contribution from C2 overwhelms the deformation when it is less 

than 45 𝜇𝑚 away (𝑋 > −0.8 𝑚𝑚) from the contact line 𝑋 =  −0.755 𝑚𝑚) and it contributes 

to more than 90% to the surface deformation; the contribution from C2 and LP is close to each 

other when it is more than 45 𝜇𝑚 away from the contact line (𝑋 < −0.8 𝑚𝑚). As is shown in 

Figure 3.9(b) and Figure 3.9(c), the absolute value of C2 and LP are close; the contribution of 

the C1 is always small over all the range of the deformation as from Figure 3.9(c), the 

deformation induced by LP and C2 is in general 5 times more than that by C1; in addition, C2 

induces a pull-up of the surface in the very close region (< 135 𝜇𝑚) of the contact line (𝑋 >

−0.89 𝑚𝑚) and a depletion when it is far away (𝑋 < −0.89 𝑚𝑚) ; C1 always causes a 

depletion since the deformation we are discussing about is already far from C1; Laplace 

(a) (b) 
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pressure always gives rise to the extrusion-up of the surface in that it squeezes the surface; 

however, the Laplace pressure is not a strong effect when it is very close to the contact line (<

15 𝜇𝑚) on the scale of the elastocapillary length (𝑙𝑠 = 𝛾𝑠 2𝐺
′⁄ ~17 𝜇𝑚) and it starts to cause 

significant surface deformation when it is out of the elastocapillary regime. 

 
FIGURE 3.9: Comparison of contributions from the two contact lines and Laplace pressure for the surface 

deformation. Experimental parameters: 𝐷 = 1.51 𝑚𝑚, 𝐺′ = 1.2 𝑘𝑃𝑎, ℎ0 = 228 𝜇𝑚, 휃𝑒 = 98°. 𝛾𝑠 is chosen 

from our best fit: 40𝑚𝑁/𝑚. (a) A panorama view of the contribution of each component. (b) Zoom-in of the 

dimple regime from the black dotted rectangle in (a). (c) The ratio of the contribution from the close contact 

line and Laplace pressure to that from the far side contact line as a function of the distance. 

From the above analysis, it can be concluded that the surface deformation is determined mainly 

by the traction from the close contact line and the Laplace pressure. When it is far away from 

the elastocapillary regime (> 𝑙𝑠), the two terms contribute equally to the interface deformation. 

Nevertheless, inside the elastocapillary length the surface deformation is dominated by the 

traction from the close contact line and Laplace pressure in this regime is only a small fraction.  

3.5.2 Tangential force 

We take the tangential force of the traction at the contact line into our model, as is express in 

Equation (3.26) and Equation (3.28). This component has been neglected by many 

researchers40–42,53,94. When they try to find the surface deformation with small droplets on soft 

PDMS surface, they arrive at an unbelievably large value for 𝛾𝑠
94. When it comes to the 

deformation at the ridge cusp, they find another quite reasonable value for 𝛾𝑠
53 with the same 

(a) (b) 
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model. There is a gap in a full understanding of the small-scale surface deformation and long-

range surface deformation. There could be several possibilities:  

- There is something wrong in the measurement. It is not very likely true, because several 

independent groups report a similar dataset for the wetting ridge35,59,80. 

- The theory is wrong. The models we are commenting on are only those taking the surface 

effect into consideration40–42,53,94. It is likely wrong since they work well for the wetting tip and 

predicts the deformation quite well in some sense81,94.  

- Something is missing in the models. For most models41,42,45,94, scientists assume that the 

symmetry surface tension, linear elasticity, incompressible condition, etc. And they always 

neglect the translation force of the traction at the contact line. Models might be oversimplified. 

In the following, we will prove that the translation force is in fact important to deform the soft 

material surface from calculations and experiments. By taking into account this force into our 

model, we are able to find the surface deformation very well with a reasonable surface tension 

for the solid. 

Calculations 

The translation force at the contact line is expressed by 𝛾𝐿𝑉 cos휃𝑒, where 휃𝑒 is the static contact 

angle. Addressing the translation force will be equivalently addressing the effect of 휃𝑒 in our 

solution Equation (3.29). Note that changing 휃𝑒 won’t modify our symmetry surface tension 

assumption. 

To study the effect of the translation force or 휃𝑒, we keep 𝛾𝑠 = 40 𝑚𝑁/𝑚 and numerically vary 

휃𝑒 from 90° to 108°. The comparison of the calculation and experiment is drawn in Figure 

3.10(a). The surface deformation is very sensitive to the selection of 휃𝑒. Smaller contact angle 

tends to make a bigger dimple. If we plot the depth of the dimple as a function of 휃𝑒, we find 

that the dimple depth increases with the decreasing of 휃𝑒. and. And it seems that the dimple 

depth is linearly related to the static contact angle to some critical value, which will be 

experimentally attested in Figure 3.12(e-f). 

To see how our model compares with the one without the translation force and reinforce the 

importance of the tangential component of the surface tension traction, we turn it off in our 

model and try to see how 휃𝑒 modifies the surface deformation. It turns out even 20° change of 

휃𝑒  makes an unperceivable effect, as the results show in Figure 3.10(c-d). With the 

experimental conditions, it fails to predict the surface deformation with a reasonable surface 

tension 𝛾𝑠 (40 𝑚𝑁/𝑚). A possible way to fit the experimental data is to increase the value of 

𝛾𝑠 to be as high as 350 𝑚𝑁/𝑚 to be close to our experimental observation. This high value is 

only possible for metals. Hence, it is safe to draw a conclusion: the tangential component of the 

surface tension is very important to induce the surface deformation; its existence in the model 

seems to be necessary. 
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FIGURE 3.10: Comparison of experiments and calculations for a resting water droplet (𝐷 = 1.51 𝑚𝑚) on a 

PDMS layer film (𝐺′ = 1.2 𝑘𝑃𝑎) of  ℎ0 = 228 𝜇𝑚.. (a) Static contact angle 휃𝑒 effect on the surface 

deformation at fixed 𝛾𝑠 = 40 𝑚𝑁/𝑚. (b) Dimple depth 𝐷𝑝 as a function of static contact angle 휃𝑒.(c) Static 

contact angle 휃𝑒 effect on the surface deformation at fixed 𝛾𝑠 = 40 𝑚𝑁/𝑚 when the tangential component of 

the surface traction is removed. (d) Dimple depth 𝐷𝑝 as a function of static contact angle 휃𝑒 at zero translation 

traction. (e) The best fit of calculation without the translation force. 𝛾𝑠 = 350 𝑚𝑁/𝑚.  

In the next, we aim at understanding how each component of the applied stresses compares with 

each other and contributes to the surface deformation. In general, those stresses will be sorted 

into three types: the vertical component of the liquid-vapor surface tension, i.e., 𝛾𝐿𝑉 sin휃𝑒; the 

(a) (b) 
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tangential component of the liquid-vapor surface tension, i.e., 𝛾𝐿𝑉 cos 휃𝑒; the Laplace pressure. 

The surface deformation, 휁, from calculations will be sum of the surface deformation induced 

by each: 휁 = 휁𝑙 + 휁𝑡 + 휁𝑣. For the Laplace pressure’s contribution(휁𝑙), we turn off the first two 

terms (contact line traction) from Equation (3.29); for the translation force’s contribution (휁𝑡), 

we turn off the third term (Laplace pressure) and force sin휃𝑒 = 0  in the first two terms from 

Equation (3.29); for the vertical traction’s contribution(휁𝑣), we turn off the third term (Laplace 

pressure) as well and impose cos 휃𝑒 = 0  in the first two terms from Equation (3.29). As a 

result, we plot the surface deformation 휁 induced by each term when the 휃𝑒 varies from 90° to 

108° in Figure 3.11(a-d). We discover that:  

- Both 휁𝑣 and 휁𝑙 barely changes with 휃𝑒, as can be seen in the superimposed curves of them for 

various 휃𝑒  in Figure 3.11(a-c). However, the tangential component (휁𝑡) of the liquid-vapor 

surface tension varies a lot. When we track the displacement at 𝑋 = −1 𝑚𝑚 for various 휃𝑒 in 

Figure 3.11(d), 휁𝑣(𝑋 = −1 𝑚𝑚)  and 휁𝑙(𝑋 = −1 𝑚𝑚)  are not changing. Nevertheless, 휁𝑡 

increases from 0 to 0.92 𝜇𝑚  which is comparable to the unvarying 휁𝑣(𝑋 = −1 𝑚𝑚)  and 

휁𝑙(𝑋 = −1 𝑚𝑚). 

- When it is very close (𝑋 > −0.8 𝑚𝑚) to the contact line (−0.75 𝑚𝑚), 휁 is dominated by 휁𝑣, 

as are demonstrated in Figure 3.11(a) and Figure 3.11(c). A large ratio of 휁𝑣 to the 휁𝑙 is found 

at 𝑋 > −0.8𝑚𝑚, which is demonstrated by the black dotted curve for both  휃𝑒 = 98° and 휃𝑒 =

108°. This result justifies the success of the model in predicting the wetting cusp which only 

takes the vertical component of the surface tension traction45,53. In this region, all the three 

components tend to pull up the surface. 

- When it is further away from the contact line (> 𝑙𝑠), 휁𝑣 is on the same order of 휁𝑙. Figure 

3.11(c) shows a ratio of them close to 1.5. The dominance of 휁𝑡 is becoming more and more 

obvious when 휃𝑒 is increasing, as the ratio of 휁𝑡 to 휁𝑙  is getting bigger in Figure 3.11(a). It 

seems this observation demonstrates the failure of models in calculating the long-range surface 

deformation59,94. In this regime, vertical component is likely to cause an interface depletion 

while both the Laplace pressure and the translation component tend to make a squeezed-up 

bump.  

From our calculation, we find the surface deformation very close to the contact line (< 𝑙𝑠) is 

dominated by the vertical component of surface tension. Laplace pressure begins to play a role 

on the surface deformation when it starts to get outside of the elastocapillary regime. However, 

both of them barely depends on the 휃𝑒. The tangential component will not modify the surface 

deformation in the elastocapillary regime. However, it will contribute equally as the other two 

components for the long-range surface deformation. What needs to be pointed out is that 휁𝑡 is 

sensitive to 휃𝑒. By introducing this long-neglected translation force at the contact line, we are 

able to predict the over-all surface deformation with a reasonable value of 𝛾𝑆  (40 𝑚𝑁/𝑚). 

Besides, our additional calculation of this model predicts a Neumann’s triangle at the wetting 

tip57. In a short summary, we demonstrate that the gapping in the understanding of the small-

scale surface deformation and the long-range surface deformation can be resolved by taking the 

translation component of the surface tension traction into the model. In the following, we are 

going to present experimental proof for our findings here. 
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FIGURE 3.11: Calculations with the translation force. Parameters are the same as those in Figure 3.10. (a) 

Contributions from the three components for surface deformation when the static contact angle, 휃𝑒, changes 

from 90° to 108°: normal component of the surface tension, tangential component of the surface tension and 

the Laplace pressure component. Those three contributions are grouped automatically into three, as are 

indicated by names in the Figure. (b) Zoom-in of the black dotted rectangle in (a). (c) The ratio (Vertical/LP) of 

the 𝛾𝐿𝑉sin 휃𝑒 (Vertical) induced surface deformation to the Laplace pressure (LP) induced surface deformation 

and that (Translation/LP) of the  𝛾𝐿𝑉cos 휃𝑒 (Translation) induced surface deformation to the Laplace pressure 

(LP) induced surface deformation as a function of the 휃𝑒. (d) Contributions from the normal component of the 

surface tension, tangential component of the surface tension and the Laplace component to the ultimate surface 

deformation at 𝑋 =  −1 𝑚𝑚 as a function of 휃𝑒. 

Experiments: using contact angle hysteresis effect to evidence the effect of tangential 

component of 𝜸𝑳𝑽 on the surface deformation 

From above discussion, we know that, if the tangential component of the surface tension 

traction doesn’t play any role on the surface deformation, several degrees’ even 10 degrees’ 

change of 휃𝑒 will not cause detectable changes for the surface deformation. However, if there 

is a strong effect of the 휃𝑒 on 휁, we shall be qualified to conclude that the tangential component 

is indeed important in making the elastowetting surface deformation if the other experimental 

parameters don’t change. So, the simplest way to test this is to check the contact angle hysteresis 

effect on the surface deformation. 

Contact angle hysteresis always exists for materials. With the current technique: it ranges from 

several degrees to tens of degrees depending on many factors. One of them will be discussed in 

(a) (b) 

(c) 
(d) 
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this chapter later. Here, we only take advantage of the contact angle hysteresis on smooth soft 

PDMS gel layers that we can manipulate in experiments.  

The surface deformation with an evaporating droplet is investigated on a soft PDMS layer. 

Water would be deposited onto the PDMS soft layer and left in the open surroundings. The 

volume of the droplet is 2 𝜇𝐿 and the thickness of the soft layer is 150 𝜇𝑚. 𝐺′ of the soft gel is 

1.2 𝑘𝑃𝑎. A side view camera is employed to monitor the wetting velocity 𝑉𝑑 and contact angle 

휃 of the evaporating droplet (Figure 3.12(a)). Schlieren camera is also turned on to monitor the 

surface deformation in real time (Figure 3.12(b)). The two measurements are carried on at the 

same time and they are well synchronized with an error of 0.1 𝑠𝑒𝑐𝑜𝑛𝑑. Contact line will be 

considered to be pinned at 𝑉𝑑 < 0.15 𝜇𝑚/𝑠 (Figure 3.12(c)). 
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FIGURE 3.12: Hysteresis effect on the surface deformation. (a) Side view of a 2 𝜇𝐿 water droplet on a PDMS 

gel layer. The shear storage modulus is 1.2 𝑘𝑃𝑎 and the thickness of the soft layer is 150 𝜇𝑚. Red dotted line 

indicates the non-moving contact line after 250 𝑠𝑒𝑐𝑜𝑛𝑑𝑠’ evaporation. (b) Schlieren view of the surface 

deformation around the contact line. (c) Wetting velocity measured from the side view camera and it is shown 

here as a function of time. Red triangles stand for the hysteresis regime (120 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 to 370 𝑠𝑒𝑐𝑜𝑛𝑑𝑠) where 

the wetting velocity is smaller than 0.15 𝜇𝑚/𝑠. (d) The shape of the surface deformation for the same droplet 

but with different contact angle. The two profiles correspond to (a-b). (e) The observed contact angle as a 

function of evaporation time. Red diamonds are taken to be the contact angle hysteresis. (f) Dimple depth 

evolution with respect to time. Red circles mean the dimple grows with the decrease of the contact angle when 

the contact line is pinned. 

Figure 3.12(a) illustrates the droplet is losing volume from 120 𝑠𝑒𝑐𝑜𝑛𝑑𝑠  to 370 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

while contact line motion is not detectable within this 250 𝑠𝑒𝑐𝑜𝑛𝑑𝑠. However, the surface 

deformation varies by a factor of 1.5 as is shown in Figure 3.12(d). The shadow (negative 

surface slope) in the Figure 3.12(b) grows after 250 𝑠𝑒𝑐𝑜𝑛𝑑𝑠’ evaporation, which is the direct 

proof of the growing of the dimple. During this period, the observed contact angle, 휃, decreases 

from 108° to 98° (Figure 3.12(e)) while the depth of the dimple rises from 0.6 to 0.88. The 

change of stresses that are exerting on the soft layer is estimated as follows:  

- Laplace pressure 𝑃: it can be evaluated from the droplet area change. The area of the droplet 

𝑆 is related to the radius of the drop at small droplet size (< 𝑙𝑐) by 𝑆~𝑅2. Hence 𝑃~1/𝑅~𝑆−0.5. 
From the camera, the ratio of 𝑆1 at 120 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 to  𝑆2 at 370 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 is 1.044. As the results, 

the ratio of Laplace pressure 𝑃1 at 120 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 to  𝑃2 at 370 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 is 0.98. The change of 

Laplace pressure during this 250 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 is only 2%. 

- Normal component of 𝛾𝐿𝑉 : at 120 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 , it is 𝛾𝐿𝑉 sin(108°) ; at 370 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 , it is 

𝛾𝐿𝑉 sin(98°). The variation of the normal component is 4%. 

- Tangential component of 𝛾𝐿𝑉 : at 120 𝑠𝑒𝑐𝑜𝑛𝑑𝑠, it is 𝛾𝐿𝑉 cos(108°); at 370 𝑠𝑒𝑐𝑜𝑛𝑑𝑠, it is 

𝛾𝐿𝑉 cos(98°). The variation of the normal component is 55%. 

Figure 3.13(a) shows how the normal and tangential components of 𝛾𝐿𝑉  changes with the 

observed contact angle 휃 for any droplet size. We can see that the tangential traction, cos휃 𝛾𝐿𝑉, 

is more sensitive to 휃 for 90° < 휃 < 115°. Based on this fact and our precious calculations in 

Figure 3.10 and Figure 3.11, we should already be able to claim that the tangential traction of 

the liquid-vapor surface tension is important in determining the interface deformation. To 

validate our claim, additional experiments are conducted as well: instead of placing droplet in 

the open ambient, we place the droplet in a closed chamber which is saturated with water vapor. 

We monitor the contact angle and the surface deformation in the same way as for the hysteresis 

effect test. The difference only comes from the evaporation control, and we do not see a 

detectable contact angle variation during the test. The result is shown in Figure 3.13(b), 𝑋 axis 

is the distance from the contact line with a camera unit (pixel) and 𝑌 coordinate stands for the 

surface slope of the interface with a camera unit (gray scale value). Resting time of the sessile 

drop is indicated by 𝑇𝑟. As we can see, during the 32-minute’s resting, no detectable surface 

deformation is observed. This experimental result further strengthens our claims above: the 

presence of the tangential force is necessary to capture the full surface deformation, including 

the short-range one (wetting cusp) and the long-range one (outside of the elastocapillary 

regime). 
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FIGURE 3.13: (a)Normal and tangential components of the traction from the liquid-vapor interface as a 

function of the apparent contact angle 휃. The liquid is water. 𝛾𝐿𝑉 = 72 𝑚𝑁/𝑚. (b)Surface deformation 

measurements at different resting time 𝑇𝑟. Water droplet diameter is 4.03 𝑚𝑚. Thickness of the soft PDMS 

layer is 124 𝜇𝑚. 𝐺′ = 1.2 𝑘𝑃𝑎. 
 

3.6 Modifying contact angle hysteresis with a resting droplet 

By following the last section on the hysteresis effect on the surface deformation, we 

experimentally find that contact angle hysteresis is not a material property per se and the same 

material can exhibit very different contact angle hysteresis depending on the experimental 

conditions. Here we will report the resting time effect on the contact angle hysteresis on soft 

materials that has never been seen in published papers.  

Observation 

Resting time is defined as the time duration from the moment the contact line is pinned to the 

moment of the measurement, during which a liquid droplet sits still on the soft film. Since the 

surface tension spreads across a distance of several nanometers at the contact line57,78, a high 

stress is present at the liquid-vapor-solid junction and viscoelastic material grows with regards 

to the applied stress and time45,58,99. Although the PDMS gel from elastomer Sylgard 527 that 

we use in this study is elastic at low frequency as to its rheology (high ratio of 𝐺′ 𝐺′′⁄ ), it still 

carries on a viscous feature. Besides, this type of PDMS might also be poroelastic, which would 

be another reason for inducing a ridge growth140.  

(a) (b) 
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FIGURE 3.14: Resting time effect on the contact angle. 

A specially designed chamber is employed to control the humidity and avoid the evaporation 

of droplets. Two experiments to control the resting time are performed inside it:  

- Short resting time: water droplet is deposited onto a PDMS layer of 20 𝜇𝑚 thick, and it is 

immediately sucked up by a pump (PUMP 33, HARVARD APPARATUS, USA) at fixed flow 

rate 10 𝜇𝐿/𝑚𝑖𝑛. The resting time for the droplet (|𝑉𝑑| < 0.45 𝜇𝑚/𝑠) is ~20 seconds. The 

wetting velocity and the dynamic contact angle is recorded and plotted as red dots in Figure 

3.14. If we define here the hysteresis at 𝑉𝑑 = 0 𝜇𝑚/𝑠, then the hysteresis 휃ℎ1 = 7°. 

- Long resting time: a water droplet is deposited and kept onto the soft gel surface for 30 minutes. 

Then liquid is withdrawn by the same pump at fix flow rate 10 𝜇𝐿/𝑚𝑖𝑛. The corresponding 

result for dynamics is shown as green dots in Figure 3.14. Now, hysteresis 휃ℎ2 increases to 14°. 

These two experiments justify that longer resting time can induce a high hysteresis of the 

contact angle. During the experiments, we notice that traces are left behind by droplets, as is 

shown in Figure 3.15. Its location is exactly where the contact line lies and its lifetime depends 

on the resting time of the contact line. Those are the evidences that the wetting ridge actually 

grows with the presence of the surface tension at the contact line. 

 

휃ℎ2 

휃ℎ1 



 
74 Chapter 3 Statics: surface deformation and contact angle on elastic materials 

 
FIGURE 3.15: Trace left behind after receding a water droplet. The resting time of the droplet is 30 𝑚𝑖𝑛𝑢𝑡𝑒𝑠. 
The droplet diameter, soft PDMS layer thickness, and the shear storage modulus of PDMS gel are 4.97 𝑚𝑚, 

104 𝜇𝑚, and 1.2 𝑘𝑃𝑎, respectively. 

Dynamic pinning 

To strengthen our results on the pinning effect, an additional experiment focused on receding 

dynamics is performed:  a water drop is kept resting on a soft PDMS layer of 20 𝜇𝑚 thick and 

it is removed after 22 minutes. A trace, that is visible with the naked eye, is left behind as is 

similarly shown in Figure 3.15. Afterwards, another droplet of a bigger volume is deposited 

onto the same location of the previous one so that the new resting contact line overruns the trace 

left behind. And this new droplet is retracted back by the pump at fixed flow rate 10 𝜇𝐿/𝑚𝑖𝑛. 

The contact line dynamics is shown in Figure 3.10. In the early stage (< 119.3 𝑠𝑒𝑐𝑜𝑛𝑑𝑠), the 

contact line propagates to the left smoothly and it is then pinned when it meets the trace at time 

𝑇 = 119.3 𝑠𝑒𝑐𝑜𝑛𝑑𝑠. In the next 10.3 𝑠𝑒𝑐𝑜𝑛𝑑𝑠, the contact angle keeps dropping from 67.3° 

to 24.3° at 𝑉𝑑 = 0 𝜇𝑚/𝑠 . At 𝑇 =  129.6 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 , contact line is released because of the 

strong capillary force (highly curved interface close to the contact line shown in the last picture 

from Figure 3.16(a)). This dynamic experiment hence provides another evidence that trace 

induced by the resting droplets on soft films can pin the contact line and hence modify the 

contact angle hysteresis. 

1 mm 
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FIGURE 3.16: Pinning of the contact line by a pre-induced trace from a resting droplet. Flux rate: 10 𝜇𝐿/𝑚𝑖𝑛. 

(a) Side view of the moving contact line. Scale bar is 0.2 𝑚𝑚. Before 119.3 seconds, the contact line recedes to 

the left and it is then pinned until 129.6 seconds when it is released. (b) The dynamic contact angle 휃𝑑 as a 

function of time. 

Trace measurement 

We know that: the resting time of sessile droplets affects the contact angle hysteresis; there is 

a trace after the removal of the droplet; and this trace can also pin a dynamic contact line. Now, 

we will look into the details of the trace. For its timescale, the lifetime of the trace 𝑡𝑡 is found 

to depend on the resting time 𝑇𝑟: 𝑡𝑡 is several seconds if 𝑇𝑟 is from several seconds to several 

minutes. By observation, 𝑡𝑡 < 10 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 when 𝑇𝑟 = 2 𝑚𝑖𝑛𝑢𝑡𝑒𝑠; 𝑡𝑡 goes up to several hours 

when 𝑇𝑟 increases to tens of minutes. 𝑡𝑡~2 ℎ𝑜𝑢𝑟𝑠 when 𝑇𝑟 = 30 𝑚𝑖𝑛𝑢𝑡𝑒𝑠. This resting time 

dependence implies that the wetting ridge grows with the applied stress at the contact line. The 

question now is what is the shape of this contact line, how it grows and how its growth is related 

to the pinning of the contact line. 

In the first step, it is important to know its shape. We measure the surface topology of the PDMS 

layer, with a 3D profiler (Microsurf 3D, Fogal Nanotech, France) in white light mode, 20 𝑠 
after the removal of a resting water droplet, as is demonstrated in Figure 3.17(a). The thickness 

of this soft layer is 20 𝜇𝑚. The resting time is 2 ℎ𝑜𝑢𝑟𝑠.  A trace is observed and it stands for 

hours to disappear. A red line normal to this trace is selected and its exact shape is shown in 

Figure 3.17(b). The height of this trace is 700 𝑛𝑚, which is higher than the surface roughness. 

When a moving contact line surfs over it, it acts like a local pinning post, grasping the contact 

line from a further moving.  

More ever, the growth of the ridge/trace should be possible to be deduced from its relaxation 

as it is very difficult to directly measure its growth when the contact line is present. As a 

consequence, we track the relaxation of this trace for one hour and a half. Then we find a nice 
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feature of the poroelasticity relaxation as the height of the trace relaxes in a logarithmic way as 

is shown in Figure 3.17(c). 

 
FIGURE 3.17: (a)3D topology of the soft film interface ~20 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 after removal of a 2 ℎ𝑜𝑢𝑟𝑠’ resting water 

droplet on PDMS layer of 20 𝜇𝑚 thick. (b) The profile of the red line in (a). (c) The relaxation of the trace.  

As a conclusion for the resting time of droplets on contact angle hysteresis, we confirm the 

resting of the contact line will initiate the growth of the wetting ridge and this grown 

deformation “freezes” and pins the contact line, both for a static one and for a dynamic one. 

The relaxation of the trace on soft PDMS gel carries on a feature of poroelasticity, opening the 

question of the poroelastic behavior of the gel, which might be the exact mechanism for 

inducing growing and pinning. 

3.7 Summaries and conclusions 

3.7.1 Surface deformation 

We experimentally and theoretically investigate the long-range surface deformation of a gel 

layer on which a sessile droplet sits by checking effects of geometrical confinements (thickness 

of soft layer, droplet size), material properties (elasticity, surface tension). This long-range 

interface deformation falls outside of the elastocapillary regime (< 𝑙𝑠 ) and extends to 

millimeters away from the contact line for the soft PDMS with 𝐺′ = 1.2 𝑘𝑃𝑎. Experimentally, 

we adopt the home-made Schlieren optics to observe the deformation. Theoretically, we 

develop a model based on linear elasticity theory and the surface tension of soft gel is accounted 

as well. 

(a) (b) 

(c) 
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For the effect of geometrical confinements, we adjust the droplet diameter from 0.42 𝑚𝑚 to 

2.95 𝑚𝑚 and the thickness of soft layers from 44 𝜇𝑚 to 3 𝑚𝑚. We find a dimple at small 

thickness and large droplet size. The smaller the thickness is and the bigger the droplet is, the 

deeper the dimple is. Our calculation agrees well with our experimental data and captures all 

those features. However, there is a considerable deviation for large droplets. This is likely due 

to the gravity effect. 

For the effect of material properties, we first inspect the rigidity effect and detect the interface 

deformation of soft layers with 𝐺′  varying from 1.2 𝑘𝑃𝑎  to 15.7 𝑘𝑃𝑎  at fix droplet size 

(0.75 𝑚𝑚 –  0.76 𝑚𝑚) and fixed thickness (32 𝜇𝑚 −  44 𝜇𝑚). It is found that rigidity hinders 

the surface deformation and it is successfully reproduced by our calculation.  

For the understanding of contributions to the surface deformation from the Laplace pressure, 

and the close/far contact line, we separately calculate the surface deformation induced by each. 

We find that: inside the elastocapillary regime (< 𝑙𝑠 ), the surface deformation is totally 

dominated by the near contact line, and the surface is pulled up by this traction and Laplace 

pressure and depleted by the far side contact line; outside of this regime, the close contact line 

and Laplace pressure contribute equally to the overall surface deformation, and the surface is 

squeezed-up by the Laplace pressure and depleted by the two contact lines; the far contact line 

is always a small effect to the surface deformation. 

For the understanding of the vertical and translational components of the traction at the contact 

line, we calculate the surface deformations induced by them, individually. We realize that: close 

to and inside of the domain of typical size smaller than the elastocapillary length (≤ 𝑙𝑠), the 

surface deformation is dictated by the vertical component of the traction, and Laplace pressure 

and translational components are negligible; when it is out of this regime, the Laplace pressure 

and vertical components play equally in making the surface deformation; however, both of them 

are not sensitive to the static contact angle 휃𝑒 while the tangential component of the traction at 

the contact line is on the contrary; outside the elastocaillary regime (> 𝑙𝑠 ), translation 

component can contribute as equally to the surface deformation as the vertical component and 

the Laplace pressure. We verify our findings by conducting water droplet evaporation 

experiments on a soft layer. We observe that the deformation around the contact line increases 

with the decrease of the static contact angle and 𝐷𝑝  increases more than 40% . Both our 

experiments and calculations suggest that the translation component is important to understand 

the surface deformation in elastowetting. By taking it into the model, we are able to resolve the 

understanding gap between the small-scale surface deformation (wetting cusp) and the large-

scale surface deformation (overall shape). 

3.7.2 Resting time effect on the contact angle hysteresis 

We experimentally study the resting time effect on the equilibrium contact angle and its 

hysteresis on PDMS gel in this chapter.  

For the resting time effect, we build a closed chamber and maintain the humidity to avoid the 

evaporation for water droplets. Soft smooth PDMS gel of 20 𝜇𝑚 thick is deposited with two 

droplets: one is deflated instantaneously after its spreading (resting time ~20 𝑠𝑒𝑐𝑜𝑛𝑑𝑠); the 

other is left to be resting for 30 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 and then deflated. The contact angle hysteresis is 

observed to increase from 7° to 14° at 𝑉𝑑 = 0 𝜇𝑚/𝑠 . By comparing the two surfaces after 

running droplets, we find a trace left at the location of the resting contact line from the 

30 𝑚𝑖𝑛𝑢𝑡𝑒𝑠-resting droplet with naked eyes and it stands for ~ 2 ℎ𝑜𝑢𝑟𝑠 while nothing is found 

at the location where the short resting event happens. Its existence might be due to the 

viscoelastic and poroelastic growth of the gel under the high stress at the contact line. 

Furthermore, we investigate a receding contact line by deflating a droplet and let it meet the 
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trace left behind by a 30 𝑚𝑖𝑛𝑢𝑡𝑒𝑠-resting droplet, a strong pinning of the contact line is 

observed and 휃𝑑 decreases from 67.3° to 24.3° until the depinning happens. In addition, the 

shape of the trace induced by a 2 ℎ𝑜𝑢𝑟𝑠-resting contact line is detected by a 3D profiler around 

20 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 after the removal of the droplet. The height of it is 700 𝑛𝑚, much smaller than the 

height (~
𝛾𝐿𝑉sin𝜃𝑒

𝐸
~19 𝜇𝑚) of the wetting ridge58 but is larger than the surface roughness(chain 

length). It is expected that this trace will pin the contact line and result into the increase of the 

hysteresis. In addition, our observation of the relaxation of the trace implies a poroelastic 

mechanism responsible for the ridge growth. The short conclusion for this part is resting time 

is important to the contact angle hysteresis. 

3.8 Perspectives 

For now, we understand quite well for the elastowetting statics on elastic materials 

experimentally and theoretically. However, there are still several issues remaining to be 

addressed:  

For our model, we always assume that the surface tension of liquid-solid interface and that of 

vapor-liquid interface is the same. This is an easy approach to simplify our calculation. 

However, this is not true56,141–143. Our model in principle is only applicable to the neutral wetting 

case (휃𝑒 = 90°). How to extend to the non-neutral is to be solved. Moreover, trials for how to 

properly account for the surface effect (surface tension, surface stress, surface energy) are still 

going on132,135,136,138,144–146.  

How is the growth of the ridge induced by the surface tension related to the material properties? 

such as the elasticity, wettability, etc. And how is the growth of the ridge connected to the 

contact angle hysteresis or the pinning of the contact line? When a gel is under a high stress, 

osmotic pressure is developed inside the polymer network and hence drives the migration of 

the remaining free liquid in the polymer network to the high stress region. How the time scale 

and rate of diffusion is related to the polymer mechanics remains to be elucidated. Besides, 

rheology shows the PDMS gel is viscoelastic in dynamics. We will see in the next chapter that 

the role of the viscoelasticity in the motion of droplets is very important. 
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Chapter 4 Dynamics: moving contact line on 

viscoelastic materials 

4.1 Introduction 

Liquid spreading on a soft material will be slowed down compared with its spreading on rigid 

substrates, this phenomenon has been known as “viscoelastic braking”32,35,38,39,42,45,79. From an 

experimental point of view, only droplet relaxation experiments have been carried out on soft 

layers with no systematic control of the thickness. Scientists have focused their attention on the 

viscoelastic nature of the materials and its impact on the wetting. How the system geometry 

(droplet size, thickness of the soft layer) affects the spreading dynamics has been hardly studied 

with only one report of the effect of the thickness of the coating on the spreading dynamics of 

silicone oil on silicone elastomers39, a system in which the permeation of the liquid in the gel 

and the swell of the latter cannot be neglected. More ever, the viscoelastic properties of soft 

materials are rarely reported and their account into the estimation of the dissipation is a recent 

feature32,35,37–39,45. Still, a full study of geometric effects on liquid spreading over soft substrates 

is lacking. From a theoretical point of view, the exact calculation of the viscoelastic dissipation 

inside the soft material is still missing though there are several attempts as we have stated in 

the section 1.4: estimation of dissipation from “elastic” deformation35,37,38, first order 

approximation to the viscoelastic dissipation40–42, phenomenological model that forces a local 

stress balance at the wetting tip45.  

In this chapter, we are going to experimentally and theoretically study the elastowetting 

dynamics and point out that the thickness of soft layers is important to the spreading dynamics 

besides their viscoelasticity. In the following, we will briefly define our experimental setup and 

relevant parameters to characterize the elastowetting dynamics. Then, following our results 

obtained with sessile drops, we will experimentally investigate how sample geometry effects 

(droplet size, thickness of soft layers) and experimental parameters (flux rate, resting time) 

affect the receding dynamics of a contact line on a soft layer. Finally, we will rationalize our 

observations by developing a model based on the theory of linear viscoelasticity, from which 

we will extract two scaling laws. 

4.2 Experiments and observation 

Our experimental setup for studying the elastowetting dynamics and the required techniques to 

follow the moving contact line and dynamic contact angle have been introduced in sections 2.3 

and 2.4. Important parameters depicting the receding dynamics are shown in Figure 4.1(a): glass 

slides are coated with soft PDMS films of thickness ℎ0; the circle area where the liquid meets 

the gel is characterized by its diameter 𝐷; 휃𝑑 and 𝑉𝑑 are the dynamic contact angle and wetting 

velocity, respectively. Figure 4.1(b) is a picture taken by a side view camera in accordance with 

Figure 4.1(a). A needle puncturing the water droplet at its apex allows us to force the receding 

of the contact line by sucking up liquid with a pump (PUMP 33, HARVARD APPARATUS, 

USA) at controlled flow rate. What’s more, we use the Schlieren camera (bottom view of the 

receding droplet) in the same configuration as in Figure 2.3(a) to monitor the overall receding 

of the contact line (Figure 4.1(c)). This additional observation enables us to ensure that the 

receding contact line remains axisymmetric. 
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FIGURE 4.1: Definition of parameters for characterizing the receding dynamics. (a) Sketch of a receding 

droplet on a soft substrate which is bounded onto a glass slide. Receding contact line is forced by a pump which 

extracts water from the drop. 휃𝑑, 𝑉𝑑, 𝐷 and ℎ0 are the dynamic contact angle, contact line velocity, diameter of 

the drop and thickness of the soft layer, respectively. (b) The corresponding definitions from (a) in real image 

taken by the side view camera. Three successive images with the time interval of 1 𝑠𝑒𝑐𝑜𝑛𝑑 are superimposed to 

show the moving of the contact line and the liquid-vapor interface. The edge of the receding droplet is marked 

by yellow, blue and purple. (c) Bottom view of the receding droplet by the Schlieren camera. Three pictures 

correspond to the three successive pictures in (b). 

With this setup, we will investigate the receding contact line with distilled water on a soft 

PDMS gel. All the experiments in this chapter are implemented in the open environment at the 

ambient temperature ~25°𝐶. The PDMS gel is prepared from the commercial Sylgard 527 as 

has been elaborated in section 2.6.1. The thickness is well controlled over three orders of 

magnitude, from several microns to ~ 1 𝑚𝑚. As the thickness of the thinnest soft film (~𝜇𝑚) 

we are going to use is much larger than the mesh size of polydimethylsiloxane, which is 

estimated as ~10 𝑛𝑚 from √𝑘𝑇 𝐺′⁄
3

 where 𝑘, 𝑡 are the Boltzmann constant and temperature, 

respectively. The viscoelasticity of all the gel films from the same preparation is assumed to be 

identical. In the following, we will report observations of liquid spreading on a soft layer in the 

first place and show that the hydrodynamic model for liquid spreading on rigid surfaces fails in 

the elastowetting case. Then we will systematically investigate effects of the inject flow rate, 

droplet size, resting time and thickness on the receding dynamics of the contact line. We will 

show that the spreading is quasi-steady for the velocity range we study here and the thickness 

of the soft gel has a marked effect on elastowettting dynamics. 

4.2.1 Hydrodynamics fails 

We perform receding dynamic by deflating water droplet on a soft PDMS layer with a syringe 

pump. The suction flux rate for deflation is 120 𝜇𝐿/𝑚𝑖𝑛. The droplet diameter before receding 

and the soft layer thickness are 4.9 𝑚𝑚 and 150 𝜇𝑚, respectively. The receding velocity and 

dynamic contact angle are plotted in Figure 4.2(a-b). It can be seen that 휃𝑑 and 𝑉𝑑 changes 

slowly at the beginning and then both of them evolve faster later at smaller drop size which is 
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due to the constant volume loss rate. To identify the receding dynamics for the contact line, we 

further plot the receding velocity as a function of dynamic contact angle (Figure 4.2(c)). It is 

found that: the larger 𝑉𝑑 is, the smaller 휃𝑑 is. This is due to the energy balance of the capillary 

driving and viscous dissipation at the spreading: the higher the velocity, the more dissipation 

is, in which case more capillarity driving (smaller 휃𝑑 at receding) is needed. To be quantitative, 

the capillary driving energy at the contact line can be estimated as2,3: 

𝑃𝑑~𝛾𝐿𝑉(cos휃𝑑 − cos휃𝑒)𝑉𝑑 (4.1) 

and the dissipation in the system comes from two channels35,41,42: 

𝑃 = 𝑃𝑙𝑖𝑞𝑢𝑖𝑑 + 𝑃𝑓𝑖𝑙𝑚 (4.2) 

here, 𝑃𝑙𝑖𝑞𝑢𝑖𝑑 and 𝑃𝑓𝑖𝑙𝑚 are the energy dissipation in the liquid phase and that in the soft film 

phase. To estimate how much dissipation comes from the liquid phase, we first drop the second 

term, i.e., the contribution from the soft material. Hence, by balancing 𝑃 and 𝑃𝑑, O.V. Voinov 

found the following solution for liquid spreading on rigid substrate110: 

휃𝑑
3 − 휃𝑚

3 = 9𝐶𝑎𝑙𝑛 (
𝐿

𝐿𝑚
) , 휃𝑑 < 3𝜋 4⁄  (4.3) 

where 휃𝑚  is the microscopic contact angle shown in Figure 1.10(a). 𝐿  and 𝐿𝑚  are the 

macroscopic cut-off and microscopic cut-off introduced to avoid stress singularity. Usually, 𝐿 

is on the order of droplet size or capillary length ~𝑚𝑚, and 𝐿𝑚 is of the order of molecular 

length, ~𝑛𝑚. As a result, 𝑙𝑛
𝐿

𝐿𝑚
 is estimated as 14.7. When we inject this value into Equation 

(4.3), we find a non-varying dynamic contact angle for the receding velocity we measured from 

experiments, as is revealed by the red solid curve in Figure 4.2(c). Furthermore, we try to make 

the prediction of Equation (4.3) close to our experimental data and we discover that 𝑙𝑛
𝐿

𝐿𝑚
 has 

to be the order of, 3 × 105, an unphysical value. Even with this value, the hydrodynamic model 

doesn’t even capture the trend of the data, shown as the blue solid line in Figure 4.2(c). The 

fact above indicates that there must be another energy dissipation source besides 𝑃𝑙𝑖𝑞𝑢𝑖𝑑 coming 

into play and it should be tens of thousands of times higher than 𝑃𝑙𝑖𝑞𝑢𝑖𝑑. By looking at Equation 

(4.2), we find it safe to conclude that 𝑃𝑓𝑖𝑙𝑚 should dominate in the overall dissipation in the 

system when liquid spreads on the soft PDMS gel films, at least for those fabricated from 

Sylgard 527. Before we try to tackle 𝑃𝑓𝑖𝑙𝑚, we will first show how the system geometry and 

experimental conditions affect the elastowetting dynamics and stress on the thickness effect. 

With the guidance of those experimental hints, we finally build our model for calculating 𝑃𝑓𝑖𝑙𝑚. 
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FIGURE 4.2: (a) Receding velocity as a function of time. It is positive for a receding contact line and negative 

for an advancing contact line. (b) Dynamic contact angle as a function of time. (c) Comparison of experiments 

and hydrodynamic prediction for a receding contact line on a soft layer. ℎ0 = 150 𝜇𝑚; 𝐷 = 4.9 𝑚𝑚; flux rate 

𝑄 = 120𝜇𝐿/𝑚𝑖𝑛. Calculation parameters for Equation (4.3) are: 휃𝑚 = 106°, 𝐿 = 2.7 𝑚𝑚, 𝐿𝑚 = 1 𝑛𝑚, 𝐶𝑎 =
𝜇𝑉𝑑/𝛾𝐿𝑉, 𝛾𝐿𝑉 = 72 𝑚𝑁/𝑚, 𝜇 = 1 𝑚𝑃 ∙ 𝑠. 

4.2.2 Thickness matters 

In the following, we describe a systematic study of effects of the flux rate, needle position, 

droplet size, resting time and thickness of soft layers on the dynamics of the elastowetting. In 

the end, we will demonstrate that the receding dynamics in our study is quasi-steady and 

highlight that thickness can distinctly modify spreading dynamics and further be used as a 

parameter to control the liquid spreading. 

Flux rate effect 

To check the steadiness of liquid spreading on soft layers, we change the flux rate from 

20 𝜇𝐿/𝑚𝑖𝑛 to 120𝜇𝐿/𝑚𝑖𝑛 for a receding contact line. Droplet receding is performed at the 

same location on the soft gel surface at least three times for the same flux rate. The time interval 

between each run is around 5 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 to make sure the surface won’t be affected by the 

previous run. To ensure the axisymmetric receding, we will stop our measurements before the 

droplets get too small (> 2 𝑚𝑚 ) because of experimental conditions (needle diameter is 

(a) (b) 

(c) 
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~1 𝑚𝑚). The results are shown in Figure 4.3. We observe that flux rate doesn’t play any role 

in the receding dynamics, i.e., the invariable relation between the wetting velocity 𝑉𝑑  and 

dynamics contact angle 휃𝑑 , for thickness ranging from 12 𝜇𝑚 to 1011 𝜇𝑚 by three orders’ 

magnitude. This is because the spreading velocity is very low (< 0.1 𝑚𝑚/𝑠) and capillary 

number, 𝐶𝑎 =  𝜇𝑉𝑑 𝛾𝐿𝑉⁄ ~1.4 × 10−6, is very small. Thus the spreading can always be taken 

to be quasi-steady. 

 
FIGURE 4.3: Flux rate effect on elastowetting dynamics. Flux rates ranging from 20 𝜇𝐿/𝑚𝑖𝑛 to 120 𝜇𝐿/𝑚𝑖𝑛 

are tested on soft PDMS gel films and only the two limits are shown here as black dots (20 𝜇𝐿/𝑚𝑖𝑛) and red 

dots (120 𝜇𝐿/𝑚𝑖𝑛). Thickness of soft films is: 12 𝜇𝑚 (a), 37 𝜇𝑚 (b), 321 𝜇𝑚 (c), 434 𝜇𝑚 (d), 1011 𝜇𝑚 (e). 

Needle effect 

As can be seen from Figure 4.1(b), there are two contact lines during the droplet receding: one 

is the receding line at the liquid-needle-vapor junction; the other is at the liquid-gel layer-vapor 

junction. If we look them separately, the first contact line moves on a rigid surface (the needle 

is made of stainless steel, a metal with very high rigidity) while the second one moves on a soft 

gel layer. If they are both in steady motion, the motion of each of both contact lines should be 

locally governed by the capillary driving and the viscous friction, which could come from the 

shearing of liquids or cycling motion of soft gels that accompanies the propagation of the 

moving contact line. As the flux rate is very low and the receding velocity is also small (𝑉𝑑 <

0.2 𝑚𝑚/𝑠 in general), the steadiness of the two contact lines is analyzed as follows: 

- For the moving contact line on the needle, the dissipation of energy during the liquid retraction 

comes from viscous shearing and the hydrodynamic model shows a non-varying dynamic 

contact angle for the velocity we are studying here, as has been demonstrated by the calculation 

in Figure 4.2(c). Thus, its spreading is a steady motion, which is also always verified by our 

experiments (a constant dynamic contact angle at the liquid-needle-vapor junction). 

- For the moving contact line on the soft layer, it is in the quasi-steady state, as has been 

demonstrated in the “Flux rate effect” section. 

(a) (b) (c) 

(d) (e) 
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In theory, there shouldn’t be any effect of the needle state on the receding contact line on the 

soft gel. we will now experimentally verify it with two extreme experimental conditions (Figure 

4.4): (a) the needle is immersed into the water droplet and intrudes very close to the surface of 

the soft layer; only when the droplet volume is almost running out does the contact line on the 

needle starts to find the pinning at the end of the needle; we call this experimental configuration 

as “Penetrating”; (b) the needle touches on top of the water droplet in the beginning of the 

experiment and the contact line on the needle wall will be instantaneously pinned once the 

droplet is retracting. This experimental configuration is defined as “Capping”. Then under those 

two conditions, we check how the elastowetting dynamics varies by receding contact line at the 

same location on the soft layer. Time interval between the successive run is ~5 𝑚𝑖𝑛𝑢𝑡𝑒𝑠. Our 

experimental results show in Figure 4.4(c) that there is no effect: the extreme pinning of the 

contact line won’t affect the spreading and all the data falls onto a single curve. 

 
FIGURE 4.4: Needle effect on elastowetting dynamics. (a) Schematics of the “Penetrating” of a needle into a 

water droplet. (b) Schematics of the “Capping” of a needle onto a water droplet. (c) Comparison of 

“Penetrating” dynamics and “Capping” dynamics. Thickness of the soft layer is 162 𝜇𝑚 and the flux rate is 

120 𝜇𝐿/𝑚𝑖𝑛. 

As a brief summary, the state of the needle and the moving contact line on the needle wall do 

not affect our observation of the receding contact line on the soft gel layer at all. This further 

proves that the spreading on soft layers is a quasi-steady motion. 

Droplet size effect 

Because we are forcing droplet retraction by sucking its liquid with a pump, the wetting velocity 

is imposed by our flux rate and the droplet volume. Thus, the same receding velocity can happen 

at different droplet size for different flux rate. Or if we have the pinning of the contact line on 

the needle, the same receding velocity on the soft gel layer can be found at any droplet size 

depending on the location of the pinning. Besides, we already know that the elastowetting 

spreading, the relation of 휃𝑑 and 𝑉𝑑, is determined by the dissipation in the soft layer from 

(c) 
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Figure 4.2. This dissipation comes from the cycling motion of gel inside the layer which is set 

by its surface deformation35,41,42. In the previous chapter, we have identified the droplet size 

effect for the long-range surface deformation. It is possible that the droplet size effect is present 

here for the receding dynamics. To check whether this is true or not, we perform experiments 

for different initial droplet size (Figure 4.5) at fixed flux rate (𝑄 = 120 𝜇𝐿/𝑚𝑖𝑛), and similar 

droplet size but with very different flux rate (𝐷 = 3.9 𝑚𝑚  for 𝑄 = 120 𝜇𝐿/𝑚𝑖𝑛  and  𝐷 =

3.8 𝑚𝑚 for 𝑄 = 20 𝜇𝐿/𝑚𝑖𝑛 in Figure 4.3(d)). The receding dynamics is measured at the same 

location with a time interval ~5 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 between each experiment. We don’t see any effect 

from the droplet size. Those results have already been partly testified by Figure 4.4 because the 

pinning effect also imposes the same wetting velocity at different droplet size. Those results are 

surprising at the first glance. However, we must notice that here we are using big droplets (𝐷 >

2 𝑚𝑚) compared to those in static deformation. Furthermore, we see that there is a saturation 

for the dimple depth for big droplets (𝐷 > 3 𝑚𝑚). Under such experimental conditions, there 

might also be a saturation for the droplet size effect for the dissipation; Furthermore, we also 

find that the surface deformation in the vicinity of the contact line is mainly determined by the 

surface tension from the closest contact line, and Laplace pressure (droplet size) barely plays a 

role in this regime (< 𝑙𝑠). These reasons might explain why we don’t see a noticeable effect of 

the droplet size. A more detailed discussion will be section 4.3.2. Here we should include some 

gravity effect, which we have not taken into account for the moment. To take a simpler approach, 

we consider that droplet size doesn’t play much role in the spreading dynamics at least for big 

droplets. 

 
FIGURE 4.5: Droplet size effect on elastowetting dynamics. Thickness of the soft layer is 104 𝜇𝑚 and the flux 

rate is 120 𝜇𝐿/𝑚𝑖𝑛. 

Resting time effect 

Here we would like to investigate whether the time the droplet remains on the soft gel surface 

before performing experiments affects the spreading dynamics. In fact, we have already seen 

previously that the resting time of the droplet affected the hysteresis of the contact angle. Does 

it play a role in the dynamics? Droplets are first deposited onto the soft layer within a closed 

chamber saturated with water for a controlled amount of time. Then we start to run the receding 

experiments. Droplets are deposited at different locations on the same soft layer to avoid the 

trace initiated by the previous drop that could lead to the contact line pinning.  Results are 

shown in Figure 4.6: hysteresis is observed again for zero wetting velocity as the starting 

dynamic contact angle is decreasing with the increasing of the resting time; initial resting of the 

contact line doesn’t modify the receding dynamics. Those results can be interpreted as follows: 

the resting time induces a local growth that freezes of the wetting ridge, introducing contact 
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angle hysteresis for several degrees. However, this “freezing” ridge is a local event. Once the 

contact line surfs over it, the surface deformation accompanying the receding contact line will 

not be affected any more. 

 
FIGURE 4.6: Resting time effect on elastowetting dynamics. Thickness of the soft layer is 104 𝜇𝑚 and the flux 

rate is 120 𝜇𝐿/𝑚𝑖𝑛. 

Thickness effect 

We know from the static surface deformation study that the thickness of the soft layer exerts an 

effect on the surface deformation. If we turn to the Equation (3.29) and Figure 3.5, thickness of 

the soft layer will affect each integral term: the deformation induced by the contact line 𝑓1, the 

deformation induced by the contact line 𝑓2, and deformation induced by the Laplace pressure 

𝑓𝑝. As a result, thickness of soft layers should also be a factor in determining the spreading 

dynamics because the dissipation is connected to the gel motion (gel deformation). 

Experimentally, we perform receding contact line experiments on soft layers with thickness 

ranging from 8.8 𝜇𝑚 to 900 𝜇𝑚. Their dynamics, the relation between 휃𝑑 and 𝑉𝑑, is shown as 

scattered cross points in Figure 4.7(a). Multiple runs (>  3) are carried out to ensure the 

reproducibility. We reveal that the thickness modifies the receding dynamics in the following 

way: at fixed receding velocity, the smaller is the thickness, the larger the dynamic contact 

angle is, an indication of the capillary driving for the moving contact line. Our experimental 

results further imply that more driving force is needed to propel the same wetting speed on the 

thicker layer. As a result, more energy is dissipated for the spreading on the thicker layer. To 

see how exactly the spreading dynamics is modified by the thickness, we fix the receding 

velocity at 0.1 𝑚𝑚/𝑠 and the dynamic contact angle corresponding to this velocity is plotted 

as a function of the soft layer thickness in Figure 4.7(b-c). From Figure 4.7(b), we notice that 

the thickness effect is pronounced on thin layers (< 100 𝜇𝑚) and there seems to be a saturation 

on thick layers (> 100 𝜇𝑚). A log-linear plot is further shown in Figure 4.7(c) to magnify the 

thickness effect for thin layers. The dissipation power, 𝑃, can be estimated from the capillary 

driving power for the unit length of the contact line: 𝛾𝐿𝑉𝑉𝑑(cos 휃𝑑 − cos 휃𝑒). If we assume the 

static contact angle is 106°. Then for the thinnest layer (ℎ0 = 8.8 𝜇𝑚), it is calculated as 

2.05 𝜇𝑊; for the thickest one (ℎ0 = 798 𝜇𝑚), it is calculated as 3.02 𝜇𝑊. The increase is 

47.3%.  
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FIGURE 4.7: Thickness effect on elastowetting dynamics. Flux rate: 120 𝜇𝐿/𝑚𝑖𝑛.(a) Paranoma of the relation 

of 휃𝑑 and 𝑉𝑑 as a function of thickness. (b) Linear-linear plot of the relation between the dynamic contact 

angle, 휃𝑑, and soft layer thickness ℎ0 at fix receding velocity 𝑉𝑑 = 0.1 𝑚𝑚/𝑠. (c) Log-linear plot of the relation 

between the dynamic contact angle, 휃𝑑, and soft layer thickness ℎ0 at fix receding velocity 𝑉𝑑 = 0.1 𝑚𝑚/𝑠. 

As a short conclusion to the experimental observations, the spreading of liquid on soft layers 

(𝐺′~1 𝑘𝑃𝑎) is governed by the dissipation in the soft gel phase. At low spreading velocity 

(~0.1 𝑚𝑚/𝑠), the capillary number is small and the spreading can be taken to be quasi-steady 

(no needle effect and flow rate effect). For an initially big droplet (𝐷 > 2.5 𝑚𝑚), droplet size 

does not modify the spreading dynamics. This observation is likely due to the small contribution 

of the Laplace pressure on the surface deformation close to the contact line. We find a strong 

influence of the soft layer thickness on the spreading. Increasing thickness can aggrandize the 

dissipation in the gel by 47.3%. In the following, we are going to rationalize the viscoelastic 

braking and the thickness effect from theories. 

4.3 Rationalization with the theory of linear viscoelasticity 

In sharp contrast to the spreading on rigid substrate, the spreading of a liquid on a soft material 

will introduce a local deformation at the contact line that propagates with the moving of the 

contact line. The gel is thus subject to a cycling motion, which dissipates energy and can rule 

the wetting dynamics35,38,42. In the following, we calculate the surface deformation marching 

(a) 

(b) (c) 
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with the motion of the moving contact line and the associated energy dissipated in the soft 

material, and reach a spreading law for a moving contact line on soft layers. 

4.3.1 Modeling 

 
FIGURE 4.8: A line traction, 𝑓 , moving on a viscoelastic substrate. 

General solution of dynamic deformation for arbitrary rheology 

Experiments indicate droplet size exerts no effect on the spreading dynamics, which implies 

that the Laplace pressure is not crucial to the energy dissipation in the spreading. Hence, we 

neglect the Laplace pressure in the modelling. The picture of liquid spreading on gels can be 

simplified to a 2D case (Figure 4.8): a line traction, 𝑓 = (𝑓𝑥(𝑥, 𝑡), 𝑓𝑦(𝑥, 𝑡)), which makes an 

angle 휃𝑑 to the horizontal direction, is propagating at a constant velocity, 𝑉𝑑, on a viscoelastic 

layer of thickness ℎ0. Here 𝑡 stands for the time. As is similar in the static case, we assume the 

material to be incompressible and solid surface tensions to be equal on the two sides of the 

contact line. For general linear viscoelastic materials, the stress, 𝜎, and the strain, 휀, are related 

through the linear relation: 

𝜎(𝑥 , 𝑡) = ∫ 𝐺(𝑡 − 𝑡′)
𝜕휀

𝜕𝑡′
𝑑𝑡′

𝑡

−∞

− 𝑃(𝑥 , 𝑡)𝐼 (4.4) 

with 𝐼 being the identity matrix and 𝑃 is the effect pressure introduced in Equation (3.4). Its 

Fourier transform in temporal space is: 

�̂�(𝑥 , 𝜔) = 𝐺(𝜔)휀(𝑥 ,𝜔) − �̂�(𝑥 , 𝜔)𝐼 (4.5) 

𝐺(𝜔) is the dynamic modulus or the Fourier transform of the instantaneous moduli 𝐺(𝑡) of the 

soft material and is defined by: 

𝐺(𝜔) = 𝑖𝜔∫ 𝐺(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡
∞

0

 (4.6) 

The incompressibility of the material and the steady state of the moving contact line read in 

their Fourier transform as follows: 

∇⃑⃑ ∙ �⃑̂� = 0 

∆�⃑̂� − ∇⃑⃑ �̂� = 0 

(4.7) 

  𝑉𝑑 

ℎ0 
𝑥 

𝑦 

휃𝑑 

𝑓  
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Similar to Equations (3.7-3.12) in statics, boundary conditions in their temporal Fourier forms 

are: 

�̂�𝑦𝑦 = 2𝐺(𝜔)
𝜕�̂�𝑦

𝜕𝑦
− �̂� = 𝑓𝑦(𝜔) + 𝛾𝑠

𝑑2휁̂

𝑑𝑥2
 

�̂�𝑥𝑦 = 𝐺(𝜔)(
𝜕�̂�𝑦

𝜕𝑥
+
𝜕�̂�𝑥
𝜕𝑦
) = 𝑓𝑥(𝜔) 

�̂�𝑥(𝑥, −ℎ0) = 0 

�̂�𝑦(𝑥, −ℎ0) = 0 

(4.8) 

where 휁 is the surface deformation. This set of Equation is strictly identical to the boundary 

condition in statics. By following Equations (3.18-3.25), the temporal Fourier transform of the 

spatial Fourier transform at wave number 𝑘 for 휁 is straightforward and read as: 

휁̃(𝑘, 𝜔) =
1

𝛾𝑠
[𝑘2 +

𝐺(𝜔)

𝛾𝑠𝐾(𝑘)
]

−1

[𝑓𝑦(𝑘, 𝜔) − 𝑖𝑓𝑥(𝑘, 𝜔)
2ℎ0
2𝑘2

sinh(2ℎ0𝑘) − 2ℎ0𝑘
]

=  𝑓𝑦(𝑘, 𝜔)𝑆(𝑘, 𝜔) + 𝑓𝑥(𝑘, 𝜔)𝑄(𝑘, 𝜔) 

(4.9) 

where 𝐾(𝑘) is expressed in Equation (3.24). If now we focus on the case of a contact line 

moving at constant speed: 

𝑓𝑥(𝑥, 𝑡) = 𝛾𝐿𝑉(cos 휃𝑒 − cos 휃𝑑)𝛿(𝑥 − 𝑉𝑑𝑡), 𝑓𝑦(𝑥, 𝑡) = 𝛾𝐿𝑉 sin휃𝑑 𝛿(𝑥 − 𝑉𝑑𝑡) 

then the double Fourier transform with respect to the time and space preserves the shape of the 

traction. In this case, we have: 

𝑓𝑥(𝑘, 𝜔) = 𝛾𝐿𝑉(cos휃𝑒 − cos 휃𝑑)𝛿(𝜔 + 𝑉𝑑𝑘), 𝑓𝑦(𝑘, 𝜔) = 𝛾𝐿𝑉 sin휃𝑑 𝛿(𝜔 + 𝑉𝑑𝑘) 

Now we reach the double Fourier transform for the surface deformation: 

휁̂̃(𝑘, 𝜔) =  𝛾𝐿𝑉 sin휃𝑑 𝛿(𝜔 + 𝑉𝑑𝑘)𝑆(𝑘, 𝜔) + 𝛾𝐿𝑉(cos 휃𝑒 − cos 휃𝑑)𝛿(𝜔

+ 𝑉𝑑𝑘)𝑄(𝑘, 𝜔) 
(4.10) 

The above solution can be shifted back to the time space with an inverse Fourier transform with 

respect to 𝜔: 

휁̃(𝑘, 𝑡) =  𝑒−𝑖𝑘𝑉𝑑𝑡
𝛾𝐿𝑉 sin 휃𝑑

𝛾𝑠
[𝑘2 +

𝐺(−𝑘𝑉𝑑)

𝛾𝑠𝐾(𝑘)
]

−1

− 𝑖𝑒−𝑖𝑘𝑉𝑑𝑡
𝛾𝐿𝑉(cos휃𝑒 − cos휃𝑑)

𝛾𝑠
[𝑘2

+
𝐺(−𝑘𝑉𝑑)

𝛾𝑠𝐾(𝑘)
]

−1
2ℎ0

2𝑘2

sinh(2ℎ0𝑘) − 2ℎ0𝑘
 

(4.11) 

Furthermore, with another inverse Fourier transform in real space, the surface deformation is 

recovered as: 
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ζ(𝑥, 𝑡) =  
𝛾𝐿𝑉 sin휃𝑑
2𝜋𝛾𝑠

∫ 𝑒𝑖𝑘(𝑥−𝑉𝑑𝑡)𝑑𝑘
+∞

−∞

[𝑘2 +
𝐺(−𝑘𝑉𝑑)

𝛾𝑠𝐾(𝑘)
]

−1

+
𝛾𝐿𝑉(cos 휃𝑒 − cos 휃𝑑)

2𝜋𝛾𝑠
∫ 𝑒𝑖𝑘(𝑥−𝑉𝑑𝑡)𝑑𝑘
+∞

−∞

[𝑘2

+
𝐺(−𝑘𝑉𝑑)

𝛾𝑠𝐾(𝑘)
]

−1
2ℎ0
2𝑘2

sinh(2ℎ0𝑘) − 2ℎ0𝑘
 

(4.12) 

If we are traveling with the moving contact line at the same speed and define a new coordination 

system which is called co-moving frame (𝑥′ = 𝑥 − 𝑉𝑑𝑡), we will cancel the time 𝑡. The profile 

of the deformation 휁(𝑥′) is then independent of 𝑡: 

휁(𝑥′) =  
𝛾𝐿𝑉 sin 휃𝑑
2𝜋𝛾𝑠

∫ 𝑒𝑖𝑘𝑥
′
𝑑𝑘

+∞

−∞

[𝑘2 +
𝐺(−𝑘𝑉𝑑)

𝛾𝑠𝐾(𝑘)
]

−1

+
𝛾𝐿𝑉(cos휃𝑒 − cos 휃𝑑)

2𝜋𝛾𝑠
∫ 𝑒𝑖𝑘𝑥

′
𝑑𝑘

+∞

−∞

[𝑘2

+
𝐺(−𝑘𝑉𝑑)

𝛾𝑠𝐾(𝑘)
]

−1
2ℎ0

2𝑘2

sinh(2ℎ0𝑘) − 2ℎ0𝑘
 

(4.13) 

This expression is valid for arbitrary rheology at long time after the application of the line force 

and does not account for any transient regime that might occurs immediately following the 

application of the line force. 

Dissipation in the soft film described by the Chasset-Thirion model for viscoelasticity 

The dissipation with a traveling traction 𝑓  at the speed 𝑉𝑑 on a soft film with finite thickness 

can be calculated by: 

𝑃𝑓𝑖𝑙𝑚 =∬ 𝜎: 휀̇
𝐵

𝑑𝑥𝑑𝑦 (4.14) 

It is integrated for the overall body, 𝐵, of the soft material. Since we assume it is a steady 

problem, the deformation should be independent of the time. Now Equation (4.14) can be 

expressed in terms of its temporal Fourier space: 

𝑃𝑓𝑖𝑙𝑚 =
1

4𝜋2
∬ 𝑑𝑥𝑑𝑦∫ 𝑑𝜔

+∞

−∞

∫ 𝑑𝜔′
+∞

−∞𝐵

× (𝑖𝜔′)𝑒𝑖(𝜔+𝜔
′)𝑡𝐺(𝜔)�̂�𝑖𝑗(𝑥 , 𝜔)𝑢𝑖𝑗(𝑥 ,𝜔

′) 

(4.15) 

Following Long et al41,42, we assume that the four terms in the integral above contribute equally 

to the dissipation and we will only retain the variation along the 𝑥-direction of the displacement 

in the 𝑦-direction. Dropping the factor 1 4𝜋2⁄ , we get: 

𝑃𝑓𝑖𝑙𝑚~∬ 𝑑𝑥𝑑𝑦∫ 𝑑𝜔
+∞

−∞

∫ 𝑑𝜔′
+∞

−∞𝐵

× (𝑖𝜔′)𝑒𝑖(𝜔+𝜔
′)𝑡𝐺(𝜔)

𝜕휁̂

𝜕𝑥
(𝑥 , 𝜔)

𝜕휁̂

𝜕𝑥
(𝑥 , 𝜔′) 

(4.16) 

According to the Plancherel theorem, the previous integral can be rewritten as: 
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𝑃𝑓𝑖𝑙𝑚~∫ 𝑑𝑦∫ 𝑑𝜔
+∞

−∞

∫ (𝑖𝜔′)𝑒𝑖(𝜔+𝜔
′)𝑡𝑑𝜔′𝐺(𝜔)

+∞

−∞

0

−ℎ0

𝑑𝜔′ 

×∫ 𝑘2
+∞

−∞

휁̂̃(−𝑘, 𝜔′)휁̂̃(−𝑘, 𝜔′)𝑑𝑘 

(4.17) 

This dual integral can be solved out of the temporal domain with Equation (4.10). For the sake 

of simplicity, the vertical traction is only retained and we will thus have: 

𝑃𝑓𝑖𝑙𝑚~∫ 𝑑𝑦
0

−ℎ0

∫ −𝑖𝑘𝑉𝑑

+∞

−∞

𝐺(−𝑘𝑉𝑑)𝑘
2𝛾𝐿𝑉
2 sin휃𝑑 𝑆(𝑘,−𝑘𝑉𝑑)𝑆(−𝑘, 𝑘𝑉𝑑)𝑑𝑘 (4.18) 

Because the deformation penetrates to a depth |𝑘|−1, the integration above is further simplified 

to: 

𝑃𝑓𝑖𝑙𝑚~𝛾𝐿𝑉
2 𝑉𝑑 sin

2 휃𝑑∫ 𝑖𝑘
+∞

−∞

𝐺(−𝑘𝑉𝑑)𝑘𝑠𝑖𝑔𝑛(𝑘)𝑆(𝑘,−𝑘𝑉𝑑)𝑆(−𝑘, 𝑘𝑉𝑑)𝑑𝑘 (4.19) 

For a purely elastic material, 𝐺(𝜔) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and the above integral will be an imaginary. 

Since the rheology of the soft material we use can be fitted with the empirical Chasset-Thirion 

model: 

𝐺(𝜔) = 𝐺0(1 + (𝑖𝜔𝜏)
𝑚) (4.20) 

where 𝐺0  is the equilibrium modulus and 𝜏  is the relaxation time of polymer chains, by 

inserting this viscoelastic model into Equation (4.19) we obtain: 

𝑃𝑓𝑖𝑙𝑚~𝐺0𝛾𝐿𝑉
2 𝑉𝑑 sin

2 휃𝑑 |𝑉𝑑𝜏|
𝑚∫ |𝑘|𝑚+2𝑆(𝑘,−𝑘𝑉𝑑)𝑆(−𝑘, 𝑘𝑉𝑑)𝑑𝑘

∞

0

 (4.21) 

or equivalently, 

𝑃𝑓𝑖𝑙𝑚~(
𝛾𝐿𝑉 sin휃𝑑

𝛾𝑠
)
2

𝐺0𝑉𝑑|𝑉𝑑𝜏|
𝑚∫

|𝑘|𝑚+2

(𝑘2 +
𝐺(−𝑘𝑉𝑑)
𝛾𝑠𝐾(𝑘)

)(𝑘2 +
𝐺(𝑘𝑉𝑑)
𝛾𝑠𝐾(−𝑘)

)
𝑑𝑘

∞

0

 (4.22) 

Spreading 

We balance the dissipation power with the capillary driving power 𝑉𝑑𝛾𝐿𝑉(cos휃𝑑 − cos 휃𝑒) and 

we arrive at a full expression for the spreading: 

Ψ(휃𝑑)~
𝛾𝐿𝑉
𝛾𝑠

𝐺0
𝛾𝑠
|𝑉𝑑𝜏|

𝑚∫
|𝑘|𝑚+2

(𝑘2 +
𝐺(−𝑘𝑉𝑑)
𝛾𝑠𝐾(𝑘)

)(𝑘2 +
𝐺(𝑘𝑉𝑑)
𝛾𝑠𝐾(−𝑘)

)
𝑑𝑘

∞

0

 

Ψ(휃𝑑) =
𝑐𝑜𝑠휃𝑒 − 𝑐𝑜𝑠휃𝑑

𝑠𝑖𝑛2휃𝑑
 

(4.23) 

4.3.2 Results 

To solve the Equation (4.23), we need to know the rheology of the soft material. As is shown 

in Figure 4.9, the shear loss modulus of the gel can be well fitted with a power law of the 
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frequency 𝜔 with an exponent 𝑚. The best fit of Equation (4.20) to the rheology data (𝐺(𝜔) =

𝐺′(𝜔) + 𝑖𝐺′′(𝜔)) gives a shear storage modulus at the plateau 𝐺0 = 1240 𝑃𝑎, an exponent 

𝑚 = 0.615 , and a relaxation time of polymer chains 𝜏 = 8.6 𝑚𝑠 . Nevertheless, 𝛾𝑠  is an 

unknown parameter. As we already find a quite reasonable value for it in the static case, in the 

following we will constantly set it as 40 𝑚𝑁/𝑚 if it is not specially specified. The static contact 

angle 휃𝑒 is experimentally found to be weakly dependent on the soft layer thickness and droplet 

size (section 4.3.3), and thus it is taken to be a constant 106° as well. 

 
FIGURE 4.9: Chasset-Thirion model accounting for the viscoelasticity of soft PDMS gel. Triangles are from 

rheology measurement and the red solid line is from the fitting with the Chasset-Thirion model. 

With all the above parameters, we will be able to solve Equation (4.23). In the following, the 

elastowetting dynamics will be described by the relation between the difference of the dynamic 

contact angle and the static contact angle (휃𝑒 − 휃𝑑), and the wetting velocity 𝑉𝑑. We define the 

receding velocity as a positive and the advancing velocity to be a negative.  

It is found that our model predicts very well experiments (Figure 4.10). Not only can it recover 

the “viscoelastic braking” effect, but also it captures the thickness effect for the spreading. 

Figure 4.10(a) shows two limits of our experiments and calculations: spreading on very thin 

layer and on very thick layer. The range of the thickness covers two orders of magnitude from 

15.9 𝜇𝑚  to 900 𝜇𝑚 . As our experimental precision of wetting velocity is 0.03 𝑚𝑚/𝑠 , 

comparison with our data shows that the model works well for the velocity from 0.03 𝑚𝑚/𝑠 

to 0.3 𝑚𝑚/𝑠, with a capillary number (𝐶𝑎 = 𝜇𝑉𝑑 𝛾𝐿𝑉⁄ ) ranging from 4.2 × 10−7to 4.2 × 10−6. 

However, in this 𝐶𝑎  regime, for the spreading on rigid substrates, (휃𝑒 − 휃𝑑) → 0  (Section 

4.2.1). This result clearly shows the spreading on a soft material is governed by the dissipation 

in the solid phase.  

Figure 4.10(b) demonstrates that (휃𝑒 − 휃𝑑) is smaller if the soft layer is thinner. (휃𝑒 − 휃𝑑) 

indicates the deviation of the dynamic contact angle from the static one such that it can be 

approximately taken to be the capillary driving force in the system. At fixed wetting velocity 

(0.1 𝑚𝑚/𝑠 ), a larger value of (휃𝑒 − 휃𝑑) means a higher capillary driving force/energy is 

needed to promote the same spreading speed or equivalently a higher friction/dissipation will 

be felt by the contact line.  As a result, less force/energy is required to maintain the spreading 

for layers with smaller thickness. Less energy (smaller 𝑃𝑓𝑖𝑙𝑚) is dissipated on thinner layers 

(smaller ℎ0). Besides, the dependence of the dissipation on the thickness is strong for thin layers 

(ℎ0 < 100 𝜇𝑚) and it is becoming weak for large thickness (Figure 4.7 and Figure 4.10(b)). 

This is also captured by our calculation. A plateau is found for large thickness (ℎ0 > 100 𝜇𝑚) 

and a sharp plunge is revealed for small thickness. For the model, we numerically change the 

𝐺′′~𝜔𝑚 
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surface tension of the soft gel (𝛾𝑠) from 38 𝑚𝑁/𝑚 to 42 𝑚𝑁/𝑚, and all the experimental data 

falls into the region between the two curves predicted by the two 𝛾𝑠. Both values are close to 

the reported value for PDMS53. This prediction further supports that our model is a success. 

In addition, we only consider the vertical component of 𝛾𝐿𝑉  in calculating the surface 

deformation induced by a single moving contact line (Equation (4.18)). Laplace pressure, the 

tangential component of the liquid-vapor surface tension, surface tension from the far-away 

contact line (Figure 3.5) are all neglected. Still we have a very good prediction for the 

elastowetting spreading. This implies that the dissipation mainly happens in the close region of 

the contact line where the surface deformation is governed by the vertical component of the 

surface tension from the close contact line (Figure 3.9 and Figure 3.11). 

 
FIGURE 4.10: Receding dynamics and thickness effect. 휃𝑒 = 106°. (a) Comparison of experiments and 

calculations for the elastowetting dynamics on soft layers with different thickness. Flux rate: 120 𝜇𝐿/𝑚𝑖𝑛. (b) 

Thickness effect for the spreading dynamics at fixed receding velocity (0.1 𝑚𝑚/s). 

4.3.3 Discussion 

Static contact angle 

Experimentally, the dissipation in the spreading is evaluated from the capillary driving power: 

𝑉𝑑𝛾𝐿𝑉(cos휃𝑑 − cos 휃𝑒). For the thickness effect to be valid, it would be necessary to confirm 

that, as theoretically 휃𝑒 does not have a dependence on the thickness and droplet size. 

We perform liquid inflation-deflation experiments by changing the initial droplet diameter from 

2.5 𝑚𝑚 to 4.4 𝑚𝑚. Thickness of the soft layers is controlled from 29 𝜇𝑚 to 2745 𝜇𝑚. The 

flux rate is fixed at 120 𝜇𝐿/𝑚𝑖𝑛. All the experiments are implemented in the open surroundings 

and the duration for each run is less than 2 𝑚𝑖𝑛𝑢𝑡𝑒𝑠. A side view camera is mounted to record 

the moving of the contact line and contact angle. A panorama of the spreading dynamics at 

small velocity to check 휃𝑒 is shown in Figure 4.11: each data set stands for the spreading on the 

same layer (hence the same thickness); the wetting velocity is translated horizontally to separate 

from the others for a better visual effect; the equilibrium state for droplets (zero velocity) is 

marked by the grey dotted line for each data set; the black, red and green dotted datasets stand 

for an initial droplet size of ~3 𝑚𝑚 , ~2.5 𝑚𝑚  and ~4 𝑚𝑚 , respectively. A very high 

reproducibility of spreading dynamics at small velocity (< 10 𝜇𝑚/𝑠) is observed on layers with 

thickness ranging from 45 𝜇𝑚 to 457 𝜇𝑚. This reinforces our previous observation of the 

droplet size effect on the spreading dynamics (section 4.2.2). For the static contact angle, we 

show its distribution at 𝑉𝑑 < 0.05 𝜇𝑚/𝑠  in Figure 4.11(b) which demonstrates that the 

thickness does not have any influence on the mean value of static contact angle although some 

perturbations are found for ℎ0 = 295 𝜇𝑚, ℎ0 = 380 𝜇𝑚 and ℎ0 = 1605 𝜇𝑚. Figure 4.11(c) is 

obtained from another droplet inflation-deflation test. It attests again that neither the droplet 

size nor the soft layer thickness will modify the static contact angle.  

(a) (b) 
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As a short summary, the inflation-deflation experiments that mimic experimental conditions for 

receding dynamics in section 4.2 certify the static contact angle 휃𝑒  depends neither on the 

droplet size nor the soft layer thickness. It is safe to take it as a constant (106°) in our 

calculations. 

 
FIGURE 4.11: (a) Receding dynamics at small velocity. Each dataset characterizing the relation of 휃𝑑 and 𝑉𝑑 

is horizontally translated and the zero velocity at the local x-coordination is marked by the dotted gray line. 

The thickness for each curve from left to right is 29 𝜇𝑚, 45 𝜇𝑚, 144 𝜇𝑚, 162 𝜇𝑚, 225 𝜇𝑚, 295 𝜇𝑚, 380 𝜇𝑚, 

457 𝜇𝑚, 570 𝜇𝑚, 1365 𝜇𝑚,  1605 𝜇𝑚, 2745 𝜇𝑚. (b) Thickness effect on the contact angle at |𝑉𝑑| <
0.05 𝜇𝑚/𝑠. (c) Droplet size effect on the contact angle at |𝑉𝑑| < 0.05 𝜇𝑚/𝑠. 

Previous models 

Now we are going to briefly summarize three available models that attempt at describing the 

elastowetting dynamics up to now and highlight the insights that our model brings. 

 
FIGURE 4.12: (a) Comparison among experiments (scatted dots), D. Long model42 (blue solid line) and 

“Elastic” model35,39 (black solid line). (b) Comparison among experiments, our dissipation model and the 

phenomenological model45. 

(a) 

(b) 

(c) 

(a) (b) 
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“Elastic” model 

This model32,33,35,38,39,79 assumes that surface deformation of a moving contact line on a 

viscoelastic material is approximated by the elastic deformation induced by a vertical 

concentrated force 𝛾𝐿𝑉 sin 휃𝑑 on a half-infinite plate. The elastic energy, 𝑊, is calculated from 

this deformation and the viscoelastic dissipation is simply taken to be a fraction Ω of this 

supplied strain energy: 

𝑊Ω~
2Ω𝛾𝐿𝑉

2 (1 − 𝜈2)𝑉𝑑
𝜋𝐸

{
1

휀
+
3휃𝑑

2

𝑟
[2𝑙𝑛 (

𝑑

휀
) − 1]} (4.24) 

Ω can be taken as (𝑉𝑑 𝑉0⁄ )𝑛, where 𝑉0 and 𝑛 are material constants characterizing the damping 

properties of solids; relevant parameters in this equation have been addressed in section 1.4.2. 

It has a more general simple form for elastomers (Poisson’s ratio is 0.5, close to the PDMS gel): 

𝑊Ω~
𝛾𝐿𝑉
2 𝑉𝑑
2𝜋𝐺0휀

(
𝑉𝑑
𝑉0
)
𝑛

 (4.25) 

When the solid dissipation dominates upon the liquid spreading, this simplified equation should 

be balanced with the capillary driving power: 𝑉𝑑𝛾𝐿𝑉(cos 휃𝑑 − cos 휃𝑒). Hence, we will arrive at 

the following relation from the “elastic” model: 

cos 휃𝑑 − cos 휃𝑒 ~
𝛾𝐿𝑉
2𝜋𝐺0휀

(
𝑉𝑑
𝑉0
)
𝑛

 (4.26) 

Long et al.’s model 

In this model40–42, the dissipation in the soft material phase is calculated from its viscoelasticity. 

The surface deformation in dynamics integrates both the viscoelasticity and surface tension, 

and it is simplified with the first order approximation as to the indention depth 𝜖  at the 

wavenumber k. The kernel for the dynamic deformation on the rubber42 is approached from the 

solution for the molten polymer brush40, where high orders of 𝜖  (check section 1.4.2) are 

dropped for the surface energy and elastic energy. The traction for inducing surface deformation 

is similar to that from “elastic” model: only the vertical component 𝛾𝐿𝑉 sin휃𝑑 is accounted. We 

take the expression for the dissipation from section 1.4.2 and balance it with the capillary 

driving power and reach the following prediction for the elastowetting spreading at small 

velocity where the dissipation in the soft layer dominates: 

𝑐𝑜𝑠휃𝑒 − 𝑐𝑜𝑠휃𝑑~
𝛾𝐿𝑉𝜏

𝑚𝐺0
2𝑠𝑖𝑛2휃𝑑

𝛾𝑠
𝑚+1 𝑉𝑑

𝑚 

, when 𝑉𝑑 < [
𝛾𝐿𝑉(cos𝜃𝑑−cos𝜃𝑒)

2

𝛾𝑠
(
𝜏𝐺0

𝛾𝑠
)
𝑚 𝜃𝑑

3𝜇ln (
𝐿

𝐿𝑚
)
]

1

1−𝑚

 

(4.27) 

Phenomenological model45 

Inspired by the finding of the universal Neumann’s triangle at the wetting tip in statics53,80, this 

model hypotheses that this relation still holds in dynamics. The surface dynamic surface 

deformation is assumed to be caused by the vertical component of the liquid-vapor traction in 

spreading (Equation (3.1-3.25)). Upon spreading, the ridge rotates by an angle, 𝜙, to ensure the 

balance of surface tension at the tip (Neumann’s triangle) and the liquid-vapor interface has to 
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bend to accommodate this rotation (𝜙 = 휃𝑑 − 휃𝑒 ). The dynamic surface deformation is 

deduced by imposing the Neumann’s relation as a boundary condition instead of the energy 

balance. Hence the rotation of the ridge 𝜙 is given by the symmetric part of the dynamic surface 

deformation profile in the co-moving frame: 

tan𝜙 = lim
𝑥→0

1

2
(휁′(𝑥) − 휁′(−𝑥)) =

𝛾𝐿𝑉 sin휃𝑑
2𝜋𝛾𝑠

∫ ℜ[
−𝑖𝑘

𝑘2 +
𝐺(−𝑘𝑉𝑑)
𝛾𝑠𝐾(𝑘)

]
+∞

−∞

𝑑𝑘 (4.28) 

At low velocity, the above relation reduces to: 

tan(휃𝑑 − 휃𝑒)

sin휃𝑑
= (
𝛾𝐿𝑉
𝜋𝛾𝑠
)
𝐺0
𝛾𝑠
|𝑉𝑑𝜏|

𝑚∫
|𝑘|𝑚+1

𝐾(𝑘) (𝑘2 +
𝐺0

𝛾𝑠𝐾(𝑘)
)

∞

0

𝑑𝑘 (4.29) 

All the experimental parameters are planted into the “elastic” model (Equation (4.26)), Long et 

al.’s model (Equation (4.27)) and the phenomenological model (Equation (4.29)). Their 

comparisons with experiments are shown in Figure 4.12. Both the “elastic” model and Long et 

al.’s model are able to capture experimental features: reasonable value for dynamic contact 

angle is recovered for the wetting velocity compared to the hydrodynamic model; the higher is 

the velocity, the more energy is dissipated by the moving contact line; both models use the same 

power (0.615) for the relation of 휃𝑑 and 𝑉𝑑; the fitting parameter 𝛾𝑠 for the D. Long model is 

26 𝑚𝑁/𝑚, which is a reasonable value for PDMS. However, neither the “Elastic” model nor 

Long et al.’s model account for the thickness of the soft layer; an error as high as 10° (~60%) 

is observed for the two models when trying to describe the dependence of the dynamic contact 

angle on the thickness at fixed velocity (0.1 𝑚𝑚/𝑠).  For the phenomenological model, it 

captures well the spreading on thick layer, as is the plateau (ℎ0 > 100 𝜇𝑚) shown in Figure 

4.12(b). Nevertheless, it underestimates the thickness effect at small thickness limit (ℎ0 <

100 𝜇𝑚). We here show two curves for its prediction: one is for the fitting for the spreading on 

thick layer limit, and another one frim the value (40 𝑚𝑁/𝑚) which we inject in our dissipation 

model (Equation (4.23)). The mismatching at small thickness limit for the phenomenological 

model may originate from its imposition of the Neumann’s relation at the wetting tip. 

From the above results, we conclude that our dissipation model not only captures the 

viscoelastic braking, but also it is able to properly find the thickness effect with a reasonable 𝛾𝑠 

(40 𝑚𝑁/𝑚). However, the full dissipation model is not easy to apply directly because of its 

complex integration (Equation (4.23)). In the next section, we are going to show how it can be 

simplified at specified conditions. 

Scaling for the spreading velocity 

From the full solution in Equation (4.23), we define the left side of the equation as Ψ(휃𝑑) to 

avoid the presence of contact angle on the right side. Additionally, there are two parts for the 

term on the right side of the equation: 
𝛾𝐿𝑉

𝛾𝑠

𝐺0

𝛾𝑠
|𝑉𝑑𝜏|

𝑚 and the long complicate integration term. 

The first part 
𝛾𝐿𝑉

𝛾𝑠

𝐺0

𝛾𝑠
|𝑉𝑑𝜏|

𝑚 gives us a power law for the spreading as to 𝑉𝑑, though the later 

integral may also have a spreading velocity dependence since 𝑉𝑑  is also present in the 

viscoelastic term 𝐺(𝑘𝑉𝑑). To check this, we plot the experimental data in a log-log fashion in 

Figure 4.13(a). It clearly shows a linear relation between the log (Ψ(휃𝑑)) and log (𝑉𝑑) except 

that there is a shifting between each data set due to the thickness. The experiments imply a 

power law between the Ψ(휃𝑑) and 𝑉𝑑. The best fit of the curve (Figure 4.13(b)) gives us the 
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value of the power: 0.62 ± 0.2 , which is exactly the same value of 𝑚 = 0.615  from the 

rheology measurement. 

 
FIGURE 4.13: Scaling for the spreading dynamics on soft PDMS layers. (a) Universal power behavior for 

spreading dynamics on soft layers with thickness ranging from 8.8 𝜇𝑚 to 798 𝜇𝑚 by three orders’ magnitude. 

(b) Comparison between our experiment and simplified model. 

This result shows that the integral ∫
|𝑘|𝑚+2

(𝑘2+
𝐺(−𝑘𝑉𝑑)

𝛾𝑠𝐾(𝑘)
)(𝑘2+

𝐺(𝑘𝑉𝑑)

𝛾𝑠𝐾(−𝑘)
)
𝑑𝑘

∞

0
 is indeed almost independent 

of 𝑉𝑑 in the velocity range that we study. Therefore, Equation (4.23) can be approximated by a 

simpler expression at small velocities in the following: 

Ψ(휃𝑑)~
𝛾𝐿𝑉
𝛾𝑠

𝐺0
𝛾𝑠
|𝑉𝑑𝜏|

𝑚∫
|𝑘|𝑚+2

(𝑘2 +
𝐺0

𝛾𝑠𝐾(𝑘)
)2
𝑑𝑘

∞

0

 

Ψ(휃𝑑) =
𝑐𝑜𝑠휃𝑒 − 𝑐𝑜𝑠휃𝑑

𝑠𝑖𝑛2휃𝑑
 

(4.30) 

Scaling for thickness effect at small thickness limit 

Now we are able to separate the thickness effect in the Equation (4.30) and find it to be the 

integral ∫
|𝑘|𝑚+2

(𝑘2+
𝐺0

𝛾𝑠𝐾(𝑘)
)2
𝑑𝑘

∞

0
. When the velocity is small, we find a concise scaling at small 

thickness limit by keeping the leading term of the integrand (details can be found in Appendix 

B): 

Ψ(휃𝑑)~
𝛾𝐿𝑉
𝛾𝑠
(
𝑉𝑑𝜏𝐺0
𝛾𝑠

)
𝑚

(
ℎ0𝐺0
𝛾𝑠
)

3(1−𝑚)
4

 (4.31) 

This equation should work in the whole range for the velocity that we are investigating in this 

study because it is a low order approximation of the thickness effect to the Equation (4.30), 

which predicts very well our experimental result for all the experimental velocity. This scaling 

is compared with our experiments in Figure 4.14. It turns out that thickness effect is quite well 

predicted in Figure 4.14(a) for small thickness (ℎ0 < 50 𝜇𝑚) when 𝑉𝑑 = 0.1 𝑚𝑚/𝑠. Besides, 

the scaling is further verified in Figure 4.14(b) with two dimensionless numbers. 

(a) (b) 
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FIGURE 4.14: Scaling for the thickness at small thickness limit. (a) Comparison between the model (dashed 

line) and experiments (scattered circles with error bars). (b) Comparison between the scaling of thickness effect 

(black dotted line) and experiments. The black solid line is for eyes’ guidance. 

4.4 Summaries and conclusions 

In this chapter, we experimentally and theoretically study the spreading dynamics of liquid on 

a soft material. We find that the thickness of the soft layer on which liquid spreads is an 

important parameter. We develop a model based on the theory of linear viscoelasticity theory 

that captures very well all the experimental features. Furthermore, we derive a scaling 

accounting for the spreading velocity and another simpler scaling accounting for the thickness 

effect at small thickness limit. Both scaling laws match our observations very well. 

First, we observe the forced receding dynamics of a water droplet on a soft PDMS layer with 

thickness of 150 𝜇𝑚 at fixed flux rate 120 𝜇𝐿/𝑚𝑖𝑛. From an estimation from hydrodynamic 

model, we find that the cut-off length is non-physical, and further we conclude that the 

elastowetting spreading in our system is controlled by the dissipation in the soft gel phase. 

Then we prove the spreading at small velocity (𝑉𝑑 < 0.35 𝑚𝑚/𝑠) is quasi-steady because of 

the small capillary number (~1.4 × 10−6) and we experimentally verify this quasi-steady state 

by checking the flux rate effect from 20 𝜇𝐿/𝑚𝑖𝑛 to 120 𝜇𝐿/𝑚𝑖𝑛. Besides, it is also testified 

by “Needle effect” experiments. 

Next, we investigate various factors that may affect spreading dynamics in the aspiration of 

elastowetting statics in the previous chapter. We check the droplet size effect (>  2 𝑚𝑚), 

resting time effect and the layer thickness effect at fixed flux rate 120 𝜇𝐿/𝑚𝑖𝑛. We find that 

neither will the initial droplet size modify the spreading, nor will the resting time except that it 

modifies the contact angle hysteresis; However, the thickness of the soft layer does affect the 

spreading; the dynamic contact angle is larger when the film is thinner at a fixed receding 

velocity; it means less energy is dissipated on the thinner layer. 

Further, we develop a dissipation model based on the linear viscoelasticity theory accounting 

for the elastowetting spreading. We inject the full expression of dynamic surface deformation 

induced by a vertical traction from the propagating contact line and the Chasset-Thirion model 

describing the viscoelasticity of the soft material into the calculation of the energy dissipation 

power and balance it with the capillary driving power. We obtain a complete equation for the 

spreading on soft materials. This model is then compared with our experiments and shows 

excellent agreement. 

𝛹
(휃
𝑑
)
𝛾 𝑆 𝛾 𝐿
𝑉
(
𝛾 𝑠

𝐺
0
𝜏𝑉
𝑑
)𝑚

 

(
ℎ0𝐺0
𝛾𝑠
)

3(1−𝑚)
4
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Finally, we demonstrate our dissipation model stands out of the several other existing models, 

including the “elastic” model, D. Long model and phenomenological model. We further show 

our model can be simplified to a general scaling law accounting for the spreading velocity and 

another further simpler scaling law for the thickness effect at small thickness limit. Both 

successfully predict our experiments. 

4.5 Perspectives 

In our model, we neglect the tangential force for estimating the dynamic surface deformation, 

as can be seen in Equation (4.18). However, this tangential component of the liquid-vapor 

surface tension is found to be important in inducing the static long-range surface deformation. 

With the fact that our model successfully captures all the experimental features for the spreading, 

it seems that this long-range surface deformation is not very crucial to the elastowetting 

dynamics. This guess is also supported by the droplet size effect experiments in which it doesn’t 

not play any role while it affects the long-range deformation in statics. As our calculation shows 

in the last chapter, the vertical component of the surface tension from the close contact line 

dominates the short-range deformation at the contact line, which is barely affected by the 

tangential force and the Laplace pressure. What’s more, we find a thickness dependent wetting 

ridge in the vicinity of the contact line for both statics and dynamics, as is shown in Figure 4.15. 

The two pictures are taken by a side view camera with the pixel resolution of 4.5 𝜇𝑚/𝑝𝑖𝑥𝑒𝑙 in 

the same illumination condition when the contact line is not moving. Water droplets are 

deposited onto a soft layer that is bounded onto glass slides. The thickness of the PDMS layers 

(𝐺′~1.2 𝑘𝑃𝑎) in Figure 4.15(a) and Figure 4.15(b) is 24 𝜇𝑚 and 301 𝜇𝑚, respectively. The 

wetting ridge at the contact line distinguishes for the two cases: it is not observable on the thin 

layer (24 𝜇𝑚 ) while a shadow of ~20 𝜇𝑚  high at the liquid-vapor-solid junction with a 

horizontal extension of ~ 100 𝜇𝑚 is formed in the vicinity of the contact line on the thick layer. 

This experimental result regarding to the thickness dependent wetting ridge has been reported 

years ago59. Here we reinforce the importance of it. A detailed experimental study on its shape 

is in emergent demand because it seems to be related to the thickness dependent 

spreading/dissipation. Combining this observation, the calculation in static deformation and our 

results in dynamics, we speculate that the dissipation at dynamics mainly occurs in the close 

region of the contact line and the long-range surface deformation plays a less effect.  

The above conjecture requires a precise experimental measurement of the surface deformation 

both at small scale (< 𝑙𝑠) and large scale (> 𝑙𝑠) when the contact line is moving. Our Schlieren 

optics provides a useful tool for the long-range dynamic surface deformation. For the short-

range one, proper experimental technique needs to be designed first to track its dynamics. 
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FIGURE 4.15: Comparison of the small-scale deformation on the thin layer and thick layer. (a) A resting 

droplet on a thin PDMS layer (𝐺′~1.2 𝑘𝑃𝑎); the thickness is 24 𝜇𝑚. (b) A resting droplet on a thick PDMS 

layer (𝐺′~1.2 𝑘𝑃𝑎); the thickness is 301 𝜇𝑚. (c) Zoom-in of the red rectangle from (a). (d) Zoom-in of the 

yellow rectangle from (b). 

(a) (b) 

(c) (d) 
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40 µm 
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Chapter 5 Sliding and drifting of droplets on soft 

films 

5.1 Introduction 

Based on the thickness effect we have discovered in the previous chapter, we are going to 

explore how the thickness profile of a soft layer can be used to control the sliding of droplets. 

This chapter is split into two sections: the first part is about the sliding of droplets on soft films 

with homogeneous thickness; the second part is on the behavior of sliding droplets on soft films 

with thickness gradient. 

 
FIGURE 5.1: Experimental setup for the sliding experiment. 

The experimental setup for this chapter is drawn in Figure 2.14 and is shown in Figure 5.1. 

Here we will elaborate on the configuration of the sample and the humidity control. Soft films 

are bounded on glass slides, which are vertically tilted, hence inducing a 90° sliding angle for 

droplets. The substrate tilting is monitored by an electronic level with a precision of 0.1°. A 

front view camera (DFK 23UX174, IMAGING SOURCE, Germany) is installed facing the soft 

film to track the droplet motion with a resolution of 19 𝜇𝑚/𝑝𝑖𝑥𝑒𝑙. The glass slide bounded 

with the soft film is placed in a petri-dish which is vertically mounted. During the experiment, 

the petri-dish will be closed and deposited with extra water (Figure 5.1). Thus, evaporation of 

sliding droplets is mostly inhibited, which is demonstrated in Figure 5.2: during the ~1 ℎ𝑜𝑢𝑟 

sliding, the diameter 𝐷 of the smallest droplet (1 𝜇𝐿) we will use decreases from 1.25 𝑚𝑚 to 

1.23 𝑚𝑚 and the change is only 1.6%. For other droplets, the change is found to be less than 

1.6%. As a consequence, we will assume that the sliding experiments are performed in an 

environment saturated with liquid vapor and the droplet evaporation is neglected. The liquid 

we employ in this chapter is distilled water (Milli-Q Integral; Millipore, USA) and the shear 

elastic modulus of the soft PDMS gel is 1.2 𝑘𝑃𝑎, whose rheology is the same as that used in 

chapter 4. 

Camera 

Humidity control 

PDMS film on glass slide 
Illumination 
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FIGURE 5.2: The sliding of a 1 𝜇𝐿 droplet in 62 𝑚𝑖𝑛𝑢𝑡𝑒𝑠. Black arrow indicates the gravity direction. 

5.2 Droplets sliding on viscoelastic films 

5.2.1 Droplet size effect 

We will show how the droplet size affects the sliding velocity of droplets on vertically titled 

soft films and their morphology in the steady state. 

On the sliding velocity 

 
FIGURE 5.3: Droplet size effect on the sliding velocity. The thickness of the soft film is 18.5 𝜇𝑚. Time duration 

between the two superimposed pictures is 340 𝑠𝑒𝑐𝑜𝑛𝑑𝑠. Red arrow indicates the displacement of each droplet. 

The green arrow points to the gravity direction. 

Figure 5.3 depicts the sliding of water droplets over a soft film of 18.5 𝜇𝑚 thick. Their size 

varies from 0.9 𝜇𝐿 to 6 𝜇𝐿. The red arrows indicate the displacement of each droplet during the 
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3 𝜇𝐿 
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340 𝑠𝑒𝑐𝑜𝑛𝑑𝑠. The first image is taken ~1 𝑚𝑖𝑛𝑢𝑡𝑒 after the droplet deposition. All droplets 

move along the gravity direction on the uniformly thick soft layer; the larger the droplet is, the 

faster the sliding velocity is. To see how the sliding velocity evolves during the sliding, we plot 

the sliding velocity, 𝑉𝑠, as a function of droplet position in Figure 5.4. All the droplets move 

from left to right in time sequence. For sliding on both the thin layer (Figure 5.4(a)) and thick 

layer (Figure 5.4(b)), 𝑉𝑠 barely changes with the sliding time and location. However, it increases 

with the increase of the droplet size. Next, we will analyze how the sliding velocity is 

determined by it. 

 
FIGURE 5.4: Sliding velocity, 𝑉𝑠, as a function of displacement. Droplets slide from left to right. (a)The 

thickness of the soft layer is 18.5 𝜇𝑚. (b) The thickness of the soft layer is 1680 𝜇𝑚. 

When a droplet slides over a soft layer, the driving energy comes from the gravity. And it is 

always balanced with the overall dissipation in the system for the steady state. This dissipation, 

as is demonstrated in previous chapter, is dictated by the dissipation from the soft gel close to 

the contact line. Assuming the droplet keeps a circle shape during the steady sliding, dissipation 

during certain time ∆𝑡 can be estimated as37,38: 

𝐸𝑜𝑣𝑒𝑟𝑎𝑙𝑙~𝐷∆𝑡𝑃𝑓𝑖𝑙𝑚 (5.1) 

where 𝐷 and 𝑃𝑓𝑖𝑙𝑚 are the diameter defined in Figure 5.2 and Figure 5.6, and the dissipated 

power for a single contact line, respectively. It shall be equal to the gravitational energy: 

𝐸𝑜𝑣𝑒𝑟𝑎𝑙𝑙~𝐷∆𝑡𝑃𝑓𝑖𝑙𝑚 = 𝑚𝑔𝑉𝑠∆𝑡 (5.2) 

here, 𝑚 is the mass of the liquid and it scales as ~𝜌𝐷3 sin 휃𝑑; 𝜌 and 𝑔 are the water density 

and the gravitational acceleration, respectively. Using Equation (4.22), Equation (4.30) at small 

sliding velocity (𝑉𝑠 < 0.1 𝑚𝑚/𝑠), we reach: 

𝐷∆𝑡 (
𝛾𝐿𝑉 sin휃𝑑

𝛾𝑠
)
2

𝐺0𝑉𝑠|𝑉𝑠𝜏|
𝑚∫

|𝑘|𝑚+2

(𝑘2 +
𝐺0

𝛾𝑠𝐾(𝑘)
)2
𝑑𝑘

∞

0

~𝜌𝐷3𝑔 sin 휃𝑑 𝑉𝑠∆𝑡 (5.3) 

휃𝑑 is the dynamic contact angle. Since the integral ∫
|𝑘|𝑚+2

(𝑘2+
𝐺0

𝛾𝑠𝐾(𝑘)
)2
𝑑𝑘

∞

0
 is not sensitive to 𝑉𝑠, we 

replace it with a function Θ(ℎ0). Hence, 

(a) (b) 
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𝑉𝑠
𝑚~

𝜌𝐷2𝑔

𝐺0Θ(ℎ0)𝜏
𝑚 sin 휃𝑑

(
𝛾𝑠
𝛾𝐿𝑉
)
2

 (5.4) 

For this scaling law, the local dynamic contact angle,  휃𝑑 , around the contact line is not 

accessible with our experimental technique. However, it is possible to solve it numerically by 

combining with Equation (4.30). Here, we take a simple approach and assume that its variation 

is not strong during the droplet sliding. Then, Equation (5.4) leads us to:  

𝑉𝑠~(
𝜌𝑔

𝐺0Θ(ℎ0)𝜏
𝑚
)

1
𝑚
(
𝛾𝑠
𝛾𝐿𝑉
)

2
𝑚
𝐷
2
𝑚 (5.5) 

From the rheology in the previous chapter, we know that 𝑚 = 0.615. Hence, 𝑉𝑠~𝐷
3.3. This 

scaling captures very well our experiments (Figure 5.5) for small droplets. When droplet size 

becomes large (> 2.5 𝑚𝑚), it starts to deviate. This is likely due to the fact that droplet shape 

is elongated, as will be demonstrated in the next. 

 
FIGURE 5.5: Log-log plot of the droplet size effect on the sliding velocity. 

On the morphology 

During our experiment, we notice that the morphology of sliding droplets from a front view is 

varying with the change of the droplet volume (1 𝜇𝐿 − 20 𝜇𝐿)/sliding velocity (2.5 𝜇𝑚 𝑠⁄ −

1.8 𝑚𝑚/𝑠). Their steady shape at sliding is shown in Figure 5.6. Droplet shape is elongated in 

the sliding direction, and this elongation is more and more obvious with the increasing of the 

droplet volume/sliding velocity. A quasi-round shape is found for droplets smaller than 7 𝜇𝐿 

(𝑉𝑠 < 42.5 𝜇𝑚/𝑠). A neck that connects the rear of the droplet and the front of the droplet starts 

to develop when volume increases. 
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FIGURE 5.6: Droplet size effect on the its morphology at sliding. The thickness of the soft layer is 18.4 𝜇𝑚. 

When the volume increases from 1 𝜇𝐿 to 20 𝜇𝑙, the diameter for each droplet in the figure increases as: 

1.2 𝑚𝑚,  1.53 𝑚𝑚, 1.68 𝑚𝑚, 1.97 𝑚𝑚, 2.17 𝑚𝑚, 2.35 𝑚𝑚, 2.49 𝑚𝑚, 2.57 𝑚𝑚, 2.65 𝑚𝑚, 2.82 𝑚𝑚, 

3.09 𝑚𝑚, 3.2 𝑚𝑚, 3.25 𝑚𝑚, 3.3 𝑚𝑚. 

5.2.2 Thickness effect 

We run droplet sliding experiments on soft films with thickness ranging from 8.3 𝜇𝑚  to 

1680 𝜇𝑚. And the droplet size varies from 1.5 𝜇𝐿 to 14 𝜇𝐿. The thickness effect on the sliding 

(Figure 5.7) is found to be similar to that on the spreading dynamics as we have revealed in 

previous chapter. Less energy dissipation is found on a thinner layer, thus the faster the sliding 

velocity is on a thinner layer. The thickness effect is pronounced at ℎ0 < 100 𝜇𝑚 as is denoted 

by the sharp increase, possibly by a factor of 3.4 , on all the curves in Figure 5.7. The 

dependence of 𝑉𝑠 on the thickness ℎ0 is becoming weak for large thickness (ℎ0 > 100 𝜇𝑚). 

The full calculation from Equation (5.4) and Equation (4.30) remains to be performed to 

understand all those features. 

 

20 𝜇𝐿 18 𝜇𝐿 14 𝜇𝐿 12 𝜇𝐿 10 𝜇𝐿 

8 𝜇𝐿 7 𝜇𝐿 6 𝜇𝐿 5 𝜇𝐿 4 𝜇𝐿 3 𝜇𝐿 2 𝜇𝐿 1.5 𝜇𝐿 1 𝜇𝐿 

2 mm 
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FIGURE 5.7: Linear-log plot of the thickness effect on the sliding velocity. 

5.3 Drifting droplets with thickness gradient 

We also investigate how droplets would move over coatings with gradients of thickness. 

Because the dynamic contact line at different location would experience different 

friction/dissipation, this might generate a net drifting force when the droplet is moving. In the 

following, we will show our experimental design and results. 

5.3.1 Experimental setup 

The experimental setup is the same as the one used in the sliding experiments (section 5.1) 

except that the soft films are specially designed (section 2.5). Soft films are prepared on 

transparent glass slides and they are vertically tilted along the gravity. Droplets will slide down 

the soft layer because of gravity (Figure 5.8). During experiments, evaporation is controlled 

and a front view camera (DFK23UX174, IMAGING SOURCE, Germany) is mounted to record 

droplet motion. Important parameters we will use are defined as follows: the diameter of the 

liquid-solid interface is 𝐷 ; the vertical sliding velocity of droplets is indicated as 𝑉𝑠 ; the 

thickness of the soft layer where the contact line stands on the thin side of the soft layer is called 

ℎ𝑚; the thickness profile of the soft layer is ℎ(𝑥) and 𝑥 = 0 means the edge of the soft film 

(ℎ(0) = 0); the surface slope angle of the soft film is 𝛼. 

 
FIGURE 5.8: Droplet sliding down on a soft layer with a thickness gradient. 

5.3.2 Drifting 

Observation 

Droplets on a soft film with thickness gradient not only slide down along the direction of gravity, 

but also, they drift to the thick side of the film. Figure 5.9 is the superimposition of six pictures 

with the time interval of 24 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 between each successive two. The droplet volume is 

1.5 𝜇𝐿. The thickness profile is on the top of Figure 5.9 and it corresponds to the film below.  

As can be seen, the three droplets are in general moving at the same sliding velocity. This is 

expected from our previous results (Chapter 4 and section 5.2.2) because the thickness of soft 

gel beneath them is larger than 100 𝜇𝑚: sliding/receding velocity weakly depends on the 
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thickness when the soft layer is thick (ℎ0 > 100 𝜇𝑚). However, droplets I and II drift to the 

thick side of the soft layer while the droplet III moves only along the gravitational direction. 

The thickness of soft layers at the initial position of the three droplets, ℎ𝑚, increases from  

~80 𝜇𝑚  to ~190 𝜇𝑚  for droplet I, from ~280 𝜇𝑚  to ~395 𝜇𝑚  for droplet II and from 

~440 𝜇𝑚 to ~560 𝜇𝑚 for droplet III. The drifting effect for droplet I is always stronger than 

droplet II. It seems that the thinner the layer is, the stronger the drifting would be. 

 
FIGURE 5.9: Drifting of droplets on a soft film with thickness gradient. Droplet volume is 1.5 𝜇𝐿. The 

thickness of the soft layer corresponds to the thickness profile on top. The yellow arrow points to the gravity 

direction. 

For the drifting origin, is it a static effect or a dynamic one? Style et al72, observed the 

spontaneous moving of small droplets (diameter < 100 𝜇𝑚) from thin part to the thick part on 

soft films with thickness gradient. This phenomenon comes from the dependence of the static 

contact angle on the soft layer thickness for small droplets (𝐷~𝑙𝑠): the static contact angle 

decreases as the layer becomes thicker so that droplets spontaneously move from lyophobic 

part (high contact angle on thin layer) to the lyophilic part (low contact angle on thick layer). 

In the following, we will show that this effect is not relevant to our observations of the drifting. 

Static origin 

12 mins 

36 mins 

60 mins 

84 mins 

108 mins 

132 mins 

2 mm 

X 

I 

III 

II 



 
108 Chapter 5 Sliding and drifting of droplets on soft films 

The experimental design we use to investigate the effect of thickness gradient is shown in 

Figure 5.10(d): a mold made of PMMA glass is machined into a block with a canal with a well-

controlled cross-section (Figure 5.10(d)). Sylgard 527 is prepared according to section 2.6.1 

and poured onto the mold on which a pre-layer of Sylgard 527 liquid has been spin-coated (see 

section 2.5). During the crosslinking, the flatness of the surface is monitored with a level which 

has a precision of 0.1°. The surface of the soft film is always exposed to air, thus it is flat and 

the surface roughness is very small. When the sample is ready, droplet sliding (titling angle 90°, 

Figure 5.10(a)) and horizontal resting (titling angle 0° , Figure 5.10(b)) experiments are 

performed with the same droplet volume (2 𝜇𝐿), respectively. A side view of the sliding is 

shown in Figure 5.10(c). Black shadow line in Figure 5.10(a-b) corresponds to the thickness 

jump on the cartoon drawing of the substrate below each image. Figure 5.10(a) is the 

superimposition of two pictures with a time interval 41 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 and Figure 5.10(b) consists 

of two separate pictures with the time interval 207 𝑚𝑖𝑛𝑢𝑡𝑒𝑠. The drifting angle 𝛿 is defined as 

the angle between the sliding trajectory and the gravity direction. 

 
FIGURE 5.10: Drifting origin. Droplet volume is 2 𝜇𝐿. (a) Drifting of a sliding droplet. (b) A resting droplet on 

a soft layer with step thickness design. (c) Schematic of sliding experiment of (a). (d) Schematic of resting 

experiment of (b) and the cross-section view of sample. ℎ1 = 120 𝜇𝑚; ℎ2 = 400 𝜇𝑚; 
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We observe that the drifting occurs in the sliding case, i.e. in a dynamic situation (Figure 5.10(a) 

and 5.10(c)). On the one hand, the droplet slides down because of gravity pulling; on the other 

hand, it drifts from the thin side (120 𝜇𝑚) to the thick side (360 𝜇𝑚 − 400 𝜇𝑚) of the soft gel 

in 41 𝑚𝑖𝑛𝑢𝑡𝑒𝑠. In the sessile case, two droplets are barely moving except for the evaporation-

induced shrinking. One droplet (left-side droplet in Figure 5.10(b)) is placed on a soft layer 

whose thickness increases linearly from 272 𝜇𝑚  to 320 𝜇𝑚  and the other one (right-side 

droplet in Figure 5.10(b)) is deposited on a soft layer with a thickness jump from 120 𝜇𝑚 to 

400 𝜇𝑚. Both droplets remain immobile over the 207 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 during the experiment. These 

results justify that the drifting of sliding droplet is not due to the spontaneous motion of the 

droplet. Rather, it should be a dynamic effect which originates from the asymmetrical dynamic 

surface tension around the contact line (Figure 5.11). 

A simple way to understand the observed drifting is depicted in Figure 5.11. Note that the 

droplet is moving towards us. If the droplet is moving steadily, the wetting velocity, at each 

liquid-solid-vapor junction, should be symmetric with respect to the centerline along the sliding 

direction. With the results from chapter 4, we know that dynamic contact angles on the two 

sides on the droplet will be different: the dynamic contact angle, 휃𝑡ℎ𝑖𝑛, should be smaller than 

the dynamic contact angle, 휃𝑡ℎ𝑖𝑐𝑘 , on the thick side. As a consequence, the asymmetrical 

dynamic contact angle indicates the asymmetrical friction around the contact line, resulting into 

an unbalanced net translation force, which drives the droplet to the thick side of the soft layer. 

 
FIGURE 5.11: Schematic for the drifting origin. Black dashed line is the trajectory of the droplet, white dashed 

line is the vertical. The orange arrow represents the rotation of the droplet as it moves down the coating. 

5.3.3 Results 

Now we will report our experimental results on the thickness effect and the thickness gradient 

effect on drifting. The soft layers we will use are shown in Figure 2.21. Figure 2.21(a) indicates 

the thickness profiles of them, and Figure 2.21(b) consists two cross-section views of the soft 

films. A meniscus at the edge is found to extend to its capillary length, 

𝑙𝑐~√𝛾𝑃𝐷𝑀𝑆 𝜌𝑔⁄ ~1.4 𝑚𝑚. The thickness gradient of the sample I is tan𝛼1 = 0.11 − 0.16, 

and that of the sample II is tan 𝛼2 = 0.04 − 0.08. 

Thickness effect 

Figure 5.12 (a) summarizes the thickness effect for the droplet drifting. 𝛿 indicates the drifting 

angle. ℎ𝑚 is the initial position of a droplet, and it is defined in Figure 5.8, standing for the 

smallest layer thickness over which the droplet slides. We find that an increasing thickness 

results into a decreasing drifting angle 𝛿. This can be qualitatively understood from the fact that 

the dependence of the dynamic contact angle (drifting force) on the thickness is decreasing with 

the increasing of the thickness (section 4.3.2). 

Droplet size effect 



 
110 Chapter 5 Sliding and drifting of droplets on soft films 

When the liquid volume increases, the drifting angle decreases (Figure 5.12(a)). This is due to 

the decreasing ratio of the drifting force 𝐹𝑑𝑟𝑖𝑓𝑡𝑖𝑛𝑔 to the sliding force 𝐹𝑠𝑙𝑖𝑑𝑖𝑛𝑔. To understand a 

bit the trend of the volume effect, we assume that the cos 휃𝑑 is linearly inversely proportional 

to the thickness for a fixed sliding velocity. For the drifting force, it is the integration of the 

dynamic surface tension difference (~𝐷) over the whole contact line (𝜋𝐷) and should scale like 

~𝐷2. For the sliding force, it comes from gravity that scales with the volume (𝑉) of the droplets 

(~𝐷3 ). Thus, drifting angle 𝛿  should be approximated related to 𝐹𝑑𝑟𝑖𝑓𝑡𝑖𝑛𝑔  and 𝐹𝑠𝑙𝑖𝑑𝑖𝑛𝑔  as: 

tan 𝛿 ~𝐹𝑑𝑟𝑖𝑓𝑡𝑖𝑛𝑔 𝐹𝑠𝑙𝑖𝑑𝑖𝑛𝑔⁄ ~1 𝐷⁄ ~1 𝑉
1

3⁄ . This simple scaling is verified by experiments 

(Figure 5.12(b)). 

 
FIGURE 5.12: Thickness effect and thickness gradient effect on the drifting. (a) Drifting on sample II (tan 𝛼 =
0.04 − 0.08); ℎ𝑚 is defined in Figure 5.8, standing for the thickness of the soft layer beneath the contact line 

on the thin side. (b) Scaling. 

Thickness gradient effect 

Two soft layers with different thickness gradient, tan𝛼 , are employed to investigate the 

thickness gradient effect (Figure 5.13). The thickness gradient of the solid curve (0.11 − 0.16) 

is almost twice that of the dotted curve (0.04 − 0.08). we find that: at small thickness, tan 𝛿 is 

larger for a larger tan𝛼 at a fixed 𝑉; however, at large thickness, tan 𝛿 is smaller for a larger 

tan𝛼 at a fixed 𝑉. 

 
FIGURE 5.13: Thickness gradient effect on the drifting. Drifting on sample I (tan 𝛼1 = 0.04 − 0.08) and 

sample II (tan 𝛼2 = 0.11 − 0.16). 

(b) (a) 
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5.4 Conclusions and perspectives 

This chapter is mainly an experimental report of the droplet sliding on soft films.  

First, we experimentally investigate the sliding of droplets on soft films with homogenous 

thickness. We systematically study the droplet size effect and thickness effect on the sliding 

velocity. For the droplet size effect, we vary the liquid volume from 1.5 𝜇𝐿 to 14 𝜇𝐿, and we 

find a scaling law by assuming that the intersection of the liquid-solid is a circle. This scaling 

works well for small droplets. For the thickness effect, we change the thickness of soft layers 

from 8.3 𝜇𝑚 to 1680 𝜇𝑚. A similar result is recovered as that in receding dynamics: its effect 

is pronounced at small thickness (< 100 𝜇𝑚) and becoming weak for large thickness (>

100 𝜇𝑚). Besides, we report the morphology of the sliding droplet depends on the droplet 

volume (1 𝜇𝐿 − 20𝜇𝐿)/sliding velocity (2.5 𝜇𝑚/𝑠 − 1.8 𝑚𝑚/𝑠). It is a round shape at small 

droplet (𝑉 < 7𝜇𝐿 )/velocity (𝑉𝑠 < 42.5 𝜇𝑚/𝑠 ) and becomes elongated along the sliding 

direction at large droplet (𝑉 > 7𝜇𝐿)/velocity (𝑉𝑠 > 42.5 𝜇𝑚/𝑠). 

Next, we report the droplet sliding on soft films with thickness gradient. We find that a dynamic 

drifting phenomenon: sliding droplets not only move in the gravity direction, but also are 

horizontally translated. The origin of it is checked. We rule out the durotaxi effect by looking 

at a resting sessile droplet on a flat soft film with a sharp thickness jump. Further, we show the 

thickness effect, droplet size effect and thickness gradient effect on the drifting angle: large 

thickness decreases the drifting angle; increasing droplet size also inhibits the drifting; high 

thickness gradient promotes the drifting at small thickness. 

We have investigated sliding on soft films with homogeneous thickness mostly through 

experiments. However, the value of 휃𝑑 around the whole contact line in Equation (5.4) remains 

unsolved. In theory, it can be acquired from Equation (4.30). By combining the above two 

equations, it is possible further to check the droplet size effect and thickness effect for small 𝑉𝑠. 

Besides, the theoretical value of 휃𝑑  from the 2D model needs to be compared with experiments, 

which can be obtained at the advancing front and the receding rear of sliding droplets from a 

side view. 

We don’t understand the shape of the sliding droplet at large 𝑉𝑠 on soft substrate, which has not 

been solved yet. The energy dissipation for the high velocity sliding needs an exact solution of 

it, as is the same with the relation of 𝑉𝑠 and 𝑉. 

For the sliding and drifting on soft films with thickness gradient, a full calculation on the 

drifting force has not been carried out yet. Nevertheless, we think that this feat should be 

possible with our dissipation model: Equation (4.23) can be solved together with a round-shape 

assumption of the liquid-solid intersection. How exactly the droplet size, thickness of soft layer 

and the gradient of soft layer affect the drifting remains to be numerically compared with 

experiments. At high velocity, the sliding droplet shape will be elongated and the resultant 

drifting force will be modified as a consequence. This would be another challenging task to 

tackle. 
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Chapter 6 General conclusions and perspectives 

6.1 Conclusions 

In this thesis, we have experimentally and theoretically studied the statics and dynamics of 

elastowetting: static surface deformation, contact angle hysteresis, spreading dynamics and 

sliding of droplets.  

First, we have built a quantitative Schlieren optics, with which we are able to directly measure 

the surface slope of a deformed gel in real time. This setup is sensitive to the light beam 

deflection (7 × 10−4𝑟𝑎𝑑) with a scope up to 0.05 𝑟𝑎𝑑. For the PDMS gel with the refractive 

index of 1.4, it can detect the surface slope up to ~7° with a precision of 0.1° (7.1 𝑛𝑚 in spatial 

precision). Besides, we develop a set of other techniques to detect the dynamic contact angle 

and wetting velocity, to control the viscoelasticity (𝐸: 3.6 × 103 − 1.8 × 106𝑃𝑎) and thickness 

(ℎ0: 8 − 3 × 10
3𝜇𝑚) of soft gels. 

 
FIGURE 6.1: Liquid droplet on a soft substrate. 

Then, we experimentally investigate the long-range surface deformation induced by a sessile 

droplet (Figure 6.1) in the dry side (> 𝑙𝑠 ) of the contact line by varying the droplet size 

(𝐷: 0.42 − 2.95 𝑚𝑚 ), the thickness of soft layers (ℎ0: 44 𝜇𝑚 − 3 𝑚𝑚), elasticity of soft 

PDMS (𝐺′: 1.2 − 15.7 𝑘𝑃𝑎) with the Schlieren setup. Experimental results are rationalized 

with a 3𝐷 model based on linear elasticity theory with the solid surface tension considered. The 

analytical solution for a single contact line on a soft slab with finite thickness ℎ0 is applied as 

a Green function to the 3𝐷 problem which is approximated by a rivulet (width 𝐷/2) on a soft 

slab with finite thickness ℎ0. The contribution of each component of the applied stresses is 

analyzed: the short-range surface deformation (< 𝑙𝑠) is dominated by the vertical component 

of 𝛾𝐿𝑉  from the close contact line; the long-range surface deformation (> 𝑙𝑠 ) is equally 

determined by the vertical and tangential components of 𝛾𝐿𝑉 from the close contact line, and 

the Laplace pressure inside the droplet. However, the long-range surface deformation induced 

by the tangential traction 𝛾𝐿𝑉 cos 휃𝑒 is sensitive to 휃𝑒. This is also verified by the hysteresis 

experiment on the surface deformation. We finally conclude that: to establish a model to capture 

the full range of the surface deformation, it is necessary to take the tangential component of the 

liquid-vapor traction at the contact line into account.  

Wetting on soft gels is found to be related with the resting time of a sessile droplet. A trace left 

behind by a resting droplet on soft PDMS gel is observed and its lifetime (from ⁓seconds to 

⁓hours) depends on the resting time (from ⁓seconds to ⁓30 minutes). It can pin the contact line 

and introduce a contact angle hysteresis. On a soft layer of 20 𝜇𝑚 thick, height of the trace 
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induced by a droplet with the resting time of 2 hours, is found to be 700 𝑛𝑚 after ⁓20 seconds’ 

relaxation. This surface deformation is much higher than the surface roughness. The wetting 

ridge at the contact line grows with the presence of the contact line. To identify the origin for 

its growth, we track the relaxation of a trace on PDMS, which points us to the importance of 

poroelasticity in this problem. 

Receding dynamics of the contact line on a soft PDMS gel with controlled thickness (8.8 −

1011 𝜇𝑚 ) is experimentally studied. We confirm the receding at small velocity ( 𝑉𝑑 <

0.35 𝑚𝑚/𝑠) is quasi-steady by checking the flux rate effect (from 20 𝜇𝐿/𝑚𝑖𝑛 to 120 𝜇𝐿/𝑚𝑖𝑛) 

as well as the needle position effect (“Capping” and “Penetrating”). We show that the droplet 

size does not affect the spreading dynamics, which implies that the gel dissipation mainly comes 

from the region surrounding the contact line. In contrast, the thickness of soft layers modifies 

the receding dynamics. From those results, we build a dissipation model based on the linear 

viscoelasticity theory and fit our soft gel rheology with the Chasset-Thition model. It turns out 

this dissipation model captures well all the experiments and stands out among the “elastic” 

model, Long et al.’s model and the phenomenological model. Not only can it recover the 

viscoelastic braking, but also it is able to predict the thickness effect. In the end, we simplify 

our full calculation into two scaling laws: one holds for small velocity (𝑉𝑑 < 0.35 𝑚𝑚/𝑠) and 

the other one holds for small thickness (ℎ0 < 50 𝜇𝑚) at small velocity (𝑉𝑑 < 0.35 𝑚𝑚/𝑠). 

Finally, under the inspiration of the thickness effect in the spreading dynamics, we 

experimentally investigate the sliding of droplets on two types of vertically tilted substrates: 

one is the soft film with homogeneous thickness and the other one is designed with thickness 

gradient. For the sliding on uniform thick layers, we study effects of the droplet size (𝑉: 1.5 −

14 𝜇𝐿) and thickness (ℎ0: 8.3 − 1680 𝜇𝑚). A scaling law for the droplet size effect on the 

sliding velocity is deduced at small droplet size (𝑉 < 7 𝜇𝐿 )/velocity (𝑉𝑠 < 42.5 𝜇𝑚/𝑠 ). 

Thickness effect on 𝑉𝑠 is similar to that in receding dynamics. Droplet size or 𝑉𝑠 also modifies 

the morphology of sliding droplets: droplets are elongated along the sliding direction at large 

𝑉 or high  𝑉𝑠. For the sliding on soft layers with thickness gradient, we observe a drifting of 

droplet in the direction perpendicular to the sliding. Its static origin is checked and ruled out. 

We propose a dynamic model which is in charge of this translation motion. 

6.2 Perspectives 

Motivated by studies on the surface deformation and contact angle hysteresis in statics, it is 

time now to wonder what could happen to the contact angle hysteresis when the soft materials 

become more viscous and how the diffusion of liquids into the polymer network modifies the 

surface deformation. We will now show our preliminary results of the contact angle hysteresis, 

휃ℎ, on the SBS-paraffin gel and demonstrate why it is important to take the rheology of gels 

into account when it comes to 휃ℎ . Besides, we will show how the poroelasticity can 

significantly modify the surface deformation, though many questions remain to be addressed. 

6.2.1 Contact angle hysteresis on SBS-paraffin gels 

Inspired by the resting time effect of the PDMS gel in section 3.6 and the report of “stick-slip” 

motion observed during water spreading on viscoelastic materials68,69, we try to see how the 

resting time may affect the contact angle hysteresis of a viscoelastic gel. 

We use the 15% SBS-paraffin gel in the current study. Its preparation has been detailed in 

Section 2.6.2. The thickness of the paraffin layer is 2.6 𝑚𝑚. A chamber which control the 

humidity is used for inhibiting the droplet evaporation. During the hysteresis test, water is 

injected into or extracted from droplets at fixed flux rate 10 𝜇𝐿/𝑚𝑖𝑛. 
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FIGURE 6.2: Resting time effect on the contact angle hysteresis of a water droplet on SBS-paraffin gel layer. 

The relevant result is shown in Figure 6.2. The advancing contact angle and receding contact 

angle at 𝑅𝑒𝑠𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = 0 𝑠 are acquired by a fast inflation and deflation test. The duration of 

the contact line resting is very short (⁓seconds).  We simply take their resting time as 0 second 

as an approximation. As a result, we see that the advancing contact angle increases and receding 

contact angle decreases with the increasing of resting time. After 700 seconds, the contact angle 

hysteresis reaches 73°. This is in sharp contrast to the case of soft PDMS where 휃ℎ increases 

to 14° with a resting time of 1800 seconds. 

After performing the hysteresis experiments, we observe the traces are still visible within our 

camera even after 84 minutes relaxation! As is revealed in Figure 6.3(a), dark circles on the gel 

interface are the traces induced by the long-resting droplets.  

 
FIGURE 6.3: Trace left by resting droplets. (a) Relaxation time for the traces from the inner to outer (red 

arrow direction): 84 𝑚𝑖𝑛𝑢𝑡𝑒𝑠, 43 𝑚𝑖𝑛𝑢𝑡𝑒𝑠, 30 𝑚𝑖𝑛𝑢𝑡𝑒𝑠, 20 𝑚𝑖𝑛𝑢𝑡𝑒𝑠, 13 𝑚𝑖𝑛𝑢𝑡𝑒𝑠, 9 𝑚𝑖𝑛𝑢𝑡𝑒𝑠, 3 𝑚𝑖𝑛𝑢𝑡𝑒𝑠, 
2 𝑚𝑖𝑛𝑢𝑡𝑒𝑠; the resting time for creating those traces are 15 𝑚𝑖𝑛𝑢𝑡𝑒𝑠, 15 𝑚𝑖𝑛𝑢𝑡𝑒𝑠, 12 𝑚𝑖𝑛𝑢𝑡𝑒𝑠, 9 𝑚𝑖𝑛𝑢𝑡𝑒𝑠, 
6 𝑚𝑖𝑛𝑢𝑡𝑒𝑠, 3 𝑚𝑖𝑛𝑢𝑡𝑒𝑠, 1 𝑚𝑖𝑛𝑢𝑡𝑒𝑠, 0.5 𝑚𝑖𝑛𝑢𝑡𝑒𝑠. The black spots on (a) are from the bottom of the glass slide. 

They won’t affect the wetting hysteresis measurement. (b) 3D reconstruction of the trace induced by a resting 

water droplet. Resting duration is 10 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 and the relaxation time after the droplet removal at the 

measurement is 77 𝑠𝑒𝑐𝑜𝑛𝑑𝑠. 

1.5 mm 

(a) (b) 
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To see the exact shape of this trace, we perform 3D profilometry measurement for the gel film 

with a 3D profiler (Microsurf 3D, Fogal Nanotech, France) after 77 seconds’ relaxation of the 

trace, which is induced by a 10-minute resting water droplet. The shape of this trace is shown 

in Figure 6.4(a). The width is around 70 𝜇𝑚, and its height is 4.2 𝜇𝑚, which is much bigger 

than the size of the surface roughness (10 𝑛𝑚)68. In addition, to have an idea of how the ridge 

grows with the resting time, we measure the relaxation of the trace in Figure 6.4(a) and the 

corresponding result is plotted in Figure 6.4(b). Since the hysteresis is very different from that 

on the PDMS substrate, the relaxation test of the trace on PDMS gel is also tracked (Figure 

6.4(c)). By comparing Figure 6.4(b) and Figure 6.4(c), we find the following relaxation 

behaviors: both of them relax very fast in the beginning and then it takes hours to reach full 

relaxation; for the trace on SBS-paraffin gel to reach 0.4 𝜇𝑚 height, it takes ~1000 𝑠𝑒𝑐𝑜𝑛𝑑𝑠; 

while for the trace on PDMS gel to reach the same height, it take 20 𝑠𝑒𝑐𝑜𝑛𝑑𝑠. Note that the 

resting time (ridge growth time) is 10 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 for SBS-paraffin gel and 30 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 for the 

soft PDMS gel. It can be deduced that it takes much more than 1000 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 for the trace on 

SBS-paraffin gel to relax to a height of 0.4 𝜇𝑚 if the resting time increases to the same (30 

minutes) as that on the PDMS gel. 

By checking the two types of polymer rheology from section 2.6.1 and the data by T. Kajiya68,69, 

we notice that the PDMS gel has an elastic response at low frequencies (tan 𝛿 = 𝐺′′ 𝐺′ < 1⁄ ) 

while SBS-paraffin gel has a viscous response at such frequencies (tan 𝛿 = 𝐺′′ 𝐺′ > 1⁄ ). When 

a constant stress is applied to the two gels, PDMS gel will reach equilibrium in short time and 

SBS-paraffin gel will flow for a long time. This mechanism should also work in a similar way 

for the relaxation and thus predict the relaxation we have observed. 

 
FIGURE 6.4: (a) The shape of the trace after 77 𝑠𝑒𝑐𝑜𝑛𝑑𝑠’ relaxation on SBS paraffin gel. (b)Relaxation of the 

trace on the soft SBS-paraffin layer. The point that is marked in blue from (a) is trarcked. The resting duration 

(b) (a) 

Dry side 

(c) 
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of the water droplet is 10 𝑚𝑖𝑛𝑢𝑡𝑒𝑠. (c) Relaxation of the trace on a soft PDMS layer (𝐺′ = 1.2 𝑘𝑃𝑎). Droplet 

volume, resting time, and soft layer thickness are 5 𝜇𝐿, 30 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 and 1358 𝜇𝑚, respectively. 

The relaxation measurements of the two gels are inspiring. However, how to theoretically relate 

their mechanics to the relaxation and growth remains to be done. This will be the first step to 

understand the relation between the mechanics of soft materials and their contact angle 

hysteresis. The next question to be addressed is how the growth (relaxation) of the local ridge 

pins the contact line and induces the contact angle hysteresis. 

6.2.2 Elastowetting on hydrogels 

Static deformation 

We have investigated the simplest elastowetting case on soft PDMS gel: neutral wetting 

condition, no liquid diffusion. Now, we try to break those experimental constraints. In the 

following, we will present our first results of elastowetting on hydrogels.  

A. Nonneutral wetting 

We prepare PVA-SbQ/GA hydrogel films with a tunable 𝐺′ranging from 1 to 1.9 𝑘𝑃𝑎. For the 

maneuverability of the soft hydrogel films, they are adhered on a microscopy glass slide 

presumably by interactions between the glass and SbQ under UV exposure. Those gels are 

above the gelation limit in terms of the polymer concentration and in equilibrium swelling with 

water. With increase in the crosslinking ratio, small water droplets can be observed on their 

surfaces. This apparition of water droplets is due to the deswelling of the polymer network at 

the condition where the equilibrium polymer concentration is higher than the polymer 

concentration at preparation. Further increase in the crosslinking ratio induces fracturing the 

gel as it is fixed to the glass slide, not suitable for wetting experiment. For the polymer 

preparation, we fix the mass ratio of PVA-SbQ as 4.4%  and change the crosslinker GA 

(glutaraldehyde) molar concentration from 0.01 𝑀 to 0.09 𝑀. After the polymerization, those 

hydrogel films are kept in closed petri dishes saturated with water vapor. They will not be taken 

out until we start to run experiments. The surface deformation is measured ~30 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 after 

the water droplet deposition, as is demonstrated in Figure 6.5(a) and Figure 6.5(c). At the 

measurement, the contact line is already pinned. As a result, 𝑉𝑑 = 0 𝜇𝑚/𝑠. This can be further 

verified by Figure 6.7. The contact angle is observed by a side view camera (Figure 6.5(b)). 
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FIGURE 6.5: (a) Schlieren view of a water droplet on a PVA SbQ-GA hydrogel layer. PVA SbQ mass ratio is 

4.4 % and the GA molar concentration is 0.03 𝑀. (b) Side view of the (a). (c) Surface deformation measured 

30 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 after droplet deposition along the red line marked in (a). 

Surface deformation for each measurement is shown in Figure 6.5(c). The experimental 

parameters for each curve are summarized in TABLE 6.1. The thickness for the five films is 

almost the same, ~1200 𝜇𝑚. A dimple is formed when GA molar ratio is more than 0.03 𝑀. 

We observe that depth of the dimple increases when gels become more rigid. This observation 

seems to contradict PDMS results. However, the contact angle results should not be neglected. 

휃𝑒 decreases when the concentration of GA increases. With the reminiscent of the hysteresis 

effect on the surface deformation from elastic gel, it is not surprising that the dimple becomes 

deeper with the increase of GA concentration. After all, the increase of 𝐺′ is less than a factor 

2 for our measurements.  

TABLE 6.1 Parameters for the surface deformation 

Sample PVA-SbQ (%) GA (M) Contact angle (°) 𝐺 ′ (𝑘𝑃𝑎) 
Diameter 

(𝑚𝑚) 

PVA4.4GA0.01 4.4 0.01 66.7 0.93 3.5 

PVA4.4GA0.03 4.4 0.03 60.8 1.3 3.5 

PVA4.4GA0.05 4.4 0.05 52.9 1.1 3.8 

PVA4.4GA0.07 4.4 0.07 53.4 1.9 3.9 

PVA4.4GA0.09 4.4 0.09 55.7 1.5 4.4 

We apply our model written as Equation (3.29) to the hydrogel surface deformation. Since we 

do not measure the surface tension of the hydrogel, we calculate two limits for the surface 

tension of 𝛾𝑆 : 10 𝑚𝑁/𝑚 and 100 𝑚𝑁/𝑚. In Figure 6.6, the comparison of the theoretical 

predictions and the experimental result (PVA4.4GA0.09) is shown. The model fails to capture 

the surface profile of the experimental results whatever the surface tension is.  

1 mm 

0.5 mm 

(a) 

(b) 

(c) 
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FIGURE 6.6: Comparison between our model and experimental deformation for the test PVA4.4GA0.09. All 

experimental parameters are injected into Equation (3.29) except the surface tension 𝛾𝑆. Blue solid curve is the 

calculation when 𝛾𝑆 = 10 𝑚𝑁/𝑚  and the black solid curve is the calculation when 𝛾𝑆 = 100 𝑚𝑁/𝑚. 

In the model, we assume that the surface tension of liquid-gel interface and that of gel-vapor 

interface are the same. This assumption is reasonable for PDMS gels as its static contact angle 

is close to 90°. On the other hand, for the hydrogel it is 56°, thus it will be necessary to develop 

a model accounting for the asymmetry of the solid surface tension on both sides of the contact 

line. In the perspective of this work, it will be important to incorporate this asymmetry surface 

tension into the model. It would also be interesting to see how the geometry of the system and 

the material properties affect the surface deformation. 

B. Poroelasticity effect 

To study the diffusion-induced surface deformation, we prepare a hydrogel above the gelation 

limit and out of the swelling equilibrium. The hydrogel can absorb water when it is in contact 

with water in liquid or vapor phases. Here we prepare a PVA-SbQ hydrogel without GA, and 

the mass concentration of the PVA-SbQ polymer is 3.3%, which can swell in water.  

Thanks to the quantitative Schlieren setup, we can track the surface deformation in real time. 

We perform the diffusion test in the open surroundings with distilled water on the 3.3% PVA-

SbQ hydrogel film and observe the evolution of the surface deformation in 9 𝑚𝑖𝑛𝑢𝑡𝑒𝑠. As is 

shown in Figure 6.7(a), the white region close to the contact line propagates to the far region, 

indicating that the surface deformation increases when water diffuses from droplet bulk to the 

hydrogel network. The diffusion induces a growing surface deformation, extension of which 

increases from hundreds of microns to the several millimeters. At contact, there is a dimple 

around the contact line, pointed by the red arrow from Figure 6.7(a), which is a darker region 

than the surroundings. This is possibly due to the instantaneously elastic response of the 

hydrogel film. In the following stage, this dimple disappears and the interface around the 

contact line is swollen up, shown as the growing white annulus. With a side view camera, we 

are able to synchronize the contact angle evolution with the surface deformation, as is shown 

in Figure 6.7(b). Although a meniscus and the interface deformation can also be apparently 

visualized from a side view, the resolution of it is far worse than that of the Schlieren camera 

for the deformation measurement. 
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FIGURE 6.7: Diffusion of water droplet on a 3.3% PVA-SbQ hydrogel film (thickness~1300 𝜇𝑚). (a) Schlieren 

view of the diffusion process. Scale bar is 1 𝑚𝑚.(b) Side view of the diffusion droplet. Scale bar is 0.5 𝑚𝑚. 

Our quantitative Schlieren setup demonstrates a super-resolution ability in monitoring a tiny 

surface deformation on a large spatial scale. Thus, it would be very useful to study the diffusion 

effect on the interface deformation when liquid is absorbed into a polymer network. 

The growing of neighbor droplets 

Here we briefly describe the growth of small droplets observed during a wetting experiment. 

We identify a growing neighbor droplet close to the droplet that we deposit on a hydrogel film. 

The reason is unclear. 

We prepare a PVA-SbQ/GA hydrogel with PVA-SbQ of mass ratio 4% and GA of molar 

concentration 0.1 𝑀, which is sufficiently crosslinked to induce slight deswelling after the 

crosslinking reaction (the equilibrium polymer concentration is higher than the preparation 

polymer concentration, thus the gel deswells).  We store it in a closed petri-dish which is 

saturated with water vapor. When we start experiments, the hydrogel film is placed in the open 

surroundings and a water drop is deposited close to small droplets onto the gel film interface. 

Both the Schlieren view and side view are recorded for 25 minutes, as is displayed in Figure 

6.8. The small droplet (indicated by the red arrow in Figure 6.8) grows continuously in the first 

10 minutes, and later it seems to be in equilibrium in evaporation and absorption.  

0 min 

3 min 

6 min 

9 min 

0 min 

3 min 

6 min 

9 min 

(a) (b) 
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Since the hydrogel is in open air, the mother droplet, the small droplets and the hydrogel should 

be all evaporating. We observe that: the gel surface is swollen up, indicated by the growing 

bright annulus in Figure 6.8(a); the small droplets grow as well; the deposited water droplet is 

losing its volume. It would be reasonable to draw a conclusion that the principle droplet not 

only provides all the liquid volume for the system’s evaporation but also compensates the 

volume for growing neighbor small droplets. It seems that: (1) the solvent (water) is transported 

from this mother liquid reservoir to the polymer network; (2) some amount is extracted onto 

the surface. There is no surprise for the first diffusion effect. It is surprising for the second 

phenomenon. The exact mechanism for this is still not clear for the moment. A guess is that 

there is an osmotic pressure due to the surface deformation and this pressure competes with the 

Laplace pressure inside the small droplet. The dominance of the two decides whether droplet 

volume grows or not. A further study with the aid of the Schlieren optics in affirming the exact 

mechanism remains to be done. 

 
FIGURE 6.8: Growing of a small liquid drop around the mother bulk on 0.04PVA SbQ-0.1GA gel film. (a) 

Schlieren view of the surface deformation with the growing of nearby small droplets. (b) Side view of the 

growing droplets. 

(a) (b) 

1 mm 
0.5 mm 0 min 

5 min 

10 min 

15 min 

20 min 

25 min 

0 min 

5 min 

10 min 

15 min 

20 min 

25 min 



 
121 Appendix A: Deflection of the parallel light beam 

Appendix A: Deflection of the parallel light 

beam 

 
Figure A.1 Diagram of the relation between deflection distance and deflection angle 

A collimated light beam, without any disturbance, follows the dotted green line in Figure A.1 

when it passes through a lens of the focal length 𝑓0 and will focus at the focal point where the 

red line meets the green dotted line. When this incident light beam is deflected by an angle 휀, 

it will be deflected by a distance ∆𝑎 on the focal plane, as is demonstrated by the grey solid 

line. From Figure A.1, it can be easily found the following angle relations: 

휀 = 휀1 = 휀2 = 휀3 

Hence, 

∆𝑎 = 휀3𝑓0 = 휀𝑓0 

  

𝑓0 

Lens 

휀 휀1 

휀3 

∆𝑎 

Collimated light beam 

Deflected light beam 
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Appendix B: Scaling for the thickness effect at 

small thickness limit 

The spreading of liquid on soft layers at small velocity can be described by the following 

relations: 

Ψ(휃𝑑)~
𝛾𝐿𝑉
𝛾𝑠

𝐺0
𝛾𝑠
|𝑉𝑑𝜏|

𝑚∫
|𝑘|𝑚+2

(𝑘2 +
𝐺0

𝛾𝑠𝐾(𝑘)
)2
𝑑𝑘

∞

0

 

Ψ(휃𝑑) =
𝑐𝑜𝑠휃𝑒 − 𝑐𝑜𝑠휃𝑑

𝑠𝑖𝑛2휃𝑑
 

𝐾(𝑘) =
1

2𝑘
[

sinh(2ℎ0𝑘) − 2ℎ0𝑘

2ℎ0
2𝑘2 + cosh(2ℎ0𝑘) + 1

] 

(B.1) 

We will start with the term 
𝐺0

𝛾𝑠𝐾(𝑘)
 because it is the single term that contains ℎ0. Its Taylor series 

in respect to ℎ0 is: 

𝐺0
𝛾𝑠𝐾(𝑘)

=
2𝑘𝐺0
𝛾𝑠

[
2ℎ0
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5

336875𝛾𝑠
+ 𝑂(ℎ0

7) 

(B.2) 

At small thickness, the first term rules. Hence the other terms will be dropped. Now we arrive 

at a simpler expression for the integrand in Equation (B.1): 

∫
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By inserting Equation (B.3) into Equation (B.1), we will have: 

Ψ(휃𝑑)~
𝛾𝐿𝑉
𝛾𝑠

𝐺0
𝛾𝑠
|𝑉𝑑𝜏|
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)
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4

 (B.4) 

With proper dimensionless rearrangement of all terms, we find a scaling for the thickness effect 

for the spreading on soft layer at small thickness limit: 

Ψ(휃𝑑)~
𝛾𝐿𝑉
𝛾𝑠
(
𝑉𝑑𝜏𝐺0
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Résumé 
 

Dans cette thèse, nous nous sommes 
intéressés à la statique et la dynamique du 
mouillage de gouttes d’eau sur des substrats 
mous tels que des gels, encore connu sous le 
nom d’élastomouillage. Pour ce faire, nous 
avons d'abord développé une méthode 
quantitative de visualisation par strioscopie 
permettant de mesurer la déformation de la 
surface d'un film de gel transparent avec une 
précision élevée quelque soit l'épaisseur du 
substrat et sur de grandes distances. Nous 
montrons que la déformation superficielle de 
films mous de silicone (PDMS) dépend de la 
taille des gouttelettes déposées ainsi que de 
l'épaisseur et de l’élasticité de ces films. Nous 
avons construit un modèle basé sur la théorie 
de l'élasticité linéaire tenant compte de la 
tension superficielle des gels qui prédit bien 
la forme et l’amplitude de la déformation de 
surface. Nous apportons aussi la preuve 
expérimentale et l'analyse théorique de 
l’importance de l'hystérèse de l’angle de 
contact dans la description de la déformation 
en démontrant que la force tangentielle due à 
la tension superficielle entre liquide et vapeur 
à la ligne de contact, souvent négligé, 
contrôle la déformation de la surface. La 
dynamique de mouillage est étudiée en 
dégonflant des gouttelettes sur des films de 
PDMS avec une épaisseur bien contrôlée. Il 
est démontré que la dissipation d'énergie 
dans le gel dépend fortement de l'épaisseur 
lorsque cette dernière est inférieure à 100 𝜇𝑚. 
L'effet de freinage viscoélastique et l'effet 
d'épaisseur sont bien rationalisés avec un 
modèle basé sur la viscoélasticité linéaire et 
une simple loi l'échelle qui tient compte de 
l'effet d'épaisseur capture très bien nos 
expériences. Enfin, nous démontrons que 
nous pouvons dériver et guider les 
gouttelettes en mouvement avec la 
conception de surfaces couvertes de couches 
de gels ayant des gradients d'épaisseur. 
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Abstract 
 

In this thesis, we aim at obtaining a better 

understanding of the statics and dynamics of 

the wetting of liquids on soft gels, otherwise 

known as elastowetting. First, we develop a 

quantitative Schlieren set-up to measure the 

surface deformation of a transparent gel film 

with a high precision over large areas and for 

all thicknesses in real time. The long-range 

surface deformation of soft PDMS films is 

found to be dependent on the sessile droplet 

size, and the thickness and elasticity of soft 

films. We build a model based on linear 

elasticity theory that accounts for the surface 

tension of soft materials. It predicts the long-

range surface deformation in excellent 

agreement with the experimental data. We 

also bring the experimental proof and 

theoretical analysis of the importance of 

contact angle hysteresis in the description of 

the deformation of the surface of the gel. We 

demonstrate that the tangential component of 

the liquid-vapor surface tension at the contact 

line, whose contribution are often neglected, 

significantly affects the surface deformation. 

Wetting dynamics is investigated by deflating 

droplets on PDMS films with well-controlled 

thickness. It is shown that energy dissipation 

in the soft gel depends on the thickness when 

the latter is smaller than 100 𝜇𝑚. The 

viscoelastic braking effect and the thickness 

effect are both well rationalized with a model 

based on the theory of linear viscoelasticity 

and a simple scaling law accounting for the 

thickness effect captures very well our 

experiments. Finally, we demonstrate that we 

are able to guide moving droplets with 

coatings having a gradient of their thickness. 
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