, March, vol.28, 2018.

, Émissions de CO2 par activité en 2016 | Insee

C. Hémery, Etudes des phénomènes thermiques dans les batteries Li-ion., phdthesis, 2013.

. Eco2mix-mix-Énergetique and . France, , 2014.

Q. Badey, Étude des mécanismes et modélisation du vieillissement des batteries lithium-ion dans le cadre d'un usage automobile, phdthesis, p.23, 2012.

, Les moteurs conventionnels, questions sur l'automobile et les énergies, IFP

, March, vol.29, 2018.

I. H. Son, J. Park, S. Kwon, S. Park, M. H. Rümmeli et al., Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density, Nat Commun, vol.6, p.7393, 2015.

N. Ding, S. Chen, D. Geng, S. Chien, T. An et al., Tellurium Ordered Macroporous Carbon Composite and Free-Standing Tellurium Nanowire Mat as Cathode Materials for Rechargeable Lithium-Tellurium Batteries, Advanced Energy Materials, vol.5, 2015.

Z. Jian, W. Luo, and X. Ji, Carbon Electrodes for K-Ion Batteries, Journal of the American Chemical Society, vol.137, pp.11566-11569, 2015.

, Research team uncovers internal temperature maximum and offers path toward safer fastcharging of lithium-ion batteries

, The road to longer battery life

A. Eddahech, Modélisation du vieillissement et détermination de l'état de santé de batteries lithium-ion pour application véhicule électrique et hybride, phdthesis, Université Sciences et Technologies -Bordeaux I, p.23, 2013.

T. Zhang, C. Gao, Q. Gao, G. Wang, M. Liu et al., Status and development of electric vehicle integrated thermal management from BTM to HVAC, Applied Thermal Engineering, vol.88, pp.398-409, 2015.

Y. Berthou, Étude de parois de bâtiments passifs associant un Matériau à Changement de Phase (MCP) et une super isolation transparents, phdthesis, 2011.

L. Ianniciello, P. H. Biwolé, and P. Achard, Electric vehicles batteries thermal management systems employing phase change materials, Journal of Power Sources, vol.378, pp.383-403, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01687394

E. Ferrero, S. Alessandrini, and A. Balanzino, Impact of the electric vehicles on the air pollution from a highway, Applied Energy, vol.169, pp.450-459, 2016.

Z. Rao and S. Wang, A review of power battery thermal energy management, Renewable and Sustainable Energy Reviews, vol.15, pp.4554-4571, 2011.

M. Guo, G. Kim, and R. E. White, A three-dimensional multi-physics model for a Li-ion battery, Journal of Power Sources, vol.240, pp.80-94, 2013.

X. M. Xu and R. He, Review on the heat dissipation performance of battery pack with different structures and operation conditions, Renewable and Sustainable Energy Reviews, vol.29, pp.301-315, 2014.

T. M. Bandhauer, S. Garimella, and T. F. Fuller, A Critical Review of Thermal Issues in Lithium-Ion Batteries, J. Electrochem. Soc, vol.158, pp.1-25, 2011.

N. Sato, Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles, Journal of Power Sources, vol.99, pp.70-77, 2001.

D. Vinh-do, Diagnostic de batteries Lithium ion dans des applications embarquées, 2010.

J. Reynaud, Recherches d'optimums d'énergie pour charge/décharge d'une batterie à technologie avancée dédiée à des applications photovoltaïques, phdthesis, p.23, 2011.

R. Zhao, S. Zhang, J. Liu, and J. Gu, A review of thermal performance improving methods of lithium ion battery: Electrode modification and thermal management system, Journal of Power Sources, vol.299, pp.557-577, 2015.

S. Al-hallaj, R. Kizilel, A. Lateef, R. Sabbah, M. Farid et al., Passive thermal management using phase change material (PCM) for EV and HEV Li-ion batteries, 2005 IEEE Vehicle Power and Propulsion Conference, p.5, 2005.

J. Y. Yong, V. K. Ramachandaramurthy, K. M. Tan, and N. Mithulananthan, A review on the stateof-the-art technologies of electric vehicle, its impacts and prospects, Renewable and Sustainable Energy Reviews, vol.49, pp.365-385, 2015.

J. Vazquez-arenas, L. E. Gimenez, M. Fowler, T. Han, and S. Chen, A rapid estimation and sensitivity analysis of parameters describing the behavior of commercial Li-ion batteries including thermal analysis, Energy Conversion and Management, vol.87, pp.472-482, 2014.

D. Aurbach, Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad et al., Design of electrolyte solutions for Li and Li-ion batteries: a review, Electrochimica Acta, vol.50, pp.247-254, 2004.

S. S. Zhang, A review on electrolyte additives for lithium-ion batteries, Journal of Power Sources, vol.162, pp.1379-1394, 2006.

J. R. Nair, M. Destro, F. Bella, G. B. Appetecchi, and C. Gerbaldi, Thermally cured semiinterpenetrating electrolyte networks (s-IPN) for safe and aging-resistant secondary lithium polymer batteries, Journal of Power Sources, vol.306, pp.258-267, 2016.

J. R. Nair, L. Porcarelli, F. Bella, and C. Gerbaldi, Newly Elaborated Multipurpose Polymer Electrolyte Encompassing RTILs for Smart Energy-Efficient Devices, ACS Appl. Mater. Interfaces, vol.7, pp.12961-12971, 2015.

Y. Tong, Y. Xu, D. Chen, Y. Xie, L. Chen et al., Deformable and flexible electrospun nanofiber-supported cross-linked gel polymer electrolyte membranes for high safety lithium-ion batteries, RSC Adv, vol.7, pp.22728-22734, 2017.

J. R. Selman, S. Hallaj, I. Uchida, and Y. Hirano, Cooperative research on safety fundamentals of lithium batteries, pp.732-739, 2001.

Q. Huang, M. Yan, and Z. Jiang, Thermal study on single electrodes in lithium-ion battery, Journal of Power Sources, vol.156, pp.541-546, 2006.

A. A. Pesaran, Battery thermal models for hybrid vehicle simulations, Journal of Power Sources, vol.110, pp.377-382, 2002.

Z. Zhang, D. Fouchard, and J. R. Rea, Differential scanning calorimetry material studies: implications for the safety of lithium-ion cells, Journal of Power Sources, vol.70, pp.2611-2617, 1998.

D. D. Macneil and J. R. Dahn, The Reaction of Charged Cathodes with Nonaqueous Solvents and Electrolytes: I. Li0.5CoO2, J. Electrochem. Soc, vol.148, pp.1205-1210, 2001.

M. N. Richard and J. R. Dahn, Predicting electrical and thermal abuse behaviours of practical lithium-ion cells from accelerating rate calorimeter studies on small samples in electrolyte, Journal of Power Sources, vol.79, pp.135-142, 1999.

P. Biensan, B. Simon, J. P. Pérès, A. De-guibert, M. Broussely et al., On safety of lithium-ion cells, Journal of Power Sources, issue.99, pp.135-139, 1999.

A. Pesaran, Tools for Designing Thermal Management of Batteries In Electric Drive Vehicles, 2013.

P. Ramadass, B. Haran, R. White, and B. N. Popov, Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part I. Cycling performance, Journal of Power Sources, vol.112, pp.606-613, 2002.

P. Ramadass, B. Haran, R. White, and B. N. Popov, Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part II. Capacity fade analysis, Journal of Power Sources, vol.112, pp.614-620, 2002.

G. M. Ehrlich, Lithium-ion batteries, Handbook of Batteries, pp.35-36, 2002.

K. Amine, J. Liu, and I. Belharouak, High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells, Electrochemistry Communications, vol.7, pp.669-673, 2005.

P. Liu, J. Wang, J. Hicks-garner, E. Sherman, S. Soukiazian et al., Aging Mechanisms of LiFePO4 Batteries Deduced by Electrochemical and Structural Analyses, J. Electrochem. Soc, vol.157, pp.499-507, 2010.

K. Takei, K. Kumai, Y. Kobayashi, H. Miyashiro, N. Terada et al., Cycle life estimation of lithium secondary battery by extrapolation method and accelerated aging test, Journal of Power Sources, pp.697-701, 2001.

S. S. Choi and H. S. Lim, Factors that affect cycle-life and possible degradation mechanisms of a Liion cell based on LiCoO2, Journal of Power Sources, vol.111, pp.305-306, 2002.

J. R. Belt, C. D. Ho, C. G. Motloch, T. J. Miller, and T. Q. Duong, A capacity and power fade study of Li-ion cells during life cycle testing, Journal of Power Sources, vol.123, pp.241-246, 2003.

J. R. Belt, C. D. Ho, T. J. Miller, M. A. Habib, and T. Q. Duong, The effect of temperature on capacity and power in cycled lithium ion batteries, Journal of Power Sources, vol.142, pp.354-360, 2005.

M. Broussely, P. Biensan, F. Bonhomme, P. Blanchard, S. Herreyre et al., Main aging mechanisms in Li ion batteries, Journal of Power Sources, vol.146, pp.90-96, 2005.

B. Markovsky, A. Rodkin, Y. S. Cohen, O. Palchik, E. Levi et al., The study of capacity fading processes of Li-ion batteries: major factors that play a role, Journal of Power Sources, pp.504-510, 2003.

R. B. Wright, J. P. Christophersen, C. G. Motloch, J. R. Belt, C. D. Ho et al., Power fade and capacity fade resulting from cycle-life testing of Advanced Technology Development Program lithium-ion batteries, Journal of Power Sources, pp.865-869, 2003.

E. V. Thomas, H. L. Case, D. H. Doughty, R. G. Jungst, G. Nagasubramanian et al., Accelerated power degradation of Li-ion cells, Journal of Power Sources, vol.124, pp.254-260, 2003.

D. Aurbach, A review on new solutions, new measurements procedures and new materials for rechargeable Li batteries, vol.146, pp.71-78, 2005.

J. Vetter, P. Novák, M. R. Wagner, C. Veit, K. Möller et al., Ageing mechanisms in lithium-ion batteries, Journal of Power Sources, vol.147, pp.269-281, 2005.

A. Barré, B. Deguilhem, S. Grolleau, M. Gérard, F. Suard et al., A review on lithium-ion battery ageing mechanisms and estimations for automotive applications, Journal of Power Sources, vol.241, pp.680-689, 2013.

Y. Zeng, K. Wu, D. Wang, Z. Wang, and L. Chen, Overcharge investigation of lithium-ion polymer batteries, Journal of Power Sources, vol.160, pp.1302-1307, 2006.

J. Lamb, C. J. Orendorff, L. A. Steele, and S. W. Spangler, Failure propagation in multi-cell lithium ion batteries, Journal of Power Sources, vol.283, pp.517-523, 2015.

D. Doughty and E. P. Roth, A general discussion of Li Ion battery safety, vol.21, pp.37-44, 2012.

M. C. Smart, B. V. Ratnakumar, J. Whitacre, L. Whitcanack, K. Chin et al., The effect of high temperature exposure upon the performance of lithium ion cells, Battery Conference on Applications and Advances, pp.53-58, 2002.

D. P. Abraham, E. P. Roth, R. Kostecki, K. Mccarthy, S. Maclaren et al., Diagnostic examination of thermally abused high-power lithium-ion cells, Journal of Power Sources, vol.161, pp.648-657, 2006.

H. Joachin, T. D. Kaun, K. Zaghib, and J. Prakash, Electrochemical and Thermal Studies of Carbon-Coated LiFePO4 Cathode, J. Electrochem. Soc, vol.156, pp.401-406, 2009.

S. S. Zhang, K. Xu, and T. R. Jow, Electrochemical impedance study on the low temperature of Liion batteries, Electrochimica Acta, vol.49, pp.1057-1061, 2004.

A. Sharma, V. V. Tyagi, C. R. Chen, and D. Buddhi, Review on thermal energy storage with phase change materials and applications, Renewable and Sustainable Energy Reviews, vol.13, pp.318-345, 2009.

P. Achard and D. Mayer, Heat sink material, US4816173 A, 1989.

P. Goli, S. Legedza, A. Dhar, R. Salgado, J. Renteria et al., Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries, Journal of Power Sources, vol.248, pp.37-43, 2014.

A. Mills, M. Farid, J. R. Selman, and S. Al-hallaj, Thermal conductivity enhancement of phase change materials using a graphite matrix, Applied Thermal Engineering, vol.26, pp.1652-1661, 2006.

W. Q. Li, Z. G. Qu, Y. L. He, and Y. B. Tao, Experimental study of a passive thermal management system for high-powered lithium ion batteries using porous metal foam saturated with phase change materials, Journal of Power Sources, vol.255, pp.9-15, 2014.

P. H. Biwole, P. Eclache, and F. Kuznik, Phase-change materials to improve solar panel's performance, Energy and Buildings, vol.62, pp.59-67, 2013.

M. Malik, I. Dincer, and M. A. Rosen, Review on use of phase change materials in battery thermal management for electric and hybrid electric vehicles, Int. J. Energy Res, vol.40, pp.1011-1031, 2016.

G. Qi, J. Yang, R. Bao, Z. Liu, W. Yang et al., Enhanced comprehensive performance of polyethylene glycol based phase change material with hybrid graphene nanomaterials for thermal energy storage, Carbon, vol.88, pp.196-205, 2015.

P. B. Salunkhe and P. S. Shembekar, A review on effect of phase change material encapsulation on the thermal performance of a system, Renewable and Sustainable Energy Reviews, vol.16, pp.5603-5616, 2012.

L. Liu, D. Su, Y. Tang, and G. Fang, Thermal conductivity enhancement of phase change materials for thermal energy storage: A review, Renewable and Sustainable Energy Reviews, vol.62, pp.305-317, 2016.

C. Amaral, R. Vicente, P. A. Marques, and A. Barros-timmons, Phase change materials and carbon nanostructures for thermal energy storage: A literature review, Renewable and Sustainable Energy Reviews, vol.79, pp.1212-1228, 2017.

F. Kuznik, D. David, K. Johannes, and J. Roux, A review on phase change materials integrated in building walls, Renewable and Sustainable Energy Reviews, vol.15, pp.379-391, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00541875

F. Souayfane, F. Fardoun, and P. Biwole, Phase change materials (PCM) for cooling applications in buildings: A review, Energy and Buildings, vol.129, pp.396-431, 2016.

D. N. Nkwetta and F. Haghighat, Thermal energy storage with phase change material-A state-ofthe art review, Sustainable Cities and Society, vol.10, pp.87-100, 2014.

S. , Phase change materials for smart textiles -An overview, Applied Thermal Engineering, vol.28, pp.1536-1550, 2008.

B. Gin and M. M. Farid, The use of PCM panels to improve storage condition of frozen food, Journal of Food Engineering, vol.100, pp.372-376, 2010.

E. Oró, L. Miró, M. M. Farid, and L. F. Cabeza, Improving thermal performance of freezers using phase change materials, International Journal of Refrigeration, vol.35, pp.984-991, 2012.

B. Zalba, J. M. Mar??, L. F. Cabeza, and H. Mehling, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Applied Thermal Engineering, vol.23, pp.251-283, 2003.

K. Pielichowska and K. Pielichowski, Phase change materials for thermal energy storage, Progress in Materials Science, vol.65, pp.67-123, 2014.

J. B. Manish and K. Rathod, Thermal stability of phase change materials used in latent heat energy storage systems: a review, Renew Sustain Energy Rev, Renewable and Sustainable Energy Reviews, vol.18, pp.246-258, 2013.

B. Cárdenas and N. León, High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques, Renewable and Sustainable Energy Reviews, vol.27, pp.724-737, 2013.

E. Osterman, V. V. Tyagi, V. Butala, N. A. Rahim, and U. Stritih, Review of PCM based cooling technologies for buildings, Energy and Buildings, vol.49, pp.37-49, 2012.

M. Thambidurai, K. Panchabikesan, K. M. , and V. Ramalingam, Review on phase change material based free cooling of buildings-The way toward sustainability, Journal of Energy Storage, vol.4, pp.74-88, 2015.

H. Zhang, X. Wang, and D. Wu, Silica encapsulation of n-octadecane via sol-gel process: A novel microencapsulated phase-change material with enhanced thermal conductivity and performance, Journal of Colloid and Interface Science, vol.343, pp.246-255, 2010.

Z. Ling, Z. Zhang, G. Shi, X. Fang, L. Wang et al., Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules, Renewable and Sustainable Energy Reviews, vol.31, pp.427-438, 2014.

L. H. Alva, S. , J. E. Gonzalez, and N. Dukhan, Initial analysis of PCM integrated solar collectors, Journal of Solar Energy Engineering, vol.128, pp.173-177, 2006.

W. Cheng, R. Zhang, K. Xie, N. Liu, and J. Wang, Heat conduction enhanced shape-stabilized paraffin/HDPE composite PCMs by graphite addition: Preparation and thermal properties, Solar Energy Materials and Solar Cells, vol.94, pp.1636-1642, 2010.

J. Darkwa and T. Zhou, Enhanced laminated composite phase change material for energy storage, Energy Conversion and Management, vol.52, pp.810-815, 2011.

F. Frusteri, V. Leonardi, S. Vasta, and G. Restuccia, Thermal conductivity measurement of a PCM based storage system containing carbon fibers, Applied Thermal Engineering, vol.25, pp.1623-1633, 2005.

C. Hasse, M. Grenet, A. Bontemps, R. Dendievel, and H. Sallée, Realization, test and modelling of honeycomb wallboards containing a Phase Change Material, Energy and Buildings, vol.43, pp.232-238, 2011.

A. Karaipekli, A. Sar?, and K. Kaygusuz, Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications, Renewable Energy, vol.32, pp.2201-2210, 2007.

H. Li, X. Liu, and G. Fang, Synthesis and characteristics of form-stable n-octadecane/expanded graphite composite phase change materials, Appl. Phys. A, vol.100, pp.1143-1148, 2010.

A. Sar? and A. Karaipekli, Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material, Applied Thermal Engineering, vol.27, pp.1271-1277, 2007.

A. Siahpush, J. O'brien, and J. Crepeau, Phase Change Heat Transfer Enhancement Using Copper Porous Foam, J. Heat Transfer, vol.130, pp.82301-082301, 2008.

W. Wang, X. Yang, Y. Fang, J. Ding, and J. Yan, Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage, Applied Energy, vol.86, pp.1479-1483, 2009.

H. Yin, X. Gao, J. Ding, and Z. Zhang, Experimental research on heat transfer mechanism of heat sink with composite phase change materials, Energy Conversion and Management, vol.49, pp.1740-1746, 2008.

J. L. Zeng, Z. Cao, D. W. Yang, L. X. Sun, and L. Zhang, Thermal conductivity enhancement of Ag nanowires on an organic phase change material, J Therm Anal Calorim, vol.101, pp.385-389, 2009.

Y. Tomizawa, K. Sasaki, A. Kuroda, R. Takeda, and Y. Kaito, Experimental and numerical study on phase change material (PCM) for thermal management of mobile devices, Applied Thermal Engineering, vol.98, pp.320-329, 2016.

G. Peiró, J. Gasia, L. Miró, and L. F. Cabeza, Experimental evaluation at pilot plant scale of multiple PCMs (cascaded) vs. single PCM configuration for thermal energy storage, Renewable Energy, vol.83, pp.729-736, 2015.

K. Kitoh and H. Nemoto, 100 Wh Large size Li-ion batteries and safety tests, Journal of Power Sources, pp.887-890, 1999.

S. K. Mohammadian, Y. He, and Y. Zhang, Internal cooling of a lithium-ion battery using electrolyte as coolant through microchannels embedded inside the electrodes, Journal of Power Sources, vol.293, pp.458-466, 2015.

R. Liu, J. Chen, J. Xun, K. Jiao, and Q. Du, Numerical investigation of thermal behaviors in lithium-ion battery stack discharge, Applied Energy, vol.132, pp.288-297, 2014.

M. Wu, K. H. Liu, Y. Wang, and C. Wan, Heat dissipation design for lithium-ion batteries, Journal of Power Sources, vol.109, pp.160-166, 2002.

L. Fan, J. M. Khodadadi, and A. A. Pesaran, A parametric study on thermal management of an aircooled lithium-ion battery module for plug-in hybrid electric vehicles, Journal of Power Sources, vol.238, pp.301-312, 2013.

X. M. Xu and R. He, Research on the heat dissipation performance of battery pack based on forced air cooling, Journal of Power Sources, vol.240, pp.33-41, 2013.

J. Xun, R. Liu, and K. Jiao, Numerical and analytical modeling of lithium ion battery thermal behaviors with different cooling designs, Journal of Power Sources, vol.233, pp.47-61, 2013.

T. Wang, K. J. Tseng, J. Zhao, and Z. Wei, Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies, Applied Energy, vol.134, pp.229-238, 2014.

K. Yu, X. Yang, Y. Cheng, and C. Li, Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack, Journal of Power Sources, vol.270, pp.193-200, 2014.

J. Zhao, Z. Rao, Y. Huo, X. Liu, and Y. Li, Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles, Applied Thermal Engineering, vol.85, pp.33-43, 2015.

T. Wang, K. J. Tseng, and J. Zhao, Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model, Applied Thermal Engineering, vol.90, pp.521-529, 2015.

S. K. Mohammadian and Y. Zhang, Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles, Journal of Power Sources, vol.273, pp.431-439, 2015.

S. K. Mohammadian, S. M. Rassoulinejad-mousavi, and Y. Zhang, Thermal management improvement of an air-cooled high-power lithium-ion battery by embedding metal foam, Journal of Power Sources, vol.296, pp.305-313, 2015.

S. K. Mohammadian and Y. Zhang, Temperature Uniformity Improvement of an Air-Cooled High-Power Lithium-Ion Battery Using Metal and Nonmetal Foams, J. Heat Transfer, vol.138, pp.114502-114502, 2016.

T. Yang, N. Yang, X. Zhang, and G. Li, Investigation of the thermal performance of axial-flow air cooling for the lithium-ion battery pack, International Journal of Thermal Sciences, vol.108, pp.132-144, 2016.

J. Zhao, Z. Rao, and Y. Li, Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery, Energy Conversion and Management, vol.103, pp.157-165, 2015.

B. Coleman, J. Ostanek, and J. Heinzel, Reducing cell-to-cell spacing for large-format lithium ion battery modules with aluminum or PCM heat sinks under failure conditions, Applied Energy, vol.180, pp.14-26, 2016.

J. Smith, M. Hinterberger, P. Hable, and J. Koehler, Simulative method for determining the optimal operating conditions for a cooling plate for lithium-ion battery cell modules, Journal of Power Sources, vol.267, pp.784-792, 2014.

D. Chen, J. Jiang, G. Kim, C. Yang, and A. Pesaran, Comparison of different cooling methods for lithium ion battery cells, Applied Thermal Engineering, vol.94, pp.846-854, 2016.

N. Nieto, L. Díaz, J. Gastelurrutia, F. Blanco, J. C. Ramos et al., Novel thermal management system design methodology for power lithium-ion battery, Journal of Power Sources, vol.272, pp.291-302, 2014.

A. Jarrett and I. Y. Kim, Design optimization of electric vehicle battery cooling plates for thermal performance, Journal of Power Sources, vol.196, pp.10359-10368, 2011.

C. Lan, J. Xu, Y. Qiao, and Y. Ma, Thermal management for high power lithium-ion battery by minichannel aluminum tubes, Applied Thermal Engineering, vol.101, pp.284-292, 2016.

A. Jarrett and I. Y. Kim, Influence of operating conditions on the optimum design of electric vehicle battery cooling plates, Journal of Power Sources, vol.245, pp.644-655, 2014.

Y. Huo, Z. Rao, X. Liu, and J. Zhao, Investigation of power battery thermal management by using mini-channel cold plate, Energy Conversion and Management, vol.89, pp.387-395, 2015.

Z. Qian, Y. Li, and Z. Rao, Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling, Energy Conversion and Management, vol.126, pp.622-631, 2016.

S. Panchal, I. Dincer, M. Agelin-chaab, R. Fraser, and M. Fowler, Experimental and theoretical investigations of heat generation rates for a water cooled LiFePO4 battery, International Journal of Heat and Mass Transfer, vol.101, pp.1093-1102, 2016.

X. Yang, S. Tan, and J. Liu, Thermal management of Li-ion battery with liquid metal, Energy Conversion and Management, vol.117, pp.577-585, 2016.

R. Zhao, S. Zhang, J. Gu, J. Liu, S. Carkner et al., An experimental study of lithium ion battery thermal management using flexible hydrogel films, Journal of Power Sources, vol.255, pp.29-36, 2014.

H. Hirano, T. Tajima, T. Hasegawa, T. Sekiguchi, and M. Uchino, Boiling Liquid Battery Cooling for Electric Vehicle, Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), 2014 IEEE Conference and Expo, pp.1-4, 2014.

S. Zhang, R. Zhao, J. Liu, and J. Gu, Investigation on a hydrogel based passive thermal management system for lithium ion batteries, Energy, vol.68, pp.854-861, 2014.

R. W. Van-gils, D. Danilov, P. H. Notten, M. F. Speetjens, and H. Nijmeijer, Battery thermal management by boiling heat-transfer, Energy Conversion and Management, vol.79, pp.9-17, 2014.

R. Jang, Battery thermal management system of future electric vehicles with loop thermosyphon, p.2010

G. Swanepoel, Thermal management of hybrid electical vehicles using heat pipes, 2001.

A. Belyaev, D. Fedorchenko, M. Khazhmuradov, A. Lukhanin, O. Lukhanin et al., Investigation of Heat Pipe Cooling of Li-ion Batteries, 2014.

N. Putra, B. Ariantara, and R. A. Pamungkas, Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application, Applied Thermal Engineering, vol.99, pp.784-789, 2016.

Q. Wang, B. Jiang, Q. F. Xue, H. L. Sun, B. Li et al., Experimental investigation on EV battery cooling and heating by heat pipes, Applied Thermal Engineering, vol.88, pp.54-60, 2015.

S. A. Hallaj and J. R. Selman, A Novel Thermal Management System for Electric Vehicle Batteries Using Phase-Change Material, J. Electrochem. Soc, vol.147, pp.3231-3236, 2000.

S. Al-hallaj and J. R. Selman, Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications, Journal of Power Sources, vol.110, pp.196-205, 2002.

T. Tran, S. Harmand, B. Desmet, and S. Filangi, Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery, Applied Thermal Engineering, vol.63, pp.551-558, 2014.

Z. Rao, S. Wang, M. Wu, Z. Lin, and F. Li, Experimental investigation on thermal management of electric vehicle battery with heat pipe, Energy Conversion and Management, vol.65, pp.92-97, 2013.

Z. Rao, Y. Huo, and X. Liu, Experimental study of an OHP-cooled thermal management system for electric vehicle power battery, Experimental Thermal and Fluid Science, vol.57, pp.20-26, 2014.

T. Tran, S. Harmand, and B. Sahut, Experimental investigation on heat pipe cooling for Hybrid Electric Vehicle and Electric Vehicle lithium-ion battery, Journal of Power Sources, vol.265, pp.262-272, 2014.

G. Burban, V. Ayel, A. Alexandre, P. Lagonotte, Y. Bertin et al., Experimental investigation of a pulsating heat pipe for hybrid vehicle applications, Applied Thermal Engineering, vol.50, pp.94-103, 2013.

A. Greco, D. Cao, X. Jiang, and H. Yang, A theoretical and computational study of lithium-ion battery thermal management for electric vehicles using heat pipes, Journal of Power Sources, vol.257, pp.344-355, 2014.

S. A. Khateeb, M. M. Farid, J. R. Selman, and S. Al-hallaj, Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter, Journal of Power Sources, vol.128, pp.292-307, 2004.

S. A. Siddique and A. Khateeb, Thermal management of Li-ion battery with phase change material for electric scooters: Experimental validation, Journal of Power Sources, vol.142, pp.345-353, 2005.

A. Mills and S. Al-hallaj, Simulation of passive thermal management system for lithium-ion battery packs, Journal of Power Sources, vol.141, pp.307-315, 2005.

R. Sabbah, R. Kizilel, J. R. Selman, and S. Al-hallaj, Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution, Journal of Power Sources, vol.182, pp.630-638, 2008.

R. Kizilel, R. Sabbah, J. R. Selman, and S. Al-hallaj, An alternative cooling system to enhance the safety of Li-ion battery packs, Journal of Power Sources, vol.194, pp.1105-1112, 2009.

X. Duan and G. F. Naterer, Heat transfer in phase change materials for thermal management of electric vehicle battery modules, International Journal of Heat and Mass Transfer, vol.53, pp.5176-5182, 2010.

M. Y. Ramandi, I. Dincer, and G. F. Naterer, Heat transfer and thermal management of electric vehicle batteries with phase change materials, Heat Mass Transfer, vol.47, pp.777-788, 2011.

K. Somasundaram, E. Birgersson, and A. S. Mujumdar, Thermal-electrochemical model for passive thermal management of a spiral-wound lithium-ion battery, Journal of Power Sources, vol.203, pp.84-96, 2012.

N. Javani, I. Dincer, G. F. Naterer, and B. S. Yilbas, Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles, International Journal of Heat and Mass Transfer, vol.72, pp.690-703, 2014.

N. Javani, I. Dincer, G. F. Naterer, and G. L. Rohrauer, Modeling of passive thermal management for electric vehicle battery packs with PCM between cells, Applied Thermal Engineering, vol.73, pp.307-316, 2014.

Z. Ling, J. Chen, X. Fang, Z. Zhang, T. Xu et al., Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system, Applied Energy, vol.121, pp.104-113, 2014.

C. Hémery, F. Pra, J. Robin, and P. Marty, Experimental performances of a battery thermal management system using a phase change material, Journal of Power Sources, vol.270, pp.349-358, 2014.

H. Fathabadi, High thermal performance lithium-ion battery pack including hybrid activepassive thermal management system for using in hybrid/electric vehicles, Energy, vol.70, pp.529-538, 2014.

A. Babapoor, M. Azizi, and G. Karimi, Thermal management of a Li-ion battery using carbon fiber-PCM composites, Applied Thermal Engineering, vol.82, pp.281-290, 2015.

F. Samimi, A. Babapoor, M. Azizi, and G. Karimi, Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers, Energy, vol.96, pp.355-371, 2016.

Z. Ling, F. Wang, X. Fang, X. Gao, and Z. Zhang, A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling, Applied Energy, vol.148, pp.403-409, 2015.

Z. Rao, Y. Huo, X. Liu, and G. Zhang, Experimental investigation of battery thermal management system for electric vehicle based on paraffin/copper foam, Journal of the Energy Institute, vol.88, pp.241-246, 2015.

Z. Rao, Q. Wang, and C. Huang, Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system, Applied Energy, vol.164, pp.659-669, 2016.

N. O. Moraga, J. P. Xamán, and R. H. Araya, Cooling Li-ion batteries of racing solar car by using multiple phase change materials, Applied Thermal Engineering, vol.108, pp.1041-1054, 2016.

Y. Lv, X. Yang, X. Li, G. Zhang, Z. Wang et al., Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins, Applied Energy, vol.178, pp.376-382, 2016.

M. Alipanah and X. Li, Numerical studies of lithium-ion battery thermal management systems using phase change materials and metal foams, International Journal of Heat and Mass Transfer, vol.102, pp.1159-1168, 2016.

G. Jiang, J. Huang, Y. Fu, M. Cao, and M. Liu, Thermal optimization of composite phase change material/expanded graphite for Li-ion battery thermal management, Applied Thermal Engineering, vol.108, pp.1119-1125, 2016.

Q. Wang, Z. Rao, Y. Huo, and S. Wang, Thermal performance of phase change material/oscillating heat pipe-based battery thermal management system, International Journal of Thermal Sciences, vol.102, pp.9-16, 2016.

R. Nasehi, A. Alamatsaz, and M. Salimpour, Using multi-shell phase change materials layers for cooling a lithium-ion battery, ResearchGate, vol.20, pp.391-403, 2016.

J. Yan, Q. Wang, K. Li, and J. Sun, Numerical study on the thermal performance of a composite board in battery thermal management system, Applied Thermal Engineering, vol.106, pp.131-140, 2016.

S. Choi and H. Park, Battery system containing phase change material-containing capsules in interior configuration thereof, pp.20120135281-1, 2012.

S. A. Razack, M. F. Alzoubi, K. Cloutier, and S. Al-hallaj, Flexible phase change material composite for thermal management systems, pp.2015095271-2015095272, 2015.

D. J. Czarnecki, J. T. Kinscher, and J. A. Robinson, Phase change material with inhibitor and a method of making the same, pp.6784356-6784357, 2004.

S. A. Hallaj and J. R. Selman, Thermal management of battery systems, US6468689, vol.1, 2002.

M. R. Cosley and M. P. Garcia, Battery thermal management system, IN?EC 2004. 26th Annual International Telecommunications Energy Conference, pp.38-45, 2004.

V. R. Voller, A. D. Brent, and C. Prakash, Modelling the mushy region in a binary alloy, Applied Mathematical Modelling, vol.14, pp.320-326, 1990.

K. Kant, A. Shukla, and A. Sharma, Performance evaluation of fatty acids as phase change material for thermal energy storage, Journal of Energy Storage, vol.6, pp.153-162, 2016.

P. H. Biwole, D. Groulx, F. Souayfane, and T. Chiu, Influence of fin size and distribution on solidliquid phase change in a rectangular enclosure, International Journal of Thermal Sciences, vol.124, pp.433-446, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01649044

O. Bertrand, B. Binet, H. Combeau, S. Couturier, Y. Delannoy et al., Melting driven by natural convection A comparison exercise: first results, International Journal of Thermal Sciences, vol.38, pp.5-26, 1999.

K. Kant, A. Shukla, A. Sharma, and P. H. Biwole, Melting and solidification behaviour of phase change materials with cyclic heating and cooling, Journal of Energy Storage, vol.15, pp.274-282, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01668783

L. Ianniciello, P. H. Biwole, and P. Achard, Gestion thermique des batteries Li-ion par l'utilisation de matériaux à changement de phase et d'air en convection forcée, Congrès Français de Thermique 2017 Thermique Mer et Océans, 2017.

M. Telkes, Trombe wall with phase change storage material, 1978.

Y. Berthou, P. H. Biwole, P. Achard, H. Sallée, M. Tantot-neirac et al., Full scale experimentation on a new translucent passive solar wall combining silica aerogels and phase change materials, Solar Energy, vol.115, pp.733-742, 2015.

M. Mazman, L. F. Cabeza, H. Mehling, M. Nogues, H. Evliya et al., Utilization of phase change materials in solar domestic hot water systems, Renewable Energy, vol.34, pp.1639-1643, 2009.

A. F. Emery and C. Finley, Opportunities for Ice Storage to Provide Ancillary Services to Power Grids Incorporating Wind Turbine Generation, pp.311-321, 2012.

K. Kant, A. Shukla, A. Sharma, and P. H. Biwole, Heat transfer studies of photovoltaic panel coupled with phase change material, Solar Energy, vol.140, pp.151-161, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01410114

A. Shukla, A. Sharma, M. Shukla, and C. R. Chen, Development of thermal energy storage materials for biomedical applications, J Med Eng Technol, vol.39, pp.363-368, 2015.

Y. Yang and Y. Wang, Numerical simulation of three-dimensional transient cooling application on a portable electronic device using phase change material, International Journal of Thermal Sciences, vol.51, pp.155-162, 2012.

K. Kant, A. Shukla, A. Sharma, A. Kumar, and A. Jain, Thermal energy storage based solar drying systems: A review, Innovative Food Science & Emerging Technologies, vol.34, pp.86-99, 2016.

Y. Shin, D. Yoo, and K. Son, Development of thermoregulating textile materials with microencapsulated phase change materials (PCM). II. Preparation and application of PCM microcapsules, J. Appl. Polym. Sci, vol.96, pp.2005-2010, 2005.

L. Dongliang, P. Hao, and L. Deqing, Thermal conductivity enhancement of clathrate hydrate with nanoparticles, International Journal of Heat and Mass Transfer, vol.104, pp.566-573, 2017.

M. M. Tawfik, Experimental studies of nanofluid thermal conductivity enhancement and applications: A review, Renewable and Sustainable Energy Reviews, vol.75, pp.1239-1253, 2017.

Z. Li, J. Kong, D. Ju, Z. Cao, L. Han et al., Thermal conductivity enhancement of poly(3-hydroxylbutyrate) composites by constructing segregated structure with the aid of poly, Composites Science and Technology, vol.149, pp.185-191, 2017.

Z. Lin, C. Huang, W. Zhen, and Z. Huang, Enhanced thermal conductivity of metallic nanoparticle packed bed by sintering treatment, Applied Thermal Engineering, vol.119, pp.425-429, 2017.

Y. Lin, Y. Jia, G. Alva, and G. Fang, Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage, Renewable and Sustainable Energy Reviews, 2017.

X. Huang, Y. Lin, G. Alva, and G. Fang, Thermal properties and thermal conductivity enhancement of composite phase change materials using myristyl alcohol/metal foam for solar thermal storage, Solar Energy Materials and Solar Cells, vol.170, pp.68-76, 2017.

J. Krishna, P. S. Kishore, and A. B. Solomon, Heat pipe with nano enhanced-PCM for electronic cooling application, Experimental Thermal and Fluid Science, vol.81, pp.84-92, 2017.

Z. Wang, Z. Zhang, L. Jia, and L. Yang, Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery, Applied Thermal Engineering, vol.78, pp.428-436, 2015.

S. Hong and D. R. Herling, Open-cell aluminum foams filled with phase change materials as compact heat sinks, Scripta Materialia, vol.55, pp.887-890, 2006.

J. Fukai, M. Kanou, Y. Kodama, and O. Miyatake, Thermal conductivity enhancement of energy storage media using carbon fibers, Energy Conversion and Management, vol.41, pp.1543-1556, 2000.

J. Fukai, Y. Hamada, Y. Morozumi, and O. Miyatake, Improvement of thermal characteristics of latent heat thermal energy storage units using carbon-fiber brushes: experiments and modeling, International Journal of Heat and Mass Transfer, vol.46, issue.03, pp.290-294, 2003.

Y. Chen, D. Nguyen, M. Shen, M. Yip, and N. Tai, Thermal characterizations of the graphite nanosheets reinforced paraffin phase-change composites, Composites Part A: Applied Science and Manufacturing, vol.44, pp.40-46, 2013.

V. Kumaresan, R. Velraj, and S. K. Das, The effect of carbon nanotubes in enhancing the thermal transport properties of PCM during solidification, vol.48, pp.1345-1355, 2012.

G. Dheep and A. Sreekumar, Influence of nanomaterials on properties of latent heat solar thermal energy storage materials -A review, Energy Conversion and Management, vol.83, pp.133-148, 2014.

Z. Yu, X. Fang, L. Fan, X. Wang, Y. Xiao et al., Increased thermal conductivity of liquid paraffin-based suspensions in the presence of carbon nano-additives of various sizes and shapes, Carbon, vol.53, pp.277-285, 2013.

Y. Cui, C. Liu, S. Hu, and X. Yu, The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials, Solar Energy Materials and Solar Cells, vol.95, pp.1208-1212, 2011.

J. Wang, H. Xie, and Z. Xin, Thermal properties of paraffin based composites containing multiwalled carbon nanotubes, Thermochimica Acta, vol.488, pp.39-42, 2009.

A. Elgafy and K. Lafdi, Effect of carbon nanofiber additives on thermal behavior of phase change materials, Carbon, vol.43, pp.3067-3074, 2005.

L. Fan, Z. Zhu, Y. Zeng, Y. Xiao, X. Liu et al., Transient performance of a PCM-based heat sink with high aspect-ratio carbon nanofillers, Applied Thermal Engineering, vol.75, pp.532-540, 2015.

H. Babaei, P. Keblinski, and J. M. Khodadadi, Thermal conductivity enhancement of paraffins by increasing the alignment of molecules through adding CNT/graphene, International Journal of Heat and Mass Transfer, vol.58, pp.209-216, 2013.

X. Fang, L. Fan, Q. Ding, X. Wang, X. Yao et al.,

K. Hu and . Cen, Increased Thermal Conductivity of Eicosane-Based Composite Phase Change Materials in the Presence of Graphene Nanoplatelets, Energy Fuels, vol.27, pp.4041-4047, 2013.

J. Wang, H. Xie, Z. Xin, and Y. Li, Increasing the thermal conductivity of palmitic acid by the addition of carbon nanotubes, Carbon, vol.48, pp.3979-3986, 2010.

T. Li, J. Lee, R. Wang, and Y. T. Kang, Enhancement of heat transfer for thermal energy storage application using stearic acid nanocomposite with multi-walled carbon nanotubes, Energy, vol.55, pp.752-761, 2013.

M. Xing, J. Yu, and R. Wang, Experimental study on the thermal conductivity enhancement of water based nanofluids using different types of carbon nanotubes, International Journal of Heat and Mass Transfer, vol.88, pp.609-616, 2015.

M. Zimmer, X. Fan, J. Bao, R. Liang, B. Wang et al., Through-Thickness Thermal Conductivity Prediction Study on Nanocomposites and Multiscale Composites, Materials Sciences and Applications, vol.3, p.131, 2012.

J. C. Affdl and J. L. Kardos, The Halpin-Tsai equations: A review, Polym Eng Sci, vol.16, pp.344-352, 1976.

E. W. Tiedje and P. Guo, Modeling the influence of particulate geometry on the thermal conductivity of composites, J Mater Sci, vol.49, pp.5586-5597, 2014.

J. C. Maxwell, A treatise on electricity and magnetism, 1904.

K. Pietrak and T. S. Wi?niewski, A review of models for effective thermal conductivity of composite materials, Journal of Power Technologies, vol.95, pp.14-24, 2014.

L. , On the influence of obstacles arranged in rectangular order upon the properties of a medium, The London, Edinburgh, and Dublin Philosophical Magazine and, Journal of Science, vol.34, pp.481-502, 1892.

R. L. Hamilton and O. K. Crosser, Thermal Conductivity of Heterogeneous Two-Component Systems, Ind. Eng. Chem. Fund, vol.1, pp.187-191, 1962.

G. S. Springer and S. W. Tsai, Thermal Conductivities of Unidirectional Materials, vol.1, pp.166-173, 1967.

S. C. Cheng and R. I. Vachon, The prediction of the thermal conductivity of two and three phase solid heterogeneous mixtures, International Journal of Heat and Mass Transfer, vol.12, pp.249-264, 1969.

C. Barreneche, R. Mondragon, D. Ventura-espinosa, J. Mata, L. F. Cabeza et al., Influence of nanoparticle morphology and its dispersion ability regarding thermal properties of water used as phase change material, Applied Thermal Engineering, vol.128, pp.121-126, 2018.

Z. Ling, X. Wen, Z. Zhang, X. Fang, and X. Gao, Thermal management performance of phase change materials with different thermal conductivities for Li-ion battery packs operated at low temperatures, Energy, vol.144, pp.977-983, 2018.

W. Wu, X. Yang, G. Zhang, X. Ke, Z. Wang et al., An experimental study of thermal management system using copper mesh-enhanced composite phase change materials for power battery pack, Energy, vol.113, pp.909-916, 2016.

W. Situ, G. Zhang, X. Li, X. Yang, C. Wei et al., A thermal management system for rectangular LiFePO4 battery module using novel double copper meshenhanced phase change material plates, Energy, vol.141, pp.613-623, 2017.

K. Boomsma and D. Poulikakos, On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam, International Journal of Heat and Mass Transfer, vol.44, pp.827-836, 2001.

S. Shaikh, K. Lafdi, and K. Hallinan, Carbon nanoadditives to enhance latent energy storage of phase change materials, Journal of Applied Physics, vol.103, p.94302, 2008.

V. V. Calmidi and R. L. Mahajan, The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams, J. Heat Transfer, vol.121, pp.466-471, 1999.

R. Zhao, J. Gu, and J. Liu, Optimization of a phase change material based internal cooling system for cylindrical Li-ion battery pack and a hybrid cooling design, Energy, vol.135, pp.811-822, 2017.

Z. Ling, X. Wen, Z. Zhang, X. Fang, and X. Gao, Thermal management performance of phase change materials with different thermal conductivities for Li-ion battery packs operated at low temperatures, Energy, vol.144, pp.977-983, 2018.

Y. Xie, J. Tang, S. Shi, Y. Xing, H. Wu et al., Experimental and numerical investigation on integrated thermal management for lithium-ion battery pack with composite phase change materials, Energy Conversion and Management, vol.154, pp.562-575, 2017.