A. Aradian, E. Raphael, and P. Gennes, Marginal pinching in soap films, Europhysics Letters), vol.55, issue.6, p.834, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00010086

F. P. Bretherton, The motion of long bubbles in tubes, J. Fluid Mech, vol.10, pp.166-188, 1961.

D. Burgess, . Foster, and . Mr, Analysis of the boundary conditions for a hele-shaw bubble, Physics of Fluids A: Fluid Dynamics, vol.2, issue.7, pp.1105-1117, 1990.

I. Cantat, Liquid meniscus friction on a wet wall: bubbles, lamellae and foams, Phys. Fluids, vol.25, p.31303, 2013.

I. Cantat and B. Dollet, Liquid films with high surface modulus moving in tubes: dynamic wetting film and jumpy motion, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00641368

L. Champougny, . Scheid, . Benoit, . Restagno, . Frédéric et al., Surfactant-induced rigidity of interfaces: a unified approach to free and dip-coated films, Soft Matter, vol.11, issue.14, pp.2758-2770, 2015.

J. Delacotte, L. Montel, F. Restagno, B. Scheid, B. Dollet et al., Plate coating: Influence of concentrated surfactants on the film thickness, Langmuir, vol.28, issue.8, pp.3821-3830, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00909689

N. D. Denkov, S. Tcholakova, K. Golemanov, V. Subramanian, and A. Lips, , 2006.

, Foam-wall friction: Effect of air volume fraction for tangentially immobile bubble surface, Colloids Surf. A, vol.282, pp.329-347

, Une fois que le premier minimum est atteint, l'intensité croît alors des images d à f le long de la branche d'interférence (2), ce qui correspond à un épaississement du film. Puis, à mesure que l'on se déplace en direction du ménisque avant (i.e. le long de l'axe x pour y = 0), l'intensité décroît en Fig. G.1.a. Cette variation correspond à une décroissance de l'intensité en direction du côté droit de la branche (1), caractérisant une augmentation de l'épaisseur du film. Une analyse similaire est effectuée pour chaque image

, Contrairement à la variation monotone de l'intensité dans le ménisque avant, un motif en forme de croissant est présent à l'arrière de la goutte (voir Fig. G.1.a), où l'intensité lumineuse varie sur toute la gamme de niveaux de gris. Ceci rend l'identification de l'épaisseur, a priori ambiguë

S. R. Hodges, O. E. Jensen, and J. M. Rallison, The motion of a viscous drop trhough a cylindrical tube, J. Fluid Mech, vol.501, p.279, 2004.

F. P. Bretherton, The motion of long bubbles in tubes, J. Fluid Mech, vol.10, pp.166-188, 1961.

D. Burgess and . Foster, Analysis of the boundary conditions for a hele-shaw bubble, Physics of Fluids A : Fluid Dynamics, vol.2, issue.7, pp.1105-1117, 1990.

G. Taylor and . Saffman, A note on the motion of bubbles in a hele-shaw cell and porous medium, The Quarterly Journal of Mechanics and Applied Mathematics, vol.12, issue.3, pp.265-279, 1959.

S. Tanveer, The effect of surface tension on the shape of a hele-shaw cell bubble. The Physics of fluids, vol.29, pp.3537-3548, 1986.

R. Dangla, 2D droplet microfluidics driven by confinement gradients, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00835536

A. R. Kopf-sill and G. M. Homsy, Bubble motion in a hele shaw cell, Phys. Fluids, vol.31, pp.18-26, 1988.

C. Park, S. R. Maruvada, and D. Yoon, The influence of surfactant on the bubble motion in hele-shaw cells, Phys. Fluids, vol.6, pp.3267-3275, 1994.

C. Srk-maruvada and . Park, Retarded motion of bubbles in hele-shaw cells, Physics of fluids, vol.8, issue.12, pp.3229-3233, 1996.

P. De-gennes, F. Brochard-wyart, and D. Quéré, Gouttes, bulles, perles et ondes. BELIN, 2002.

W. Wick, A drop of water : A book of science and wonder, 1997.

P. Simon-de-laplace, Traité de mécanique céleste : Théorie de l'action capillaire, p.1806

L. Zhu and F. Gallaire, A pancake droplet translating in a hele-shaw cell : lubrication film and flow field, Journal of Fluid Mechanics, vol.798, pp.955-969, 2016.

J. Ratulowski and H. Chang, Marangoni effects of trace of impurities on the motion of long gas bubbles in capillaries, J. Fluid Mech, vol.210, pp.303-328, 1990.

K. J. Stebe and D. Barthès-biesel, Marangoni effects of adsorption/desorption controlled surfactants on the leading end of an infinitely long bubble in a capillary, J. Fluid Mech, vol.286, pp.25-48, 1995.

A. Q. Shen, B. Gleason, H. Gareth, H. A. Mckinley, and . Stone, Fiber coating with surfactant solutions, Phys. Fluids, vol.14, p.4055, 2002.

I. Cantat, Liquid meniscus friction on a wet wall : bubbles, lamellae and foams, Phys. Fluids, vol.25, p.31303, 2013.

A. Huerre, Migration de gouttes en microfluidique : caractérisation et applications, 2015.

N. D. Denkov, S. Tcholakova, K. Golemanov, V. Subramanian, and A. Lips, Foam-wall friction : Effect of air volume fraction for tangentially immobile bubble surface, Colloids Surf. A, vol.282, pp.329-347, 2006.

F. Gary, H. T. Teletzke, and L. E. Davis, Scriven. Wetting hydrodynamics. Rev. Phys. Appl, vol.23, issue.6, pp.989-1007, 1988.

E. J. Soares and R. L. Thompson, Flow regimes for the immiscible liquidâliquid displacement in capillary tubes with complete wetting of the displaced liquid, Journal of Fluid Mechanics, vol.641, pp.63-84, 2009.

H. Robert, J. A. Davis, J. M. Schonberg, and . Rallison, The lubrication force between two viscous drops, Physics of Fluids A : Fluid Dynamics, vol.1, issue.1, pp.77-81, 1989.

A. Huerre, M. Jullien, O. Theodoly, and M. Valignat, Absolute 3d reconstruction of thin films topography in microfluidic channels by interference reflection microscopy, Lab on a Chip, vol.16, issue.5, pp.911-916, 2016.

S. S. Park and D. J. Durian, Viscous and elastic fingering instabilities in foam, Phys. Rev. Lett, vol.72, p.3347, 1994.

S. Lee, F. Gallaire, and C. N. Baroud, Interface-induced recirculation within a stationary microfluidic drop, Soft Matter, vol.8, issue.41, pp.10750-10758, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01025502

C. Park and G. M. Homsy, Two-phase displacement in hele shaw cells : theory, J. Fluid Mech, vol.139, pp.291-308, 1984.

Y. Xia, M. George, and . Whitesides, Soft lithography. Annual review of materials science, vol.28, pp.153-184, 1998.

B. Shen, M. Leman, P. Reyssat, and . Tabeling, Dynamics of a small number of droplets in microfluidic hele-shaw cells, Experiments in Fluids, vol.55, issue.5, p.1728, 2014.

N. Taccoen, On the long-term stability of foams : strength of an armored bubble and emergence of global disorder, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01325134

J. Milton, J. T. Rosen, and . Kunjappu, Surfactants and interfacial phenomena, 2012.

J. Delacotte, L. Montel, F. Restagno, B. Scheid, B. Dollet et al., Plate coating : Influence of concentrated surfactants on the film thickness, Langmuir, vol.28, issue.8, pp.3821-3830, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00909689

C. Asg, The mechanism of adhesion of cells to glass, The Journal of cell biology, vol.20, issue.2, pp.199-215, 1964.

. Js-ploem, Reflection-contrast microscopy as a tool for investigation of the attachment of living cells to a glass surface, Mononuclear phagocytes in immunity, infection and pathology, pp.405-421, 1975.

J. Rädler and E. Sackmann, Imaging optical thicknesses and separation distances of phospholipid vesicles at solid surfaces, Journal de Physique, vol.II, issue.5, pp.727-748, 1993.

A. Huerre, O. Theodoly, A. M. Leshansky, M. Valignat, I. Cantat et al., Droplets in microchannels : dynamical properties of the lubrication film, Physical review letters, vol.115, issue.6, p.64501, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01370455

. Ghjn-findenegg, Israelachvili : Intermolecular and surface forces (with applications to colloidal and biological systems), vol.296, pp.1241-1242, 1985.

D. Quéré and A. De-ryck, Le mouillage dynamique des fibres, Ann. Phys, vol.23, pp.1-151, 1998.

B. Scheid, J. Delacotte, B. Dollet, E. Rio, F. Restagno et al., The role of surface force rheology in liquid film formation, EPL, vol.90, p.24002, 2010.

L. Champougny, B. Scheid, F. Restagno, J. Vermant, and E. Rio, Surfactant-induced rigidity of interfaces : a unified approach to free and dip-coated films, Soft Matter, vol.11, issue.14, pp.2758-2770, 2015.

I. Cantat and B. Dollet, Liquid films with high surface modulus moving in tubes : dynamic wetting film and jumpy motion, Soft Matt, vol.8, p.7790, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00641368

C. Park, Influence of soluble surfactants on the motion of a finite bubble in a capillary tube, Physics of Fluids A : Fluid Dynamics, vol.4, issue.11, pp.2335-2347, 1992.

. Rj-williams, K. J. Phillips, and . Mysels, The critical micelle concentration of sodium lauryl sulphate at 25 c, Transactions of the Faraday Society, vol.51, pp.728-737, 1955.

V. Bergeron and C. J. Radke, Equilibrium measurements of oscillatory disjoining pressures in aqueous foam films, Langmuir, vol.8, p.3020, 1992.

V. Bergeron, Forces and structure in thin liquid soap films, J. Phys. : Condens. Matter, vol.11, p.215, 1999.

A. D. Nikolov and . Wasan, Ordered micelle structuring in thin films formed from anionic surfactant solutions : I. experimental, Journal of colloid and interface science, vol.133, issue.1, pp.1-12, 1989.

A. Norman, G. B. Mazer, M. Benedek, and . Carey, An investigation of the micellar phase of sodium dodecyl sulfate in aqueous sodium chloride solutions using quasielastic light scattering spectroscopy, The Journal of Physical Chemistry, vol.80, issue.10, pp.1075-1085, 1976.

R. Krechetnikov and G. M. Homsy, Experimental study of substrate roughness and surfactant effects on the landau-levich law, Phys. Fluids, vol.17, p.102108, 2005.

A. Bonfillon, D. Sicoli, and . Langevin, Dynamic surface tension of ionic surfactant solutions, Journal of colloid and interface science, vol.168, issue.2, pp.497-504, 1994.

G. M. Ginley and C. J. Radke, Influence of Soluble Surfactants on the Flow of Long Bubbles Through a Cylindrical Capillary, vol.27, pp.480-501

O. Ou-ramdane and D. Quéré, Thickening factor in marangoni coating, Langmuir, vol.13, issue.11, pp.2911-2916, 1997.

H. Selby-hele-shaw, The flow of water, Nature, vol.58, pp.33-36, 1489.

E. Guyon, J. Hulin, and L. Petit, Hydrodynamique physique. EDP science, 2001.