, Voie silicate de sodium

, Lavage, échange de solvant et modification de surface

, Le cas de l'isolation thermique du bâtiment : vers de nouveaux produits aérogels, p.46

, Considérations environnementales et sanitaires

, Futur de l'aérogel

I. , Les transferts de chaleur dans les aérogels de silice

, Influence de l'épaisseur optique du matériau

, Effet de l'adsorption d'eau

, Modèle de conductivité thermique d'un aérogel de silice optiquement épais

, Extension des modèles aux blankets aérogels

I. Chapitre,

, Energy efficiency trends and policies in the household and tertiary sectors, An Analysis Based on the ODYSSEE and MURE Databases, 2015.

&. Ademe and . Climat, , 2015.

K. Kitamura and F. Kimura, Heat transfer and fluid flow of natural convection adjacent to upward-facing horizontal plates, Int. J. Heat Mass Transf, vol.38, issue.17, pp.3149-3159, 1995.

D. L. Loveday and A. H. Taki, Convective heat transfer coefficients at a plane surface on a full-scale building facade, Int. J. Heat Mass Transf, vol.39, issue.8, pp.1729-1742, 1996.

J. A. Palyvos, A survey of wind convection coefficient correlations for building envelope energy systems' modeling, Appl. Therm. Eng, vol.28, issue.8-9, pp.801-808, 2008.

L. Xing, Estimations of undisturbed ground temperatures using numerical and analytical modeling, 2014.

L. Adelard, F. Pignolet-tardan, T. Mara, P. Lauret, F. Garde et al., Sky temperature modelisation and application in building simulation, 1998.

H. M. Künzel, Simultaneous heat and moisture transport in building components', One-Two-Dimens. Calc. Using Simple Parameters IRB-Verl. Stuttg, 1995.

P. , Thermal comfort. Analysis and applications in environmental engineering, Therm. Comf. Anal. Appl. Environ. Eng, 1970.

A. P. Gagge, A. Fobelets, and L. Berglund, A standard predictive index of human response to the thermal environment, ASHRAE TransUnited States, vol.92, p.8606125, 1986.

N. Azer and S. Hsu, The prediction of thermal sensation from a simple model of human physiological regulatory response, ASHRAE Trans, vol.83, 1977.

;. Acermi and A. Acermi', , p.12, 2017.

C. Luo, B. Moghtaderi, H. Sugo, and A. Page, Time lags and decrement factors under air-conditioned and free-floating conditions for multi-layer materials, Proceedings of the Building Simulation 2007 Conference, pp.95-100, 2007.

E. Iso, Therm. Perform. Build. Components-Dynamic Therm. Charact. Methods, vol.13786, 2007.

A. Gagliano, F. Patania, F. Nocera, and C. Signorello, Assessment of the dynamic thermal performance of massive buildings, Energy Build, vol.72, pp.361-370, 2014.

H. Asan, Effects of wall's insulation thickness and position on time lag and decrement factor, Energy Build, vol.28, issue.3, pp.299-305, 1998.

H. Asan and Y. S. Sancaktar, Effects of Wall's thermophysical properties on time lag and decrement factor, Energy Build, vol.28, issue.2, pp.159-166, 1998.

Ö. Ka?ka, R. Yumruta?, and O. Arpa, Theoretical and experimental investigation of total equivalent temperature difference (TETD) values for building walls and flat roofs in Turkey, Appl. Energy, vol.86, issue.5, pp.737-747, 2009.

R. Yumruta?, Ö. Ka?ka, and E. Y?ld?r?m, Estimation of total equivalent temperature difference values for multilayer walls and flat roofs by using periodic solution, Build. Environ, vol.42, issue.5, pp.1878-1885, 2007.

K. J. Kontoleon and E. A. Eumorfopoulou, The influence of wall orientation and exterior surface solar absorptivity on time lag and decrement factor in the Greek region, Renew. Energy, vol.33, issue.7, pp.1652-1664, 2008.

K. Ulgen, Experimental and theoretical investigation of effects of wall's thermophysical properties on time lag and decrement factor, Energy Build, vol.34, issue.3, pp.273-278, 2002.

I. Mandilaras, M. Stamatiadou, D. Katsourinis, G. Zannis, and M. Founti, Experimental thermal characterization of a Mediterranean residential building with PCM gypsum board walls, Build. Environ, vol.61, pp.93-103, 2013.

S. E. Kalnaes and B. P. Jelle, Vacuum insulation panel products: A state-of-the-art review and future research pathways, Appl. Energy, vol.116, pp.355-375, 2014.

H. Simmler, Vacuum Insulation Panels. Study on VIP-components and panels for service life prediction of VIP in building applications (Subtask A), IEAECBCS Annex, vol.39, 2005.

S. Kistler, Coherent expanded-aerogels, J. Phys. Chem, vol.36, issue.1, pp.52-64, 1932.

S. S. Kistler, Method of making aerogel. Patent US 2249767 assigned to Mosanto Chemical Co, vol.22, 1941.

S. S. Kistler, Water-repellent aerogels. Patent US2805961, vol.10, 1957.

J. Peri, Infrared study of OH and NH2 groups on the surface of a dry silica aerogel, J. Phys. Chem, vol.70, issue.9, pp.2937-2945, 1966.

G. Nicolaon and S. Teichner, Preparation of silica aerogels from methyl orthosilicate in alcoholic medium, and their properties, pp.1906-1911, 1968.

R. Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde, J. Mater. Sci, vol.24, issue.9, pp.3221-3227, 1989.

D. M. Smith, R. Deshpande, and C. J. Brinke, Preparation of low-density aerogels at ambient pressure, MRS Proceedings, vol.271, p.567, 1992.

S. S. Prakash, C. J. Brinker, A. J. Hurd, and S. M. Rao, Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shrinkage, Nature, vol.374, issue.6521, p.439, 1995.

S. Haereid, M. Einarsrud, and G. W. Scherer, Mechanical strengthening of TMOSbased alcogels by aging in silane solutions, J. Sol-Gel Sci. Technol, vol.3, issue.3, pp.199-204, 1994.

S. D. Bhagat, C. Oh, Y. Kim, Y. Ahn, and J. Yeo, Methyltrimethoxysilane based monolithic silica aerogels via ambient pressure drying, Microporous Mesoporous Mater, vol.100, issue.1, pp.350-355, 2007.

J. Poco, P. Coronado, R. Pekala, and L. Hrubesh, A rapid supercritical extraction process for the production of silica aerogels, MRS Online Proc. Libr. Arch, vol.431, 1996.

, Industrial Aerogel Insulation -Aspen Aerogels', p.24, 2016.

J. Kuhn, T. Gleissner, M. Arduini-schuster, S. Korder, and J. Fricke, Integration of mineral powders into SiO2 aerogels, J. Non-Cryst. Solids, vol.186, pp.291-295, 1995.

A. Santos, M. Ajbary, J. A. Toledo-fernández, V. Morales-flórez, A. Kherbeche et al., Reactivity of CO2 traps in aerogel-wollastonite composites, J. Sol-Gel Sci. Technol, vol.48, issue.1-2, pp.224-230, 2008.

H. Wu, Y. Chen, Q. Chen, Y. Ding, X. Zhou et al., Synthesis of flexible aerogel composites reinforced with electrospun nanofibers and microparticles for thermal insulation, J. Nanomater, vol.2013, p.10, 2013.

M. M. Kulkarni, R. Bandyopadhyaya, B. Bhattacharya, and A. Sharma, Microstructural and mechanical properties of silica-PEPEG polymer composite xerogels, Acta Mater, vol.54, issue.19, pp.5231-5240, 2006.

M. A. Meador, Cross-linking amine-modified silica aerogels with epoxies: mechanically strong lightweight porous materials, Chem. Mater, vol.17, issue.5, pp.1085-1098, 2005.

T. Li and T. Wang, Preparation of silica aerogel from rice hull ash by drying at atmospheric pressure, Mater. Chem. Phys, vol.112, issue.2, pp.398-401, 2008.

Q. Tang and T. Wang, Preparation of silica aerogel from rice hull ash by supercritical carbon dioxide drying, J. Supercrit. Fluids, vol.35, issue.1, pp.91-94, 2005.

L. Pauling, The Nature of the Chemical Bond, vol.260, 1960.

A. V. Rao, G. Pajonk, U. K. Bangi, A. P. Rao, and M. M. Koebel, Sodium silicate based aerogels via ambient pressure drying, Aerogels Handbook, pp.103-124, 2011.

S. Haereid, E. Nilsen, and M. Einarsrud, Properties of silica gels aged in TEOS, J. Non-Cryst. Solids, vol.204, issue.3, pp.228-234, 1996.

E. D. Egeberg and J. Engell, Freeze drying of silica gels prepared from siliciumethoxid, J. Phys. Colloq, vol.50, issue.C4, pp.4-23, 1989.
URL : https://hal.archives-ouvertes.fr/jpa-00229479

G. Hayase, K. Kanamori, A. Maeno, H. Kaji, and K. Nakanishi, Dynamic spring-back behavior in evaporative drying of polymethylsilsesquioxane monolithic gels for low-density transparent thermal superinsulators, J. Non-Cryst. Solids, vol.434, pp.115-119, 2016.

M. Schneider and A. Baiker, Aerogels in catalysis, Catal. Rev, vol.37, issue.4, pp.515-556, 1995.

M. J. Burchell, Characteristics of cometary dust tracks in Stardust aerogel and laboratory calibrations, Meteorit. Planet. Sci, vol.43, issue.1-2, pp.23-40, 2008.

D. L. Bernik, Silicon based materials for drug delivery devices and implants, Recent Pat. Nanotechnol, vol.1, issue.3, pp.186-192, 2007.

S. M. Jones, Aerogel: Space exploration applications, J. Sol-Gel Sci. Technol, vol.40, issue.2-3, pp.351-357, 2006.

R. Gerlach, O. Kraus, J. Fricke, P. Eccardt, N. Kroemer et al., Modified SiO2 aerogels as acoustic impedance matching layers in ultrasonic devices, J. Non-Cryst. Solids, vol.145, pp.227-232, 1992.

C. Langlais and S. Klarsfeld, Isolation thermique à température ambiante, Propriétés', Tech. Ing. Matér. Fonct, vol.1, issue.BE9860, 2004.

F. Hoffmann, M. Cornelius, J. Morell, and M. Fröba, Silica-based mesoporous organicinorganic hybrid materials, Angew. Chem. Int. Ed, vol.45, issue.20, pp.3216-3251, 2006.

K. Kanamori, M. Aizawa, K. Nakanishi, and T. Hanada, New Transparent Methylsilsesquioxane Aerogels and Xerogels with Improved Mechanical Properties, Adv. Mater, vol.19, issue.12, pp.1589-1593, 2007.

G. Zu, Transparent, Superflexible Doubly Cross-Linked Polyvinylpolymethylsiloxane Aerogel Superinsulators via Ambient Pressure Drying, ACS Nano, vol.12, issue.1, pp.521-532, 2018.

A. V. Rao, S. D. Bhagat, H. Hirashima, and G. Pajonk, Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor, J. Colloid Interface Sci, vol.300, issue.1, pp.279-285, 2006.

J. Cai, Cellulose-Silica Nanocomposite Aerogels by In Situ Formation of Silica in Cellulose Gel, Angew. Chem, vol.124, issue.9, pp.2118-2121, 2012.

M. A. Meador, L. A. Capadona, L. Mccorkle, D. S. Papadopoulos, and N. Leventis, Structure?Property Relationships in Porous 3D Nanostructures as a Function of Preparation Conditions: Isocyanate Cross-Linked Silica Aerogels, Chem. Mater, vol.19, issue.9, pp.2247-2260, 2007.

B. N. Nguyen, Tailoring Elastic Properties of Silica Aerogels Cross-Linked with Polystyrene, ACS Appl. Mater. Interfaces, vol.1, issue.3, pp.621-630, 2009.

J. P. Randall, M. A. Meador, and S. C. Jana, Tailoring Mechanical Properties of Aerogels for Aerospace Applications, ACS Appl. Mater. Interfaces, vol.3, issue.3, pp.613-626, 2011.

H. Guo, Polyimide Aerogels Cross-Linked through Amine Functionalized Polyoligomeric Silsesquioxane, ACS Appl. Mater. Interfaces, vol.3, issue.2, pp.546-552, 2011.

J. K. Lee, G. L. Gould, and W. Rhine, Polyurea based aerogel for a high performance thermal insulation material, J. Sol-Gel Sci. Technol, vol.49, issue.2, pp.209-220, 2009.

M. Ozisik, Radiative Heat Transfer, 1973.

G. Chen, Nanoscale energy transport and conversion: a parallel treatment of electrons, molecules, phonons, and photons, 2005.

C. Dames and G. Chen, Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires, J. Appl. Phys, vol.95, issue.2, pp.682-693, 2004.

M. G. Kaganer, Thermal insulation in cryogenic engineering, 1969.

U. Heinemann, R. Caps, and F. J. , Radiation-conduction interaction:an investigation on silica aerogels, Int J Heat Mass Transf, vol.39, issue.10, pp.2115-2130, 1996.

S. Q. Zeng, A. Hunt, and R. Greif, Theoretical modeling of carbon content to minimize heat transfer in silica aerogel, J. Non-Cryst. Solids, vol.186, pp.271-277, 1995.

H. Ebert, Thermal properties of aerogels, Aerogels handbook, pp.537-564, 2011.

X. Wang, D. Sun, Y. Duan, and Z. Hu, Radiative characteristics of opacifierloaded silica aerogel composites, J. Non-Cryst. Solids, vol.375, pp.31-39, 2013.

J. Zhao, Optical and radiative properties of infrared opacifier particles loaded in silica aerogels for high temperature thermal insulation, Int. J. Therm. Sci, vol.70, pp.54-64, 2013.

U. Heinemann, Influence of Water on the Total Heat Transfer in "Evacuated" Insulations', Int. J. Thermophys, vol.29, issue.2, pp.735-749, 2008.

H. Schwab, U. Heinemann, A. Beck, H. Ebert, and J. Fricke, Dependence of thermal conductivity on water content in vacuum insulation panels with fumed silica kernels, J. Therm. Envel. Build. Sci, vol.28, issue.4, pp.319-326, 2005.

D. Dan, H. Zhang, and W. Tao, Effective structure of aerogels and decomposed contributions of its thermal conductivity, Appl. Therm. Eng, vol.72, issue.1, pp.2-9, 2014.

S. Zeng, A. Hunt, and R. Greif, Geometric structure and thermal conductivity of porous medium silica aerogel, J. Heat Transf, vol.117, issue.4, pp.1055-1058, 1995.

T. Xie, Y. He, and Z. Hu, Theoretical study on thermal conductivities of silica aerogel composite insulating material, Int. J. Heat Mass Transf, vol.58, issue.1-2, pp.540-552, 2013.

O. Nilsson, G. Rüschenpöhler, J. Gross, and J. Fricke, Correlation between thermal conductivity and elasto-mechanical properties of compressed porous media, vol.21, pp.267-274, 1989.

L. Kocon and J. Phalippou, Caracterisation des Proprietes des Aerogels

P. J. Debye, W. Nernst, M. Smoluchowski, A. Sommerfeld, and H. A. Lorentz, Vorträge über die kinetische Theorie der Materie und der Elektrizität, vol.6, 1914.

C. Bi and G. Tang, Effective thermal conductivity of the solid backbone of aerogel, Int. J. Heat Mass Transf, vol.64, pp.452-456, 2013.

P. Scheuerpflug, H. Morper, and G. Neubert, Low-temperature thermal transport in silica aerogels, J. Phys. Appl. Phys, vol.24, issue.8, p.1395, 1991.

K. Kamiuto, Combined conductive and radiative heat transfer through evacuated silica aerogel layers, Int. J. Sol. Energy, vol.9, issue.1, pp.23-33, 1990.

R. Coquard, D. Baillis, V. Grigorova, F. Enguehard, D. Quenard et al., Modelling of the conductive heat transfer through nano-structured porous silica materials, J. Non-Cryst. Solids, vol.363, pp.103-115, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00938555

K. Swimm, G. Reichenauer, S. Vidi, and H. Ebert, Gas Pressure Dependence of the Heat Transport in Porous Solids with Pores Smaller than 10 ?m, Int. J. Thermophys, vol.30, issue.4, pp.1329-1342, 2009.

S. Zhao, B. Zhang, and X. He, Temperature and pressure dependent effective thermal conductivity of fibrous insulation, Int. J. Therm. Sci, vol.48, issue.2, pp.440-448, 2009.

K. Swimm, G. Reichenauer, S. Vidi, and H. Ebert, Gas pressure dependence of the heat transport in porous solids with pores smaller than 10 ?m, Int. J. Thermophys, vol.30, issue.4, pp.1329-1342, 2009.

K. Swimm, G. Reichenauer, S. Vidi, and H. Ebert, Impact of thermal coupling effects on the effective thermal conductivity of aerogels, J. Sol-Gel Sci. Technol, vol.84, issue.3, pp.466-474, 2017.

F. Hemberger, S. Weis, G. Reichenauer, and H. Ebert, Thermal Transport Properties of Functionally Graded Carbon Aerogels, Int. J. Thermophys, vol.30, issue.4, pp.1357-1371, 2009.

J. Zhao, Y. Duan, X. Wang, and B. Wang, Effects of solid-gas coupling and pore and particle microstructures on the effective gaseous thermal conductivity in aerogels, J. Nanoparticle Res, vol.14, issue.8, 2012.

C. Bi, G. H. Tang, Z. J. Hu, H. L. Yang, and J. N. Li, Coupling model for heat transfer between solid and gas phases in aerogel and experimental investigation', Int. J. Heat Mass Transf, vol.79, pp.126-136, 2014.

G. Poelz, Aerogel in High Energy Physics', in Aerogels, vol.6, pp.176-187, 1986.

Y. Xu, Electromagnetic scattering by an aggregate of spheres: far field, Appl. Opt, vol.36, issue.36, pp.9496-9508, 1997.

P. Waterman, Matrix formulation of electromagnetic scattering, Proc. IEEE, vol.53, pp.805-812, 1965.

E. M. Purcell and C. R. Pennypacker, Scattering and absorption of light by nonspherical dielectric grains, Astrophys. J, vol.186, pp.705-714, 1973.

X. Sun, H. Tang, and G. Yuan, Anomalous diffraction approximation method for retrieval of spherical and spheroidal particle size distributions in total light scattering, J. Quant. Spectrosc. Radiat. Transf, vol.109, issue.1, pp.89-106, 2008.

M. Huetz-aubert, S. Klarsfeld, and P. De-dianous, Rayonnement thermique des matériaux semi-transparents', Tech. L'Ingénieur BE B 8 215, pp.1-38, 1995.

B. G. Rennex, Thermal parameters as a function of thickness for combined radiation and conduction heat transfer in low-density insulation, J. Build. Phys, vol.3, issue.1, pp.37-61, 1979.

M. Hollingsworth, Experimental determination of the thickness effect in glass fiber building insulation', in Thermal insulation performance, 1980.

C. M. Pelanne, Discussion on Experiments to Separate the "Effect of Thickness" from Systematic Equipment Errors in Thermal Transmission Measurements', in Thermal Insulation Performance, 1980.

C. J. Shirtliffe, Effect of thickness on the thermal properties of thick specimens of lowdensity thermal insulation', in Thermal Insulation Performance, 1980.

S. Lee and G. R. Cunnington, Conduction and Radiation Heat Transfer in High-Porosity Fiber Thermal Insulation, J. Thermophys. Heat Transf, vol.14, issue.2, pp.121-136, 2000.

D. M. Dawson and A. Briggs, Prediction of the thermal conductivity of insulation materials, J. Mater. Sci, vol.16, issue.12, pp.3346-3356, 1981.

J. Vassal, Contribution à la modélisation des propriétés physiques et rhéologiques des milieux fibreux, 2007.

F. Cardarelli, Materials handbook: a concise desktop reference, 2008.

J. Zhao, Y. Duan, X. Wang, and B. Wang, Radiative properties and heat transfer characteristics of fiber-loaded silica aerogel composites for thermal insulation, Int. J. Heat Mass Transf, vol.55, pp.5196-5204, 2012.

G. Wei, Y. Liu, X. Zhang, F. Yu, and X. Du, Thermal conductivities study on silica aerogel and its composite insulation materials, Int. J. Heat Mass Transf, vol.54, issue.11-12, pp.2355-2366, 2011.

, Caractérisation de la texture poreuse par sorption d'azote

, Détermination de la surface spécifique

.. .. ,

, Mesure de l'angle de contact

.. .. ,

, Étude de sensibilité au mode de séchage et à l'agent hydrophobant

, Résistance à la traction perpendiculaire aux faces

, Conclusions sur les caractérisations physiques

. .. References,

P. A. Bonnardel and S. Chausson, Procede de fabrication d'aerogels par chauffage dielectrique, 2015.

G. Wei, Y. Liu, X. Zhang, and X. Du, Radiative heat transfer study on silica aerogel and its composite insulation materials, J. Non-Cryst. Solids, vol.362, pp.231-236, 2013.

K. S. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations, Pure Appl. Chem, vol.57, issue.4, pp.603-619, 1984.

A. Ayral, J. Phalippou, and T. Woignier, Skeletal density of silica aerogels determined by helium pycnometry, J. Mater. Sci, vol.27, issue.5, pp.1166-1170, 1992.

G. Reichenauer and G. W. Scherer, Effects upon Nitrogen Sorption Analysis in Aerogels, J. Colloid Interface Sci, vol.236, issue.2, pp.385-386, 2001.

G. Reichenauer and G. W. Scherer, Extracting the pore size distribution of compliant materials from nitrogen adsorption, Colloids Surf. Physicochem. Eng. Asp, vol.187, pp.41-50, 2001.

S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc, vol.60, issue.2, pp.309-319, 1938.

F. Rouquerol, J. Rouquerol, I. Beurroies, P. Llewellyn, and R. Denoyel, Texture des matériaux divisés -Aire spécifique des matériaux pulvérulents ou nanoporeux, 2017.

E. P. Barrett, L. G. Joyner, and P. P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. Am. Chem. Soc, vol.73, issue.1, pp.373-380, 1951.

G. Reichenauer and G. W. Scherer, Nitrogen sorption in aerogels, J. Non-Cryst. Solid, vol.285, pp.167-174, 2001.

J. C. Groen and L. A. ,

J. Peffer and . Pérez-ram??ez, Pore size determination in modified micro-and mesoporous materials, Microporous Mesoporous Mater, vol.60, issue.1-3, pp.1-17, 2003.

Z. Yuan, J. Wang, Z. Zhang, T. Chen, and H. Li, Vanadium-and chromium-containing mesoporous MCM-41 molecular sieves with hierarchical structure, Microporous Mesoporous Mater, vol.43, issue.2, pp.227-236, 2001.

Z. Yuan, J. Wang, H. Li, and Z. Chang, Synthesis of a novel aluminosilicate with bimodal mesopore distribution, Chin. Chem. Lett, vol.8, issue.10, pp.927-930, 1997.

A. Keshavaraja, V. Ramaswamy, H. Soni, A. Ramaswamy, and P. Ratnasamy, Synthesis, characterization, and catalytic properties of micro-mesoporous, amorphous titanosilicate catalysts, J. Catal, vol.157, issue.2, pp.501-511, 1995.

G. Colón, M. Hidalgo, and J. Nav?o, A novel preparation of high surface area TiO2 nanoparticles from alkoxide precursor and using active carbon as additive, Catal. Today, vol.76, issue.2-4, pp.91-101, 2002.

V. Parvulescu, Preparation and characterisation of mesoporous zirconium oxide, Appl. Catal. Gen, vol.214, issue.2, pp.273-287, 2001.

. Afnor, NF EN 12667 -Détermination de la résistance thermique par la méthode de la plaque chaude gardée et la méthode fluxmètrique -Produits de haute et moyenne résistance thermique, 2001.

. Afnor, NF EN ISO 11357-1 Analyse calorimétrique différentielle (DSC) Partie 1 : Pr incipes généraux, 2009.

, EN ISO 12571 -Hygrothermal performance of building materials and products -Determination of hygroscopic sorption properties, 2013.

, EN 828 -Adhesives -Wettability -Determination by measurement of contact angle and surface free energy of solid surface, 2013.

, EN ISO 12086 -Thermal insulating products for building applications -Determination of water vapour transmission properties, 2013.

, Thermal insulating products for building applications -Determination of compression behaviour, EN, vol.826, 2013.

, EN 12089 -Produits isolants thermiques destinés aux applications du bâtiment -Détermination du comportement en flexion, 2013.

D. Astm, Stand. Test Methods Flexural Prop. Unreinforced Reinf. Plast. Electr. Insul. Mater, vol.11, pp.790-793, 2003.

, Thermal insulating products for building applications -Determination of tensile strength perpendicular to faces, 2013.

, EN 13162 Thermal insulation products for buildings -Factory made mineral wool (MW) products -Specification, 2015.

, Thermal insulation products for buildings -External thermal insulation composite systems (ETICS) based on mineral wool, 2003.

;. Acermi and A. Acermi', , p.12, 2017.

A. C. Pierre and A. Rigacci, SiO2 aerogels, Aerogels handbook, pp.21-45, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00800463

G. Markevicius, R. Ladj, P. Niemeyer, T. Budtova, and A. Rigacci, Ambient-dried thermal superinsulating monolithic silica-based aerogels with short cellulosic fibers, J. Mater. Sci, vol.52, issue.4, pp.2210-2221, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01387767

A. M. Anderson and M. K. Carroll, Hydrophobic silica aerogels: review of synthesis, properties and applications', in Aerogels Handbook, pp.47-77, 2011.

A. Hoseini and M. Bahrami, Effects of humidity on thermal performance of aerogel insulation blankets, J. Build. Eng, vol.13, pp.107-115, 2017.

. Afnor, Produits isolants thermiques pour le bâtiment -Produits manufacturés en laine minérale (MW) -Spécification, 2015.

G. Wei, Y. Zhang, C. Xu, X. Du, and Y. Yang, A thermal conductivity study of doublepore distributed powdered silica aerogels, Int. J. Heat Mass Transf, vol.108, pp.1297-1304, 2017.

A. Bisson, A. Rigacci, D. Lecomte, and P. Achard, Effective thermal conductivity of divided silica xerogel beds, J. Non-Cryst. Solids, vol.350, pp.379-384, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00528565

J. Fricke, E. Hümmer, H. Morper, and P. Scheuerpflug, Thermal properties of silica aerogels, J. Phys. Colloq, vol.24, issue.C4, pp.4-87, 1989.
URL : https://hal.archives-ouvertes.fr/jpa-00229489

R. Saliger, T. Heinrich, T. Gleissner, and J. Fricke, Sintering behaviour of aluminamodified silica aerogels, J. Non-Cryst. Solids, vol.186, pp.113-117, 1995.

J. P. Bonsack, Effect of aging on surface properties of silica powders produced by plasmaarc vaporization, Powder Technol, vol.15, issue.1, pp.53-62, 1976.

B. Morel, Vieillissement thermohydrique de silices nanométriques, 2008.

K. E. Collins, M. C. Gonçalves, R. B. Romero, R. F. Conz, V. R. De-camargo et al.,

. Collins, Low temperature ageing of silicas Gasil-I and TK800, Appl. Surf. Sci, vol.254, issue.13, pp.4029-4035, 2008.

H. Balard, J. Donnet, H. Oulanti, T. Gottschalk-gaudig, and H. Barthel, Study of aging of pyrogenic silicas by gravimetry and microcalorimetry, Colloids Surf. Physicochem. Eng. Asp, vol.378, issue.1-3, pp.38-43, 2011.

T. Ihara, B. P. Jelle, T. Gao, and A. Gustavsen, Aerogel granule aging driven by moisture and solar radiation, Energy Build, vol.103, pp.238-248, 2015.

J. B. Alvey, J. Patel, and L. D. Stephenson, Experimental study on the effects of humidity and temperature on aerogel composite and foam insulations, Energy Build, vol.144, pp.358-371, 2017.

U. Berardi and R. H. Nosrati, Long-term thermal conductivity of aerogel-enhanced insulating materials under different laboratory aging conditions, vol.147, pp.1188-1202, 2018.

B. Chal, G. Foray, B. Yrieix, K. Masenelli-varlot, L. Roiban et al., Durability of silica aerogels dedicated to superinsulation measured under hygrothermal conditions, Microporous Mesoporous Mater, vol.272, pp.61-69, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01916292

G. Reichenauer, U. Heinemann, and H. Ebert, Relationship between pore size and the gas pressure dependence of the gaseous thermal conductivity, Colloids Surf. Physicochem. Eng. Asp, vol.300, issue.1-2, pp.204-210, 2007.

F. Hemberger, S. Weis, G. Reichenauer, and H. Ebert, Thermal Transport Properties of Functionally Graded Carbon Aerogels, Int. J. Thermophys, vol.30, issue.4, pp.1357-1371, 2009.

K. Swimm, G. Reichenauer, S. Vidi, and H. Ebert, Gas pressure dependence of the heat transport in porous solids with pores smaller than 10 ?m, Int. J. Thermophys, vol.30, issue.4, pp.1329-1342, 2009.

J. Zhao, Y. Duan, X. Wang, and B. Wang, Effects of solid-gas coupling and pore and particle microstructures on the effective gaseous thermal conductivity in aerogels, J. Nanoparticle Res, vol.14, issue.8, 2012.

C. Dames and G. Chen, Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires, J. Appl. Phys, vol.95, issue.2, pp.682-693, 2004.

P. Scheuerpflug, M. Hauck, and F. J. , Thermal properties of silica aerogels between 1.4 and 330 K', J. Non-Cryst. Solids, vol.145, pp.196-201, 1992.

G. Wei, Y. Liu, X. Zhang, F. Yu, and X. Du, Thermal conductivities study on silica aerogel and its composite insulation materials, Int. J. Heat Mass Transf, vol.54, issue.11-12, pp.2355-2366, 2011.

J. Fricke, X. Lu, P. Wang, D. Büttner, and U. Heinemann, Optimization of monolithic silica aerogel insulants, Int. J. Heat Mass Transf, vol.35, issue.9, pp.2305-2309, 1992.

P. Scheuerpflug, H. Morper, and G. Neubert, Low-temperature thermal transport in silica aerogels, J. Phys. Appl. Phys, vol.24, issue.8, p.1395, 1991.

K. Kamiuto, Combined conductive and radiative heat transfer through evacuated silica aerogel layers, Int. J. Sol. Energy, vol.9, issue.1, pp.23-33, 1990.

C. Bi, G. H. Tang, Z. J. Hu, H. L. Yang, and J. N. Li, Coupling model for heat transfer between solid and gas phases in aerogel and experimental investigation', Int. J. Heat Mass Transf, vol.79, pp.126-136, 2014.

S. Zhao, B. Zhang, and X. He, Temperature and pressure dependent effective thermal conductivity of fibrous insulation, Int. J. Therm. Sci, vol.48, issue.2, pp.440-448, 2009.

S. Q. Zeng, A. Hunt, and R. Greif, Transport properties of gas in silica aerogel, J. Non-Cryst. Solids, vol.186, pp.264-270, 1995.

K. Swimm, S. Vidi, G. Reichenauer, and H. Ebert, Coupling of gaseous and solid thermal conduction in porous solids, J. Non-Cryst. Solids, vol.456, pp.114-124, 2017.

K. Swimm, G. Reichenauer, S. Vidi, and H. Ebert, Impact of thermal coupling effects on the effective thermal conductivity of aerogels, J. Sol-Gel Sci. Technol, vol.84, issue.3, pp.466-474, 2017.

G. W. Milton, The theory of composites (Cambridge monographs on applied and computational mathematics), 2002.

M. Sahimi, Heterogeneous Materials: Nonlinear and breakdown properties and atomistic modeling, vol.2, 2003.

M. Kaviany, Principles of heat transfer in porous media, Porous Media Springer N. Y, 1991.

M. Wyllie and P. Southwick, An experimental investigation of the SP and resistivity phenomena in dirty sands, J. Pet. Technol, vol.6, issue.02, pp.44-57, 1954.

X. Wang, D. Sun, Y. Duan, and Z. Hu, Radiative characteristics of opacifierloaded silica aerogel composites, J. Non-Cryst. Solids, vol.375, pp.31-39, 2013.

A. Hoseini, C. Mccague, M. Andisheh-tadbir, and M. Bahrami, Aerogel blankets: From mathematical modeling to material characterization and experimental analysis, Int. J. Heat Mass Transf, vol.93, pp.1124-1131, 2016.

. Iv, Description du système d'isolation et de la cellule thermique

, Capteurs de température et d'humidité

.. .. Ambiance-intérieure,

, Utilisation des multiples capteurs pour obtenir une valeur unique de température et premiers résultats

, Coefficient de transmission thermique U-value

, Coefficient de transmission solaire g-value

, Facteur d'amortissement f et déphasage ?

, Critères de performance sur la consommation énergétique et le confort

, Flux thermique sur la surface intérieure Q

, Besoin en énergie finale : chauffage et refroidissement

. Iv, Méthodes pour l'estimation des paramètres caractéristiques d'une cellule thermique, p.240

I. V. Chapitre, Expérimentation à l'échelle du système et du bâtiment, p.221

, Validation des modèles utilisés pour l'identification des paramètres via les méthodes dynamiques

, 4.1. Déperditions thermiques et coefficient de transfert thermique du mur test

, Identifications des paramètres secondaires de la cellule thermique

, Déphasage et facteur d'amortissement

, IV.5.Conclusion, vol.264

. .. References, , vol.1, p.23, 2018.

G. Krauss, Etude expérimentale des transferts de chaleur entre un bâtiment et son environnement: conception, réalisation, instrumentation d'une cellule test, 1985.

Y. Berthou, Étude de parois de bâtiments passifs associant un Matériau à Changement de Phase (MCP) et une super isolation transparents, 2011.

M. Ibrahim, Improving the buildings envelopes energy performance using aerogel-based insulating mineral rendering, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01141873

W. Köppen and R. Geiger, Handbuch der klimatologie', Gebrüder Borntraeger Berl, 1936.

R. Geiger, Klassifikation der klimate nach W. Köppen', Landolt-Börnstein Zahlenwerte Funkt, Aus Phys. Chem. Astron. Geophys. Tech. Alte Ser, vol.3, 1954.

K. A. Antonopoulos and E. Koronaki, Apparent and effective thermal capacitance of buildings, vol.23, pp.183-192, 1998.

G. Desogus, S. Mura, and R. Ricciu, Comparing different approaches to in situ measurement of building components thermal resistance, Energy Build, vol.43, issue.10, pp.2613-2620, 2011.

H. Madsen, Time series analysis, 2007.

A. , Parameter estimation in buildings: methods for dynamic analysis of measured energy use, J. Sol. Energy Eng, vol.110, issue.1, pp.52-66, 1988.

M. F. , PRISM: an introduction, Energy Build, vol.9, issue.1-2, pp.5-18, 1986.

, Thermal insulation -Building elements -In situ measurement of thermal resistance and thermal transmittance -BS ISO 9869-1, 2014.

R. C. Sonderegger, Dynamic models of house heating based on equivalent thermal parameters, 1978.

W. A. Shurcliff, Frequency Method of Analyzing a Building's Dynamic Thermal Performance, 1985.

K. Subbarao, Thermal parameters for single and multizone buildings and their determination from performance data, 1985.

P. Bacot, Identification de modèles de comportement des systèmes thermiques, Rev. Générale Therm, vol.24, issue.277, pp.15-21, 1985.

J. Kreider, Neural networks applied to building energy studies, Workshop On Parameter Identification, pp.243-251, 1995.

P. Bacher and H. Madsen, Identifying suitable models for the heat dynamics of buildings, Energy Build, vol.43, issue.7, pp.1511-1522, 2011.

O. Gutschker, Parameter identification with the software package LORD, Build. Environ, vol.43, issue.2, pp.163-169, 2008.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in C, vol.2, 1996.

N. Metropolis and S. Ulam, The monte carlo method, J. Am. Stat. Assoc, vol.44, issue.247, pp.335-341, 1949.

O. Gutschker, H. Rogali, and A. Donath, Parameter identification to analyse heat insulation measurements, Workshop Appl. Syst. Identif. Energy Sav. Build, p.281

N. R. Kristensen and H. Madsen, Continuous Time Stochastic Modelling-CTSM 2.3 User Guide, Tech. Univ. Den. Lyngby Den, 2003.

H. Asan and Y. S. Sancaktar, Effects of Wall's thermophysical properties on time lag and decrement factor, Energy Build, vol.28, issue.2, pp.159-166, 1998.

C. E. De-normalisation, Critères d'ambiance intérieure pour la conception et évaluation de la performance énergétique des bâtiments couvrant la qualité de l'air intérieur, la thermique, l'éclairage et l'acoustique, pp.51-762, 2007.

T. Frank, Protection thermique estivale des pièces sous les combles, EMPA Materials Science & Tchnology, vol.444, issue.383, 2008.

, Bilan thermique de l'air dans les zones

, Besoin net du bâtiment tertiaire

. .. , Besoin en énergie finale et besoin en énergie primaire de l'appartement, p.307

, Confort d'été de l'appartement

. .. Références,

H. Asan and Y. S. Sancaktar, Effects of Wall's thermophysical properties on time lag and decrement factor, Energy Build, vol.28, issue.2, pp.159-166, 1998.

C. Mackey and L. Wright, Periodic heat flow-composite walls or roofs, ASHVE Trans, vol.52, issue.283, pp.194-200, 1946.

C. Luo, B. Moghtaderi, H. Sugo, and A. Page, Time lags and decrement factors under air-conditioned and free-floating conditions for multi-layer materials, Proceedings of the Building Simulation 2007 Conference, pp.95-100, 2007.

R. Yumruta?, Ö. Ka?ka, and E. Y?ld?r?m, Estimation of total equivalent temperature difference values for multilayer walls and flat roofs by using periodic solution, Build. Environ, vol.42, issue.5, pp.1878-1885, 2007.

N. C. Balaji, M. Mani, and B. V. Venkatarama-reddy, Thermal performance of the building walls, Building Simulation Application 2013, 1st IBPSA Italy Conference, pp.151-60, 2013.

J. Danckaert, L'isolation thermique industrielle, 2. éd, Augm. Paris: Technique et documentation, 1981.

D. W. Peaceman and H. H. Rachford, The Numerical Solution of Parabolic and Elliptic Differential Equations, J. Soc. Ind. Appl. Math, vol.3, issue.1, pp.28-41, 1955.

D. Potter, Computational physics, 1973.

, Hygrothermal performance of building components and building elementsassessment of moisture transfer by numerical simulation. International Organization for Standardization Geneva, 2007.

A. Tenwolde, ASHRAE Standard 160P-criteria for moisture control design analysis in buildings, 2008.

H. T. Ceylan and G. Myers, Long-time solutions to heat-conduction transients with timedependent inputs, J. Heat Transf, vol.102, issue.1, pp.115-120, 1980.

K. Ouyang and F. Haghighat, A procedure for calculating thermal response factors of multi-layer walls-state space method, Build. Environ, vol.26, issue.2, pp.173-177, 1991.

J. E. Seem, Modeling of heat transfer in buildings, Wisconsin Univ, 1987.

M. S. Owen and H. E. Kennedy, ASHRAE handbook: fundamentals', SI Ed, 2009.

G. N. Walton, Thermal analysis research program reference manual, Natl. Bur. Stand, 1983.

G. Clark and C. Allen, The estimation of atmospheric radiation for clear and cloudy skies, Proc. 2nd National Passive Solar Conference, pp.675-678, 1978.

, Complément des caractérisations, vol.1

. .. Stabilité-dimensionnelle,

. .. Résistance-au-feu,

. .. Poudrage,

.. .. Propriétés-du-système-trocellen, Annexe, vol.2

.. .. Propriétés-thermophysiques-du-système-trocellen,

.. .. Propriétés-acoustiques-du-système-trocellen,

, Caractéristique de la cellule test, Annexe, vol.3

, Propriétés thermo-physiques des parois de la cellule test (septembre 2018)

, Résultats de mesure d'infiltration d'air dans la cellule test, Annexe, vol.4

, Introduction aux séries temporelles, Annexe, vol.5

, Méthodes d'estimation de paramètres, Annexe, vol.6

L. .. Avec,

A. Ctsm and -. .. ,

, Validation des modèles 'state-space' modélisés sous Ctsm-R, Annexe, vol.7

). .. Modèle-2r1c-;--state,

3. Modèle, -states)

, Systèmes d'isolation, vol.8

E. .. Système,

F. .. Système,

, Scénarios utilisés pour les simulations avec Energy Plus, vol.9

. .. Bâtiment-tertiaire,

. .. Appartement,

, Propriétés acoustiques du système Trocellen Mesure in situ de l'isolement acoustique normalisé pour chaque fréquence (voir Norme ISO 16283) dans la cellule test, avant (violet) et après la mise en place du système Trocellen

, La projection de la fonction objective ? à la position ? = ? Þ_| sur l'espace des paramètres

, Propriété de la couche d'étanchéité FLAGON EP/PV-F