N. A. Abukhshim, P. T. Mativenga, and M. A. Sheikh, Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining, International Journal of Machine Tools and Manufacture, vol.46, issue.7-8, pp.782-800, 2006.

S. Agrawal and S. S. Joshi, Analytical modelling of residual stresses in orthogonal machining of AISI4340 steel, Journal of Manufacturing Processes. The Society of Manufacturing Engineers, vol.15, pp.56-68, 2013.

G. Airbus-;-airbus, , 2018.

C. Aliaga, Simulation numérique par éléments finis en 3D du comportement thermomécanique au cours du traitement thermique d'aciers : application à la trempe de pièces forgées ou coulées, MINES ParisTech. Available, 2000.

P. J. Arrazola, Recent advances in modelling of metal machining processes, CIRP Annals -Manufacturing Technology, vol.62, issue.2, pp.695-718, 2013.

M. Bacci-da-silva and J. Wallbank, Cutting temperature: prediction and measurement methods-a review, Journal of Materials Processing Technology, vol.88, issue.1-3, pp.195-202, 1999.

J. Barralis, L. Castex, and . Gérard, Précontraintes et traitements superficiels, pp.0-51, 1999.

D. E. Betts, , vol.2, 1995.

M. B. Bieterman and D. R. Sandstrom, A Curvilinear Tool-Path Method for Pocket Machining, Journal of Manufacturing Science and Engineering, vol.125, issue.4, p.709, 2003.

X. Cerutti, Modélisation numérique et analyse mécanique de l'usinage de grandes pièces aéronautiques, 2014.

X. Cerutti and K. Mocellin, Parallel finite element tool to predict distortion induced by initial residual stresses during machining of aeronautical parts, International Journal of Material Forming, vol.8, issue.2, pp.255-268, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01024385

J. Chenot, Finite element modelling of forging and other metal forming processes, International Journal of Material Forming material forming, vol.3, pp.359-362, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00573831

J. Chenot, L. Fourment, and K. Mocellin, Numerical treatment of contact and friction in FE simulation of forming processes, Journal of Materials Processing Technology, issue.9, pp.416-424, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00613079

H. S. Choy and K. W. Chan, A corner-looping based tool path for pocket milling, CAD Computer Aided Design, vol.35, issue.2, pp.155-166, 2003.

H. E. Coules, Three-dimensional mapping of the residual stress field in a locally rolled aluminium alloy specimen, Journal of Manufacturing Processes. The Society of Manufacturing Engineers, vol.26, pp.240-251, 2017.

W. J. Deng, Modelling of Temperature History During Machining of Cast Aluminium Alloy, pp.231-240, 2008.

B. Denkena, Influence of Machining Parameters on Heat Generation During Milling of Aluminum Alloys, Procedia CIRP, vol.46, pp.39-42, 2016.

B. Denkena, D. Boehnke, and L. De-león, Machining induced residual stress in structural aluminum parts, Production Engineering, vol.2, pp.247-253, 2008.

B. Denkena and S. Dreier, Simulation of Residual Stress Related Part Distortion', in New Production Technologies in Aerospace Industry, pp.105-113, 2014.

B. Denkena, L. D. Garcia, and J. Köhler, FEM-Simulation of High-Performance-Milling, 10th CIRP International Workshop on Modeling of Machining Operations, pp.149-155, 2007.

B. Denkena and C. Schmidt, Experimental investigation and simulation of machining thin-walled workpieces, Production Engineering, vol.1, issue.4, pp.343-350, 2007.

H. Digonnet, Repartitionnement dynamique, mailleur parallèle et leurs applications à la simulation numérique en mise en forme des materiaux, 2001.

S. Dreier, J. Brüning, and B. Denkena, Simulation based Reduction of Residual Stress Related Part Distortion, International Conference of distorsions engineering, pp.153-160, 2015.

S. Dreier and B. Denkena, Determination of Residual Stresses in Plate Material by Layer Removal with Machine-integrated Measurement, Procedia CIRP. Elsevier B.V, vol.24, pp.103-107, 2014.

H. Ernst and M. Merchant, Chip formation, friction and high quality machined surfaces. Surface treatment of metals, Am Soc Met, vol.29, pp.299-378, 1941.

K. J. Fidkowski and D. L. Darmofal, A triangular cut-cell adaptive method for high-order discretizations of the compressible Navier-Stokes equations, Journal of Computational Physics, vol.225, issue.2, pp.1653-1672, 2007.

J. Fleischer, R. Pabst, and S. Kelemen, Heat flow simulation for dry machining of power train castings, CIRP Annals -Manufacturing Technology, vol.56, issue.1, pp.117-122, 2007.

K. Fuh and C. Wu, A residual-stress model for the milling of aluminum alloy (2014-T6), Journal of Materials Processing Technology, vol.51, issue.1-4, pp.87-105, 1995.

H. Gao, An analytical model for predicting the machining deformation of a plate blank considers biaxial initial residual stresses, The International Journal of Advanced Manufacturing Technology, vol.93, issue.1-4, pp.1473-1486, 2017.

C. Geuzaine and J. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre-and postprocessing facilities, International Journal for Numerical Methods in Engineering, vol.79, issue.11, pp.1309-1331, 2009.

P. Grant, The Application of Fine Increment Hole Drilling for Measuring Machining-Induced Residual Stresses, Applied Mechanics and Materials, pp.105-110, 2006.

P. Gratacos, Un probleme de deformation couplee : modelisation elastoplastique par elements finis du laminage a froid de bande mince, 1991.

C. Gruau and T. Coupez, 3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric, Computer Methods in Applied Mechanics and Engineering, vol.194, pp.4951-4976, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00517639

N. Guillemot, A Hybrid Approach to Predict Residual Stresses Induced by Ball-End Tool Finishing Milling of a Bainitic Steel, Advanced Materials Research, vol.223, pp.391-400, 2011.

S. Hassini, Qualification multi-critères des gammes d 'usinage : application aux pièces de structure aéronautique en alliage Airware', thèse, p.216, 2015.

M. Held, A geometry-based investigation of the tool path generation for zigzag pocket machining, The Visual Computer, vol.7, pp.296-308, 1991.

E. K. Henriksen, Handbook of Jig and Fixture Design, 1989.

M. N. James, Residual stresses and fatigue performance, Engineering Failure Analysis, vol.14, issue.2, pp.384-395, 2007.

X. Jiang, An approach to predict the distortion of thin-walled parts affected by residual stress during the milling process, The International Journal of Advanced Manufacturing Technology. The International Journal of Advanced Manufacturing Technology, vol.93, issue.9, pp.4203-4216, 2017.

I. Korkut and M. A. Donertas, The influence of feed rate and cutting speed on the cutting forces, surface roughness and tool-chip contact length during face milling, Materials & Design, vol.28, issue.1, pp.308-312, 2007.

K. W. Kpodzo, Accélération des calculs pour la simulation du laminage à pas de pèlerin en utilisant la méthode multimaillages, MINES ParisTech. Available at, 2014.

T. R. Kramer, Pocket milling with tool engagement detection, Journal of Manufacturing Systems, vol.11, issue.2, pp.114-123, 1992.

J. Lalonde, Contribution aux techniques de mesure des contraintes résiduelles des pièces brutes et usinées par diffraction aux neutrons, 2009.

E. H. Lee and B. W. Shaffer, The theory of plasticity applied to a problem of machining, Division of Applied Mathematics, 1949.

L. R. De-léon-garcia, Residual stress and part distortion in milled aerospace aluminium, 2010.

P. Lequeu, K. P. Smith, and A. Daniélou, Aluminum-copper-lithium alloy 2050 developed for medium to thick plate, Journal of Materials Engineering and Performance, vol.19, issue.6, pp.841-847, 2010.

X. P. Li, Theoretical modelling and simulation of milling forces, Journal of Materials Processing Technology, pp.266-272, 1999.

G. C. Lin, Prediction of cutting forces and chip geometry in oblique machining from flow stress properties and cutting conditions, vol.18, pp.117-130, 1978.

Y. W. Liu, Numerical Simulation of the Machining Distortion of Aircraft Aluminum Part Caused by Redistribution of Residual Stress, Advanced Materials Research, vol.142, pp.122-125, 2010.

Y. W. Liu, Numerical Simulation of the Machining Distortion of Aircraft Aluminum Part Caused by Redistribution of Residual Stress, Advanced Materials Research, vol.142, pp.122-125, 2010.

P. Lorong, Contribution of computational mechanics in numerical simulation of machining and blanking: State-of-the-Art, Archives of Computational Methods in Engineering, vol.13, issue.1, pp.45-90, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00019220

K. Ma, R. Goetz, and S. K. Svrivatsa, Modeling of Residual Stress and Machining Distortion in Aerospace Components, pp.1-41, 2010.

A. Madariaga, Reduction of distortions in large aluminium parts by controlling machining-induced residual stresses, The International Journal of Advanced Manufacturing Technology, vol.97, issue.1-4, pp.967-978, 2018.

C. L. Manufacturing and C. L. Staff, Jig and Fixture Handbook. Carr Lane Mfg, Company. Available, 1992.

J. Mayr, Thermal issues in machine tools, CIRP Annals -Manufacturing Technology, vol.61, issue.2, pp.771-791, 2012.

C. Ming, Experimental research on the dynamic characteristics of the cutting temperature in the process of high-speed milling, Journal of Materials Processing Technology, vol.138, issue.1-3, pp.468-471, 2003.

A. Molinari and D. Dudzinski, Modelling of orthogonal cutting with a temperature dependent friction law, Mech. Phys. Solids, vol.46, issue.10, pp.2103-2138, 1998.

A. Y. Nee, K. Whybrew, and A. Senthil-kumar, Advanced Fixture Design for FMS, 1995.

P. L. Oxley, The mechanics of machining: an analytical approach to assessing machinability, 1989.

R. Pabst, J. Fleischer, and J. Michna, Modelling of the heat input for face-milling processes, CIRP Annals -Manufacturing Technology. CIRP, vol.59, issue.1, pp.121-124, 2010.

N. Padgett, An Intro To Electrical Discharge Machining, 2015.

V. Pateloup, E. Duc, and P. Ray, Corner optimization for pocket machining, International Journal of Machine Tools and Manufacture, vol.44, pp.1343-1353, 2004.

F. Poulhaon, Génération en ligne de trajectoire d'usinage par une approche de réduction de modèle, 2015.

D. Pramet, Enhancing machining performance through drill geometry, 2018.

A. Prete and . Del, Numerical simulation of machining distortions on a forged aerospace component following a one and a multi-step approaches, p.70009, 2018.

A. Prete and . Del, Numerical simulation of machining distortions on a forged aerospace component following a one and a multi-step approaches, p.70009, 2018.

M. B. Prime, Cross-Sectional Mapping of Residual Stresses by Measuring the Surface Contour After a Cut, Journal of Engineering Materials and Technology, vol.123, issue.2, p.162, 2001.

J. K. Rai and P. Xirouchakis, Finite element method based machining simulation environment for analyzing part errors induced during milling of thin-walled components, International Journal of Machine Tools and Manufacture, vol.48, issue.6, pp.629-643, 2008.

G. Rebergue, Mesure in-situ du comportement des pièces en situation d'usinage à l'aide d'une mesure optique, 2018.

D. J. Richardson, M. A. Keavey, and F. Dailami, Modelling of cutting induced workpiece temperatures for dry milling, International Journal of Machine Tools and Manufacture, vol.46, issue.10, pp.1139-1145, 2006.

N. S. Rossini, Methods of measuring residual stresses in components', Materials and Design, vol.35, pp.572-588, 2012.

M. Saez-de-buruaga, Determining tool/chip temperatures from thermography measurements in metal cutting, Applied Thermal Engineering, vol.145, pp.305-314, 2018.

H. Sallem, Simulation numérique de soudage avec un maillage en tétraèdres P1/P1', 12 Colloque National en Calcul des Structures, pp.1-5, 2015.

E. Schulz, Presentation at Airbus GMF 2018, 2018.

M. Shakoor, Three-dimensional numerical modeling of ductile fracture mechanisms at the microscale. PhD thesis, Mines ParisTech, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01626736

W. Sim, Residual Stress Engineering in Manufacture of Aerospace Structural Parts, International Conference of distorsions engineering, pp.187-194, 2011.

M. Snir, MPI : The Complete Reference Scientic and Engineering Computation. The MIT Pr, Interface. The MIT Pr, 1996.

D. A. Stephenson and J. S. Agapiou, Metal Cutting Theory and Practice, 2016.

J. Su, Modeling of residual stresses in milling, The International Journal of Advanced Manufacturing Technology, vol.65, issue.5-8, pp.717-733, 2013.

K. G. Swift and J. D. Booker, Machining Processes', in Manufacturing Process Selection Handbook, pp.175-204, 2013.

Z. T. Tang, Study on Residual Stresses in Milling Aluminium Alloy 7050-T7451, 2008.

H. K. Toenshoff and B. Denkena, Basics of Cutting and Abrasive Processes, 2013.

G. Totten, M. Howes, and T. Inoue, Handbook of Residual Stress and Deformation of Steel', Handbook of Residual Stress and Deformation of Steel, pp.54-69, 2002.

R. G. Treuting and W. T. Read, A Mechanical Determination of Biaxial Residual Stress in Sheet Materials, Journal of Applied Physics, vol.22, issue.2, pp.130-134, 1951.

D. Ulutan, B. Erdem-alaca, and I. Lazoglu, Analytical modelling of residual stresses in machining, Journal of Materials Processing Technology, vol.183, issue.1, pp.77-87, 2007.

F. Valiorgue, Simulation des processus de génération de contraintes résiduelles en tournage du 316L.Nouvelle approche numérique et expérimentale. thèse, 2008.

Q. C. Wang, Numerical Simulation of Machining Distortion of Residually Stressed Aircraft Aluminum Components, Key Engineering Materials, pp.235-238, 2006.

S. P. Wang, A New Approach For FEM Simulation of NC Machining Processes, AIP Conference Proceedings, pp.1371-1376, 2004.

S. P. Wang, A New Approach For FEM Simulation of NC Machining Processes, AIP Conference Proceedings, pp.1371-1376, 2004.

W. Bai, R. Hu, and X. Zhu, Finite element simulation and analysis of part deformation induced during milling of thin-walled aerospace monolithic structure parts, 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems. IEEE, pp.440-444, 2010.

W. Bai, R. Hu, and X. Zhu, Finite element simulation and analysis of part deformation induced during milling of thin-walled aerospace monolithic structure parts, 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems. IEEE, pp.440-444, 2010.

S. Webzell, The Evolution in Trochoidal Milling, 2014.

Y. Yang, H. H. Li, and G. Y. Meng, Study on Prediction of Machining Distortion for Titanium Alloy Aircraft Monolithic Component by FEM, Advanced Materials Research, pp.2951-2954, 2010.

Y. Yang, M. Li, and K. R. Li, Comparison and analysis of main effect elements of machining distortion for aluminum alloy and titanium alloy aircraft monolithic component, The International Journal of Advanced Manufacturing Technology, vol.70, issue.9, pp.1803-1811, 2014.

Y. Yang, M. Li, and K. R. Li, Comparison and analysis of main effect elements of machining distortion for aluminum alloy and titanium alloy aircraft monolithic component, The International Journal of Advanced Manufacturing Technology, vol.70, issue.9, pp.1803-1811, 2014.

M. S. Younger and K. H. Eckelmeyer, Overcoming Residual Stresses and Machining Distortion in the Production of Aluminum Alloy Satellite Boxes, 2007.