L. Clément, Traitement du Biogaz: solutions , résultats et intérêt économique, ATEE, p.15, 2016.

, Du Biogaz Au Biomethane Revue Technique, pp.1-17, 2012.

, ENVIRONMENT -Air Quality Standards, p.12, 2015.

J. I. Huertas, N. Giraldo, and S. Izquierdo, Removal of H2S and CO2 from Biogas by Amine Absorption, Mass Transfer in Chemical Engineering Processes, pp.133-150, 2011.

B. Boulinguiez and P. L. Cloirec, Purification de biogaz. Élimination des COV et des siloxanes, Énergies | Ressources énergétiques et stockage -Réf: BE8560. Techniques de l'ingénieur, pp.1-26, 2011.

D. Deublein and A. Steinhauser, Biogas from Waste and Renewable Resources: An Introduction, 2010.

, Biogas Renewable Energy -Information website on biogas, p.1, 2009.

. Swedish-gas-centre, Basic Data On Biogas, Swedish Gas Technology Centre Ltd (SGC), pp.719-739, 2012.

K. Arrhenius, B. Magnusson, and E. Sahlin, Impurities in biogas: Validation of methodology of analysis for siloxanes, Rapport SGC 243.1102-7371. Svenskt Gastekniskt Center (SGC), 2011.

M. Garciá, D. Prats, and A. Trapote, Presence of Siloxanes in the Biogas of a Wastewater Treatment Plant Separation in Condensates and Influence of the Dose of Iron Chloride on its Elimination, Int. J. Waste Resour, vol.6, issue.1, pp.1-6, 2015.

D. A. Eimer, Absorption theory and practice, vol.2, 2014.

A. Rojey and L. G. Naturel, De la production aux marchés, Association Française du Gaz (afg), Editions Technip, 2013.

G. Soreanu, Approaches concerning siloxane removal from biogas -A review, Can. Biosyst. Eng. / Le Genie des Biosyst. au Canada, vol.53, 2011.

B. Tansel and S. C. Surita, Oxidation of siloxanes during biogas combustion and nanotoxicity of Si-based particles released to the atmosphere, Environ. Toxicol. Pharmacol, vol.37, issue.1, pp.166-173, 2014.

S. Ford, Advances in Biogas, vol.44, 2007.

, European Biogas Association (EBA), 2017.

B. Deremince and S. Königsberger, Biogas & Biomethane, Workshop on the Supply Potentials and Renewable Gases for, 2018.

, Biogas and the French Food and Drink Industry, Association Nationale des Industries Alimentaires (ania), p.13, 2015.

V. Collen, Gaz vert: le gouvernement donne un coup d 'accélérateur, LesEchos.fr, 2018.

. Biogasworld, , p.8, 2017.

Q. Zhao, E. Leonhardt, C. Macconnell, C. Frear, and S. Chen, Purification Technologies for Biogas Generated by Anaerobic Digestion, Climate Friendly Farming. CSANR Research Report, 2010.

I. D. Charry-prada, R. Rivera-tinoco, and C. Bouallou, Methyl Mercaptan Absorption Study into a Hybrid Solvent Mixture Composed of Diethanolamine/Methanol/Water at Temperatures from 313.9 to 353.0 K, Ind. Eng. Chem. Res, vol.56, issue.49, pp.14410-14418, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01684120

C. M. Hansen, Hansen Solubility Parameters. A User's Handbook, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01639526

R. Sander, Compilation of Henry's law constants (version 4.0) for water as solvent, Atmos. Chem. Phys, vol.15, pp.4399-4981, 2015.

F. Total and . Elf, Gas Sweetening Processes. Oil and gas processing plant design and operation training course, p.20, 2002.

I. D. Charry-prada, S. A. Duval, M. M. Vaidya, and J. Ballaguet, Membrane based optimization for acid gas removal from natural gaz, Gas separation membranes" at 10th Intern. Congress on Membranes and Membrane Processes -ICOM2014, 2014.

B. D. Bhide, A. Voskericyan, and S. A. Stern, Hybrid processes for the removal of acid gases from natural gas, J. Memb. Sci, vol.140, issue.1, pp.27-49, 1998.

S. Mokhatab, W. A. Poe, and J. Y. Mak, Handbook of Natural Gas Transmission and Processing: Principles and Practices, 2015.

Y. Li and L. X. Nghiem, Phase Equilibria of Oil, Gas and Water/Brine Mixtures from a Cubic Equation of State and Henry's Law, Can. J. Chem. Eng, vol.64, issue.3, pp.486-496, 1986.

D. R. Lide, CRC Handbook of Chemistry and Physics, 2005.

B. Rumpf, J. Xia, and G. Maurer, Solubility of Carbon Dioxide in Aqueous Solutions Containing Acetic Acid or Sodium Hydroxide in the Temperature Range from 313 to 433 K and at Total Pressures up to 10 MPa, Ind. Eng. Chem. Res, vol.37, issue.5, pp.2012-2019, 1998.

R. N. Madox, Gas Conditioning and Processing, vol.4, 1982.

A. Kohl and R. Nielsen, Gas Purification, 1997.

R. J. Macgregor and A. E. Mather, Equilibrium solubility of H2S and CO2 and their mixtures in a mixed solvent, Can. J. Chem. Eng, vol.69, pp.1357-1661, 1991.

, Nexant-Chem systems, Gas Processing and NGL Extraction PERP 04/05S8, Process Ev. New York 10601, USA: Nexant PERP REPORT, 2006.

J. R. Fair, D. E. Steinmeyer, W. R. Penney, and B. B. Crocker, Section 14: Gas Absorption and Gas-Liquid System Design, vol.98, pp.14-15, 1999.

N. Tippayawong and P. Thanompongchart, Biogas quality upgrade by simultaneous removal of CO2 and H2S in a packed column reactor, Energy, vol.35, issue.12, pp.4531-4535, 2010.

A. H. Younger, Natural Gas Processing Principles and Technology -Part II, vol.49, 2004.

, Engineering Databook, Gas Processors Suppliers Association (GPSA), vol.21, 2004.

F. J. Tamajon, E. Alvarez, F. Cerdeira, and D. Gomez-diaz, CO2 absorption into N-methyldiethanolamine aqueousorganic solvents, Chem. Eng. J, vol.283, pp.1069-1080, 2016.

. Desotec-activated-carbon, Hydrogen sulfide removal from biogas, p.26, 2016.

S. Scott and F. Turra, Six reasons to dry biogas to a low dewpoint before combustion in a CHP engine, p.15, 2013.

T. C. Merkel and L. G. Toy, Comparison of Hydrogen Sulfide Transport Properties in Fluorinated and Nonfluorinated Polymers, Macromolecules, vol.39, issue.22, pp.7591-7600, 2006.

K. Amo, Low-Quality Natural Gas Sulfur Removal / Recovery. Final Report, 1998.

H. R. Mahdavi, N. Azizi, M. Arzani, and T. Mohammadi, Improved CO2/CH4 separation using a nanocomposite ionic liquid gel membrane, J. Nat. Gas Sci. Eng, vol.46, pp.275-288, 2017.

B. Bikson, Y. Ding, J. L. Roux, and J. K. Nelson, Gas separation using membranes formed from blends of perfluorinated polymers, EP1, vol.378, pp.285-287, 2004.

J. Hao, P. A. Rice, and S. A. Stern, Upgrading low-quality natural gas with H2S-and CO2-selective polymer membranes

I. I. Part, Process design, economics, and sensitivity study of membrane stages with recycle streams, J. Memb. Sci, vol.320, issue.1-2, pp.108-122, 2008.

B. S. Turk, Novel Technologies for Gaseous Contaminants Control. Final Report for the Base Program, Morgantown, Etats Unis, 2001.

K. Berean, The effect of crosslinking temperature on the permeability of PDMS membranes: Evidence of extraordinary CO2and CH4gas permeation, Sep. Purif. Technol, vol.122, pp.96-104, 2014.

C. J. Orme and F. F. Stewart, Mixed gas hydrogen sulfide permeability and separation using supported polyphosphazene membranes, J. Memb. Sci, vol.253, issue.1-2, pp.243-249, 2005.

R. W. Baker and K. Lokhandwala, Acid gas fractionation process, 1996.

J. Ballaguet, M. M. Vaidya, I. D. Charry-prada, and S. A. Duval, Enhancement of Claus Tail Gas Treatment by sulfur dioxide-selective membrane technology and sulfur dioxide-selective absorption technology, US Patent, pp.10106411-10106413, 2018.

J. Ballaguet, M. M. Vaidya, I. D. Charry-prada, and S. A. Duval, Enhancement of Claus Tail Gas treatment by sulfur dioxide-selective membrane technology, US Patent number: 10106410B2, 2018.

H. Maat, J. A. Hogendoorn, and G. F. Versteeg, The removal of hydrogen sulfide from gas streams using an aqueous metal sulfate absorbent: Part I. the absorption of hydrogen sulfide in metal sulfate solutions, Sep. Purif. Technol, vol.43, pp.183-197, 2005.

M. Singer, B. Brown, A. Camacho, and S. Ne?i?, Combined Effect of Carbon Dioxide, Hydrogen Sulfide, and Acetic Acid on Bottom-of-the-Line Corrosion, Corrosion, vol.67, issue.1, pp.15004-15005, 2011.

, Gas Processes Handbook -2004, Hydrocarbon Processing's, p.23, 2004.

, Prosernat -Heurtey Petrochem, IFP group technologies, p.12, 2016.

Q. Zhang, I. G. Lana, K. T. Chuang, and H. Wang, Reactions between Hydrogen Sulfide and Sulfuric Acid : A Novel Process for Sulfur Removal and Recovery, Ind. Eng. Chem. Res, vol.39, issue.7, pp.2505-2509, 2000.

H. Wang, I. G. Dalla-lana, and K. T. Chuang, Kinetics and Mechanism of Oxidation of Hydrogen Sulfide by Concentrated Sulfuric Acid, Ind. Eng. Chem. Res, vol.41, issue.26, pp.6656-6662, 2002.

H. Wang, I. G. Lana, and K. T. Chuang, Kinetics of Reaction between Hydrogen Sulfide and Sulfur Dioxide in Sulfuric Acid Solutions, pp.4707-4713, 2002.

H. G. Paskall and J. A. Sames, Sulphur Recovery, 2003.

J. M. Smith, H. C. Van-ness, and M. M. Abbott, Introduction to Chemical Engineering Thermodynamics, 2005.

X. Sun, Organic Mechanisms: Reactions, Methodology, and Biological Applications, First Edit, 2013.

P. Schwach, Oxidative activation of methane over MgO model catalysts, pp.1-141, 2014.

, Direct oxidative activation of methane, Science, vol.280, issue.5363, p.493, 1998.

F. Cadena and R. W. Peters, Evaluation of chemical oxidizers for hydrogen sulfide control, J. Water Pollut. Control Fed, vol.60, issue.7, pp.1259-1263, 1988.

. Usp-technologies, Sulfide oxidation using hydrogen peroxide, p.20, 2015.

A. Lewkiewicz-malysa, R. Rogowska-kwas, and B. Winid, Reduction of hydrocarbon contaminations in the chemical oxidation process, Czas. Tech, pp.249-256, 2008.

M. R. Hoffmann, Kinetics and Mechanism of oxydation of Hydrogen Sulfide by Hydrogen Peroxide in Acidic Solution, Environ. Sci. Technol, vol.11, issue.1, pp.61-66, 1977.

J. Bernard, Traitement des effluents sulfurés, p.29, 2016.

J. M. Hales, J. O. Wilkes, and J. L. York, The rate of reaction between dilute hydrogen sulfide and ozone in air, Atmos. Environ, vol.3, issue.6, pp.657-667, 1969.

, Survey and Down-Selection of Acid Gas Removal Systems for the Thermochemical Conversion of Biomass to Ethanol with a Detailed Analysis of an MDEA System, p.3, 2009.

G. Deshmukh and A. Shete, Oxidative Absorption of Hydrogen Sulfide using Iron-chelate Based Process: Chelate Degradation, J. Anal. Bioanal. Tech, vol.03, issue.03, 2012.

R. Abedini, M. K. Salooki, and S. Ghasemian, Modeling and simulation of condensed sulfur in catalytic beds of CLAUS process: rapid estimation, Chem. Eng. Res. Bull, vol.14, issue.2, pp.110-114, 2010.

I. Angelidaki, Biogas upgrading and utilization: Current status and perspectives, Biotechnol. Adv, vol.36, issue.2, pp.452-466, 2018.

E. Wheless and J. Pierce, Siloxanes in landfill and digester gas update, 27th Annual SWANA LFG Symposium, pp.1-10, 2004.

G. Ruiling, C. Shikun, and L. Zifu, Research progress of siloxane removal from biogas, Int. J. Agric. Biol. Eng, vol.10, issue.1, pp.30-39, 2017.

C. R. Devia, Biogaz en vue de son utilisation en production d'énergie : séparation des siloxanes et du sulfure d'hydrogène, 2013.

D. and R. Ortega, Étude Du Traitement Des Siloxanes Par Adsorption Sur Matériaux Poreux : Application Au Traitement Des Biogaz, 2009.

D. Harber, A. Holt, and W. P. Jarvie, The reactions of cyclic siloxanes with acidic and basic reagents, J. Organomet. Chem, vol.38, pp.255-259, 1972.

X. He and M. B. Hägg, Membranes for environmentally friendly energy processes, Membranes (Basel), vol.2, issue.4, pp.706-726, 2012.

M. Ajhar, Siloxane removal using silicone-rubber membranes, Sep. Purif. Technol, vol.89, pp.234-244, 2012.

M. Ajhar and T. Melin, Siloxane removal with gas permeation membranes, Desalination, vol.200, issue.1-3, pp.234-235, 2006.

I. D. Charry-prada, L. M. Gonzalez, and C. Montes-de-correa, Characterization by temperature programmed techniques of spent and acid treated vanadium catalysts, Rev. Fac. Ing. Univ. Antioquia, issue.57, pp.31-37, 2011.

P. R. Chan, CaCO3 Dissolution in SO2 scrubbing solution mass transfer enhanced by chemical reactions, 1981.

T. Shimizu, Capture of SO2 by limestone in a 71 MWe pressurized fluidized bed boiler, Therm. Sci, vol.7, issue.1, pp.17-31, 2003.

R. R. Lunt and A. D. Little, Profiles in Flue Gas Desulfurization, 2000.

C. Cox, C. Pasel, M. Luckas, and D. Bathen, Absorption of SO2 in different electrolyte solutions, seawater and brine, Fluid Phase Equilib, vol.402, pp.89-101, 2015.

A. G. Clarke and M. Radojevic, Oxidation rates of SO2 in sea-water and sea-salt aerosols, Atmos. Environ, vol.18, issue.12, pp.2761-2767, 1984.

S. Puricelli, Regenerative SO2 Capture : Recovering the Future, MECS DUPONT, p.20, 2013.

Y. W. Lee, J. W. Park, J. H. Choung, and D. K. Choi, Adsorption characteristics of SO2 on activated carbon prepared from coconut shell with potassium hydroxide activation, Environ. Sci. Technol, vol.36, issue.5, pp.1086-1092, 2002.

E. Atanes, A. Nieto-márquez, A. Cambra, M. C. Ruiz-pérez, and F. Fernández-martínez, Adsorption of SO2 onto waste cork powder-derived activated carbons, Chem. Eng. J, pp.60-67, 2012.

X. Ren, J. Ren, and M. Deng, Poly(amide-6-b-ethylene oxide) membranes for sour gas separation, Sep. Purif. Technol, vol.89, pp.1-8, 2012.

K. Kim, P. G. Ingole, J. Kim, and H. Lee, Separation performance of PEBAX/PEI hollow fiber composite membrane for SO2/CO2/N2 mixed gas, Chem. Eng. J, vol.233, pp.242-250, 2013.

D. L. Kuehne and S. K. Friedlander, Selective Transport of Sulfur Dioxide through Polymer Membranes. 1. Polyacrylate and Cellulose Triacetate Single-Layer Membranes, Ind. Eng. Chem. Process Des. Dev, vol.19, issue.4, pp.609-616, 1980.

W. J. Ward, Liquid membrane for sulphur dioxide extraction (US 3503186 A), 1970.

Y. Jiang, Y. Wu, W. Wang, L. Lei, Z. Zhou et al., Permeability and Selectivity of Sulfur Dioxide and Carbon Dioxide in Supported Ionic Liquid Membranes, Chinese J. Chem. Eng, vol.17, issue.4, pp.594-601, 2009.

Y. Jiang, Z. Zhou, Z. Jiao, L. Li, Y. Wu et al., SO2 Gas Separation Using Supported Ionic Liquid Membranes, J. Phys. Chem. B, vol.111, issue.19, pp.5058-5061, 2007.

J. Ballaguet, M. M. Vaidya, F. Hamad, S. A. Duval, and I. D. Charry-prada, Enhancement of claus tail gas treatment with membrane and reducing step, US Patent, pp.9943802-9943803, 2018.

M. Feng, T. Andrews, and E. Flores, Hydrocarbon Processing -2012 Gas Processes Handbook, 2012.

. Seai, Gas Yields Table, p.15, 2015.

. Energypedia, Digester Heating, p.15, 2016.

N. F. Hall and J. B. Conant, A study of superacid solutions. I. The use of the chloranil electrode in glacial acetic acid and the strength of certain weak bases, J. Am. Chem. Soc, vol.49, issue.12, pp.3047-3061, 1927.

C. World-of, Available: link.galegroup.co m/apps/doc/CV2432500687/SCIC?u=dc_demo&xid=ddb4a6a8, Science in Context, p.25, 2000.

G. A. Olah, G. K. Prakash, Á. Molnar, and J. Sommar, , 2009.

A. V. Kotov, V. A. Zarinskii, and V. M. Bokina, Mechanism of the interaction of concentrated sulfuric acid and glacial acetic acid, Bull. Acad. Sci. USSR Div. Chem. Sci, vol.18, issue.6, pp.1319-1322, 1969.

A. E. Markham and K. Kobe, The solubility of carbon dioxide in aqueous solutions of sulfuric and perchloric acids at 25°, J. Am. Chem. Soc, vol.63, issue.4, pp.1165-1166, 1941.

A. B. Brahim, Procédé d'épuration d'effluents gazeux par élimination sélective des polluants qu'ils contiennent, 2015.

P. W. Atkins, Eléments de chimique physique, 1998.

S. K. Majumder, Hydrodynamics and Transport Processes of Inverse Bubbly Flow, 2016.

G. Besagni, F. Inzoli, and T. Ziegenhein, Two-Phase Bubble Columns: A Comprehensive Review, ChemEngineering, vol.2, issue.2, p.13, 2018.

J. N. Tilton, Section 6: Fluid and Particle Dynamics," in Perry's Chemical Engineers' Handbook, vol.54, pp.6-7, 2008.

, Rate-Based Model of the CO2 Capture Process by DEA using Aspen Plus, Aspen Technology Inc, 2013.

B. Tribollet, J. Kittel, A. Meroufel, F. Ropital, F. Grosjean et al., Corrosion mechanisms in aqueous solutions containing dissolved H2S. Part 2: Model of the cathodic reactions on a 316L stainless steel rotating disc electrode, Electrochim. Acta, vol.124, pp.46-51, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00743214

S. N. Borisov, E. M. Voronkov, and Y. Lukevits, Chapter 2: Organosilicon Derivatives of Sulfur, Organosilicon Derivatives of Phosphorus and Sulfur, pp.157-343, 1971.

J. B. Conant and N. F. Hall, A study of superacid solutions. II. A chemical investigation of the hydrogen-ion activity of acetic acid solutions, J. Am. Chem. Soc, vol.49, issue.12, pp.3062-3070, 1927.

R. A. Marriott, P. Pirzadeh, S. Raval, and R. A. Marriott, Hydrogen Sulfide Formation in Oil and Gas, Can. J. Chem, vol.94, issue.4, pp.406-413, 2016.

A. H. Nielsen, J. Vollertsen, and T. Hvitved-jacobsen, Kinetics and stoichiometry of aerobic sulfide oxidation in wastewater from sewers-effects of pH and temperature, Water Environ. Res, vol.78, issue.3, pp.275-283, 2006.

R. H. Flowers, R. J. Gillespie, and E. A. Robinson, The sulphuric acid solvent system: Part V. Solutions of some organosilicon compounds, Can. J. Chem, vol.41, issue.10, pp.2464-2471, 1963.

P. Nuncio, Study on Reaction between H2S and Sulfuric Acid for H2 Production From a H2S Splitting Cycle, 2010.

H. Y. Siang, N. M. Tahir, A. Malek, and M. A. Isa, BREAKDOWN OF HYDROGEN SULFIDE IN SEAWATER UNDER DIFFERENT RATIO OF DISSOLVED OXYGEN / HYDROGEN SULFIDE, Malasysian J. Anal. Sci, vol.21, issue.5, pp.1016-1027, 2017.

. Chemessen-inc, Predicted properties of C2H8O8S2Si -ChemRTP (Chemical Real-Time Predictor for Extensive Chemical Properties), 2017.

S. M. Wallas, Chemical process equipment: selection and design, 2005.

A. Sarrafi, Gas holdup in homogeneous and heterogeneous gas-liquid bubble column reactors, Can. J. Chem. Eng, vol.77, pp.11-21, 1999.

J. ,

N. Joshi,

M. Deshpande, D. Dinkar, and . Phanikumar, Hydrodynamic stability of multiphase reactors, Advances in Chemical Engineering, vol.26, pp.1-130, 2001.

M. Jamialahmadi and H. Muller-steinhagen, Effect of electrolyte concentration on bubble size and gas hold-up in bubble columns, Chem. Eng. Res. Des, vol.68, issue.2, pp.16-31, 1990.

S. Nedeltchev, Theoretical prediction of mass transfer coefficients in both gas-liquid and slurry bubble columns, Chem. Eng. Sci, vol.157, pp.169-181, 2017.

Y. Wu and M. H. Al-dahhan, Prediction of axial liquid velocity profile in bubble columns, Chem. Eng. Sci, vol.56, issue.3, pp.1127-1130, 2001.

D. Darmana, N. G. Deen, and J. A. Kuipers, Detailed modeling of hydrodynamics, mass transfer and chemical reactions in a bubble column using a discrete bubble model, Chem. Eng. Sci, vol.60, issue.12, pp.3383-3404, 2005.

N. Kantarci, F. Borak, and K. O. Ulgen, Bubble column reactors, Process Biochem, vol.40, issue.7, pp.2263-2283, 2005.

R. E. Kirk, D. F. Othmer, M. Grayson, and D. Eckroth, Mass Transfer, Kirk-Othmer Encyclopedia of Chemical Technology, pp.1-75, 2000.

J. C. Middleton, N. Harnby, A. W. Nienow, and M. F. Edwards, Chapter 15: Gas-liquid dispersion and mixing, Mixing in the Process Industries, vol.75, p.432, 1997.

Y. T. Shah, B. G. Kelkar, S. P. Godbole, and W. Deckwer, Design parameters estimations for bubble column reactors, AIChE J, vol.28, issue.3, pp.353-379, 1982.

H. Hikita, S. Asai, K. Tanigawa, K. Segawa, and M. Kitao, Gas hold-up in bubble columns, Chem. Eng. J, vol.20, issue.1, pp.59-67, 1980.

W. D. Deckwer and A. Schumpe, Improved tools for bubble column reactor design and scale-up, Chem. Eng. Sci, vol.48, issue.5, pp.889-911, 1993.

W. Deckwer, Design and Simulation of Bubble Columns, Chemical Reactor Design and Technology. Series E: Applied Sciences -No, vol.110, 1985.

Y. T. Shah, G. J. Stiegel, and M. M. Sharma, Backmixing in gas-liquid reactors, AIChE J, vol.24, issue.3, pp.369-400, 1978.

M. Lopez-de-bertodano, R. T. Lahey, and O. C. Jones, Phase distribution in bubbly two-phase flow in vertical ducts, Int. J. Multiph. Flow, vol.20, issue.5, pp.805-818, 1994.

N. I. Kolev, Drag, lift, and virtual mass forces, Multiphase Flow Dynamics 2. Mechanical interactions, pp.31-86, 2005.

J. Knudsen, H. C. Hottel, A. F. Sarofim, P. C. Wankat, and K. S. Knaebel, Section 5: Heat and Mass Transfer," in Perry's Chemical Engineers ' Handbook, vol.80, pp.5-6, 1999.

F. R. Abdeen, M. Mel, M. S. Jami, S. I. Ihsan, and A. F. Ismail, A review of chemical absorption of carbon dioxide for biogas upgrading, Chinese J. Chem. Eng, vol.24, issue.6, pp.693-702, 2016.

L. Sun and R. Smith, Rectisol wash process simulation and analysis, J. Clean. Prod, vol.39, pp.321-328, 2013.

H. Weiss, Rectisol wash for purification of partial oxidation gases, Gas Sep. Purif, vol.2, issue.4, pp.171-176, 1988.

R. M. Kelly, R. W. Rousseau, and J. K. Ferrell, Design of packed, adiabatic absorbers: physical absorption of acid gases in methanol, Ind. Eng. Chem. Process Des. Dev, vol.23, issue.1, pp.102-109, 1984.

. Aspen-technology-inc, Software Engineering Documentation, pp.1-436, 2001.

T. C. Keener and S. J. Khang, Kinetics of the sodium bicarbonate-sulfur dioxide reaction, Chem. Eng. Sci, vol.48, issue.16, pp.2859-2865, 1993.

T. C. Keener and W. T. Davis, Study of the Reaction of SO2 with NaHCO3 and Na2CO3, J. Air Pollut. Control Assoc, vol.34, issue.6, pp.651-654, 1984.

L. Dei and G. G. Guarini, The thermal decomposition of NaHCO3. Renewed studies by DSC , SEM and Fr-IR, J. Therm. Anal, vol.50, pp.773-783, 1997.

J. W. Kim and H. G. Lee, Thermal and carbothermic decomposition of Na2CO3 and Li2CO3, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci, vol.32, issue.1, pp.17-24, 2001.

A. K. Galwey and M. E. Brown, Studies in physical and theoretical chemistry 86. Thermal decomposition of ionic solids, 1999.

D. C. Lee and C. Georgakis, A single, particle-size model for sulfur retention in fluidized bed coal combustors, AIChE J, vol.27, issue.3, pp.472-481, 1981.

T. C. Keener and P. Biswas, A dry scrubbing model for SO2 removal, Chem. Eng. Commun, vol.81, issue.1, pp.97-108, 1989.

T. C. Keener, G. C. Frazier, and W. T. Davis, Thermal Decomposition of Sodium Bicarbonate, Chem. Eng. Commun, vol.33, pp.93-105, 1985.

S. America-inc, Product Safety Summary -Compounds (Sodium Dicarbonate, Sodium Carbonateand Sodium Sulfite), p.13, 2013.

C. Wu, S. J. Khang, T. C. Keener, and S. K. Lee, A model for dry sodium bicarbonate duct injection flue gas desulfurization, Adv. Environ. Res, vol.8, issue.3-4, pp.655-666, 2004.

M. Pell and J. B. Dunson, Section 17: Gas-Solid Operations and Equipment, vol.60, pp.17-18, 2008.

L. G. Gibilaro, Fluidization-dynamics : The formulation and applications of a predictive theory for the fluidized state, 2001.

A. C. Hoffmann and H. J. Finkers, A relation for the void fraction of randomly packed particle beds, Powder Technol, vol.82, issue.2, pp.197-203, 1995.

, Compagnie du Bicarbonate -Prix de bicarbonate en France, p.20, 2017.

R. , B. Bird, ;. , W. E. Stewart, ;. et al., , 2007.

J. R. Pearson, A note on the 'Danckwerts' boundary conditions for continuous flow reactors, Chem. Eng. Sci, vol.10, pp.281-284, 1959.

H. V. Mott and Z. A. Green, On Danckwerts' Boundary Conditions for the Plug-Flow with Dispersion/Reaction Model, Chem. Eng. Commun, vol.202, issue.6, pp.739-745, 2014.

M. Rahmani and M. Sohrabi, Direct sulfation of calcium carbonate using the variable diffusivity approach, Chem. Eng. Technol, vol.29, issue.12, pp.1496-1501, 2006.

G. P. Maule and J. H. Cameron, Reaction of Na2CO3 fume particles with SO2 and O2, IPC Technical Paper Series, issue.317, pp.1-32, 1989.

H. S. Fogler, Elements of Reaction Engineering, 2006.

. Dortmund-data and . Bank, DDB Explorer Edition, p.8, 2016.

J. M. Delgado, A critical review of dispersion in packed beds, Heat Mass Transf. und Stoffuebertragung, vol.42, issue.4, pp.279-310, 2006.

N. W. Harnby;-a and . Nienow,

M. F. Edwards, Mixing in the Process Industries: Second Edition, p.432, 1997.

B. U. Felderhoft, Virtual mass and drag in two-phase flow, J. Fluid Mech, vol.225, pp.177-196, 1991.

E. M. Davis and R. J. Davis, Fundamentals of Chemical Reaction Engineering, vol.43, 2003.

S. Kantzas, A. ;. Bryan, and J. ,

. Taheri, Fundamentals of Fluid Flow in Porous Media, 2015.

C. S. Yoo and A. G. Dixon, Maldistribution in the radial-flow fixed bed reactor, Chemical Reactor Design and Technology. Series E: Applied Sciences -No, vol.110, pp.749-758, 1985.

P. Basu and S. A. Fraser, Circulating fluidized bed boilers. Design and operations, 1991.

, Renseignements détaillés sur l'additif alimentaire : Sulfite de sodium (221), General Standard for food additives (GSFA) -Online, p.20, 2017.

. Pubchem, Sodium Sulfite. compound summary for CID 24437, PubChem OPEN Chemistry Database, 2018.

. Usdod, Military explosives -Technical manual (TM 9-1300-214), 1990.

B. A. Averill and P. Eldredge, Principles of General Chemistry: The Chemistry of Acid Rain, p.7, 2012.

A. A. Lizziol and J. A. Debarrv, The mechanism of SO2 removal by carbon, Energy Fuels, vol.11, issue.2, pp.284-291, 1997.

R. Chand, B. M. Goyal, R. C. Bansal, and M. Goyal, Activated Carbon Adsorption, 2005.

A. Czyzewski, J. Kapica, D. Moszy?ski, R. Pietrzak, and J. Przepiórski, On competitive uptake of SO2 and CO2 from air by porous carbon containing CaO and MgO, Chem. Eng. J, vol.226, pp.348-356, 2013.

Y. Zhu, Preparation of activated carbons for SO2 adsorption by CO2 and steam activation, J. Taiwan Inst. Chem. Eng, vol.43, issue.1, pp.112-119, 2012.

A. M. Rubel and J. M. Stencel, NOx and SO2 adsorption on carbon, ACS Div. Fuel Chem. Prepr, vol.41, issue.1, pp.184-187, 1996.

. Desotec-activated-carbon and . Co, Carbonology: Activated Carbon, p.10, 2017.

, Section VIII -Div. 1: Rules for Construction of Pressure Vessels, ASME BOILER AND PRESSURE VESSEL CODE -INTERNATIONAL CODE, pp.9-106, 2000.

, Directive Produits de Construction, Norme Européen EN 13285 2010-12 (Graves non traités -Spécifications), Association Francaise de Normalisation (AFNOR), 2010.

, Directive Produits de Construction, Norme Européen EN 12620 +A1 (Granulat pour béton). France: Association Francaise de Normalisation (AFNOR), 2008.

, PRO/II Simulation Software, SimSci by Scheneider Electric, 2014.

S. M. Zicari, Removal of Hydrogen Sulfide From Biogas Using Cow-Manure Compost, 2003.

, Bucklin Point Renewable Biogas Energy. Feasibility Study, 2009.

J. M. Klinkenbijl, M. L. Dillon, and E. C. Heyman, Gas pre-treatment and their impact on liquefaction processes, Proceedings, Annu. Conv. -Gas Process. Assoc, pp.299-307, 1999.

U. Company, UOP Amine Guard TM FS Technology for Acid Gas Removal, p.15, 2009.

Ö. Yildirim, A. Kiss, N. Hüser, K. Leßmann, and E. Y. Kenig, Reactive absorption in chemical process industry: A review on current activities, Chem. Eng. J, vol.213, pp.371-391, 2012.

J. Polasek and J. Bullin, Process Considerations in Selecting Amine, GPA Reg. Meet. Sept, pp.1-9, 1994.

, PRO/II -Reference Manual, SimSci by Scheneider Electric, 2014.

E. J. Stewart and R. A. Lanning, Reduce amine plant solvent losses, Hydrocarb. Process, vol.73, issue.5, pp.67-81, 1994.

U. Gmbh, Physical solvents for acid gas removal, p.5, 2016.

D. Palla and . Leppin, Technical and Operating Support for Pilot Demonstration of Morphysorb Acid Gas Removal Process, GTI Project 61166. Contract Number: DE-FC26-01NT41028. Gas Technology Institute, pp.1-30, 2004.

R. Cadours, C. Pierre-louis, P. Mougin, P. Broutin, and P. Boucot, , vol.2, pp.863-910, 2003.

F. Murrieta-guevara and A. Rodriguez, Solubility of Carbon Dioxide, Hydrogen Sulfide, and Methane in Pure and Mixed Solvents, J. Chem. Eng. Data, vol.29, pp.456-460, 1984.

L. Crapanzano, Polymorphism of sulfur: Structural and Dynamical Aspects Polymorphism of Sulfur: Structural and Dynamical Aspects, 2008.
URL : https://hal.archives-ouvertes.fr/tel-00204149

O. M. Suleimenov and R. E. Krupp, Solubility of hydrogen sulfide in pure water and in NaCl solutions, from 20 to 320°C and at saturation pressures, Geochim. Cosmochim. Acta, vol.58, issue.11, pp.2433-2444, 1994.

E. B. Rinker and O. C. Sandall, Physical solubility of hydrogen sulfide in several aqueous solvents, Can. J. Chem. Eng, vol.78, issue.1, pp.232-236, 2000.

T. T. Teng and A. E. Mather, Solubility of H2S, CO2 and their mixtures in an AMP solution, The Canadian Journal of Chemical Engineering, vol.67, pp.846-850, 1989.

A. Haghtalab and A. Afsharpour, Solubility of CO2+H2S gas mixture into different aqueous N-methyldiethanolamine solutions blended with 1-butyl-3-methylimidazolium acetate ionic liquid, Fluid Phase Equilib, vol.406, pp.10-20, 2015.

M. Moshfeghian, Solubility of Acid Gases in TEG Solution, p.21, 2012.

S. F. Sciamanna and S. Lynn, Solubility of Hydrogen Sulfide, Sulfur Dioxide, Carbon Dioxide, Propane, and n-Butane in Poly(glycol ethers), Ind. Eng. Chem. Res, vol.27, issue.3, pp.492-499, 1988.

L. Zong and C. C. Chen, Thermodynamic modeling of CO2 and H2S solubilities in aqueous DIPA solution, aqueous sulfolane-DIPA solution, and aqueous sulfolane-MDEA solution with electrolyte NRTL model, Fluid Phase Equilib, vol.306, issue.2, pp.190-203, 2011.

A. H. Jalili, M. Shokouhi, G. Maurer, and M. Hosseini-jenab, Solubility of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate, J. Chem. Thermodyn, vol.67, issue.OCTOBER, pp.55-62, 2013.

A. Yasunishi and F. Yoshida, Solubility of carbon dioxide in aqueous electrolyte solutions, J. Chem. Eng, vol.24, issue.7, pp.13-16, 1979.

A. V. Rayer, A. Henni, and P. Tontiwachwuthikul, High pressure physical solubility of carbon dioxide (CO2) in mixed polyethylene glycol dimethyl ethers (Genosorb 1753), Can. J. Chem. Eng, vol.90, issue.3, pp.576-583, 2012.

A. I. Papadopoulos and P. Seferlis, Process Systems and Materials for CO2 Capture Modelling, Design, Control and Integration, 2017.

R. Notz, H. P. Mangalapally, and H. Hasse, Post combustion CO2capture by reactive absorption: Pilot plant description and results of systematic studies with MEA, Int. J. Greenh. Gas Control, vol.6, pp.84-112, 2012.

, Le procédé d'absortion physque Rectisol® est basé sur l'utilisation du méthanol en tant qu'absorbant des gaz acides, notamment à des températures inférieures à 273,15 K et à des pressions supérieurs à 2735,8 kPa. Des généralitées sur ce procédé sont présentés dans le

, La modelisation des colonnes d'absorption, comme celles utilisées pour le procédé Rectisol®, ont été faites sur le logiciel Aspen Plus V8.6, en considerant : ? Le module de la colonne

. Le-nombre,

?. Le-modèle-de-flux, Contre-courant avec une résistance des phases de film (Film)

?. Le-modèle-thermodynamique, Equation d'état PC-SAF (avec constants de Henry imposées pour les composés gazeux solubles avec le solvent liquide)

, Concernant le modèle thermodynamique, l'utilisation du modèle d'équation d'état PC-SAFT est suggérée pour les systèmes polaires, dont celui sur l'absorption grâce au méthanol, parmi d'autres modèles aussi faisables comme l'équation d'état SRK (Soave-Redlich-Kwong), vol.142

P. Le-modèle and . De, Une analyse additionnelle a démontré que le modèle SRK peut également décrire les phénomènes d'absorption lors de l'utilisation de ce solvant, avec un écart de ? 4,5 % par rapport au modèle PC-SAFT. Des références scientifiques pertinentes sur les modèles thermodynamiques précédemment mentionnés, ainsi que l'impact et leur utilisation pour la simulation de l'absorption avec méthanol sont donnés par L, Sun et al, 2013.

, Des données expérimentales, provenant de trois procédés industriels et rapportées par d'autres auteurs, ont été utilisées comme référence de comparaison. Les résultats des comparaisons son tabulés dans le Tableau température, de pression, de débits et de concentrations, en particulier par rapport aux résultats de Sun, L et Smith, R, [142]. Par contre, des variations plus grandes sur la fonction d'erreur ont été obtenues pour les autres ensembles de données, spécialement pour les concentrations minoritaires, de l'ordre de ppm/ppmv. Dans le dernier cas, même si le pourcentage d'erreur est élevé, des variations dans l'ordre de ppm/ppmv ont été considérées encore suffisantes pour démontrer la faisabilité du modèle de simulation, Des comparaisons sur la précision du modèle utilisé dans la thèse ont été faites, pour simuler une colonne simple d'absorption avec du méthanol

, PIT-01 Pressure Indicator Transmitter Ref

, Output: 4-20 mA. Supply: +10-28 VDC PIT-02 Pressure Indicator Transmitter Ref

, Output: 4-20 mA. Supply: +10-30 VDC VA-01 Check valve Ref. SWAGELOK®. SS 1/2' NP

M. , Drop 1.00 bar. Max. press. 90 bars VP-01 Needle valve Ref. SWAGELOK® PFA. SS-18RS8. ½ NPT

, VP-02 Needle valve Ref. SWAGELOK® PFA SS-18RS8. ½ NPT

, VP-03 Needle valve Ref. SWAGELOK® PFA. SS-18RS8. ½ NPT Max press, vol.344, pp.263-232

, VP-04 Needle valve Ref. SWAGELOK® PFA. SS-18RS8. 1/8' NPT Max press, vol.344, pp.263-232

, VP-05 Needle valve Ref. SWAGELOK® PFA. SS-18RS8. 1/8' NPT Max press, vol.344, pp.263-232

, Sealing silicone O-rings Ref. amazon.fr. 120 mm OD / 114 mm ID, p.73

, Only the module to be supplied with 24 VDC from the central power supply. Specs to see in Manual 42/24-10 EN Rev 7. Power supply: 230 VAC / 50 Hz mono (P+T+N), Continuous gas analyzer ABB® 20200. Module Uras14, 2000.

, MX-01 Particle and coalescence filter Ref. SUN-Control® Model PC 1410 E in stainless steel housing with FKM Viton oring. Max, 1000.

, Filter element 0.2 µ Max gas press 0.5 bar; max gas flow (300 /?), Max operating Temp (?20 ? 140 ? ? )

. Scc-e, Sample gas feed Unit Ref

, Power supply 230 V 50/60 Hz 200 VA Gas inlet Temp 10 ? 45?in PPH, EPDM, PP-EPDM, elastomer, glass XV-01 5-ports valve

, Outlet to the SCC-E. Inlets: test-gas-feed, test-gqs-product, calibration gas, inert gas. Plastic tubes Ref. LEROI-MERLIN® Geolia, ABB® 20200 conditioning module. Material PVDF

C. ,

C. Ref, Guernet-89500 Villeneuve/Yonne Power supply 230 V 50/60 Hz 200 VA Gas inlet Temp 10 ? 45?

, Système de refroidissement, ainsi que de filtration et d'absorption de gaz HX-03 et P-01 Cooling Bath Ref. AQUAVIE® ICE 800. Dim 448x330x440 mm Power: 220/240 V -50 Hz -¼ HP

, Pen type pH meter Ref. ATC; backing display

, V-01 et V-02 Plastic Containers (2) Meterial: PTFE or TEFLON. Container 1-for Scrubbing solution -Vol 10 l Container 2 -for water bath, vol.20

, LaboModerne® DL1204 Tamis inox 200 mm -haut 32 mm Sieves : (0.125 m, 0.140 mm, 0.250 mm, 0.280 mm, and 0.500 mm) Lid and Receiver plates Ref, LaboModerne® DL1164 Fond et couvercle inox 200 mm -haut 32 mm

, Calibration des thermocouples (type K) utilisés dans A

, Des thermocouples type K sont utilisés dans le prototype A.D.E.S. afin de surveiller la température des différents emplacements, tels que : ? La température de la solution du scrubber

, ? La température d'eau de refroidissement

, ? La température de la surface du réacteur