
�>���G �A�/�, �i�2�H�@�y�k�9�R�j�9�N�e

�?�i�i�T�b�,�f�f�T���b�i�2�H�X���`�+�?�B�p�2�b�@�Q�m�p�2�`�i�2�b�X�7�`�f�i�2�H�@�y�k�9�R�j�9�N�e

�a�m�#�K�B�i�i�2�/ �Q�M �R�e �.�2�+ �k�y�R�N

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�_�2�b�Q�m�`�+�2 �K���M���;�2�K�2�M�i �B�M �+�Q�K�T�m�i�2�` �+�H�m�b�i�2�`�b �, ���H�;�Q�`�B�i�?�K
�/�2�b�B�;�M ���M�/ �T�2�`�7�Q�`�K���M�+�2 ���M���H�v�b�B�b

�*�û�H�B�M�2 �*�Q�K�i�2

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�*�û�H�B�M�2 �*�Q�K�i�2�X �_�2�b�Q�m�`�+�2 �K���M���;�2�K�2�M�i �B�M �+�Q�K�T�m�i�2�` �+�H�m�b�i�2�`�b �, ���H�;�Q�`�B�i�?�K �/�2�b�B�;�M ���M�/ �T�2�`�7�Q�`�K���M�+�2 ���M���H�@
�v�b�B�b�X �L�2�i�r�Q�`�F�B�M�; ���M�/ �A�M�i�2�`�M�2�i ���`�+�?�B�i�2�+�i�m�`�2 �(�+�b�X�L�A�)�X �A�M�b�i�B�i�m�i �S�Q�H�v�i�2�+�?�M�B�[�m�2 �/�2 �S���`�B�b�- �k�y�R�N�X �1�M�;�H�B�b�?�X
���L�L�h �, �k�y�R�N�A�S�S���h�y�y�R���X ���i�2�H�@�y�k�9�R�j�9�N�e��

Abstract

The growing demand for cloud-based services encourages operators to maximize resource e�ciency
within computer clusters. This motivates the development of new technologies that make resource
management more exible. However, exploiting this exibility to reduce the number of computers
also requires e�cient resource-management algorithms that have a predictable performance under
stochastic demand. In this thesis, we design and analyze such algorithms using the framework of
queueing theory.

Our abstraction of the problem is a multi-server queue with several customer classes. Servers have
heterogeneous capacities and the customers of each class enter the queue according to an indepen-
dent Poisson process. Each customer can be processed in parallel by several servers, depending
on compatibility constraints described by a bipartite graph between classes and servers, and each
server applies �rst-come-�rst-served policy to its compatible customers. We �rst prove that, if the
service requirements are independent and exponentially distributed with unit mean, this simple
policy yields the same average performance as balanced fairness, an extension to processor-sharing
known to be insensitive to the distribution of the service requirements. A more general form of this
result, relating order-independent queues to Whittle networks, is also proved. Lastly, we derive
new formulas to compute performance metrics.

These theoretical results are then put into practice. We �rst propose a scheduling algorithm
that extends the principle of round-robin to a cluster where each incoming job is assigned to a
pool of computers by which it can subsequently be processed in parallel. Our second proposal is
a load-balancing algorithm based on tokens for clusters where jobs have assignment constraints.
Both algorithms are approximately insensitive to the job size distribution and adapt dynamically to
demand. Their performance can be predicted by applying the formulas derived for the multi-server
queue.

Keywords. Queueing theory, insensitivity, balanced fairness, multi-server queue, scheduling, load
balancing.

R�esum�e

La demande croissante pour les services de cloud computing encourage les op�erateurs �a opti-
miser l'utilisation des ressources dans les grappes d'ordinateurs. Cela motive le d�eveloppement
de nouvelles technologies qui rendent plus exible la gestion des ressources. Cependant, exploiter
cette exibilit�e pour r�eduire le nombre d'ordinateurs n�ecessite aussi des algorithmes de gestion des
ressources e�caces et dont la performance est pr�edictible sous une demande stochastique. Dans
cette th�ese, nous concevons et analysons de tels algorithmes en utilisant le formalisme de la th�eorie
des �les d'attente.

Notre abstraction du probl�eme est une �le multi-serveur avec plusieurs classes de clients. Les
capacit�es des serveurs sont h�et�erog�enes et les clients de chaque classe entrent dans la �le selon
un processus de Poisson ind�ependant. Chaque client peut être trait�e en parall�ele par plusieurs
serveurs, selon des contraintes de compatibilit�e d�ecrites par un graphe biparti entre les classes
et les serveurs, et chaque serveur applique la politique premier arriv�e, premier servi aux clients
qui lui sont a�ect�es. Nous prouvons que, si la demande de service de chaque client suit une loi
exponentielle ind�ependante de moyenne unitaire, alors la performance moyenne sous cette politique
simple est la même que sous l'�equit�e �equilibr�ee, une extension de processor-sharing connue pour
son insensibilit�e �a la loi de la demande de service. Une forme plus g�en�erale de ce r�esultat, reliant
les �les order-independent aux r�eseaux de Whittle, est aussi prouv�ee. En�n, nous d�eveloppons de
nouvelles formules pour calculer des m�etriques de performance.

Ces r�esultats th�eoriques sont ensuite mis en pratique. Nous commen�cons par proposer un algo-
rithme d'ordonnancement qui �etend le principe de round-robin �a une grappe o�u chaque requête
est a�ect�ee �a un groupe d'ordinateurs par lesquels elle peut ensuite être trait�ee en parall�ele. Notre
seconde proposition est un algorithme de r�epartition de charge �a base de jetons pour des grappes
o�u les requêtes ont des contraintes d'a�ectation. Ces deux algorithmes sont approximativement
insensibles �a la loi de la taille des requêtes et s'adaptent dynamiquement �a la demande. Leur
performance peut être pr�edite en appliquant les formules obtenues pour la �le multi-serveur.

Mots-cl �es. Th�eorie des �les d'attente, insensibilit�e, �equit�e �equilibr�ee, �le multi-serveur, ordon-
nancement, r�epartition de charge.

Acknowledgements

I would like to express my gratitude to my supervisors, Thomas Bonald and Fabien Mathieu, who
accompanied me through this adventure. Beside their precious scienti�c input, their kind guidance
gave me the con�dence I needed to develop the researcher in me, while also leaving me ample
space for developing my own ideas. I also wish to thank Christine Fricker and Michel Mandjes
for reviewing my Ph.D. thesis, as well as Alain Jean-Marie, Hind Castel-Taleb, Nicolas Gast, and
Volker Hilt for being part of my Ph.D. jury.

Over the last three years, I shared my time between theLaboratory of Information, Networking,
and Communication Sciencesin Paris and Nokia Paris-Saclay in Nozay. I believe that evolving
in such welcoming and friendly environments is a wonderful starting point for a young researcher,
and for this I am deeply grateful to my colleagues.

My thanks also go to my co-authors, Anne Bouillard, �Elie de Pana�eu, Virag Shah, and Gustavo
de Veciana. Not only did I take a great deal of pleasure in working with them, I also discovered
many things that helped me broaden my horizons. In particular, I wish to acknowledge Virag Shah
for always being keen to engage in enthusiastic discussions, as these fueled my desire to do research
at the beginning of my Ph.D. Along the same lines, I am grateful to Sem Borst and Urtzi Ayesta
for hosting me during short stays at the Eindhoven University of Technologyand the Institut de
recherche en informatique de Toulouse, respectively. I am looking forward to working with them
in the future.

I wish to thank Bethany Cagnol for answering numerous questions about scienti�c writing|and
speaking|in English. I am also indebted to Fran�cois Durand, Anne Bouillard, and Philippe
Jacquet for their useful advise that helped me prepare my Ph.D. defense.

Doing a Ph.D. at the frontier of mathematics and computer science was a long-term ambition that
evolved over the years. For this, I am grateful to the researchers and teachers who accompanied
me along my education, in particular to Ramla Abdellatif, Thierry Ramond, and Herv�e Guibert.

Last but not least, I wish to thank my parents, Sylvie and Michel, my brother, Nicolas, my
companion, Paul, and my cousin, Delphine, and her family. Their unreserved love and support has
always been important to me and was especially helpful during the last year of my Ph.D.

Many thanks to you all, and happy reading!

Contents

Introduction 1
Multiplexing users on a single computer . 2
The single-server queue . 4
Sharing multiple computers . 9
The multi-server queue . 11
Contributions and structure of the manuscript . 15

I Methodology 19

1 Whittle networks 21
1.1 De�nition . 21
1.2 Stationary analysis . 25
1.3 Reversibility . 27
1.4 Insensitivity . 32
1.5 Concluding remarks . 34

2 Order-independent queues 37
2.1 De�nition . 37
2.2 Stationary analysis . 39
2.3 Quasi-reversibility . 42
2.4 Concluding remarks . 46

3 Equivalence of Whittle networks and order-independent queues 49
3.1 De�nition . 49
3.2 Imbedding . 50
3.3 Stability condition . 55
3.4 Performance metrics . 58
3.5 Concluding remarks . 60

II Analysis of the multi-server queue 61

4 The multi-server queue 63
4.1 De�nition . 63
4.2 Balanced fairness . 69
4.3 First-come-�rst-served . 72
4.4 Stationary analysis . 74
4.5 Concluding remarks . 79

5 Performance analysis by state aggregation 81
5.1 Generic formulas . 81
5.2 Poly-symmetry . 83
5.3 Random class assignment . 88
5.4 Numerical results . 92

5.5 Concluding remarks . 93
Appendix 5.A Proof of Theorem 5.14 . 93
Appendix 5.B Proof of the lemmas for Theorem 5.14 96

6 Performance analysis by server elimination 99
6.1 Generic formulas . 99
6.2 Random customer assignment . 103
6.3 Local assignment . 107
6.4 Numerical results . 112
6.5 Concluding remarks . 115

III Applications in algorithm design 117

7 Job scheduling 119
7.1 Scheduling algorithm . 119
7.2 Queueing analysis . 123
7.3 Numerical results . 127
7.4 Related work . 128
7.5 Concluding remarks . 129

8 Load balancing 135
8.1 Load-balancing algorithm . 135
8.2 Queueing analysis . 137
8.3 Numerical results . 144
8.4 Related works . 151
8.5 Concluding remarks . 152

9 Extensions 153
9.1 Combining job scheduling and load balancing . 153
9.2 Load balancing with multiple dispatchers . 159
9.3 Concluding remarks . 164
Appendix 9.A Proof of irreducibility . 164

Conclusion 169
Better understand the performance of insensitive algorithms 170
A general framework for insensitivity . 171
Integrate data . 171

Appendix A Notations 173
A.1 General notations . 173
A.2 Macrostate and microstate . 173
A.3 Index of notations . 174

Appendix B Useful probability notions 179
B.1 Random variables . 179
B.2 Markov chains and processes . 180

Appendix C Excursion into analytic combinatorics and network calculus 185
C.1 Introduction . 185
C.2 Reminder on generating functions . 186
C.3 The single-server queue . 187
C.4 Extensions . 189
C.5 Numerical results . 193
C.6 Concluding remarks . 194

Publications 195
International publications . 195
French publications . 195

Source code to generate the numerical results 197

Bibliography 199

Introduction

Computers have increased productivity by automating many operations that used to be performed
by humans. Such activities as computing, manufacturing, prototyping, or editing|the list is
almost in�nite|were revolutionized by computers. Over time, their complexity was increased to
broaden even more their �eld of application: memory is now partitioned into several levels of
hierarchy with di�erent access speeds, computations are run in parallel on multi-core processors,
information is exchanged almost instantaneously through interconnected networks of computers...
This complexity comes with an operational cost that can be quite substantial. Outsourcing the
management of the information technology infrastructure to a third-part company is a classical
way of driving this cost down. Such a third-party company can indeed achieve economies of scale
by running large-scale computer clusters and selling computer system resources as a utility.

This is precisely the idea ofcloud computing, which consists of \the on-demand availability of
computer system resources, especially data storage and computing power, without direct active
management by the user" (Wikipedia). In other words, a cloud provider abstracts the complexity
of the information technology infrastructure away from users so that they can focus on their own
core business. Ideally, each user can utilize the cloud of computers|hence the name|as if it were
a single remote computer with a exible capacity.

Figure 1: A computer cluster run by a cloud provider.

Pooling resources to reduce costs is not speci�c to computer systems|far from it. It is desirable
whenever several users have a need for the same scarce resources, may these be washing machines,
airplanes, cars, printers, medical imaging equipments, or windmills. In addition to releasing users
from the burden of resource management, it allows the resource provider to reduce the number of
deployed resources compared to a scenario without pooling. The reason is that, in many practical
situations, it is unlikely that all users require access to the resources at the same time. The
resource provider can quite safely provision a number of resources that is strictly less than the
sum of the number of resources required by each user individually. This method is often called
resource overcommitmentor statistical multiplexing. It is commonly applied by cloud providers, as
researchers from Google explain in the introduction of the paper [77]:

One way to meet several types of strict service-level guarantees is to provision su�cient
resources to meet worst-case (peak) demands, and su�cient underlying redundancy to
tolerate all conceivable faults. But most cloud customers want low-cost service, and
the ability to rapidly adjust up, or down, the resources they are using/paying for. So
to meet cost goals, providers cannot overprovision, and must multiplex customers onto
more-or-less oversubscribed resources.

1

Introduction

A particularity of computer clusters compared to other applications of resource pooling is their
scale. A single cluster at Google can contain tens of thousands of computers, each cluster being
interconnected with others scattered around the world [99]. At this scale, resource management
needs be automated and optimized, as a small ine�ciency may lead to a large waist of resources.
This motivates cloud providers to develop cluster managers, such as Mesos [51], Sparrow [81], and
Borg [99], that dynamically adapt to the demand [87].

Multiplexing users on a single computer

Before we consider sharing multiple computers, let us describe the problems that arise when and
the solutions that were proposed for sharing a single computer between users.

Stochastic demand. If the user demand were perfectly regular, there would be no contention
and resource management would|almost|be a piece of cake. Consider the example of a single
computer that processes jobs as they arrive. First assume that one job arrives every time unit and
each job also takes exactly one time unit to be processed, as shown in Figure 2. Then there is no
queueing because every job enters in service immediately after its arrival, which means that the
delay between the arrival of a job and its completing service is exactly one time unit.

Figure 2: An ideal scenario.

Of course, these ideal assumptions are rarely met in practice. Let us see what happens if some jobs
are longer than others. In Figure 3, we consider an extreme case where the odd|orange|jobs
take one time unit and three quarters, while the even|green|jobs only take a quarter of a time
unit. The mean job size is the same but the variance is larger. If jobs are still processed in their
arrival order, short jobs are queued during three quarters of a time unit while the computer �nishes
processing long jobs. The mean delay jumps to12 (2 + 3

4) = 1 :375 time unit. This expectation can
be made arbitrarily close to 1:5 second as the variance of the job size distribution increases|if
every other request takes 1 +� time unit and the others take 1 � � time unit, the mean delay is
1 + �

2 . We will often come back to this example in the rest of this section. A similar reasoning
shows that adding irregularity in the job arrival times also tends to degrade performance. Overall,
we say that demand isstochastic because we are usually unable to predict these irregularities1.

Figure 3: Impact of the variance of the job size distribution on the mean delay.

The objective of queueing theory is precisely to estimate and control the impact of queueing e�ects
on performance. Queueing theory was developed during the twentieth century as a consequence of
two currents, namely the development of telecommunications and industry that produced a need
for systematic resource-management algorithms, and the development of the theory of Markov
chains that provided a solid mathematical foundation for the analysis of dynamical systems [62].

Job scheduling. In the case of a single computer, the lever of the queueing theorist is the schedul-
ing algorithm, which determines when and for how long each job is in service on the computer.
Consider again the example of Figure 3 and assume that the service of each job can be paused and
resumed later. Then a better solution than serving jobs in their arrival order consists of systemat-
ically processing the job with the least quantity of work left, so that an incoming job can preempt
another if it is shorter. This greedy scheduling policy is calledshortest-remaining-time-�rst and
yields the execution shown in Figure 4. Long jobs experience a delay of two time units while short

1According to the Oxford English Dictionary, the adjective stochastic precisely means \Having a random prob-
ability distribution or pattern that may be analysed statistically but may not be predicted precisely."

2

Multiplexing users on a single computer

jobs experience a delay of only a quarter of a time unit|equal to their service time|so that the
mean delay is now 1

2 (2 + 1
4) = 1 :125 time unit. This scheduling policy was proved to be optimal

in terms of the mean delay [86]. In other words, given the arrival times and job sizes, we cannot
hope for a shorter mean delay than 1:125 time units.

Figure 4: Shortest-remaining-time-�rst.

This scheduling policy has two shortcomings however [50]. First, we need to estimate the size of
a job immediately on its arrival in order to compare it with the sizes of the other jobs. This is
possible for some speci�c types of jobs|such as �le download requests|but not in general. In this
manuscript, we will generally focus on resource-management policies that arenon-anticipating in
the sense that they do not use information on the job sizes nor on the future arrival times. Our
second concern is fairness. Speci�cally, it is possible that large jobs are preempted by many smaller
jobs, so that they may be disproportionately delayed compared to their size.

Fairness versus e�ciency. First-come-�rst-served is unfair with short jobs that are queued be-
hind long jobs. Shortest-remaining-time-�rst is e�cient in the sense that it minimizes the mean
delay, however it is unfair with long jobs. These observations echo a long-standing question about
the trade-o� between e�ciency and fairness in queueing theory. Namely, can we �nd a|non-
anticipating|policy that reaches a compromise between these two seemingly contradictory objec-
tives? To guarantee that no job is discriminated against, an ideally fair policy should constantly
share the capacity of the computer equally between the jobs, as if all job were in service at the
same time. Figure 5 shows what we would obtain with such an ideally fair policy. When a short
job arrives, the long job that is in service is not interrupted as with shortest-remaining-time-�rst.
Instead, both jobs are servedconcurrently at half the speed|or capacity|of the computer. The
service of a short job takes twice longer to be completed, in exchange for which a longer job is
guaranteed to receive at least a small portion of the service capacity.

Figure 5: Processor-sharing.

This ideal policy is called processor-sharingbecause it was originally designed to share computer
processors [64, 65]. We say that it is aresource-sharing policy because it consists of dividing
the resource itself between jobs|meaning that jobs are stacked vertically on our �gures. On the
contrary, �rst-come-�rst-served and shortest-remaining-time-�rst are time-sharing policies because
they divide the resource time between jobs|which amounts to placing jobs side by side on our
�gures. The di�erence between resource-sharing and time-sharing policies is similar to that which
di�erentiates frequency-division and time-division channel access methods in cellular networks. We
will later explain how to approximately implement processor-sharing using a time-sharing policy.

What about the mean delay under processor-sharing? Long jobs have a delay of 2 time units,
while short jobs have a delay of half a time unit, so that the mean delay is1

2 (2 + 1
2) = 1 :25

time unit. This is less than under �rst-come-�rst-served|1.375 time unit|but more than under
shortest-remaining-time-�rst|1.125 time unit. In general, we cannot hope that processor-sharing
outperforms shortest-remaining-time-�rst, as we said that this policy was optimal for the mean
delay, but it might be outperformed by �rst-come-�rst-served. For instance, if long jobs had a
size of one and a half time unit instead of one and three quarters time unit|so that the size of
short jobs is half a time unit|the mean delay under processor-sharing would be 1

2 (2 + 1) = 1 :5
time unit, while it would be 1

2 (1:5 + 1) = 1 :25 time unit under �rst-come-�rst-served and shortest-
remaining-time-�rst policies. However, we will see in the next section that, under more reasonable
assumptions on the statistic of the tra�c, processor-sharing has the advantage of being quite
robust to the variance of the job size distribution|unlike �rst-come-�rst-served|while enforcing

3

Introduction

fairness between jobs|unlike shortest-remaining-time-�rst. Before that, we describe a time-sharing
scheduling algorithm that approximates the ideal sharing objective speci�ed by processor-sharing.

Round-robin. This scheduling algorithm aims to give the illusion that all jobs are served con-
currently even though, in reality, only one job can be in service at a time. The idea is that, if the
computer processes jobs in a circular order and alternates frequently enough between them, the
average performance over a short period of time will be almost the same as if the computer were
e�ectively processing jobs concurrently. The duality between round-robin scheduling algorithm
and processor-sharing policy is summarized by Kleinrock [65]:

Thus we may take two points of view, the one being that customers are given the
full capacity of the processor on apart-time basis, and the second being that customers
are given afractional-capacity processor on afull-time basis; the former is referred to
as time-sharing and the latter as processor-sharing.

Thus round-robin is a time-sharing policy that emulates processor-sharing. Let us see how it works
on our example. Unlike the policies we have considered so far, round-robin takes one parameter,
namely the size of the timequantum allocated to each job before interrupting its service. In this
way, a decision is made at the end of every quantum to decide which job should be served next.
Figure 6 shows the execution with a quantum size of one eights of a time slot, that is half the size
of short jobs. When a short job arrives, it is queued during one quantum, then it is served during
one quantum, then it is queued again, and lastly it is served during a second quantum, at the end
of which its service is complete. The mean delay is12 (2 + 1

2) = 1 :25 time unit, the same as under
processor-sharing.

Figure 6: Round-robin scheduling algorithm.

The performance of round-robin scheduling algorithm largely depends on the quantum size. If it is
too large|more than three quarters of a time unit in our example|jobs are never interrupted and
the result is the same as under �rst-come-�rst-served policy. As the quantum becomes smaller and
smaller, performance gets closer and closer to that obtained under processor-sharing. The issue is
that, in many concrete examples, interrupting and resuming jobs generates an overhead because
the job state of progress needs be saved and restored|this operations is calledcontext switching
in process scheduling. If the context switching time is not negligible compared to the quantum
size, performance will degrade. Ideally, the quantum size should be small compared to the mean
job size and large compared to the context switching time. Whether or not this is possible largely
depends on the nature of the jobs, and this question goes beyond the scope of our work.

Resource provisioning. We have assumed so far that the capacity of the computer was given
and we have played on the scheduling algorithm to improve performance. But scheduling does
not create additional resources out of thin air. In general, the service provider needs to estimate
what the capacity of the computer should be in order to cope with demand. Moreover, the simple
example we have studied reveals that, because of the stochastic nature of demand, the performance
perceived by users is usually not commensurate with the capacity of the computer. Indeed, even if
the computer had the capacity to process one job per unit of time, the best mean delay we could
obtain was only 1:125 time units with shortest-remaining-time-�rst, and it was even larger with a
fair policy like processor-sharing. For this reason, we also wish topredict what performance will be
perceived by the users depending on the computer capacity, the demand intensity, and the service
policy. This is where the framework of queueing theory comes into play.

The single-server queue

We have computed the mean delay in a toy example where jobs arrive periodically and are al-
ternately long and short. But with more complex arrival processes and service times, calculating

4

The single-server queue

this quantity by hand rapidly becomes infeasible. Queueing theory permits the computation of
long-term performance metrics by applying the theory of Markov processes. We �rst introduce a
simple but quite unrealistic queueing model, called the M/M/1 queue, and then we explain how
to adapt this model to more realistic assumptions on the tra�c statistics.

Queueing model. A single-server queue is typically represented by a picture like Figure 7. Jobs
arrive from the left, move up in the queue as other jobs depart, and leave when their service is
complete. All jobs are represented as rectangles of the same size for simplicity, but in reality they
may have unequal service requirements. The positive constant� denotes the arrival rate of jobs
at the queue, that is, the expected number of jobs that enter the queue per unit of time. The
positive constant � denotes the service rate in the queue, which is the expected number of jobs
that the computer processes per unit of time. Roughly speaking,1� represents the expected time
the computer takes to process one job. It depends on the computer capacity and the job sizes.
The number of jobs in the queue|including the one or those in service|is denoted by x and is
called the state of the queue. In the example of Figure 7, the queue state isx = 3.

Figure 7: A single-server �rst-come-�rst-served queue.

A single-server queue is not limited to describing jobs processed by a computer. It can describe
travelers waiting for a taxi, cars assembled by a robot, damaged robots repaired by a mechanic,
goods purchased by a consumer, shoppers advised by a vendor... What would be deemed as a
customer in one situation may well play the part of the server in another. The nature of the
resource changes, and with it the conditions that restrict the service policies, but the form of the
queueing problem essentially is the same. This is why we prefer using a neutral vocabulary in
queueing theory. The processing unit|computer, taxi, robot, mechanic, consumer, vendor|is
generically called theserver, while the work units to be processed|jobs, travelers, cars, damaged
robots, goods, shoppers|are called the customers.

The single-server queue we are interested in is called an M/M/1 queue according to Kendall's
notation [59, 60]. The �rst \M" stands for Markovian or memorylessand describes the customer
arrival process. It says that the customer arrival times form a Poisson process with rate� , meaning
that inter-arrival times of successive customers are independent and exponentially distributed
random variables with rate � |see Appendix B for more details. The second \M" also stands for
Markovian or memoryless, but it relates to the service times. It says that the time taken by the
server to process one customer is a random variable exponentially distributed with rate� . These
two memoryless assumptions guarantee that, if we know the numberx of customers in the queue,
the time to the next arrival or departure is exponentially distributed, which greatly simpli�es the
analysis. We will elaborate on this in the next paragraph. The last parameter \1" says that the
queue has a single server. Another|implicit|parameter is the maximum number of customers
who can be simultaneously in the queue. Here we assume this number to be in�nite, so that the
M/M/1 queue could also be called an M/M/1/ 1 queue.

We will now proceed to the analysis of the M/M/1 queue, using the fact that its state x de�nes
a Markov process onN. This analysis is valid for any non-anticipating policy. To set ideas however,
let us assume that the service policy is either one of the two extremes of round-robin scheduling
algorithm, namely �rst-come �rst-served or processor-sharing. Under �rst-come-�rst-served policy,
only the oldest customer is in service, and the time to the service completion of this customer is
exponentially distributed with rate � . Under processor-sharing, all customers are in service at the
same time, at a rate that is inversely proportional to the number of customers in the queue. For
this reason, we prefer the description of Figure 8, consistent with the fact that the service rate of

Figure 8: A single-server processor-sharing queue.

5

Introduction

a customer is independent of its arrival time. If there is a positive numberx of customers in the
queue, the service of each given customer is complete after a time that is exponentially distributed
with rate �

x , so that the time to the next departure is again exponentially distributed with rate
x � �

x = � .

Stationary analysis. Thanks to the memoryless assumptions, the queue statex de�nes a time-
homogeneous Markov process that is irreducible on its state spaceN|see Appendix B for a re-
minder on Markov processes. More precisely, it is a birth-and-death process with a birth rate�
and a death rate � . Its transition diagram is shown in Figure 9. For each x 2 N� , the time to
the next arrival is exponentially distributed with rate � and the time to the next departure is
exponentially distributed with rate � . Said di�erently, the time to the next event is exponentially
distributed with rate � + � , and this event is an arrival with probability �

� + � and a departure with
probability �

� + � . If the queue is empty, the only possible transition is an arrival, again after a time
that is exponentially distributed with rate � .

Figure 9: Transition diagram of the Markov process de�ned by the state of an M/M/1 queue.

Studying this Markov process can teach us many things about the behavior of the M/M/1 queue.
Here and in the rest of the manuscript, we will be mostly concerned with calculating long-term
performance metrics such as the mean delay. When the Markov process de�ned by the queue state
is ergodic|and it will be whenever � < � |these can be evaluated by looking at the stationary
distribution of this Markov process. In order to do that, let us �rst write its balance equations.
These are given by 8

>>><

>>>:

� (0)� = � (1)�;
� (1)(� + �) = � (0)� + � (2)�;
� (2)(� + �) = � (1)� + � (3)�;
: : :

Let � = �
� denote the load of the queue. This dimensionless quantity is often said to be in Erlang

and represents the average quantity of work that arrives per unit of time. By applying the balance
equations one after the other, we obtain� (1) = �� (0), � (2) = �� (1) = � 2� (0), and more generally
� (x) = � x � (0) for each x 2 N. With � (0) = 1, summing these values over allx 2 N yields

X

x 2 N

� x =

(
1

1� � if � < 1,

+ 1 if � � 1.

Therefore, the queue is stable, in the sense that the Markov process de�ned by the queue state is
ergodic, if and only if the load � is less than one. In this case, the probability = � (0) that the
queue is empty is obtained by normalization:

1 =
X

x 2 N

� (x) =
X

x 2 N

� x ;

so that = 1 � � . In the end, we obtain

� (x) = (1 � �)� x ; 8x 2 N: (1)

Interestingly, this distribution depends on the values of � and � only via the ratio � = �
� . The

reason is that modifying these values while keeping their ratio constant amounts to changing the
time scale at which the queue evolves.

The queue is said to bestationary if the Markov process de�ned by its state x is stationary. By
de�nition, � (x) gives the probability that the stationary queue is in state x at a given instant, for

6

The single-server queue

eachx 2 N. But by ergodicity, the stationary probability � (x) almost surely gives the proportion of
time the queue is in statex over one realization|called a sample path|of the process. For instance,
the proportion of time the queue is active is almost surely equal to� = 1 � . This property is
important in queueing theory, as it guarantees that the results derived for the stationary queue
also inform us on what happens on every sample path, for instance one at the beginning of which
the queue is empty. A last interpretation for the stationary distribution is provided by the PASTA
property, where the acronym stands forPoisson arrivals see time averages[105]. As the name
suggests, this property states that the probability that an incoming customer �nds the queue in
state x is also given by� (x). Therefore, � = 1 � is also the probability that a customer �nds
other customers in the queue upon arrival.

Performance metrics. The stationary analysis we have just performed su�ces to compute the
mean delay� experienced by customers. Indeed, according to Little's law [70, 71], the mean delay
� is related to the arrival rate � and the expected numberL of customers in the queue through
the simple equality

L = ��:

The arrival rate � is given. Again by ergodicity, the expected numberL of customers in the queue
is obtained by taking the expectation of the stationary distribution � , that is L =

P
x 2 N x � (x).

Using the explicit form (1) of the stationary distribution, we obtain

L =
�

1 � �
=

�
� � �

: (2)

Note that, according to PASTA property, L is also the expected number of customers an incoming
customer �nds in the queue. The mean delay is given by

� =
1

� � �
=

1
�

+
1
�

�
1 � �

: (3)

The second expression has a direct interpretation under �rst-come-�rst-served policy, as the �rst
and second terms correspond to the expected service and waiting times, respectively. Figure 10
shows the mean delay� as a function of the load � , with a capacity of � = 1 customer per time
unit. As intuition would suggest, both the expected number L of customers in the queue and the
mean delay� tend to in�nity as the load � tends to one.

Figure 10: Performance in an M/M/1 queue.

Another quantity of interest is the mean service rate experienced by customers in the queue. In
order to estimate this quantity, we consider the biased stationary distribution � 0(x) / x � (x) that
gives more weight to the states in which there are more customers. The idea is that, to go from
an average over time to an average over customers, we need to rescale the weight of each state in
proportion to the number of customers who are present to experience performance in this state.
With this, the mean service rate is given by

 =
X

x 2 N�

� 0(x)
�
x

=
X

x 2 N�

x � (x)
L

�
x

=
(1 � � (0)) �

L
=

��
L

=
�
L

=
1
�

;

7

Introduction

where the last equality follows from Little's law. As intuition would suggest, the mean service
rate is just the inverse of the mean delay� . Using the expression (3) derived for� , we obtain
the simple expression

 = � (1 � �): (4)

The mean service rate is shown in Figure 10 as a function of the load� , again with a capacity
of � = 1 customer per time unit. A practical motivation for looking at this quantity instead of the
mean delay is that it does not diverge as the load� tends to one.

Insensitivity. We now discuss the validity and impact of the two memorylessness assumptions we
have made to simplify the analysis, starting with the one that concerns the service requirements.
We have assumed so far that the quantity of service required by each customer|corresponding to
their service time if they were alone in service|was exponentially distributed with rate � . This
assumption is rarely satis�ed in practice. In many applications, the distribution of the service
requirements is heavy tailed [32], in the sense that the vast majority of customers have small
service requirement and only a few customers require an extremely long service.

If we remove this assumption from the M/M/1 queue, we obtain an M/G/1 queue, where \G"
stands for generally distributed. More precisely, the service requirements are still assumed to be
identically distributed and independent of each other and of the arrival times, but they can have
any distribution with a positive and �nite mean 1

� . Under �rst-come-�rst-served policy, the mean
delay � is given by the Pollaczek-Khinchine formula, derived by Pollaczek [83] and Khinchine [61],
and only depends on the mean1

� and variances2 of the service requirements:

� =
1
�

+ �
�

1 � �
; with � =

�
2

�
s2 +

1
� 2

�
: (5)

Compared to (3), the mean service time 1
� of the customers in the queue is replaced with the

residual service time� , which is di�erent from the mean service time in general. The mean service
rate is again given by = 1

� . Figure 11 shows the results for di�erent values of the variance,
again taking � as the unit. If � and � are �xed, the mean delay increases with the variance
s2 and tends to in�nity as this quantity tends to in�nity; inversely, the mean service rate is
decreases with the variances2 and tends to zero as this quantity tends to in�nity. Performance
under �rst-come-�rst-served policy is best when the service requirements are constant.

Figure 11: Impact of the variance of the customer service requirements on performance in an
M/G/1 �rst-come-�rst-served queue.

The result under processor-sharing is much simpler. Namely, as long as the arrival process is still
Poisson, the mean delay and the mean service rate are still given by (3) and (4), respectively,
irrespective of the distribution of the service requirements. In other words, performance under
processor-sharing depends on the distribution of the service requirements only through its mean.
For this reason, we say that processor-sharing isinsensitive. In Figure 11, performance under
processor-sharing is given by the solid curve, irrespective of the variance. It is not as good as
under �rst-come-�rst-served policy if the service requirements are constant, but in return it does
not degrade as the variance of the service requirements increases. This insensitivity result is
actually also valid for the stationary distribution, in the sense that the stationary queue is in
state x with the probability � (x) given by (1), for each x 2 N.

8

Sharing multiple computers

Insensitivity is desirable for two reasons. First, as we just observed, it guarantees that the
average performance does not degrade when the variance of the service requirements increases.
Along the same lines, compared to �rst-come-�rst-served policy, users cannot get more than their
fair share of the resource at the expense of other users by arti�cially increasing the size of their
service requirement. The other reason why insensitivity is desirable is the simplicity of the formulas
it leads to. For a service provider, such a simple yet robust formula to predict performance based
on average tra�c predictions only|and not on �ner-grained tra�c statistics such as the variance of
the service requirements|is a valuable tool for infrastructure dimensioning. A speaking example
is the Erlang-B formula, which relates the call loss probability to the number of available circuits
and the tra�c intensity in circuit-switched networks. It has been broadly applied to dimension
such networks|in particular telephone networks|since its publication by Erlang at the beginning
of the twentieth century [37].

In this manuscript, we are interested in extending the insensitivity property to clusters of com-
puters that interact via scheduling and load-balancing algorithms. The approach will be approxi-
mately the same as in this section. Namely, we will often consider an insensitive resource-sharing
policy|analog to processor-sharing|and a sensitive time-sharing policy|analog to �rst-come-
�rst-served|that will yield the same average performance when customer service requirements
are exponentially distributed. By superposing sensitivity mitigation mechanisms|such as the fre-
quent service interruptions of round-robin scheduling algorithm|on top of the time-sharing policy,
we will design an easy-to-implement resource-management algorithm whose performance is close
to that obtained under the resource-sharing policy. In this way, we will take advantage of the
exibility o�ered by the presence of multiple computers without loosing the desirable fairness and
insensitivity properties of processor-sharing. Before we review the related works in this �eld, let
us discuss our other memorylessness assumption.

Poisson arrivals. The second memoryless assumption concerns the arrival times of customers at
the queue. Roughly speaking, the arrival process is Poisson with rate� if there is a probability �dt
that a customer enters the queue during a small time interval of lengthdt, independently of the
arrivals before and after this interval. In his 1917 paper [37], Erlang formulated this assumption
by saying that the customer arrival times were distributed \accidentally throughout the time". In
practice, this assumption is satis�ed approximately if the population of users is large and each user
generates a small proportion of the overall demand|see the discussion of Section 2.5 in [64].

Our main motivation for making this assumption is still that it greatly simpli�es the analysis.
We used it twice in the above discussion, �rst to verify that the stochastic process de�ned by the
queue state has the Markov property, and then to apply PASTA property. In the manuscript, we
will exclusively focus on queueing systems at which customers arrive according to a Poisson process.
It does not mean that the proposed algorithms cannot be applied otherwise, but simply that we
cannot analyze them. Indeed, the analysis usually becomes much more complicated without this
assumption|examples of such analyses are gathered in Chapters II.3 and II.5 of [30].

Sharing multiple computers

We mentioned earlier that clusters contain up to tens of thousands computers, and that this encou-
rages cloud providers to develop software that automates and optimizes the utilization of computer
resources. Resource management is typically broken down into di�erent levels of hierarchy. Cluster
managers, such as Mesos [51], Sparrow [81], and Borg [99], operate at the scale of the whole cluster
to dynamically share computer resources among di�erent applications; in turn, each application
schedules its jobs depending on their needs, may these be long-term batch jobs or short-term inter-
active jobs [87]. An example of application is a parallelization framework, such as MapReduce [33,
67] and Apache Spark [106], that distributes data-intensive jobs among several computers.

Precisely because of their large scale, computer clusters o�er more levers to optimize resource
utilization, but they also impose new constraints that need be taken into account. From this per-
spective, computer clusters are a great playground for a queueing theorist. Take the example of a
job that arrives at the cluster. There are potentially many computers to which this job could be
assigned. Every entry point to the cluster|we will call it a dispatcher|can use this diversity of
assignments to balance load among computers. In order to make the best|informed|assignment

9

Introduction

decision, each dispatchera priori needs to have a perfect knowledge of the computer states, in-
cluding the number of jobs that are running on them. But also because of the large scale of the
cluster, sending a message to each dispatcher on every job arrival and departure might generate
an excessive amount of communication between computers and dispatchers [72]. Designing a load-
balancing algorithm that makes the right trade-o� between the quality of the assignment decision
and the amount of exchanged information|for instance by astutely choosing which information is
exchanged|has attracted a lot of attention in the queueing community [23, 24, 72, 75, 76, 97, 98].

Load balancing and job scheduling. There are di�erent ways to take advantage of the large
number of computers to improve performance. Our �rst lever is job scheduling. As before, schedul-
ing consists of sharing the computer time between their assigned jobs in order to reach a compromise
between e�ciency and fairness. In the absence of parallel processing, each job is assigned to and
processed by a single computer, so that we can simply apply round-robin scheduling algorithm at
each computer. But if some jobs are processed in parallel on several computers|as it is the case
with MapReduce|it is of interest to design adapted scheduling algorithms that take advantage of
the parallelism and still make a compromise between e�ciency and fairness. Simply de�ning these
sharing objectives is not straightforward then. Our second lever isload balancing. As explained
earlier, it consists of using the diversity of the assignments to balance load among computers.

In general, such resource-management algorithms have the e�ect of coupling computers, in
that the processing speed of one computer can impact the workload of another. Consequently, we
cannot estimate the overall performance in the cluster by just looking at the performance of each
computer taken in isolation. We need an adapted model that comprehends the cluster as a whole.

Cluster model. Building a model that captures all aspects of the daily routine in a cluster|such
as hardware and software failures and power cuts [27]|seems out of reach and would probably be
to complex to form an intuition. It is also likely that such considerations are speci�c to each cloud
provider [85]. Therefore, we work on a simpli�ed view of clusters, as shown in Figure 12. Each job
enters the cluster via a dispatcher and is processed by one or more computers. A dispatcher sends
jobs to computers, while a computer updates dispatchers on their current state.

Figure 12: A simpli�ed view of computer clusters.

Our model captures two features that directly impact performance, namely the stochastic nature
of demand and its heterogeneity, which will be discussed in the next paragraph. On the contrary,
several implementation details, such as the costs of context switching and parallelization, are not
captured by our model and are discussed separately. Similarly, we neglect the communication time
between dispatchers and computers. By abstracting ourselves away from these practical conside-
rations, we propose elementary and general-purpose solutions that can be used as guidelines for
resource management in real-world clusters. So far as possible, we also give some suggestions for
adapting our proposals to other practical considerations.

Stochastic and heterogeneous demand. Demand is still assumed to be stochastic, in that
the customer arrival times and service requirements are irregular and unpredictable. Depending
on the context, it might be possible to estimate the probability distribution of these parameters
and to use this information to improve performance. However, in our work, we do not make this
assumption and only focus on non-anticipating policies. That is to say, our proposed algorithms
only use information provided by the|complete or partial|observation of the current cluster
state. Improving performance by injecting other information might be the object of future works.

10

The multi-server queue

The queueing community has considered many resource-management algorithms for computer
clusters subject to a stochastic demand [2{4, 23, 24, 44{48, 55, 72, 75, 76, 90, 91, 93, 97, 98, 100].
Our work stands out from many of them by also accounting for the heterogeneity of demand. By
this, we mean that jobs and computers may have features that make them distinguishable from each
others. In particular, it may happen that some jobs can only be processed by a subset of computers,
for instance because they require data only accessible by these computers, or because they have
speci�c hardware or software requirements|such as bandwidth, kernel version, or number of cores,
disks, or CPUs [94]. These constraints are represented by a bipartite graph like the one in Figure 13.

Figure 13: A bipartite graph that represents assignment constraints.

This graphical representation will be an essential component of our cluster model. It can have a
di�erent meaning depending on the context. For instance, if we focus on balancing load in a cluster
without parallel processing|so that each job is assigned to a single computer upon arrival|this
bipartite graph can represent constraints on the feasible assignments. In this context, the graph of
Figure 13 means that a job of the �rst type can only be assigned to computers 1 or 2, while a job
of the second type can only be assigned to computers 2 or 3. The objective is then to balance load
among computers insofar as the assignment constraints allow for it. Note that this bipartite graph
is more of a support for discussion than an actual tool for balancing load, as we do not assume it
is known by the dispatchers. Our only requirement is that each dispatcher is able to determine the
assignments constraints of a job on its arrival. This problem was considered in [2{4, 100]. If we
focus instead on job scheduling in a cluster with parallel processing, the graph can describe pooling
opportunities among computers. In this context, the graph of Figure 13 means that computers 1
and 2 on the one hand and computers 2 and 3 on the other hand can be pooled to process jobs
in parallel. On the contrary, it is not possible to run a job in parallel on computers 1 and 3. The
problem of job scheduling under such a bipartite graph was considered in [44{47, 90, 91, 93]. Other
examples of works that account for demand heterogeneity in various forms are [12, 23, 55, 97, 98].

Our ambition is to design and analyze resource-management algorithms that make a com-
promise between e�ciency and fairness under a stochastic and heterogeneous demand. We are
speci�cally interested in insensitive algorithms, whose performance only depends on the distribu-
tion of service requirements through its mean. As in the single-server case, an additional motiva-
tion is that insensitivity usually yields simple formulas for the performance metrics compared to
other|sensitive|algorithms. Such formulas can be used by cloud providers to dimension their
infrastructure. In the next section, we will see that the notion of fairness that generalizes processor-
sharing and preserves its insensitivity is calledbalanced fairness[15]. In order to de�ne and study
this fairness objective, we consider a model, called the multi-server queue, that will be the common
thread of the manuscript.

The multi-server queue

Classical models of multi-server queues are the M/M/̀ or M/M/ `/ ` queues de�ned by Kendall, at
which customers arrive according to a Poisson process with rate� , the service requirements are
random variables exponentially distributed with rate � , and each customer is processed by one of
` homogeneous servers. The multi-server queue we now consider is a variant of these models that
also accounts for demand heterogeneity.

Queueing model. An example of multi-server queue is shown in Figure 14. As for the single-
server queue, customers arrive from the left, move up in the queue as other jobs depart, and leave
when their service is complete. The di�erence is that there are now several servers. Furthermore,
each customer has a class that determines by which servers it can be processed. The set of customer

11

Introduction

classes is denoted byI = f 1; : : : ; I g and the set of servers byS = f 1; : : : ; Sg. For each i 2 I , the
positive constant � i denotes the arrival rate of class-i customers at the queue, that is, the expected
number of customers of this class that enter the queue per unit of time. For eachs 2 S, the
positive constant � s denotes the capacity of servers, that is, the expected number of customers
this server can process on its own per unit of time. The queue state is described by the vector
x = (x1; : : : ; x I) that counts the number of customers of each class, waiting or in service. In the
example of Figure 14, the queue state isx = (3 ; 2).

Figure 14: A multi-server queue.

The compatibility constraints between customer classes and servers are described by the bipartite
graph of Figure 15, which is similar in spirit to the graph of Figure 13. In this example, there are
I = 2 customer classes andS = 3 servers; class-1 customers can be processed by servers 1 and 2,
while class-2 customers can be processed by servers 2 and 3.

Figure 15: A compatibility graph.

An important di�erence between this multi-server queue and the classical models mentioned above
is that each customer can be in service on several servers at the same time, in which case its overall
service rate is the sum of the service rates it receives on each server. The only restriction is that
each customer is exclusively processed by servers that are compatible according to the bipartite
graph of Figure 15. In this way, a class-1 customer can be processed by server 1, server 2, or both
servers at a time, at a maximum speed of� 1 + � 2.

As for the single-server queue, we use generic names \customers" and \servers" because these
can have many di�erent interpretations in reality. In computer clusters, the most straightforward
interpretation would be that each customer corresponds to a job and each server to a computer. The
compatibility constraints can then represent the parallelization opportunities described earlier, so
that computers 1 and 2 can be pooled to process jobs of class 1 and computers 2 and 3 can be pooled
to process jobs of class 2. But customers and servers can also have a totally di�erent meaning.
Assume for instance that, in the cluster, computers advertise dispatchers of their availability by
means of tokens, so that an incoming job seizes one of these tokens on its arrival. Customers of
the queue can then represent tokens that were released by computers and wait to be seized by
an incoming job. With this interpretation, each server could represent a stream of incoming jobs
that seize tokens on their arrival. The compatibility constraints between customers|tokens|and
servers|streams of incoming jobs|then represent assignment constraints that specify which token
each incoming job can seize. Both interpretation will be relevant in the manuscript.

Our assumptions on the statistics of the tra�c are similar to those of the M/M/1 queue. Specif-
ically, for each i 2 I , class-i customers enter the queue according to an independent Poisson process
with a positive rate � i . The customer service requirements are random variables exponentially dis-
tributed with unit mean, independent of their class and arrival time. In this way, if a customer is
in service at servers only and receives its full service capacity, the service time of this customer is
a random variable exponentially distributed with rate � s.

We are now ready to study two service policies that generalize the processor-sharing and �rst-
come-�rst-served policies considered in the M/M/1 queue.

12

The multi-server queue

Resource sharing. We �rst consider balanced fairness, a resource-sharing policy that extends the
de�nition of processor-sharing and preserves its insensitivity property in the multi-server queue|so
that the assumption that customer service requirements are exponentially distributed could be
removed without impacting performance. This resource-sharing policy was �rst de�ned in [15] to
study the performance of data networks and later applied to the multi-server queue in [90, 91, 93].

In the multi-server queue, imposing that all customers receive the same service rate does not
really make sense anymore, as the compatibility constraints of some classes may be more restrictive
than those of others. Accordingly, balanced fairness only imposes that all customersof the same
class have the same service rate. In this way, if� i (x) denotes the overall service rate of classi in
state x, each customer of this class receives the same service rate� i (x)=xi wheneverx i > 0. The
time to the next departure of a class-i customer is a random variable exponentially distributed
with rate x i � � i (x)=xi = � i (x), so that � i (x) is also the departure rate of classi .

The compatibility constraints impose limits on the vectors � (x) = (� 1(x); : : : ; � I (x)) of per-
class service rates that are feasible. For instance, with the compatibility graph of Figure 15, the
limits are � 1(x) � � 1 + � 2, � 2(x) � � 2 + � 3, and � 1(x) + � 2(x) � � 1 + � 2 + � 3. The set of
vectors of per-class service rates that satisfy these constraints is called thecapacity region of the
queue. An example is shown in Figure 16. The server capacities are mapped to the edges of the
capacity region to help make the connection with the above equations. In this �gure, the point
� = (� 1 + � 2

2 ; � 3 + � 2
2) corresponds to a resource allocation in which the capacities of all servers

are maximally utilized and the capacity of server 2 is shared equally among the two classes.

Figure 16: Capacity region of the multi-server queue of Figure 14.

There are many di�erent ways to de�ne per-class service rates� 1(x), . . . , � I (x) that satisfy these
capacity constraints. For instance, utility-based allocations, such as max-min fairness and propor-
tional fairness, consist of maximizing some utility function of the per-class service rates [13]. Bal-
anced fairness sets these service rates via two additional conditions of fairness|across classes|and
e�ciency. The fairness condition, called the balance property, imposes that

� i (x � ej)
� i (x)

=
� j (x � ei)

� j (x)
; 8x 2 NI ; 8i; j 2 I : x i > 0; x j > 0: (6)

That is to say, the relative increase in the service rate of classi when a class-j customer is removed
is equal to the relative increase in the service rate of classj when a class-i customer is removed. Just
like the equal service rates imposed by processor-sharing in the single-server queue, the balance
property has in fact a double role: in addition to being a fairness criterion, it is also a necessary and
su�cient condition for insensitivity [14]. The e�ciency condition imposes that, in each state x,
at least one capacity condition is saturated. In the example of Figure 16, it means that, in
each state x where the queue is not empty, we have� 1(x) = � 1 + � 2, � 2(x) = � 2 + � 3, or
� 1(x) + � 2(x) = � 1 + � 2 + � 3. Said di�erently, the e�ciency condition imposes that the vector
of per-class service rates is always on an upper edge of the capacity region. One can show that
these two conditions of fairness and e�ciency entirely characterize the service rates in any statex.
Additionally, if the queue has a single server, balanced fairness boils down to processor-sharing.

As it happens, the evolution of the multi-server queue under balanced fairness is described by
another, more abstract, queueing model called a Whittle network [56, 104]. To be more precise, the
transition diagram of the Markov process de�ned by the state of this Whittle network is identical to

13

Introduction

the transition diagram of the Markov process de�ned by the state of the multi-server queue under
balanced fairness. An example is shown in Figure 17. There are as many queues in this Whittle
network as there are classes in the multi-server queue. For eachi 2 I , queue i of the Whittle
network contains class-i customers in the multi-server queue, the arrival rate at this queue is� i ,
and its service rate in statex is � i (x). The service policy within each queue is processor-sharing,
which is consistent with the fact that all customers of the same class receive service at the same
rate under balanced fairness. The advantage of Whittle networks is that this model was already
studied to analyze the behavior of other queueing systems than the multi-server queue.

Figure 17: The Whittle network associated with the multi-server queue of Figure 14.

Before we look at the performance of balanced fairness in the toy example of Figure 14, we consider
a time-sharing policy that extends �rst-come-�rst-served policy in the multi-server queue. This
policy was already considered in [44{47].

Time-sharing. Similarly to the single-server queue, a time-sharing policy divides the servertime
among their compatible customers, assuming that the capacity of each server is an indivisible
block. We consider the following simple time-sharing policy. Each server processes its compatible
customers in �rst-come-�rst-served order, so that each customer is in service on the servers that
can process this customer but not the older customers in the queue. In the example of Figure 14,
the oldest customer, of class 1, is in service on servers 1 and 2, while the second customer, of class 2,
is in service on server 3; the other customers are not in service on any server. In this way, when
a customer arrives in the queue, this customer enters in service immediately on every compatible
server that is idle. Conversely, when a customer leaves the queue upon a service completion, its
servers are reallocated to the next customer they can serve in the queue. If there is a single server,
this policy boils down to �rst-come-�rst-served. For this reason, in the manuscript, we will also
use the name �rst-come-�rst-served to refer to this more general time-sharing policy.

Since the resource allocation depends on the arrival order of customers, we need a more detailed
queue state. We consider the sequencec = (c1; : : : ; cn), where n is the total number of customers
in the queue and cp is the class of thep-th oldest customer, for eachp = 1 ; : : : ; n|so that the
oldest customer is of classc1. For instance, the sequence of customers in the queue of Figure 14
is c = (1 ; 1; 2; 1; 2)|since we look at customers from head to tail, this is the other way around
compared to the �gure. This detailed state is called themicrostate of the queue, in opposition to the
state x = (x1; : : : ; x I), which we will call its macrostate from now on. Under �rst-come-�rst-served
policy, the microstate de�nes a Markov process, but the macrostate does not in general.

As it happens, the evolution of the multi-server queue under �rst-come-�rst-served policy is
described by another abstract queueing model, called an order-independent queue [9, 10, 66]. We
do not detail its de�nition now, as it will be described later and would not give anymore insights
into this service policy. Instead, we give a preview of some of our results on the multi-server queue.

Stationary analysis. The stationary analysis of the Markov process de�ned by the macrostate of
the multi-server queue under balanced fairness was performed in [90, 91, 93], while the stationary
analysis of the Markov process de�ned by its microstate under �rst-come-�rst-served policy was
performed in [44{47]. We do not recall these analyses now, as these will be the subject of a
speci�c chapter in the manuscript. One of our main contributions consist of proving that, upon
a state aggregation, the stationary distribution is actually the sameunder the two policies. More
precisely, we show that, when the queue is stationary, the probability that it is in macrostate x is
the same under balanced fairness and under �rst-come-�rst-served policy. This result can be seen
as a natural extension of the fact that processor-sharing and �rst-come-�rst-served policy yield
the same long-term performance in the M/M/1 queue. By ergodicity, it also implies that many
performance metrics, such as the mean delay and the mean service rate we already considered, are

14

Contributions and structure of the manuscript

the same under the two policies. Other consequences of this result will be exposed throughout the
manuscript.

For now, let us just plot these two performance metrics in the multi-server queue of Figure 14.
Figure 18 can be seen as the counterpart of Figure 10 for the multi-server queue. Both classes have
the same arrival rates � 1 = � 2 and all three servers have the same capacity� 1 = � 2 = � 3 = 1.
The performance metrics are shown as functions of the overall load� = � 1 + � 2

� 1 + � 2 + � 3
.

Figure 18: Performance in the multi-server queue of Figure 14.

The mean service rate is again more revealing than the mean delay. When the load� is close to
zero, the mean service rate experienced by each customer is close to� 1 + � 2 = � 2 + � 3 = 2, which
is the maximum service rate of each customer. As the load� increases, the mean service rate
decreases almost linearly to reach zero when the load is equal to one. Since balanced fairness is
insensitive, performance would be the same if the service requirements had a general distribution.
On the contrary, if the service policy is �rst-come-�rst-served, performance is very sensitive. We do
not dispose of an extension to the Pollaczek-Khinchine formula in the multi-server queue, but later
in the manuscript we will evaluate the impact of the distribution of the service requirements by
simulation. Another important contribution of the manuscript consists of designing a scheduling
algorithm that, by enforcing frequent service interruptions and resumptions on top of this �rst-
come-�rst-served policy, achieves approximate insensitivity.

Contributions and structure of the manuscript

The manuscript is organized in three parts that range from the most abstract to the most concrete.
The common thread is the multi-server queue we have just introduced. The result statements within
each part are intended to be understandable by themselves, although their proofs may apply results
of previous parts. The roadmap is shown in Figure 19.

Part I. We �rst recall the de�nition of two abstract models, called Whittle networks and order-
independent queues. As explained earlier, these two models describe the evolution of the multi-
server queue under balanced fairness and �rst-come-�rst-served policy. Our main contribution,
stated in Theorem 3.2 of Chapter 3, establishes an equivalence between these two models. Specif-
ically, the Markov process de�ned by the state of an order-independent queueimbedsthe Markov
process de�ned by the state of a Whittle network, in a sense that we will explicate later. It implies
in particular that long-term performance metrics, such as the mean delay and the mean service
rate, have the same value in the two models. This allows use to derive results that are valid for
both models; in particular, we prove a simple stability condition for the order-independent queue
using classical proof tools for Whittle networks. The range of applications of these results goes well
beyond the multi-server queue, as Whittle networks and order-independent queues can be used to
describe a large variety of queueing systems.

Part II. Equipped with these fundamental tools, we are ready to analyze the multi-server queue
itself. As explained in the previous section, works of the literature already performed the station-
ary analysis of the multi-server queue under balanced fairness [90, 91, 93], using the properties of
Whittle networks, and under �rst-come-�rst-served policy [44{47]. Our �rst contribution consists

15

Introduction

of observing that the evolution the multi-server queue under �rst-come-�rst-served policy is de-
scribed by an order-independent queue. This allows us to directly apply the results of Part I to
prove an equivalence result between balanced fairness and �rst-come-�rst-served policy. Speci�-
cally, as long as the customer service requirements are exponentially distributed with unit mean,
the Markov process de�ned by the queue microstate under �rst-come-�rst-served policy imbeds the
Markov process de�ned by the queue macrostate under balanced fairness. The long-term perfor-
mance metrics are therefore equal under balanced fairness and �rst-come-�rst-served policy. This is
our second contribution. Our last contribution consists of deriving new closed-form expressions for
the performance metrics. These are valid for �rst-come-�rst-served policy|with exponentially dis-
tributed service requirements|and balanced fairness|with generally-distributed customer service
requirements.

Part III. We �nally put our results into practice. Using the framework of the multi-server queue,
we design and analyze two resource-management algorithms that are approximately insensitive.
The former, in Chapter 7, generalizes the idea of round-robin scheduling algorithm to a cluster
with parallel processing. Our analysis is exact when job sizes are exponentially distributed and
approximate in general. It is supported by simulations that assess insensitivity under various job
size distributions. In Chapter 8, we propose a token-based algorithm for balancing load among
computers. The analysis is exact under fairly general assumptions, provided that each computer
applies processor-sharing to its assigned jobs. Both algorithms are combined in Chapter 9, where
we also explain how to apply the load-balancing algorithm in the presence of multiple dispatchers.

Figure 19: Roadmap of the manuscript. Although the content is presented from top to bottom, this
roadmap should be read by starting with the central node \Multi-server queue".

The manuscript also contains three appendices. Appendix A introduces the main notations, used
throughout the manuscript, and in particular those concerning microstates and macrostates. Ap-
pendix B is a short reminder on probability theory. The �rst section focuses on random variables
and the second on stochastic processes. Appendix C is a digression from the main topic of the
manuscript. It investigates the relation between queueing theory and analytic combinatorics.

Two of our contributions were omitted. The former answers the following question: what is
the optimal degree of parallelism to minimize the number of requests waiting at each computer in
a homogeneous cluster? The formula used in this work was derived in [47] and is generalized in
Chapter 6. This work is available in the short paper [P09] and technical report [P10]|in French.

16

Contributions and structure of the manuscript

The second omitted contribution tackles a radically di�erent problem, out of the scope of queueing
theory. The objective of this work was to simulate Kleinberg's grid [63], a popular model for
explaining the good performance of greedy routing in small-world networks. My main contribution,
described in Section 2.2.3 of [P06], consists of a simpler method for sampling grid shortcuts from
a power-law distribution. A short version of this work is also available in French [P11].

The source code to generate the numerical results presented in this manuscript is available on
GitHub. Speci�cally, one can use [C01] to generate the numerical results of Chapters 5 to 9 and
[C02] to generate those of Appendix C.

17

18

Part I

Methodology

19

20

1 Whittle networks

In this chapter and the next one, we review two queueing models, calledWhittle networks and order-
independent queues, that will be instrumental in Part II. Whittle networks, which are the topic of
this chapter, are a multi-queue extension of the single-server queue under processor-sharing policy.
Order-independent queues, described in Chapter 2, are a multi-class extension of the single-server
queue equipped with �rst-come-�rst-served policy. Our main contribution, presented in Chapter 3,
consists of observing that, up to some state aggregation, the Markov processes de�ned by the states
of these two queueing models have the same stationary distribution.

1.1 De�nition

The main results on Whittle networks were developed in [56, 104]. In this manuscript, we focus on a
special case of Whittle networks in which each queue applies processor-sharing. This assumption,
yet not part of the original de�nition, is necessary to obtain the insensitivity result recalled in
Section 1.4. For a fuller treatment, we refer the reader to [89, Chapter 1].

1.1.1 Network of processor-sharing queues

Consider a network ofI processor-sharing queues with coupled service rates and letI = f 1; : : : ; I g
denote the set of queue indices. For eachi 2 I , customers enter the network at queuei according to
an independent Poisson process with a positive rate� i . The service requirements are independent
and exponentially distributed with unit mean and each customer leaves the network immediately
after service completion. The network state is described by the vectorx = (x1; : : : ; x I) 2 NI ,
where x i is the number of customers at queuei , for each i 2 I . A queue is said to beactive if it
contains at least one customer. The set of active queues is denoted byI x = f i 2 I : x i > 0g.

The service rate at each queue depends on the state of the whole network. For eachi 2 I and
each x 2 NI , let � i (x) 2 R+ denote the service rate at queuei when the network is in state x.
Since the service policy is processor-sharing, each customer at queuei is served at rate � i (x)=xi

wheneverx i > 0. We assume that the service rate at a queue is positive if and only if this queue
is active. For each x 2 NI , let � (x) = (� 1(x); : : : ; � I (x)) denote the vector of service rates and
� (x) =

P
i 2I x

� i (x) the overall service rate in the network. This de�nes a function � on NI , which
we call the rate function of the network. An example is shown in Figure 1.1.

Figure 1.1: A Whittle network of I = 2 queues. The queues are
coupled through their service rates. For example, the service
rate � 1(x) at queue1 does not only depend on the numberx1 of
customers at this queue, but also on the numberx2 of customers
at the other queue. Without this coupling, both queues would be
independent and the state of each queue would de�ne a birth-
and-death process.

21

Chapter 1. Whittle networks

Figure 1.2: Transition diagram of the Markov process de�ned by the state of a Whittle network of
I = 2 queues, as shown in Figure 1.1.

The network state de�nes a time-homogeneous Markov process on the state spaceNI . For each
x 2 NI , there is a transition from state x to state x + ei with rate � i , for each i 2 I , and from
state x to state x � ei with rate � i (x), for each i 2 I x . The transition diagram of the Markov
process de�ned by the network state is depicted in Figure 1.2. This Markov process is irreducible
on its state spaceNI . Indeed, for eachx; y 2 NI , any direct path between x and y de�nes a series
of transitions that has a non-zero probability of occurring.

We have just de�ned a network of processor-sharing queues with coupled service rates. In order
to obtain a Whittle network, we need to impose an additional constraint on the service rates of
the queues, called thebalanced property, that is de�ned in x1.1.2 below. This property guarantees
that the stationary measures of the Markov process de�ned by the network state has a simple
expression, which we give in Section 1.2. In order to make the de�nition more concrete, let us
just briey mention two special cases of networks, said to have alocally-constant capacity and
a globally-constant capacity, that will trivially ful�ll the de�nition of a Whittle network. In both
cases, the overall service rate only depends on the set of active queues and not on the exact number
of customers within each queue. We will frequently use these special cases to enlighten our results.
A more general example of Whittle network will be provided in Chapter 4.

Locally-constant capacity. We say that the network has a locally-constant capacity|or for short
that it is locally constant|if, for each i 2 I , the service rate at queuei is a positive constant � i ,
that is, � i (x) = � i 1f x i > 0g for each x 2 NI . The overall service rate is given by� (x) =

P
i 2I x

� i

for each x 2 NI . The queues evolve independently and, for eachi 2 I , queue i is an M=M=1
processor-sharing queue subject to the load� i

� i
.

Figure 1.3: A Whittle network of I = 2 queues with a locally-constant capacity.

Globally-constant capacity. On the contrary, we say that the network has a globally-constant
capacity|or that it is globally constant|if the overall service rate in the network is a positive
constant � and the service rate at each queue is proportional to its number of customers, that
is, we have � i (x) = x i

x 1 + ::: + x I
� for each x 2 NI n f 0g and each i 2 I . Then the network,

taken as a whole, evolves like a multi-class M/M/1 processor-sharing queue subject to the load

22

Section 1.1. De�nition

� = � 1 + ::: + � I
� , as shown in Figure 1.4. Conversely, any M/M/1 processor-sharing queue with

I customer classes can be described as a Whittle network ofI queues with a globally-constant
capacity.

Figure 1.4: An M/M/1 processor-sharing queue with I = 2 customer classes that evolves like a
Whittle network of I = 2 queues with a globally-constant capacity.

It is tempting to make the connection between the two models by letting� = � 1+ � � �+ � I . However,
a locally-constant network is not a special case of a globally-constant network. For instance, if
there is a single customer, say at queue 1, the service rate of this customer is equal to� 1 < � in a
locally-constant network, while it is equal to � in a globally-constant network.

1.1.2 Balance property

The network is called aWhittle network if the service rates satisfy the followingbalance property:

� i (x � ej)
� i (x)

=
� j (x � ei)

� j (x)
; 8x 2 NI ; 8i; j 2 I x : (1.1)

In other words, for eachi; j 2 I , the relative increase of the service rate at queuei when we remove
a customer from queuej is equal to the relative increase of the service rate at queuej when we
remove a customer from queuei . In this case, the service rates are said to bebalanced. Before we
delve into the stationary analysis, let us better understand this property.

Balance function. We can rewrite the balance property (1.1) as follows:

� i (x)� j (x � ei) = � i (x � ej)� j (x); 8x 2 NI ; 8i; j 2 I x : (1.2)

This equality means that, in the transition diagram of the Markov process de�ned by the network
state, the product of the departure rates over two consecutive transitions that connect the upper
corner x to the lower corner x � ei � ej of a square is independent of the order of the departures.
As illustrated in Figure 1.5, it implies that the product of the departure rates over any direct
path between the origin and some vectorx 2 NI is independent of the direct path we choose. In
particular, we can de�ne the balance function of the Whittle network as follows:

�(x) =
1

� c1 (jc1j)� c2 (jc1; c2j) � � � � cn (jc1; c2; : : : ; cn j)
; 8x 2 NI n f 0g; (1.3)

(a) Path c = (1 ; 2; 1; 1; 2; 1; 2; 1) (b) Path c = (1 ; 2; 1; 1; 2; 1; 1; 2) (c) Path c = (1 ; 2; 1; 2; 1; 1; 1; 2)

Figure 1.5: The direct path of Figure 1.5a can be transformed into the direct path of Figure 1.5c by
ipping the sides of squares along a parallel of the identity line, as shown in Figures 1.5a and 1.5b.
The balance property guarantees that the product of the departure rates along the path is unchanged
by this transformation. The same argument applies to two arbitrary direct paths.

23

Chapter 1. Whittle networks

where n = x1 + : : : + x I is the number of customers in statex and the sequence (c1; : : : ; cn) 2 I � ,
with jc1; : : : ; cn j = x, encodes a direct path between the origin and the vectorx|see Appendix A
for more details on the notations. We adopt the convention that �(0) = 1, meaning that the empty
product in the denominator of (1.3) is taken to be equal to one, and �(x) = 0 if x =2 NI . The
service rates are said to bebalanced bythe function � because we have the following equality:

� i (x) =
�(x � ei)

�(x)
; 8x 2 NI ; 8i 2 I x : (1.4)

Conversely, if there exists a|well-de�ned|function � that satis�es (1.3) or (1.4), then the service
rates satisfy the balance property and are balanced by the function �.

Recursive de�nition. We consider a third and last interpretation of the balance property that
gives us a geometric way of constructing the vector� (x) by induction over the number of customers
in the network, n = x1 + : : : + x I [92]. This construction will help us visualize some results of
Chapters 3 and 4. The balance property can be rewritten as follows:

� i (x)
� j (x)

=
� i (x � ej)
� j (x � ei)

; 8x 2 NI ; 8i; j 2 I x : (1.5)

Equation (1.5) shows that � (x) lies at the intersection of
� jI x j

2

�
linearly dependent hyperplanes de-

�ned by the vectors � (x � ei) for i 2 I x . The balance function � is only a practical way of character-
izing the intersection of these hyperplanes as the line of direction vector (�(x � e1); : : : ; �(x � eI)).
The vector � (x) is the unique point of this line whose components sum to� (x). Therefore, if the
total service rate � (x) is imposed in each statex 2 NI |by the capacity constraints of the system
for instance|this observation gives a recursive way of building � (x) in each statex 2 NI , as shown
in Figure 1.6. The value taken by the balance function � in state x is then de�ned by the relation:

�(x) =
1

� (x)

X

i 2I x

�(x � ei); 8x 2 NI n f 0g: (1.6)

The construction shows in particular that imposing the rate function � entirely de�nes the balance
function � and the service rate � i at each queuei 2 I .

Figure 1.6: Recursive construction of the vector of service rates� (x) in the Whittle network of
Figure 1.1. This vector is the point of intersection of the line of slope� 2(x � e1)=� 1(x � e2) and
the line of equation� 1 + � 2 = � (x). To generalize this approach in higher dimensions, we can work
on each pair of queues separately.

We can make two additional remarks on this recursive construction. First, instead of imposing
the overall service rate in the network, we could impose the overall service rate in an arbitrary
non-empty set of active queues. In the example of Figure 1.6, this would mean that we replace
the diagonal line of equation � 1 + � 2 = � (x) with a vertical or a horizontal line. In particular,
specifying the overall service rate in a non-empty set of active queues in each state is su�cient to
specify the service rate at each queue and in each state. Second, since the construction is recursive,
the overall service rate that we impose in each statex 2 NI could just as well depend on the service

24

Section 1.2. Stationary analysis

rate � (y) obtained in the states y 2 NI such that y1 + : : : + yI < x 1 + : : : + x I . These remarks will
be useful in Chapter 4. We �nally reconsider the locally-constant and globally-constant networks
introduced in x1.1.1.

Locally-constant capacity. The service rates of a locally-constant network trivially satisfy the
balance property (1.1), as we have� i (x)� j (x � ei) = � i � j = � i (x � ej)� j (x) for each x 2 NI and
eachi; j 2 I x . Also, using (1.3), we obtain directly

�(x) =
Y

i 2I

�
1
� i

� x i

; 8x 2 NI : (1.7)

Globally-constant capacity. The service rates of a globally-constant network also satisfy the bal-
ance property, as we have, for eachx 2 NI and eachi; j 2 I x ,

� i (x)� j (x � ei) =
x i

x1 + : : : + x I
� �

x j

x1 + : : : + x I � 1
�

=
x i

x1 + : : : + x I � 1
� �

x j

x1 + : : : + x I
� = � i (x � ej)� j (x):

The balance function of such a network is given by

�(x) =
�

x1 + : : : + x I

x1; : : : ; x I

� �
1
�

� x 1 + ::: + x I

; 8x 2 NI : (1.8)

The proof is by induction over n = x1 + : : : + x I , using either (1.3) or (1.6). The binomial
coe�cient shows up because, up to the multiplicative constant � , unfolding the recursion (1.6)
is equivalent to counting the number of direct paths between the origin and each vectorx 2 NI .

Imposing that � (x) = � for each x 2 NI sets the value of the balance function � through
(1.6) and also that of the service rates through (1.4). In particular, the service rates we have
chosen are the only that satisfy the balance property under the condition that their sum is� .

1.2 Stationary analysis

As observed earlier, the Markov process de�ned by the network state is time-homogeneous and
irreducible, with transitions as depicted in Figure 1.2. The following theorem gives the form of
the stationary measures of this Markov process. In the remainder, we will say that the network is
stable if this process is ergodic andstationary if this process is stationary. Also, for simplicity, we
will sometimes refer to the stationary distribution|or measure|of the Markov process de�ned by
the network state as the stationary distribution|or measure|of the network.

Theorem 1.1. Consider a Whittle network with a set I = f 1; : : : ; I g of queues, per-queue
arrival rates � 1; : : : ; � I , and a balance function � . A stationary measure � of the Markov
process de�ned by the network state is of the form

� (x) = � (0)�(x)
Y

i 2I

� i
x i ; 8x 2 NI ; (1.9)

where � (0) is an arbitrary positive constant. The network is stable if and only if

X

x 2 NI

�(x)
Y

i 2I

� i
x i < + 1 ; (1.10)

in which case the stationary distribution of the Markov process de�ned by the network state is

25

Chapter 1. Whittle networks

given by (1.9), where the positive constant� (0) is given by

1
� (0)

=
X

x 2 NI

�(x)
Y

i 2I

� i
x i : (1.11)

Proof. Using (1.4), we �rst verify that any measure � of the form (1.9) satis�es the following
local balance equations:

� (x) � i = � (x + ei) � i (x + ei); 8x 2 NI ; 8i 2 I : (1.12)

These local balance equations mean that, for eachx 2 NI and eachi 2 I , the probability ow
from state x to state x + ei is equal to the probability ow from state x + ei to state x. They are
stronger than the balance equations of the Markov process de�ned by the network state, which
follow by summation:

� (x)

X

i 2I x

� i (x) +
X

i 2I

� i

!

=
X

i 2I x

� (x � ei) � i +
X

i 2I

� (x + ei) � i (x + ei); 8x 2 NI : (1.13)

The stability condition (1.10) says that there exists a stationary measure of the Markov process
whose sum is �nite, which is indeed necessary and su�cient for ergodicity. Lastly, (1.11) simply
guarantees that the stationary distribution sums to unity.

Equation (1.9) establishes the relation between the stationary measures of the Whittle network
and its balance function �. In particular, if the arrival rates at the queues are equal to one, any
stationary measure is equal to the balance function up to a multiplicative constant. Now consider
the generating function G of the balance function �, de�ned on RI

+ by

G(z) =
X

x 2 NI

�(x)
Y

i 2I

zi
x i ; 8z 2 RI

+ : (1.14)

This function takes its values in R+ [f + 1g . According to (1.10), the stability region of the Whittle
network, de�ned as the set of vectors of per-queue arrival rates� = (� 1; : : : ; � I) that stabilize it, is
also the region of convergence of the generating functionG. Equation (1.11) shows that, assuming
stability, we have � (0) = 1 =G(�), that is, the normalizing constant of the network is equal to the
value of the generating functionG applied to the vector of per-queue arrival rates� = (� 1; : : : ; � I).

Equation (1.9) seems to be the most widespread in the literature about Whittle networks|see
Theorem 1.15 of [89] for instance|but the stationary measures can be rewritten to emphasize the
overall service rate� instead of the balance function �. Indeed, by injecting (1.6) into (1.9), we
obtain that any stationary measure � satis�es the following recursion:

� (x) =
1

� (x)

X

i 2I x

� i � (x � ei); 8x 2 NI n f 0g: (1.15)

Equation (1.15) entirely characterizes the stationary measure� up to a multiplicative constant,
given by � (0) = 1 =G(�) when � is the stationary distribution. By unfolding (1.15), we obtain

� (x) = � (0)
X

(c1 ;:::;c n):
j c1 ;:::;c n j= x

nY

p=1

� cp

� (c1; : : : ; cp)
; 8x 2 NI ; (1.16)

with the convention that the product is equal to one if n = 0. The equivalence between (1.15) and
(1.16) is a direct consequence of (A.2). To the best of our knowledge, (1.15) and (1.16) only appear
in a few works, such as [15, 17, 18, 21], that focus on Whittle networks in which the rate function
� is known to be equal to the available service capacity. This special case will be considered in
Chapter 4. Overall, (1.9), (1.15), and (1.16) are three equivalent ways of describing the stationary
measures of the Markov process de�ned by the state of a Whittle network.

Section 3.4 will explain how the results of Theorem 1.1 can be used to compute long-term
performance metrics, such as the mean delay experienced by the customers at each queue. For
now, we just describe what we obtain in locally-constant and globally-constant Whittle networks.

26

Section 1.3. Reversibility

Locally-constant capacity. By injection (1.7) into (1.9), we obtain

� (x) = � (0)
Y

i 2I

�
� i

� i

� x i

; 8x 2 NI : (1.17)

A direct calculation shows that the network is stable if and only if � i < � i for eachi 2 I . In this
case, the network is empty with probability � (0) =

Q
i 2I (1 � � i

� i
), and the stationary distribution

of the Markov process de�ned by the network state is given by:

� (x) =
Y

i 2I

�
1 �

� i

� i

� �
� i

� i

� x i

; 8x 2 NI :

The independence of the queue evolution is indicated by the product form of the balance function
and the stationary distribution. A direct calculation shows that, for each i 2 I , the expected
number of customers at queuei is given by

L i =
X

x 2 NI

x i � (x) =
� i
� i

1 � � i
� i

=
� i

� i � � i
:

By Little's law [70, 71], it follows that the mean delay at queue i is given by � i = L i
� i

= 1
� i � � i

.

Globally-constant capacity. We again derive the form of the stationary measures of the Markov
process de�ned by the network state by injecting (1.8) into (1.9). We obtain:

� (x) = � (0)
�

x1 + : : : + x I

x1; : : : ; x I

� Y

i 2I

�
� i

�

� x i

; 8x 2 NI :

These are also the stationary measures of the Markov process de�ned by the state of a multi-class
M/M/1 processor-sharing queue with service rate� , in which class-i customers arrive at rate � i ,
for each i 2 I . The network is stable if and only if the load � = � 1 + ::: + � I

� is less than one. Then
the network is empty with probability � (0) = 1 � � and the stationary distribution of the Markov
process de�ned by its state is given by

� (x) = (1 � �)
�

x1 + : : : + x I

x1; : : : ; x I

� Y

i 2I

�
� i

�

� x i

; 8x 2 NI : (1.18)

From this expression, we can retrieve the distribution of the overall number of customers in the
network, also called its stationary distribution for simplicity|as explained in Appendix B. This
is the stationary distribution of the number of customers in an M/M/1 queue subject to the load
� , that is:

� (n) =
X

x 2 NI :
x 1 + ::: + x I = n

� (x) = (1 � �)� n ; 8n 2 N:

Therefore, the expected number of customers in the network is given byL = �
1� � . Using (1.18),

one can show by a direct calculation that, for eachi 2 I , the expected numberL i of customer
at queue i is proportional to the arrival rate at this queue, that is, we have L i = � i

� 1 + ::: + � I
L.

1.3 Reversibility

We observed in the previous section that that the stationary measures� of the Markov process
de�ned by the network state satisfy the following local balance equations, which are stronger than
the balance equations:

� (x) � i = � (x + ei) � i (x + ei); 8x 2 NI ; 8i 2 I : (1.12)

27

Chapter 1. Whittle networks

These equations impose the form of the stationary measures of the Markov process up to a multi-
plicative constant. They are equivalent to the balance property (1.1), in that the service rates of
a network of coupled processor-sharing queues, as de�ned inx1.1.1, are balanced if and only if the
stationary measures of the network state satisfy the local balance equations.

Assuming stability, the local balance equations characterize the stationary distribution of the
Markov process de�ned by the network state, that is, the distribution the stationary process at a
given instant. But the local balance equations are also equivalent to a property, calledreversibil-
ity [57], of the dynamics of this stationary process. Roughly speaking, reversibility means that
the stochastic process obtained by reversing time in the stationary queue has the same distribu-
tion as the original process1. According to Theorem 1.12 of [57], the reversed process is also a
time-homogeneous stationary Markov process, with the same stationary distribution, whenever
the original Markov process is time-homogeneous and stationary. Therefore, in order to prove re-
versibility, it su�ces to show that the frequencies of transitions are the same, whether time moves
forward or backward. For each x 2 NI and each i 2 I , the frequency of|the transitions that
mark|arrivals to queue i in state x in the reversed process is equal to the frequency of departures
from queue i in state x + ei in the original process, given by� (x + ei)� i (x + ei). According to
the balance equation (1.12), this quantity is equal to � (x)� i , that is, the frequency of arrivals at
queue i in state x in the original process. In this way, the frequency of arrivals at queuei in
state x is identical in the original and reversed processes. By a similar argument, one can show
that the frequencies of departures are also identical in these two processes. In the end, the original
and reversed processes have the same frequencies of arrivals and departures, so that they have the
same distribution. The reversed implication, stating that reversibility implies the local balance
equations, follows from a similar argument.

An important consequence of this result is that, for eachi 2 I , the departure process from
queuei forms a Poisson process with rate� i . Indeed, the departure times from queuei correspond
to arrival times at this queue in the reversed-time process and, by reversibility, these form a Poisson
process with rate� i . A similar argument allows us to conclude that, for eachi 2 I and eacht 2 R,
the departure process from queuei prior to time t is independent of the network state a timet. A
nice consequence of this observation is that the output process of a Whittle network can be used as
the input process of another Whittle network; the stationary analysis can still be carried out and
the two network states are independent in stationary regime. This idea motivates the de�nition of
the Markov routing process below, although the proof technique will be di�erent.

We now enumerate several variants of the original Whittle network of Section 1.1 that can be
analyzed thanks to the local balance equations|or equivalently to the reversibility property. For
more details, we refer the reader to [57, 89, 101]. Another important consequence of reversibility,
discussed in the next section, is insensitivity.

Markov routing process. We have assumed so far that each customer crossed a single queue
of the network and left afterwards. The local balance equations guarantee that the form of the
stationary measures of the Markov process de�ned by the network state is unchanged if customers
can move from queue to queue according to an irreducible Markov routing process, as long as
the e�ective arrival rates at the queues are unchanged. Speci�cally, assume that, for eachi 2
I , a customer who leaves queuei after a service completion re-enters the network at queuej
with probability pi;j , for each j 2 I , and leaves the network de�nitively with probability pi =
1 �

P
j 2I pi;j . The service requirements of a customer at each visit are independent from each

other and exponentially distributed with unit mean. Also, the routing process is assumed to be
irreducible in the sense that each queue can be visited and each customer eventually leaves the
network2. Exogeneous customers enter the network at queuei according to an independent Poisson
process with rate � i , for each i 2 I . The e�ective arrival rates � 1; : : : ; � I at the queues are the

1This is assuming that the Markov process is de�ned on the set R of real numbers, and not only on the set R+
of non-negative real numbers, as it is the case in Appendix B. This detail is omitted, as we only sketch the proof.
Theorem 1.3 of [57] gives the complete argument. An enlightening discussion also appears in Section 3.7 of [11].

2The word irreducible may seem inappropriate. Indeed, if we build a Markov chain that describes the route of a
single customer in the network, with one state for each queue and another state for the departure, then this Markov
chain is not irreducible because the departure state is absorbing. We can get around this apparent contradiction by
adding transitions from the departure state towards the queues, with probabilities proportional to the corresponding
external arrival rates, as if we looked at a customer who endlessly re-enters the network after departure. The tra�c
equations (1.19) are just the balance equations of this modi�ed Markov chain.

28

Section 1.3. Reversibility

unique solution of the tra�c equations:

� i = � i +
X

j 2I

� j pj;i ; 8i 2 I : (1.19)

We obtain that � i = � i for each i 2 I if pi = 1 for each i 2 I , which corresponds to the original
Whittle network, without routing. In general, summing the tra�c equations yields

X

i 2I

� i =
X

i 2I

� i pi ;

meaning that the amount of tra�c that enters the network is equal to the amount of tra�c that
leaves the network. By combining these equations with the local balance equations (1.12), one can
show that any stationary measure� given by (1.9) satis�es the balance equations of the Markov
process de�ned by the network state, now given by:

� (x)

X

i 2I x

� i (x) +
X

i 2I

� i

!

=
X

i 2I x

� (x � ei) � i +
X

i 2I

� (x + ei) � i (x + ei) pi

+
X

i 2I x

X

j 2I

� (x � ei + ej) � j (x � ei + ej) pj;i ; 8x 2 NI :

Consequently, the stationary measures of the Markov process de�ned by the network state are
still of the form (1.9), where the e�ective arrival rates � 1; : : : ; � I are now given by the tra�c
equations (1.19). This implies that the results of Theorem 1.1 can be applied as they are despite
the addition of the irreducible Markov routing process. Chapters 2 and 3 of [57] contain insightful
remarks on this result.

Figure 1.7: An open Whittle network of I = 2 queues with an irreducible Markov routing process.

Example 1.2. Consider the open Whittle network I = 2 queues, with an irreducible Markov
routing process, depicted in Figure 1.7. Exogeneous customers enter the network at queue 1
at rate � 1 and at queue 2 at rate � 2. A customer who leaves queue 1 re-enters the network at
queue 1 with probability p1;1 = 1

3 and at queue 2 with probability p1;2 = 1
6 , otherwise they leave

the network immediately. A customer who leaves queue 2 leaves the network immediately|we
have implicitly p2;1 = p2;2 = 0. Observe that these routing probabilities are independent of the
past journey of the customer. The tra�c equations (1.19) rewrite as

(
� 1 = � 1 + 1

3 � 1;
� 2 = � 2 + 1

6 � 1;

which yields � 1 = 3
2 � 1 and � 2 = 1

4 � 1 + � 2. We verify that � 1 + � 2 = 1
2 � 1 + � 2. The stationary

measures of the Markov process de�ned by the network statex = (x1; x2) are of the form

� (x) = � (0)�(x)� 1
x 1 � 2

x 2 ; 8x 2 N2;

29

Chapter 1. Whittle networks

where � is the balance function of the service rates � 1 and � 2. These are identical to the
stationary measures of the Markov process de�ned by the state of the network of Figure 1.1.

Partitioned network. Consider a Whittle network, with or without an irreducible Markov rout-
ing process, assumed to be stable for simplicity. Assume that the set of queues is partitioned into
two parts I 1 = f 1; : : : ; I 1g and I 2 = f I 1 + 1 ; : : : ; I 1 + I 2g. With a slight abuse of notation, we let
x1 = (x1;1; : : : ; x1;I 1) 2 NI 1 denote the state of the �rst part and x2 = (x2;I 1 +1 ; : : : ; x2;I 1 + I 2) 2 NI 2

that of the second part. Also assume that the service rate� i (x1) at each queuei 2 I 1 of the �rst
part is a function of the vector x1 only and, similarly, the service rate � i (x2) at each queuei 2 I 2

of the second part is a function of the vectorx2 only. Then we can write the balance function
of the network in the form � 1(x1)� 2(x2), where � 1 is the balance function of the service rates
� 1; : : : ; � I 1 of the �rst part and � 2 that of the service rates� I 1 +1 ; : : : ; � I 2 of the second part. In the
absence of random routing, the two parts of the network evolve independently and the stationary
distribution of the Markov process de�ned by the network state (x1; x2) is given by

� (x1; x2) = � 1(x1) � 2(x2) =

� 1(0)� 1(x1)
Y

i 2I 1

� i
x 1;i

!

� 2(0)� 2(x2)
Y

i 2I 2

� i
x 2;i

!

; (1.20)

for each x1 2 NI 1 and eachx2 2 NI 2 , where � 1 and � 2 are the stationary distributions of the two
parts taken in isolation, and � 1; : : : ; � I 1 + I 2 are the arrival rates at the queues. Alternatively, (1.20)
can be recovered by applying (1.9) to the Whittle network|taken as a whole|and by using the
product form of the balance function. Even if the network is unstable, the product-form (1.20)
is actually valid for any stationary measure � of the Markov process de�ned by the joint network
state (x1; x2), where � 1 and � 2 are stationary measures of the two parts taken in isolation.

Now assume that customers can move from queue to queue according to an irreducible Markov
routing process, irrespective of the partition I = I 1 tI 2. The stationary distribution of the Markov
process de�ned by the network state is again given by (1.9), where� 1; : : : ; � I 1 + I 2 now denote the
e�ective arrival rates at the queues, so that the stationary measures of the Markov processes de�ned
by the joint network state (x1; x2) still have the product form (1.20). In particular, if the network
is stationary, the two parts remain independent despite the addition of the Markov routing process.
This result can be generalized to a Whittle network with more than two parts by an immediate
recursion.

Figure 1.8: An open Whittle network of I = 3 queues partitioned into two parts.

Example 1.3. Consider the Whittle network of I = 3 queues depicted in Figure 1.8. It is divided
into two parts, I 1 = f 1; 2g and I 2 = f 3g, and equipped with an irreducible Markov routing
process. The service rates� 1(x1) and � 2(x1) of the queues of the �rst part only depends on the
state x1 = (x1;1; x1;2) of this part. Similarly, the service rate � 3(x2) of the only queue of the
second part only depends on the numberx2 = (x2;3) of customers at this queue. Therefore, the

30

Section 1.3. Reversibility

stationary measures of the Markov process de�ned by the network state (x1; x2) are of the form

� (x1; y) = � 1(x1)� 2(x2) = (� 1(0)� 1(x1)� 1
x 1; 1 � 2

x 1; 2) (� 2(0)� 2(x2)� 3
x 2) ; 8x 2 N2; 8y 2 N;

where � 1; � 2, and � 3 are the e�ective arrival rates at the queues, given by the tra�c equations
(1.19), which rewrite as 8

><

>:

� 1 = � 1 + 1
3 � 1;

� 2 = � 2 + 1
6 � 1;

� 3 = � 3 + 1
4 � 2 + 2

3 � 3:

We obtain � 1 = 3
2 � 1, � 2 = 1

4 � 1 + � 2, and � 3 = 3
16 � 1 + 3

4 � 2 + 3 � 3.

Closed network. We can also consider a closed variant of the original Whittle network, again
equipped with a Markov routing process, in which the total number of customers is a constant.
This Markov routing process is obtained by taking � i = pi = 0 for each i 2 I in the description
we gave for the open network. It is assumed to beirreducible in the sense that each customer can
visit each queue. In this case, the e�ective arrival rates are de�ned by the tra�c equations (1.19)
up to a multiplicative constant. The Markov process de�ned by the network state is irreducible
on the truncated state spaceX = f x 2 NI : x1 + : : : + x I = `g, where ` is the total number of
customers in the network. This Markov process is always ergodic because its state space is �nite.
Its balance equations are similar to those of the open network, except that� i = 0 for each i 2 I and
we only consider the vectors of the truncated state spaceX . By again applying the local balance
equations (1.12) and the tra�c equations (1.19), we can show that the stationary distribution � of
this Markov process is obtained by normalizing the restriction of any measure �� de�ned by (1.9)
to X , that is,

� (x) =
�� (x)

P
y2X �� (y)

=
�(x)

Q
i 2I � i

x i

P
y2X �(y)

Q
i 2I � i

y i
; 8x 2 X : (1.21)

In particular, if the open variant of the Whittle network|with the same e�ective arrival rates and
service rates|is stable, then (1.21) is also the conditional stationary distribution of the Markov
process de�ned by the state of this open network, given that it belongs to the setX .

These results could be generalized to Whittle networks in which the Markov routing process
is not irreducible|see, for instance, Section 1.4 of [89] and the sections referenced therein. Here
we only make a few words on the case where the Markov routing process is made of strongly
connected components that are disconnected of each other, as it will su�cient for the applications
of Part III. In other words, we assume that the set I of queues can be partitioned into two or more
parts, so that the customers at the queues of one part cannot be routed towards the queues of
another part, and the routing process is irreducible within each part. The queues of di�erent parts
are only coupled through their service rates. The e�ective arrival rates are de�ned by the tra�c
equations (1.19) up to a multiplicative constant within each part. The Markov process de�ned by
the network state is irreducible over its truncated state spaceX , now made of the network states in
which the total number of customers within each part is �xed. By the same arguments as before,
we can show that the stationary distribution of the Markov process de�ned by the network state
is again given by (1.21).

We could also consider closed Whittle networks that are partitioned, so that the service rate in
one part only depends on the number of customers in this part. Provided that the Markov process
de�ned by the network state is irreducible on its truncated state space, we can again show that
the stationary distribution of the Markov process de�ned by the state of such a closed partitioned
network has a product form|it su�ces to normalize the restriction of the product-form stationary
measures obtained for open partitioned networks. In general, this does not imply that the states of
di�erent parts are independent, even if the network is stationary, because the number of customers
in one part may give information on the number of customers in another.

Loss network. We consider a last variant of the original open Whittle network in which, for each
i 2 I , a customer who enters the network at queuei is rejected if there are already` i customers in
this queue, for somè i 2 N. The state of this loss network de�nes an irreducible Markov process on
the truncated state spaceX = f x 2 NI : x � `g, where ` = (`1; : : : ; ` I) is the vector of per-queue

31

Chapter 1. Whittle networks

limits. This process is always ergodic because its state space is �nite. Its balance equations are
similar to the balance equations (1.13) of the original process, except that they are restricted to
the truncated state spaceX and the second sum in each member of the equality is taken over the
queuesi 2 I such that x i < ` i . Using the local balance equations (1.12), one can show that the
stationary distribution � of this Markov process is again given by (1.21), whereX now refers to the
truncated state space we have just de�ned. In particular, if the open network|without losses|is
stable, the stationary distribution of the loss network is the conditional stationary distribution of
the open network, given that its state belongs to the setX .

This result remains valid if we only assume that ` i 2 N [f + 1g for each i 2 I , provided that
the truncated process is ergodic. In particular, assume that̀ j = 0 for some j 2 I and ` i = + 1
for each i 2 I n f j g. The result can be restated as follows: the conditional stationary distribution
of the open Whittle network, given that queue j is empty, is also the stationary distribution of a
restricted Whittle network, in which there is just no arrival at queue j |as if queue j did not exist
actually. This remark will be fundamental in Chapter 6.

Let us make a �nal remark on the special case of loss networks with a �nite state space, in which
` i < + 1 for each i 2 I . The evolution of such a network can also be described by that of a closed
Whittle network with twice more queues. Indeed, consider a closed Whittle network with a set
f 1; 2; : : : ; 2I g of queues. This closed network is partitioned intoI +1 parts, namely I = f 1; : : : ; I g,
f i + 1g, . . . , f 2I g, in the sense of the previous paragraph. The �rstI queues coincide with those
of the loss network, in the sense that their service rates are equal. For eachi 2 I , the service rate
of queueI + i is � i , the arrival rate in the loss network. This closed network is equipped with the
following|deterministic|Markov routing process: for each i 2 I , a customer who leaves queuei
moves to queueI + i , and conversely. The state of the �rst I queues of this closed network de�nes
an irreducible Markov process which has the same transition diagram as the Markov process of the
loss network. This observation will be useful in Chapter 8 and Section 9.1.

1.4 Insensitivity

In this section, we show that most of the results of Sections 1.2 and 1.3 remain valid if we relax our
initial assumption that the service requirements are exponentially distributed with unit mean. We
�rst extend the results of Sections 1.2 and 1.3 to exponentially distributed service requirements with
non-unit means at each queue, and then we tackle the case of Coxian distributions|see Appendix B
for the de�nition|which form a dense subset within the set of distributions of non-negative random
variables [89]. As we will see below, thisinsensitivity property is a direct consequence of the
possibility of adding an irreducible Markov routing process without breaking the form of the
stationary measure, as shown in Section 1.3, which is itself a consequence of the local balance
equations (1.12)|or equivalently, of the balance property (1.1). The inverse implication, showing
that the network of processor-sharing queues introduced inx1.1.1 is insensitive if and only if the
service rates are balanced, is also true. The proof can be found in [14]. For a deeper discussion
on the relation between the local balance equations and insensitivity, we refer the reader to [101,
102].

Exponential distribution. Consider a Whittle network of I queues, as de�ned in Section 1.1.
The only di�erence is that, for each i 2 I , the service requirements of the customers at queuei
are exponentially distributed with a mean � i that is �nite and positive, but is not necessarily
equal to one. The service requirements of the customers at di�erent queues are still assumed to
be independent. For eachx 2 NI and each i 2 I x , the service rate of a customer at queuei in
state x is still � i (x)=xi , but this quantity has to be divided by � i to yield the departure rate of
this customer. The local balance equations (1.12) rewrite as follows:

� (x) � i = � (x + ei)
� i (x + ei)

� i
; 8x 2 NI ; 8i 2 I : (1.22)

These new local balance equations are equivalent to the original local balance equations (1.12),
except that the arrival rate � i at queuei is replaced with its tra�c intensity � i � i . Therefore, they

32

Section 1.4. Insensitivity

are satis�ed by the stationary measures of the form

� (x) = � (0)�(x)
Y

i 2I

(� i � i)
x i ; 8x 2 NI ; (1.23)

where the balance function � is still de�ned on NI by (1.3). From that, the proof of Theorem 1.1
extends directly. Consequently, the results of Sections 1.2 and 1.3 extend directly by replacing the
e�ective arrival rate � i at queue i with its tra�c intensity � i � i , for each i 2 I .

We consider another way of proving the same result. This latter method is not as straightfor-
ward as the former. However, it will pave the way, not only for the method of stages described in
the next paragraph, but also for the queueing analysis of the algorithm of Chapter 7. By changing
the queue indices and re-scaling time if necessary, we can assume that 1 =� 1 � � 2 � : : : � � I .
We consider the following Whittle network of I queues, which di�ers from our original Whittle
network as follows. For eachi 2 I , each customer at queuei has an exponentially distributed
service requirement with unit mean and, upon service completion, such a customer leaves the net-
work with probability pi = � 1

� i
= 1

� i
and re-enters the network at the same queue otherwise. For

each i 2 I , the external arrival rate at queue i is still denoted by � i , and, according to the tra�c
equations (1.19), the e�ective arrival rate at this queue is � i

pi
= � i � i . Therefore, the results of

Section 1.3 show that the stationary measures of the Markov process de�ned by the state of this
Whittle network are of the form (1.23) obtained in the previous paragraph.

This modi�ed Whittle network accurately describes the behavior of our original Whittle network
for the following two reasons. First, for eachi 2 I , the service requirement of a customer at queuei ,
over all visits taken together, is exponentially distributed with mean � i . Indeed, each visit consists
of an exponentially distributed service requirement with unit mean, and, independently, the number
of visits has a geometric distribution with parameter pi = 1

� i
. Second, as the service rate of each

customer is independent of the arrival order of customers, the re-routing mechanism that emulates
service requirements with non-unit means does not modify the service in the network.

Coxian distribution. Again consider a Whittle network as de�ned in Section 1.1, except that,
for each i 2 I , the service requirements of the customers at queuei have a Coxian distribution, as
de�ned in Appendix B. We let K i denote the number of phases of this distribution,� i; 1,. . . ,� i;K i

the mean lengths of the phases, andpi; 1,. . . ,pi;K i the completion probabilities at the end of the
phases. The expected service requirement of a customer at queuei is given by

� i =
K iX

k=1

(1 � pi; 1) � � � (1 � pi;k � 1)� i;k ; (1.24)

where the product is taken equal to one ifk = 1. The stochastic process de�ned by the state
x = (x1; : : : ; x I) of this Whittle network does not have the Markov property anymore, as the
future evolution of the network depends on the current service phase of each customer. We get
around this problem by applying the method of stages[31, 37].

Consider a network ofK 1 + K 2 + : : : + K I processor-sharing queues with coupled service rates,
as de�ned in x1.1.1. The queues of this network are indexed by the couple (i; k), where i 2 I and
k = 1 ; : : : ; K i . Each customer at queue (i; k) of this network corresponds to a customer at queuei
in service phasek in the original Whittle network. For each i 2 I , let ~x i = (~x i; 1; : : : ; ~x i;K i) denote
the vector of numbers of customers at queues (i; 1) to (i; K i). With a slight abuse of notations, we
let j~x i j = ~x i; 1 + : : : + ~x i;K i denote the total number of customers at queues (i; 1) to (i; K i). The
network state is described by the vector ~x = (~x1; : : : ; ~x I) 2 NK 1 � � � � � NK I . The service rates are
de�ned as follows. For eachi 2 I , all customers at queues (i; 1) to (i; K i) receive the same service
rate, which is also the service rate they would receive in the original Whittle network. In other
words, for eachi 2 I and eachk = 1 ; : : : ; K i , the service rate at queue (i; k) is given by

~� i;k (~x) =
~x i;k

j~x i j
� i (j~x1j; : : : ; j~x I j); 8~x 2 NK 1 � � � � � NK I :

These service rates satisfy the balance property|the proof is is similar to that of the globally-
constant network in x1.1.2|so that the network of processor-sharing queues is a Whittle network.
Following [102], we call this network the imbedding network, while the original Whittle network,

33

Chapter 1. Whittle networks

with Coxian distributed service requirements, is called theimbeddednetwork3. The balance func-
tion ~� of the imbedding network is related to the balance function � of the imbedded network by
the following equality:

~�(~x) =
Y

i 2I

�
x i

~x i; 1; : : : ; ~x i;K i

�
�(j~x1j; : : : ; j~x I j); 8~x 2 NK 1 � � � � � NK I : (1.25)

The imbedding network is also equipped with the following irreducible Markov routing process.
Let i 2 I . The external arrival rate at queue (i; 1) is � i and, for eachk = 2 ; : : : ; K i , the external
arrival rate at queue (i; k) is zero. Additionally, for each k = 1 ; : : : ; K i , a customer whose service
is completed at queue (i; k) leaves the network with probability pi;k and re-enters the network at
queue (i; k + 1) with probability 1 � pi;k |recall that pi;K i = 1 with our de�nition of the Coxian
distribution. According to the result of the previous paragraph, the stationary measures of the
imbedding Whittle network are of the form:

~� (~x) = ~� (0) ~�(~x)
Y

i 2I

K iY

k=1

(� i (1 � pi; 1) � � � (1 � pi;k � 1)� i;k)~x i;k ; 8~x 2 NK 1 � � � � � NK I : (1.26)

By the same arguments as before, the imbedding network accurately describes the behavior of the
imbedded network with Coxian distributed service requirements. The stationary measures of the
stochastic process de�ned by the statex = (x1; : : : ; x I) of the imbedded network can be derived
from those of the imbedding network by summation: for eachx 2 NI , we have

� (x) =
X

~x 2 NK 1 ����� NK I :
j ~x 1 j= x 1 ;:::; j ~x I j= x I

~� (0) ~�(~x)
Y

i 2I

K iY

k=1

(� i (1 � pi; 1) � � � (1 � pi;k � 1)� i;k)~x i;k ;

= ~� (0)�(x)
Y

i 2I

X

~x i 2 NK i :
j ~x i j= x i

�
x i

~x i; 1; : : : ; ~x i;K i

� K iY

k=1

(� i (1 � pi; 1) � � � (1 � pi;k � 1)� i;k)~x i;k ;

= ~� (0)�(x)
Y

i 2I

� i

K iX

k=1

(1 � pi; 1) � � � (1 � pi;k � 1)� i;k

! x i

:

The �rst equality follows from (1.26) and the second from (A.1) and (1.25). We �nally obtain
(1.23) by applying (1.24).

1.5 Concluding remarks

In this chapter, we introduced a �rst model that generalizes the M/M/1 processor-sharing queue
by considering a network made of several queues with coupled service rates. Provided that the
arrival times at the queues form independent Poisson processes, the balance property guarantees
that the stationary measure of the Markov process de�ned by network state has a simple form,
even if the service requirements are not exponentially distributed with unit mean. The proof of
this insensitivity result for Coxian distributions, based on the method of stages, was recalled in
Section 1.4. In Section 1.3, we showed that the Markov process de�ned by the state of a Whittle
network is reversible and used this property to analyze variants of the open network, such as closed
and loss networks.

Bibliographical notes. The books [57, 89] provide a good overview of the related work of this
chapter. In particular, Chapter 1 of [89] recalls the de�nition and the main properties of Whittle
networks. As observed earlier, our de�nition of Whittle networks imposes that the service policy at

3Actually, in [102], imbedding and imbedded refer to stochastic processes and not to queueing networks. To be
consistent, we should say that the Markov process de�ned by the state of the second Whittle network imbeds the
Markov process de�ned by the state of the original one with exponentially distributed service requirements. We
prefer the above formulation for simplicity. Section 3.2 will feature another example of imbedding.

34

Section 1.5. Concluding remarks

each queue is processor-sharing. This assumption is not part of the common de�nition of Whittle
networks, but it is necessary to derive the insensitivity result of Section 1.4. The extensions
presented in Section 1.3 are discussed in Chapters 2 and 3 of [57]. Insensitivity, a recurrent topic
in queueing theory, was discussed in particular in [14, 101, 102].

35

36

2 Order-independent queues

We consider a second queueing model that generalizes the single-server queue under �rst-come-
�rst-served policy. Compared to the previous chapter, we consider a single queue with multiple
classes of customers and not a network of multiple queues.

2.1 De�nition

Order-independent queues were introduced in [9] and further developed in [10, 66]. The adjective
order-independent may seem inappropriate at �rst, as the service rates will depend on the arrival
order of customers at the queue, but it will be given a precise meaning inx2.1.2. Order-independent
queues can be seen as a natural extension of several existing models, including the M/M/1 �rst-
come-�rst-served queue, the M/M/K queue, and the �rst-come-�rst-served, processor-sharing, and
in�nite-server queues of BCMP networks, introduced in [7].

2.1.1 Multi-class queue

Consider a queue withI customer classes and letI = f 1; : : : ; I g denote the set of class indices. For
each i 2 I , class-i customers enter the queue according to an independent Poisson process with
a positive rate � i . The service requirements are independent and exponentially distributed with
unit mean and each customer leaves the queue immediately upon service completion. We consider
two state descriptors, called themicrostate and the macrostate. The microstate is the sequence
c = (c1; : : : ; cn) 2 I � , where n is the number of customers in the queue andcp is the class of the
p-th oldest customer, for eachp = 1 ; : : : ; n, so that is c1 the class of the oldest customer. The
macrostate is the vectorjcj = (jcj1; : : : ; jcjI) 2 NI that counts the number of customers of each class
but ignores their arrival order|see Appendix A for more details. This macrostate is similar to the
state descriptor of Whittle networks. A class is said to beactive if there is at least one customer of
this class in the queue. The set of active classes in microstatec is given by I c = f i 2 I : jcj i > 0g.

The service rate of each customer in the queue is a function of the microstate, so that this
microstate de�nes a Markov process onI � . On the contrary, the stochastic process de�ned by the
macrostate onNI will not have the Markov property in general. For eachi 2 I and eachc 2 I � ,
we let � i (c) 2 RI

+ denote the overall service rate of classi in microstate c. Also, for eachc 2 I � , we
let � (c) = (� 1(c); : : : ; � I (c)) 2 RI

+ denote the vector of per-class service rates in microstatec and
� (c) =

P
i 2I c

� i (c) the overall service rate in the queue. This de�nes a function� on I � , which
we call the rate function of the queue. This function is assumed to be non-decreasing, in the sense
that

� (c1; : : : ; cn ; i) � � (c1; : : : ; cn); 8(c1; : : : ; cn) 2 I � ; 8i 2 I :

Figure 2.1: An order-independent queue withI = 2
classes. Its microstate is given byc = (1 ; 1; 2; 1; 2).
Its macrostate x = (3 ; 2) corresponds to the state of
the Whittle network of Figure 1.1.

37

Chapter 2. Order-independent queues

We also require that � (;) = 0 and � (c) > 0 for eachc 2 I � n f;g .
We obtain a multi-class queue, as shown in Figure 2.1. So far, we have de�ned the per-class

service rates and the overall service rate, but we have not speci�ed yet which portion of this
service rate is allocated to each customer in the queue. This will be part of the order-independence
condition described in x2.1.2 below. Before that, we introduce two special cases of queues, said to
be locally constant and globally constant, that will turn out to be order-independent. The reader is
invited to make the comparison with the special cases of the same name introduced in Chapter 1.
Chapter 4 will consider a more advanced example of order-independent queue.

Locally-constant capacity. A multi-class queue is said to have a locally-constant capacity, or to
be locally constant, if, for each i 2 I , the oldest customer of classi is served at a positive rate
� i while the other class-i customers have a zero service rate, so that� i (c) = � i 1fj cj i > 0g for each
c 2 I � and eachi 2 I . In other words, we have� (c) =

P
i 2I c

� i for each c 2 I � . Then, for each
i 2 I , class-i customers evolve as if they were in an independent M/M/1 �rst-come-�rst-served
queue subject to the load � i

� i
, as shown in Figure 2.2.

Figure 2.2: Two M/M/1 �rst-come-�rst-served queues that evolve like a multi-class queue with
I = 2 customer classes and a locally-constant capacity.

Globally-constant capacity. On the contrary, the multi-class queue is said to have a globally-
constant capacity, or to be globally constant, if the overall service rate is a positive constant�
whenever the queue is non-empty, that is,� (c) = � for each c 2 I � n f;g . More precisely, the
customer at the head of the queue receives service at rate� while the other customers have a zero
service rate. For eachc 2 I � , the per-class service rates in microstatec are given by � c1 (c) = �
and � i (c) = 0 for each i 2 I n f c1g. We obtain a multi-class M/M/1 �rst-come-�rst-served queue
subject to the load � = � 1 + ::: + � I

� , as shown in Figure 2.3.

Figure 2.3: A multi-class M/M/1 �rst-come-�rst-served queue with I = 2 customer classes.

2.1.2 Order-independence

The queue is said to beorder-independent if the service rates satisfy the following two conditions.
First, the overall service rate is independent of the arrival order of customers in the queue. In
other words, we have� (c) = � (d) for each c; d 2 I � such that jcj = jdj. For this reason, we will use
indi�erently the notation � (c) or � (x) to denote the overall service rate in any microstatec 2 I � and
in its corresponding macrostatex = jcj. Second, the service rate of each customer is independent
of the customers arrived later in the queue. In particular, for eachc = (c1; : : : ; cn) 2 I � and each
p = 1 ; : : : ; n, the service rate of the customer in positionp in microstate c is equal to the increment
of the overall service rate induced by the arrival of this customer, denoted by

� � (c1; : : : ; cp) = � (c1; : : : ; cp) � � (c1; : : : ; cp� 1):

In the example of Figure 2.1, the oldest customer, of class 1, is served at rate �� (1) = � (1) � � (;) =
� (1); the second customer, also of class 1, is served at rate �� (1; 1) = � (1; 1) � � (1); the third
customer, class 2, is served at rate �� (1; 1; 2) = � (1; 1; 2) � � (1; 1), and so on. One can readily
verify that the locally-constant and globally-constant queues ofx2.1.1 satisfy these two conditions.

38

Section 2.2. Stationary analysis

The per-class service rates are entirely determined by the rate function� . Indeed, for each
i 2 I , the service rate of classi is given by

� i (c1; : : : ; cn) =
nX

p=1
cp = i

� � (c1; : : : ; cp); 8(c1; : : : ; cn) 2 I � ; 8i 2 I : (2.1)

In general, each component of the vector� (c) = (� 1(c); : : : ; � I (c)) 2 RI
+ doesdepend on the arrival

order of the customers in the queue even if its sum� (c) =
P

i 2I c
� i (c) does not. Figure 2.4 shows

how to build this vector recursively, based on the following equality:

� (c1; : : : ; cn ; i) = � (c1; : : : ; cn) + � � (c1; : : : ; cn ; i) ei ; 8(c1; : : : ; cn) 2 I � ; 8i 2 I :

This construction will help visualize the results of Chapters 3 and 4, where we will relate the per-
class service rates in order-independent queues to the per-queue service rates in Whittle networks.

Figure 2.4: Recursive construction of the vector of per-class service rates in the order-independent
queue of Figure 2.1. Letc = (c1; : : : ; cn) 2 I � and x = jcj. For each i 2 I , the vector � (c1; : : : ; cn ; i)
is built by translating the vector � (c1; : : : ; cn) by � � (c1; : : : ; cn ; i) = � (x + ei) � � (x) in direction i .

Our de�nition of an order-independent queue di�ers from that of [9, 10, 66] in two points. First,
we have assumed that the service requirement of each customer was exponentially distributed with
unit mean. As a result, for each (c1; : : : ; cn) 2 I � , the time to the next departure in microstate
(c1; : : : ; cn) is exponentially distributed with rate � (c1; : : : ; cn) and, for eachp = 1 ; : : : ; n, the prob-
ability that the departing customer is the one in position p is given by � � (c1; : : : ; cp)=� (c1; : : : ; cn).
References [9, 10, 66] use this alternative de�nition of an order-independent queue. The transition
diagram is unchanged but the focus is on the service times rather than on the service requirements.
The advantage of our de�nition, admittedly more restrictive, is that it simpli�es the exposition
and is in line with the applications of Parts II and III. However, the results of Chapter 3 can be
applied as they are with the more general de�nition of [9, 10, 66]. The second di�erence is that, in
the de�nition of [9, 10, 66], the overall service rate is scaled by a factor that depends on the total
number of customers in the queue. We omit this factor to simplify the notations and because it
does not intervene in the application of Parts II and III. Most of the results of Chapter 3 have a
counterpart that accounts for this factor; we will elaborate on this in the conclusion of this chapter.

2.2 Stationary analysis

We observed earlier that the stochastic process de�ned by the queue macrostate does not have
the Markov property in general. This is why we focus on its microstate, which de�nes a time-
homogeneous Markov process on the state spaceI � . We do not depict its transition diagram,
as it is quite intricate and does not help understand the structure. For each (c1; : : : ; cn) 2 I � ,
there is a transition from state (c1; : : : ; cn) to state (c1; : : : ; cn ; i) with rate � i , for each i 2 I ,
and from state (c1; : : : ; cn) to state (c1; : : : ; cp� 1; cp+1 ; : : : ; cn) with rate � � (c1; : : : ; cp), for each

39

Chapter 2. Order-independent queues

p = 1 ; : : : ; n such that � � (c1; : : : ; cp) > 0. This Markov process is irreducible on its state space
I � . Indeed, for eachc = (c1; : : : ; cn) 2 I � , microstate c is accessible from microstate; through the
transitions that correspond to the arrivals of the customers that populate the queue in microstatec,
while microstate ; is accessible from microstatec through the transitions that correspond to the
successive departures of the customers at the head of the queue.

The following theorem gives the form of the stationary measures of the Markov process de�ned
by the queue microstate. In the remainder, we will say that the queue isstable if this Markov
process is ergodic andstationary if this Markov process is stationary. Also, for simplicity, we will
sometimes refer to the stationary distribution|or measure|of the Markov process de�ned by the
queue microstate as the stationary distribution|or measure|of the queue.

Theorem 2.1. Consider an order-independent queue with a setI = f 1; : : : ; I g of customer
classes, per-class arrival rates� 1; : : : ; � I , and a rate function � . A stationary measure � of the
Markov process de�ned by the queue microstate is of the form

� (c1; : : : ; cn) = � (;)
nY

p=1

� cp

� (c1; : : : ; cp)
; 8(c1; : : : ; cn) 2 I � : (2.2)

where � (;) is an arbitrary positive constant. The queue is stable if and only if

X

(c1 ;:::;c n)2I �

nY

p=1

� cp

� (c1; : : : ; cp)
< + 1 ; (2.3)

in which case the stationary distribution of the Markov process de�ned by the queue microstate
is given by (2.2), where the positive constant� (;) is given by

1
� (;)

=
X

(c1 ;:::;c n)2I �

nY

p=1

� cp

� (c1; : : : ; cp)
: (2.4)

Proof. We verify that any measure � of the form (2.2) satis�es the following partial balance
equations in each microstatec = (c1; : : : ; cn) 2 I � :

| Equalize the probability ow out of microstate c due to a departure with the probability
ow into microstate c due to an arrival|if c 6= ; :

� (c1; : : : ; cn) � (c1; : : : ; cn) = � (c1; : : : ; cn � 1) � cn ; (2.5)

| Equalize, for each i 2 I , the probability ow out of microstate c due to the arrival of a
class-i customer with the probability ow into microstate c due to the departure of a class-i
customer:

� (c1; : : : ; cn)� i =
n +1X

p=1

� (c1; : : : ; cp� 1; i; cp; : : : ; cn) � � (c1; : : : ; cp� 1; i): (2.6)

The partial balance equations (2.5) are equivalent to (2.2). The fact that the measures given by
(2.2) also satisfy the partial balance equations (2.6) can be shown by induction over the queue
length n, using the order-independence condition|see the proof of Theorem 1 in [9]. Taken
together, the partial balance equations (2.5) and (2.6) are stronger than the balance equations
of the Markov process de�ned by the microstate, which follow by summation:

� (c1; : : : ; cn)

� (c1; : : : ; cn) +
X

i 2I

� i

!

= � (c1; : : : ; cn � 1) � cn 1f c6= ;g

40

Section 2.2. Stationary analysis

+
X

i 2I

n +1X

p=1

� (c1; : : : ; cp� 1; i; cp; : : : ; cn) � � (c1; : : : ; cp� 1; i); 8(c1; : : : ; cn) 2 I � : (2.7)

The stability condition (2.3) says that there exists a stationary measure of the Markov process
whose sum is �nite, which is necessary and su�cient for ergodicity. Lastly, (2.4) simply guarantees
that the stationary distribution sums to unity.

To the best of our knowledge, equation (2.2) is the most widespread in the literature about order-
independent queues [9, 10, 66]. However, as in Section 1.2, we can consider two other forms of the
stationary measures which are equivalent to (2.2). First, by separating the factor that corresponds
to p = n from the others in (2.2), we obtain the recursive de�nition

� (c1; : : : ; cn) =
� cn

� (c1; : : : ; cn)
� (c1; : : : ; cn � 1); 8(c1; : : : ; cn) 2 I � ; (2.8)

which entirely characterizes the stationary measure� up to a multiplicative constant, given by
� (;) if � is the stationary distribution. Alternatively, if we separate the arrival rates from the
service rates in (2.2), we obtain

� (c) = � (;)�(c)
Y

i 2I

� i
j cj i ; 8c 2 I � ; (2.9)

where the function � is de�ned on I � by

�(c1; : : : ; cn) =
nY

p=1

1
� (c1; : : : ; cp)

; 8(c1; : : : ; cn) 2 I � ; (2.10)

with the convention that the product is equal to one if n = 0. Equation (2.9) can be seen as the
counterpart of Equation (1.9) that was considered for Whittle networks. By analogy, we refer to
� as the balance function of the order-independent queue. If the arrival rate of each class is equal
to one, any stationary measure is equal to this balance function � up to a multiplicative constant.
Equations (2.2), (2.8), and (2.9) are three equivalent ways of describing the stationary measures
of the Markov process de�ned by the queue microstate. Understanding the relation between these
equations and their counterparts (1.9), (1.15), and (1.16) in Whittle networks will be the objective
of Chapter 3.

Section 3.4 will explain how to use the results of Theorem 2.1 to compute long-term performance
metrics, such as the mean delay experienced by the customers of each class. For now, we simply
apply Theorem 2.1 to locally-constant and globally-constant order-independent queues.

Locally-constant capacity. First consider a locally-constant queue, in which� (c) =
P

i 2I c
� i for

eachc 2 I � n f;g . The stationary measures of the Markov process de�ned by the microstate are
given by (2.2), which rewrites as

� (c1; : : : ; cn) = � (;)
nY

p=1

� cpP
i 2I (c 1 ;:::;c p)

� i
; 8(c1; : : : ; cn) 2 I � :

The queue is stable if and only if

X

(c1 ;:::;c n)2I �

nY

p=1

� cpP
i 2I (c 1 ;:::;c p)

� i
< + 1 ;

in which case the probability that the queue is empty is the inverse of the left-hand member of
the inequality. This expression is impractical to compute average performance metrics such as
the expected number of customers in the queue. We get around this di�culty as follows.

We observed earlier that, in a locally-constant queue, the customers of each class evolve
independently as if they were in an independent M/M/1 �rst-come-�rst-served queue. Therefore,

41

Chapter 2. Order-independent queues

the stationary measures of the Markov process de�ned by the queue macrostate are of the form:

� (x) = � (0)
Y

i 2I

�
� i

� i

� x i

; 8x 2 NI :

We obtained an identical expression for the stationary measures of the locally-constant Whittle
network of Chapter 1. It follows that the queue is stable if and only if � i < � i for each i 2 I , in
which case it is empty with probability � (;) = � (0) =

Q
i 2I (1 � � i

� i
). The stationary measures of

the Markov process de�ned by the macrostatex could also be derived from those of the microstate
c by induction on n = x1 + : : : + x I . As in Chapter 1, it also follows that, for each i 2 I , the
expected number of class-i customers in the queue is given byL i = � i

� i � � i
.

Globally-constant capacity. The case of a globally-constant queue is much simpler. The stationary
measures of the Markov process de�ned by the microstate are of the form

� (c1; : : : ; cn) = � (;)
nY

p=1

� cp

�
= � (;)

Y

i 2I

�
� i

�

� j cj i

; 8(c1; : : : ; cn) 2 I � :

The value taken by a stationary measure applied to some microstatec 2 I � is independent of the
arrival order of the customers. In particular, even though the process de�ned by the macrostate
does not have the Markov property, we can easily compute its stationary measures|see Ap-
pendix B for a longer discussion. These are given by

� (x) =
X

c:jcj= x

� (c) =
�

x1 + : : : + x I

x1; : : : ; x I

� Y

i 2I

�
� i

�

� x i

; 8x 2 NI :

We obtained the same stationary measures in a globally-constant Whittle network. In particular,
the queue is empty with probability 1 � � and the expected number of customers in the queue is
given by L = �

1� � . Also, for eachi 2 I , the expected number of class-i customers is proportional
to the arrival rate of class i .

2.3 Quasi-reversibility

In the proof of Theorem 2.1, we saw that the stationary measures of the Markov process de�ned
by the queue microstate satisfy thepartial balance equations (2.5) and (2.6), which are stronger
than the balance equations. Namely, for each (c1; : : : ; cn) 2 I � n f;g , we have

� (c1; : : : ; cn) � (c1; : : : ; cn) = � (c1; : : : ; cn � 1) � cn ; (2.5)

and, for each (c1; : : : ; cn) 2 I � and eachi 2 I , we have

� (c1; : : : ; cn)� i =
n +1X

p=1

� (c1; : : : ; cp� 1; i; cp; : : : ; cn) � � (c1; : : : ; cp� 1; i): (2.6)

We also observed that the partial balance equations (2.5) impose the form of the stationary mea-
sures up to a multiplicative constant.

Just like the local balance equations in Whittle networks, the partial balance equations (2.5)
and (2.6) are equivalent to a property, called quasi-reversibility, of the dynamics of the Markov
process de�ned by the queue microstate. Provided that this process is stationary, the queue is said
to be quasi-reversible if, for eachi 2 I and eacht 2 R, the microstate at time t is independent
of the arrival times of class-i customers subsequent to timet and the departure times of class-i
customers prior to time t. This de�nition of quasi-reversibility is directly adapted from Section 3.2
in [57]. The �rst part of the property is easy to verify. Indeed, the microstate at time t only
depends on the arrival times and service requirements of the customers who arrived before timet.

42

Section 2.3. Quasi-reversibility

Since class-i customers arrive according to a Poisson process that is independent of the arrival
times of the customers of other classes and of the service requirements, it su�ces to conclude.

The proof of the second part of the property, concerning departure times, is more involved. We
only sketch the argument, but the interested reader can �nd the missing pieces in Chapters 1 and
3 of [57]. Consider the reversed process, obtained by reversing time in the stationary queue. When
time is reversed, the second part of the property states that, for eachi 2 I and eacht 2 R, the
current queue state is independent of thearrival times of class-i customerssubsequentto time t.
This is what we prove now. Let c = (c1; : : : ; cn) 2 I � and i 2 I . The frequency of arrivals of class-i
customers in microstatec in the reversed process is equal to the frequency of departures of class-i
customers that lead to microstatec in the original process, which is precisely the right-hand member
of (2.6). This equation shows that this quantity is equal to � (c)� i , the frequency of arrivals of
class-i customers in microstatec. Consequently, irrespective to the current queue state, the arrival
rate of class i in the reversed process is equal to� i |recall that this process has the Markov
property and is time-homogeneous according to Theorem 1.12 of [57]. This observation, combined
with the stationarity and memoryless property of the reversed process, su�ces to conclude.

An important consequence of quasi-reversibility is that, for eachi 2 I , the departure times of
class-i customers form an independent Poisson process. Indeed, for eacht 2 R, the departure times
of class-i customers subsequent to timet only depend on the queue state at timet, the arrival
times subsequent to time t, and the service requirements of the customers present at timet or
arrived afterwards. As these quantities are independent of the departure times of class-i customers
prior to time t, we conclude that the departure times of class-i customers subsequent to timet are
independent of the departure times of the customers of this class prior to timet. This is su�cient
to prove that the departure process of classi is a Poisson process, whose rate is given by� i |since
the queue is stationary, the departure rate of classi is equal to its arrival rate. As a consequence,
the stationary analysis is still possible if the output process of an order-independent queue is used
as the input process of another order-independent queue. This idea will be developed later.

In anticipation of Chapter 3, observe that a Whittle network|taken as a whole|can also be
seen as a single multi-class queue, in which the class of a customer is the index of its queue in the
network. With this alternative de�nition, a stationary Whittle network is also quasi-reversible.
Indeed, the de�nition of a Whittle network guarantees that the network state at time t is indepen-
dent of the arrival times at queue i subsequent to timet, for each i 2 I and eacht 2 R. Also, in
Section 1.3, we showed|thanks to reversibility|that the network state at time t is independent
of the departure times from queuei prior to time t, for each i 2 I and eacht 2 R. In Chapter 3,
we will use this observation to build queueing systems in which customers can navigate between
order-independent queues and Whittle networks according to a Markov routing process. For now,
we focus on variants of the order-independent queue that can be analyzed thanks to the quasi-
reversibility property. The reader is once again invited to make the parallel with the variants of
the open Whittle network we considered in Section 1.3.

Markov routing process. We consider a �rst variant in which each customer may re-enter the
queue upon service completion. Speci�cally, for eachi 2 I , a class-i customer whose service is
complete re-enters the queue|at the rear|as a class- j customer with probability pi;j , for each
j 2 I , and leaves the queue immediately with probability pi = 1 �

P
j 2I pi;j . For each i 2

I , the exogenous arrival process of class-i customers is Poisson with rate� i . Assuming that
the Markov routing process is irreducible, in the sense that each class can be visited and each
customer eventually leaves the queue, the e�ective arrival rates� 1,. . . ,� I are again the unique
solution to the tra�c equations (1.19). By combining these tra�c equations with the partial
balance equations (2.5) and (2.6), we can verify that any measure� given by (2.2) satis�es the
following|coarser|partial balance equations in each microstate c = (c1; : : : ; cn) 2 I � :

| Equalize the probability ow out of microstate c due to a service completion with the prob-
ability ow into microstate c due to an exogeneous arrival or to an internal movement upon
a service completion|if c 6= ; :

� (c1; : : : ; cn) � (c1; : : : ; cn) = � (c1; : : : ; cn � 1) � cn

+
X

i 2I

nX

p=1

� (c1; : : : ; cp� 1; i; cp; : : : ; cn � 1) � � (c1; : : : ; cp� 1; i) pi;c n ; (2.11)

43

Chapter 2. Order-independent queues

| Equalize the probability ow out of microstate c due to an exogeneous arrival with the
probability ow into microstate c due to a service completion that leads to a departure:

� (c1; : : : ; cn)
X

i 2I

� i =
X

i 2I

n +1X

p=1

� (c1; : : : ; cp� 1; i; cp; : : : ; cn) � � (c1; : : : ; cp� 1; i) pi : (2.12)

Summing these partial balance equations yields the balance equations of the Markov process de�ned
by the queue microstate. In particular, despite the addition of the Markov routing process, the
stationary measures of the Markov process de�ned by the queue microstate are still given by (2.2),
except that � 1; : : : ; � I now refer to the e�ective arrival rates of the customer classes.

Figure 2.5: An open order-independent queue withI = 2 customer classes and an irreducible
Markov routing process.

Example 2.2. Consider the order-independent queue of Figure 2.5, withI = 2 customer classes
and the following irreducible Markov routing process. When the service of a class-1 customer
is complete, this customer re-enters the queue as a customer of the same class with probability
p1;1 = 1

3 and as a class-2 customer with probabilityp1;2 = 1
6 , otherwise this customer leaves the

queue immediately. When the service of a class-2 customer is complete, this customer leaves the
queue immediately. The tra�c equations are the same as in Example 1.2, so that the e�ective
arrival rates are again given by � 1 = 3

2 � 1 and � 2 = 1
4 � 1 + � 2. The stationary measures of the

Markov process de�ned by the queue microstate are given by

� (c1; : : : ; cn) = � (;)
nY

p=1

� cp

� (c1; : : : ; cp)
; 8(c1; : : : ; cn) 2 f 1; 2g� :

We would obtain the same formula for the order-independent queue of Figure 2.1.

Network of queues. Consider two order-independent queues. LetI 1 = f 1; : : : ; I 1g and I 2 =
f I 1+1 ; : : : ; I 1+ I 2g denote their sets of customer classes and� 1 and � 2 their rate functions. The ex-
ogenous arrival processes and the service requirements at the two queues are assumed to be indepen-
dent from one another. The microstate of the �rst queue is denoted byc1 = (c1;1; : : : ; c1;n 1) 2 I 1

�

and that of the second queue is denoted byc2 = (c2;1; : : : ; c2;n 2) 2 I 2
� . In the absence of a Markov

routing process, the two queues evolve independently and the stationary distribution of the Markov
process de�ned by the joint microstate (c1; c2) is given by

� (c1; c2) = � 1(c1)� 2(c2) =

� 1(;)
n 1Y

p=1

� c1;p

� 1(c1;1; : : : ; c1;p)

!

� 2(;)
n 2Y

p=1

� c2;p

� 2(c2;1; : : : ; c2;p)

!

; (2.13)

for each c1 = (c1;1; : : : ; c1;n 1) 2 I 1
� and each c2 = (c2;1; : : : ; c2;n 2) 2 I 2

� , where � 1 and � 2 are
the stationary distributions of the two queues taken in isolation, and � 1; : : : ; � I 1 + I 2 are the arrival
rates of the classes. Here we have implicitly assumed that the two queues were stable, but we
would obtain a similar result with the stationary measures if we did not make this assumption.
Taken together, the two queues form a single order-independent queue whose overall service rate
is given by � (c) = � 1(c1) + � 2(c2) in any microstate c 2 (I 1 t I 2) � that is an interleave of the
microstates c1 2 I 1

� of the �rst queue and c2 2 I 2
� of the second queue. Therefore, the product

form (2.13) can also be recovered from the stationary distribution of the Markov process de�ned
by this interleaved microstate, given by (2.2), using the decomposability of the rate function� .

44

Section 2.3. Quasi-reversibility

Now assume that customers can move from class to class according to an irreducible Markov
routing process over the setI 1 t I 2. The stationary distribution of the Markov process de�ned by
the interleaved microstate c 2 (I 1 t I 2) � is still given by (2.2), where � 1; : : : ; � I 1 + I 2 now denote the
e�ective arrival rates of the classes. This implies that the stationary distribution of the Markov
process de�ned by the joint microstate (c1; c2) still has the product form (2.13). In particular,
despite the addition of the Markov routing process, the two queue microstates are still independent
when the network is stationary. This product-form result also applies to the stationary measures
of the Markov process de�ned by the joint microstate, and can be generalized to a network of more
than two queues by an immediate recursion.

Figure 2.6: A network of two order-independent queues with an irreducible Markov routing process.

Example 2.3. Consider the network of two order-independent queues shown in Figure 2.6. The
�rst queue contains I 1 = 2 customer classes and the second queue contains a single class of
customers. The microstate of the �rst queue is denoted byc1 = (c1;1; : : : ; c1;n 1) 2 f 1; 2g� and
that of the second queue byc2 = (c2;1; : : : ; c2;n 2) 2 f 3g� |this microstate actually carries as
much information as the macrostate. The rate function of the �rst queue is a function � 1 of the
microstate c1 and that of the second queue is a function� 2 of its microstate c2. The stationary
measures of the Markov process de�ned by the network state (c1; c2) are of the form

� (c1; c2) =

� 1(;)
n 1Y

p=1

� c1;p

� (c1;1; : : : ; c1;p)

!

� 2(;)
n 2Y

p=1

� c2;p

� (c2;1; : : : ; c2;p)

!

;

for each c1 = (c1;1; : : : ; c1;n 1) 2 f 1; 2g� and each c2 = (c2;1; : : : ; c2;n 2) 2 f 3g� . The e�ective
arrival rates � 1, � 2, and � 3 are given by � 1 = 3

2 � 1, � 2 = 1
4 � 1 + � 2, and � 3 = 3

16 � 1 + 3
4 � 2 + 3 � 3,

by the same argument as in Example 1.3.

Closed queue. We can also consider a closed variant of the order-independent queue. The total
number of customers is �xed and the customers again change class according to a Markov routing
process|obtained by taking � i = pi = 0 for each i 2 I in the description we gave for the
open queue. This routing process is assumed to beirreducible, in the sense that each customer
can eventually be assigned to any class, and the e�ective arrival rates� 1; : : : ; � I are de�ned by
the tra�c equations (1.19) up to a multiplicative constant. The Markov process de�ned by the
microstate c = (c1; : : : ; c`) is irreducible on its state spaceC = I ` , where ` is the total number of
customers in the queue. This Markov process is also ergodic because its state spaceC is �nite, and
its balance equations are given by

� (c1; : : : ; cn) � (c1; : : : ; cn) =
X

i 2I

nX

p=1

� (c1; : : : ; cp� 1; i; cp; : : : ; cn � 1) � � (c1; : : : ; cp� 1; i) pi;c n ;

for each microstatec = (c1; : : : ; c`) 2 C. These are the restriction of the partial balance equations
(2.11) to the state spaceC, with again � i = pi = 0. This observation allows us to conclude directly

45

Chapter 2. Order-independent queues

that the stationary distribution � of the queue is obtained by normalizing the restriction of any
measure �� given by (2.2) to the state spaceC, that is,

� (c) =
�� (c)

P
d2C �� (d)

=

Q `
p=1

� c p

� (c1 ;:::;c p)
P

(d1 ;:::;d `)2C

Q `
p=1

� d p

� (d1 ;:::;d p)

; 8c = (c1; : : : ; c`) 2 C: (2.14)

If the open variant of the queue|with the same e�ective arrival rates and rate function|is stable,
then (2.14) is also the conditional stationary distribution of the Markov process de�ned by the
microstate of this open queue, given that it belongs toC.

These results could be generalized to order-independent queues in which the Markov routing
process isnot irreducible, but we would need to carefully de�ne the state space of the Markov
process we consider. Here we only consider what happens if the Markov routing process is made
of strongly connected components that are disconnected from each other. It will be su�cient for
the applications of Part III. In other words, we assume that the set I of classes can be partitioned
into two or more parts, so that the routing is irreducible within each part, and the customers of
a class in one part cannot reach a class in another. The e�ective arrival rates are then de�ned by
the tra�c equations (1.19) up to a multiplicative constant within each part. The state space of the
Markov process de�ned by the queue microstate, again denoted byC, is made of the microstates that
contain a �xed number of customers within each part. This Markov process may not be irreducible
in general|it will depend on the rate function � |but it will always be in the applications we will
consider. In this case, its stationary distribution is again given by (2.14).

We can also consider a closed network of queues, in which the total number of customers is �xed
and customers can circulate from class to class according to a Markov routing process. Assuming
that the Markov process de�ned by the joint microstate is irreducible on its state space, we can
again show that the stationary measures of this Markov process have a product form|it su�ces
to take the restriction of the product-form stationary measures obtained for open networks. This
does not imply that the queue microstates are independent though, as the number of customers in
one queue may give information on the number of customers in another queue.

Loss queue. We �nally consider a loss variant of the original order-independent queue in which, for
each i 2 I , an incoming customer of classi is rejected if the queue already contains̀ i customers
of this class, for some` i 2 N. The microstate of this loss queue de�nes an irreducible Markov
process on the truncated state spaceC = f c 2 I � : jcj � `g, where ` = (`1; : : : ; ` I) 2 NI is the
vector of per-class limits. For eachc 2 I � , the balance equation for microstatec is obtained by
summing the partial balance equation (2.5) associated with this microstate and the partial balance
equations (2.6) associated with this macrostate and the classesi 2 I such that jcj i < ` i . Therefore,
the stationary distribution of the truncated process is obtained by normalizing the restriction of
any measure �� given by (2.2) to the state spaceC. In other words, the stationary distribution is
again given by (2.14). In particular, if the open variant of the queue|without losses|is stable, the
stationary distribution of the truncated process is equal to the conditional stationary distribution
of the Markov process de�ned by the microstate of this open queue, given that it belongs to the
set C. Other variants of order-independent queues with losses were considered in [10].

As for Whittle networks, we can extend this result to the case where we only assume that
` i 2 N [f + 1g , provided that the truncated process is ergodic. On the contrary, if we assume
that ` i < + 1 for each i 2 I , we can describe the evolution of the loss queue with that of a closed
network of queues. We will elaborate on this remark in Chapter 8.

2.4 Concluding remarks

In this chapter, we considered a multi-class extension of the M/M/1 �rst-come-�rst-served queue.
Provided that the arrival times of the customers of each class form independent Poisson processes
and the service requirements are exponentially distributed, the order-independence condition guar-
antees that the stationary distribution of the Markov process de�ned by the queue microstate has
a simple form. We also considered several variants of the open order-independent queue that can
be analyzed thanks to the quasi-reversibility property.

46

Section 2.4. Concluding remarks

Bibliographical notes. Open order-independent queues were introduced in [9] and later stud-
ied in [66]. A loss variant, with non-trivial rejection rules, was studied in [10]. [9] proved that
order-independent queues are quasi-reversible. This property, which guarantees in particular that
networks of order-independent queues have a product-form, was identi�ed in Chapter 3 of [57].

47

48

3 Equivalence of Whittle networks and
order-independent queues

In Chapters 1 and 2, we recalled the de�nition of two queueing models, called Whittle networks
and order-independent queues, that generalize the M/M/1 queue in di�erent ways. In this chapter,
we prove that, despite their structural di�erences, the Markov processes that describe the evolution
of these two queueing models are closely related. This result can be seen as an extension of the
equivalence of the processor-sharing and �rst-come-�rst-served policies in the M/M/1 queue.

3.1 De�nition

The following de�nition shows that there is a one-to-one correspondence between Whittle networks
with non-decreasing rate functions and order-independent queues.

De�nition 3.1. Consider a Whittle network and an order-independent queue. Let I =
f 1; : : : ; I g denote the set of queue indices in the Whittle network, � 1; : : : ; � I its per-queue
arrival rates, and � its rank function. Also let I 0 = f 1; : : : ; I 0g denote the set of class indices
in the order-independent queue,� 0

1; : : : ; � 0
I 0 its per-class arrival rates, and� 0 its rank function.

The Whittle network and the order-independent queue are said to beequivalent if I = I 0,
� i = � 0

i for each i 2 I , and � (x) = � 0(x) for each x 2 NI .

The word equivalent may seem disproportionate, as De�nition 3.1 does not relate the dynamics of
the two queueing systems beyond the arrival rates and the overall service rate; this question will
be addressed in Theorem 3.2 and Corollary 3.3. For the moment, we just need to remember that,
if we de�ne a Whittle network with a non-decreasing rate function, then we implicitly de�ne an
order-independent queue, in which each class corresponds to a queue of the Whittle network, and
vice versa. For this reason, we will often use the words \class" and \queue" interchangeably when
referring to a Whittle network. The locally-constant and globally-constant models constitute a �rst
example of equivalent queueing systems. Namely, the locally-constant Whittle network introduced
in Chapter 1 is equivalent, in the sense of De�nition 3.1, to the locally-constant order-independent
queue introduced in Chapter 2. Similarly, the globally-constant Whittle network is equivalent to
the globally-constant order-independent queue.

We can extend De�nition 3.1 to the variants of Whittle networks and order-independent queues
introduced in Sections 1.3 and 2.3 in an obvious fashion. For instance, consider an open Whittle
network with an irreducible Markov routing process, as de�ned in Section 1.3. For eachi 2 I , a
customer who leaves queuei is appended to queuej with probability pi;j , for eachj 2 I , and leaves
the network with probability pi = 1 �

P
j 2I pi;j . Then the equivalent order-independent queue

should be equipped with the same Markov routing process, namely, for eachi 2 I , a class-i customer
whose service is complete re-enters the queue as a class-j customer with probability pi;j , for each
j 2 I , and leaves the queue with probability pi . In this way, the Whittle network of Example 1.2
is equivalent to the order-independent queue of Example 2.2, and the partitioned Whittle network
of Example 1.3 is equivalent to the network of order-independent queues of Example 2.3. We
can de�ne an equivalence relation between closed or loss models in a similar way, by additionally
imposing that the numbers of customers are the same. For instance, if we consider a loss Whittle

49

Chapter 3. Equivalence of Whittle networks and order-independent queues

network in which the per-queue limits are given by the vector` = (`1; : : : ; ` I) 2 (N [f + 1g)I , the
equivalent order-independent queue should have the same vector of per-class limits.

3.2 Imbedding

The following theorem shows that, if we look at an order-independent queue through the prism of
its macrostate, the obtained average behavior is similar to that of its equivalent Whittle network.
Following [102], we say that the Markov process de�ned by the microstate of an order-independent
queueimbeds the Markov process de�ned by the state of its equivalent Whittle network. We will
elaborate on this later.

Theorem 3.2. Consider a Whittle network and an order-independent queue that are equivalent
in the sense of De�nition 3.1. Let I = f 1; : : : ; I g denote their set of class indices,� 1; : : : ; � I

their per-class arrival rates, and � their rate function. Also consider a positive real , and:

| Let � 1; : : : ; � I denote the per-queue service rates in the Whittle network,� its balance
function, and � the stationary measure of the Markov process de�ned by the macrostate
of the Whittle network such that� (0) = . These are functions of the macrostatex 2 NI .

| Let � 1; : : : ; � I denote the per-class service rates in the order-independent queue,� its
balance function, and � the stationary measure of the Markov process de�ned by the
microstate of the order-independent queue such that� (;) = . These are functions of the
microstate c 2 I � .

We have the following equalities:

� (x) =
X

c:jcj= x

� (c); �(x) =
X

c:jcj= x

�(c); 8x 2 NI ; (3.1)

and
� (c)
� (x)

=
�(c)
�(x)

; 8x 2 NI ; 8c 2 I � : jcj = x: (3.2)

Also, we have

� i (x) =
X

c:jcj= x

� (c)
� (x)

� i (c) =
X

c:jcj= x

�(c)
�(x)

� i (c); 8x 2 NI ; 8i 2 I : (3.3)

In particular, the Whittle network is stable if and only if the order-independent queue is stable.

Proof. The proof falls naturally into four parts, corresponding to Equations (3.1), (3.2), and
(3.3), and the stability condition.

Equation (3.1). We observed earlier that, in both the Whittle network and the order-independent
queue, the balance function is equal to the stationary measure obtained by taking the constant
� (0) = � (;) = and all arrival rates equal to one. Therefore, it su�ces to prove (3.1) for the
stationary measures. More precisely, we will show that� (x) = �� (x) for each x 2 NI , where

�� (x) =
X

c:jcj= x

� (c); 8x 2 NI :

There are di�erent ways of showing this equality, depending on the form of the stationary mea-
sures we consider. We choose to focus on the recursive forms (1.15) and (2.8). Speci�cally, we will
use (2.8) to show that �� satis�es the recursion (1.15) that characterizes the stationary measures
of the Whittle network. Since �� (0) = � (0) = , it will be su�cient to conclude.

50

Section 3.2. Imbedding

Let x 2 NI n f 0g and n = x1 + : : : + x I . By (2.8), we have directly

�� (x) =
X

(c1 ;:::;c n):
j c1 ;:::;c n j= x

� cn

� (c1; : : : ; cn)
� (c1; : : : ; cn � 1):

Then, using (A.2) and the fact that � (c) = � (x) for each c 2 I � such that jcj = x, we obtain

�� (x) =
1

� (x)

X

i 2I x

� i

X

(c1 ;:::;c n � 1):
j c1 ;:::;c n � 1 j= x � ei

� (c1; : : : ; cn � 1):

We conclude by observing that the inner sum is equal to �� (x � ei) for i 2 I x .

Equation (3.2). This is a consequence of (1.9) and (2.9), using the fact that� (0) = � (;) = .

Equation (3.3). The proof of this equality di�ers from the one we gave in [P01]. This new proof
relies on (3.1) and the balance property instead of the partial balance equations of the order-
independent queue. It has the advantage of having a geometric interpretation that we explicate
later. For each x 2 NI , let

�� i (x) =
X

c:jcj= x

� (c)
� (x)

� i (c); 8i 2 I ;

and �� (x) = (�� 1(x); : : : ; �� I (x)). Our objective is to show that � (x) = �� (x) for each x 2 NI . The
proof is by induction over n = x1 + : : : + x I . For n = 0, we simply have � (0) = �� (0) = 0.

Consider an integern � 1 and assume that� (x) = �� (x) for each x 2 NI such that x1 + : : : +
x I = n � 1. Let x 2 NI such that x1 + : : : + x I = n. We will prove that � i (x) = �� i (x) for each
classi 2 I individually. If i =2 I x , we simply have � i (x) = �� i (x) = 0. Now assume that i 2 I x .
The following equality, which follows from (1.4), (1.9), and (2.8), will be key in the proof:

� (c)
� (x)

=
� cn (x)
� (x)

� (c1; : : : ; cn � 1)
� (x � ecn)

; 8c = (c1; : : : ; cn) 2 I � : jcj = x:

By combining this equality with (A.2), we can rewrite �� i (x) as follows:

�� i (x) =
1

� (x)

X

j 2I x

� j (x)
X

(c1 ;:::;c n � 1):
j c1 ;:::;c n � 1 j= x � ej

� (c1; : : : ; cn � 1)
� (x � ej)

� i (c1; : : : ; cn � 1; j):

Now, for eachj 2 I x and each (c1; : : : ; cn � 1) 2 I � such that jc1; : : : ; cn � 1j = x � ej , we have

� i (c1; : : : ; cn � 1; j) =

(
� i (c1; : : : ; cn � 1) if j 6= i;
� i (c1; : : : ; cn � 1) + � (x) � � (x � ei) if j = i:

We inject this equality into the previous expression and then we use (3.1) to make simpli�cations.
We obtain

�� i (x) =
1

� (x)

0

@

0

@
X

j 2I x

� j (x)
X

c:jcj= x � ej

� (c)
� (x � ej)

� i (c)

1

A + � i (x)(� (x) � � (x � ei))

1

A ;

that is,

�� i (x) =
1

� (x)

0

@

0

@
X

j 2I x

� j (x) �� i (x � ej)

1

A + � i (x)(� (x) � � (x � ei))

1

A : (3.4)

51

Chapter 3. Equivalence of Whittle networks and order-independent queues

But for each j 2 I x , we have

� j (x) �� i (x � ej) = � j (x)� i (x � ej) = � j (x � ei)� i (x);

where the �rst equality follows from the induction assumption and the second from the balance
property. Summing this equality over all j 2 I x yields

X

j 2I x

� j (x) �� i (x � ej) = � i (x)
X

j 2I x

� j (x � ei) = � i (x)� (x � ei):

We inject this into (3.4), and we obtain:

�� i (x) =
1

� (x)
(� i (x)� (x � ei) + � i (x)(� (x) � � (x � ei))) = � i (x);

which concludes the proof of (3.3).
We now give the intuition behind this proof. In vector notation, (3.4) rewrites as follows:

�� (x) =
X

i 2I x

� i (x)
� (x)

�
�� (x � ei) + (� (x) � � (x � ei))ei

�
; 8x 2 NI ; 8i 2 I :

This equality gives a recursive way of constructing �� (x) from �� (x � ei) for i 2 I x . Namely, it
says that we �rst translate each vector �� (x � ei) of � (x) � � (x � ei) in direction i , so that the
components of the obtained vector sum to� (x), and then we weight this vector by the relative
service rate � i (x)=� (x) in macrostate x at queue i of the Whittle network. The vector �� (x) is
the sum of these vectors taken over alli 2 I x . Our proof exploits the balance property to show
that this construction of �� (x), depicted in Figure 3.1, is equivalent to the construction of � (x)
depicted in Figure 1.6.

Figure 3.1: Recursive construc-
tion of the average vector�� (x) in
an order-independent queue with
I = 2 customer classes. This con-
struction turns out to be equiva-
lent to that of the service rates in
the equivalent Whittle network, as
depicted in Figure 1.6.

Stability condition. By (3.1), the sums of the stationary measures of the two Markov processes
are equal:

X

x 2 NI

� (x) =
X

x 2 NI

0

@
X

c:jcj= x

� (c)

1

A =
X

c2I �

� (c):

By (1.10) and (2.3), it su�ces to conclude.

Two results of the literature augured Theorem 3.2. First, [9, 10, 66] noted that aggregating the
stationary measures of the Markov process de�ned by the microstate of an order-independent queue
yields the recursive expression (1.15). The objective of this state aggregation was to obtain simpler
formulas for performance prediction but, to the best of our knowledge, no explicit connection was
made with Whittle networks. Another fragment of Theorem 3.2 was stated in [10] for a special
case of order-independent queue with losses. Speci�cally, [10] considered the special case where
the per-class service rates� 1(c),. . . ,� I (c) are independent of the order of customers in the queue,
so that � i (c) = � i (d) for each c; d 2 I � such that jcj = jdj. This condition is stronger than the
order-independence condition of Section 2.1, which only imposes that the overall service rate is

52

Section 3.2. Imbedding

independent of the order of customers in the queue. Theorem 2 of [10] shows that, under this
condition, the stochastic process de�ned by the queue macrostate has the Markov property and is
reversible. And indeed, the transition rates of this process are the same as those of the Markov
process de�ned by the state of the equivalent Whittle network, as� (c) = � (jcj) for each c 2 I � .

In practice, (3.1) shows that a stationary measure of a Whittle network is an aggregate of a
stationary measure of its equivalent order-independent queue, andvice versa. From now on, when
we say that � is a stationary measure of a Whittle network and its equivalent order-independent
queue, we mean that� , seen as a function onNI , is a stationary measure of the Markov process
de�ned by the macrostate of the Whittle network, and that � , seen as a function onI � , is a
stationary measure of the Markov process de�ned by the microstate of the order-independent queue.
A similar remark applies to the balance function � and the service rates � 1; : : : ; � I . Equation (3.1)
is further developed in Figure 3.2.

Macrostate x = (x1; : : : ; x I) 2 NI Microstate c = (c1; : : : ; cn) 2 I �

� (x) = � (0)�(x)
Y

i 2I

� i
x i � (c) = � (;)�(c)

Y

i 2I

� i
j cj i

with �(x) =
1

� (x)

X

i 2I x

�(x � ei) with �(c1; : : : ; cn) =
�(c1; : : : ; cn � 1)

� (c1; : : : ; cn)

� (x) =
1

� (x)

X

i 2I x

� i � (x � ei) � (c1; : : : ; cn) =
� cn

� (c1; : : : ; cn)
� (c1; : : : ; cn � 1)

� (x) = � (0)
X

(c1 ;:::;c n):
j c1 ;:::;c n j= x

nY

p=1

� cp

� (c1; : : : ; cp)
� (c1; : : : ; cn) = � (;)

nY

p=1

� cp

� (c1; : : : ; cp)

Figure 3.2: Equivalent forms of the stationary measures of the Markov processes de�ned by the
macrostate of a Whittle network and the microstate of its equivalent order-independent queue. This
table places the compact forms(1.9) and (2.9), the recursive forms(1.15) and (2.8), and the explicit
forms (1.16) and (2.2) of the stationary measures of the two queueing models side by side.

Corollary 3.3 below gives the physical interpretation of Theorem 3.2 for stable Whittle networks
and order-independent queues.

Corollary 3.3. Consider a Whittle network and an order-independent queue that are equivalent
in the sense of De�nition 3.1. Let I = f 1; : : : ; I g denote their set of class indices,� 1; : : : ; � I

their per-class arrival rates, and � their rate function. Also assume these models to be stable
and let � denote their stationary distribution. Then:

(a) The stationary distribution of the state of the Whittle network is identical to the stationary
distribution of the macrostate of the order-independent queue. Both are given by(1.9),
where � (0) = � (;) is given by (1.11).

(b) For each x 2 NI , the conditional stationary distribution of the microstate of the order-
independent queue, given that it is in macrostatex, is independent of the per-class arrival
rates � 1,. . . , � I .

(c) For each x 2 NI and each i 2 I , the service rate in state x at queue i of the Whittle
network is equal to the conditional expected service rate of classi in the order-independent
queue, given that it is in macrostatex. Both are independent of the arrival rates.

Proof. Statements (a), (b), and (c) are implied by (3.1), (3.2), and (3.3), respectively, in the
special case where� denotes the stationary distribution.

In general, this equivalence result does not imply the existence of a coupling between the stochastic
processes de�ned by the state of a Whittle network and the macrostate of its equivalent order-

53

Chapter 3. Equivalence of Whittle networks and order-independent queues

independent queue, as the former has the Markov property while the latter does not in general. In
fact, the dynamics of the two processes can be quite di�erent. All active queues have a non-zero
service rate in a Whittle network, while some active classes may have a zero service rate in its
equivalent order-independent queue. Whittle refers to this type of relation between two stochastic
processes asimbedding [102]. Speci�cally, the Markov process de�ned by the microstate of the
order-independent queueimbeds the Markov process de�ned by the macrostate of the Whittle
network. Conditions (i), (ii), and (iii) of [102] correspond to conditions (3.1), (3.3), and (3.2) of
Theorem 3.2, respectively.

Several key performance metrics, such as the probability that the system is empty or the
expected number of customers in the system, only depend on the stationary distribution of the
macrostate. Corollary 3.3 guarantees that these metrics are equal in a Whittle network and its
equivalent order-independent queue. We will elaborate on this in Sections 3.3 and 3.4. In the rest
of this section, we explain how Theorem 3.2 and Corollary 3.3 adapt to the variants of Whittle
networks and order-independent queues considered in Sections 1.3 and 2.3.

Markov routing process. Theorem 3.2 and Corollary 3.3 were stated for the basic open variants
of Whittle networks and order-independent queues, but the same result holds if we add a Markov
routing process. It su�ces to remember that the stationary measures are the same, except that
the external arrival rates are replaced with the e�ective arrival rates. Therefore, (3.1) and (3.2) are
unchanged. Equation (3.3) can be adapted to equalize the departure rates instead of the service
rates, for instance,

� i (x)pi;j =
X

c:jcj= x

� (c)
� (x)

� i (c)pi;j =
X

c:jcj= x

�(c)
�(x)

� i (c)pi;j ; 8x 2 NI ; 8i; j 2 I :

The counterpart of a partitioned Whittle network|such that the service rates in one part only
depend on the state of this part|is a network of order-independent queues. In both cases, the
stationary measures have a product form, which guarantees that the state of one part is independent
of the state of the others in stationary regime. Since the stationary measures only depend on the
routing probabilities through the e�ective arrival rates, we could also match a Whittle network
and an order-independent queue that have the same e�ective arrival rates and rate functions, even
though their Markov routing processes are di�erent. An example will appear in Chapter 7.

Given our equivalence result, it is also tempting to consider networks made partly of Whittle
networks and partly of order-independent queues, as shown in Figure 3.3. The irreducible Markov
routing process is then de�ned on the queues of the Whittle network and the classes of the order-
independent queue. In this way, a customer who leaves one queue can be assigned to a queue of
a Whittle network or a class in an order-independent queue. Since Whittle networks and order-
independent queues are quasi-reversible, the stationary measures of the state of the whole network
are obtained by taking the product of the stationary measures of the state of each part in isolation,
using the e�ective arrival rates given by the tra�c equations. The approach for showing this result
is similar to the one we adopted in Sections 1.3 and 2.3. The interested reader can �nd the general
proof for quasi-reversible queues in Section 3.2 of [57] and in [58]. By Theorem 3.2, the stationary

Figure 3.3: A Whittle network and an order-independent queue in tandem. The Markov routing
process is deterministic. A customer who leaves queue1 of the Whittle network enters the order-
independent queue as a customer of class3, while a customer who leaves queue2 of the Whittle
network enters the order-independent queue as a customer of class4. At the order-independent
queue, the e�ective arrival rates of classes3 and 4 are � 1 and � 2, respectively.

54

Section 3.3. Stability condition

distribution of the network macrostate|made of the macrostates of each order-independent queue
and Whittle network|is unchanged if each order-independent queue is replaced with its equivalent
Whittle network. This observation will be exempli�ed in Chapters 8 and 9.

Closed and loss models. The conclusion is essentially the same, except that we need be more
careful with the questions of irreducibility. Speci�cally, if the Markov process de�ned by the
state of the Whittle network is irreducible on the truncated state space X , we require that the
Markov process de�ned by the microstate of the order-independent queue is also irreducible on
the truncated state spaceC = f c 2 I � : jcj 2 X g . Under this assumption, we obtain directly that
(3.1), (3.2), and (3.3) still hold, using the fact that the stationary distribution of the closed and
loss variants of each model are obtained by normalizing the restriction of any stationary measure
of the open variant to the truncated state space. This result is applied in Chapters 8 and 9.

Considering closed models also sheds a new light on Statements (b) and (c) of Corollary 3.3|or
equivalently on (3.2) and (3.3). At �rst, it may seem surprising that the stationary distribution
of the microstate of an order-independent queue becomes independent of the arrival rates once we
condition on its macrostate. However, we know from Section 2.3 that this conditional stationary
distribution is also the stationary distribution of a closed variant of the queue, in which the number
of customers of each class is �xed and each customer systematically re-enters as a customer of the
same class upon service completion|provided that the Markov process de�ned by the state of this
closed queue is irreducible on its state spaceC = f c 2 I � : jcj = `g. In such a queueing model, the
e�ective arrival rates can all be taken equal to one.

3.3 Stability condition

We observed in Section 1.2 that thestability region of a Whittle network, de�ned as the set of
vectors of arrival rates that make the network stable, is the region of convergence of the generating
function G of its balance function �, given by

G(z) =
X

x 2 NI

�(x)
Y

i 2I

zi
x i ; 8z 2 RI

+ :

Provided that the rate function of the Whittle network is non-decreasing, its stability region is
identical to that of its equivalent order-independent queue. By (3.1), the generating functionG is
related to the balance function � the order-independent queue by

G(z) =
X

x 2 NI

X

c:jcj= x

�(c)
Y

i 2I

zi
x i =

X

c2I �

�(c)
Y

i 2I

zi
j cj i ; 8z 2 RI

+ :

Theorem 3.4 gives a simpler characterization of the stability region in terms of the arrival and
service rates. Observe that the monotonicity of the rate function� plays a key role in the de�nition
of the function �� in (3.5). The proof extends that of [21, Proposition 2].

Theorem 3.4. Consider a Whittle network and an order-independent queue that are equivalent.
Let I = f 1; : : : ; I g denote their set of class indices,� 1; : : : ; � I their per-class arrival rates, and
� their rate function. De�ne the function �� on power set ofI by

�� (A) = lim
m ! + 1

� (meA); 8A � I : (3.5)

This function �� is well de�ned, with values in R+ [f + 1g , and is non-decreasing. The Whittle
network and the order-independent queue are stable if and only if

X

i 2A

� i < �� (A); 8A � I : A 6= ; : (3.6)

55

Chapter 3. Equivalence of Whittle networks and order-independent queues

Proof. The notations are the same as in Theorem 3.2. The monotonicity of the rate function�
ensures that the function �� is indeed well de�ned, with values in R+ [f + 1g , and is itself non-
decreasing. We �rst prove that (3.6) is a necessary condition for stability and then that it is
su�cient.

Necessary condition. Assume that there is a non-empty setA � I such that �� (A) �
P

i 2A � i .
Since � is non-decreasing, this means that� (x) �

P
i 2A � i for each x 2 NI such that I x � A .

For any such x, we have

�(x) =
1

� (x)

X

i 2I x

�(x � ei) �
1

P
i 2A � i

X

i 2I x

�(x � ei); (3.7)

and, by induction,

�(x) �
�

x1 + : : : + x I

x1; : : : ; x I

� �
1

P
i 2A � i

� x 1 + ::: + x I

: (3.8)

It follows that

X

x 2 NI

�(x)
Y

i 2A

� i
x i �

X

x 2 NI :
I x �A

�(x)
Y

i 2A

� i
x i �

X

x 2 NI :
I x �A

�
x1 + : : : + x I

x1; : : : ; x I

� Y

i 2A

� iP

j 2A � j

! x i

= + 1 :

Su�cient condition. Assuming that (3.6) is satis�ed, we prove stability in two steps. First, by
applying Lemma 3.5 below, we show that the balance function � of the Whittle network|or
equivalently, of the order-independent queue|is majorized by the balance function �̂ of another
Whittle network that is easier to analyze. In a second time, we prove that this other Whittle
network is stable.

Lemma 3.5. Consider another Whittle network of I queues. Let�̂ denote its balance function
and �̂ its rate function. If �̂ (x) � � (x) for each x 2 NI , then �̂(x) � �(x) for each x 2 NI .

Proof of the lemma. The proof is by induction over the total number of customers in the system,
given by n = x1+ : : :+ x I . The inequality is satis�ed for n = 0 because�̂(0) = �(0) = 1. Consider
an integer n � 1 and assume that�̂(x) � �(x) for each x 2 NI such that x1 + : : : + x I = n � 1.
For each x 2 NI such that x1 + : : : + x I = n, we obtain

�̂(x) =
1

�̂ (x)

X

i 2I x

�̂(x � ei) �
1

� (x)

X

i 2I x

�̂(x � ei) �
1

� (x)

X

i 2I x

�(x � ei) = �(x):

The �rst inequality holds by de�nition of ^ � and the second by the induction assumption.
The rest of the proof consists of choosing a Whittle network that satis�es the assumptions of

Lemma 3.5, and with a balance function�̂ that satis�es
X

x 2 NI

�̂(x)
Y

i 2I

� i
x i < + 1 :

We �rst introduce several quantities that will be useful to de�ne this Whittle network. By the
condition (3.6), there is m 2 N such that

X

i 2A

� i < � (meA); 8A � I : A 6= ; :

We can also �nd �̂ = (�̂ 1; : : : ; �̂ I) 2 RI
+ such that � i < �̂ i for each i 2 I , and

X

i 2A

�̂ i < � (meA); 8A � I : A 6= ; :

56

Section 3.3. Stability condition

For instance, we can choose

�̂ i = � i +
1
2

min
A�I :
i 2A

�
� (meA) �

P
i 2A � i

jAj

�
; 8i 2 I :

Finally, we let

� =
1
I

� min

min
x 2 NI nf 0g

(� (x)) ; min
A�I :A6= ;

� (meA) �
X

i 2A

�̂ i

!!

: (3.9)

The de�nitions of � and �̂ guarantee that � > 0. Now consider the balance function�̂ de�ned
on NI by

�̂(x) =
Y

i 2I

' i (x i); 8x 2 NI ;

where, for eachi 2 I , ' i is de�ned recursively on N by ' i (0) = 1, and

' i (x i) =

8
><

>:

' i (x i � 1)
�

if x i < m;
' i (x i � 1)

�̂ i
if x i � m:

The service rates of the corresponding Whittle network are given by�̂ i (x) = � if 0 < x i < m
and �̂ i (x) = �̂ i if x i � m, for each x 2 NI . For each x 2 NI n f 0g, we have:

| If x i < m for each i 2 I , then

�̂ (x) =
X

i 2I

�̂ i (x) =
X

i 2I x

� �
X

i 2I x

1
I

� (x) � � (x);

where the �rst inequality holds by (3.9).
| Otherwise, with A = f i 2 I : x i � mg, we haveA 6= ; and x � meA , so that

�̂ (x) =
X

i 2I

�̂ i (x) =
X

i 2A

�̂ i +
X

i 2I x nA

�;

�
X

i 2A

�̂ i +
X

i 2I x nA

� (meA) �
P

j 2A �̂ j

I
� � (meA) � � (x);

where the �rst inequality holds by (3.9) and the third follows form the monotonicity of � .

We can thus apply Lemma 3.5 to the Whittle network of I queues with the rate function �̂ and
the balance function �̂. We obtain that �̂(x) � �(x) for all x 2 NI . Finally, we write

X

x 2 NI

�̂(x)
Y

i 2I

� i
x i =

X

x 2f 0;1;:::;m � 1gI

�̂(x)
Y

i 2I

� i
x i +

X

A�I :
A6= ;

X

x 2 NI :
x i � m; 8i 2A ;
x i <m; 8i=2A

�̂(x)
Y

i 2I

� i
x i :

The �rst sum is �nite because it has a �nite number of terms. The second sum is also �nite
because, for eachA � I such that A 6= ; , we have

X

x 2 NI :
x i � m; 8i 2A ;
x i <m; 8i=2A

�̂(x)
Y

i 2I

� i
x i =

X

y2 NI :
I y �A

X

z2 NI :
I z �InA ;

zi <m; 8i=2A

�̂(meA + y + z)
Y

i 2I

� i
(me A + y+ z) i ;

57

Chapter 3. Equivalence of Whittle networks and order-independent queues

=
X

y2 NI :
I y �A

X

z2 NI :
I z �InA ;

zi <m; 8i=2A

�̂(meA + z)
Y

i 2A

�
1

�̂ i

� y i Y

i 2I

� i
(me A + y+ z) i ;

=

0

@
Y

i 2A

X

y i 2 N

�
� i

�̂ i

� y i

1

A
X

z2 NI :
I z �InA ;

zi <m; 8i=2A

�̂(meA + z)
Y

i 2I

� i
(me A + z) i < + 1 :

The �rst equality is obtained by substitution, the second follows from the de�nition of �̂, and
the third is obtained by rearranging terms.

Therefore, the stability region of the Whittle network and the order-independent queue is the
convex hull of RI

+ made of the vectors� = (� 1; : : : ; � I) 2 NI that satisfy (3.6). This equation
states that, for each subsetA of classes, the|asymptotic|service rate � � (A) that is available for
the customers of the classes inA should be su�cient to cope with the arrival rate

P
i 2A � i of these

customers. This is a fairly intuitive extension of the stability condition of the M/M/1 queue under
processor-sharing or �rst-come-�rst-served policy.

3.4 Performance metrics

In this subsection, we go deeper into the result sketched in Corollary 3.3. We focus especially on
three performance metrics, namely, the probability that the system is empty, the expected number
of customers, and the mean delay. We could study higher-order metrics, such as the variance of
these quantities, in a similar way. Although we do not derive closed-form expressions, the tools we
introduce will prepare the ground for Chapters 5 and 6 in Part II.

Consider a Whittle network and an order-independent queue with the same setI = f 1; : : : ; I g
of customer classes, arrival rates� 1; : : : ; � I , and non-decreasing rate function� . Assume these
systems to be stable. Let� denote their stationary distribution, meaning that � (x) is the stationary
probability that the Whittle network is in state x, for each x 2 NI , and � (c) is the stationary
probability that the order-independent queue is in microstate c, for each c 2 I � . Equation (3.1)
guarantees that, for eachx 2 NI , � (x) is also the stationary probability that the macrostate of the
order-independent queue isx. Similarly, let � denote their balance function.

Probability of an empty system. As a special case of the equality of the distributions, the
Whittle network and the order-independent queue are empty with the same probability, denoted by
 = � (0) = � (;). According to PASTA property [105], this is also the probability that an incoming
customer �nds the system empty. The inverse of this quantity is the normalization constant of the
stationary distribution, equal to the value of the generating function G of the balance function �
of the Whittle network, applied to the vector of per-class arrival rates � = (� 1; : : : ; � I). Overall,
we have:

1

= G(�) =
X

x 2 NI

�(x)
Y

i 2I

� i
x i =

X

c2I �

�(c)
Y

i 2I

� i
j cj i :

This last statement, well-known for Whittle networks and recalled in Section 1.2, is not as straight-
forward when we look back on the original form (2.2) of the stationary distribution of the Markov
process de�ned by the microstate of the order-independent queue. The region of convergence of
this generating function was characterized by Theorem 3.4. In general, we do not known how to
express this function in closed form because the balance function can be arbitrary.

Before we move on to the expected number of customers in the system, let us briey mention
another special case of the equality of the distributions. For eachA � I , the probability that the
set of activequeuesis A in the Whittle network is also the probability that the set of active classes
is A in the order-independent queue, given by:

� (A) =
X

x 2 NI :
I x = A

� (x) =
X

c2I � :
I c = A

� (c); 8A � I :

58

Section 3.4. Performance metrics

This notation, yet slightly abusive, is consistent with our previous notations regarding state ag-
gregation. This quantity will be encountered again in Chapters 5 and 6, as we will consider a
queueing system in which the overall service rate only depends on this set of active classes.

Expected number of customers. The equality of the distributions implies that the expected
number of customers in the Whittle network is equal to the expected number of customers in the
order-independent queue, given by:

L =
X

x 2 NI

(x1 + : : : + x I) � (x) =
X

c2I �

(jcj1 + : : : + jcjI) � (c):

Moreover, for eachi 2 I , the expected number of customers at queuei in the Whittle network is
equal to the expected number of class-i customers in the order-independent queue, given by:

L i =
X

x 2 NI

x i � (x) =
X

c2I �

jcj i � (c); 8i 2 I :

Proposition 3.6 below recalls a formula that relates the expected number of customers within
each queue of a Whittle network to the probability that the network is empty. Transposed to
the order-independent queue, this formula relates the expected number of customers of each class
to the probability that the queue is empty. This result, di�cult to extract from the stationary
distribution (2.2) of the Markov process de�ned by the microstate of the order-independent queue,
again becomes straightforward when we focus on its macrostate.

Proposition 3.6. Consider a Whittle network and an order-independent queue with the same
set I = f 1; : : : ; I g of customer classes, arrival rates� 1; : : : ; � I , and rate function � . Assume
these models to be stable and stationary and let denote the probability that they are empty.
For each i 2 I , the expected number of customers at queuei of the Whittle network and of
class i in the order-independent queue is given by

L i = � i

@
�

1

�

@�i
: (3.10)

Proof. Let � denote the balance function of the Whittle network. Using the compact form (1.9)
of the stationary distribution of the Markov process de�ned by its state, we obtain directly, for
eachi 2 I :

L i =
X

x 2 NI

x i � (x) =
X

x 2 NI

x i �(x)
Y

j 2I

� j
x j = � i

X

x 2 NI

x i �(x)� i
x i � 1

Y

j 6= i

� j
x j = � i

@
�

1

�

@�i
:

Mean delay. The delay of a customer is de�ned as the time spent by this customer in the system,
either waiting to be served or in service. According to Little's law [70, 71], for eachi 2 I , the
mean delay� i of class-i customers is related to the expected numberL i of customers of this class
by the simple equality L i = � i � i . Therefore, if we can obtain a closed-form expression for the
expected number of class-i customers, then automatically we have a closed-form expression for the
mean delay of this class. Overall, in Part II, we will adopt the following approach: we will �rst
compute the probability that the system is empty, then we will use Proposition 3.6 to obtain
an expression for the expected number of customers of each class, and lastly we will apply Little's
law to obtain the mean delay of each class.

We consider another performance metric, called the mean service rate, that is closely related
to the mean delay. We �rst focus on performance in the Whittle network, and then we explain the
meaning of this metric in the order-independent queue. Leti 2 I and consider the customers at
queue i of the Whittle network. Since the service policy is processor-sharing, the service rate of
each customer at this queue is given by� i (x)

x i
wheneverx i > 0. In order to measure the average

59

Chapter 3. Equivalence of Whittle networks and order-independent queues

performance perceived by the customersin service at queue i , we need to consider the biased
stationary distribution � i (x) / x i � (x) that gives more weight to the states in which there are a
lot of customers at this queue|this phenomenon is called the inspection paradox. In this way, the
mean service rate perceived by the customers at queuei of the Whittle network is given by:

 i =
X

x 2 NI

� i (x)
x i

x i � (x)
L i

=

P
x 2 NI � i (x)� (x)

L i
=

� i

L i
=

1
� i

;

where the third equality follows from the conservation equation|which states that the arrival rate
at queuei must be equal to the mean service rate at this queue|and the last equality follows from
Little's law. Therefore, a posteriori, we see that the mean service rate perceived by the customers
at queue i of the Whittle network is nothing but the inverse of their mean delay.

We now show that the mean service rate has a similar interpretation in the order-independent
queue. Let x 2 NI and i 2 I x . For each c 2 I � such that jcj = x, the overall service rate of classi
in microstate c is � i (c), so that the average service rate of classi , obtained by taking the average
of the service rates of class-i customers in the queue, is� i (c)

x i
. By averaging this quantity over all

microstates c 2 I � such that jcj = x and then applying (3.3), we obtain that the mean service rate
of classi in macrostate x is given by

X

c:jcj= x

� (c)
� (x)

� i (c)
x i

=
1
x i

X

c:jcj= x

� (c)
� (x)

� i (c) =
� i (x)

x i
:

From this, it follows that i is also the mean service rate perceived by class-i customers in the
order-independent queue. In practice, the main advantage of the mean service rate compared to
the mean delay is that it does not diverge as the load approaches one|it tends to zero on the
contrary|so that it is easier to analyze.

3.5 Concluding remarks

In this chapter, we uncovered the tight relation between Whittle networks with non-decreasing
rate functions and order-independent queues, two models that will be instrumental in Part II.
In particular, in Section 3.2, we showed that these two models are equivalent, in the sense that
the long-term performance metrics related to the macrostate are the same in both models. This
equivalence result allowed us to formulate a simpler stability condition that is valid for both models
in Section 3.3. We also introduced practical tools for performance analysis in Section 3.4. In Part II,
these results will be applied to a more concrete queueing model called the multi-server queue.

Bibliographical notes. The notion of an imbedding process was introduced in [102]. The author
of this paper observes that the notion of imbedding is related to necessary and su�cient conditions
of insensitivity discussed in [101, 103].

We observed inx2.1.2 that our de�nition of an order-independent queue is not as general as the
de�nition proposed in [9, 10, 66]. We briey explain how our results could be adapted to some of
these generalizations. A well-chosen scaling factor would allow us to associate an equivalent order-
independent queue|not necessarily unique|with each Whittle network, even if the rate function
of this Whittle network were not non-decreasing. The stability condition stated in Theorem 3.4
can be easily generalized as long as the overall service rate is non-decreasing, so that in particular
the limit (3.5) exists; if not, deriving a general rule like that of Theorem 3.4 seems to be more
complicated.

60

Part II

Analysis of the multi-server queue

61

62

4 The multi-server queue

The idea of a queue with multiple servers is all but new in queueing theory. It was notably
considered by Erlang in his 1917 seminal work on circuit-switched networks [37] and later formalized
by Kendall [59, 60]. The multi-server queue we consider di�ers from the traditional one, as de�ned
by Kendall's notation, in two ways. First, each customer hascompatibility constraints that restrict
the set of servers they can be assigned to. As in several recent works in queueing theory [2{4,
44{47, 90, 91, 93, 100], these constraints are described by a bipartite graph between customer
classes and servers. Second, each customer can be in service on several servers at the same time,
provided that its compatibility constraints allow for it. The complete de�nition of the multi-server
queue is given in Section 4.1. In Sections 4.2 and 4.3, we recall the de�nition of two service
policies, called balanced fairness and �rst-come-�rst-served, that were proposed in the literature.
Speci�cally, [90, 91, 93] analyzed the evolution of the multi-server queue under balanced fairness,
using the framework of Whittle networks, while [44{47] analyzed its evolution under the �rst-come-
�rst-served policy. In Section 4.3, we observe that the evolution of the multi-server queue under
�rst-come-�rst-served policy can be described by an order-independent queue. This allows us to
apply the results of Chapter 3 and prove that the stability condition and the long-term performance
in a stable multi-server queue is the same under balanced fairness and �rst-come-�rst-served policy.
In fact, the results of Chapter 3 were �rst developed in the context of the multi-server queue and
later extended to Whittle networks and order-independent queues. The content of this chapter
was published in [P01].

4.1 De�nition

We �rst give an overview of the model and then we elaborate on the impact of the compatibility
constraints on the achievable service rates.

4.1.1 Compatibility constraints

Consider a queue withS servers and letS = f 1; : : : ; Sg denote the set of servers. The customers
are divided into a set I = f 1; : : : ; I g of I classes. For eachi 2 I , class-i customers enter the queue
according to an independent Poisson process with a positive rate� i . The service requirements
are independent and exponentially distributed with unit mean and each customer leaves the queue
immediately after service completion. For eachs 2 S, server s has a positive service capacity
denoted by � s. As in Chapter 3, we consider two state descriptors called themicrostate and the
macrostate. The former retains the arrival order of customers in the queue while the latter does
not. More precisely, the microstate is the sequencec = (c1; : : : ; cn) 2 I � , wheren is the number of
customers in the queue andcp is the class of thep-th oldest customer, for eachp = 1 ; : : : ; n, and
the macrostate is the vector x = (x1; : : : ; x I) 2 NI , where x i is the number of class-i customers,
for each i 2 I . For each c 2 I � , we use the notation jcj = (jcj1; : : : ; jcjI) to denote the macrostate
associated with microstatec. Appendix A gives more details on these notations.

Compatibility graph. The class of a customer de�nes the set of servers that can be pooled to
process this customer in parallel. Speci�cally, for eachi 2 I , a class-i customer can be processed in

63

Chapter 4. The multi-server queue

(a) Queue state. (b) Compatibility graph.

Figure 4.1: A multi-server queue with I = 2 customer classes andS = 3 servers.

parallel by any subset of servers within the setSi � S , which is assumed non-empty. This de�nes
a bipartite graph between classes and servers, called thecompatibility graph of the queue, in which
there is an edge between a class and a server if the customers of this class can be processed by this
server. An example is shown in Figure 4.1.

When a customer is in service on several servers at the same time, its service rate is the sum of
the rates allocated by each server to this customer. For instance, if the servers represent computers
that can cooperate to process a job, making this assumption amounts to neglect the overhead due
to parallelization. This example will be considered in Chapter 7. Another interpretation of the
parallel processing, less straightforward, will be developed in Chapters 8 and 9.

Service policy. In Sections 4.2 and 4.3, we will consider two service policies calledbalanced
fairness and �rst-come-�rst-served . Balanced fairness is aresource-sharingpolicy. Like processor-
sharing, it assumes that the capacity of each server is in�nitely divisible among its customers.
Chapter 7 will propose a scheduling algorithm that implements this resource-sharing policy but,
for now, we will only specify the service rate received by each customer under balanced fairness.
The �rst-come-�rst served policy of Section 4.3, on the other hand, is a time-sharing policy. Under
the assumption that the full capacity of each server is allocated to a single customer at a time,
this policy shares the time of each server among its compatible customers.

In any case, we let� = (� 1; : : : ; � I) denote the vector of per-class service rates, so that, for each
i 2 I , � i is the overall service rate received by all class-i customers taken together. Depending on
the service policy, this vector will be a function of the microstate or the macrostate only. Such a
vector does not specify how the server resources are e�ectively assigned to customers in the queue
and, in general, there are several ways of achieving a given vector of per-class service rates. It can
also happen that a vector of per-class service rates is not achievable at all.

Example4.1. Consider the multi-server queue of Figure 4.1, withI = 2 classes andS = 3 servers.
Its compatibility graph is shown in Figure 4.1b. Class-1 customers can be processed by servers
1 and 2 while class-2 customers can be processed by servers 2 and 3, so thatS1 = f 1; 2g and
S2 = f 2; 3g. A possible queue state is shown in Figure 4.1a. The microstate isc = (1 ; 1; 2; 1; 2),
meaning that the oldest customer is of class 1, the second oldest customer is also of class 1,
the next customer of class 2, and so on. The corresponding macrostate isx = (3 ; 2), meaning
that the queue contains 3 class-1 customers and 2 class-2 customers. We will often refer to this
example in the remainder.

4.1.2 Rank function

The compatibility constraints limit the overall service rate each class of customers can receive.
For each A � I , the service capacity that is available for all customers of the classes inA taken
together is equal to the sum of the capacities of the servers that are compatible with at least one
class inA , given by

� (A) =
X

s2
S

i 2A
Si

� s: (4.1)

Along the same lines, for eachi 2 I and eachA � I n f ig, the capacity of the servers that remain
for classi , once all the servers that are compatible with the classes inA were greedily assigned to

64

Section 4.1. De�nition

customers of these classes, is given by

� (A [f ig) � � (A) =
X

s2S i n
S

j 2A
Sj

� s: (4.2)

The function � de�ned by (4.1) on the power set of I is called arank function [36, 43] because it
has the following properties:

Normalization: � (;) = 0.
Monotonicity: For each A; B � I such that A � B , we have� (A) � � (B).
Submodularity: For each A; B � I such that A � B and eachi 2 I n B , we have

� (A [f ig) � � (A) � � (B [f ig) � � (B):

The function � is also said to benormalized, non-decreasing, and submodular. These properties
follow directly from (4.1) and (4.2), using the fact that

S
i 2A Si �

S
i 2B Si for eachA; B � I such

that A � B . They have the following interpretation in practice. The normalization property says
that the service capacity is zero when there is no customer in the queue. The monotonicity property
says that adding more classes cannot decrease the available service capacity. The submodularity
property, also known as diminishing returns in economy, says that the increase of the available
service capacity due to the addition of a new class is all the lower when the set of classes is already
large. It can be seen as a convexity property.

Example4.2. Again consider the multi-server queue of Figure 4.1. Class-1 customers are compat-
ible with servers 1 and 2, so thatS1 = f 1; 2g and � (f 1g) = � 1 + � 2. Similarly, class-2 customers
are compatible with servers 2 and 3, so thatS2 = f 2; 3g and � (f 2g) = � 2 + � 3. The service capac-
ity that is available for all customers of classes 1 and 2 taken together is� (f 1; 2g) = � 1 + � 2 + � 3.
The service capacity that is left for class 1 once all the servers that are compatible with class 2
were assigned to customers of these classes is given by� (f 1; 2g) � � (f 2g) = � 1. This is the
capacity of the only server that is dedicated to class 1.

4.1.3 Capacity region

An equivalent way of describing the impact of the compatibility constraints on the achievable
vectors of per-class service rates consists of looking at thecapacity region of the queue. This is
the polytope in RI

+ made of the vectors of per-class service rates that comply with the capacity
constraints, that is:

� =

(

� 2 RI
+ :

X

i 2A

� i � � (A); 8A � I

)

: (4.3)

Depending on the assumptions we make on the divisibility of the server capacities, only a subset
of this capacity region may be achievable. Speci�cally, we will see in Sections 4.2 and 4.3 that
the whole capacity region is achievable under a resource-sharing policy while only a �nite subset
of it can be achieved under a time-sharing policy. In addition to providing an insightful way of
de�ning our service policies, the geometric point of view that consists of describing a policy as a
point in the polytope � will help us generalize the results of this chapter to a family of models
that is broader than the multi-server queue.

Example 4.3. Again consider the multi-server queue of Figure 4.1. The corresponding capacity
region is shown in Figure 4.2. The server capacities are mapped to the edges on an indicative
basis, as a visual aid that helps associate each vector� = (� 1; � 2) of the capacity region with
an allocation of server resources to customers. For instance, the corner� = (� 1 + � 2; � 3), at
the intersection of the faces associated with the setsf 1g and f 1; 2g, de�nes a resource allocation
where servers 1 and 2 process class-1 customers while server 3 processes class-2 customers. More
generally, each vector of the diagonal facef 1; 2g is of the form � = (� 1 + �� 2; � 3 + (1 � �)� 2) for
some� 2 (0; 1). Such a vector de�nes a resource allocation where class 1 uses the full capacity
of server 1 plus a proportion� of the capacity of server 2, while class 2 uses the full capacity of
server 3 plus a proportion 1� � of the capacity of server 2. The mapping of server capacities

65

Chapter 4. The multi-server queue

Figure 4.2: Capacity region of the multi-server queue of Figure 4.1.

to lengths of edges is not unique in general, nor is the association of a vector of per-class service
rates with a resource allocation.

The normalization, monotonicity, and submodularity properties satis�ed by the rank function �
have a direct impact on the geometry of the capacity region �, called a polymatroid for this
reason [36, 43]. More generally, a polymatroid inRI

+ is a polytope de�ned by an equation of
the form (4.3) for some normalized, non-decreasing, and submodular function� de�ned on the
power set ofI = f 1; : : : ; I g. Figures 4.2 and 4.3b show examples of polymatroids in two and three
dimensions, while Figure 4.4b shows an example of a three-dimensional polytope that is not a
polymatroid. These last two examples will be discussed later. Proposition 4.4 below is a restate-
ment of Statements (19) and (22) in [36] that points out a key property of polymatroids. Also, it
shows that the rank function of a polymatroid is uniquely de�ned.

Proposition 4.4. Consider a setI = f 1; : : : ; I g of indices, a rank function � on the power set
of I , and the polymatroid � de�ned by � in RI

+ . Also consider a setA � I and an ordering
a1; : : : ; ajAj of this set. The vector � = (� 1; : : : ; � I) 2 RI

+ de�ned by � i = 0 if i 2 I n A , and
otherwise (

� a1 = � (f a1g);
� ap = � (f a1; : : : ; apg) � � (f a1; : : : ; ap� 1g); 8p = 2 ; : : : ; jAj ;

(4.4)

is a corner of the polymatroid � . Conversely, each corner of the polymatroid� is the form (4.4)
for some setA � I and some orderinga1; : : : ; ajAj of this set.

Roughly speaking, Proposition 4.4 says that each corner of a polymatroid can be reached from the
origin by following edges of this polymatroid in a greedymanner, in the sense that the components
of the corners met along the way are non-decreasing.

Using (4.1) and (4.2), we now explain the meaning of Proposition 4.4 in terms of the vectors of
per-class service rates in the polymatroid capacity region � de�ned by (4.3). This discussion will
be important for the de�nition of the �rst-come-�rst-served policy in Section 4.3. For each A � I ,
the set of vectors � 2 � such that

P
i 2A � i = � (A) is called the face associated with the setA

in the capacity region. This is the set of the vectors of per-class service rates de�ned by resource
allocations in which all servers that are compatible with the classes inA are exclusively serving
customers of these classes. The corners of the capacity region that belong to this face are the
vectors of the form (4.4) for some ordering ofA . These vectors correspond to resource allocations
in which all servers that are compatible with the classes inA are greedily assigned to customers
of these classes. More generally, each corner of the capacity region corresponds to a resource
allocation in which each server is either idle or fully dedicated to a single class of customers. For
eachi 2 I and eachA � I n f ig, the edge of the capacity region that connects the faces associated
to the sets A and A [f ig is of length � (A [f ig) � � (A). As observed before, by (4.2), this is the
capacity of the servers that remain for classi once all the servers that are compatible with the
classes inA were greedily assigned to customers of these classes.

66

Section 4.1. De�nition

(a) Compatibility graph. (b) Capacity region.

Figure 4.3: A multi-server queue with I = 3 classes andS = 6 servers.

Example4.5. Consider the multi-server queue of Figure 4.3, withI = 3 classes andS = 6 servers.
We have� (f ig) = � 2i � 1 + � 2i + � 2i +1 for eachi = 1 ; 2; 3, � (f i; i +1g) = � 2i � 1 + � 2i + � 2i +1 + � 2i +2

for eachi = 1 ; 2; 3, and � (f 1; 2; 3g) = � 1 + � 2 + : : :+ � 6, where the class and server indices should
be replaced with their residue in f 1; 2; 3g modulo 3 and in f 1; 2; : : : ; 6g modulo 6, respectively.
Again, each vector� = (� 1; � 2; � 3) of the capacity region can be associated with an allocation of
server capacities to classes. For instance, the vector� = (� 1 + � 2 + � 3; � 4 + � 5; � 6) corresponds
to a resource allocation in which servers 1, 2, and 3 are assigned to class 1, servers 4 and 5 are
assigned to class 2, and server 6 is assigned to class 3.

Figure 4.4 illustrates the impact of the submodularity property on the form of the capacity
region �. The submodularity property implies that, in Figure 4.4a, the three labeled edges are of
non-increasing lengths� (f 1g) � � (;), � (f 1; 3g) � � (f 3g), and � (f 1; 2; 3g) � � (f 2; 3g). Figure 4.4b
shows a variant of this capacity region that is not a polymatroid. This polytope is de�ned by
an equation of the form (4.3) with a set function � that is normalized and non-decreasing but
not submodular. Speci�cally, the value of � (f 1; 2; 3g) was increased compared to Figure 4.4a, so
that, for instance, we have � (f 1; 2; 3g) � � (f 2; 3g) > � (f 1; 3g) � � (f 3g). This implies that, in
Figure 4.4b, the length of the labeled edge at the intersection of facesf 3g and f 2; 3g is equal to
� (f 1; 3g) � � (f 1g), which is strictly less than � (f 1; 2; 3g) � � (f 2; 3g). Also, the corners at the
intersection of facesf 2; 3g and f 1; 2; 3g cannot be reached from the origin in a greedy manner.

(a) A polymatroid. (b) A polytope that is not a polymatroid.

Figure 4.4: Impact of the submodularity property on the geometry of the capacity region.

67

Chapter 4. The multi-server queue

4.1.4 Two special cases of multi-server queues

Before we introduce balanced fairness and �rst-come-�rst-served policy, we describe two special
cases of multi-server queues that we will encounter on several occasions throughout the manuscript.

Locally-constant capacity. A multi-server queue is said to have alocally-constant capacity|or for
short to be locally constant|if there is a one-to-one correspondence between classes and servers,
in the sense that S = I and Si = f ig for each i 2 I . The rank function is modular, as we
have � (A) =

P
i 2A � i for each A � I . The corresponding capacity region � is an axis-aligned

hyperrectangle in RI
+ . An example with I = 3 classes is shown in Figure 4.5. For eachi 2 I ,

the edges that are parallel to axisi have the same length, equal to the capacity� i of server i .
The resource-sharing and time-sharing policies we will introduce in Sections 4.2 and 4.3 reduce
to processor-sharing and �rst-come-�rst-served at each server, respectively. In particular, the
queue is stable if and only if� i < � i for eachi 2 I . Under this assumption, the number of class-i
customers evolves like in an independent M/M/1 queue subject to the load� i

� i
, under processor-

sharing or �rst-come-�rst-served, for each i 2 I . Overall, the probability that the queue is empty
is given by =

Q
i 2I (1 � � i

� i
); and, for eachi 2 I , the expected number of class-i customers in

the queue is equal to

L i =
� i
� i

1 � � i
� i

=
� i

� i � � i
:

To make the connection with Chapters 1 and 2, we can already observe that a multi-server queue
with a locally-constant capacity is described by a locally-constant Whittle network when the
service policy is balanced fairness and by a locally-constant order-independent queue when the
service policy is �rst-come-�rst-served.

(a) Compatibility graph. (b) Capacity region.

Figure 4.5: A locally-constant queue withI = 2 customer classes andS = I = 2 servers.

Globally-constant capacity. In contrast, a multi-server queue is said to have aglobally-constant
capacity|or to be globally constant|if its compatibility graph is complete, meaning that Si = S
for eachi 2 I . The rank function is constant except at the origin, as we have� (A) = � 1 + : : :+ � S

for each non-empty setA � I . The corresponding capacity region is at. An example is shown
in Figure 4.6b. Under the policies of Sections 4.2 and 4.3, the multi-server queue behaves like
a multi-class M/M/1 queue subject to the load � = � 1 + ::: + � I

� 1 + ::: + � S
, under either processor-sharing or

�rst-come-�rst-served policy. The probability that the queue is empty is given by = 1 � � and
the expected number of customers in the queue is given by

L =

P
i 2I � iP

s2S � s �
P

i 2I � i
=

�
1 � �

:

For each i 2 I , the expected number of class-i customers is proportional to the arrival rate � i of
this class, that is, we haveL i = � i

� 1 + ::: + � I
L. Again to make the connection with Chapters 1 and 2,

we observe that a multi-server queue with a globally-constant capacity is described by a globally-
constant Whittle network when the service policy is balanced fairness and by a globally-constant
order-independent queue when the service policy is �rst-come-�rst-served.

68

Section 4.2. Balanced fairness

(a) Compatibility graph. (b) Capacity region.

Figure 4.6: A globally-constant queue withI = 3 customer classes andS = 2 servers.

4.2 Balanced fairness

Similarly to processor-sharing, balanced fairness is a resource-sharing policy that assumes that the
capacity of each server is in�nitely divisible among its customers. However, while processor-sharing
imposes that the capacity of eachserver is equally shared among its customers, balanced fairness
imposes that all customers of the sameclass receive the same service rate|over all servers taken
together. Also, the resource allocation depends on the number of customers of each class in the
queue but not on their arrival order, that is, it is a function of the macrostate only.

Divisible server capacity. For each s 2 S, the capacity of servers is in�nitely divisible among
the customers of the classesi 2 I such that s 2 S i . In particular, all customers can|and
will|be in service at the same time. This implies that each vector of the capacity region � is
feasible. More precisely, given a macrostatex = (x1; : : : ; x I) 2 NI and a vector of per-class service
rates � = (� 1; : : : ; � I) 2 �, there is a way of dividing the capacities of the servers among their
compatible customers such that, for eachi 2 I x , each class-i customer is served at rate� i =xi .
The two main arguments of the proof, based on the polymatroidal nature of the capacity region,
can be summarized as follows. First, each vector of the capacity region � is componentwise lower
than or equal to a vector that belongs to a face of this capacity region, so that we just need to
show the result for the vectors of the faces. The second argument is that each vector of a face is a
convex combination of its corners. But we observed earlier that the corners corresponds to feasible
resource allocations, in which each server is either idle or dedicated to the customers of a single
class. The coe�cients of the convex combination then give a way of deriving the desired resource
allocation. A complete and slightly di�erent proof can be found in Theorem 1 of [90].

Resource-sharing policy. For each i 2 I , the service rate of classi only depends on the number
of customers of each class and not on their arrival order. Therefore, it can be written as a function
� i (x) of the macrostate x. We assume for simplicity that, for each i 2 I , we have � i (x) > 0 if
and only if x i > 0. This service rate is assumed to be shared equally among class-i customers, so
that each customer of this class receives service at rate� i (x)=xi wheneverx i > 0. The results of
Section 1.4 show that, under these assumptions, performance is insensitive to the service require-
ments if and only if the per-class service rates satisfy the balance property. The idea of balanced
fairness is precisely to enforce this property while maximizing the resource utilization.

Speci�cally, the service rates � 1(x); : : : ; � I (x) satisfy the following balance property, already
de�ned as (1.1) in Chapter 3:

� i (x � ej)
� i (x)

=
� j (x � ei)

� j (x)
; 8x 2 NI ; 8i; j 2 I : (4.5)

This property means that the relative increase of the service rate of classi when we remove a
class-j customer is equal to the relative increase of the service rate of classj when we remove a
class-i customer. In x1.1.2, we recalled that the service rates satisfy this balance property if and

69

Chapter 4. The multi-server queue

only if there is a balance function �, de�ned and positive on NI , such that

� i (x) =
�(x � ei)

�(x)
; 8x 2 NI ; 8i 2 I x : (4.6)

We adopt the convention that �(0) = 1 and �(x) = 0 if x =2 NI . If (4.6) is satis�ed, the service
rates are said to bebalanced bythe function �. Equations (4.5) and (4.6) also have a geometric
interpretation in the vector space RI

+ . Speci�cally, (4.5) says that, for eachx 2 NI , the vector � (x)
belongs to the intersection of linearly dependent hyperplanes de�ned by the vectors� (x � ei) for
i 2 I x , and (4.6) shows that this intersection is the line of direction vector (�(x � e1); : : : ; �(x � eI)).

The second condition imposes that, whenever the queue is non-empty, the vector of per-class
service rates belongs to a face of the capacity region � that corresponds to a non-empty set of
active classes. In other words, for eachx 2 NI n f 0g, the service rates� 1(x); : : : � I (x) satisfy the
capacity constraints X

i 2A

� i (x) � � (A); 8A � I ; (4.7)

and there exists a non-empty setA � I x of active classes such that the service rate of all customers
of the classes inA taken together is maximal, that is

X

i 2A

� i (x) = � (A): (4.8)

Therefore, the vector of per-class service rates lies on the boundary of the capacity region �. As
a special case, for eachi 2 I and each positive integerx i , we have� i (x i ei) = � (f ig) =

P
x 2S i

� s,
meaning that the service rate of classi is equal to the sum of the capacities of its compatible
servers when the queue only contains customers of this class. In general, by injecting (4.6) into
(4.7) and (4.8), we obtain that the balance function � satis�es the following recursion:

�(x) = max
A�I x :
A6= ;

1

� (A)

X

i 2A

�(x � ei)

!

; 8x 2 NI n f 0g: (4.9)

Conditions (4.6), (4.7), and (4.8) taken together recursively characterize� (x) as the unique non-
zero point of intersection of the line of direction vector (�(x � e1); : : : ; �(x � eI)) and the boundary
of the capacity region.

(a) Construction of � (1; 1). (b) Construction of � (2; 1) and � (1; 2).

Figure 4.7: Geometric construction of the vectors of per-class service rates under balanced fairness
in the multi-server queue of Figure 4.1.

Example 4.6. Again consider the multi-server queue of Figure 4.1. The construction rules of the
vector of per-class service rates under balanced fairness, dictated by (4.5), (4.7), and (4.8), are
illustrated in Figure 4.7. In Figure 4.7a, the vector � (1; 1) is the non-zero point of intersection
of the line of slope� 2(0; 1)=� 1(1; 0) and the boundary of the capacity region. In Figure 4.7b, the
vector � (2; 1) is the non-zero point of intersection of the line of slope� 2(1; 1)=� 1(2; 0) and the

70

Section 4.2. Balanced fairness

boundary of the capacity region. Similarly, the vector � (1; 2) is the non-zero point of intersection
of the line of slope� 2(0; 2)=� 1(1; 1) and the boundary of the capacity region.

Whenever x1 > 0 and x2 > 0, the obtained vector � (x1; x2) belongs to the face associated
with the set f 1; 2g, meaning that the overall service rate is equal to� (f 1; 2g) = � 1 + � 2 + � 3.
In this way, the service capacity of each server is fully exploited whenever the queue contains at
least one compatible customer. This property, called Pareto-e�ciency, is a consequence of the
polymatroid form of the capacity region. We will come back to it later.

Proposition 4.7 below shows that balanced fairness is well-de�ned in the sense that it is in-
dependent of the|somewhat arti�cial|partition of customers into classes. Speci�cally, it shows
that, if two classes have the same set of compatible servers, then the resource allocation is the same,
whether or not we make the distinction between these two classes for applying balanced fairness.
One can extend this result to more than two classes by induction. The phrasing of Proposition 4.7
reproduces that of Proposition 1 in [14], which is also used to prove Statement (b).

Proposition 4.7. Consider a multi-server queue with a setS = f 1; : : : ; Sg of servers and a
set I = f 1; : : : ; I g of customer classes. For eachi 2 I , let Si � S denote the set of servers that
can process class-i customers and� i the service rate of classi under balanced fairness. Assume
that two classes, say classes1 and 2, share the same setS1 = S2 of compatible servers. Then
the following two equivalent statements are satis�ed.

(a) The overall service rate of classes 1 and 2 only depends on the number of customers in
these two classes through their sum, that is, we have� 1(x) + � 2(x) = � 1(y) + � 2(y) for
eachx; y 2 NI such that x1 + x2 = y1 + y2. Also, the customers of these two classes receive
service at the same rate, meaning that

� 1(x)
x1

=
� 2(x)

x2
=

� 1(x) + � 2(x)
x1 + x2

; 8x 2 NI : 1; 2 2 I x :

(b) The balance function � of the service rates� 1; : : : ; � I can be written as

�(x) =
�

x1 + x2

x1

�
��(x1 + x2; x3; : : : ; x I); 8x 2 NI ;

where �� is the balance function of the service rates� 1 + � 2; � 3; : : : ; � I .

Proof. We �rst prove (a) and then show the equivalence of (a) and (b). We observed before
that Equations (4.5), (4.7), and (4.8) characterize balanced fairness among all resource-sharing
policies that equalize the service rate received by customers of the same class. Therefore, in order
to prove (a), it su�ces to verify that the resource-sharing policy obtained by applying balanced
fairness in the multi-server queue, without distinguishing customers of classes 1 and 2, satis�es
these equations. The veri�cation is left to the reader. Now, Proposition 1 in [14] shows that (b)
is a consequence of (a). Conversely, (a) can be derived from (b) by applying (4.6).

Pareto-e�ciency. In general, the above de�nition does not imply that balanced fairness is Pareto-
e�cient, in the sense that, for each x 2 NI , the overall service rate

P
i 2I x

� i (x) is equal to the
available service capacity� (I x) in macrostate x. Geometrically speaking, this would mean that
the vector � (x) of per-class service rates belongs to the face of the capacity region that corresponds
to the set I x of active classes, which maya priori be incompatible with the direction imposed by
the balance property. However, it was shown in [90] that balanced fairness satis�es this property
in the multi-server queue. The proof consists of showing that the direction imposed by the balance
property always crosses the capacity region on the correct face, as it was the case in Example 4.6.
In terms of the balance function �, Pareto-e�ciency means that the maximum in (4.9) is reached
by the set of active classes, that is,

�(x) =
1

� (I x)

X

i 2I x

�(x � ei); 8x 2 NI n f 0g: (4.10)

71

Chapter 4. The multi-server queue

Equivalently, Pareto-e�ciency means that the capacity of each server is fully exploited whenever
the queue contains at least one compatible customer.

Whittle network. The evolution of the multi-server queue under balanced fairness is described
by a Whittle network of I queues, as de�ned in Chapter 1. For eachi 2 I , queuei contains class-i
customers, the arrival process at this queue is Poisson with rate� i , its service rate in macrostatex
is the service rate� i (x) of class i , and its service policy is processor-sharing. As an example, the
evolution of the multi-server queue of Figure 4.1 is described by the Whittle network of Figure 1.1.
This observation will be extensively applied in Section 4.4.

Thanks to the framework of Whittle networks, the de�nition of balanced fairness can be ex-
tended to a broader class of queueing systems as follows|this resource-sharing policy was actually
designed to predict the ow throughput in data networks [15]. Consider a queueing system whose
evolution is described by a network of processor-sharing queues, as de�ned inx1.1.1. Also consider
a polymatroid in RI

+ and let � denote its rank function, de�ned on the power set of I . Assume
that, for each x 2 NI , the vector of per-queue service rates� (x) = (� 1(x); : : : ; � I (x)) is con-
strained to belong to this polymatroid capacity region. For eachA � I , � (A) again describes the
overall service capacity available for the customers of the classes inA , but it is not necessarily of
the form (4.1). Then, for each x 2 NI , we can still de�ne the vector of per-queue service rates
� (x) = (� 1(x); : : : ; � I (x)) in macrostate x through (4.5) to (4.9). It was shown in [90] that bal-
anced fairness is Pareto-e�cient in any polymatroid capacity region, so that the balance function
� again satis�es the recursion (4.10). The de�nition of balanced fairness can also be extended to
queueing systems in which the capacity region is not a polymatroid, as in [13, 20, 42], but then
this policy may not be Pareto-e�cient.

4.3 First-come-�rst-served

We remove the assumption on the in�nite divisibility of the server capacities. Instead, each server
processes a single customer of a compatible class at a time. In this context, our time-sharing policy
is quite simple: each server processes its compatible customers in �rst-come-�rst-served order. In
this way, each customer is in service on every server that can process this customer but not the
older customers in the queue, and its service rate is the sum of the capacities of these servers. As in
Section 4.2, we �rst detail the impact of the indivisibility assumption on the set of feasible vectors
of per-class service rates and then we describe the �rst-come-�rst-served policy in more details.

Indivisible server capacity. For each s 2 S, the capacity of server s is assigned|in its en-
tirety|to a single customer of a class i 2 I such that s 2 S i , if any. This assumption reduces the
set of feasible vectors of per-class service rates dramatically compared to Section 4.2. Indeed, only
a �nite number of vectors of the capacity region � are now feasible. These are the vectors of the
form � = (� 1; : : : ; � I), with

� i =
X

s2T i

� s; 8i 2 I ;

where, for eachi 2 I , Ti � S i is the set of servers assigned to one or more class-i customers|in
particular, the sets T1; : : : ; TI are disjoint.

Proposition 4.4 shows that the corners of the capacity region � comply with this de�nition and
correspond to resource allocations in which the servers are greedily assigned to classes one after
the other. Speci�cally, consider the vector � = (� 1; : : : ; � I) de�ned by (4.4) for some set A � I
and some orderinga1; : : : ; ajAj of A . Starting from the origin of RI

+ , this vector can be reached
by following the edges of the capacity region in the order dictated bya1; : : : ; ajAj . In the above
de�nition, this corner is obtained by de�ning recursively

(
Ta1 = Sa1 ;

Tap = Sap

/ S p� 1
q=1 Saq ; 8p = 2 ; : : : ; jAj ;

with Ti = ; if i =2 A . This vector corresponds to a greedy resource allocation whereby all the servers
that are compatible with class a1 are assigned to customers of this class, then all the remaining
servers that are compatible which classa2 are assigned to customers of this class, and so on.

72

Section 4.3. First-come-�rst-served

Time-sharing policy. We consider a simple policy in which each server processes its customers
sequentially in �rst-come-�rst-served order. Each incoming customer enters in service immediately
on every compatible server that is idle, if any, so that its service rate is the sum of the capacities
of these servers. When the service of a customer is complete, this customer leaves the queue
immediately and each released server is reallocated to the next oldest compatible customer in
the queue. In this way, each customer is always in service on every server that can process this
customer but not the older customers in the queue. Conversely, the capacity of each server that
is compatible with at least one customer in the queue is fully utilized, while the other servers are
idle. This time-sharing policy will be simply called �rst-come-�rst-served in the remainder.

The vectors of per-class service rates that result from this resource allocation are precisely the
corners of the capacity region. Furthermore, for eachi 2 I , the service rate of classi is equal to the
service rate of the oldest customer of this class in the queue, as the other customers of this class are
not in service on any server. We formalize these statements as follows. Letc = (c1; : : : ; cn) 2 I �

and assume that the queue is in microstatec. The oldest customer, of classa1 = c1, is in service
on all its compatible servers, those of the setSa1 , so that its service rate is equal to

� (f a1g) =
X

s2S a 1

� s:

The second customer, of classc2, is in service on all its compatible servers that are not already
assigned to the oldest customer. The service rate of this second customer is always zero ifc1 = c2.
Otherwise, with a2 = c2, its the service rate is given by

� (f a1; a2g) � � (f a1g) =
X

s2S a 2 nSa 1

� s;

Continuing on, for each p = 1 ; : : : ; jI cj, we let ap denote the class that occursp-th in microstate c.
The oldest customer of this class is served at rate

� ap = � (f a1; : : : ; apg) � � (f a1; : : : ; ap� 1g) =
X

s2S a p n
S p � 1

q=1
Sa q

� s; (4.11)

while the other customers of this class have a zero service rate. The obtained vector of per-class
service rates is the corner of the capacity region � obtained by applying (4.4) to the setA = I c and
the ordering a1; : : : ; ajI c j of �rst occurrence of the classes in the sequencec. This vector belongs to
the face associated to the setI c, meaning that the overall service rate is equal to� (I c), the sum
of the capacities of the servers that can process at least one customer in the queue. Applying the
recursive construction (4.11) boils down to starting from the origin and following the edges of the
capacity region � in the order dictated by a1; : : : ; ajI c j .

The counterpart of Proposition 4.7, showing that �rst-come-�rst-served policy is well-de�ned
irrespective of the partition of customers into classes, is quite straightforward. Indeed, our initial
de�nition of �rst-come-�rst-served policy is based on compatibility constraints but not on classes.
Also by analogy with balanced fairness, we de�ne the balance function � of the service rates under
�rst-come-�rst-served policy as

�(c1; : : : ; cn) =
nY

p=1

1
� (I (c1 ;:::;c p))

; 8(c1; : : : ; cn) 2 I � ; (4.12)

where the product is taken equal to one ifn = 0. This balance function satis�es the recursion

�(c1; : : : ; cn) =
1

� (I (c1 ;:::;c n))
�(c1; : : : ; cn � 1); 8(c1; : : : ; cn) 2 I � n f;g : (4.13)

Example 4.8. Again consider the multi-server of Figure 4.1, with I = 2 classes andS = 3 servers.
Apart from the origin, there are twelve feasible vectors of per-class service rates, namely (� 1; 0),
(� 1; � 3), (� 2; 0), (� 2; � 3), (� 1 + � 2; 0), (� 1 + � 2; � 3), (0; � 3 + � 2), (� 1; � 3 + � 2), (0; � 2), (� 1; � 2),
(0; � 3), and (� 1; � 3)|some of them may be coincident, for instance if � 1 = � 2 or � 3 = � 2. Four
are corners of the capacity region, namely (� 1+ � 2; 0), (� 1+ � 2; � 3), (� 1; � 3+ � 2), and (0; � 3+ � 2).

73

Chapter 4. The multi-server queue

Now assume that the queue is in microstatec = (1 ; 1; 2; 1; 2), as in Figure 4.8. The corresponding
macrostate is x = (3 ; 2). The color of each server in Figure 4.8a is a visual aid that indicates
the class of the customer it is serving. The oldest customer, of class 1, is in service on servers 1
and 2. The third customer, of class 2, is in service on server 3. The other customers, including
the second customer of class 1 who precedes the oldest customer of class 2, are not in service
on any server. The corresponding vector of per-class service rates, depicted in Figure 4.8b, is
� (1; 1; 2; 1; 2) = (� 1 + � 2; � 3). This corner of the capacity region is reached from the origin by
�rst following the edge of direction 1|this leads us to the corner (� 1 + � 2; 0)|and then the edge
of direction 2.

(a) Queue state. (b) Capacity region.

Figure 4.8: Construction of the vector of per-class service rates under �rst-come �rst-served policy
in the multi-server queue of Figure 4.1.

Order-independent queue. The multi-server queue equipped with this �rst-come-�rst-served
policy is order-independent. Let us briey verify that the conditions stated in x2.1.2 are indeed
satis�ed. Let c = (c1; : : : ; cn) 2 I � and assume that the queue is in microstatec. The overall service
rate is equal to the sum of the capacities of the servers that can process at least one customer
in the queue, given by � (I c). This quantity only depends on the number of customers of each
class that are present|in fact it only depends on the set of active classes|and is non-decreasing.
Also, the greediness of the resource allocation guarantees that the service rate of each customer
only depends on the older customers in the queue, as we can see in (4.11). Therefore, the queue is
order-independent.

Using the framework of order-independent queues, the �rst-come-�rst-served policy can be
extended as follows to any queueing system with a polymatroid capacity region. Consider a multi-
class queue withI customer classes, as de�ned inx2.1.1. Also consider a polymatroid inRI

+ and let
� denote its rank function, de�ned on the power set ofI . Assume that, for eachc 2 I � , the vector
of per-class service rates� (c) = (� 1(c); : : : ; � I (c)) is constrained to belong to this polymatroid
capacity region. Let c = (c1; : : : ; cn) 2 I � and assume that the multi-class queue is in microstatec.
Then we can again de�ne the resource allocation by starting from the origin and following the edges
of the capacity region in the arrival order of customers. The service rate of the oldest customer
of each class is again de�ned by (4.11), wherea1; : : : ; ajI c is the order of �rst occurrence of the
classes in microstatec. Thanks to Proposition 4.4, this greedy assignment rule still guarantees
that the overall service rate in the queue is given by� (I c) in macrostate c, so that the queue is
again order-independent.

4.4 Stationary analysis

In Sections 4.2 and 4.3, we saw that the multi-server queue evolves like a Whittle network when it
is equipped with balanced fairness and like an order-independent queue when it is equipped with
the �rst-come-�rst-served policy. Furthermore, in both cases, the overall service rate is equal to
the available service capacity� (I x) in macrostate x, for each x 2 NI . Therefore, the assumptions
of Theorem 3.2 are satis�ed. This observation is formalized in the following proposition.

74

Section 4.4. Stationary analysis

Proposition 4.9. The Whittle network that describes the evolution of a multi-server queue
under balanced fairness and the order-independent queue that describes its evolution under �rst-
come-�rst-served policy are equivalent in the sense of De�nition 3.1.

Proof. Let I = f 1; : : : ; I g denote the set of customer classes in the queue and, for eachi 2 I ,
� i the arrival rate of class-i customers. Also let � denote the rank function of the queue. The
Whittle network that describes the evolution of the multi-server queue under balanced fairness
has I queues with arrival rates � 1, . . . , � I , and, for each x 2 NI , the overall service rate in
macrostate x is given by � (I x). The order-independent queue that describes its evolution under
�rst-come-�rst-served policy has I customer classes with arrival rates� 1, . . . , � I , and, for each
x 2 NI and eachc 2 I � such that jcj = x, the overall service rate in microstatec is given by
� (I c) = � (I x). The assumptions of De�nition 3.1 are satis�ed.

As observed in Sections 4.2 and 4.3, we can use the frameworks of Whittle networks and order-
independent queues to generalize the de�nition of balanced fairness and �rst-come-�rst-served to
queueing systems with a polymatroid capacity region. We will refer to such a queueing system
as a polymatroidal queueunder balanced fairness or �rst-come-�rst-served policy. In this way, a
multi-server queue is a special case of polymatroidal queue in which the rate function has the
form (4.1). This generalization will be rarely mentioned in the rest of the manuscript, except in
Theorems 5.12 and 5.15 where it will be used to bound the performance of multi-server queues. It
is still worth observing that the results of this section and of Chapter 5 can be applied as they are
to polymatroidal queues.

We now present the major implications of Proposition 4.9 on the long-term performance of
the multi-server queue. The �rst one, Theorem 4.10, is just a consequence of the equivalence of
Whittle networks and order-independent queues uncovered in Chapter 3. The interested reader
can refer to this chapter for more details on this result.

4.4.1 Stationary distribution and service rates

Under balanced fairness, the macrostate of the multi-server queue de�nes an irreducible Markov
process onNI . Under �rst-come-�rst-served policy, the stochastic process de�ned by the macrostate
does not have the Markov property in general, but the stochastic process de�ned by its microstate
does. In either case, the queue is said to bestable if the relevant Markov process is ergodic and
stationary if this Markov process is stationary. The following theorem shows the relation between
these processes.

Theorem 4.10. Consider a multi-server queue with a setI = f 1; : : : ; I g of customer classes
and, for each i 2 I , let � i denote the arrival rate of class-i customers. Also let � denote the
rank function of the multi-server queue. Then:

(a) The multi-server queue is stable under balanced fairness if and only if it is stable under
�rst-come �rst-served policy. From now on, we assume this condition to be satis�ed.

(b) The Markov process de�ned by the macrostate of the multi-server queue under balanced
fairness is reversible, and its stationary distribution is given by

� (x) = � (0)�(x)
Y

i 2I

� i
x i ; 8x 2 NI ; (4.14)

where � is the balance function of the service rates under balanced fairness, given by the
recursion (4.10) with the base case�(0) = 1 .

(c) The Markov process de�ned by the microstate of the multi-server queue under �rst-come-

75

Chapter 4. The multi-server queue

�rst-served policy is quasi-reversible, and its stationary distribution is given by

� (c) = � (;)�(c)
Y

i 2I

� i
j cj i 8c 2 I � ; (4.15)

where� is the balance function of the service rates under the �rst-come-�rst-served policy,
given by the recursion(4.12) with the base case�(;) = 1 .

(d) The stationary distribution of the stochastic process de�ned by the macrostate of the multi-
server queue under the �rst-come-�rst-served policy is also given by(4.14), that is

� (x) =
X

c:jcj= x

� (c); 8x 2 NI : (4.16)

Also, for each x 2 NI , the per-class service rates in macrostatex under balanced fairness
are equal to the conditional expected per-class service rates, given that the macrostate isx,
under the �rst-come-�rst-served policy, that is,

� i (x) =
X

c:jcj= x

� (c)
� (x)

� i (c); 8x 2 NI ; 8i 2 I : (4.17)

Proof. Statements (a) and (d) follows from Theorem 3.2. Statement (b) is a consequence of
Theorem 1.1 and the discussion on reversibility in Section 1.3. Statement (c) is a consequence of
Theorem 2.1 and the discussion on quasi-reversibility in Section 2.3.

Reference [90] proved (b) for the multi-server queue under balanced fairness. Reference [46] proved
a variant of (4.15) for the multi-server queue under �rst-come-�rst-served policy, without making
the connection with order-independent queues nor quasi-reversibility. Our main contribution con-
sists of making the connection between the two service policies via (a) and (d). The assumption
that service requirements are exponentially distributed with unit mean is essential for this result to
hold, as balanced fairness is insensitive to this distribution, while the �rst-come-�rst-served policy
is not. Chapter 7 will introduce a variant of the �rst-come-�rst-served policy that mitigates its
sensitivity by enforcing frequent service interruptions and resumptions, similarly to round-robin
scheduling algorithm.

The main take-away of Theorem 4.10 is that, assuming stability, balanced fairness and the
�rst-come-�rst-served policy yield the same long-term performance. As observed in Section 3.2,
this result does not imply the existence of a coupling between the stochastic processes de�ned
by the queue macrostate under balanced fairness and under the �rst-come-�rst-served policy, as
the former has the Markov property while the latter does not in general. Following [102], we say
instead that the Markov process de�ned by the queue microstate under the �rst-come-�rst-served
policy imbedsthe Markov process de�ned by its macrostate under balanced fairness. Theorem 4.10
also provides us with a set of candidate weights for making explicit the resource allocation de�ned
by balanced fairness: according to (4.11) and (4.17), the proportion of a server capacity that is
allocated to a class under balanced fairness can be set as the conditional probability, under the
�rst-come-�rst-served policy, that the oldest customer of this class is before the oldest customer of
other compatible classes. We now describe some variants of Theorem 4.10 that will be useful later.

Equivalent formulations. As the stationary measures of the Markov processes we consider are
equal to their stationary distributions up to a multiplicative constant, we can derive equations
similar to (4.16) and (4.17) for the stationary measures|as we did in Theorem 3.2 for Whittle
networks and order-independent queues. Similarly, (4.14) and (4.15) reveal that� (c)=� (x) =
�(c)=�(x) for each x 2 NI and eachc 2 I � such that jcj = x, so that to (4.16) and (4.17) can be
rewritten as

�(x) =
X

c:jcj= x

�(c); 8x 2 NI ; (4.18)

76

Section 4.4. Stationary analysis

and

� i (x) =
X

c:jcj= x

�(c)
�(x)

� i (c); 8x 2 NI ; 8i 2 I : (4.19)

We will mostly focus on the stationary distributions in the remainder of this part, but (4.18) and
(4.19) will be useful in some applications of Part III. From now on, when we say that � is the
stationary distribution of the multi-server queue, we mean that � , seen as a function onNI , is the
stationary distribution of the Markov process de�ned by the macrostate of the multi-server queue
under balanced fairness, and that� , seen as a function onI � , is the stationary distribution of the
Markov process de�ned by the microstate of the multi-server queue under �rst-come-�rst-served
policy. A similar remark applies to the balance function �, as well as to any stationary measure
� , and to the per-class service rates� 1; : : : ; � I .

Variants of the multi-server queue. As in Sections 1.3 and 2.3, we can consider several variants
of the open multi-server queue. The �rst one consists of adding an irreducible Markov routing
process. Speci�cally, for eachi 2 I , a class-i customer whose service is complete re-enters the
queue as a class-j customer with probability pi;j , for each j 2 I , and leaves the queue de�nitely
with probability pi = 1 �

P
j 2I pi;j . The stationary measures of the Markov process de�ned by

the queue state|the macrostate under balanced fairness and the microstate under the �rst-come-
�rst-served policy|are again given by (4.14) and (4.15), except that � 1, . . . , � I now denote the
e�ective arrival rates, given by the tra�c equations (1.19). We can also consider a network made
of several multi-server queues connected by an irreducible Markov routing process, so that each
queue applies either balanced fairness or the �rst-come-�rst-served policy. The results of Section 3.2
guarantee that the stationary measures of the Markov process de�ned by the network state have
a product form. In particular, the queues are independent when the network is stationary. It is
also possible to consider a closed variant, with a �xed number of customers who loop inde�nitely
within the network. In this case, the product form is preserved|provided some irreducibility
assumptions stated in Sections 1.3 and 2.3|but the queues are not independent in general. A
last variant consists of a loss queue in which, for eachi 2 I , an incoming customer of classi is
rejected if the queue already contains̀ i customers of this class, for somè i 2 N [f + 1g . The
stationary distribution of a loss queue is obtained by renormalizing the restriction of the stationary
distributions (4.14) and (4.15) to the truncated state space, made of the queue states with at most
` i customers of classi , for each i 2 I . Examples of these variants will be considered in Part III.

4.4.2 Stability condition

Statement (a) of Theorem 4.10 shows that the multi-server queue has the same stability region
under balanced fairness and the �rst-come-�rst-served policy. The following theorem gives a simple
characterization of this stability region in terms of the arrival and service rates. This result is not
new, as it was shown independently for balanced fairness in [90] and for the �rst-come-�rst-served
policy in [46]. Our alternative proof, based on Theorem 3.4, holds for both policies. The equivalence
of the stability conditions (4.20) and (4.21) was noticed in [4], whose model will be discussed again
in Chapter 8.

Theorem 4.11. Consider a multi-server queue with a setI = f 1; : : : ; I g of customer classes
and a setS = f 1; : : : ; Sg of servers. For eachi 2 I , let � i denote the arrival rate of classi and
Si � S the set of servers that can process customers of this class. Also, for eachs 2 S, let � s

denote the capacity of servers. The rank function is denoted by� . Under balanced fairness or
the �rst-come-�rst-served policy, the multi-server queue is stable if and only if

X

i 2A

� i < � (A); 8A � I : A 6= ; ; (4.20)

or, equivalently, X

i 2I :Si �T

� i <
X

s2T

� s; 8T � S : T 6= ; : (4.21)

77

Chapter 4. The multi-server queue

Proof. The stability condition (4.20) is a restatement of the condition (3.6) of Theorem 3.4,
upon observing that the asymptotic rate function �� de�ned by (3.5) is actually the rank function
� de�ned by (4.1) in the special case of the multi-server queue.

We now prove that (4.20) and (4.21) are equivalent. First assume that (4.20) is satis�ed.
Consider a non-empty setT � S of servers and letA = f i 2 I : Si � T g denote the set of
classes that can only be assigned to these servers. IfA = ; , then (4.21) is automatically satis�ed
because

P
s2T � s > 0. Otherwise, observing that

S
i 2A Si � T , we obtain

X

i 2A

� i <
X

s2
S

i 2A
Si

� s �
X

s2T

� s;

where the strict inequality follows from (4.20). Therefore, (4.21) is satis�ed by each non-empty
set T � S of servers. Conversely, assume that (4.21) is satis�ed. Consider a non-empty set
A � I of classes and letT =

S
i 2A Si denote the set of servers that can process the customers

of at least one of these classes. Also, letB = f i 2 I : Si � T g denote the set of customer classes
that can only be processed by these servers. We haveA � B |in particular B 6= ; |and therefore

X

i 2A

� i �
X

i 2B

� i <
X

s2T

� s =
X

s2
S

i 2A
Si

� s;

where the strict inequality follows from (4.21).

Equation (4.20) says that the stability region, de�ned as the set of vectors of arrival rates � =
(� 1; : : : ; � I) 2 RI

+ that stabilize the queue, is the interior of the capacity region �. Balanced
fairness and the �rst-come-�rst-served policy are said to bemaximally stablebecause there is not
service policy that can stabilize the queue subject to a vector of per-class arrival rates that is out
of this stability region. Equation (4.21) is equivalent to (4.20) but it emphasizes servers rather
than classes. In the rest of this chapter, we assume these stability conditions to be satis�ed and
we let � denote the stationary distribution of the multi-server queue.

As a side remark, the fact that one or more components of the vector of per-class arrival rates
are zero would not jeopardize the stability of the queue|in fact, that is quite the contrary. This
condition was only imposed to make the Markov processes irreducible over their state spaces. It
can be removed as follows. Assume that� i > 0 for each classi in some subsetA � I and � i = 0
for each i 2 I n A . Then the Markov processes de�ned by the microstate and macrostate are
irreducible over the truncated state spacesA � and NjAj , respectively, made of the states that only
contain customers of the classes inA . Along the same lines, the assumption that� s > 0 for each
s 2 S is su�cient but not necessary for irreducibility. A necessary and su�cient condition is that,
for each i 2 I , there is at least one servers 2 S i such that � s > 0|this condition is lighter than
the stability conditions (4.20) and (4.21).

4.4.3 Performance metrics

In Chapters 5 and 6, we develop formulas to predict performance in a stable multi-server queue.
We obtain closed-form expressions for two performance metrics, namely the probability that the
queue is empty and the expected number of customers in the queue. As observed in Section 3.4,
these can be used to compute other metrics such as the mean service rate or the mean delay. Also,
according to Theorem 4.10, these formulas are valid both under balanced fairness and under the
�rst-come-�rst-served policy. It may also be possible to develop approximate methods, like those
of [20], but we only consider exact results. Lastly, note that the results of Chapters 5 and 6 only
apply to open multi-server queues; in general, if we consider a closed queue or a closed network of
queues, we do not have a better method than taking the average over all possible states.

Chapters 5 and 6 propose two di�erent ways of computing the same performance metrics. Before
we elaborate on each method, let us briey mention their similarities and then their di�erences.
The derivation of the formulas systematically exploits the fact that the overall service rate in the
multi-server queue depends on the set of active classes but not on the number of customers of each
class in the queue. Thanks to this observation, we �rst derive a closed-form expression for the

78

Section 4.5. Concluding remarks

probability that the multi-server queue is empty and then we apply Proposition 3.6 to derive a
closed-form expression for the expected numberL i of customers of each classi 2 I . The obtained
formulas can be implemented to predict the performance with an arbitrary compatibility graph.
Duplicate calculations are avoided thanks to dynamic programming. Despite that, the complexity
of the calculations is exponential in the number of classes or servers in general. In each chapter,
we identify practically interesting con�gurations in which symmetries can be exploited to make
complexity polynomial or even linear.

The methods of Chapters 5 and 6 di�er in the properties of the multi-server queue they exploit.
Speci�cally, the method described in Chapter 5 uses symmetries of the polymatroid capacity re-
gion to perform an additional state aggregation. This method is quite general|it was considered
in several works on balanced fairness, see the detail in Chapter 5|as it applies to any polyma-
troidal queue under balanced fairness or the �rst-come-�rst-served policy. The counterpart of this
generality is that some symmetries of the multi-server queue, yet obvious when we look at the
compatibility graph, cannot be exploited to reduce complexity with this method. On the contrary,
the formulas of Chapter 6 were designed with the multi-server queue in mind. They allow us to
exploit symmetries between servers that are not usable with the �rst method. Another noticeable
di�erence between the two methods is that the former involves a recursion on the set of active
classes while the latter involves a recursion on the set of idle servers.

4.5 Concluding remarks

In this chapter, we introduced a generic model for a multi-server queue with assignment constraints.
The evolution of this queue is described by a Whittle network if the policy is balanced fairness
and by an order-independent queue if the policy is �rst-come-�rst-served. Using the results of
Chapter 3, we showed that both policies yield the same stability condition and the same long-
term performance. In the next two chapters, we will introduce two methods for predicting the
performance of the multi-server queue when it is stable.

Bibliographical notes. Balanced fairness was introduced in [15] for sharing the resources of data
networks and was extensively studied in [13, 16{18, 20, 21]. This branch of works is itself part of a
broader research e�ort, aiming at building queueing models that do not rely on the assumption that
customer service requirements are exponentially distributed [57, 73, 101{103]. Balanced fairness
was later applied to the multi-server queue in [90, 91, 93].

The multi-server queue under the �rst-come-�rst-served policy was introduced in [46] and fur-
ther developed in [45, 47]. It is worth observing that, in [44{47], customers are assumed to be
replicated instead of being processedin parallel on several servers. In other words, if a customer
is in service on several servers at the same time, each server works on an independent copy of this
customer, and the time to completion at each server is exponentially distributed with a rate equal
to the capacity of this server. The properties of the exponential distribution|see the correspond-
ing paragraph in Section B.1|guarantee that the evolution of the multi-server queue is the same
as in our model with parallel processing.

79

80

5 Performance analysis
by state aggregation

The overall service rate in a multi-server queue only depends on the set of active classes, and not on
the exact number of customers in the queue. This observation was exploited, �rst in [13, 17, 18] and
then in [90, 91, 93], to derive closed-form expressions for the long-term performance metrics. But
despite this additional state aggregation, the complexity of the obtained formulas is exponential in
the number of classes in general. This motivated [90, 91, 93] to identify symmetry conditions that
can be exploited to make complexity linear. We �rst recall these results in Section 5.1 and at the
beginning of Section 5.2. The rest of this section contains our �rst contribution, namely a lighter
symmetry assumption, calledpoly-symmetry, that allows us to make complexity polynomial in the
number of classes while allowing for some heterogeneity. In Section 5.3, we generalize a result
of [93] to bound the asymptotic performance of a multi-server queue subject to a static random
assignment, in which the set of servers that can process each customer class is chosen at random.
Numerical results are shown in Section 5.4. This work, initiated during my master internship, was
presented in [P02].

5.1 Generic formulas

Consider a multi-server queue with a setI = f 1; : : : ; I g of customer classes, per-class arrival rates
� 1; : : : ; � I , and a rank function � de�ned on the power set of I . The service policy is balanced
fairness or �rst-come-�rst-served|this assumption will be implicit in the remainder. Assume that
the queue is stable and let� denote its stationary distribution, L the expected number of customers
in the queue, and, for eachi 2 I , L i the expected number of class-i customers.

The following notations will simplify the statement of Theorem 5.1 below. First, for eachA � I ,
let � (A) denote the probability that the set of active classes isA and L(A) the conditional expected
number of customers in the queue given that the set of active classes isA . These quantities are
given by

� (A) =
X

x :I x = A

� (x); L (A) =
X

x :I x = A

X

i 2I

x i

!
� (x)
� (A)

; 8A � I :

Similarly, for each i 2 I and eachA � I , let L i (A) denote the conditional expected number of
class-i customers given that the set of active classes isA , given by

L i (A) =
X

x :I x = A

x i
� (x)
� (A)

; 8i 2 I ; 8A � I :

We have L = L 1 + : : : + L I and L(A) = L 1(A) + : : : + L I (A) for each A � I . Besides, by the law
of total expectation, we have

L =
X

A�I

L(A)� (A); L i =
X

A�I

L i (A)� (A); 8i 2 I :

Theorem 5.1 below gives a recursive formula to compute� (A), L (A)� (A), and L i (A)� (A) for
each A � I and each i 2 I . It is a restatement of Theorem 4 in [90], using the same idea as
Proposition 4 and Theorem 1 in [93].

81

Chapter 5. Performance analysis by state aggregation

Theorem 5.1. Consider a stable multi-server queue with a setI = f 1; : : : ; I g of customer
classes, per-class arrival rates� 1; : : : ; � I , and a rank function � de�ned on the power set ofI .
Also let � denote the stationary distribution of the queue,L the expected number of customers,
and, for each i 2 I , L i the expected number of class-i customers. For each non-empty set
A � I , we have

� (A) =

P
i 2A � i � (A n f ig)

� (A) �
P

i 2A � i
; (5.1)

and

L(A) � (A) =
� (A) � (A) +

P
i 2A � i L(A n f ig) � (A n f ig)

� (A) �
P

i 2A � i
: (5.2)

Let i 2 I . For each setA � I , we haveL i (A) = 0 if i =2 A , and otherwise

L i (A) � (A) =
� i � (A n f ig) + � i � (A) +

P
j 2Anf i g � j L i (A n f j g) � (A n f j g)

� (A) �
P

j 2A � j
: (5.3)

Equation (5.1) is actually valid for any stationary measure of the queue|as long as the sum of this
measure is �nite, which is always the case when the queue is stable. In particular, if we consider
the stationary measure �� such that �� (;) = 1, the probability that the queue is empty is given by

 = � (;) =
1

P
A�I �� (A)

;

The value of the stationary distribution � is then given by � (A) = �� (A) for each A � I . Using
this result, (5.2) and (5.3) give an e�ective way of computing L(A)� (A) and L i (A)� (A) for each
A � I . The values ofL and L i for each i 2 I follow by summation. One could then apply Little's
law to compute performance metrics like the mean delay or the mean service rate. Note that the
complexity to compute these performance metrics is exponential in the number of classes.

Example 5.2. Consider the multi-server queue of Figure 4.1. With �� (;) = 1, (5.1) yields,

�� (f 1g) =
� 1

� 1 + � 2 � � 1
; �� (f 2g) =

� 2

� 2 + � 3 � � 2

and

�� (f 1; 2g) =
� 1 �� (f 2g) + � 2 �� (f 1g)

� 1 + � 2 + � 3 � � 1 � � 2
:

We obtain
 =

1
1 + �� (f 1g) + �� (f 2g) + �� (f 1; 2g)

;

and � (A) = �� (A) for each A = ; ; f 1g; f 2g; f 1; 2g.
We now apply (5.2) to compute the expected number of customers in the queue, over all

classes taken together. We haveL(;)� (;) = 0. By (5.2), it follows that

L (f 1g) � (f 1g) =
� 1 + � 2

� 1 + � 2 � � 1
� (f 1g); L (f 2g) � (f 2g) =

� 2 + � 3

� 2 + � 3 � � 2
� (f 2g);

and

L(f 1; 2g)� (f 1; 2g) =
(� 1 + � 2 + � 3) � (f 1; 2g) + � 1 L(f 2g) � (f 2g) + � 2 L(f 1g) � (f 1g)

� 1 + � 2 + � 3 � � 1 � � 2
:

The expected number of customers in the queue is given by

L = L(f 1g) � (f 1g) + L(f 2g) � (f 2g) + L(f 1; 2g) � (f 1; 2g):

82

Section 5.2. Poly-symmetry

5.2 Poly-symmetry

The formulas of Theorem 5.1 are in closed form but the overall complexity to compute performance
metrics remains exponential in the number of classes. This limits the size of the systems we can
consider. In order to circumvent this di�culty, [90] identi�ed symmetry conditions, restricting
the form of the capacity region and the arrival rates of classes, that can be exploited to simplify
formulas and make complexity linear in the number of classes. After having recalled the de�nition
of symmetry, we will introduce a lighter symmetry condition, called poly-symmetry, that allows us
to consider a broader family of queues to the cost of a higher|but still polynomial|complexity.

Exchangeability. The following de�nition will be used to de�ne symmetry and poly-symmetry.
One can verify that it de�nes an equivalence relation on the setI of indices.

De�nition 5.3. Consider a polymatroid � in RI
+ and let � denote its rank function. Let

i; j 2 I with i 6= j . Indices i and j are said to beexchangeablein � if

� (A [f ig) = � (A [f j g); 8A � I n f i; j g:

As the name suggests, two indices are exchangeable if and only if exchanging these indices does
not modify the shape of the capacity region. The exchangeability of two indicesi and j implies in
particular that they have the same individual constraints � (f ig) = � (f j g). The reverse implication
is not true when I > 2, as we will see in the following example.

(a) Compatibility graph. (b) Capacity region.

Figure 5.1: A multi-server queue with two exchangeable indices and a third index.

Example 5.4. Consider the multi-server queue with the assignment graph depicted in Figure 5.1a
and assume that all servers have the same unit capacity� 1 = � 2 = � 3 = � 4 = 1. The correspond-
ing polymatroid capacity region � is shown in Figure 5.1b. We have � (f 1g) = � (f 3g) = 2 and
� (f 1; 2g) = � (f 2; 3g) = 3, so that indices 1 and 3 are exchangeable in �. Index 2 is not exchange-
able with any of the two other indices because� (f 1; 2g) = � (f 2; 3g) = 3 while � (f 1; 3g) = 4.

Symmetry. De�nition 5.5 below gives two equivalent de�nitions of symmetry. The former, based
on De�nition 5.3, helps visualize the impact on the geometry of the capacity region. The latter,
already considered in [90], will be more practical for the calculations. The equivalence of the two
de�nitions is a special case of that of De�nitions 5.7 and 5.8 that will be given for poly-symmetry.

De�nition 5.5. A polymatroid � in RI
+ is said to besymmetric if all indices in I are pairwise

exchangeable in �. Equivalently, if � denotes the rank function of the polymatroid �, this
polymatroid is said to be symmetric if there exits a non-negative and non-decreasing functionh,
de�ned on f 0; 1; : : : ; I g, such that � (A) = h(jAj) for each A � I . The function h is called the
cardinality rank function of the polymatroid �.

83

Chapter 5. Performance analysis by state aggregation

Since the exchangeability of indices de�nes an equivalence relation onI , we can consider the
quotient set of I by this relation. This is the partition of I into the maximal sets of pairwise
exchangeable indices, called theequivalence classesof I by the equivalence relation. A polymatroid
is symmetric if and only if its quotient set is the trivial partition P = (I).

Example 5.6. Consider the toy example of Figure 4.2, with� 1 = � 3. The obtained polymatroid
capacity region is symmetric, with a cardinality rank function h de�ned on f 0; 1; 2g by h(0) = 0,
h(1) = � 1 + � 2 = � 2 + � 3, and h(2) = � 1 + � 2 + � 3. The polymatroid of Figure 4.3b is also
symmetric if � 1 = � 3 = � 5 and � 2 = � 4 = � 6.

Corollary 1 in [90] shows that, if the polymatroid capacity region of a multi-server queue is sym-
metric, and if the arrival rates to all classes are equal, then the formulas of Theorem 5.1 can be
simpli�ed in such a way that complexity becomes linear in the number of classes. This result
will be recalled as a special case of Theorem 5.10 below. Roughly speaking, the idea is to replace
the rank function � with the cardinality rank function h in (5.1), (5.2), and (5.3), so that we can
perform an additional state aggregation and compute the stationary distribution of the number of
active classes, which takes its values inf 0; 1; : : : ; I g. However, this result does not say if we can
make similar simpli�cations when only part of the classes are exchangeable. For instance, could
we use the exchangeability of classes 1 and 3 in Example 5.4 to simplify the formulas? This is the
objective of poly-symmetry.

Poly-symmetry. Consider a positive integerK and a partition P = (I 1; : : : ; I K) of I into K
parts. The parts are assumed to be ordered for simplicity.

De�nition 5.7. A polymatroid � in RI
+ is said to bepoly-symmetric with respect to partition

P if, for each k = 1 ; : : : ; K , all indices in I k are pairwise exchangeable in �.

Going back to De�nition 5.5, a polymatroid is symmetric if and only if it is poly-symmetric
with respect to the trivial partition P = (I). In terms of the equivalence relation de�ned by
the exchangeability of indices, the de�nition of poly-symmetry can be rephrased as follows: a
polymatroid � is poly-symmetric with respect to a partition P if and only if P is a re�nement of
the quotient set of I by the exchangeability relation in �. It follows directly from De�nition 5.7
that the polymatroid of Example 5.4 is poly-symmetric with respect to partition (f 1; 3g; f 2g).

We now give an alternative de�nition of poly-symmetry, equivalent to De�nition 5.7, that
will prove more practical for the computations. It is the counterpart of the second de�nition of
symmetry in De�nition 5.5. For each k = 1 ; : : : ; K , let I k = jI k j denote the size of partk, where
by part we mean a subset of the partition. For eachA � I , let jAj P = (jA \ I 1j; : : : ; jA \ I K j)
denote the vector of sizes of the parts ofA in the partition. The set of these vectors is denoted by

N =
KY

k=1

f 0; 1; : : : ; I k g:

De�nition 5.8. Consider a polymatroid � in RI
+ and let � denote its rank function. � is said

to be poly-symmetric with respect to partition P if, for each A � I , � (A) depends onA only
through the size of A \ I k for each k = 1 ; : : : ; K . Equivalently, there exists a non-negative,
componentwise non-decreasing functionh, de�ned on N , such that � (A) = h(jAj P) for each
A � I . We call h the cardinality rank function of � with respect to partition P.

Proof. We only prove that De�nition 5.7 implies De�nition 5.8, as the reverse implication is
clear. For eachA; A 0 � I with jAj P = jA 0jP , we can write A = (A n (A \ A 0)) t (A \ A 0) and
A 0 = (A 0 n (A \ A 0)) t (A \ A 0). Since jA n (A \ A 0)jP = jA 0 n (A \ A 0)jP , we are reduced to
proving that � (A t B) = � (A 0t B) for all disjoint sets A ; A 0; B � I such that jAj P = jA 0jP . This
can be done by ascending induction on the cardinality ofA and A 0.

84

Section 5.2. Poly-symmetry

Example5.9. Consider the multi-server queue with the assignment graph depicted in Figure 5.2a,
where all servers have the same unit capacity� 1 = � 2 = � 3 = 1. The corresponding capacity
region is depicted in Figure 5.2b. It is poly-symmetric with respect to partition P = (f 1; 3g; f 2g).
The corresponding cardinality rank function h is given by h(0; 0) = 0, h(1; 0) = 2, and h(0; 1) =
h(1; 1) = 3.

(a) Compatibility graph. (b) Capacity region.

Figure 5.2: A multi-server queue with a poly-symmetric capacity region.

Performance prediction. Consider a multi-server queue with a setI of indices. Assume its
polymatroid capacity region � to be poly-symmetric with respect to partition P. For eachA � I ,
the vector jAj P = (jA\I 1j; : : : ; jA\ I K j) 2 N gives the number of active classes in each part of the
partition when the set of active classes isA . This vector will often be denoted by a = (a1; : : : ; aK) 2
N . By abuse of notation, for eachk = 1 ; : : : ; K , we let ek denote the K -dimensional vector with
1 in component k and 0 elsewhere.

The resources are allocated by applying balanced fairness or the �rst-come-�rst-served policy in
the capacity region �. The arrival rate of class i is denoted by� i , for eachi 2 I . The multi-server
queue is assumed to be stable. Let� denote its stationary distribution and L the expected number
of customers. With|yet another|slight abuse of notation, for each a = (a1; : : : ; aK) 2 N , we let
� (a) denote the probability that the number of active classes in part k is ak , for eachk = 1 ; : : : ; K ,
and L(a) the conditional expected number of customers in the queue given that the number of
active classes in partk is ak , for each k = 1 ; : : : ; K , given by

� (a) =
X

A :jAj P = a

� (A) =
X

x :jI x jP = a

� (x); 8a 2 N ;

and

L(a) =
X

A :jAj P = a

L(A)
� (A)
� (a)

=
X

x :jI x jP = a

(x1 + : : : + x I)
� (x)
� (a)

; 8a 2 N :

For each k = 1 ; : : : ; K , let L k denote the expected number of customers of the classes of partk
and, for eacha 2 N , L k (a) the conditional expected number of customers of the classes of partk
given that the number of active classes in part` is a` , for each ` = 1 ; : : : ; K , that is

L k =
X

x 2 NI

X

i 2I k

x i

!

� (x);

and

L k (a) =
X

A :jAj P = a

X

i 2I k

L i (A)

!
� (A)
� (a)

=
X

x :jI x jP = a

X

i 2I k

x i

!
� (x)
� (a)

; 8a 2 N :

We have L = L 1 + : : : + L k and L(a) = L 1(a) + : : : L K (a) for each a 2 N . Also, the regularity
assumptions guarantee that, for eachk = 1 ; : : : ; K and eachi 2 I k , the|unconditional or condi-
tional|expected numbers of class- i customers are given byL k =IK and L k (a)=Ik for each a 2 N .

85

Chapter 5. Performance analysis by state aggregation

Finally, an application of the law of total expectation yields

L =
X

a2N

L(a)� (a); L k =
X

a2N

L k (a)� (a); 8k = 1 ; : : : ; K:

The following theorem gives recursive formulas to compute these quantities with a complexity of
O(I 1 � : : : � I K). The special case for a symmetric polymatroid|corresponding to K = 1|was
shown in Corollary 1 of [90], but our formulation is closer to Proposition 4 and Theorem 1 in [93].

Theorem 5.10. Consider a stable multi-server queue with a setI = f 1; : : : ; I g of customer
classes and a polymatroid capacity region� . Assume that � is poly-symmetric with respect to
partition P and let h denote the corresponding cardinality rank function. Further assume that,
for each k = 1 ; : : : ; K , all classes in I k have the same arrival rate� k , i.e., � i = � k for each
i 2 I k . For each a 2 N n f 0g, we have

� (a) =
P K

k=1 (I k � ak + 1) � k � (a � ek)

h(a) �
P K

k=1 ak � k

; (5.4)

and

L(a)� (a) =
h(a)� (a) +

P K
k=1 (I k � ak + 1) � k L(a � ek)� (a � ek)

h(a) �
P K

k=1 ak � k

: (5.5)

Let k = 1 ; : : : ; K . For each a 2 N , we haveL k (a) = 0 if ak = 0 , and otherwise

L k (a)� (a) =
(I k � ak + 1) � k � (a � ek) + ak � k � (a) +

P K
` =1 (I ` � a` + 1) � ` L k (a � è)� (a � è)

h(a) �
P K

` =1 a` � `

:

(5.6)

Proof. We �rst focus on (5.4) and then we prove (5.6), which implies (5.5) by summation.

Equation (5.4). Let a 2 N n f 0g. By (5.1), we have

� (a) =
X

A�I :
jAj P = a

� (A) =
X

A�I :
jAj P = a

P
i 2A � i � (A n f ig)

� (A) �
P

i 2A � i
:

The regularity assumptions ensure that � (A) �
P

i 2A � i = h(a) �
P K

k=1 ak � k for each A � I
such that jAj � = a. Thus we obtain

h(a) �
KX

k=1

ak � k

!

� (a) =
X

A�I :
jAj P = a

X

i 2A

� i � (A n f ig) =
KX

k=1

� k

X

i 2I k

X

A :i 2A ;
jAj P = a

� (A n f ig): (5.7)

For each k = 1 ; : : : ; K , we have
X

i 2I k

X

A :i 2A ;
jAj P = a

� (A n f ig) =
X

B�I :
jBj P = a� ek

X

i 2I k n(B\I k)

� (B) = (I k � ak + 1)
X

B�I :
jBj P = a� ek

� (B);

where the �rst equality follows by �rst replacing A with B = A n f ig in the inner sum and then
exchanging the two sums. Therefore, we obtain

X

i 2I k

X

A :i 2A ;
jAj P = a

� (A n f ig) = (I k � ak + 1) � (a � ek); 8k = 1 ; : : : ; K: (5.8)

Injecting this expression back into (5.7) yields (5.4).

86

Section 5.2. Poly-symmetry

Equation (5.6). Let k = 1 ; : : : ; K and a 2 N such that ak > 0. By de�nition of L k (a), we have

L k (a)� (a) =
X

A�I :
jAj P = a

X

i 2I k

L i (A)

!

� (A) =
X

i 2I k

X

A :i 2A ;
jAj P = a

L i (A)� (A); (5.9)

and by (5.3), we obtain

L k (a)� (a) =
X

i 2I k

X

A :i 2A ;
jAj P = a

� i � (A n f ig) + � i � (A) +
P

j 2Anf i g � j L i (A n f j g)� (A n f j g)

� (A) �
P

j 2A � j
:

Using again the regularity assumptions, we can rewrite this as

h(a) �
KX

` =1

a` � `

!

L k (a)� (a) = � k

X

i 2I k

X

A :i 2A ;
jAj P = a

� (A n f ig) + � k

X

i 2I k

X

A :i 2A ;
jAj P = a

� (A)

+
X

i 2I k

X

A :i 2A ;
jAj P = a

X

j 2A :
j 6= i

� j L i (A n f j g)� (A n f j g):

The right-hand member of the equality is made of three terms. The �rst term is given by (5.8).
The second term is given by

� k

X

i 2I k

X

A :i 2A ;
jAj P = a

� (A) = � k

X

A�I :
jAj P = a

X

i 2A\I k

� (A) = ak � k � (a):

We �nally focus on the third term. For each i 2 I k , we have

X

A :i 2A ;
jAj P = a

X

j 2A :
j 6= i

� j L i (A n f j g)� (A n f j g) =
KX

` =1

� `

X

j 2I ` :
j 6= i

X

A :i;j 2A ;
jAj P = a

L i (A n f j g)� (A n f j g):

By applying the same substitution as in (5.8), we obtain, for each` = 1 ; : : : ; K ,

X

j 2I ` :
j 6= i

X

A :i;j 2A ;
jAj P = a

L i (A n f j g)� (A n f j g) =
X

B:i 2B ;
jBj P = a� e`

X

j 2I ` n(B\I `)

L i (B)� (B);

= (I ` � a` + 1)
X

B:i 2B ;
jBj P = a� e`

L i (B)� (B):

By summing this equality over all i 2 I k and all ` = 1 ; : : : ; K , we obtain for the third term:

X

i 2I k

KX

` =1

(I ` � a` + 1) � `

X

B:i 2B ;
jBj P = a� e`

L i (B)� (B) =
KX

` =1

(I ` � a` + 1) � `

X

i 2I k

X

B:i 2B ;
jBj P = a� e`

L i (B)� (B);

=
KX

` =1

(I ` � a` + 1) � ` L k (a � è)� (a � è);

where the second equality follows from (5.9).

This result applies to Examples 5.4 and 5.9 with partition P = (f 1; 3g; f 2g), provided that classes 1
and 3 have the same arrival rate. The set of suitable vectors of arrival rates is depicted as the
darkly shaded region in Figure 5.2b.

87

Chapter 5. Performance analysis by state aggregation

Example 5.11. We now consider a more sophisticated example of poly-symmetry. LetI 1 and I 2

be two positive integers. Consider a multi-server queue withS = I 1I 2 servers andI = I 1 + I 2

classes. All servers have the same unit capacity. The setI = f 1; : : : ; I g of classes is partitioned
into two subsets I 1 and I 2. The set I 1 contains I 1 classes that can each be served byI 2 servers.
The set I 2 contains I 2 classes that can each be served byI 1 servers. Speci�cally, the i -th class of
I 1 can be served by the servers (i � 1)I 2 + j for j = 1 ; : : : ; I 2, for eachi = 1 ; : : : ; I 1; symmetrically,
the i -th class ofI 2 can be served by the serversi +(j � 1)I 2 for j = 1 ; : : : ; I 1, for eachi = 1 ; : : : ; I 2.
Figure 5.3 shows an example withI 2 = 2 and I 1 = 3.

Figure 5.3: A multi-server queue with I 1 = 3 and I 2 = 2 .

Each class ofI 1 shares exactly one server with each class ofI 2, and this server is dedicated to
these two classes. The rank function of the multi-server queue is thus given by

� (A) = jA \ I 1jI 2 + jA \ I 2jI 1 � jA \ I 1j � jA \ I 2j; 8A � I :

The polymatroid capacity region de�ned by this rank function is poly-symmetric with respect to
partition P = (I 1; I 2) and the corresponding cardinality rank function is given by

h(a) = a1I 2 + a2I 1 � a1a2; 8a = (a1; a2) 2 N :

For each k = 1 ; 2, assume that all classes inI k have the same arrival rate � k . Further assume
that the vector of arrival rates � = (� 1; � 2) stabilizes the system, that is

a1� 1 + a2� 2 < a 1I 2 + a2I 1 � a1a2; 8a 2 N :

We can then apply Theorem 5.10 to compute the expected number of customers of each class
with a complexity of O(I 1I 2).

As we already observed in Chapter 4, the model of a multi-server queue under balanced fairness
or �rst-come-�rst-served policy can be generalized using the frameworks of Whittle networks and
order-independent queues. The obtained model was called apolymatroidal queue in Chapter 4.
The results we stated in Section 5.1 and in this section can be applied as they are to this more
general model, as they only rely on regularity assumptions stated in terms of the polymatroid
capacity region � and the arrival rates. This observation will be exploited in Section 5.3 to bound
the performance of a multi-server queue with that of a polymatroidal queue.

5.3 Random class assignment

While the property of poly-symmetry is hard to satisfy in practice, except in speci�c cases like
Example 5.11, it can be applied to derive stochastic bounds on other systems. In this section, we
use it to bound the performance of a multi-server queue in which classes are randomly assigned to
servers. We �rst state a monotonicity result that will be used subsequently to prove the bound.
Except for Theorem 5.12, the results of this subsection are poly-symmetric extensions of the results
stated in [93, Section 5] for symmetry.

5.3.1 Monotonicity result

Given a real 0 < � < 1 and a polymatroid � in RI
+ with rank function � , we let (1 + �)� and

(1 � �)� denote the polymatroids in RI
+ with rank functions (1 + �)� and (1 � �)� , respectively.

88

Section 5.3. Random class assignment

The following result allows us to control the impact of the capacity region on performance.

Theorem 5.12. Consider two polymatroids� and �̂ in RI
+ such that �̂ is a subset of(1 + �)�

and a superset of(1 � �)� for some 0 < � < 1. Also consider a vector � in the interior of
(1 � �)� . Let � , � + , and � � denote the stationary distributions of the polymatroidal queues
with the vector of arrival rates � and the capacity regions�̂ , (1+ �)� , and (1� �)� , respectively.
Similarly, let , + , and � denote the stationary probabilities that these queues are empty.
Then we have

 �

 + � + (x) � � (x) �
 +

 � � � (x); 8x 2 NI :

In particular, for each i 2 I , we have

 �

 + L +
i � L i �

 +

 � L �
i ;

where L i , L +
i , and L �

i are the expected number of class-i customers under the distributions� ,
� + , and � � , respectively.

Proof. Let �̂ and � denote the rank functions of �̂ and �, respectively. Also let �, � + , and � �

denote the balance functions of the service rates under balanced fairness in the capacity regions
�̂, (1 + �)�, and (1 � �)�, respectively. For each x 2 NI , we have

� + (x) � �(x) � � � (x); 8x 2 NI :

This inequality is a consequence of Lemma 3.5|stated in the proof of Theorem 3.4. If follows
that

1

=
X

x 2 NI

�(x)
Y

i 2I

� i
x i �

X

x 2 NI

� + (x)
Y

i 2I

� i
x i =

1
 + :

Thus, for each x 2 NI , we obtain

� (x) = �(x)
Y

i 2I

� i
x i � � � (x)

Y

i 2I

� i
x i � + � � (x)

Y

i 2I

� i
x i =

 +

 � � � (x):

The proof of the other part of the inequality is similar. The second equality, about the expected
number of customers, follows by summation.

5.3.2 Assignment

Consider a multi-server queue as described in Section 4.3, and letS = f 1; : : : ; Sg denote the set
of servers andI = f 1; : : : ; I g the set of classes. Also letK be a positive integer and consider
a partition P = (I 1; : : : ; I K) of I into K parts of the same size, assuming thatI is a multiple
of K . We could easily generalize the result toK parts of di�erent sizes but we prefer keeping the
notations simple. We use the same notations as in Section 5.2: for eachA � I , a = jAj P denotes
the K -dimensional vector whosek-th component is ak = jA \ I k j, the size of thek-th part of A in
partition P, for each k = 1 ; : : : ; K ; the set of these vectors is denoted byN = f 0; 1; : : : ; I=K gK .

We now consider a random assignment of classes to servers, described by a compatibility graph
with random edges. Each realization of this random assignment de�nes a polymatroid capacity
region. Hence, once this initial random assignment is settled, we can apply balanced fairness or
the �rst-come-�rst-served policy over the associated capacity region. Our assignment is static in
the sense that the compatibility graph does not change over time. For a given realization, we
can thus observe the evolution of the queue under a stochastic demand and compute the resulting
performance metrics as we did earlier.

The random assignment of classes to servers is de�ned as follows. ConsiderK integersr 1,. . . ,r K ,
each between 1 andS. For each k = 1 ; : : : ; K and eachi 2 I k , the random set Si of servers than

89

Chapter 5. Performance analysis by state aggregation

can process class-i customers is chosen uniformly and independently at random among the subsets
of S of cardinality r k . As in Section 4.1, the random assignment de�nes a bipartite graph between
classes and servers, where there is a|random|edge between a class and a server if this server
can process the customers of this class. Each realization of this assignment de�nes a polymatroid
capacity region with a rank function given by (4.1). This allows us to de�ne a random rank function
associated with the random assignment, de�ned by

M (A) =
X

s2
S

i 2A
S i

� s =
X

s2S

� s1f s2
S

i 2A
S i g; 8A � I : (5.10)

We also let � denote the expected rank function, where the expectation is taken over all feasible
assignments:

� (A) = E(M (A)) ; 8A � I : (5.11)

The next lemma proves that the polymatroid capacity region � de�ned by � through (4.3) is
poly-symmetric with respect to partition P.

Lemma 5.13. The average capacity region� de�ned by � is a poly-symmetric polymatroid
with respect to partition P. Its cardinality rank function h is de�ned on N by

h(a) = S ��

1 �
KY

k=1

�
1 �

r k

S

� ak

!

; 8a 2 N ;

where �� = (
P

s2S � s)=S is the average capacity of the servers.

Proof. Let A � I and a = jAj P . By linearity of the expectation, we have

� (A) =
X

s2S

� s P

s 2
[

i 2A

Si

!

:

For eachk = 1 ; : : : ; K such that ak > 0, the probability that a given server s 2 S cannot serve a
speci�c class inA\I k is

� S� 1
r k

�
=
� S

r k

�
= 1 � r k

S . Since the assignments of the classes are independent
of each other, it follows that the probability that server s can serve at least one class inA is

P

s 2
[

i 2A

Si

!

= 1 �
KY

k=1

�
1 �

r k

S

� ak

:

Doing the replacement in the expression of� (A) is su�cient to conclude. Speci�cally, a direct
calculation shows that � satis�es the normalization, monotonicity, and submodularity proper-
ties that characterize a rank function, so that the polytope � de�ned by � through (4.3) is a
polymatroid in RI

+ . Also, the expression we obtain for� (A) only depends ona = jAj P and it is
consistent with the expression announced forh.

Consider a vector of positive arrival rates � = (� 1; : : : ; � I) and a realization (S1; : : : ; SI) of the
random assignment (S1; : : : ; SI). If � is in the interior of the capacity region de�ned by this
assignment, the obtained multi-server queue is stable under balanced fairness or the �rst-come-
�rst-served policy and we can study its stationary behavior. Let � (S1 ;:::; SI) denote its stationary
distribution and, for each i 2 I , let L i; (S1 ;:::; SI) denote the expected number of class-i customers
in this queue, given by

L i; (S1 ;:::; SI) =
X

x 2 NI

x i � (S1 ;:::; SI) (x); 8i 2 I :

For completeness, we letL i; (S1 ;:::; SI) = + 1 for each realization (S1; : : : ; SI) of the random assign-
ment that is not stabilized by � . Finally, for each i 2 I , we let L i denote the conditional expected
number of class-i customers in the queue with respect to the random assignment, given by

L i = L i; (S1 ;:::; SI) ; 8i 2 I : (5.12)

90

Section 5.3. Random class assignment

5.3.3 Asymptotic poly-symmetry

We now consider a sequence of multi-server queues in which classes are randomly assigned to
servers, as de�ned in the previous section. We �rst show that, under the correct scaling regime,
the random capacity region concentrates around its poly-symmetric expectation. Then we use
Theorem 5.12 to transpose this concentration result into bounds on the asymptotic performance.

Consider a positive integerK and a positive realb. For eachm � 1, the m-th random queue of
the sequence containsSm = dbme servers andI m = Km customer classes. LetSm = f 1; : : : ; Sm g
denote the set of servers andI m = f 1; : : : ; I m g the set of customer classes. The capacity of servers
is denoted by � m;s for each s 2 Sm . Consider a partition Pm = (I m; 1; : : : ; I m;K) of I m into K
parts of size m, for instance I m;k = f (k � 1)m + 1 ; : : : ; kmg for each k = 1 ; : : : ; K . Our results
could be generalized toK parts of unequal sizes, as long as the size of each part grows linearly
with m, but we prefer keeping notations simple. For eachk = 1 ; : : : ; K and each i 2 I m;k , the
set Sm;i of servers that can process class-i customers is chosen uniformly and independently at
random among the subsets ofSm of cardinality r m;k , for some positive integerr m;k = 1 ; : : : ; Sm .

For each m � 1, let M m denote the random rank function de�ned by this random assignment
and � m its expectation, as de�ned by (5.10) and (5.11). By Lemma 5.13, for eachm � 1, the
corresponding average capacity region �m is poly-symmetric with respect to partition Pm and its
cardinality rank function hm is de�ned on Nm = f 0; 1; : : : ; mgK by

hm (a) = Sm �� m

1 �
KY

k=1

�
1 �

r m;k

Sm

� ak
!

; 8a 2 N m :

where �� m = (
P

s2S m
� m;s)=Sm is the average capacity of the servers. Theorem 5.14 below shows

that, under the following two assumptions on the server capacities and parallelism degrees, the
probability that the random rank function M m is uniformly close to its average� m is 1 � o(1

m).
The proof is given in Appendix 5.A.

Assumption 1. For each m � 1, Sm is partitioned into a constant number of groups|that is,
independent ofm. Each group contains
(m) servers which have the same capacity.

Assumption 2. For each k = 1 ; : : : ; K , the sequence (r m;k)m � 1 satis�es r m;k = ! (log(m)).

Theorem 5.14. Let 0 < � < 1. Under Assumptions 1 and 2, there exists a sequence(gm)m � 1

such that gm = ! (log(m)) and, for each m � 1,

P(9A � I m s.t. M m (A) � (1 � �)� m (A)) � e� gm

and
P(9A � I m s.t. M m (A) � (1 + �)� m (A)) � e� gm :

In particular, the random capacity region resulting from the random assignment is a subset of
(1 + �)� m and a superset of(1 � �)� m with probability 1 � o(1

m).

5.3.4 Performance metrics

Let 0 < � < 1. For eachm � 1, consider a vector� m = (� m; 1; : : : ; � m;K) 2 RK
+ of tra�c intensities

that stabilizes the multi-server queue with capacity region (1� �)� m under balanced fairness or
the �rst-come-�rst-served policy, that is,

KX

k=1

ak � m;k < (1 � �)hm (a); 8a 2 N m ;

where hm is the cardinality rank function of the m-th average capacity region with respect to
partition Pm :

hm (a) = Sm �� m

1 �
KY

k=1

�
1 �

r m;k

Sm

� ak
!

; 8a 2 N m :

91

Chapter 5. Performance analysis by state aggregation

For eachm � 1, let L m;i denote the conditional expected number of class-i customers in the queue
with respect to the random assignment (Sm; 1; : : : ; Sm;K), as de�ned by (5.12), assuming that, for
eachk = 1 ; : : : ; K and eachi 2 I m;k , the arrival rate of class i is � m;k . Combining Theorems 5.12
and 5.14 yields the following result.

Theorem 5.15. Let 0 < � < 1. For each m � 1, let � +
m and � �

m denote the stationary distribu-
tions of the polymatroidal queues withKm classes and capacity regions(1+ �)� m and (1� �)� m ,
respectively, when the arrival rates of the classes inI m;k is � m;k , for each k = 1 ; : : : ; K . As-
sume these queues to be stable and stationary. Let +

m and �
m denote the probability that these

queues are empty and, for eachk = 1 ; : : : ; K , L +
m;k and L �

m;k the expected numbers of customers
in part k. Under Assumptions 1 and 2, we have:

P

 �

m

 +
m

L +
m;k

m
� L m;i �

 +
m

 �
m

L �
m;k

m
; 8k = 1 ; : : : ; K; 8i 2 I k

!

= 1 � o
�

1
m

�
:

For each m � 1, Theorem 5.10 gives formulas to compute �
m and L �

m for each k = 1 ; : : : ; K with
a complexity of O(mK). Using Little's law, we can derive bounds on the mean delay or the mean
service rate within each class of customers.

5.4 Numerical results

We omit the index m for brevity. Consider a multi-server queue with S = 10; 000 servers with unit
capacity. The set of customer classes is partitioned into two parts of equal sizem = I=2 = 1; 000
each. The classes of the �rst part have a degreer 1 = 20 and those of the second part have a degree
r 2 = 40. All customers have a unit mean service requirement and the arrival rates are proportional
to the degrees. The arrival rate of each class of the second part is thus twice that of each class of
the �rst part. Let � = (� 1; � 2) 2 R2

+ such that

� 1 =
r 1

r 1 + r 2

h(m; m)
m

; � 2 =
r 2

r 1 + r 2

h(m; m)
m

;

where h is the cardinality rank function of the average capacity region � with respect to partition
P = (I 1; I 2), de�ned by

h(a) = S
�

1 �
�

1 �
r 1

S

� a1
�

1 �
r 2

S

� a2
�

; 8a 2 f 0; 1; : : : ; mg2:

One can prove that the vector of arrival rates � = (� 1; : : : ; � I) 2 RI
+ de�ned by � i = � 1 for each

classi in the �rst part of I and � i = � 2 for each classi in the second part of I is on the boundary
of the average capacity region �.

Let 0 < � < 1. For each� 2 (0; 1 � �), the vector �� = (�� 1; �� 2) stabilizes the polymatroidal
queues with capacity regions (1 +�)� and (1 � �)�. The bounds on the mean service rate that
follow from Theorem 5.15 by applying Little's law are given by

�
1 + �

 +

 �

m � k

L +
k

and
�

1 � �
 �

 +

m � k

L �
k

;

where � = � � (0) and L �
k are computed as follows, using the formulas of Theorem 5.10. For each

a 2 N , we have

� � (a) =
(m � a1 + 1) � 1� � (a � e1) + (m � a2 + 1) � 2� � (a � e2)

1� �
� h(a) � a1� 1 � a2� 2

:

Also, for eachk = 1 ; 2 and eacha 2 N , we haveL �
k (a) = 0 if ak = 0, and otherwise

L �
k (a)� � (a) =

1
1� �

� h(a) � a1� 1 � a2� 2

�
ak � k � � (a) + (m � ak + 1) � k � � (a � ek)

+
2X

` =1

(m � ak + 1) � ` L �
k (a � è)� � (a � è)

�
:

92

Section 5.5. Concluding remarks

Figure 5.4 gives the bounds obtained as a function of� 2 (0; 1 � �), for di�erent values of � . The
performance metric is the average service rate per customer. The source code to generate the
numerical results is available at [C01].

Figure 5.4: Bounds obtained withS = 10; 000, I = 2 ; 000, d1 = 20, and d2 = 40.

5.5 Concluding remarks

In this chapter, we introduced a poly-symmetry condition on the capacity region of multi-server
queues. When this condition is met, it allows us to predict performance with a complexity that
is polynomial in the number of classes, instead of exponential in general. In a second time, we
showed that, under the correct scaling regime, the capacity region of a multi-server queue with a
randomized class assignment tends to meet this condition asymptotically. This result allowed us
to derive asymptotic bounds on the performance of such a multi-server queue.

Bibliographical notes. Other works proposed formulas of the same form as those of Theorem 5.1
to predict performance under balanced fairness in various contexts. To the best of our knowledge,
the �rst general-purpose formulas of this kind were proposed in [17]. This work observed that
balanced fairness is Pareto-e�cient in tree data networks, which made possible a state aggregation
similar to that of Theorem 5.1. The counterpart of these results for the multi-server queue were
derived in [90, 91, 93]. A key contribution of this work was to observe that balanced fairness is
actually Pareto-e�cient in any polymatroid capacity region, which made their results applicable
to a broader class of queueing systems.

Appendix 5.A Proof of Theorem 5.14

We give the proof only for the caseK = 2 for ease of notation; the other cases follow analogously.
For now, we assume that, for eachm � 1, all servers have the same service capacity �� m , that is,
� m;s = �� m for each s 2 Sm .

Let 0 < � < 1. We will show that there exists a sequence (gm)m � 1 such that gm = ! (log m)
and, for eachm � 1,

P(9A � I m s.t. M m (A) � (1 � �)� m (A)) � e� gm :

Let us �rst give the main idea of the proof. As in the proof of [93], our proof is divided in three
parts. We �rst provide a bound for P(M m (A) � (1 � �)� m (A)) for each A � I m for m large
enough. Then, for eacha 2 N m = f 0; 1; : : : ; mg2, we use the union bound to obtain a uniform
bound over all setsA � I m such that jAj P m = a. Finally, another use of the union bound over all
a 2 N m gives us the result.

93

Chapter 5. Performance analysis by state aggregation

Preliminaries. Let m � 1, a 2 N m , and A � I m such that jAj P m = a. Recall that we have

M m (A) = �� m

X

s2S m

1f s2
S

i 2A
Sm;i g:

The random variables 1f s2
S

i 2A
Sm;i g for s 2 Sm are Bernoulli distributed with parameter

pm;a = 1 �
�

1 �
r m; 1

Sm

� a1
�

1 �
rm; 2

Sm

� a2

:

Also, we have� m (A) = E(M m (A)) = Sm �� m pm;a .
Dubbashi et al. proved in Theorem 10 of [35] that these random variables are negatively asso-

ciated in the sense of De�nition 3 of [35]. Their Theorem 14 showed that the Cherno�-Hoe�ding
bounds|see for instance [78, 96]|known to hold for independent random variables, can also be
applied to these random variables. Hence, the following two inequalities hold:

P(M m (A) � (1 � �)� m (A)) � e� � 2
2 Sm pm;a ; (5.13)

P(M m (A) � (1 � �)� m (A)) � e� Sm H ((1 � �)pm;a kpm;a) ; (5.14)

where, for eachp; q 2 (0; 1), H (p k q) is the Kullback{Leibler divergence between two Bernoulli
random variables with parametersp and q, respectively, given by

H (p k q) = p log
�

p
q

�
+ (1 � p) log

�
1 � p
1 � q

�
:

We also use the following lemmas, which will be proved in Appendix 5.B.

Lemma 5.16. Let 0 < � < 1
2 . Consider a sequence(gm)m � 1 such that gm = o(r m; 1) and

gm = o(rm; 2). For large enoughm, we have

pm;a � �
(a1 + a2)gm

m
; 8a = (a1; a2) 2

�
0; 1; : : : ;

�
m
gm

�� 2

:

Lemma 5.17. There exists a positive constant� such that

H ((1 � �)pm;a k pm;a) � � � + �
a1r m; 1 + a2r m; 2

Sm
; 8m � 1; 8a = (a1; a2) 2 N m :

Now consider the sequence (gm)m � 1 given by

gm = (min (rm; 1; rm; 2) log(m))
1
2 ; 8m � 1:

Observe that gm = ! (log(m)), gm = o(rm; 1), and gm = o(rm; 2). In particular, (gm)m � 1 satis�es
the assumptions of Lemma 5.16. Now letm � 1 and a 2 N m . We distinguish two cases depending
on the value of a.

Case 1 (0 � a1 � m
gm

and 0 � a2 � m
gm

). By Lemma 5.16, there is a positive constant� 1 such
that, for large enough m, we have

pm;a � � 1
(a1 + a2)gm

m
:

Using (5.13), we deduce that, for eachA � I m such that jAj P m = a, we have

P(M m (A) � (1 � �)� m (A)) � e� � 2
2 � 1 b(a1 + a2)gm :

94

Section 5.A. Proof of Theorem 5.14

The union bound yields

P
�

9A � I m s.t. jAj P m = a and M (m) (A) � (1 � �)� m (A)
�

� e� � 2
2 � 1 b(a1 + a2)gm

�
m
a1

��
m
a2

�
;

� e� � 2
2 � 1 b(a1 + a2)gm ma1 ma2 ;

= e
�

� � 2
2 � 1 b+ log(m)

g m

�
(a1 + a2)gm :

Sincegm = ! (log(m)), we obtain that, for large enough m, we have

P
�

9A � I m s.t. jAj P m = a and M (m) (A) � (1 � �)� m (A)
�

� e� � 2 (a1 + a2)gm ;

with � 2 = � 2

4 � 1b > 0.

Case 2 (a1 > m
gm

or a 2 > m
gm

). By combining (5.14) with Lemma 5.17, we deduce that there is
a positive constant � 3 such that

P(M m (A) � (1 � �)� m (A)) � e� 3 Sm � � (a1 r m; 1 + a2 r m; 2)

for eachA � I m such that jAj P m = a. Sincegm = o(r m; 1) and Sm = dbme, we have� 3Sm � �
2

mr m; 1

gm

when m is large enough. Ifa1 > m
gm

, we have further that �
2

mr m; 1

gm
� �

2 a1r m; 1, so that

� 3Sm � � (a1r m; 1 + a2r m; 2) � �
�
2

a1r m; 1 � �a 2r m; 2 � �
�
2

(a1r m; 1 + a2rm; 2)

for large enoughm. The same argument holds by invertinga1 and a2 when a2 > m
gm

. Therefore,
there is a positive constant � 4 = �

2 such that, for large enoughm, we have

P(M m (A) � (1 � �)� m (A)) � e� � 4 (a1 r m; 1 + a2 r m; 2)

for each A � I m with jAj P m = a. Applying the union bound yields

P(9A � I m s.t. jAj P m = a and M m (A) � (1 � �)� m (A))

� e� � 4 (a1 r m; 1 + a2 r m; 2)
�

m
a1

��
m
a2

�
;

� e� � 4 (a1 r m; 1 + a2 r m; 2) ma1 ma2 ;

� e
�

� � 4 + log(m)
r m; 1

�
a1 r m; 1 e

�
� � 4 + log(m)

r m; 2

�
a2 r m; 2 :

Since we have assumed thatrm; 1 = ! (log(m)) and rm; 2 = ! (log(m)), we obtain that there exists
a positive constant � 5 < � 4 such that, when m is large enough, we have

P(9A � I m s.t. jAjP m = a and M m (A) � (1 � �)� m (A))

� e� � 5 a1 r m; 1 e� � 5 a2 r m; 2 = e� � 5 (a1 r m; 1 + a2 r m; 2) :

Conclusion. By combining Cases 1 and 2 above, we deduce that there exists a positive constant
� 6 such that, when m is large enough, we have

P(9A � I m s.t. jAj P m = a and M m (A) � (1 � �)� m (A)) � e� � 6 gm ; 8a 2 N m :

Yet another application of the union bound yields

P(9A � I m s.t. M m (A) � (1 � �)� m (A)) � m2e� � 6 gm = e2 log(m) e� � 6 gm = e�
�

� 6 � 2 log(m)
g m

�
gm :

Since gm = ! (log(m)), we conclude that there is a positive constant� 7 < � 6 such that, for large
enoughm, we have

P(9A � I m s.t. M m (A) � (1 � �)� m (A)) � e� � 7 gm :

Finally, when the servers are in groups as in Assumption 1, we can break downM m into a sum
of random rank functions, one for each group. The result follows by showing the concentration in
each group, as before, and then using the union bound again.

95

Chapter 5. Performance analysis by state aggregation

Appendix 5.B Proof of the lemmas for Theorem 5.14

Lemma 5.16. Let 0 < � < 1
2 . Consider a sequence(gm)m � 1 such that gm = o(r m; 1) and

gm = o(rm; 2). For large enoughm, we have

pm;a � �
(a1 + a2)gm

m
; 8a = (a1; a2) 2

�
0; 1; : : : ;

�
m
gm

�� 2

:

Proof. Let 0 < � < 1
2 and consider a sequence (gm)m � 1 such that gm = o(r m; 1) and gm = o(rm; 2).

Also consider the sequence (f m)m � 1 of functions de�ned on R2
+ by

f m (t1; t2) = 1 �
�

1 �
r m; 1

Sm

� t 1
�

1 �
r m; 2

Sm

� t 2

; 8(t1; t2) 2 R2
+ :

We have pm;a = f m (a1; a2) for each a 2 N m . Therefore, it is su�cient to prove that, when m is
large enough, we havef m (t1; t2) � � (t 1 + t 2)gm

m for each t1; t2 � m
gm

. First observe that

f m

�
2m
gm

; 0
�

= 1 �

 �
1 �

r m; 1

Sm

� m
g m

! 2

����!
m !1

1;

and, symmetrically,

f m

�
0;

2m
gm

�
= 1 �

 �
1 �

r m; 2

Sm

� m
g m

! 2

����!
m !1

1:

Therefore, there is a positive integerm� such that that f m (2m
gm

; 0) � 2� and f m (0; 2m
gm

) � 2� for
eachm � m� . Now, for eachm � m� and eacht1; t2 � m

gm
, we have

f m (t1; t2) = f m

�
t1

t1 + t2
(t1 + t2; 0) +

�
1 �

t1

t1 + t2

�
(0; t1 + t2)

�
;

�
t1

t1 + t2
f m (t1 + t2; 0) +

t2

t1 + t2
f m (0; t1 + t2);

�
t1

t1 + t2

t1 + t2
2m
gm

f m

�
2m
gm

; 0
�

+
t2

t1 + t2

t1 + t2
2m
gm

f m

�
0;

2m
gm

�
;

� 2�
t1gm

2m
+ 2 �

t2gm

2m
;

= �
(t1 + t2)gm

m
;

where the �rst two inequalities hold by concavity of f m .

Lemma 5.17. There exists a positive constant� such that

H ((1 � �)pm;a k pm;a) � � � + �
a1r m; 1 + a2r m; 2

Sm
; 8m � 1; 8a = (a1; a2) 2 N m :

Proof. By de�nition of H , we have

H ((1 � �)pm;a k pm;a) = (1 � �)pm;a log(1 � �)

+ (1 � (1 � �)pm;a) log (1 � (1 � �)pm;a)

� (1 � (1 � �)pm;a) log (1 � pm;a) :

96

Section 5.B. Proof of the lemmas for Theorem 5.14

The �rst and second terms are greater than (1� �) log(1 � �) and log(�), respectively. Therefore,
with � = � (1 � �) log(1 � �) � log(�) > 0, we obtain

H ((1 � �)pm;a k pm;a) � � � � (1 � (1 � �)pm;a) log (1 � pm;a) � � � � � log (1 � pm;a) :

Finally, observe that

log (1 � pm;a) = a1 log
�

1 �
r m; 1

Sm

�
+ a2 log

�
1 �

r m; 2

Sm

�
� �

a1r m; 1 + a2r m; 2

Sm
;

where, in the inequality, we used the fact that log
�

1 � r m;k

Sm

�
� � r m;k

Sm
for each k = 1 ; 2.

97

98

6 Performance analysis
by server elimination

In this chapter, we propose a second approach for predicting performance in a multi-server queue.
In a nutshell, this approach could be described as server oriented, in opposition to the class-
oriented approach of Chapter 5. In Section 6.1, we derive generic formulas for computing the
probability that the queue is empty and the expected number of customers. The overall complexity
to compute performance metrics is exponential in the number of servers, but we are able to leverage
symmetries among servers that were not captured by the approach of Chapter 6. Sections 6.2 and
6.3 feature two examples of multi-server queues in which these symmetries can be exploited to
obtain a complexity that is polynomial in the number of servers. Two special cases of our formulas
were already considered in the literature [44, 45, 47], and we also recall them in these sections.
Section 6.4 shows some numerical results. This work was presented in [P03, P09, P10, P12].

6.1 Generic formulas

Consider a stable multi-server queue with a setI = f 1; : : : ; I g of customer classes and a set
S = f 1; : : : ; Sg of servers. For eachi 2 I , let � i denote the arrival rate of class-i customers and
Si � S the set of servers that can process these customers. Also, for eachs 2 S, the capacity of
servers is denoted by� s. The proof of Theorem 6.1 below relies on two complementary ingredients
that were pointed out in Chapters 1, 2, and 4. We briey recall them for clarity.

The �rst ingredient it the pareto-e�ciency of balanced fairness and the �rst-come-�rst-served
policy in the multi-server queue. Namely, for eachx 2 NI , the overall service rate in macrostatex
is equal to the service capacity that is available for the active classes in this state, given by

� (I x) =
X

s2
S

i 2I x
Si

� s:

Another way of stating this property, which emphases servers rather than classes, consists of saying
that each server is either idle or fully utilized. More precisely, for eachs 2 S, server s is idle if
there is no customer in the queue that can be processed by this server, that is, ifx i = 0 for each
i 2 I such that s 2 S i ; otherwise, whenever the queue contains at least on customer that can be
processed by servers, then the capacity of this server is fully utilized.

The second ingredient is thetruncation property that stems from the reversibility of the multi-
server queue under balanced fairness or from its quasi-reversibility under the �rst-come-�rst-served
policy. According to this property, the conditional stationary distribution of the multi-server queue
given that some classi 2 I is inactive is also the stationary distribution of another multi-server
queue, in which classi does not generate any tra�c, that is, in which � i = 0. This result is also
valid if we condition on the inactivity of several classes and not just one.

By combining these two ingredients, we obtain that, for eachs 2 S, the conditional stationary
distribution � j� s of the multi-server queue, given that servers is idle, is also the stationary distri-
bution of another multi-server queue, called therestricted multi-server queue, in which the classes
that are compatible with server s do not generate any tra�c|that is, in which server s and its

99

Chapter 6. Performance analysis by server elimination

compatible classes do not exist. In other words, for eachx 2 NI , we have

� j� s(x) = j� s �(x)
Y

i 2I

�
� i 1f s=2S i g

� x i 8x 2 NI :

The constant j� s is not only the conditional probability that the multi-server queue is empty given
that server s is idle, but also the|unconditional|probability that the restricted multi-server queue
is empty. Using the �rst interpretation, we obtain directly that

 = s j� s; (6.1)

where s is the probability that server s is idle. Along the same lines, the conditional expected
number L j� s of customers in the queue given that servers is idle is also the expected number of
customers in the restricted multi-server queue; for eachi 2 I , the conditional expected number
L i j� s of class-i customers given that servers is idle is also the expected number of class-i customers
in the restricted multi-server queue, with the convention that L i j� s = 0 if s 2 S i .

The following theorem relates the stationary metrics of the original multi-server queue to those
of the restricted queue. It gives a method to compute , L , and L i for each i 2 I by recursion.

Theorem 6.1. Consider a stable multi-server queue with a setI = f 1; : : : ; I g of customer
classes and a setS = f 1; : : : ; Sg of servers. For eachi 2 I , let � i denote the arrival rate of
class-i customers andSi � S the set of servers that can process these customers. Also, for each
s 2 S, let � s denote the capacity of servers. The probability that the queue is empty is given by

 = (1 � �)

P
s2S � sP

s2S
� s

 j� s

=

P
s2S � s �

P
i 2I � iP

s2S
� s

 j� s

; (6.2)

where � = (
P

i 2I � i)=(
P

s2S � s) is the overall load in the queue. The expected number of
customers in the queue is given by

L =
�

1 � �
+

1
1 � �

P
s2S � sL j� s sP

s2S � s
=

P
i 2I � i +

P
s2S � sL j� s sP

s2S � s �
P

i 2I � i
: (6.3)

Let i 2 I . The expected number of class-i customers in the queue is given by

L i =
� i

1 � � i
+

1
1 � �

P
s2SnS i

� sL i j� s s
P

s2S � s
=

� i +
P

s2SnS i
� sL i j� s s

P
s2S � s �

P
j 2I � j

: (6.4)

where � i = � i =(
P

s2S � s �
P

j 6= i � j) is the load associated with classi . For each s 2 S, the
symbols j� s, L j� s, and L i j� s for each i 2 I denote the corresponding quantities in the restricted
multi-server queue, obtained by removing servers and its compatible classes, and s = = j� s

is the probability that server s is idle in the original multi-server queue.

Proof. As in the proof of Theorem 5.10, we �rst focus on recursion (6.2), giving the probability
that the queue is empty, and then we prove (6.3) and (6.4), giving the mean numbers of customers.

Equation (6.2). We �rst write the conservation equation, which states that the total arrival rate
must be equal to the total expected service rate|accounting for idle periods:

X

i 2I

� i =
X

s2S

� s(1 � s);

that is, X

s2S

� s s =
X

s2S

� s �
X

i 2I

� i :

100

Section 6.1. Generic formulas

Since s =
 j� s

for each s 2 S, we obtain

 =

P
s2S � s �

P
i 2I � iP

s2S
� s

 j� s

:

The result follows by observing that
P

s2S � s �
P

i 2I � i = (1 � �)
P

s2S � s.

Equations (6.3) and (6.4). We �rst focus on the expected number of customers within each class
and then we obtain the total by summation. Let i 2 I . In view of (6.2), we have

@
@�i

�
1

�
=

1
(
P

s2S � s �
P

i 2I � i)2

X

s2S

� s

 j� s
+

1
P

s2S � s �
P

i 2I � i

X

s2SnS i

� s
@

@�i

�
1

 j� s

�
:

Using (6.2), we recognize the expression of the inverse of in the �rst term. Injecting this into
Equation (3.10) of Proposition 3.6 yields

L i =
� iP

s2S � s �
P

j 2I � j
+

1
P

s2S � s �
P

j 2I � j

X

s2SnS i

� s � i
@

@�i

�
1

 j� s

�
:

Additionally, for each s 2 S n Si , we have by (3.10) and (6.1):

� i
@

@�i

�
1

 j� s

�
=

 j� s

� � i j� s
@

@�i

�
1

 j� s

�
= sL i j� s:

Equation (6.4) follows by observing that

� iP
s2S � s �

P
j 2I � i

=
� iP

s2S � s �
P

j 2Inf i g � j � � i
=

� i

1 � � i
:

Equation (6.3) follows from (6.4) by summation, upon observing that
P

i 2I
� i

1� � i
= �

1� � .

As announced, Theorem 6.1 gives an e�ective way of computing , L , and L i for each i 2 I . The
probability can be computed by recursively applying (6.2) in the restricted queues. The base case
of the recursion corresponds to a queue without any input, empty with probability one. Similarly,
the expected numbers of customersL and L i for each i 2 I can be computed by recursively
applying (6.3) and (6.4). Example 6.2 below illustrates the method on the multi-server queue of
Figure 4.1. Equations (6.2), (6.3), and (6.4) are given in two equivalent forms in Theorem 6.1. The
former lends itself to interpretations, as discussed below, while the latter is easier to implement.

Complexity. We �rst estimate the overall time complexity to compute if we apply the second
form of (6.2) and avoid duplicate calculations thanks to dynamic programming. For each setT � S
of servers, we need to evaluate X

s2T

� s and
X

i 2I :Si �T

� i ;

which takes O(I + S) operations, whereI is the number of customer classes andS the number of
servers1. The overall complexity is thus of order O((I + S)2S) in the worst case. The number of
operations to perform if we apply the recursions (6.3) and (6.4) is of the same order. Note that
the presence of the factor 2S is not surprising, as it is the maximum number of customer classes
we need to distinguish if we do not make any assumption on the structure. Sections 6.2 and 6.3
give practically interesting examples in which the structure of the compability graph is exploited
to make complexity polynomial instead of exponential in the number of servers.

1This is assuming that the time complexity to compute the second sum is O(I) and not O(I � S). Whether
or not this is possible depends on the time-memory trade-o�. Speci�cally, the time complexity is O(I � S) if, for
each T � S , we check whether each class i 2 I is incompatible with each server s 2 S n T . By precomputing
intermediate results, we can reduce the time complexity to O(I) thanks to the following observation. If we know the
set of classes that are incompatible with S nT for some T � S , we can derive the set of classes that are incompatible
with S n (T n f sg) = (S n T) [f sg, for some s 2 T , by eliminating all classes i 2 I such that s 2 S i . The cost of
this operation is O(I) and not O(I � S).

101

Chapter 6. Performance analysis by server elimination

Stability. The stability condition (4.21) appears when we unfold the second form of recursion
(6.2). Roughly speaking, it shows that the queue is stable if and only if its conditional probability
of being empty is positive given any set of idle servers. An equivalent way for stating this condition,
in line with the �rst form of (6.2), consists of saying that the queue is stable if and only if the
load in each restricted queue is less than one. Provided that this stability condition is satis�ed,
the formulas of Theorem 6.1 remain valid if � i = 0 for some i 2 I or � s = 0 for some s 2 S. As
observed at the end ofx4.4.2, these conditions were just imposed to guarantee the irreducibility of
the Markov processes de�ned by the queue states in their respective state spaces.

Globally-constant capacity. Assume that the queue has a globally-constant capacity, in the
sense thatSi = S for each i 2 I . The server capacities are completely pooled and the multi-server
queue evolves like a multi-class M/M/1 queue of capacity

P
s2S � s. Applying balanced fairness

amounts to applying processor-sharing, and �rst-come-�rst-served policy boils down to the classical
�rst-come-�rst-served policy. This queue is empty with probability 1 � � , which is the �rst factor in
the �rst form of (6.2). In general, the second factor quanti�es the overhead due to the incomplete
resource pooling. This is the harmonic mean of the conditional probabilities j� s, s 2 S, weighted
by the capacities � s, s 2 S. Equations (6.3) and (6.4) also reveal the impact of the incomplete
resource pooling on performance, as the �rst terms in each expression,�1� � and � i

1� � i
, are the total

number of customers and the number of class-i customers in a globally-constant queue.

Server and class activity. Applying recursion (6.2) to both and j� s gives an e�ective way
of computing s = = j� s, the probability that server s is idle, for eachs 2 S. From this, we can
derive the expected number of active servers, given byS �

P
s2S s.

Likewise, for each i 2 I , let i denote the probability that class i is inactive and j� i the
probability that the restricted queue without class i is empty. As in (6.1), we have = i j� i

because j� i is also the conditional probability that the original queue is empty given that class i
is inactive. By applying (6.2) to and to j� i , we obtain

 i =

 j� i
= (1 � � i)

P
s2S

� s
 j� s;iP

s2S
� s

 j� s

;

where j� s;i is the conditional probability that the restricted queue, without class i and servers,
is empty. Again, the factor 1 � � i is the probability that class i is inactive in a globally-constant
queue and the second factor quanti�es the overhead due to the incomplete resource pooling.

Example 6.2. Consider the toy example of Figure 4.1. This analysis, already performed in [46],
is simpli�ed by the formulas of Theorem 6.1. We �rst compute the probability that the queue is
empty. By (6.2), we have

 = (1 � �)
� 1 + � 2 + � 3

� 1
 j� 1

+ � 2
 j� 2

+ � 3
 j� 3

:

where � = (� 1 + � 2)=(� 1 + � 2 + � 3) is the overall load of the queue. We have directly j� 2 = 1,
as removing server 2 amounts to deactivating all classes. The restricted queue without server 1
is an M/M/1 queue with load � j� 1 = � 2=(� 2 + � 3) and the restricted queue without server 3 is
an M/M/1 queue with load � j� 3 = � 1=(� 1 + � 2), so that

 j� 1 = 1 �
� 2

� 2 + � 3
; j� 3 = 1 �

� 1

� 1 + � 2
:

In the end, we obtain

 = (1 � �)
� 1 + � 2 + � 3

� 1
� 2 + � 3

� 2 + � 3 � � 2
+ � 2 + � 3

� 1 + � 2
� 1 + � 2 � � 1

:

Concerning the expected number of customers in the queue, by (6.3), we have

L =
�

1 � �
+

1
1 � �

� 1 1L j� 1 + � 2 2L j� 2 + � 3 3L j� 3

� 1 + � 2 + � 3
:

102

Section 6.2. Random customer assignment

By the same arguments as before, we have directly thatL j� 2 = 0. Also,

L j� 1 =
� 2

� 2 + � 3 � � 2
; L j� 3 =

� 1

� 1 + � 2 � � 1
;

so that

L j� 1 1 =
� 2(� 2 + � 3)

(� 2 + � 3 � � 2)2 ; L j� 3 3 =
� 1(� 1 + � 2)

(� 1 + � 2 � � 1)2 :

In the end, we obtain

L =
�

1 � �
+

1
1 � �

� 1 + � 2 + � 3

�
� 2� 1(� 2 + � 3)

(� 2 + � 3 � � 2)2 +
� 1� 3(� 1 + � 2)

(� 1 + � 2 � � 1)2

�
:

6.2 Random customer assignment

We �rst apply our results to static load balancing schemes, in which each incoming customer is
assigned to a set of servers chosen at random, independently of the queue state. Note the di�erence
with the random assignment described in Section 5.3, in which eachclass was randomly assigned
to a set of servers. This static load balancing policy may cause a loss of performance compared
to dynamic policies|like the one we will describe in Chapter 8|but it has the advantage of
requiring no state information nor a central authority to dispatch customers. Also, we will see
that it makes computations quite simple, as it is possible to leverage symmetries between servers
to make complexity polynomial or even linear in the number of servers.

6.2.1 Homogeneous queue

Consider a queue withS servers, each with capacity� . Customers arrive at rate S� , with 0 < � <
� . Upon arrival, each customer is assigned tor servers chosen uniformly at random, independently
of the queue state, for some integerr = 1 ; 2; : : : ; S called the degree of parallelism. Since all servers
are indistinguishable, the load � = �=� of the queue is also the load of each server. The following
proposition was shown in Theorems 1 and 2 of [47]. Our alternative proof is based on Theorem 6.1.

Proposition 6.3. Assume that� < 1, which is a necessary and su�cient condition for stability.
The probability that the queue is empty and the expected number of customers in the queue are
given by

 =
SY

s= r

(1 � � j s); L =
SX

s= r

� j s

1 � � j s
; (6.5)

where � j s is the load of the queue restricted tos arbitrary servers, that is, the overall load
generated by the customers that can only be served by thesess servers, given by

� j s = �

� s� 1
r � 1

�

� S� 1
r � 1

� :

Following [47], we describe the random customer assign-
ment in our framework as follows. The class of a customer
de�nes the set of servers it is assigned to upon arrival.
There are I =

� S
r

�
customer classes, one for each possible

assignment to r servers amongS. This is illustrated in
Figure 6.1, with S = 3 servers and a degreer = 2. Since
the assignment probabilities are uniform, all classes have
the same arrival rate S�=

� S
r

�
. Although the proof for

is very close to that of [47], the proof for L is greatly
simpli�ed by Theorem 6.1.

Figure 6.1: A multi-server queue that
describes a random customer assign-
ment to r = 2 servers amongS = 3 .

103

Chapter 6. Performance analysis by server elimination

Proof. We apply the formulas of Theorem 6.1. Since servers are indistinguishable, we only
need to keep track of thenumber of servers and not of their exact index when we condition on
their idleness. Speci�cally, for eachs = 1 ; : : : ; S, let j s denote the probability that the queue
restricted to s arbitrary servers and their compatible customers is empty. First observe that, if
s � r � 1, there are no more arrivals and the restricted queue is empty with probability j s = 1.
Now assume thats � r . The total arrival rate in the restricted queue is the arrival rate of the
customers that are assigned tor of these s servers, given byS�

� s
r

�
=
� S

r

�
, and the total service

rate is s� . Therefore, the overall load in the restricted queue is

� j s =
S�
s�

� s
r

�

� S
r

� = �

� s� 1
r � 1

�

� S� 1
r � 1

� :

Applying (6.2) then yields

 j s = (1 � � j s)
s�

s �
 j s � 1

= (1 � � j s) j s� 1;

and the result that was announced for = jS follows by unfolding the recursion. Observe that
� j s � � for each s = 1 ; : : : ; S, which showsa posteriori that the queue is stable whenever� < 1.

Similarly, for each s = 1 ; : : : ; S, let L j s denote the expected number of customers in the queue
restricted to s arbitrary servers. By the same argument as before, (6.3) yields the recursion

L j s =
� j s

1 � � j s
+

1
1 � � j s

s�L j s� 1
 j s

 j s � 1

s�
=

� j s

1 � � j s
+ L j s� 1;

for each s = r; : : : ; S , with the base casesL j s = 0 for each s = 1 ; : : : ; d � 1.

These formulas can be evaluated with a complexity ofO(S), assuming that the binomial coe�cients
are computed via the following ascending recursion:

�
s � 1
r � 1

�
=

s � 1
s � r

�
s � 2
r � 1

�
; 8s = r + 1 ; : : : ; S;

with the base case
� s� 1

r � 1

�
= 1 when s = r .

6.2.2 Heterogeneous degrees

Consider a �rst extension where customers can have unequal parallelism degrees. There are stillS
servers in the queue, all with the same capacity� , but the customers are now divided intoK types.
For each k = 1 ; : : : ; K , type-k customers arrive at a positive rateS�p k , with p1 + : : : + pK = 1, so
that the overall arrival rate is still S� . Upon arrival, a type-k customer is assigned tor k servers
chosen uniformly at random, independently of the queue state, for somer k = 1 ; : : : ; S. The load
� = �=� of the queue is also the load of each server. Observe that customers are now distinguished
by their parallelism degree, hence we also wish to evaluate the performance perceived by the
customers of each type separately.

Proposition 6.4. Assume that� < 1, which is a necessary and su�cient condition for stability.
The probability that the queue is empty and the expected number of customers in the queue are
again given by(6.5), where the overall load in the queue restricted tos arbitrary servers is now
given by

� j s = �
KX

k=1

� s� 1
r k � 1

�

� S� 1
r k � 1

� pk : (6.6)

104

Section 6.2. Random customer assignment

Let k = 1 ; : : : ; K . The expected number of type-k customers in the queue is given by

L k =
SX

s= r k

� k js

1 � � k js
; (6.7)

where, for eachs = r k ; : : : ; S, � k js is the load associated with type-k customers in the queue
restricted to s servers, given by

� k js =

�

� s� 1
r k � 1

�

� S� 1
r k � 1

� pk

1 � �
KX

` =1
` 6= k

� s� 1
r ` � 1

�

� S� 1
r ` � 1

� p`

: (6.8)

Proof. We adopt the same approach as before to describe the random customer assignment
within our framework. For each k = 1 ; : : : ; K , there are

� S
r k

�
customer classes associated with

type k, one for each possible assignment of a type-k customer to r k servers amongS. All classes
associated with type k have the same arrival rateS�p k =

� S
r k

�
.

As in the proof of Proposition 6.3, we use the fact that servers are indistinguishable to simplify
the formulas of Theorem 6.1. Considers = 1 ; : : : ; S and let j s denote the probability that the
queue restricted to s arbitrary servers is empty. Also let k = 1 ; : : : ; K . If s � r k , there are

� s
r k

�

classes associated with typek, one for each possible assignment tor k of those s servers, so that
the remaining arrival rate of type k is S�p k

� s
r k

�
=
� S

r k

�
. If s < r k , there is no class associated with

type k in the queue restricted to s servers, so that the remaining arrival rate of type k is zero.
In this case, we adopt the convention that

� s
r k

�
= 0, so that we can still write S�p k

� s
r k

�
=
� S

r k

�
for

the arrival rate. In the end, the overall load in the queue restricted to s arbitrary servers is

� j s =
S�
s�

KX

k=1

� s
r k

�

� S
r k

� pk = �
KX

k=1

� s� 1
r k � 1

�

� S� 1
r k � 1

� pk :

First observe that � j s < 1 whenever � < 1 because
� s� 1

r k � 1

�
�

� S� 1
r k � 1

�
for each k = 1 ; : : : ; K .

In particular, � < 1 is still a su�cient condition for stability. Using the fact that servers are
indistinguishable, we can make the same simpli�cations in (6.2) and (6.3) as in the proof of
Proposition 6.3. Therefore, and L are still given by (6.5), where � j s is now given by the
expression above.

Now let k = 1 ; : : : ; K . We wish to compute the expected numberL k of type-k customers, all
classes taken together. It can be derived by applying (6.4) to each class and then summing over
all classes of the same time. After simpli�cation, we obtain (6.7) where, for eachs = r k ; : : : ; S,
� k js is the load associated with type-k customers in the queue restricted tos servers, given by

� k js =

S�

� s
r k

�

� S
r k

� pk

s� �
KX

` =1
` 6= k

S�

� s
r `

�

� S
r `

� p`

=

�

� s� 1
r k � 1

�

� S� 1
r k � 1

� pk

1 � �
KX

` =1
` 6= k

� s� 1
r ` � 1

�

� S� 1
r ` � 1

� p`

:

Thanks to (6.5) and (6.6), and L can be computed with a complexity of O(KS). Similarly, for
eachk = 1 ; : : : ; K , L k can be evaluated using (6.7) with a complexity ofO(KS). If a large number
R of values of the load� is considered, it is possible to precompute� j s=� for each s = 1 ; : : : ; S
with a complexity of O(KS) and then compute the results for each value of� with a complexity
of O(RS). A similar method can be applied to compute L k for each k = 1 ; : : : ; K . The overall
complexity to compute all R values isO((K + R)S) instead of O(RKS).

105

Chapter 6. Performance analysis by server elimination

6.2.3 Heterogeneous servers

We �nally extend the model to allow for server heterogeneity. The servers are now divided intoT
disjoint groups and, for eacht = 1 ; : : : ; T , group t contains St servers with capacity � t . As before,
we distinguish K types of customers with unequal parallelism degrees. For eachk = 1 ; : : : ; K ,
type-k customers arrive at rate S�p k and are assigned tor k;t servers chosen uniformly at random
among the St servers of groupt, independently of the queue state, for eacht = 1 ; : : : ; T . The load
of the queue is now given by� = S�=

P T
t =1 St � t .

We apply our framework to this heterogeneous queue. For eachk = 1 ; : : : ; K , a class associated
with type k is de�ned by independently choosingr k;t servers within group t, for eacht = 1 ; : : : ; T .
Thus there are

� S1
r k; 1

�� S2
r k; 2

�
� � �

� ST
r k;T

�
classes associated with typek, all with the same arrival rate.

Since servers from di�erent groups are not indistinguishable, we need to keep track of the number
of serverswithin each groupwhen we condition on their idleness. Lets = (s1; : : : ; sT), with st � St

for each t = 1 ; : : : ; T , and consider the queue restricted tost arbitrary servers of group t for each
t = 1 ; : : : ; T . Assuming the queue is stable, let j s denote the probability that this restricted
queue is empty. Also letL j s denote the expected number of customers in this queue and, for each
k = 1 ; : : : ; K , L k js the expected number of type-k customers. The following proposition gives an
e�ective way of computing j s, L j s, and L k js by recursion over s = (s1; : : : ; sT). With a slight
abuse of notations, for eacht = 1 ; : : : ; T , we let et denote the T-dimensional vector with one in
component t and zero elsewhere.

Proposition 6.5. Assume that the queue is stable. For eachs = (s1; : : : ; sT) with st � St for
each t = 1 ; : : : ; T , we have

 j s = (1 � � j s)
P T

t =1 st � t
P T

t =1 st
� t

 s � e t

; L j s =
� j s

1 � � j s
+

1
1 � � j s

P T
t =1 st � t

 j s

 j s � e t
L j s� et

P T
t =1 st � t

; (6.9)

where � j s is the load of the queue restricted tost arbitrary servers in group t, for each t =
1; : : : ; T , given by

� j s = �

KX

k=1

pk

TY

t =1

� st
r k;t

�

� St
r k;t

�

! P T
t =1 St � t

P T
t =1 st � t

: (6.10)

The base case of(6.9) is j 0 = 1 and L j 0 = 0 .
Let k = 1 ; : : : ; K . For each s = (s1; : : : ; sT) with st � St for each t = 1 ; : : : ; T , we have

L k js =
� k js

1 � � k js
+

1
1 � � j s

P T
t =1 st � t

 j s

 j s � e t
L k js� et

P T
t =1 st � t

; (6.11)

where � k js is the load associated with typek in the queue restricted tost arbitrary servers of
group t, for each t = 1 ; : : : ; T , given by

� k js =

�

pk

TY

t =1

� st
r k;t

�

� St
r k;t

�

! P T
t =1 St � t

P T
t =1 st � t

1 � �

0

B
@

KX

` =1
` 6= k

p`

TY

t =1

� st
r `;t

�

� St
r `;t

�

1

C
A

P T
t =1 St � t

P T
t =1 st � t

: (6.12)

Proof. The proof is very much alike those of Propositions 6.3 and 6.4, except that we cannot
simplify the formulas obtained by applying (6.2), (6.3), and (6.4) to the restricted queues.

Using recursion (6.9), we can compute = j (S1 ;:::;S T) and L = L (S1 ;:::;S T) with a complexity of
O(KTS1 � � � ST), which is O(KTS T) in the worst case. Similarly, for eachk = 1 ; : : : ; K , we can
compute L k = L k j (S1 ;:::;S T) using recursion (6.11) with a complexity of O(KTS1 � � � ST). While

106

Section 6.3. Local assignment

still polynomial in S when T is �xed, the complexity suggests to limit numerical evaluations to
low values of T. If a large number R of values of the load � is considered, it is again possible
to precompute � j s=� for each s = (s1; : : : ; sT), with a complexity of O(KTS1 � � � ST), and then
compute the results for each value of� , with a complexity of O(RTS1 � � � ST). A similar method
can be applied to compute� k js and L k js for each s = 1 ; : : : ; S and eachk = 1 ; : : : ; K . The overall
complexity is O((K + R)TS1 � � � ST) instead of O(RKTS 1 � � � ST).

6.3 Local assignment

In the previous subsection, we assumed that a customer could be assigned to an arbitrary subset
of servers. This large degree of freedom may be di�cult to implement in practice. In particular,
one may prefer selecting servers that are physically close to each other, in order to minimize the
communication overhead. This is what we call alocal assignment.

In this subsection, we abstract the concept of localization by introducingline queues, in which
servers are assumed to be located along a line and again indexed by the integers 1 toS, so
that servers s and t are at physical distance js � t j. The locality constraint is modeled by the
compatibility graph: each customer class is assigned to an interval of servers. In order to simplify
the notations, we identify each customer class with its assigned range of servers, so thatt:u denotes
the class that is assigned to serverst to u. An example is shown in Figure 6.2. The set of customer
classes is still denoted byI and the set of servers byS = f 1; : : : ; Sg.

Figure 6.2: A line queue.

The rest of this section is organized as follows. We �rst introducenested queues, a special case
of line queues which was analyzed in [45]. Then we study arbitrary line queues as well as a local
version of the random customer assignment considered in Section 6.2. Lastly, we study the behavior
of ring queues, in which servers are assumed to be on a ring instead of a line.

6.3.1 Nested queues

A queue is said to benested if the following property is satis�ed:

Si \ S j 6= ; =) S i � S j or Sj � S i ; 8i; j 2 I :

In other words, if two customer classes share a server, then the server set of one class is a subset
of the server set of the other. An example of a nested queue is shown in Figure 6.3. We assume
that there exists a classi 2 I that is compatible with all servers, that is, such that Si = S. As
observed in [45], if it not the case, we can split the queue into smaller, independent queues, and
study each queue separately. While a line queue is not necessarily a nested queue|consider for
example classes 1:3 and 2:5 in Figure 6.2|the converse is true, as shown in the next proposition.

Proposition 6.6. A nested queue is a line queue.

Proof. First observe that a nested queue has a natural tree structure, which can be built from
the leaves to the root as follows. The nodes are the servers and customer classes. The parent of
a server is the smallest class, in the sense of inclusion, that is assigned to this server. The parent
of a class is the smallest class whose server set includes that of this class, if any. By construction,

107

Chapter 6. Performance analysis by server elimination

Figure 6.3: Tree representation of a nested queue.

the servers are the leaves and the root is class 1:S, which is maximal for the inclusion. To
conclude, it su�ces to label servers in their order of appearance in a depth-�rst traversal of the
tree. By construction, the servers that are compatible with a given class are the leaves of the
subtree rooted at this class, hence they have consecutive labels.

Nested queues are another good example of application of our recursive formulas. It was shown in
[45] that a nested queue is empty with probability

 =
Y

i 2I

(1 � � j i); (6.13)

where � j i is the load associated with classi in the queue restricted to the servers ofSi , given by

� j i =
� iP

s2S i
� s �

P
j :Sj (Si

� j
:

With our recursive approach, proving (6.13) becomes straightforward. First, by a direct calculation,
we obtain that 1 � � = (1 � � j 1:S)(1 � � j� 1:S), where � j 1:S is the load associated with class 1:S,
as we have just de�ned, and� j� 1:S is the overall load in the restricted queue without class 1:S.
Doing the substitution in (6.2) yields

 = (1 � � j 1:S)(1 � � j� 1:S)

P
s2S � sP

s2S
� s

 j� s

:

Now observe that class 1:S is inactive whenever one server is idle. Therefore, the product of the
second and the third factors in the above expression is the �rst form of (6.2) for the restricted
queue without class 1:S. In other words, it is the probability j� 1:S that this restricted queue is
empty. We obtain = (1 � � j 1:S) j� 1:S . Unfolding this recursion yields (6.13).

Equation (6.13) can also be recovered by following a more class-oriented approach which borrows
ideas from the proof of Theorem 6.1|this approach is in fact more natural given the nested class
structure. First, by conditioning on the activity of class 1: S, we have the conservation equation

X

i 2I

� i =

X

s2S

� s

!

(1 � 1:S) +

0

@
X

i 2Inf 1:Sg

� i

1

A 1:S :

Rearranging the terms yields directly:

 1:S =

P
s2S � s �

P
i 2I � iP

s2S � s �
P

i 2Inf 1:Sg � i
= 1 � � j 1:S :

The result follows from the equality = 1:S j� 1:S .
These two proofs give insights into the meaning of the factors in (6.13). For example, we can

observe that the equality i = 1 � � j i is true only when i = 1:S. Indeed, our proofs consist of
removing classes one after the other in a graph traversal, showing that, for eachi 2 I , 1� � j i is the
conditional probability that class i is inactive given that all its ancestor classes, if any, are inactive.

The expected number of customers of each class, which was also given in explicit form in [45],
can be derived in a similar fashion using (6.4). It is a special case of (6.16) that will be stated in
Proposition 6.7 for line queues.

108

Section 6.3. Local assignment

6.3.2 Line queues

We now remove the assumption that customer classes are nested and we show how to apply the
recursive formula to any line queue.

Proposition 6.7. Assume that the queue is stable. The probability that the queue is empty is
given by

 = (1 � �)

P
s2S � s

X

s2S

� s

 j 1::s � 1 j s+1 ::S

; (6.14)

where js::t denotes the queue restricted to serverss to t, for each s; t 2 S, with the convention
that s::t = 1 if s > t . The expected number of customers in the queue is given by

L =
�

1 � �
+

1 � �

X

s2S

� s
L j 1::s � 1 + L j s+1 ::S

 j 1::s � 1 j s+1 ::S
P

s2S � s
: (6.15)

Let t:u 2 I . The expected number of class-t:u customers is given by

L t :u =
� t :u

1 � � t :u
+

1 � �

t � 1X

s=1

� s
L t :u js+1 ::S

 j 1::s � 1 j s+1 ::S
+

SX

s= u+1

� s
L t :u j1::s � 1

 j 1::s � 1 j s+1 ::S
P

s2S � s
: (6.16)

Proof. The proof is based on the following observation. If we remove some servers 2 S from a
line queue, we obtain two line queues that are independent of each other, in the sense that the
remaining classes are partitioned into two sets: the classes that are compatible with servers 1 to
s� 1 and those that are compatible with serverss+1 to S. It follows that j� s = j 1::s � 1 j s+1 ::S .
Doing the substitution in (6.2) yields (6.14).

Concerning the expected number of customers, we obtain by the same argument thatL j� s =
L j 1::s � 1 + L j s+1 :::S for each s 2 S. Similarly, for each t:u 2 I and eachs 2 S, we have

L t :u j� s =

8
><

>:

L t :u js+1 ::S if s = 1 ; : : : ; t � 1;
L t :u j1::s � 1 if s = u + 1 ; : : : ; S;
0 otherwise:

The recursive formulas (6.15) and (6.16) are obtained by doing the substitution in (6.3) and (6.4),
respectively.

In view of Proposition 6.7, the probability can be computed in timeO(S3) as follows. First, we
pre-compute the overall arrival rates, service capacities, and loads within all queues restricted to
serverss to t, for eachs; t 2 S such that s � t. This incurs a cost O(S2). Then, the computational
cost to compute each term j s::t is O(S). As there are O(S2) such terms, the total cost is O(S3).
If the values of j s::t are in memory, the same complexity argument applies to (6.15) and (6.16).
The overall expected number of customers and the expected number of customers of each classt:u
can be computed in timeO(S3).

Since we showed in Proposition 6.6 that a nested queue is also a line queue, the recursion
formulas of Proposition 6.7 can be applied to nested queues. However, the equations that were
derived in x6.3.1 for nested queues are simpler to compute. For instance, using the tree structure
of the classes, one can verify that the computational cost of (6.13) isO(IS), to be compared with
O(S3) for a line queue. SinceI � S2, the formulas of x6.3.1 should be preferred for nested queues.

It is tempting to adapt the method we presented here to other topologies. For example, we
could consider a server grid structure in which customer classes correspond to rectangles of servers.
Unfortunately, the method does not apply because removing a server does not yield independent
queues in general. A notable exception, considered inx6.3.4, is the ring topology.

109

Chapter 6. Performance analysis by server elimination

6.3.3 Random customer assignment

Section 6.2 investigated randomized assignments in which each customer was assigned to a �xed
number of servers chosen uniformly at random. We now explain how these results can be transposed
to a line queue. We focus on the homogeneous queue ofx6.2.1; queues with heterogeneous degrees
or servers, as considered inx6.2.2 andx6.2.3, can be treated in the same way.

As in x6.2.1, we consider a queue withS servers, each with capacity� . Customers arrive at
rate S� , so that the overall load is � = �=� . Upon arrival, each customer is assigned to an interval
of r servers chosen uniformly at random among theI = S � r + 1 possible intervals of length r ,
for somer = 1 ; : : : ; S. The arrival rate of each class isS�= (S � r + 1). An example is shown in
Figure 6.4 with S = 6 and r = 3. Since r is constant, we can label each class by its lowest server,
that is, we uses instead of s:s + r � 1, for eachs = 1 ; : : : ; S � r + 1. Observe that, contrary to the
non-local case ofx6.2.1, the servers are not all indistinguishable, nor are the classes. For instance,
in Figure 6.4, class 1 has an exclusive use of server 1 while class 3 shares its three servers.

Figure 6.4: A homogeneous line queue.

Proposition 6.8. Assume that� < 1, which is a necessary and su�cient condition for stability.
The probability that the queue is empty is = j 1::S , where j 1::s is given by the recursion

 j 1::s =
1 � � j 1:::s

1
s

sX

t =1

1
 j 1::t � 1 j 1::s � t

; 8s = r; : : : ; S; (6.17)

with the base case j 1::s = 1 for s = 1 ; : : : ; r � 1, where

� 1::s =
1 � r � 1

s

1 � r � 1
S

�; 8s = r; : : : ; S:

The expected number of customers isL = L j 1::S , where L j 1::s is given by the recursion

L j 1::s =
� j 1:::s

1 � � j 1:::s
+

 j 1::s

1 � � j 1::s

1
s

sX

t =1

L j 1::t � 1 + L j 1::s � t

 j 1::t � 1 j 1::s � t
; 8s = r; : : : ; S; (6.18)

with the base caseL 1::s = 0 for s = 1 ; : : : ; r � 1. For each t = 1 ; : : : ; S � r + 1 , the expected
number of class-t customers isL t = L t j1::S , where L t j1::s is given by the recursion

L t j1::s =

�
1 � r � 1

S

+ j 1::s

t � 1X

u=1

L t � u j1::s � u

 j 1::u � 1 j 1::s � u
+

sX

u= t + r

L t j1::u � 1

 j 1::u � 1 j 1::s � u

!

s(1 � � j 1::s)
(6.19)

for each s = t; : : : ; S, with the base caseL t j1::s = 0 for s = 1 ; : : : ; t � 1.

Proof. Concerning the stability condition, it su�ces to observe that � j 1::s < 1 for each s =
r; : : : ; S whenever� < 1. Then we apply the formulas of Proposition 6.7 after observing that, for

110

Section 6.3. Local assignment

eachs = 1 ; : : : ; S, the queue restricted to serverss + 1 to S is equivalent to the queue restricted
to servers 1 toS � s.

Recursions (6.17) and (6.18) involveO(S) values j 1::r ,..., j 1::S and L j 1::r ,...,L j 1::S . Each of them
is computed in O(S) if the results are kept in memory. Therefore, the overall time complexity is
O(S2). Concerning (6.19), there areO(S2) values to compute, so that the computational cost is
O(S3). Despite the symmetries, there is no complexity gain for the computation of the per-class
performance compared to the general case of a line queue. The reason is that, contrary tox6.2.1,
classes are heterogeneous. Still, an improvement of a factorS is achieved for the values and L .

It is worth noting that, despite heterogeneity, the stability condition is still simply � < 1. The
reason is that the restricted queues are less loaded than the original queue: the load of the queue
restricted to servers 1 tos is � j 1::s < � , for each s = r; : : : ; S � 1.

6.3.4 Ring queue

In order to suppress the class asymmetry that is in-
herent to line queues, we consider a ring structure in
which servers 1 andS are at distance 1, as shown in
Figure 6.5. To simplify the notations, we implicitly
use the congruence moduloS, so that server S + s
is server s and, for 1 � t < s � S, s::t denotes the
queue restricted to serverss to S and 1 to t. As an
example, in Figure 6.5, class 5:2 is assigned to servers
5, 1, and 2. The following result follows from Propo-
sition 6.7. It su�ces to observe that, for each s 2 S,
the restricted queue without server s 2 S is a line
queue made of serverss + 1 to s � 1. Figure 6.5: A ring queue.

Proposition 6.9. Assume that the queue is stable. The probability that the queue is empty is
given by

 = (1 � �)

P
s2S � sP

s2S
� s

 j s +1 ::s � 1

; (6.20)

where, for eachs 2 S, j s+1 ::s � 1 is given by (6.14). The expected number of customers in the
queue is given by

L =
�

1 � �
+

1 � �

X

s2S

� s
L j s+1 ::s � 1

 j s+1 ::s � 1
P

s2S � s
; (6.21)

where, for eachs 2 S, L j s+1 ::s � 1 is given by (6.15). For each t:u 2 I , the expected number of
class-t:u customers is given by

L t :u =
� t :u

1 � � t :u
+

1 � �

t � 1X

s= u+1

� s
L t :u js+1 ::s � 1

 j s+1 ::s � 1
P

s2S � s
; (6.22)

where, for eachs = u + 1 ; : : : ; t � 1, L t :u js+1 ::s � 1 is given by (6.16).

The complexity of each recursion isO(S3). For a homogeneous ring queue with load� and paral-
lelism degreer = 1 ; : : : ; S � 1, complexity is reduced toO(S2). Indeed, in this case, all classes are
indistinguishable and we only need to compute the overall metrics and L , given by

 = (1 � �) j 1::S � 1; L =
�

1 � �
+ L j 1::S � 1; (6.23)

where j 1::S � 1 and L j 1::S � 1 are the metrics associated with the homogeneous line queue restricted
to servers 1 toS � 1, with load � j 1::S � 1 = � (S � r)=(S � 1).

111

Chapter 6. Performance analysis by server elimination

6.4 Numerical results

We �nally illustrate the results of Sections 6.2 and 6.3 through two studies. The former investi-
gates the relevance of the degree of parallelism to achieve service di�erentiation, while the latter
evaluates the impact of locality on the performance of static load balancing. Observe that, given
the complexity of the involved performance metrics, these studies would not have been impossible
without our formulas. The source code to generate the numerical results is available at [C01].

6.4.1 Gain of di�erentiation

Consider a multi-server queue with two types of customers, calledregular and premium. A natural
way of di�erentiating service consists of assigning more servers to premium customers than to
regular customers. We wish to assess the actual impact of this approach on the performance
perceived by each type of customers. For the numerical results, we considerS = 100 servers with
unit capacities. Regular customers have a degree of parallelism 6 and premium customers have a
degree of parallelism 12. This corresponds to the model ofx6.2.2, with K = 2 types of customers,
namely regular and premium. We �rst focus on the impact of load on the e�ciency of the service
di�erentiation.

Impact of load. Figure 6.6 shows the mean service rates as functions of the overall load� , for
three distributions of the customer population: regular customers only, premium customers only,
and a mixed population in which regular and premium customers generate half of the load each.

Figure 6.6: Impact of load on service di�erentiation for di�erent populations. Top curves give the
performance of premium customers and bottom curves that of regular customers.

The mean service rates of the two customer types are clearly di�erent. When the load� is
low, the mean service rate of premium customers is approximately twice that of regular customers.
Intuitively, if the arrivals are rare, it is likely that a new customer �nds all its servers idle, in which
case its service rate is the sum of the capacities of its compatible servers. The ratio between the
service rates of premium and regular customers decreases with the load� but it remains signi�cant
until the load is extreme. Premium and regular customers seem to have asymptotically the same
service rate as the load� tends to one. This convergence is somehow expected, as maintaining a
minimal ratio greater than one at a very high load could jeopardize the stability of the queue for
regular customers.

Interestingly, the service rate of premium customers is lower when half of the population consists
of regular customers. The reason is that the slowness of regular customers penalizes premium
customers, as they stay longer in the queue. This observation also explains the performance gain
for regular customers when the population is mixed. This is particularly visible when the load is
intermediate, as the customer interactions are intense but there is still a margin for improvement.

Impact of the population distribution. Following up with the last observation, we focus on the
impact of the proportion of regular and premium customers in the population. Since we observed

112

Section 6.4. Numerical results

that this impact is stronger when the load � is high, Figure 6.7 gives the mean service rate under
loads � = 0 :9 and � = 0 :99, as a function of the proportion of regular customers.

Figure 6.7: Impact of population distribution under two di�erent loads, � = 0 :9|top curves|and
� = 0 :99|bottom curves.

The �gure con�rms that the di�erentiation ratio decreases with the load � , and shows that
the population distribution has a limited impact on performance. When � = 0 :9, both premium
and regular customers su�er about 25% rate degradation between the best|premium only|and
worst|regular only|scenarios. When � = 0 :99, the loss is limited to 14% approximately. This
relative insensitivity of the performance with respect to the population distribution is a positive
result, as this distribution may not be known a priori by the service provider.

Overall, these results show that a random assignment with a variable degree of parallelism is an
e�cient way of achieving service di�erentiation despite its simplicity. We also saw in Section 6.2
that is guarantees stability whenever the overall load is less than one.

6.4.2 Impact of locality

We now study the impact of locality on the performance of the static load balancing. Consider
a multi-server queue with S homogeneous servers with unit capacity. Each incoming customer is
assigned to a set ofr servers chosen uniformly at random among the authorized assignments, for
somer = 1 ; : : : ; S. We consider the following assignment con�gurations, which were studied in
x6.2.1, x6.3.4, andx6.3.2, respectively:

Global: any set of r servers amongS, as in Figure 6.1,
Ring: the sets ofr consecutive servers in a ring topology, as in Figure 6.4,
Line: the sets ofr consecutive servers in a line topology.

We �rst investigate the overall performance hierarchy between these three con�gurations.

Costs of heterogeneity and locality. As observed inx6.3.2, the performance experienced by a
customer in a line queue depends on its assigned interval of servers. Figure 6.8 shows the mean
service rate per class in the line, compared to the overall mean service rate in each scenario. The
performance heterogeneity observed in the line increases when the load increases, which leads to
a degradation of the overall performance compared to the other scenarios. We call this thecost of
heterogeneity. The ring scenario performs better than the line but not as well as the global case.
This is due to the cost of locality, which we interpret as follows: the locality of the assignments in
the line and ring scenarios reduces the diversity of the classes compared to the global assignment;
it is more frequent to have two classes that share a large number of servers, and this degrades the
overall performance.

Impact of the parameters. In order to better understand these phenomena, we let the param-
eters S, r , and � vary around the following default values: S = 100, r = 10, and � = 0 :9. The
results are shown in Figure 6.9. First observe that the hierarchy between the line, ring, and global
con�gurations is preserved throughout the experiments.

113

Chapter 6. Performance analysis by server elimination

(a) Load � = 0 :5. (b) Load � = 0 :9.

Figure 6.8: Impact of locality with S = 100 and r = 10.

Figure 6.9a shows the impact of the load� on performance. The mean service rate in the ring
is close to that of the line when the load is low, but it has the same asymptotic as the mean service
rate in the global scenario when the load tends to one. Intuitively, the cost of locality prevails
when the load is low and it impacts both the line and the ring. When the load is higher, the cost
of heterogeneity is the main source of performance degradation and it only impacts the line.

Figure 6.9b studies the impact of the degreer of parallelism. First observe that the mean service
rate increases with the degree in each scenario. This increase is much faster in the global and ring
scenarios than in the line scenario. Our interpretation is the following. In the line scenario, the
total number S � r + 1 of classes decreases with the degreer , hence performance su�ers from a
lack of diversity in the assignment compared to the global and ring cases.

Lastly, Figure 6.9c shows the evolution of the mean service rate as a function of the numberS
of servers. It was proved in [47] that the mean service rate in the global scenario has a limit asS
tends to in�nity. This is consistent with the results of Figure 6.9c, which also suggest that a limit
exists in the ring and line scenarios. Note that the convergence is quite fast in the ring, and non-
monotonic in the line. The behavior in the line can be intuitively explained by the heterogeneity
of the number of classes per servers: for example, whenS is close tor , a majority of servers can
serve all S � r + 1 classes; on the contrary, whenS = 2 r , there are exactly two servers that can
serve allS classes, so that there is a lot of heterogeneity among the servers. For larger values ofS,
the cost of heterogeneity in the line fades away because it becomes a border e�ect from classes and
servers located near the borders; this explains why it seems that the line and the ring scenarios
share the same limit: asS increases, only the cost of locality prevails.

All these results show that the local static load balancing has a cost in terms of performance
that depends on the parameters. However, keeping in mind that a local allocation may be simpler

(a) System load. (b) Parallelism degree. (c) Number of servers.

Figure 6.9: Overall impact of the parameters|default values S = 100, r = 10, and � = 0 :9.

114

Section 6.5. Concluding remarks

to implement in a real system and has no impact on stability, we believe that it can be a viable
option. Remark that, whenever possible, a ring structure should be preferred to a line structure.

6.5 Concluding remarks

In this chapter, we proposed a second method for predicting performance in a multi-server queue.
The obtained formulas have an exponential complexity in general, but the examples of Sections 6.2
and 6.3 demonstrated that the server symmetries and the regularities of the compatibility graph
could be e�ciently exploited to make complexity polynomial or even linear in the number of servers.
This chapter also concludes Part II, dedicated to the de�nition and analysis of the multi-server
queue. In Part III, we will apply these results to the design of resource-management algorithms in
computer clusters.

Bibliographical notes. The related work of this section concerns the multi-server queue under
the �rst-come-�rst-served policy. Indeed, as noted earlier, the homogeneous queue ofx6.2.1 was
analyzed in [47], while the nested queue ofx6.3.1 was analyzed in [45].

115

116

Part III

Applications in algorithm design

117

118

7 Job scheduling

Perhaps the best-known example of a resource-sharing policy is processor-sharing, which \emerged
as an idealisation of round-robin scheduling algorithms in time-shared computer systems" [1].
Processor-sharing has the property ofinsensitivity , meaning that performance depends on the job
size distribution only through its mean as long as jobs arrive according to a Poisson process. In
Section 7.1, we propose a scheduling algorithm that extends the principle of round-robin algorithm
to a computer cluster, in which each job is assigned to a pool of computers and can subsequently be
processed in parallel by any computers of this pool. The idealisation of our algorithm is nothing
but balanced fairness, the policy considered in Section 4.2. In addition to giving guidelines on
how to reach insensitivity in nowadays exible data center architectures, this algorithm rea�rms
balanced fairness as a natural extension to processor-sharing. The queueing analysis is presented
in Section 7.2 and is complemented with numerical results in Section 7.3. Section 7.4 situates our
work in relation to others on scheduling and resource sharing. The work presented in this chapter
was initiated during my master internship and published in [P01, P08], during my Ph.D.

7.1 Scheduling algorithm

We consider a computer cluster subject to a stochastic demand. This demand takes the form of
elastic jobs that arrive at random instants and leave immediately when their service is complete. All
jobs enter the system through a single entry point, called adispatcher, that assigns each incoming
job to one or more computers in the cluster.

The assignment of a job identi�es the computers that can process this job, but it implies neither
that the job will enter in service on each of these computers, nor that it needs to. Some of these
computers may not even have an opportunity to process the job before its service completion.
The assignment is �xed for the entire life of the job. It may depend on its characteristics but
not on the cluster state upon its arrival. Chapter 8 and Section 9.1 will show how to remove this
restriction without loosing the insensitivity property. For data-intensive computing for instance,
the assignment could identify the computers that have access to the data required by the job. The
assignment could also be performed at random, according to pre-computed assignment probabil-
ities, in an e�ort to balance load among computers. When and by which computers the job will
e�ectively be processed depends on the scheduling algorithm.

Our main assumption is that, if a job is in service on several computers at the same time,
then the work can be e�ciently distributed among these computers, so that its overall service
rate is close to the sum of its service rates on the computers. In our queueing analysis, these two
quantities will be assumed to be equal, which amounts to neglect the parallelization overhead. In
practice, the parallelization could be achieved by dividing each job into smaller independent tasks
that are sent by the dispatcher to a computer whenever a job is scheduled on this computer.

Description. A naive approach consists of applying round-robin scheduling algorithm on each
computer. In other words, each computer decides to interrupt and resume its assigned jobs in-
termittently and in a circular order, irrespective of the state of other computers. Then a job
may happen to be in service on several computers at the same time, but there is no intentional
coordination. Such a decentralized scheduling algorithm is not desirable. As an example, consider

119

Chapter 7. Job scheduling

a cluster of two computers with the same capacity. Assume that half of the tra�c is generated
by jobs assigned to the �rst computer and the other half by jobs assigned to both computers.
Ideally, the �rst computer should primarily process jobs that were assigned to this computer only,
and bene�t other jobs when it is available. By contrast, if each computer applies round-robin
scheduling algorithm without coordination, all jobs receive an equal share of the capacity of this
computer, irrespective of their assignment. Another drawback of this approach is that it does
not preserve the insensitivity property in general. Indeed, even if each computer exactly applied
processor-sharing, the evolution of the cluster would be described by a network of processor-sharing
queues with coupled service rates, as considered inx1.1.1, in which each queue corresponds to a
possible assignment; a direct calculation shows that, in general, the service rates of these queues
do not satisfy the balance property (1.1), which was shown to be necessary for insensitivity [14].

The scheduling algorithm we propose exploits parallelism to dynamically adapt the service
to the demand, without loosing the insensitivity property. Loosely speaking, this algorithm ex-
tends the principle of round-robin algorithm to the computer cluster taken as a whole, instead
of applying it to each computer individually. Jobs are processed intermittently and in a|more
or less|circular order. The core idea is that the amount of work devoted to each job before in-
terrupting its service is, at least on average, the same for all jobs. In other words, jobs receive
an equal share of the resources, over all computers taken together, before they are interrupted.
In the two-computer cluster considered above, a job assigned to both computers might well be
interrupted without even entering in service on the �rst computer, provided it received its fair
share of service on the second computer. This property turns out to be a natural extension to the
constant time slot|the quantum|imposed by round-robin scheduling algorithm. We now give
more details on our algorithm by describing a possible implementation based on random timers at
the computers. As announced in the introduction, this algorithm realizes balanced fairness, the
insensitive generalization of processor-sharing introduced in Section 4.2.

Implementation. The set of computers is denoted byS = f 1; : : : ; Sg. Upon arrival, each incom-
ing job is assigned to a pool of computers. We letS1; : : : ; SI � S denote the possible assignments
and I = f 1; : : : ; I g the set of assignment indices. For eachi 2 I , we say that a job is assigned to
pool i if it is assigned to the computers of the subsetSi . This de�nes a bipartite graph between
pool indices and computers, as shown in Figure 7.1. If we do not have anya priori on the pos-
sible job assignments, we can de�ne as many pools as there are subsets of computers; therefore,
associating an index with each pool does not induce any loss of generality1. This notation will just
happen to be practical, �rst to describe our implementation and then to analyze it in Sections 8.2
and 8.3. In order to make our explanations more concrete, we express all quantities related to the
processing speed in oating-point operations, a classical unit of measurement in computer science.
For eachs 2 S, we let Cs denote the capacity of computers, expressed in oating-point operations
per second. It is assumed to be constant for simplicity. Also, each incoming job consists of some
random number of oating-point operations, referred to as the job size, assumed to be i.i.d. with
a mean� that is positive and �nite.

Figure 7.1: A bipartite graph that represents assignments in the cluster.

The dispatcher uses a central queue to schedule jobs. The state of this queue is described by the
sequencec = (c1; : : : ; cn) 2 I � , wheren is the number of jobs in the queue andcp is the index of the
pool to which the p-th customer is assigned, for eachp = 1 ; : : : ; n. When an incoming job is assigned
to pool i , this job is appended to the queue, so that the new state is (c1; : : : ; cn ; i), and enters in
service immediately on every idle computer within its assignment. When the service of the job in

1 In a naive implementation, this index could also be used as a bitmap that encodes the indices of the computers
of the pool. Verifying if a job assigned to pool i can enter in service on computer s is then equivalent to checking if
the s-th bit of the binary representation of the integer i is one.

120

Section 7.1. Scheduling algorithm

on job arrival
begin

i job pool
append i to sequencec
n n + 1

. computer allocation
for all s 2 S i do

if as = idle then
as i
ts on

on job departure
begin

p job position in the queue
i pop elementp from sequencec
n n � 1

. service interruption
for all s 2 S i do

if as = i then
as idle
ts o�

. computer reallocation
while p � n do

j element p of sequencec
for all s 2 S i \ S j do

if as = idle then
as j
ts on

p p + 1

on timer expiration
begin

s computer
i as

p job position in the queue
move elementp to the rear of sequencec

. service interruption
for all s 2 S i do

if as = i then
as idle
ts o�

. computer reallocation
while p � n do

j element p of sequencec
for all s 2 S i \ S j do

if as = idle then
as j
ts on

p p + 1

Figure 7.2: Scheduling algorithm based on random service interruptions.

position p is interrupted|according to a rule that will be described in the next paragraph|this
job is moved to the rear of the queue, so that the new state is (c1; : : : ; cp� 1; cp+1 ; : : : ; cn ; cp), and
the released computers are reallocated to the next job they can serve in the queue. Note that the
interrupted service may be resumed immediately or later, when some computers become available,
depending on the queue state. If the service of the job in positionp is complete, this job is simply
removed from the central queue, so that the new queue state is (c1; : : : ; cp� 1; cp+1 ; : : : ; cn), and the
released computers are reallocated to the next job they can serve in the queue.

Our algorithm takes a single parameter � , again expressed in oating-point operations, that
will eventually give the average amount of work devoted to each job before interrupting its service.
For each s 2 S, computer s is equipped with a random timer whose duration is independent and
exponentially distributed with parameter Cs=� . If a job is in service on several computers at the
same time, its service is interrupted overall these computers whenever the timer ofone of these
computers expires. Therefore, if a job is in service on the computers of the setT � S , the time
before it is interrupted is again exponentially distributed, with rate (

P
s2T Cs)=� . In this way, the

average service time of each job is inversely proportional to its service rate. Note that the service
of a job may be interrupted before it reaches the front of the queue.

The pseudo-code of the algorithm is given in Figure 7.2. For eachs 2 S, as 2 f idleg[I describes
the activity state of computer s, so that as = idle means that computer s is idle and as = i means
that computer s is processing a job assigned to pooli . Also, for eachs 2 S, ts 2 f on; o� g indicates

121

Chapter 7. Job scheduling

the state of the timer that triggers the service interruption of the job in service on computer s, if
any. When set on, this timer has an exponential distribution with parameter Cs=� .

Example 7.1. Figure 7.3 shows an example of execution in the cluster ofS = 3 computers
with I = 2 pools described in Figure 7.1. Pool 1 gathers computers 1 and 2 and pool 2 gathers
computers 2 and 3. Initially, the cluster contains a single job, indexed by 1 for simplicity, assigned
to pool 1. This job is in service on computers 1 and 2, and its service rate isC1 + C2. The next
event is the arrival of job 2, assigned to pool 2. Since computer 2 is already processing job 1,
job 2 only enters in service on computer 3. At this point, every computer has activated its timer.
Unless a service completion occurs, the service of job 1 will be interrupted after a time that is
exponentially distributed with rate (C1 + C2)=� and the service job 2 will be interrupted after a
time that is exponentially distributed with rate C3=� . Observe that, if job 2 were interrupted in
the current state, its position in the central queue would be unchanged and its service would be
immediately resumed on the same computer. The next event is the arrival of job 3, assigned to
pool 1. This job enters in service neither on computer 1 nor on computer 2, as these are already
busy processing job 1. Now assume that the timer of computer 1 expires. The service of job 1
is interrupted and this job is moved to the end of the central queue. Computers 1 and 2 are
reallocated to the next job they can service in the queue, namely jobs 3 and 2, respectively.

Figure 7.3: An execution of the scheduling algorithm of Figure 7.2.

We could think of many variants of this implementation that would help adapt to the practical
constraints of the cluster. For instance, the central queue of the dispatcher can be replaced with a
local queue at each computer that only contains its assigned jobs. If each job is moved to the end of
the queue ofall of its assigned computers whenever its service is interrupted, the result is the same
as with a central queue. With this modi�cation, the dispatcher is only in charge of assigning jobs
to computers upon their arrival in the system, but it does not intervene in the scheduling, which
is entirely determined by the timers and local queues of computers. Concerning timers, these are
just one possible way of achieving frequent service interruptions. However, this assumes that each
computer is aware of its own service capacity, which may not be possible in practice. In this case,
we can replace timers with any other mechanism that guarantees that the same|average|amount
of work is devoted to each job before interrupting its service.

Speaking more broadly, imposing frequent service interruptions may not be desirable for some
workloads, as each job may have natural stopping times that do not coincide with the interruptions
imposed by the algorithm. In this case, other variants could be considered. Borrowing fromde�cit
round-robin [95] for instance, we could replace timers with a counter for each job. This counter is
decremented by the the amount of work devoted to the job when it is in service and is incremented
by � upon service interruption. The state of this counter is checked at each stopping time and the

122

Section 7.2. Queueing analysis

job is interrupted if the amount of work necessary to reach the next stopping time exceeds what
remains in its counter|assuming that we can estimate how much work needs to be done.

Qualitative remarks. The algorithm depends on a single parameter� , which should be compared
to the mean job size� . Speci�cally, if we assume that the service rate of each job is equal to the
sum of the capacities of the computers on which it is in service, then the ratiom = �=� gives
the expected number of service interruptions per job. Whenm tends to in�nity, the services are
frequently interrupted and the computer resources tend to be shared fairly, in the sense of balanced
fairness, so that the stationary distribution becomes insensitive to the job size distribution beyond
its mean; when m tends to zero, the services are almost never interrupted and the service policy
is approximately �rst-come-�rst-served per computer, which is highly sensitive to the job size
distribution. Our intuition is that, between these two extreme values, performance is all the more
insensitive as the value ofm increases. In practice, increasing the value ofm will certainly increase
the overhead due to context switching as well, therefore it would be better if this value were not
too high either. We shall see in the numerical results of Section 8.3 that, for large systems with a
static random assignment, settingm = 1 is in fact su�cient to get approximate insensitivity, that
is, it is su�cient in practice to interrupt each job only once on average.

7.2 Queueing analysis

We propose a queueing model for analyzing the implementation proposed in Section 7.1. This model
consists of a multi-server queue with the �rst-come-�rst-served policy, as described in Chapter 4,
supplemented with an irreducible Markov routing process that describes the interruptions and
resumptions enforced by our algorithm. The model is exact when the job sizes are exponentially
distributed and approximate in general. However, we expect that it gives good insights into the
system behavior when the interruptions are frequent enough relative to the mean job size. This
statement will be supported by numerical results in Section 7.3. Before we describe our queueing
model, we make some assumptions on the computer cluster.

As stated before, the cluster contains a setS = f 1; : : : ; Sg of computers. For eachs 2 S,
computer s has a �xed capacity Cs, expressed in oating-point operations per second. The set of
possible assignments is denoted byI = f 1; : : : ; I g and, for eachi 2 I , pool i contains the computers
of the setSi � S . We neglect the overhead due to context switching and parallelization, so that the
service rate of each job is the sum of the capacities of the computers that are currently processing
it. We also neglect the communication time between the dispatcher and computers, as well as
the time spent by the dispatcher to take the assignment decision. In this way, a request enters in
service immediately upon its arrival.

Our assumptions on the statistics of the tra�c are as follows. For each i 2 I , the jobs assigned
to pool i arrive according to an independent Poisson process with a positive rate� i . As before,
the job sizes are assumed to be i.i.d. with a mean� that is both positive and �nite.

Roughly speaking, the idea is then to describe the evolution of the cluster with an open multi-
server queue, like the one described in Section 4.1, under the �rst-come-�rst-served policy described
in Section 4.3. This multi-server queue describes more speci�cally the movements of jobs within
the central queue of the dispatcher. The service interruptions and resumptions imposed by our
algorithm are described, approximately sometimes, by an irreducible Markov routing process. As
intuition suggests, there is a one-to-one correspondence between the servers of the multi-server
queue and the computers of the cluster; similarly, each customer in the multi-server queue rep-
resents a job in the cluster, and the class of a customer identi�es the pool to which the job is
assigned. Importantly, the service requirements of customers, which may not correspond to the
size of the jobs they stand for, are systematically exponentially distributed with unit mean.

7.2.1 Queueing model

For now, we assume that job sizes are exponentially distributed. The mean job size is still denoted
by � and the average amount of work devoted to each job before interrupting its service by� . We
�rst examine the transition rates in the cluster under our algorithm. Let i 2 I and assume that a
job assigned to pooli is in service on a subsetT � S i of its assigned computers. As the job size

123

Chapter 7. Job scheduling

is exponentially distributed with mean � and the service rate of this job is
P

s2S Cs, its service
is complete after a time that is exponentially distributed with rate (

P
s2S Cs)=� . Independently

and by de�nition of the algorithm, the service of this job is interrupted after a time that is
exponentially distributed with rate (

P
s2T Cs)=� , in which case this job is moved to the end of the

queue. Overall, the service of the job halts|either because the service of this job is complete or
because it is interrupted|after a time that is exponentially distributed with rate (

P
s2T Cs)(1

� + 1
�).

Independently, the probability that the cessation is due to a service completion is given by

q =
(
P

s2T Cs) 1
�

(
P

s2T Cs)(1
� + 1

�)
=

1
�

1
� + 1

�

=
1

1 + m
: (7.1)

This probability is independent of the set of computers that were processing the job; in fact, it
does not even depend on its assigned pool. Also, let us recall thatm = �=� is the expected number
of service interruptions per job, so that 1+ m is the expected number of times the job is scheduled.

The corresponding model is a multi-server queue with a setS = f 1; : : : ; Sg of servers and a
set I = f 1; : : : ; I g of customer classes. The microstate of this multi-server queue coincides with
the state c = (c1; : : : ; cn) 2 I � of the central queue at the dispatcher. For eachi 2 I , class-i
customers arrive according to a Poisson process with rate� i and can be processed in parallel
by any subset of servers within the setSi . In particular, the compatibility graph of the multi-
server queue coincides with the bipartite graph between pools and computers in the cluster. For
instance, the compatibility graph associated with the cluster of Example 7.1 is the toy example of
Figure 4.1b. For eachs 2 S, the capacity of server s is Cs(1

� + 1
�) = � s(1 + m) with � s = Cs

� ;
this represents the contribution of computer s to the service completion or interruption of a job
in service on this computer. The �rst-come-�rst-served policy considered in Section 4.3 describes
the resource allocation enforced by our algorithm if it is complemented by the following Markov
routing process. For eachi 2 I , a class-i customer whose service is complete leaves the queue
with the probability q given by (7.1), otherwise this customer is appended to the queue as a new
customer of the same class. According to the tra�c equations (1.19), the e�ective arrival rate of
classi is given by � i

q = � i (1 + m), for each i 2 I .
This model reproduces exactly the behavior of our scheduling algorithm as long as job sizes are

exponentially distributed with the same mean. If we tried to use the method of stages described in
Section 1.4 to extend this model to job sizes with Coxian distributions, we would face the following
di�culty. In the method of stages, the termination of a service phase|in the sense of the phases
of a Coxian distribution|is described by the service completion of the corresponding customer,
this customer being instantaneously re-routed to the same queue or another. Since the service
policy of our multi-server queue is �rst-come-�rst-served, the order of customers in the queue does
impact the rate allocation, and therefore such a transition would arti�cially modify the service rate
received by customers. We expect that this discrepancy between the model and the reality will
vanish as the frequency of the interruptions increases. Indeed, if� � � , or equivalently m � 1,
the probability q that a customer leaves the queue tends to zero, so that the customers tend to
loop inde�nitely in the queue. In particular, if m tends to in�nity while the e�ective arrival rate
is kept constant|so that the external arrival rate � i tends to zero|we obtain a closed queue in
which the number of customers of each class is �xed. Roughly speaking, taking this limit amounts
to increase the frequency of the service interruptions while slowing down time, in order to focus on
a portion of time in which there is no departure nor arrivals. In this regime, the only transitions
are due to the interruptions triggered by timer expirations. The job size distribution does not
intervene anymore in this closed queueing model.

7.2.2 Stationary analysis

We now proceed to the stationary analysis of the multi-server queue we have just introduced. This
analysis is a direct application of the results of Part II. Interestingly, the formulas we obtain are
independent of the expected numberm of service interruptions per job. This parameter a�ects the
insensitivity of the algorithm, but not the stability condition nor the average performance metrics
when job sizes are exponentially distributed|though it does modify the distribution of the delay.

124

Section 7.2. Queueing analysis

Stability. A direct application of Theorem 4.11 shows that a necessary and su�cient condition of
stability is X

i 2A

� i (1 + m) <
X

s2
S

i 2A
Si

� s(1 + m); 8A � I : A 6= ; ;

that is, after simpli�cation,

X

i 2A

� i <
X

s2
S

i 2A
Si

� s; 8A � I : A 6= ; ; (7.2)

where, as before, we have� s = Cs
� for eachs 2 S. In other words, the cluster is stable if and only

if each aggregate of pools is able to cope with the load generated by the jobs assigned to the pools
of this aggregate. In the remainder, we will assume that this condition is satis�ed and we will let
� denote the stationary distribution of the multi-server queue.

Microstate. As announced, the microstate of the multi-server queue corresponds to the statec =
(c1; : : : ; cn) 2 I � of the central queue at the dispatcher. Applying Statement (c) of Theorem 4.10
yields the following expression for the stationary distribution of the Markov process de�ned by this
microstate:

� (c) = � (;)� m (c)
Y

i 2I

(� i (1 + m)) j cj i ; 8c 2 I � ; (7.3)

where the balance function � m is de�ned on I � by

� m (c1; : : : ; cn) =
nY

p=1

1
� m (I (c1 ;:::;c p))

; 8(c1; : : : ; cn) 2 I � ; (7.4)

and the rank function � m is de�ned on the power set ofI by

� m (A) =
X

s2
S

i 2A
Si

� s(1 + m) =
X

s2
S

i 2A
Si

Cs

�
(1 + m); 8A � I : (7.5)

Again, the factor 1 + m can be simpli�ed in this expression, as it appearsn = jcj1 + : : : + jcjI times
with the arrival rates in (7.3), and also n times in the balance function � m . After simpli�cation,
we obtain that the stationary distribution of the Markov process de�ned by the queue microstate
is given by

� (c) = � (;)�(c)
Y

i 2I

� j cj i
i ; 8c 2 I � ; (7.6)

where the balance function � is de�ned on I � by

�(c1; : : : ; cn) =
nY

p=1

1
� (I (c1 ;:::;c p))

; 8(c1; : : : ; cn) 2 I � ; (7.7)

and the rank function � is de�ned on the power set ofI by

� m (A) =
X

s2
S

i 2A
Si

� s =
X

s2
S

i 2A
Si

Cs

�
; 8A � I : (7.8)

This is exactly the stationary distribution of the microstate of a \re-scaled" multi-server queue,
where the e�ective arrival rate of class i is � i , for each i 2 I , and the capacity of server s is
� s = Cs

� , for each s 2 S. In particular, the parameter m is simpli�ed, so that it does not impact
the stationary distribution of the microstate as long as job sizes are exponentially distributed.

Before we consider the queue macrostate, let us describe the departure rate of customers de-
pending on their class. Let c = (c1; : : : ; cn) 2 I � . For each p = 1 ; : : : ; n, the service of the job
in position p in microstate c halts with rate � � (c1; : : : ; cp)(1 + m), and this is due to a service

125

Chapter 7. Job scheduling

completion with probability q. Using the fact that q = 1
1+ m , we obtain that the departure rate of

classi when the queue is in microstatec is given by

� i (c) = q �
nX

p=1
cp = i

� � (c1; : : : ; cp)(1 + m) =
nX

p=1
cp = i

� � (c1; : : : ; cp); 8i 2 I c: (7.9)

This is again the departure rate we would obtain without service interruptions.

Macrostate. According to Theorem 4.10, the stationary distribution of the stochastic process
de�ned by the queue macrostate is the same as if the service policy were balanced fairness instead
of �rst-come-�rst-served. Therefore, after simpli�cations, it is given by

� (x) = � (0)�(x)
Y

i 2I

� i
x i ; 8x 2 NI ; (7.10)

where the balance function � is de�ned recursively on NI by �(0) = 1, and

�(x) =
1

� (I x)

X

i 2I x

�(x � ei); 8x 2 NI n f 0g: (7.11)

We would have the same result if we applied balanced fairness instead of the scheduling algorithm.
The conditional per-class departure rates given the queue macrostate are also as de�ned by

balanced fairness. Indeed, letx 2 NI and i 2 I x . By de�nition, the conditional departure rate of
classi given that the macrostate is x is given by

� i (x) =
X

c:jcj= x

� (c)
� (x)

� i (c); 8x 2 NI ; 8i 2 I x :

By combining the simpli�cation of (7.9) with Statement (d) of Theorem 4.10, we obtain that these
conditional departure rates are equal to the per-class service rates de�ned by balanced fairness,
given by

� i (x) =
�(x � ei)

�(x)
; 8x 2 NI ; 8i 2 I x : (7.12)

Note that this result does not say anything about the departure rate of each job taken individually.
In particular, if the service interruptions are rare, the service policy is close to �rst-come-�rst-served
and the individual departure rates are very di�erent from those de�ned by balanced fairness.
However, we expect that, if the service interruptions are frequent enough, the average departure
rate of all customers of the same class over a small time window will be the same, which is what
we would obtain under balanced fairness.

7.2.3 Performance metrics

The numerical results of Section 7.3 will evaluate two performance metrics, the mean service rate
and the mean delay, de�ned in Section 3.4. We briey recall their de�nition and explain how to
compute them in our model.

The delay of a job is de�ned as the total time spent by this job in the cluster, either in service
or waiting to be served, between its arrival time and its departure time. Consider a pooli 2 I
and let � i denote the mean delay of the jobs assigned to pooli . According to Little's law [70, 71],
this quantity can be derived from the expected number of jobs assigned to pooli , denoted by L i ,
through the equality L i = � i � i . Therefore, we can �rst apply the results of Chapters 5 and 6 to
compute the expected numberL i of jobs assigned to pooli , and then derive their mean delay.

For each i 2 I , the mean service rate at pooli is de�ned as the average service rate as it is
perceived by the jobs present in the cluster and assigned to this pool. It was recalled in Section 3.4
that this quantity is given by i = � i

L i
� = �

� i
, where � is the mean job size. Using the expressions

of Section 3.4, one can also show that the mean service rate i cannot exceed the overall capacityP
s2S i

Cs of pool i .

126

Section 7.3. Numerical results

7.3 Numerical results

The performance of balanced fairness in computer clusters was already studied in Chapters 5
and 6, as well as in several works of the literature [90, 91, 93]. Therefore, in this section, we
are rather interested in assessing numerically the impact of the mean numberm of interruptions
per job on the insensitivity of our algorithm to the job size distribution. Simulation results,
obtained under various job size distributions, are compared to the performance metrics computed
analytically under balanced fairness, using the formulas of Chapter 6. The source code to generate
the numerical results is available at [C01].

Performance evaluation. We consider the cluster described in Section 7.1, withS computers
and I pools. Job sizes are assumed to be i.i.d. with a mean� that is positive and �nite. For each
i 2 I , the jobs assigned to pooli arrive according to a Poisson process with intensity� i . The
mean number of interruptions per job is given bym = �

� , where � is the mean job size and� is the
parameter of our algorithm, used to set the random timers. We compare the results form = 1 and
m = 5 with those obtained under the �rst-come-�rst-served policy|in our algorithm, this would
correspond to letting m tend to zero|and under balanced fairness.

The performance metrics under balanced fairness will be given in closed form for the con�g-
urations considered below, using the formulas ofx7.2.3. As shown inx7.2.2, these also give the
performance of our algorithm when the job size distribution is exponential. We resort to simula-
tions to assess the performance under the three job size distributions listed in the next paragraph.
Each simulation point follows from the average of 100 independent runs, each corresponding to
106 jumps of the corresponding Markov process, after a warm-up period ov 106 jumps; the corre-
sponding 95% con�dence intervals are drawn in semitransparent on the �gures.

Job size distribution. We �rst consider job sizes with a bimodular number of exponentially
distributed phases. More precisely, the size of each incoming job is a sum of independent random
variables exponentially distributed with mean &, for some & > 0. The number of these random
variables follows a bimodal distribution: it is equal to n1 with probability p1 and to n2 with
probability p2, for some positive realsp1 and p2 such that p1 + p2 = 1. We take &= 1

5 , n1 = 25,
n2 = 1, p1 = 1

6 , and p2 = 5
6 , so that the mean job size is� = (p1n1 + p2n2)&= 1 and the standard

deviation is approximately equal to 1:84.
We consider a second alternative where the job size distribution is hyperexponential: the size of

each incoming job is exponentially distributed with mean � 1 with probability p1 and exponentially
distributed with mean � 2 with probability p2, for some positive realsp1 and p2 such that p1+ p2 = 1.
We let � 1 = 5, � 2 = 1

5 , p1 = 1
6 , and p2 = 5

6 , corresponding again to a mean job size� =
p1� 1 + p2� 2 = 1 and a standard deviation approximately equal to 2:05.

Lastly, we consider job sizes with a heavy-tailed number of exponential phases. Like for the
bimodal case, the size of any incoming job is a sum of independent random variables exponentially
distributed with mean &. The number of these random variables folows a Zipf distribution with
parameter K 2 N and � > 0: for eachk = 1 ; : : : ; K , the probability that there are k terms in the
sum is proportional to 1

k � . We let &= 1, K = 200, and � = 2. The mean job size is given by

� =

P K
k=1

1
k � � 1

P K
k=1

1
k �

&;

approximately equal to 3:58, while the standard deviation is approximately equal to 10:61.

7.3.1 Toy example

We �rst consider the toy example of Figure 7.1, with S = 3 computers and I = 2 pools. Pool 1
gathers computers 1 and 2 and pool 2 gathers computers 2 and 3, so that computers 1 and 3 are
dedicated while computer 2 is shared by all jobs. The stability condition is as follows:

� 1 < � 1 + � 2; � 2 < � 2 + � 3; � 1 + � 2 < � 1 + � 2 + � 3:

The expected number of jobs assigned to each pool can be computed using the formulas of Theo-
rem 5.1 or those of Theorem 6.1, as in Examples 5.2 and 6.2. Using the notations of Example 6.2,

127

Chapter 7. Job scheduling

we de�ne the loads:

� j� 1 =
� 2

� 2 + � 3
; � j� 3 =

� 1

� 1 + � 2
; � =

� 1 + � 2

� 1 + � 2 + � 3
:

After simpli�cations, the mean service rates under balanced fairness are given by:

 1 =

0

@ 1
� (1 � �)

+
� 3

� 1 + � 2

1� � j� 1

1� � j� 3

� � (� 2 + � 3)� j� 1 � (� 1 + � 2)� j� 3 + � 2� j� 1� j� 3

1

A

� 1

;

 2 =

0

@ 1
� (1 � �)

+
� 1

� 2 + � 3

1� � j� 3

1� � j� 1

� � (� 2 + � 3)� j� 1 � (� 1 + � 2)� j� 3 + � 2� j� 1� j� 3

1

A

� 1

;

with � = � 1 + � 2 + � 3. For each i = 1 ; 2, the mean delay of the jobs assigned to pooli is given
by � i = �

 i
. Recall that these are the exact performance metrics under our algorithm and the �rst-

come-�rst-served policy when the job size distribution is exponential. The results are shown in
Figures 7.5 and 7.6 with respect to the load� , for � 1 = � 2. In Figure 7.5, the system is symmetric
and the maximum service rate is� 1 + � 2 = � 2 + � 3 = 2 for all jobs. In Figure 7.6, the system is
asymmetric because the capacity of computer 3 is zero: the jobs assigned to pool 1|top curve for
the mean service rate and bottom curve for the mean delay|can be served by computers 1 and 2,
and thus have a maximum service rate of� 1 + � 2 = 2; the jobs assigned to pool 2|bottom curve
for the mean service rate and top curve for the mean delay|can only be served by computer 2
and thus have a maximum service rate of� 2 = 1. Applying our algorithm with only m = 1 service
interruption per job on average brings a signi�cant improvement compared to the �rst-come-�rst-
served policy. With m = 5, performance is very close to that obtained under balanced fairness and
is approximately insensitive, even for job sizes with a Zipf number of exponential phases.

7.3.2 Large system with a random job assignment

We now consider a large cluster ofS = 100 computers, each with unit capacity. Each incoming job
is assigned tor computers chosen uniformly at random, corresponding toI =

� S
r

�
pools|one for

each subset ofr computers amongS. A toy example is shown in Figure 7.4 in a smaller cluster of
S = 4 computers and a degreer = 2. The mean service rate and the mean delay follow from the
explicit formula for the expected number of jobs in the multi-server queue that was �rst derived in
[45] and recalled inx6.2.1. The simulation results are obtained in the conditions described above.

Figure 7.4: A random job assignment tor = 2 computers amongS = 4 .

The results for r = 2 and r = 3 are shown in Figures 7.7 and 7.8, respectively. Performance is
again very close to that obtained under balanced fairness, even for low values ofm. It is su�cient
in practice to set m = 1, corresponding to only one service interruption per job on average.

7.4 Related work

To the best of our knowledge, the algorithm we propose is the �rst time-sharing implementation
of balanced fairness in computer clusters with parallel processing. So far, one only new how to
implement balanced fairness when it coincided with other notions of fairness, such as max-min
fairness and proportional fairness. When there is a single computer, all three notions of fairness

128

Section 7.5. Concluding remarks

coincide. In this case, balanced fairness boils down to processor-sharing and is implemented by
round-robin scheduling algorithm, which was frequently mentioned in this chapter. This algorithm
was proposed for computer systems [64, 65] and later applied to network routers. In this context,
several implementations were considered, aiming at realizing or emulating round-robin scheduling
at the packet level [79] or bit level [34, 95]. These implementations are commonly known as fair
queueing algorithms|or fair queuing sometimes|and aim at realizing max-min fairness.

In the context of data networks, balanced fairness coincides with proportional fairness inhomo-
geneous hypercubes[15], a network topology that does not produce a polymatroid capacity region
in general. The more recent work [42] shows that both policies also coincide in wireless networks
with hierarchical interference constraints. Furthermore, it was shown in [74] that, under fairly
general conditions on the form of the capacity region, both policies yield approximately the same
performance in a heavy-tra�c regime. Developing a general framework for studying balanced
fairness in these structurally heterogeneous applications would be an interesting topic of future
research.

7.5 Concluding remarks

In this chapter, we proposed a scheduling algorithm that extends the principle of round-robin to
a computer cluster, in which each job is assigned to a pool of computers upon arrival and can
subsequently be processed in parallel by any subset of these computers. We applied the results
of Part II to analyze the performance of this algorithm. The analysis is exact when job sizes
are exponentially distributed and approximate in general. The numerical results of Section 7.3
assessed that performance is indeed approximately insensitive, even when the frequency of service
interruptions is limited.

129

Chapter 7. Job scheduling

(a) Bimodal number of exponentially distributed phases.

(b) Hyperexponential.

(c) Zipf number of exponentially distributed phases.

Figure 7.5: Performance of the scheduling algorithm in the toy example of Figure 7.1. There are
I = 2 possible assignments toS = 3 computers, with � 1 = � 2 = � 3 = 1 .

130

Section 7.5. Concluding remarks

(a) Bimodal number of exponentially distributed phases.

(b) Hyperexponential.

(c) Zipf number of exponentially distributed phases.

Figure 7.6: Performance of the scheduling algorithm in the toy example of Figure 7.1. There are
I = 2 possible assignments toS = 3 computers, with � 1 = � 2 = 1 and � 3 = 0 . The performance
of the jobs assigned to pool1, which have access to both computers, appears in orange on the
�gure|top curve for the mean service rate and bottom curve for the mean delay. The performance
of the jobs assigned to pool2, which have access to only one computer, appears in green on the
�gure|bottom curve for the mean service rate and top curve for the mean delay.

131

Chapter 7. Job scheduling

(a) Bimodal number of exponentially distributed phases.

(b) Hyperexponential.

(c) Zipf number of exponentially distributed phases.

Figure 7.7: Performance of the scheduling algorithm with a random job assignment tor = 2
computers amongS = 100.

132

Section 7.5. Concluding remarks

(a) Bimodal number of exponentially distributed phases.

(b) Hyperexponential.

(c) Zipf number of exponentially distributed phases.

Figure 7.8: Performance of the scheduling algorithm with a random job assignment tor = 3
computers amongS = 100.

133

134

8 Load balancing

We introduce a second insensitive algorithm for managing resources in a computer cluster. The
algorithm of Chapter 7 aimed to dynamically share computer resources|or time|among paral-
lelizable jobs. In contrast, the algorithm we propose in this chapter aims to distribute incoming
jobs among computers, assuming that there is not parallel processing and each computer applies
round-robin scheduling algorithm to its assigned jobs. The dispatcher is now in charge of assigning
each incoming job to asingle computer of the cluster, and the algorithm we propose for taking the
assignment decision is based on tokens exchanged by the dispatcher and computers. The queueing
analysis of Section 8.2, again based on the multi-server queue, reveals that this algorithm is also
a deterministic implementation of a randomized insensitive policy introduced in [12]. The perfor-
mance of this algorithm and its insensitivity to the job size distribution are assessed numerically in
Section 8.3. Lastly, Section 8.4 situates our work in relation to others. The content of this chapter
was presented in [P05, P07, P14].

8.1 Load-balancing algorithm

We consider a computer cluster subject to a stochastic demand. This demand again takes the form
of elastic jobs that arrive at random instants. All jobs enter the cluster through a single entry
point, the dispatcher, in charge of assigning them to computers. In this chapter, we assume that
there is no parallel processing, so that each incoming job is assigned to asingle computer and each
computer applies round-robin scheduling algorithm to its assigned jobs|Section 9.1 will explain
how to combine the scheduling algorithm of Chapter 7 with the algorithm of this chapter. We also
assume that each computer has a �nite queue, so that the assignment of a job to a computer is
only possible if there is space in its queue. In that case, the job enters in service immediately and
receives, on average, the same service rate as the other jobs assigned to this computer.

Each job may have assignment constraints that restrict the set of computers it can be assigned
to. These constraints can be due to data locality or to software requirements for instance [94]. Our
main assumption is that the dispatcher is able to identify these assignment constraints immediately
upon the job arrival, so that the job is immediately assigned to an available compatible computer, if
any, and is rejected otherwise. Our objective is to propose an algorithm that exploits the diversity
of the possible job assignments in order to balance load among computers insofar as the assignment
constraints allow us to do so.

Description. The simplest example of an insensitive routing strategy consists of assigning each
incoming job to a compatible computer chosen at random, independently of the cluster state, and
in rejecting the job if its assigned computer is already full. This strategy is said to bestatic be-
cause it does not use any state information to take the assignment decision. Ideally, the routing
probabilities are chosen to homogenize the load of computers as much as possible. The advantage
of this strategy is that it does not require the exchange of state information between the dispatcher
and computers. Furthermore, if jobs arrive according to a Poisson process, this algorithm preserves
the insensitivity of processor-sharing. However, as we will see in the numerical results of Section 8.3,
this strategy can be quite ine�cient without a good estimate of the job arrival rates and computer
capacities.

135

Chapter 8. Load balancing

The algorithm we propose also preserves the insensitivity of processor-sharing but it adopts
another tradeo�: instead of requiring predictions of the job arrival rates and computer capacities,
it works out an assignment decision based on a partial observation of the computer states. This
state information ows from computers to the dispatcher by means of tokens. Speci�cally, each
computer owns as many tokens as there are positions in its queue and sends a token to the
dispatcher each time the service of one of its jobs is complete. The dispatcher stores these tokens
in a single ordered queue, so that the oldest tokens are ahead. Upon a job arrival, the dispatcher:
(i) identi�es the assignment constraints of this job, (ii) goes through its queue to �nd the oldest
token that belongs to a compatible computer, and (iii) assigns the job to this computer and deletes
the token from its queue. If the queue at the dispatcher does not contain any token that belongs
to a compatible computer upon the job arrival, the job is rejected. If a job is compatible with all
computers, the algorithm simply assigns this job to the computer identi�ed by the oldest token,
at the front of the queue. When a computer is empty, the queue at the dispatcher contains as
many tokens owned by this computer as this computer can have jobs in its queue. In particular,
at system initialization, the queue at the dispatcher can be �lled with all tokens in an arbitrary
order. Observe that the algorithm works as if each incoming jobseizeda token upon assignment
to a computer and held this token until its service is complete; this point of view will be especially
useful to explain the queueing model of Section 8.2.

Implementation. Compared to the cluster of Chapter 7, each incoming job can only be assigned
to a single computer. In particular, the set I = f 1; : : : ; I g of the pool indices now coincides with
the set S = f 1; : : : ; Sg of computers in the cluster|more precisely, with the notations of Chapter 7,
we would haveS = I and Si = f ig for each i 2 I . From now on, we will use I = f 1; : : : ; I g to
denote the set of computers. This notation will be more convenient, both to explain the queueing
model of Section 8.2 and to describe the extension of Section 9.1. For eachi 2 I , we let ` i denote
the size of the queue of computeri or, equivalently, the number of tokens owned by this computer,
and we let Ci denote the capacity of computer i in oating-point operations per second. This
quantity is assumed to be constant for simplicity, but it need not be known in order to apply the
algorithm. On the contrary, one of our objectives is to balance load among computers without
requiring any knowledge of their service capacities.

Each incoming job now has atype that de�nes its assignment constraints. The set of job types
is denoted by K = f 1; : : : ; K g and, for each i 2 I , we let K i � K denote the set of job types
that can be assigned to computeri . This de�nes a bipartite assignment graph between job types
and computers, in which there is an edge between a type and a computer if a job of this type
can be assigned to this computer. An example is shown in Figure 8.1. Similarly to Section 7.1,
giving a number to each job type is just a practical way of describing the assignment constraints
in the cluster, but, in practice, we do not need to know them in advance1. If we do not have any
information on the possible assignments, we can just de�ne as many job types as there are subsets
of computers in the cluster.

Figure 8.1: A bipartite graph between job types and computers. The meaning of this graph di�ers
from that of Figure 7.1, as it represents restrictions on the possible assignments. For instance, an
incoming job of type 1 is assigned to computers1 or 2, but not both.

The pseudo-code of the algorithm is given in Figure 8.2. The queue of available tokens at
the dispatcher is denoted by d = (d1; : : : ; dm) 2 I � , where m is the total number of available
tokens and dp is the index of the computer that owns the token in position p. Therefore, the
token that has been available the longest belongs to computerd1, the second oldest token belongs

1Similarly to Chapter 7, this number could also be used as a bitmap that encodes the indices of the computers
the job can be assigned to. Verifying if k 2 K i for some computer i 2 I is then equivalent to checking if the i -th of
the binary representation of the integer k is one.

136

Section 8.2. Queueing analysis

on job arrival
begin

k job type

. look for the oldest compatible token
p 0
found False
while not found and p + 1 � m do

p p + 1
i element p of sequenced
found (k 2 K i)

. update the system state
if found then

assign job to computeri
remove elementp from sequenced
m m � 1

else
reject job

on job departure
begin

i computer

. update the system state
append i to sequenced
m m + 1

Figure 8.2: Load balancing algorithm based on tokens.

to computer d2, and so on. When the token in some positionp = 1 ; : : : ; m is seized, the new
queue state is (d1; : : : ; dp� 1; dp+1 ; : : : ; dm). On the contrary, when computer i sends a token to
the dispatcher upon a service completion, this token is appended to the queue, so that the new
state is (d1; : : : ; dm ; i). The focus is on the assignment rule implemented by the dispatcher and
not on the implementation of the scheduling algorithm at computers. In particular, the high-level
operation that consist of assigning a job to a computer covers not only the communication between
the dispatcher and the computer, but also the addition of the job to the queue of the computer.

Qualitative remarks. A special case of this algorithm was already proposed and analyzed in [3]
under the name assign-to-the-longest-idle-server. This work assumed that each computer could
only process a single job at a time. In our framework, this would mean that each computer has a
single token, available if and only if the computer is idle. We will elaborate on [3] in Section 8.5,
but for now we would just like to point out that the following intuition is adapted from this paper.
The idea is that the order of tokens in the queue at the dispatcher gives an information on the
relative load of the computers they identify. Indeed, a token that has been available for a long
time is likely to identify a computer that is less loaded than others. Therefore, if an incoming job
is compatible with this computer, it is a good idea to assign this job to this computer in order
to keep other computers|probably more loaded|available for other jobs. The main property of
this algorithm, which we analyze in Section 8.2, is its insensitivity to the job size distribution.
Numerical results evaluate its performance in Section 8.3.

8.2 Queueing analysis

The queueing model again relies on the multi-server queue, but the way we interpret the customers
and servers di�ers from Chapter 7. Before we describe this model, let us precise our assumptions
on the computer cluster, and especially on the statistics of the tra�c.

The set of computers is again denoted byI = f 1; : : : ; I g and, for eachi 2 I , we let ` i denote the
queue length at computeri , assumed to be �nite, andCi the capacity of this computer, expressed in
oating-point operations per second. We neglect the communication time between the dispatcher
and computers, as well as the time spent by the dispatcher to take the assignment decision, so
that an accepted job enters in service on its assigned computer immediately after its arrival. We
also assume that each computer e�ectively applies processor-sharing to its jobs, so that, at each
instant, each job receives a fraction of the capacity of its computer that is inversely proportional

137

Chapter 8. Load balancing

to the number of jobs assigned to this computer. In particular, we neglect the overhead due to
context switching. The set of job types is still denoted byK = f 1; : : : ; K g, and, for eachi 2 I , the
set of job types that can be assigned to computeri is denoted by K i � K .

Our assumptions on the statistics of the tra�c are as follows. For eachk 2 K , type-k jobs arrive
according to an independent Poisson process with a positive rate� k . The job sizes are assumed to
be i.i.d. with a mean � that is both positive and �nite.

8.2.1 Queueing model

Our model describes the perpetual motion of tokens, which alternate between the queue at their
computer and the queue at the dispatcher. The job sizes are �rst assumed to be exponentially
distributed with mean � . The case of Coxian distributions will be discussed later.

Overview. Consider a closed network ofI +1 queues. The set of customer classes isI = f 1; : : : ; I g
and, for eachi 2 I , the network contains ` i customers of classi in total. Each customer represents
a token and the class of a customer identi�es the computer that owns the corresponding token.
The I + 1 queues of the network coincide with the queue at the dispatcher and the queues at the
computers. These queues operate as follows:

Dispatcher: A multi-server queue under �rst-come-�rst-served policy, as described in Section 4.3,
that contains the available tokens; its dynamics, described later, reproduces that of the queue
at the dispatcher. The microstate of this queue is denoted byd = (d1; : : : ; dm), wherem is the
total number of available tokens and dm 2 I identi�es the computer that owns the token in
position p|in the queueing network, dp is the class of the customer that corresponds to this
token. Its macrostate, giving the number of available tokens of each computer, is denoted by
y = (y1; : : : ; yI) 2 NI . The corresponding state spaces are denoted byD = f d 2 I � : jdj � `g
and Y = f y 2 NI : y � `g, where ` = (`1; : : : ; ` I) is the vector of limits per computer.

Machine i : A processor-sharing queue with a single server of capacity� i = C i
� that contains the

tokens held by the jobs assigned to computeri , for each i 2 I . Technically speaking, each of
these queues is also a multi-server queue, with a single server and under balanced fairness.
However, we will leave this observation aside right now, so that, when we will speak of \the
multi-server queue", we will refer to the queue at the dispatcher.

The Markov routing process in the network is deterministic: for each i 2 I , a class-i customer
alternates between the queue at the dispatcher and the queue at computeri . An example is shown
in Figure 8.3 and it will be discussed later. Note that the microstate of the multi-server queue
entirely describes the state of the whole network, as there are always̀i � j dj i = ` i � yi customers in
the queue of computeri , for eachi 2 I . In particular, if the job sizes are exponentially distributed,
the microstate of the multi-server queue de�nes an irreducible Markov process onD.

Figure 8.3: Queueing model associated with the cluster of Figure 8.1. Each computer owns` i = 3
tokens. The compatibility graph of the multi-server queue is shown in Figure 8.4 below.

Queue at the dispatcher. The multi-server queue that represents the queue at the dispatcher
contains K servers, one for each job type. Its dynamics is coupled with that of the computer
cluster as follows: a customer isserved by some serverk 2 K in the multi-server queue if the
corresponding token is seized by an incoming job of typek in the cluster; a customer isin service

138

Section 8.2. Queueing analysis

(a) Graph of assignment constraints of the cluster. (b) Compatibility graph of the multi-server queue.

Figure 8.4: Compared to the graph of assignment constraints of the cluster, the compatibility graph
of the multi-server queue is the other way around.

in server k if the corresponding token is intended to be seized by the next incoming job of typek.
The compatibility graph of the multi-server queue corresponds to the bipartite graph between job
types and computers, so that, for eachi 2 I , class-i customers can be processed in parallel on any
subset of servers within the setK i . An example is shown in Figure 8.4. For eachk 2 K , server k
processes the customers of the classesi 2 I such that k 2 K i in �rst-come-�rst-served order, and
ignores the other customers. Each customer is in service on every server that is compatible with
this customer but not with the older customers in the queue. Similarly, under our algorithm, each
token can be seized by every incoming job of a type that is compatible with this token but not
with the older tokens in the queue at the dispatcher. Therefore, the �rst-come-�rst-served policy
of the multi-server queue reproduces exactly the assignment rule of our algorithm.

The Poisson arrival assumption will be critical for the stationary analysis of x8.2.2. Indeed,
for each k 2 K , the successive service times at serverk correspond to the inter-arrival times of
the customers of typek in the cluster; these are independent and exponentially distributed with
rate � k because type-k jobs arrive according to a Poisson process with rate� k . As we observed in
Section 4.4.1, we are only able to perform the stationary analysis of a multi-server queue under
the �rst-come-�rst-served policy when this condition is satis�ed.

Queues at the computers. For each i 2 I , the queue at computer i has a single server of
capacity � i = C i

� and the service policy is processor-sharing. For now, under the assumption that
job sizes are exponentially distributed, the service policy of these queues does not really impact
the evolution of the network state|as long as the policy is non-anticipating and the capacity of
each computer is fully utilized whenever its queue is not empty. The assumption that the service
policy is processor-sharing will only become crucial when job sizes have a Coxian distribution. We
now propose two alternative ways of describing the dynamics of these queues.

First, all these queues taken together constitute a special case of a multi-server queue, said to
have a locally-constant capacity and described inx4.1.4. The corresponding multi-server queue
contains I servers, one for each computer in the cluster, and the compatibility graph contains an
edge between classi and server i for each i 2 I . Applying balanced fairness in this multi-server
queue is equivalent to applying processor-sharing at each server individually, which is precisely the
policy we apply. In Section 9.1, we will propose an extension, based on the algorithm of Chapter 7,
in which the capacity of this multi-server queue is not necessarily locally constant.

Alternatively, the queues at the computers can be replaced with Poisson sources of customers,
so that our closed network ofI +1 queues becomes a single open multi-server queue with losses, as
shown in Figure 8.5. Speci�cally, for eachi 2 I , the M/M/1 processor-sharing queue of capacity� i

that represents the queue at computeri is replaced with a Poisson source with rate� i . An incoming
customer of classi |representing a potential service completion at computer i |is rejected if the
multi-server queue already contains` i customers of this class. With this modi�ed point of view,

Figure 8.5: A loss variant of the queueing model associated with the computer cluster of Figure 8.1.

139

Chapter 8. Load balancing

our queueing model is just a loss variant of the open multi-server queue of Chapter 4.

Example 8.1. Consider the cluster of Figure 8.1, with K = 2 job types and I = 3 computers.
Type-1 jobs can be assigned to computers 1 and 2 while type-2 jobs can be assigned to computers 2
and 3. Therefore, we haveK1 = f 1g, K2 = f 1; 2g, and K3 = f 2g. The network of I +1 = 4 queues
that describes the evolution of the computer cluster under our algorithm is shown in Figure 8.3.
The compatibility graph of the multi-server queue is shown in Figure 8.4. Computers 1, 2, and
3 currently have 2, 1, and 2 assigned jobs, respectively. The state of the queue at the dispatcher
is d = (3 ; 2; 1; 2), meaning that the oldest available token belongs to computer 3, the next oldest
token to computer 2, and so on. In the multi-server queue, server 1, representing the arrivals of
type-1 jobs, is currently processing the second customer, of class 2, because an incoming job of
type 1 would seize the corresponding token upon arrival. Server 2, representing the arrivals of
type-2 jobs, is processing the �rst customer, of class 3. The loss variant of the model, made of a
single multi-server queue, is shown in Figure 8.5.

A posteriori , our queueing model gives the following insight: balancing load among computers
amounts to sharing the resources or time of servers in a virtual multi-server queue, in which the
job types play the part of servers. The service policy of this queue determines the load-balancing
policy that is enforced in the computer cluster. The formal distinction we have made so far between
customers and tokens helped understand the queueing model but it is quite tedious over time. From
now on, when no confusion can arise, we will use the words customer and token interchangeably.
Similarly, we will stop making the distinction between a queue in the model and its representative
in the computer cluster.

Coxian distribution. If the job sizes have a Coxian distribution, it su�ces to apply the method
of stages described in Section 1.4. We only make a few words on it, as the principle really is the
same. The idea is to replace the queue of each computeri 2 I with as many queues as there are
phases in the Coxian distribution. When a token is seized by an incoming job, it moves from the
queue at the dispatcher to the queue that corresponds to the �rst phase of the Coxian distribution
at its computer. When a token leaves this queue upon service completion, it enters in service either
in the queue that corresponds to the next phase of the Coxian distribution or in the queue at the
dispatcher|if the service of the job that holds this token is complete|and so on. For each i 2 I ,
the queues that correspond to computeri constitute a globally-constant Whittle network.

The stochastic process de�ned by the queue microstate does not have the Markov property in
general. However, the stochastic process de�ned by the network state|retaining the service phase
of each job holding a token in addition to the release order of available tokens|does. Therefore, we
can derive the distribution of the queue microstate from that of this network state. The obtained
distribution is the same as the one we will obtain inx8.2.2 with exponentially distributed job sizes.
In particular, the results of the next subsection, yet formulated for exponentially distributed job
sizes, apply as they are to Coxian distributions. The only di�erence is that the stochastic process
de�ned by the queue microstate does not have the Markov property in general.

The method of stages still applies if the job size distribution is di�erent at each computer.
Compared to the previous model, it su�ces to consider a globally-constant Whittle network that
is speci�c to each computer. In the stationary analysis ofx8.2.2, the service capacity of computeri
simply needs be replaced with� i = C i

� i
, where � i is the mean job size at computeri , assumed

to be positive and �nite, for each i 2 I . It should be stressed that, on the contrary, we cannot
conclude anything if the job size distribution is di�erent for each job type|unless this job type
has an exclusive set of compatible computers. Indeed, if we tried to extend the method of stages
to that case, we would need to make the token routing probabilities dependent on the server on
which their service is completed in the multi-server queue, which cannot be done simply in our
model. To summarize, our queueing model proves that the algorithm can cope with the service
heterogeneity provoked by computers but not by jobs.

8.2.2 Stationary analysis

All our results are stated under exponentially distributed job sizes with unit means. As explained
before, they can be easily applied to Coxian distributions, except that, for eachi 2 I , the service

140

Section 8.2. Queueing analysis

rate at computer i should be given by� i = C i
� i

, where � i is the mean job size at computeri .

Microstate. The microstate d = (d1; : : : ; dm) of the multi-server queue entirely de�nes the state
of the whole network, as it indirectly gives the number of jobs assigned to each computer. In
particular, it de�nes an irreducible Markov process on its state spaceD. This Markov process is
always ergodic because its state space is �nite, and its stationary distribution is given by

� (d) =
1
G

�(d)
Y

i 2I

�
1
� i

� ` i �j dj i

; 8d 2 D ; (8.1)

where G is a normalizing constant and � is the balance function of the multi-server queue under
the �rst-come-�rst-served policy. For memory, this balance function � is de�ned on I � by

�(d1; : : : ; dm) =
mY

p=1

1
� (I (d1 ;:::;d p))

; 8(d1; : : : ; dm) 2 I � ; (8.2)

where the rank function � is de�ned on the power set of I as follows: for eachA � I , � (A) is
the overall arrival rate of the jobs that can seize at least one token among those that identify a
computer of the set A , given by

� (A) =
X

k2
S

i 2A
K i

� k : (8.3)

Equation (8.1) is a consequence of Theorem 4.10 and the product form of the stationary distribution
of a network of multi-server queues|recall that the e�ective arrival rate of each class is equal to
one because the Markov routing process is deterministic. If, as explained earlier, we interpret the
network as a single open multi-server queue with losses, we obtain the following expression for the
stationary distribution of the Markov process de�ned by the microstate:

� (d) = � (;)�(d)
Y

i 2I

� i
j dj i ; 8d 2 D : (8.4)

The simplicity of this expression compared to (8.1) suggests that the probability � (;) that the
multi-server queue is empty, given by� (;) = 1

G

Q
i 2I (1

� i
)` i in (8.1), is a more natural choice than

G for the normalizing constant. The other advantage of (8.4) compared to (8.1) is that we may be
able to apply the formulas of Chapters 5 and 6 to compute the limiting behavior of our algorithm
when the number of tokens grows, by approximating the loss multi-server queue with its open
variant, without losses. We will come back to it later.

Before we move on to the macrostate, let us briey describe the instantaneous arrival rates at
the computers. In the queueing model, these are given by the service rates of the tokens in the
multi-server queue. For eachi 2 I , an incoming job is assigned to computeri if it seizes the oldest
token owned by this computer in the queue at the dispatcher. For this to happen, the job not only
has to be compatible with computer i , it should also be incompatible with the computers identi�ed
by tokens older than the �rst token of computer i in the queue at the dispatcher. Therefore, for
eachd = (d1; : : : ; dm) 2 D , the arrival rate at computer i in microstate d is given by

� i (d1; : : : ; dm) =
mX

p=1
dp = i

� � (d1; : : : ; dp) =
mX

p=1
dp = i

0

B
@

X

k2K i n
S p � 1

q=1
K d q

� k

1

C
A : (8.5)

If computer i is not full in microstate d, meaning that i 2 I d, this is the arrival rate of the job
types that are compatible with computer i but not with the computers identi�ed by tokens older
than the �rst token of computer i in the queue at the dispatcher.

Macrostate. The macrostate of the multi-server queue is denoted byy = (y1; : : : ; yI), where, for
each i 2 I , yi is the number of available tokens owned by computeri . It de�nes a stochastic
process on the setY = f y 2 NI : y � `g. This process does not have the Markov property in
general, as the rate at which tokens are seized depends on their release order. However, according

141

Chapter 8. Load balancing

to Theorem 4.10, its stationary distribution is the same as if the service policy in the multi-server
queue were balanced fairness instead of �rst-come-�rst-served. It is given by

� (y) =
1
G

�(y)
Y

i 2I

�
1
� i

� ` i � y i

; 8y 2 Y ; (8.6)

or, equivalently,
� (y) = � (0)�(y)

Y

i 2I

� i
y i ; 8y 2 Y : (8.7)

where � is the balance function of the service rates of the available tokens in the multi-server queue
under balanced fairness, de�ned recursively onY by �(0) = 1, and

�(y) =
1

� (I y)

X

i 2I y

�(y � ei); 8y 2 Y n f 0g: (8.8)

We will elaborate on this balance function in the next paragraph. For now, we wish to emphasize
that (8.6) and (8.7) are the counterparts of (8.1) and (8.4). Again, the probability that the multi-
server queue is empty is given by� (0) = 1

G

Q
i 2I (1

� i
)` i . Since the state spaceY is �nite, (8.7)

can be used to compute the performance metrics under our algorithm. In general, the number of
terms to compute is of order O(`1`2 � � � ` I), and in particular it is exponential in the number of
computers. More details on the exact computation of some performance metrics will be provided
in x8.2.3. The formulas of Chapters 5 and 6 may be used to approximate the performance of our
algorithm when the number of tokens grows. For instance, we can show that, as the number of
tokens tends to in�nity|in such a way that the fraction of tokens owned by each computer is a
constant|the probability � (0) that the multi-server queue is empty tends to the probability that
the non-lossy variant of this queue is empty if it is stable, and to zero otherwise.

In addition to provide simpler formulas for predicting performance, the correspondence with
balanced fairness allows us to make the connection with existing works on insensitive load-balancing
policies. In order to explain this, we consider the conditional expected arrival rate at each computer,
given the network macrostate. Let y = (y1; : : : ; yI) 2 NI and i 2 I . By de�nition, the conditional
expected arrival rate at computer i given that the macrostate is y is given by

� i (y) =
X

d:jdj= y

� (d)
� (y)

� i (d); 8y 2 Y ; (8.9)

where � i (d) is given by (8.5). Equation (8.9) also gives the conditional expected service rates of
tokens in the multi-server queue, given that the macrostate isy. By (4.17) in Theorem 4.10, these
conditional expected arrival rates are given by

� i (y) =
�(y � ei)

�(y)
; 8y 2 Y ; 8i 2 I y ; (8.10)

where � is the balance function, de�ned by (8.8), of the arrival rates under balanced fairness.
[12] already considered an equation similar to (8.10) for arandomized load-balancing policy2.
Speci�cally, this work de�ned a class of randomized insensitive load-balancing policies, whereby
each incoming job is assigned to one of its compatible computers chosen at random. The assignment
probabilities, non-uniform in general, depend on the macrostate of the multi-server queue and are
chosen so that the arrival rates at the computers satisfy (8.10). Equations (8.5) and (8.9) give a
natural candidate for these assignment probabilities: for eachy 2 Y , eachi 2 I y , and eachk 2 K i ,
the probability of assigning an incoming job of type k to computer i in macrostate y can be taken
to be the conditional probability that the oldest token of computer i is before the tokens of other
computers compatible with type k, given that the macrostate is y, under our algorithm. From this
point of view, the randomness of the assignment under the policy of [12] compensates for the fact
that they ignore the release order of the tokens.

2See (5) in [12]. The only di�erence with (8.10) is that the arrival rates � 1 ; : : : ; � I and the balance function �
take x = ` � y instead of y as an argument.

142

Section 8.2. Queueing analysis

In addition to help understand our algorithm, this discussion sheds a new light on randomized
insensitive policies, and especially on the so-calledsimple policies, described in Section 3.1 of [12],
used as building blocks for more sophisticated ones. Indeed, the randomized load-balancing policy
de�ned by (8.8) and (8.10) is nothing but balanced fairness, applied to the multi-server queue at
the dispatcher. The capacity region of this multi-server queue, made of all vectors of arrival rates
that comply with the arrival rates of the job types, is given by

� =

(

� 2 RI
+ :

X

i 2A

� i � � (A); 8A � I

)

: (8.11)

This capacity region � is a polymatroid. The Pareto-e�ciency of balanced fairness in polymatroid
capacity regions guaranteesa posteriori that the arrival rates given by (8.8) and (8.10) belong
to the capacity region �, meaning that they are feasible given the arrival rates of the job types.
It is also worth observing that, in terms of load balancing, the duality between resource-sharing
and time-sharing in the multi-server queue can be transposed into the duality between random
assignment and deterministic assignment.

8.2.3 Performance metrics

We �nally explain how we can use our model to compute some performance metrics. These
formulas will be applied in Section 8.3 to assess the performance of our algorithm in two concrete
examples. The objective is not only to evaluate the performance perceived by users, but also to
better understand how load is e�ectively distributed among computers.

Loss and activity. For eachk 2 K , the loss probability of type-k jobs, de�ned as the probability
that an incoming job of this type is lost, is given by

� k =
X

y2Y :k =2
S

i 2I y
K i

� (y):

The equality follows from PASTA property [105]. For each k 2 K , � k is also the probability
that server k is idle in the multi-server queue. In particular, if we consider a job type k that is
compatible with all computers|that is, k 2 K i for each i 2 I |the loss probability of type k is
just the probability � (0) that the multi-server queue is empty. Also, for each i 2 I , the activity
probability of computer i , de�ned as the proportion of time this computer is active, is denoted by
� i and given by

� i =
X

y2Y :y i <` i

� (y):

The quantity i = 1 � � i is just the probability that computer i is idle. If computer i had an in�nite
queue and were subject to a Poisson arrival process with a constant rate� i , its activity probability
would be equal to its load � i =� i . Although these assumptions are not veri�ed in our scenarios,
we expect that the activity probability will give good insights into the load of each computer, and
thus on the long-term load distribution that is enforced by our algorithm. The loss and activity
probabilities are related by the conservation equation

X

k2K

� k (1 � � k) =
X

i 2I

� i � i : (8.12)

We de�ne respectively the average loss probability and the average activity probability by

� =

P
k2K � k � kP

k2K � k
and � =

P
i 2I � i � iP

i 2I � i
:

These two quantities are between zero and one, and they are related by a simple relation. Indeed,
if we let � = (

P
k2K � k)=(

P
i 2I � i) denote the overall load in the cluster, we can rewrite (8.12)

as � (1 � �) = � . As one would expected, minimizing the average loss probability is equivalent
to maximizing the average activity probability. It is convenient, however, to look at both metrics

143

Chapter 8. Load balancing

in parallel. As we will see, when the system is underloaded, jobs are almost never lost and it
is easier to describe the|almost linear|evolution of the average activity probability. On the
contrary, when the system is overloaded, computers tend to be maximally occupied and it is more
interesting to look at the average loss probability.

More generally, any stable computer cluster satis�es the conservation equation (8.12), irrespec-
tive of the resource-management policy. As the average activity probability� cannot exceed one,
this implies that the average loss probability � in a stable system cannot be less than 1� 1

� when
� > 1. A similar argument applied to each job type individually imposes that

� k � max

0; 1 �
1
� k

X

i 2I :k2K i

� i

!

; 8k 2 K : (8.13)

Expected number of jobs. For eachi 2 I , the expected number of jobs in service in computeri ,
which is also the expected number of tokens of computeri held by jobs in service, is denoted by
L i and given by

L i =
X

y2Y

(` i � yi)� (y) = ` i �
X

y2Y

yi � (y):

The expected number of jobs in the cluster is given byL = L 1 + : : : + L I . Ideally, it would also be
interesting to compute the expected number of jobs ofeach typein the cluster. Unfortunately, our
queueing model does not allow it, unless a job type has an exclusive set of compatible computers.
This quantity will be evaluated by simulation.

Knowing the expected number of jobs at each computer allows us to compute the mean delay
as follows. Let i 2 I . According to Little's law [70, 71], the mean delay � i of the jobs assigned to
computer i is the ratio of the expected numberL i of jobs at this computer to their e�ective arrival
rate, given by

P
y2Y � i (y)� (y). But by conservation, we have

P
y2Y � i (y)� (y) = � i � i , so that we

obtain the simple expression

� i =
L i

� i � i
:

Taking the mean job size at computeri as the unit, the mean service rate perceived by the jobs in
service in computeri is given by i = 1

� i
. Similarly, the mean delay � is given by

� =
L

P
k2K � k (1 � � k)

=
L

P
i 2I � i � i

;

where the second equality follows from (8.12). Again taking the mean job size as a unit, the mean
service rate perceived by the jobs in service is given by = 1

� .

8.3 Numerical results

We now consider two simple scenarios that will help understand the performance of our algorithm
in heterogeneous computer clusters. In the �rst scenario, presented inx8.3.1, we consider a cluster
without assignment constraint|there is a single job type that can be assigned to all computers|in
which computers have unequal capacities. In the second scenario, presented inx8.3.2, computer
capacities are homogeneous but jobs have assignment constraints. The source code to generate the
numerical results is available at [C01].

Most of our evaluations assume that job sizes are exponentially distributed with unit mean, so
that we can apply the formulas of x8.2.3 to predict performance. According to the discussion of
x8.2.1, these formulas also predict performance when the job size distribution is Coxian, even if it
depends on the computer each job is assigned to. On the other hand, we cannot conclude anything
when the job size distribution depends on the job assignment constraints. This will be assessed by
simulation in the scenario of x8.3.2. In order to isolate the potential impact of our algorithm on
insensitivity from that of the scheduling algorithm, we systematically assume that each computer
applies processor-sharing, which is insensitive.

We rely on simulations to compute metrics that cannot be predicted by the model. Each simu-
lation point is the average of 100 independent runs, each built up of 106 jumps after a warm-up
period of 106 jumps. The asymptotic 95% con�dence intervals, not shown on the �gures, do not
exceed� 0:0001 around the points for the loss probability and� 0:007 for the mean number of jobs.

144

Section 8.3. Numerical results

8.3.1 A single job type

We �rst consider a cluster of I = 10 computers with a single type of jobs, as shown in Figure 8.6.
Half of the computers have a unit capacity C = 1 and the other half have capacity 4C. Each
computer has` = 6 tokens and applies processor-sharing to its jobs. The mean job size is� = 1.

Figure 8.6: A computer cluster with a single job type.

Comparison. We compare the performance of our token-based algorithm|referred to asdynamic
in the remainder|to that of a static load-balancing scheme, whereby each incoming job is assigned
to a computer chosen at random, independently of system state, and is lost if its assigned computer
is already full. We consider two variants, calledbest staticand uniform static , where the assignment
probabilities are proportional to the computer capacities and uniform, respectively. The results
are shown in Figures 8.7 to 8.9. We consider the job loss probabilities and the mean service rate,
two user-oriented metrics, as well as the computer activity probabilities, which inform us on the
load distribution.

Figure 8.7: Average loss probability|bottom curve|and activity probability|top curve|in the
cluster of Figure 8.6.

Figure 8.7 shows the average loss and activity probabilities.Ideal refers to the lowest average loss
probability and the largest average activity probability that comply with the system stability. One
can think of them as the average loss and activity probabilities in an ideal cluster in which resources
would be constantly optimally utilized. Compared to the static schemes, the performance gain of
the dynamic one is maximal near the critical load � = 1. This is also the area where the delta
with the ideal is maximal. Elsewhere, all schemes except the uniform static one have a comparable
performance. Our intuition is as follows: when the system is underloaded, computers are often
available and the loss probability is low anyway; when the system is overloaded, resources are
congested and the loss probability is high whichever scheme is utilized. The performance under
the uniform static scheme deteriorates faster because the left computers, concentrating half of the
arrivals with only 1

5 -th of the service capacity, are congested whenever� > 2
5 . This stresses the

need for accurate rate estimations under a static load-balancing policy.

145

Chapter 8. Load balancing

Figure 8.8: Mean service rate in the cluster of Figure 8.6.

The mean service rate is shown in Figure 8.8. We �rst focus on its limit as the load� tends to zero.
In this regime, the activity probability of each computer tends to zero, so that the service rate
perceived by each job is close to the capacity of its assigned computer. As the best static scheme
equalizes the computer loads, the mean number of jobs in service is the same at all computers, so
that the mean service rate perceived by the jobsin service tends to 1

2 1 + 1
2 4 = 5

2 . In contrast, the
uniform static scheme equalizes the arrival rates at computers, so that there are on average four
times more jobs in service at the left computers. The mean service rate tends to45 1+ 1

5 4 = 8
5 . Our

main observation is that the mean service rate under the dynamic scheme also tends to85 . This
suggests that the load distribution enforced by the dynamic scheme is close to uniform. Intuitively,
when the load� is small, almost each seized token is released before the next token is seized, so that
the load distribution is independent of the relative computer loads|the dynamic scheme behaves
approximately like round-robin load-balancing algorithm. As the load increases, the mean service
rate tends to 1

6
5
2 , irrespective of the scheme, because computers are constantly full.

Figure 8.9: Activity probability of the left computers|top curve|and the right computers|bottom
curve|in the cluster of Figure 8.6. Under the best static scheme, all computers have the same
activity probability because the load is uniformly distributed.

We �nally look at the activity probability of each computer. The weighted average of these prob-
abilities is the average activity probability shown in Figure 8.7. The results, shown in Figure 8.9,
corroborate the observation of the previous paragraph. The activity probability of each computer
under the dynamic scheme seems to have the same tangent at� = 0 as under the uniform static
one. Once the load� exceeds2

5 approximately, the activity probability of the left computers in-
creases faster under the dynamic scheme so that, when the load� is close to one, the activity

146

Section 8.3. Numerical results

probability of each computer is higher under the dynamic scheme than under the best static one.
This shows that resources are better utilized under the dynamic scheme when the load is critical.

Number of tokens. We now consider the impact of the number of tokens on performance under
the dynamic scheme. The results are shown in Figure 8.10. We focus on two performance metrics,
namely the average loss probability and the mean service rate.

(a) Average loss probability.

(b) Mean service rate.

Figure 8.10: Impact of the number of tokens on performance under the dynamic scheme in the
cluster of Figure 8.6.

A direct calculation shows that the average loss probability decreases with the number̀ of tokens
per computer and tends to the ideal as` tends to in�nity. Intuitively, having a large number of
tokens gives a long-run feedback on the computer loads without loosing more job than necessary
to preserve stability. Figure 8.10a shows a semi-log plot of the average loss probability. The con-
vergence to the ideal is quite fast. The small values of̀ give the largest gain and the performance
is close to the ideal with ` = 10 tokens per computer. The mean service rate is shown in Fig-
ure 8.10b. As before, it tends to 8

5 as the load � tends to zero and to 1
`

5
2 as � tends to in�nity.

The convergence to1
`

5
2 is all the faster when ` increases. Also, a oor emerges between the loads

2
5 and 1, approximately. This is in line with our previous observation that the e�ectiveness of the
dynamic scheme increases when the load increases.

8.3.2 Several job types

We now consider a cluster ofI = 10 computers, all with the same unit capacity C = 1, as shown
in Figure 8.11. Each computer applies processor-sharing to its jobs and has̀= 6 tokens. There

147

Chapter 8. Load balancing

are two job types with di�erent arrival rates and assignment constraints. Type-1 jobs have a unit
arrival rate � and can be assigned to any of the �rst seven computers. Type-2 jobs arrive at rate�4
and can be assigned to any of the last seven computers. Thus only four computers can be accessed
by both types. Note that heterogeneity now lies in the job arrival rates and not in the computer
capacities. The mean job size is again� = 1.

Figure 8.11: A computer cluster with two job types.

Comparison. We again consider two variants of the static load-balancing scheme:best static, in
which the assignment probabilities are chosen so as to homogenize the arrival rates at the computers
as far as possible, anduniform static , in which the assignment probabilities are uniform. Note that
applying the best static scheme requires knowing the arrival rates of the job types. The results are
shown in Figures 8.12 to 8.14.

Figure 8.12: Average loss probability|bottom curve|and activity probability|top curve|in the
cluster of Figure 8.11.

Figure 8.12 shows the average loss and activity probabilities. As before,ideal refers to the extremal
probabilities that comply with the system stability. Regardless of the scheme, the slope of the
resource occupancy breaks down near the load� = 7

8 . This is because the left and central computers
support at least 4

5 -th of the arrivals with only 7
10 -th of the service capacity, so that their e�ective

load is at least 8
7 � . Accordingly, it follows from (8.13) that the average loss probability in a stable

cluster is at least 4
5 (1 � 7

8
1
�) when � � 7

8 . This is a direct consequence of the job assignment
constraints. Under the ideal scheme, the slope of the activity probability breaks down again when
the load � exceeds3

2 . This is the point where the right computers cannot support by themselves
the load of type-2 jobs anymore. Otherwise, most of the observations ofx8.3.1 are still valid. The
performance gain of the dynamic scheme compared to the best static one is maximal near the �rst
critical load � = 7

8 . Its delta with the ideal is maximal near � = 7
8 and � = 3

2 . Elsewhere, all
schemes have a similar performance, except the uniform static one that deteriorates faster.

The mean service rate is shown in Figure 8.13. Irrespective of the scheme, it tends to the unit
computer capacity as the load� tends to zero and to 1

6 as the load � tends to in�nity. The mean
service rate is higher under the dynamic scheme than under the static schemes when the load�
is small. Its slope breaks down near the load� = 7

10 , which is also the point where the central
computers become overloaded under the uniform static scheme.

148

Section 8.3. Numerical results

Figure 8.13: Mean service rate in the cluster of Figure 8.11.

Figure 8.14: Activity probability of each computer in the cluster of Figure 8.11. Under the dy-
namic and best static schemes, the left and central computers|top curve|have the same activity
probability, while the right computers|bottom curve|are active with a lower probability. Under
the uniform static scheme, the central computers|top curve|have the highest activity probability,
followed by the left computers|middle curve|and the right computers|bottom curve.

Figure 8.14 shows the activity probability of each computer. Under the dynamic scheme, that
of the left and central computers increases like8

7 � while that of the right computers increases like
2
3 � . By conservation, this suggests that the e�ective load at the left and central computers is8

7 �
while that at the left computers is 2

3 � . This is exactly the load distribution achieved by the best
static scheme. Interestingly, the dynamic scheme succeeds in balancing load between the left and
the central computers, although these computers have di�erent compatibilities. Also, the e�ective
load 2

3 � of the right computers can only be so high because type-2 jobs are mostly served by these
computers|as long as � < 3

2 |otherwise it would be lower.

Per-type performance. We �nally look at two metrics that detail the impact of the dynamic
scheme on jobs depending on their type. The results are shown in Figure 8.15. For now, we
focus on line curves and larger marks, which give the performance when job sizes are exponentially
distributed with unit mean. Smaller marks, corresponding to job sizes with a hyperexponential
distribution, will be discussed later.

The loss probability is shown in Figure 8.15a. That of type-2 jobs increases near the load� = 3
2 .

Below this threshold, the right computers can support the load of type-2 jobs by themselves, while
the left and the central computers are mostly occupied by type-1 jobs; beyond this threshold, the
right computers become overloaded by type-2 jobs. The loss probability of type-1 jobs increases

149

Chapter 8. Load balancing

(a) Loss probability of each job type.

(b) Expected number of jobs of each type.

Figure 8.15: Analytical|line curves|and simulation|marks|results for the cluster of Fig-
ure 8.11. Smaller marks give the performance of the dynamic scheme with hyperexponentially
distributed sizes. Larger marks, in Figure 8.15b, give its performance with exponentially distributed
sizes|because the corresponding metrics cannot be derived from the queueing model.

earlier, near � = 7
8 , when the left and central computers become overloaded by these jobs.

The expected number of jobs of each type is shown in Figure 8.15b. It is compared to the
expected number of jobs at the left and central computers on the one hand and at the right
computers on the other hand. The results are consistent with the previous observations. When
� < 3

2 , the expected number of type-1 jobs is approximately equal to that at the left and central
computers while the expected number of type-2 jobs is approximately equal to that at the right
computers. When � > 3

2 , some type-2 jobs are o�oaded towards the central computers while the
expected number of type-1 jobs decreases.

Insensitivity. We also use Figure 8.15 to assess the sensitivity of our algorithm to the job size
distribution within each type. As observed in x8.2.1, our queueing model can assess that the results
will be the same if the distribution of the job sizes depends on their assigned computer but not
if it depends on their type. Smaller marks give the performance when the job size distribution
within each type is hyperexponential: 1

6 -th of type-1 jobs have an exponentially distributed size
with mean 5 and the other 5

6 -th have an exponentially distributed size with mean 1
5 ; similarly,

1
3 -rd of type-2 jobs have an exponentially distributed size with mean 2 and the other2

3 -rd have
an exponentially distributed size with mean 1

2 . The similarity of the results for exponentially and
hyperexponentially distributed sizes suggests that insensitivity is preserved. Further evaluations,
involving other job size distributions and cluster con�gurations, would be necessary to conclude.

150

Section 8.4. Related works

8.4 Related works

Load balancing in computer clusters is a topical problem, hence we dedicate a substantial discussion
to position our work compared to others. This is also an opportunity to describe variants of our
algorithm that may be more suitable in some situations. In particular, we consider non-blocking
variants whereby jobs are queued if there is no available token.

Greedy algorithms. Several popular algorithms, such as join-the-shortest-queue and power-of-
two choices [75, 76], consist of sending each incoming job to the computer with the shortest
queue among all or part of the computers. Our approach is di�erent. A computer certainly has
more chances to be assigned an incoming job if it has more available tokens, but the assignment
decision also depends on theorder in which tokens were released. The performance of these greedy
algorithms is well understood in the so-calledsupermarket model, in which there is not assignment
constraint, the arrival process is Poisson, job sizes are independent and exponentially distributed
with the same mean, and all computers have the same capacity [24, 75, 76]. Such analyses assess
that these algorithms can cope with the stochastic|and often memoryless|nature of demand but
not that they can adapt to the heterogeneity of jobs and computers. We do not know any exact
analysis of these algorithms in settings as general as ours.

Token-based algorithms. More recent algorithms, such as assign-to-the-longest-idle-server [3]
and join-idle-queue [72], are based on tokens sent by computers to the dispatcher upon service
completions. As noted in Section 8.1, assign-to-the-longest-idle-server can be seen as a special
case of our algorithm in which each computer has a single token, with an arbitrary assignment
graph. With this simpli�cation, [3] derives simpler formulas for the loss and activity probabilities
considered inx8.2.3, and proves the insensitivity of the algorithm to the job size distribution at
each computer. The companion work [2] studies a randomized variant of this algorithm, just like
the insensitive policy of [12] is a randomized variant of our algorithm. However, none of these
works made the connection with Whittle network and order-independent queues, nor with [12].

Non-blocking variants of the algorithms of [2, 3] were proposed in [4, 100]. The idea is that, if a
job arrives at the dispatcher and there is not available compatible computer, this job is queued at
the dispatcher. Conversely, when a computer is released upon a service completion, this computer
starts processing the oldest compatible job among those that wait for an assignment. Although
[4, 100] derive the form of the stationary distributions of the cluster state, the stationary analysis
is more complex because the state space is in�nite. To the best of our knowledge, no closed-form
expression was derived to predict the performance of these models with a general bipartite graph.
Furthermore, this algorithm is not insensitive anymore. The connection between the works [4, 100]
and order-independent queues was only recently made in [5]. We could extend our algorithm in a
similar way to keep jobs waiting until a token is released.

Another way of obtaining a non-blocking algorithm consists of choosing a compatible computer
uniformly at random|independently of the computer states|in the absence of available tokens.
This is the idea of join-idle-queue [72]. This algorithm was �rst introduced and studied in the
supermarket model with multiple dispatchers. In this context, it was shown to be approximately
insensitive when the number of computers is large|see Corollary 4 and Section 5.3 of [72]. Large-
scale performance analyses of this algorithm in heterogeneous computer clusters were performed
in [23, 97, 98]. We could similarly propose a variant of our algorithm with random assignments if
no available token is found. Increasing the number of tokens per server compared to assign-to-the-
longest-idle-server and join-idle-queue could allow us to make a tradeo� between the quantity of
state information to be exchanged and the performance of the algorithm. As observed in [49], it
could be particularly useful when the load is high. The case of several dispatchers, which motivated
the introduction of join-idle-queue [72], will be considered in Section 9.2.

Randomized policies. We �nally make a few words on the family of randomized insensitive
policies, introduced in [12], that were evoked in Section 8.2. These policies were studied in several
works in the queueing literature [53{55, 68, 69]. The queueing model of [12] is more general than
ours in two di�erent ways. First, [12] considers a Whittle network instead of a computer cluster,
and the objective is to balance load between the queues of this network. This extension will be
considered in Section 9.1. The other di�erence is that we impose a limit on the number of jobs

151

Chapter 8. Load balancing

at each computer, while the state space in [12] can be any �nite subset ofNI . Our algorithm
exploits this restriction to interpret the available positions in the computer queues as tokens to be
exchanged with the dispatcher. Understanding how we can extend the principle of our algorithm
to the more general setting of [12] could be the object of a future work.

8.5 Concluding remarks

In Section 8.1, we introduced a new load-balancing algorithm for heterogeneous computer clusters
with assignment constraints. The core idea is that computers inform the dispatcher on their
relative loads by sending a token each time the service of a job is complete. The queueing model of
Section 8.2 is again based on the multi-server queue considered in Part II, but it inverts the roles
usually attributed to servers and customers. The analysis of this model showed that the algorithm
we proposed preserves the insensitivity of processor-sharing. The numerical results of Section 8.3
also assessed the performance of our algorithm in two con�gurations.

152

9 Extensions

In this chapter, we consider two extensions to the algorithms proposed in Chapters 7 and 8. In
Section 9.1, we evaluate the performance gain when both algorithms are combined, so that the
dispatcher balances load amongpools of computers and applies the scheduling algorithm to share
the computer resources among their assigned jobs. In Section 9.2, we tackle the problem of load
balancing in the presence of several dispatchers that only have a partial view of the computer
states; this problem has attracted considerable attention in the literature [23, 72, 98]. Both ex-
tensions preserve the insensitivity of the original algorithms. Nothing prevents both extensions to
be combined, except that non-trivial questions of irreducibility might arise during the queueing
analysis. The extension of Section 9.1 was presented in [P05, P07], along with the load-balancing
algorithm of Chapter 8.

9.1 Combining job scheduling and load balancing

We �rst explain how to combine the scheduling algorithm of Chapter 7 with the load-balancing
algorithm of Chapter 8. This solution may be useful when jobs have loose assignment constraints
but can only be processed in parallel on a small number of computers. It could also be of interest if
load balancing is performed by a �rst dispatcher, while scheduling is managed by several dispatchers
that focus on disjoint subsets of computers. The presentation is concise because most of the ideas
and notations were already introduced in Chapters 7 and 8.

9.1.1 Algorithm

We again consider a computer cluster subject to a stochastic demand. The set of computers
is denoted by S = f 1; : : : ; Sg and, for eachs 2 S, we let Cs denote the capacity of computers,
expressed in oating-point operations per second. As in Chapter 7, we assume that some computers
can be pooled to processed jobs in parallel. The set of pools is denoted byI = f 1; : : : ; I g. For each
i 2 I , a job assigned to pooli can be processed in parallel by any subset of computers within the
set Si . This de�nes a bipartite graph between pools and computers. Similarly to Chapter 8, each
incoming job also has a type that restricts the set of pools it can be assigned to. The set of job
types is denoted byK = f 1; : : : ; K g and, for eachi 2 I , we let K i � K denote the set of job types
that can be assigned to pooli . These assignment constraints de�ne a bipartite graph between job
types and pools. Overall, the assignments are now described by a tripartite graph between job
types, pools, and computers, as shown in Figure 9.1. In Chapter 7, the upper part of the graph
was trivial|there was a one-to-one correspondence between job types and pools|so that we did
not need to distinguish between them. In Chapter 8, each pool corresponded to a single computer,
so that the lower part of the graph was trivial. The dispatcher has a double role in the computer
cluster|and each role could actually be played by a di�erent dispatcher.

First, load now has to be balanced between pools, corresponding tosetsof computers, and not
between computers taken individually. Accordingly, we now assume that there is a limit on the
number of jobs that can be assigned to each pool, so that an incoming job is rejected if the pools
it can be assigned to are already full. For eachi 2 I , we let ` i 2 N denote the maximum number
of jobs that can be assigned to pooli at a time. Similarly to Chapter 8, the assignment decision is

153

Chapter 9. Extensions

Figure 9.1: A tripartite assignment graph between job types, pools, and computers.

based on tokens that inform the dispatcher on the pool states. For eachi 2 I , there are ` i tokens
associated with pooli . An incoming job seizes a token of pooli if it is assigned to this pool and
holds this token until its service is complete. In this way, each token is either available or held by
a job in service. The dispatcher stores the available tokens in a queue in the order in which they
were released. When an incoming job arrives, the dispatcher checks the assignments constraints of
this job and scans the queue, looking for an available token that identi�es a pool to which the job
can be assigned. It selects the oldest one, if any, and assigns the job to the corresponding pool. In
other words, if the job is identi�ed as being of type k for somek 2 K , the dispatcher selects the
oldest available token of a pooli 2 I such that k 2 K i , if any. The job holds its token until its
service is complete|even when its service is interrupted by the scheduling algorithm. The job is
lost if there is no available compatible token.

The second mission of the dispatcher is scheduling. In order to do that, the dispatcher applies
the extension to round-robin scheduling algorithm introduced in Chapter 7. We will assume that
the dispatcher applies the implementation we proposed in the pseudo-code of Figure 7.2, with
a central queue that contains the|tokens held by|jobs in service and a random timer at each
computer. As before, the key parameter of this algorithm is the average quantity of work� ,
expressed in oating-points operations per second, that is devoted to each job before interrupting
its service. The only di�erence with the algorithm of Chapter 7 is that the decision of assigning
an incoming jobs to a pool now depends on the current cluster state. Overall, the dispatcher now
administers two queues, namely the one that contains available tokens and the one that contains
tokens held by jobs in service.

9.1.2 Queueing analysis

In order to guarantee the irreducibility of the Markov process de�ned by the network state we
will consider, we need to make an additional assumption on the structure of the tripartite graph.
Speci�cally, we assume that K i 6= K j or Si 6= Sj for each i; j 2 I such that i 6= j . This involves
no loss of generality, as two pools with the same sets of associated job types and computers need
not be distinguished in practice. Our assumptions on the statistics of the tra�c are as follows.
For each k 2 K , type-k jobs enter the cluster according to an independent Poisson process with a
positive rate � k . The job sizes are independent and exponentially distributed with a mean� that
is both positive and �nite. As in Chapter 7, our proposed queueing model is exact when job sizes
are exponentially distributed with unit mean, and approximate otherwise.

Queueing model. We consider a closed network of two multi-server queues under the �rst-come-
�rst-served policy, as shown in Figure 9.2a, that describes the token movements within the com-
puter cluster. The �rst multi-server queue corresponds to the central queue used by the dispatcher
to schedule jobs, as in Chapter 7. The second queue corresponds to the queue of available tokens,
as in Chapter 8. Each customer in the network represents a token in the cluster. The class of a
customer identi�es the pool that owns the corresponding token. Therefore, both queues have the
same setI = f 1; : : : ; I g of customer classes and, for eachi 2 I , the network contains ` i customers
of classi . We briey describe the Markov routing process|again deterministic|that joins the two
queues, and then we dissect each queue separately. Customers alternate between the two queues
without changing class, so that a customer who leaves the �rst queue is appended to the second
queue as a customer of the same class, andvice versa. The service policy and the Markov routing

154

Section 9.1. Combining job scheduling and load balancing

(a) Network state. The internal routing within the
�rst multi-server queue is not shown for simplicity.

(b) Compatibility graph of the �rst queue.

(c) Compatibility graph of the second queue.

Figure 9.2: A closed network of two multi-server queues.

process within the �rst queue will describe the scheduling algorithm while the service policy in the
second queue will describe the load-balancing algorithm.

The �rst multi-server queue corresponds to the central queue, used by the dispatcher to schedule
jobs. It is identical to the multi-server queue of Section 7.2, except that customers that leave this
queue are appended to the second queue, and conversely customers that enter this queue come
from the second queue. This �rst queue has as many servers as there are computers in the pool and
its service policy is �rst-come-�rst-served. For each s 2 S, the capacity of servers is � s(1 + m),
where � s = Cs

� is the average completion rate at computers and m = �
� is the expected number of

service interruptions per job. The compatibility graph of this queue corresponds to the lower part
of the tripartite assignment graph, between pools and computers, as shown in Figure 9.2b. The
�rst queue is also equipped with its proper internal Markov routing process. Speci�cally, when the
service of a customer is complete, this customer leaves this queue and is appended to the second
queue with probability q = 1

1+ m , as shown in (7.1), otherwise this customer re-enters the �rst
queue as a customer of the same class. Similarly tox7.2.1, the former case corresponds to the
service completion of job that releases its token, while the latter case corresponds to the service
interruption of a job that is moved to the end of the central queue but keeps holding its token.

The second multi-server queue corresponds to the queue of available tokens, used by the dis-
patcher to balance load between pools. This queue has as many servers as there are job types and
its service policy is also �rst-come-�rst-served. For eachk 2 K , the capacity of serverk is equal to
� k , the arrival rate of type- k jobs. The compatibility graph of this multi-server queue corresponds
to the upper part of the tripartite assignment graph of the computer cluster, between pools and job
types. An example is shown in Figure 9.2c. For eachi 2 I , a class-i customer can be processed by
any server within the set K i � K . A customer is served by a server if, in the computer cluster, the
corresponding token is seized by an incoming job of the corresponding type. There is no internal
routing within this second queue, so that a customer whose service is completed is systematically
appended to the �rst queue.

Microstate. The microstate of the �rst multi-server queue describes the sequence of|tokens
held by|jobs in the central queue, either in service or waiting to be served. It is denoted by
c = (c1; : : : ; cn) and belongs to the state spaceC = f c 2 I � : jcj � `g. The microstate of the second
multi-server queue describes the sequence of available tokens. It is denoted byd = (d1; : : : ; dm) and
belongs to the same state spaceD = C. The couple (c; d) is called the microstate of the network.
Since the number of customers of each class in the whole network is �xed, the state space of this
microstate is
 = f (c; d) 2 I � : jcj + jdj = `g. It is shown in Appendix 9.A that the Markov process
de�ned by the network microstate is irreducible on this state space
. This Markov process is also
ergodic because its state space
 is �nite, and its stationary distribution is given by

� (c; d) =
1
G

�(c)�(d); 8(c; d) 2
 ; (9.1)

where G is a normalizing constant, � is the balance function of the �rst multi-server queue under
the �rst-come-�rst-served policy, given by (7.7), and � is the rank function of the second multi-

155

Chapter 9. Extensions

server queue under the �rst-come-�rst-served policy, given by (8.2). This result again follows from
Theorem 4.10 and the product-form of the stationary distribution of a network of multi-server
queues. If there is no service interruption in the cluster, meaning that a customer whose service
is completed at the �rst queue is appended to the second queue with probabilityq = 1, it su�ces
to observe that the e�ective arrival rates of the classes de�ned by the tra�c equations (1.19) can
be taken equal to one. If there is some re-routing in the �rst queue, we can apply the same
simpli�cations as in (7.6) to show that the stationary distribution is unchanged. Although the
stationary distribution (9.1) has a product form, the two queue microstates are not independent
because the number of tokens in one queue determines the number of tokens in the other.

We will elaborate on the stationary distribution of the network macrostate in the next para-
graph. Before that, let us briey describe the instantaneous rates at which tokens move from one
queue to the other. Assume that the network is in microstate ((c1; : : : ; cn); (d1; : : : ; dm)) 2
. By
making the same simpli�cations as in (7.9), we obtain that the departure rate of classi from the
�rst queue is given by

� i (c1; : : : ; cn) =
nX

p=1
cp = i

� � (c1; : : : ; cp): (9.2)

In the cluster, this quantity represents the overall completion rate of the jobs assigned to pooli .
It depends on the state of the central queue but not on the release order of available tokens.
Symmetrically, the departure rate of classi from the second queue is given by

� i (d1; : : : ; dm) =
mX

p=1
dp = i

� � (d1; : : : ; dp): (9.3)

This is the arrival rate of the jobs assigned to pooli in the cluster. This quantity depends on the
state of the queue of available tokens but not on the order of jobs in the central queue.

Macrostate. We now consider the network macrostate. It is given by (x; y), where x = jcj is the
macrostate of the �rst queue and y = jdj is the that of the second queue. Bothx and y belong to
the state spaceX = Y = f x 2 NI : x � `g. The network macrostate belongs to the state space
� = f (x; y) 2 X � Y : x + y = `g. Keeping the macrostates of both queues is redundant because
one can be obtained from the other through the equalityx + y = `; however, we prefer this notation
because it makes the symmetries within the queueing model visible. According to Theorem 4.10,
the stationary distribution of the stochastic process de�ned by the joint macrostate (x; y) is the
same as if we applied balanced fairness in both queues, so it is given by

� (x; y) =
1
G

�(x)�(y); 8(x; y) 2 � ; (9.4)

where G is the same normalizing constant as in (9.1), � is the balance function of the �rst queue
under balanced fairness, given by (7.11), and � is the balance function of the second queue under
balanced fairness, given by (8.8). As in Chapter 8, (9.4) can be used to compute the performance
metrics in the computer cluster because the state space is �nite. We will elaborate on the derivation
of several performance metrics later in this subsection, but for now we focus on the normalizing
constant G.

Compared to Chapters 7 and 8, the probability that one of the two queues is empty does not
appear as a natural normalization constant that could replace the constantG. The reason is that
none of the two queues has a locally-constant capacity in general, so that they cannot be replaced
with Poisson sources of customers. The form of the constantG highlights the symmetric roles of
the two queues in the network, as we have:

G =
X

x � `

�(x)�(` � x) =
X

y � `

�(` � x)�(y) = (� � �)(`): (9.5)

In other words, the constant G is the|discrete multidimensional|convolution of the balance
functions � and �, applied to the vector ` 2 NI . If one of the two queues were locally constant,
say the �rst one, we would obtain G = 1

� (`; 0)

Q
i 2I (1

� i
)` i , which is consistent with the result of

156

Section 9.1. Combining job scheduling and load balancing

Chapter 8. If we consider many values of̀ , it might be possible to use this observation to simplify
the calculations by applying fast-convolution algorithms. This observation might also help derive
the asymptotic value of the normalization constant G as the number of tokens or pools increases.

Let us momentarily turn back to the network microstate. We observed earlier that the mi-
crostates of the �rst and second queues were not independent in general. They are if we condi-
tion on the network macrostate. Indeed, given that the network is in macrostate (x; y) for some
(x; y) 2 �, the conditional stationary distribution of the network microstate is given by

� (c; d)
� (x; y)

=
�(c)
�(x)

�
�(d)
�(y)

; 8(c; d) 2 I � : jcj = x; jdj = y: (9.6)

This conditional independence has the following interpretation in practice. Once we �x the number
of tokens of each pool that are available or in service, the computer capacities do not inuence
the release order of available tokens, which only depends on the job arrival rates; conversely, the
job arrival rates do not impact order of the tokens in the central queue, which only depends on
the computer capacities. Actually, given that the network is in macrostate (x; y), the conditional
stationary distribution of the �rst queue is also the conditional stationary distribution of the open
variant of this queue|with arbitrary e�ective arrival rates chosen to make it stable|given that
its macrostate is x. We obtain a similar result for the second queue.

We �nally consider the conditional expected arrival and departure rates given the macrostate.
Let (x; y) 2 � and i 2 I . By de�nition, the conditional expected departure rate of class i in the
�rst queue given that the macrostate is (x; y) is given by

� i (x) =
X

(c;d)2
:
j cj= x; jdj= ` � x

� (c; d)
� (x; y)

� i (c) =
X

c:jcj= x

�(c)
�(x)

� i (c);

where the second equality follows from (9.6). This shows that� i (x) is also the conditional service
rate in an open variant of the �rst queue, given that its macrostate is x, so that it is again given
by (7.12). Therefore, despite the addition of the state-dependent load-balancing algorithm, the
computer resources are still shared approximately according to balanced fairness, as in Chapter 7.
The conditional expected per-class departure rates are also independent of the release order of
available tokens, in the sense that we would obtain result if we conditioned on the microstated of
the second queue. Symmetrically, the conditional expected departure rate of classi in the second
queue given that the network is in macrostate (x; y), de�ned as

� i (y) =
X

(c;d)2
:
j cj= ` � y; jdj= y

� (c; d)
� (x; y)

� i (d) =
X

d:jdj= y

�(d)
�(y)

� i (d);

is also given by (8.10) despite the addition of the scheduling algorithm. It is independent of the
order of jobs in the central queue, in the sense that we would obtain the same result if we also
conditioned on the microstate c of the �rst queue.

Variants. We have assumed so far that the service policy of each queue was �rst-come-�rst-served
because we wanted to describe the behavior of the scheduling and load-balancing algorithms as
accurately as possible. However, we would obtain similar results if the service policy were balanced
fairness instead of �rst-come-�rst-served in any queue. In particular, if the computer resources were
sharedexactly according to balanced fairness, the microstated = (d1; : : : ; dm) of the second queue
would de�ne a Markov process and would have a similar behavior on the long run.

Going further in this direction, we could just as well replace the �rst multi-server queue under
balanced fairness with a Whittle network, as described in Chapter 1. In the example of Figure 8.3,
this would amount to replace the �xed capacities � 1, � 2, and � 3 with service rates � 1(x), � 2(x),
and � 3(x) that depend on the state x of this Whittle network and satisfy the balanced property.
In particular, we could apply the load-balancing algorithm of Chapter 8 to balance load within any
queueing system whose dynamics can be described by a Whittle network|see [12] for examples.
The stationary analysis of such a network focuses on a mesostate (x; d) that retains the release
order of available tokens but not the order of jobs in service. This mesostate de�nes an irreducible,

157

Chapter 9. Extensions

ergodic Markov process on the state spacef (x; d) 2 X � D : x + jdj = `g, and its stationary
distribution is given by

� (x; d) =
1
G

�(x)�(d); 8x 2 X ; 8d 2 D : x + jdj = `: (9.7)

A direct calculation shows that the stationary distribution of the network macrostate (x; y) is still
given by (9.4). The insensitivity results are similar to those of Chapter 8. Namely, the stationary
distribution of this mesostate is unchanged if the job size distribution is Coxian instead of being
exponential, even if it depends on thepool to which each job is assigned. Overall, this result shows
that our load-balancing algorithm can be applied to balance load within any queueing system
that can be described by a Whittle network, provided that limits are imposed on the number of
customers within each queue.

Performance metrics. We briey explain how to adapt the formulas of x8.2.3 to this new queue-
ing model. The obtained formulas again emphasize the symmetry between the two queues.

Similarly to x8.2.3, we �rst consider the loss probability of each job type and activity probability
of each computer. For eachk 2 K , the probability that an incoming job of type k is lost is given
by

� k =
X

y2Y :k =2
S

i 2I y
K i

� (` � y; y):

The equality again follows from PASTA property [105]. For eachs 2 S, the activity probability of
computer s is given by � s = 1 � s, where s is the probability that computer s is idle, given by

 s =
X

x 2X :s=2
S

i 2I x
Si

� (x; ` � x):

These quantities are related by the conservation equation

X

k2K

� k (1 � � k) =
X

s2S

� s(1 � s) =
X

s2S

� s � s:

The average loss and activity probabilities are given by

� =

P
k2K � k � kP

k2K � k
and � =

P
s2S � s � sP

s2S � s
: (9.8)

These two quantities are between zero and one, and are related by the equation� (1 � �) = � ,
where � = (

P
k2K � k)=(

P
s2S � s) is the overall load in the cluster.

Our model allows for computing the expected number of jobs assignedto each pool. In general,
we cannot use it to derive the expected number of jobs of each type|unless we consider a job type
with an exclusive set of compatible pools. For eachi 2 I , the expected number of jobs assigned
to pool i is given by

L i =
X

x 2X

x i � (x; ` � x) = ` i �
X

y2Y

yi � (` � y; y):

Depending on the con�guration, one of these two equivalent expressions may be more practical
than the other. For instant, in Chapter 8, we assumed that S = I and Si = f ig for each i 2 I ,
and then the second formula was simpler and more natural. On the contrary, if the load-balancing
policy is static but the scheduling is more complex, as in Chapter 7, the �rst formula is better.
The overall expected number of jobs in service is given byL = L 1 + : : : + L I , that is

L =
X

x 2X

(x1 + : : : + x I)� (x; ` � x) = (`1 + : : : + ` I) �
X

y2Y

(y1 + : : : + yI)� (` � y; y):

As in x8.2.3, we can apply Little's law to compute the mean delay and the mean service rate.

158

Section 9.2. Load balancing with multiple dispatchers

9.1.3 Numerical results

We briey evaluate the performance gain that can be expected by combining the scheduling algo-
rithm of Chapter 7 and the load-balancing algorithm of Chapter 8. In order to do that, we again
consider the model ofx8.3.1, with a single job type andS = 10 computers. Half of them has a unit
capacity C = 1 and the other half has capacity 4C. We evaluate the performance improvement
when computers are pooled. Speci�cally, within each homogeneous part of the cluster,r consecu-
tive computers can now process jobs in parallel. A total of 60 tokens is evenly distributed among
pools. The source code to generate the numerical results is available at [C01]. Figure 9.3 shows
the results with r = 1, 3, 4, and 5.

Figure 9.3: Impact of the parallelism degree when we jointly apply the scheduling algorithm of
Chapter 7 and the load-balancing algorithm of Chapter 8 in the pool of Figure 8.6.

Qualitatively, the observations are similar to those we made inx8.3.1 about increasing the number
of tokens. The average loss probability decreases with the parallelism degreer and the largest gain
is obtained with small values of r . The mean service rate tends tor 8

5 when the load � tends to
zero and to 1

6
5
2 when it tends to in�nity. It is approximately constant between 2

5 and 1.

9.2 Load balancing with multiple dispatchers

The problem of balancing load within a computer cluster at which jobs enter via several entry
points has attracted a lot of attention recently [23, 72, 98]. The challenge is to identify which
information has to be sent by each computer to each dispatcher in order to e�ciently balance load
among computers. In this section, we propose an extension to the load-balancing algorithm of
Chapter 8 that makes double use of tokens.

9.2.1 Algorithm

We consider a computer cluster similar to that of Chapter 8, with a setI = f 1; : : : ; I g of computers
and a set K = f 1; : : : ; K g of job types. The assignment constraints are described by a bipartite
graph between job types and computers, as shown in Figure 8.1. Each incoming job is assigned
to a single computer and each computer applies round-robin algorithm to schedule its assigned
jobs. For eachi 2 I , we let K i � K denote the non-empty set of job types that can be assigned
to computer i , Ci the capacity of this computer in oating-point operations per second, and` i the
number of jobs that can be in service on this computer at a time|this will again set the number of
tokens owned by this computer. Compared to Chapter 8, the arrivals are now distributed among
several dispatchers that are responsible for assigning each incoming job to a single computer of the
cluster. We let R = f 1; : : : ; Rg denote the set of dispachers.

Information again ows from computers to dispatchers by means of token, and each dispatcher
stores its received tokens in a queue. The di�culty is that each computer sends a token to a
single dispatcher upon a service completion. Which dispatcher is actually chosen will be discussed

159

Chapter 9. Extensions

below. Apart from that, the assignment rule applied by each dispatcher is identical to that of
Section 8.1, namely, the dispatcher identi�es the assignment constraints of the job and looks for
the oldest token owned by a computer to which the job can be assigned. The job is rejected if there
is none. Note that each dispatcher only has access to its own queue, �lled with available tokens
that were sent by computers to this dispatcher. Therefore, it may well happen that an incoming
job is rejected by a dispatcher while the queue of another dispatcher contains compatible tokens.

As in [23], our objective is to �nd an e�cient way of routing tokens to dispatchers when they
are released. It can be seen as a second load-balancing problem that is superimposed on|and
interacts with|the original problem of balancing load between computers. The objective is to
balance tokens among dispatchers so that those at which jobs arrive at a higher rate have enough
tokens to cope with demand. Otherwise, some dispatchers might lack tokens|resulting in avoidable
job losses|while others have many. We consider two variants, referred to asrandom routing and
dynamic routing, that preserve the insensitivity of the algorithm of Chapter 8. Their performance
is compared numerically on a simple example inx9.2.3.

Static routing. A �rst solution consists of routing tokens to dispatchers at random and indepen-
dently of the current cluster state. Speci�cally, when a token is released, it is sent to dispatcherr
with probability pr , for each r 2 R , with p1 + : : : + pR = 1. If these routing probabilities are
equal, each released token is simply routed towards a dispatcher chosen uniformly at random.
This solution was already considered in [23] in the special case where each computer has a single
token and jobs have no assignment constraints. This paper observed that such a uniform static
assignment has an important drawback. It can lead to starvation when arrivals are imbalanced
between dispatchers. Indeed, the dispatcher|or dispatchers|at which arrivals are the least fre-
quent tends to hold tokens back, thus leaving other dispatchers empty. The solutions proposed
in [23] consist of taking non-uniform routing probabilities or making dispatchers exchange tokens
at a prede�ned rate. Their e�ciency depends on the quality of the estimation of the arrival rates
at the dispatchers. We propose another solution practicable when computers have several tokens.

Dynamic routing. Instead of routing tokens at random, we preassign them to a dispatcher.
Assume for simplicity that, for each i 2 I , the number of tokens owned by computeri is a multiple
of the number R of dispatchers, that is, we have` i = Rqi for someqi 2 N. Then, for each r 2 R ,
we attach qi of the ` i tokens of computer i to dispatcher r , so that these tokens are invariably
routed towards this dispatcher when they are released. By doing that, we obtain a two-way load
balancing: the jobs that arrive at each dispatcher are balanced between computers, as before,
and the tokens that are released by each computer are balanced between dispatchers. The token
dynamics forms a virtuous circle: the dispatchers at which jobs arrive at a higher rate tend to have
more tokens in service, so that they also tend to receive available tokens at a higher rate, so that
they can satisfy a higher demand, an so on.

9.2.2 Queueing analysis

We make the following assumptions on the statistics of the tra�c. For each r 2 R and eachk 2 K ,
type-k jobs enter the cluster at dispatcherr according to an independent Poisson process with rate
� r;k . In order to guarantee the irreducibility of the Markov process we will study, we require that,
for each i 2 I and eachr 2 R , there is at least one job typek 2 K i such that � r;k > 0; otherwise,
the tokens of computer i attached to dispatcher r are trapped in this dispatcher. Job sizes are
assumed to be exponentially distributed with a mean� that is positive and �nite. Our analysis
can be extended to job sizes with a Coxian distribution in the same way as in Chapter 8. We also
assume that each computer e�ectively applies processor-sharing to its assigned jobs.

The queueing model describes the movement of tokens within the cluster. Its structure is the
same for both routing variants. We consider a closed network ofI + R queues, of whichI are
M/M/1 queues under processor-sharing andR are multi-server queues under the �rst-come-�rst-
served policy. With a slight abuse of notations, we usei 2 I as an index for the M/M/1 queues
and r 2 R as an index for the multi-server queues. Although these two sets are not disjoint, no
confusion will arise because we will consistently use the lettersi 2 I and r 2 R . For each i 2 I ,
queuei contains the jobs in service in computeri and its capacity is � i = C i

� . As in Chapter 8, these
I queues can be replaced withI sources of Poisson arrivals with rates� 1,. . . ; � I , respectively, so

160

Section 9.2. Load balancing with multiple dispatchers

that we obtain a network of R multi-server queues with losses. The di�erence is that the rejection
rule now depends on the number of customers at all queues.

The R multi-server queues correspond to the queues of available tokens at the dispatchers. Let
r 2 R and consider ther -th multi-server queue. This queue has as many servers as there are job
types in the cluster. For eachk 2 K , the capacity of serverk is equal to � r;k , the arrival rate of
type-k jobs at dispatcher r . The set of customer classes isI |the class of a customer in this queue
identi�es the computer that owns the corresponding token|and the arrivals at dispatcher r de�ne
a rank function � r on the power set ofI : for each A � I ,

� r (A) =
X

k2
S

i 2A
K i

� r;k (9.9)

denotes the arrival rate, at dispatcher r , of the jobs that can seize at least one token among those
that identify a computer in A . The network microstate is denoted by d = (d1; : : : ; dR) where,
for each r 2 R , dr = (dr; 1; : : : ; dr;m r) 2 I � is the microstate of the r -th multi-server queue. The
network macrostate is denoted byjdj = (jd1j; : : : ; jdjR) 2 NI � : : : � NI where, for eachr 2 R ,
jdr j = (jdr j1; : : : ; jdr jI) 2 NI is the macrostate of the r -th multi-server queue. The state spaces
will be detailed later; they depend on the routing scheme of tokens to dispatchers.

Static routing. Each token is sent to dispatcherr with probability pr , for each r 2 R . In our
queueing model, this routing scheme is described as it is by the following Markov routing process.
For eachi 2 I , a customer who leaves queuei is appended to queuer |as a class- i customer|with
probability pr , for each r 2 R . The state space of the network microstate is

Dstatic = f (d1; : : : ; dR) 2 I � � : : : � I � : jd1j + : : : + jdR j � `g :

The Markov process de�ned by this microstate is irreducible and ergodic. By again using Theo-
rem 4.10 and the fact that the stationary distribution of a network of multi-server queues has a
product form, we obtain that the stationary distribution of this Markov process is given by

� (d1; : : : ; dR) =
1
G

Y

r 2R

� r (dr)pr
m r

!
Y

i 2I

�
1
� i

� ` i �j d1 j i � ::: �j dR j i
!

; 8d 2 D static ;

where G is a normalizing constant and, for eachr 2 R , � r is the balance function of the r -th
multi-server queue under balanced fairness, de�ned onI � by

� r (dr; 1; : : : ; dr;m r) =
m rY

p=1

1
� r (I (dr; 1 ;:::;d r;p))

; 8(dr; 1; : : : ; dr;m r) 2 I � :

It su�ces to observe that the routing probabilities p1,. . . ,pR are solution to the tra�c equations
(1.19) of the closed network. More precisely, for eachi 2 I , the e�ective arrival rate at queue i
can be taken equal to one, while the e�ective arrival rate of classi at queue r can be taken equal
to pr , for each r 2 R . The stationary distribution can be rewritten as

� (d1; : : : ; dR) = � (;)
Y

r 2R

� r (dr)
Y

i 2I

(pr � i) j dr j i ; 8d 2 D static ;

where, with a slight abuse of notation,; refers to the network state in which all multi-server queues
are empty. This is the expression we would obtain by considering the loss variant of the network.

The network macrostate is denoted byy = (y1; : : : ; yR), whereyr = (yr; 1; : : : ; yy;I) 2 NI denotes
the macrostate of the r -th multi-server queue, for eachr 2 R . Its state space is

Ystatic = f y 2 NI � : : : � NI : y1 + : : : + yR � `g:

According to Theorem 4.10, the stationary distribution of the stochastic process de�ned by this
macrostate is the same as if each multi-server queue applied balanced fairness instead of the �rst-
come-�rst-served policy. Therefore, after simpli�cation, we obtain

� (y1; : : : ; yR) = � (0)
Y

r 2R

� r (yr)
Y

i 2I

(pr � i)y r;i ; 8y 2 Y static ; (9.10)

161

Chapter 9. Extensions

where 0 refers to the network macrostate in which all multi-server queues are empty. For each
r 2 R , the function � r is the balance function of the r -th multi-server queue, de�ned recursively
on Y = f yr 2 NI : yr � `g by � r (0) = 1, and

� r (yr) =
1

� r (I y r)

X

i 2I y r

� r (yr � ei); 8yr 2 Y n f 0g: (9.11)

As in x8.2.3, the stationary distribution (9.10) allows us to compute various performance metrics,
such as the job loss probabilities and the computer activity probabilities. This queueing model
could be extended to describe more complex static routing mechanisms, for instance to attach a
di�erent routing probability to each computer. Some of these extensions were considered in [23].

We �nally describe the instantaneous and average departure rates from the multi-server queues.
We focus on some computeri 2 I . Assume that the network is in microstate d = (d1; : : : ; dR) 2
Dstatic , with dr = (dr; 1; : : : ; dr;m r) for each r 2 R . For each r 2 R , the arrival rate of the jobs
assigned to computeri at dispatcher r is equal to the instantaneous departure rate of classi from
queuer , given by

� r;i (dr) =
m rX

p=1
dr;p = i

� � r (dr; 1; : : : ; dr;p): (9.12)

The arrival rate of the jobs assigned to computeri , over all dispatchers taken together, is thus
given by � i (d) =

P
r 2R � r;i (dr). Now consider some macrostatey = (y1; : : : ; yR) 2 Y static . Given

that the network is in macrostate y, the conditional expected arrival rate of the jobs assigned to
computer i is given by � i (y) = � 1;i (y) + : : : + � R;i (y), where, for eachr 2 R , we have

� r;i (y) =
X

d:jdj= y

� r;i (dr)
� (d)
� (y)

=
X

dr :jdr j= y r

� r;i (dr)
� r (dy)
� r (yr)

: (9.13)

By Theorem 4.10, we again obtain that, for eachr 2 R , the conditional expected arrival rate of
the jobs assigned to computeri at dispatcher r is the same as under balanced fairness, that is,

� r;i (y) =
� r (yr � ei)

� r (yr)
; 8r 2 R : (9.14)

Dynamic routing. For each i 2 I and eachr 2 R , we pre-assignqi of the ` i = Rqi tokens of
computer i to dispatcher r . The de�nition of a class needs to be enriched in the queueing model in
order to account for this new development. Speci�cally, in each of theI M/M/1 processor-sharing
queues, customers now have a class inR that identi�es the dispatcher to which the corresponding
token is pre-assigned. For eachr 2 R and eachi 2 I , a class-i customer who leaves queuer enters
queuei as a class-r customer, and conversely a class-r customer who leaves queuei enters queuer
as a class-i customer. The Markov routing process is deterministic.

Compared to the case of static routing, additional constraints hold on the network microstate
because there is a limit on the number of available tokens of each computer at each dispatcher.
The state space of the microstate is now given by

Ddynamic = f (d1; : : : ; dR) 2 I � � : : : � I � : jdr j i � qi ; 8i 2 I ; 8r 2 Rg :

The Markov process de�ned by this microstate is irreducible and ergodic, and its stationary dis-
tribution is given by Theorem 4.10. It su�ces to observe that each multi-class M/M/1 processor-
sharing queue is a globally-constant multi-server queue. After simpli�cation, we obtain

� (d) =
1
G

Y

r 2R

� r (dr)

!
Y

i 2I

�
` i � (y1;i + : : : + yR;i)

qi � j d1j i ; : : : ; qi � j dR j i

�
� i

j d1 j i + ::: + jdR j i

for eachd = (d1; : : : ; dR) 2 D dynamics . All e�ective arrival rates can be taken equal to one because
the Markov routing process is now deterministic.

For the same reasons, the state space of the network macrostate is given by

Ydynamic =
�

y = (y1; : : : ; yR) 2 NI � : : : � NI : yr;i � qi ; 8i 2 I ; 8r 2 R
	

:

162

Section 9.2. Load balancing with multiple dispatchers

By Theorem 4.10, the stationary distribution of this stochastic process is the same as if each
multi-server queue applied balanced fairness instead of the �rst-come-�rst-served policy. After
simpli�cation, we obtain

� (y) =
1
G

Y

r 2R

� r (yr)

!
Y

i 2I

�
` i � (y1;i + : : : + yR;i)
qi � y1;i ; : : : ; qi � yR;i

�
� i

y1;i + ::: + yR;i ; 8y 2 Ydynamic ;

where the balance functions �1; : : : ; � R are again given by (9.11). This formula looks more com-
plicated than (9.10), but it can also be used to compute the performance metrics in the cluster.

The expressions of the instantaneous arrival rates are similar to those obtained under the
static routing. We again focus on some computeri 2 I . For each d = (d1; : : : ; dR) 2 D dynamic

with dr = (dr; 1; : : : ; dr;m r) for each r 2 R , the instantaneous arrival rate of the jobs assigned
to computer i at dispatcher r is again given by (9.12). For eachy 2 Ydynamic , the conditional
expected arrival rate of the jobs assigned to computeri given that the macrostate is y is given
by � i (y) = � 1;i (y) + : : : + � R;i (y), where, for eachr 2 R , � r;i (y) is again given by (9.13) and
(9.14) with the stationary distributions � (d) and � (y) given above. The di�erence with the static
routing case is that the state spaces are restricted toDdynamic � D static and Ydynamic � Y static .
Importantly, the rate at which tokens move from computer i to dispatcher r in macrostate y is
now given by

� i;r (y) =
qi � yr;i

` i � (y1;i + : : : + yR;i)
� i ; 8y 2 Ydynamic ;

to be compared with � i pr 1f ` i � (y1;i + ::: + yR;i)> 0g for eachy 2 Y static under the static routing scheme.

9.2.3 Numerical results

Consider a computer cluster with R = 2 dispatchers and I = 10 computers. All computers have
the same unit capacity C, own ` = 6 tokens, and apply processor-sharing to their assigned jobs.
There is no compatibility constraint, so that any job can be assigned to any computer. Since the
bottleneck identi�ed in [23] appears when arrivals are imbalanced, we consider a single scenario in
which jobs arrive at the �rst dispatcher at a unit rate � and at the second dispatcher at rate �

4 .
We compare the performance of the dynamic routing scheme with two variants of the static one,
called best staticand uniform static , in which the routing probabilities of tokens to dispatchers are
proportional to the arrival rates at the dispatchers and uniform, respectively. In both cases, each
dispatcher uses its received tokens to dynamically balance load across computers. This scenario
resembles that ofx8.3.2, but there is a fundamental di�erence: if a job arrives at one dispatcher
and �nds its queue empty, this job is lost even if the other dispatcher contains available tokens.
The source code to generate the numerical results, shown in Figure 9.4, is available at [C01].

Figure 9.4: Comparison of di�erent routing schemes in a computer cluster with two dispatchers.
Average loss probability|top curve|and activity probability|bottom curve.

163

Chapter 9. Extensions

The loss probabilities under the static schemes are consistent with the asymptotic bounds
obtained in [23, Proposition 2], for the single-token case, as the number of computers tends to
in�nity. In particular, the loss probability under the uniform static scheme is at least max(3

5 ; 1� 1
�)

due to the imbalance between job arrival rates and token routing probabilities. The reason is that
the �rst dispatcher is left without tokens because the second dispatcher, at which arrivals are less
frequent, tends to hold tokens back. Under the best static scheme, the asymptotic bound of [23,
Proposition 2] predicts a loss probability of at least max(0; 1� 1

�). In our plot, this loss probability
is not zero, even when the load� is less than one. It seems to be due to the fact that the number
of tokens is �nite, as we could observe that this loss probability decreases when the number of
tokens increases. The best static scheme performs slightly better than the dynamic one when the
load � is just above one, but otherwise their performance in an overloaded cluster is comparable.
Overall, the dynamic scheme has a performance comparable to that of the best static one, without
requiring to know of the arrival rates at the dispatchers.

9.3 Concluding remarks

In this chapter, we proposed two extensions to the scheduling and load-balancing algorithms of
Chapters 7 and 8. The �rst extension consists of combining both algorithms, so that the dispatcher
balances load among pools and schedules jobs on their assigned computers. The second extension
consists of adapting the load-balancing algorithm to a cluster with several entry points. The core
idea is to dynamically balance tokens among dispatchers, so that none of them is short of tokens
while others have plenty. Both extensions preserve the insensitivity of the original algorithms.
It may also be possible to consider non-insensitive extensions, as we already observed when we
discussed related works in Sections 7.4 and 8.4.

Appendix 9.A Proof of irreducibility

We prove the irreducibility of the Markov process de�ned by the microstate (c; d) of the closed
tandem network of two multi-server queues described in Section 9.1. From now on, we will simply
refer to this network as the network. The queue of tokens held by jobs in service is called the
�rst queue and the queue of available tokens is called thesecond queue. These are the two main
assumptions we use along the proof:

Assumption 3 (Positive service rate). For each i 2 I , we haveK i 6= ; and Si 6= ; . Also, � s > 0
for each computers 2 S and � k > 0 for each typek 2 K .

Assumption 4 (Separability) . For each i; j 2 I with i 6= j , we haveSi 6= Sj or K i 6= K j .

We prove the following theorem.

Theorem 9.1. Under Assumptions 3 and 4, the Markov process de�ned by the microstate of
the network is irreducible on its state space
 = f (c; d) 2 I � � I � : jcj + jdj = `g comprising all
microstates with ` i tokens of pooli , for each i 2 I .

We prove the irreducibility for a cluster without service interruptions|so that a customer who
leaves the �rst queue is appended to the second queue with probabilityq = 1|because this is a
worst case in terms of irreducibility.

The proof is recursive: to connect two network microstates, we build a �nite series of transitions
to �rst arrange the tokens of pools 1 to I � 1 and then we position the tokens of poolI among
them; to arrange the tokens of pools 1 toI � 1, we �rst arrange the tokens of pools 1 toI � 2
and then we position the tokens of poolI � 1 among them, and so on. Inx9.A.1 and 9.A.2, we
introduce two elementary types of transitions, calledcircular shift and overtaking, and specify in
which microstates these can occur. These transitions are assembled inx9.A.3 to build �nite series
of transitions that have the e�ect of interchanging the positions of two consecutive tokens in the
queues. Finally, x9.A.4 explains the recursive construction. The proof is illustrated by examples
relating to the toy con�guration of Figure 9.5.

164

Section 9.A. Proof of irreducibility

(a) Assignment graph of the cluster.

(b) Compatibility graph of the �rst queue.

(c) Compatibility graph of the second queue.

Figure 9.5: A technically interesting toy con�guration.

Let s = `1 + : : : + ` I denote the overall number of tokens in the network. Also letT = f t 2 I s :
jt j = `g denote the set of sequences obtained by concatenating the microstates of the two queues
in any network microstate. For each sequence (t1; : : : ; ts) 2 T and integers �; n = 0 ; : : : ; s, the
couple ((t � +1 ; : : : ; t � + n); (t � + n +1 ; : : : ; t � + s)), where each index is to be replaced with its residue in
f 1; : : : ; sg modulo s, belongs to
. By convention, the �rst queue is empty if n = 0 and the second
queue is empty if n = s.

9.A.1 Circular shift

A circular shift, or shift for short, is a transition induced by the service completion of a token at the
front of a queue. Consider a network microstate ((c1; : : : ; cn); (d1; : : : ; dm)) 2
. Assuming that
n � 1, a shift in the �rst queue leads to microstate ((c2; : : : ; cn); (d1; : : : ; dm ; c1)). This transition
is triggered by the departure of the oldest job which releases its token, owned by pooli = c1,
upon service completion. Assumption 3 guarantees that the rate of this transition, given byP

s2S i
� s, is positive. Now assume thatm � 1. A shift in the second queue leads to microstate

((c1; : : : ; cn ; d1); (d2; : : : ; dm)). It is triggered by the arrival of a job that seizes the longest available
token, owned by pooli = d1. Again by Assumption 3, the rate of this transition, given by

P
k2K i

� k ,
is positive. Therefore, a shift can always occur in a non-empty queue.

By the following lemma, two microstates that are circular shifts of each other belong to the
same strongly connected component in the transition diagram of the Markov process de�ned by
the network microstate. It is illustrated in Figures 9.6a and 9.6b.

Lemma 9.2. Consider a sequence(t1; : : : ; ts) 2 T and three integers�; n; n 0 = 0 ; : : : ; s. There
is a �nite series of circular shifts that connects microstate ((t1; : : : ; tn); (tn +1 ; : : : ; ts)) to mi-
crostate ((t � +1 ; : : : ; t � + n 0); (t � + n 0+1 ; : : : ; t � + s)) .

Proof. First applying s � n shifts in the second queue leads to microstate ((t1; : : : ; ts); ;) in
which the second queue is empty. Now letr denote the remainder of the Euclidean division of
� + n0 by s. Applying r shifts in the �rst queue and then r shifts in the second queue leads to
microstate ((t � + n 0+1 ; : : : ; ts; t1; : : : ; t � + n 0); ;), in which the token that should eventually be at the
front of the second queue is at the front of the �rst queue. Finally applying s � n0 shifts in the
�rst queue leads to the desired microstate.

In this way, we can think of the network microstate as a ring of tokens obtained by attaching the
head of each queue to the tail of the other queue. We now describe transitions that have the e�ect
of exchanging the positions of two consecutive tokens in this ring.

9.A.2 Overtaking

An overtaking is a transition induced by the service completion of a token in the second position
of a queue. We can also say that this token overtakes its predecessor. Compared to a shift, an

165

Chapter 9. Extensions

(a) An initial microstate. (b) After a series of shifts.

(c) After a token of pool 2 overtakes
its predecessor in the second queue.

(d) All tokens of pool 2 are gathered
at the end of the second queue.

Figure 9.6: Application of circular shifts and overtakings.

overtaking cannot happen in any microstate|in general|because the service rate of the token in
second position may be zero. Consider a microstate ((c1; : : : ; cn); (d1; : : : ; dm)) 2
. If n � 2, an
overtaking in the �rst queue leads to microstate ((c1; c3; : : : ; cn); (d1; : : : ; dm ; c2)). It is possible if
and only if Sc2 * Sc1 , meaning that at least one computer belongs to poolc2 but not to pool c1.
Indeed, the rate of this transition is

P
s2S c 2 nSc 1

� s, and Assumption 3 guarantees that � s > 0
for each s 2 S. Conversely, if m � 2, an overtaking in the second queue leads to microstate
((c1; : : : ; cn ; d2); (d1; d3; : : : ; dm)) and is possible if and only if Kd2 * Kd1 , meaning that at least
one job type can seize the token of poold2 but not the token of pool d1.

We now combine Assumption 4 with a structural argument on the computer and type sets to
prove the following lemma. The steps of this proof are illustrated in Figure 9.7.

Lemma 9.3. By exchanging the pool indices if necessary, we can work on the assumption that,
for each i = 2 ; : : : ; I and eachj = 1 ; : : : ; i � 1, a token of pool i can overtake a token of poolj
in|at least|one of the two queues.

Proof. We �rst sort the distinct computer sets, Si , i 2 I , in an order that is non-decreasing for
the inclusion relation on the power set off 1; : : : ; Sg. In other words, we consider a topological
ordering of these sets induced by their Hasse diagram, so that a given computer set is not a
subset of any computer set with a lower rank. Therefore, a token of a pool whose computer set
has a given rank can overtake, in the �rst queue, a token of any pool whose computer set has a
lower rank, but not a token of a pool whose computer set is identical.

We also sort the distinct type sets K i , i 2 I , in an order that is non-decreasing for the
inclusion relation on the power set off 1; : : : ; K g, so that a given type set is not a subset of any
type set with a lower rank. Again, a token of a pool whose type set has a given rank can overtake,
in the second queue, a token of any pool whose type set has a lower rank, but not a token of a
pool whose type set is identical.

Using these orders on the computer and type sets, we sort and renumber the pools as follows.

166

Section 9.A. Proof of irreducibility

We �rst order the pools having distinct computer sets by increasing computer set rank, and then
we order the pools sharing the same computer set by increasing type set rank. Assumption 4
guarantees that two distinct pools are indeed ordered. With this new numbering, for each
i = 2 ; : : : ; I and eachj = 1 ; : : : ; i � 1, a token of pooli can overtake a token of poolj in the �rst
queue|if these pools have di�erent computer sets|or in the second queue.

(a) Hasse diagram of the computer sets. (S3 = f 2g, S4 = f 3g,
S1 = S2 = f 1; 2g) is a valid topological ordering.

(b) Hasse diagram of the type sets. (K 1 = f 1g,
K 4 = f 2g, K 2 = K 3 = f 1; 2g) is a valid topolog-
ical ordering.

Figure 9.7: (3; 4; 1; 2) is a valid ordering of the pools in the cluster of Figure 9.5a. In this way,
pool 3 could be renumbered as pool1, pool 4 as pool2, pool 1 as pool3, and pool 2 as pool4.

9.A.3 Interchange

An interchange is a �nite series of transitions that has the e�ect of interchanging the positions
of two consecutive tokens at an arbitrary position of either queue. Speci�cally, if the network
is in microstate ((t1; : : : ; tn); (tn +1 ; : : : ; ts)) 2
 for some sequence (t1; : : : ; ts) 2 T and some
integer n = 0 ; : : : ; s, an interchange leads to microstate ((t0

1; : : : ; t0
n); (t0

n +1 ; : : : ; t0
s)) 2
, where the

sequence (t0
1; : : : ; t0

s) is obtained by exchanging the tokens in positionsp and p+ 1 in the sequence
(t1; : : : ; ts), for somep = 1 ; : : : ; n|with the convention that p+ 1 = 1 if p = n. We now identify a
su�cient condition that guarantees that an interchange is feasible.

Lemma 9.4. Consider a sequence(t1; : : : ; ts) 2 T and an integer p = 1 ; : : : ; s. Let (t0
1; : : : ; t0

s)
denote the sequence obtained by exchanging the tokens in positionsp and p + 1 in the sequence
(t1; : : : ; ts). If tp < t p+1 , then, for each n = 0 ; : : : ; s, there is an interchange that connects
microstate ((t1; : : : ; tn); (tn +1 ; : : : ; ts)) to microstate ((t0

1; : : : ; t0
n); (t0

n +1 ; : : : ; t0
s)) .

Proof. According to Lemma 9.3, a token of pooltp+1 can overtake a token of pooltp in the
�rst queue or in the second one. In the former case, we apply Lemma 9.2 to reach microstate
((tp; : : : ; ts; t1; : : : ; tp� 1); ;) and then we apply an overtaking in the �rst queue. In the latter
case, we apply Lemma 9.2 to reach microstate (; ; (tp; : : : ; ts; t1; : : : ; tp� 1)) and then we apply an
overtaking in the second queue. In both cases, another application of Lemma 9.2 leads to the
desired microstate.

In particular, each network microstate is connected to the modi�ed microstate in which all tokens
of pool I are gathered at the rear of one queue while the position of the other tokens is unchanged.
We need at mostO(` I � s) interchanges to do that.

9.A.4 Recursive solution

The construction of the series of transitions is similar in spirit to the recursive solution of the
Tower of Hanoi. By applying interchanges to gather the tokens of poolI at the rear of one of the
two queues whenever necessary, we can �rst apply a series of transitions to arrange the tokens of
pools 1 to I � 1 as if the tokens of poolI were absent, and then apply interchanges to position
the tokens of pool I among them. To arrange the tokens of pools 1 toI � 1, we can �rst apply a

167

Chapter 9. Extensions

series of transitions to arrange the tokens of pools 1 toI � 2 as if the tokens of poolI � 1 were
absent, and then position the tokens of poolI � 1 among them, and so on. The base case consists
of a network associated with a clusters with a single pool; shifts are then su�cient to connect two
microstates because the tokens are indistinguishable.

168

Conclusion

We have designed and analyzed novel resource-management algorithms for computer clusters.
Queueing theory allowed us to cope not only with the stochastic nature of demand, but also
with its heterogeneity. The common feature of the proposed algorithms is their approximate
insensitivity to the job size distribution, meaning that performance only depends on the job size
distribution through its mean as long as the arrival process is Poisson. This property guarantees
that performance is not impacted by|hard-to-predict|�ne-grained tra�c statistics. It also yields
simple formulas for average performance metrics, usable by cloud providers to dimension their
infrastructure based on average tra�c predictions only. The proposed algorithms extend existing
solutions, such as the celebrated round-robin algorithm, and adapt dynamically to demand.

In the �rst part of the manuscript, we observed that there is a one-to-one correspondence
between Whittle networks with a non-decreasing rate function and order-independent queues.
Furthermore, we proved that the Markov process de�ned by the microstate of an order-independent
queue is animbeddingof the Markov process de�ned by the macrostate of the corresponding Whittle
network, in the sense de�ned by Whittle in [102]. Average performance metrics that are functions
of the macrostate only are therefore equal in both models. This equivalence result relies on two
assumptions on the statistics of the tra�c, namely that customers arrive according to a Poisson
process and have exponentially distributed service requirements; indeed, performance is insensitive
to the customer service requirements in Whittle networks but not in order-independent queues. We
later demonstrate how to mitigate sensitivity by enforcing frequent service interruptions, similarly
to round-robin scheduling algorithm, in a special case of order-independent queue.

Our analysis of the multi-server queue under balanced fairness and the �rst-come-�rst-served
policy is a direct application of this equivalence result. The multi-server queue di�ers from classi-
cal queueing models with multiple servers, like those speci�ed by Kendall's notation, in that each
customer can be processed in parallel by several servers, depending on compatibility constraints
described by a bipartite graph between customer classes and servers. Under balanced fairness,
the evolution of this multi-server queue is described by a Whittle network where each processor-
sharing queue corresponds to a class of customers, while, under the �rst-come-�rst-served policy,
the queue corresponds to an order-independent queue. The previous equivalence result guarantees
that, if customers arrive according to a Poisson process and have exponentially distributed service
requirements, then balanced fairness and �rst-come-�rst-served policy yield the same average per-
formance. Classical performance metrics, such as the mean delay or the mean service rate, can be
evaluated using new closed-form expressions that we derived for the multi-server queue.

In the last part of the thesis, we applied these results to design and analyze resource-management
algorithms for computer clusters. Speci�cally, we proposed a scheduling algorithm that extends
the principle of round-robin to clusters with parallel processing, as well as a token-based algorithm
for balancing load among computers when jobs have assignment constraints. The scheduling algo-
rithm imitates the �rst-come-�rst-served policy considered for the multi-server queue, except that
sensitivity is mitigated by frequently interrupting jobs in service. The evolution of the cluster un-
der the load-balancing algorithm can also be described by a multi-server queue, in which streams
of incoming jobs play the part of servers that process tokens sent by computers to signal their
availability. We believe that these two algorithms, yet de�ned and studied in a simpli�ed view of
computer clusters, could be used as guidelines for resource management in real clusters or in other
queueing systems where assignment constraints are described by a bipartite graph.

We hope this work showed that, despite its one hundred years of existence, queueing theory
is still a fertile framework, not only to predict the performance of existing resource-management

169

Conclusion

algorithms, but also to design new ones. Because of the growing demand for automation in com-
puting, telecommunications, and industry, the world is crawling with interesting applications that
keep enriching queueing theory. To illustrate this statement, we conclude with research questions
that were opened or left open by our work. When possible, we also describe avenues of response.

Better understand the performance of insensitive algorithms

The results of this manuscript give new insights into insensitive resource-management algorithms
but the subject is far from being exhausted.

Fairness and e�ciency. The third part of the manuscript can be seen as a gallery where we
exhibit resource-management algorithms that can be analyzed thanks to multi-server queues. This
is a �rst step towards understanding the overall impact of these algorithms on performance, but
this is far from being enough. For instance, in Chapter 8, we assumed that the number of tokens
of each computer was given by some external constraints, such as the number of jobs that can be
processed in parallel on these computers. However, we might also choose the number of tokens in
order to enforce performance guarantees or to favor one job type over the other. More generally,
it would be interesting to gain more insight into the fairness and e�ciency of these algorithms.

A di�erent but related question concerns performance prediction. Speci�cally, could we develop
a scalable numerical method to predict the performance of the load-balancing algorithm of Chap-
ter 8, as we did in Part II for balanced fairness? Having simple formulas for performance metrics
may help gain insight into the performance of this algorithm. This question is also interesting by
itself, as scalable numerical methods are necessary to give performance guarantees and, as a result,
avoid overdimensioning. At the moment, predicting the performance of the token-based algorithm
involves computing the normalization constant of a closed queueing network, which is a notori-
ously hard problem. However, we observed in Chapters 8 and 9 that this normalizing constant
can be written either as the generating series of a sequence de�ned by a recurrence relation or
as the convolution of two such sequences. This suggests that we could apply tools from analytic
combinatorics to simplify our formulas, especially in con�gurations that exhibit some symmetry,
or to compute their limit as the system size grows. Approximate analyses in uid and di�usion
regimes, applied to analyze sensitive and insensitive load-balancing algorithms in the supermarket
model [24, 55, 75, 76], could also be helpful.

Comparison with insensitive policies. Balanced fairness is optimal within all insensitive
resource-sharing policies, in the sense that it maximizes the probability that the system is empty [15].
It would be interesting to derive a similar optimality result for the insensitive load-balancing pol-
icy of Chapter 8 and the extensions of Chapter 9. In order to do that, we could use the fact
that the load-balancing policy realized by the algorithm of Chapter 8 is just balanced fairness in
a virtual|closed|queueing network. We briey used this result in Chapter 8 to estimate the
limiting probability that the queue of available tokens at the dispatcher is empty when the number
of tokens tends to in�nity, which gives a lower bound of the corresponding probability when the
number of tokens is �nite. More generally, it would be interesting to explain how known properties
of balanced fairness translate in terms of load balancing.

Comparison with sensitive policies. We essentially focused on reaching insensitivity, but the
performance of our algorithms also needs be compared with that of sensitive ones. In particular,
greedy algorithms, such as shortest-remaining-processing-time scheduling algorithm and join-the-
shortest-queue load-balancing algorithm, were studied and implemented for many applications.
As we observed earlier, the performance of such greedy policies may degrade when demand is
heterogeneous. For instance, preliminary numerical results indicate that insensitive load-balancing
algorithms can perform better than greedy algorithms in some heterogeneous scenarios [12]. On the
other hand, it was shown in [53] that an insensitive load-balancing algorithm cannot outperform a
static random policy when the number of tokens tends to in�nity. Deriving simple conditions on
the statistics of tra�c or the demand heterogeneity that specify which policy is best would be an
interesting topic of future works.

170

A general framework for insensitivity

A general framework for insensitivity

We proposed insensitive resource-management algorithms for a speci�c application|computer clus-
ters|but other relevant applications of insensitivity, such as wireless networks with hierarchical
interference constraints [42], have a radically di�erent structure.

Capacity region. As we already observed it in Chapter 4, the framework of Whittle networks
allows us to de�ne balanced fairness in a large variety of queueing systems. For instance, in [P02],
we proved that data networks with a tree topology have a polymatroid capacity region, so that
most results of Chapters 4 and 5 can be applied as they are in these queueing systems|and in fact,
balanced fairness was initially introduced to study performance of data networks [15]. Using the
framework of order-independent queues, it is possible to de�ne and analyze a �rst-come-�rst-served
policy similar to that of Chapter 4 for this application. But balanced fairness is also well de�ned
in much more general queueing systems, in which the capacity region is not a polymatroid nor
even a polytope [20]. Balanced fairness may not be Pareto e�cient in such capacity regions, and
in particular the overall service rate may not be a non-decreasing function of the network state. In
this case, it is unclear how to de�ne and analyze a time-sharing policy that implements balanced
fairness as we did in Chapter 7.

Number of jobs. To de�ne the load-balancing algorithm of Chapter 8 and the extensions of
Chapter 9, we assumed that the number of customers at each computer|or pool|was �xed. This
restriction allowed us to see load balancing as a problem of resource sharing in a virtual multi-
server queue. Obtaining a similar analogy when the number of customers at each computer is not
�xed, as in [12], would be a signi�cant progress. This would notably guarantee insensitivity to the
job size distribution even when this distribution is correlated to the job type. This result could
�nd applications to resource management in cellular networks for instance, where the type of a job
may identify its position in the cell and, therefore, impact its service quality.

Multiple resources. Throughout the manuscript, we focused on sharing a single type of resources,
such as CPU or bandwidth, among customers who use this resource equally e�ciently. Max-min
fairness and proportional fairness were considered in multi-resource settings [22] but, to the best
of our knowledge, balanced fairness was not. An analysis similar to the one we performed in the
manuscript may still be tractable if the capacity region resulting from the superposition of several
resources is a polymatroid, but this assumption may not be satis�ed in general, as the intersection
of several polymatroids may not a polymatroid.

Integrate data

Machine learning techniques may be applied to solve resource-management problems in large-scale
computer clusters because the large amount of monitoring data is su�cient to train models [87].
Some of these models rely on the same analytical tools as queueing theory, namely Markov chains
and processes. It remains to be understood whether these structural similarities can help com-
bine the methods from machine learning, such as policy iteration in reinforcement learning, with
those from queueing theory. The objective would then be to design robust resource-management
algorithms able to leverage data when it is available in order to improve the assignment decision.
As an example, the works [68, 82] borrow the linear programming formulation of the theory of
Markov decision processes to design insensitive policies that optimize a given objective function.
Identifying and exploiting other connections between machine learning and queueing theory may
bring a signi�cant performance gain over existing approaches.

171

172

A Notations

This �rst appendix introduces notations that are useful throughout the manuscript. Section A.1
recalls general-purpose mathematical notations. Sections A.2 gives notations that are speci�c to
our queueing models, especially concerning microstates and macrostates. Lastly, Section A.3 is an
index consisting of several tables that gather the most useful notations.

A.1 General notations

Consider a setS and and two subsetsA and B of S. The intersection of A and B is denoted by
A \ B and their union by A [B . The setsA and B are said to be disjoint if A \ B = ; , in which
case we usually writeA t B instead of A [B to denote the disjoint union of A and B. We say that
A is a subset ofB, and we write A � B , if each element ofA also belongs toB. The cartesian
product of A and B is denoted byA � B . The cardinality of the set A is denoted by jAj . If S is a
statement, the notation 1f Sg is equal to one ifS is true and to zero if S is false.

We let R denote the set of reals,R+ the set of non-negative reals, andN the set of non-negative
integers. If I is a positive integer, we letRI , RI

+ , and NI denote the sets ofI -dimensional vectors
with components in R, R+ , and N, respectively. In general, we will use the Greek alphabet for
reals and the Latin alphabet for integers. The vector comparison� is systematically understood
componentwise. For eachx = (x1; : : : ; x I) 2 NI , the multinomial coe�cient

�
x1 + : : : + x I

x1; : : : ; x I

�
=

(x1 + : : : + x I)!
x1! � � � x I !

counts the number of direct paths|made of increasing steps only|between the origin and the
vector x in the I -dimensional state spaceNI . According to the multinomial theorem, we have

(� 1 + : : : + � I)n =
X

(x 1 ;:::x I)2 NI :
x 1 + ::: + x I = n

�
n

x1; : : : ; x I

�
� 1

x 1 � � � � I
x I ; 8n 2 N; 8(� 1; : : : ; � I) 2 RI : (A.1)

A.2 Macrostate and microstate

Consider a �nite set I = f 1; : : : ; I g of indices. In the queueing model, each index typically identi�es
a customer class in a queue or a queue in a network. Depending on the queueing model and the
service policy we study, we will alternately consider two state descriptors:

Macrostate: The vector x = (x1; : : : ; x I), where, for eachi 2 I , x i 2 N is the number of class-i
customers. The corresponding state space is the setNI or a subset of it. For eachi 2 I , we
let ei denote the I -dimensional vector with one in componenti and zero elsewhere, which
corresponds to a queue state with a single class-i customer.

Microstate: The sequencec = (c1; : : : ; cn), where n is the overall number of customers in the
system and, for eachp = 1 ; : : : ; n, cp is the class of thep-th oldest customer|so that the
oldest customer is of classc1. The corresponding state space is the setI � , where � is the

173

Chapter A. Notations

Kleene star, made of the sequences of elements ofI of an arbitrary length, or a subset of it.
The empty sequence, withn = 0, is denoted by ; .

In general, the macrostate is su�cient under resource-sharing policies because the resource allo-
cation is independent of the order of customers in the queue, while the microstate is relevant for
time-sharing policies.

To each microstatec = (c1; : : : ; cn) 2 I � , we associate the macrostatejcj = ec1 + ec2 + : : :+ ecn 2
NI . In this way, for each i 2 I , the integer jcj i counts the number of occurrences of classi in
microstate c. With a slight abuse of notation, we write jc1; : : : ; cn j for j(c1; : : : ; cn)j. Conversely,
to each macrostatex = (x1; : : : ; x I) 2 NI , we can associate the set of microstatesc 2 I � such that
jcj = x. This transformation has the following graphical interpretation. In the vector space NI ,
each sequencec = (c1; : : : ; cn) 2 I � encores a unique direct path between the origin 0 and the
vector x = jcj, de�ned by 0, jc1j, jc1; c2j, . . . , jc1; c2; : : : ; cn � 1j, jc1; c2; : : : ; cn j. As a result, for each
x 2 NI , the set of microstates that correspond to macrostatex is in bijection with the set of direct
paths between the origin and the vectorx in NI . An example is shown in Figure A.1.

Figure A.1: The sequencec = (1 ; 2; 1; 1; 2; 1; 2; 1) 2 f 1; 2g� encodes a unique direct path between
the origin and the vector x = (5 ; 3) in the vector spaceN2. In practice, we will often intentionally
misidentify the sequencec with the direct path it encodes.

For each x 2 NI , the set I x = f i 2 I : x i > 0g contains the indices of the positive components
of x, that is, the classes that areactive in macrostate x in the sense that the queueing system
contains customers of these classes. Similarly, for eachc 2 I � , we let I c = I j cj denote the set of
indices that appear at least once in sequencec. Observe that, for eachx 2 NI n f 0g, the set of
microstates c 2 I � that correspond to macrostatex can be partitioned as follows:

f c 2 I � : jcj = xg =
G

i 2I x

f (c1; : : : ; cn � 1; i) : (c1; : : : ; cn � 1) 2 I � and jc1; : : : ; cn � 1j = x � ei g; (A.2)

where n = x1 + : : : x I . In terms of the queue states, this equality means that we can partition the
set of microstatesc = (c1; : : : ; cn) corresponding to macrostatex depending on the classcn 2 I x

of their most recent customer. Graphically, it means that a direct path from the origin to vector
x can be decomposed into a direct path from the origin to vectorx � ei , for somei 2 I x , followed
by a last step in direction i .

A.3 Index of notations

The index is divided into three parts, corresponding to the parts of the manuscript.

Part I. These notations refer to Whittle networks and order-independent queues.

Indices

I = f 1; : : : ; I g
Index set of the queues in a Whittle network and of the classes in
an order-independent queue.

i; j 2 I Queue or class indices.

A ; B � I Subsets of queues or classes.

174

Section A.3. Index of notations

Macrostate

x = (x1; : : : ; x I) 2 NI

y = (y1; : : : ; yI) 2 NI
Vectors that count the number of customers indexed byi , for each
i 2 I .

ei 2 NI The vector with one in component i and zero elsewhere.
Represents a macrostate with a single customer indexed byi .

I x = f i 2 I : x i > 0g Set of positive components of vectorx.

` = (`1; : : : ; ` I)
2 (N [f + 1g)I A vector that limits the number of customers with each index i .

X = f x 2 NI : x � `g The subset ofNI delimited by the vector `.

Microstate

c = (c1; : : : ; cn) 2 I �

d = (d1; : : : ; dm) 2 I � Sequences inI � representing microstates.

; The empty sequence, withn = 0.

jcj = (jcj1; : : : ; jcjI) 2 NI The macrostate associated with microstatec.

I c = I j cj Set of indices that appear in microstatec.

C = f c 2 I � : jcj � `g The subset ofI � delimited by the vector `.

Arrival rates, service rates, and routing

� i External arrival rate of the customers indexed by i .

pi;j 2 [0; 1]
Probability that a customer indexed by i re-enters the system as
a customer indexed byj upon service completion.

pi = 1 �
P

j 2I pi;j
Probability that a customer indexed by i leaves the system upon
service completion.

� i = � i +
X

j 2I

� j pj;i E�ective arrival rate of the customers indexed by i , given by (1.19).
Equal to the external arrival rates in the absence of routing.

� = (� 1; : : : ; � I) 2 RI
+ Vector of e�ective arrival rates.

� i (x); � i (c) Overall service rate of the customers indexed byi .

� = (� 1; : : : ; � I) 2 RI
+ Vector of state-dependent service rates.

� (x), � (c) Overall service rate in the system.

� � (c) = � (c1; : : : ; cn)
� � (c1; : : : ; cn � 1)

Increase of the overall service rate due to the arrival of the most
recent customer.

�� (A) Asymptotic service capacity, de�ned by (3.5).

�(x), �(c) Balance function of the per-queue or per-class service rates.

Stationary distribution and performance metrics

� (x); � (c)
Stationary distribution of the Markov process de�ned by the
macrostate or microstate of the queueing system.

 = � (0) = � (;) Probability that the stationary system is empty.

G(�) = 1
 Normalizing constant of the stationary distribution.

L Expected number of customers in the system.

L i Expected number of customers indexed byi .

� i Mean delay experienced by the customers indexed byi .

 i Mean service rate perceived by the customers indexed byi .

175

Chapter A. Notations

Part II. Many notations of this part are shared with Whittle networks and order-independent
queues. Those regarding microstates, macrostates, and the stationary distribution and performance
metrics are not recalled, as they are identical.

Indices

I = f 1; : : : ; I g Index set of the classes.

i; j 2 I Class indices.

A ; B � I Subsets of classes.

S = f 1; : : : ; Sg Index set of the servers.

s 2 S A server index.

T � S A subset of servers.

Arrival rates, service rates, and compatibilities

� i E�ective arrival rate of class- i customers.

� s Capacity of server s.

Si � S Set of servers that are compatible with classi .

� (A) =
P

s2
S

i 2A
Si

� s
Overall capacity available for the classes inA .
Rank function de�ned by (4.1) on the power set of I .

� Polymatroid capacity region, de�ned by (4.3).

Performance prediction by state aggregation in Chapter 5

A = I x The set of active classes in macrostatex.

� (A) Stationary probability that the set of active classes isA .

L (A)
Conditional expected number of customers given that the set of
active classes isA .

L i (A)
Conditional expected number of class-i customers given that the
set of active classes isA .

P = (I 1; : : : I K) A partition of I in K parts.

I k = jI k j Size of part k in partition P.

jAj P = a = (a1; : : : ; aK) The vector of sizes of the parts ofA in partition P.

N =
KY

k=1

f 0; 1; : : : ; I k g Set of all these vectors.

h(a)
Cardinality rank function of a polymatroid poly-symmetric with
respect to partition P, de�ned by De�nition 5.8 on N .

� (a)
Stationary probability that the number of active classes within
part k is ak , for each k = 1 ; : : : ; K .

L (a)
Expected number of customers given that the number of active
classes within part k is ak , for each k = 1 ; : : : ; K .

L k (a)
Expected number of customers of the classes of partk given that
the number of active classes within part ` is a` , for each ` =
1; : : : ; K .

L k Expected number of customers of the classes of partk.

Performance prediction by server elimination in Chapter 6

� = � 1 + ::: + � I
� 1 + ::: + � S

Overall load in the queue.

176

Section A.3. Index of notations

� i = � iP
s 2S

� s �
P

j 6= i
� j

Load associated with classi .

 Probability that the queue is empty.

 s Probability that server s is idle.

 j� s

Probability that the queue is empty given that server s is idle.
Probability that the restricted queue without server s and its
compatible classes is empty.

 i Probability that class i is inactive.

 j� i
Probability that the queue is empty given that class i is inactive.
Probability that the restricted queue without class i is empty.

Part III. We focus on Chapters 7 and 8, as the notations of Chapter 9 are extensions.

Job scheduling in Chapter 7

S = f 1; : : : ; Sg Index set of the computers.

s 2 S A computer index.

I = f 1; : : : ; I g Index set of the pools.

i; j 2 I Pool indices.

Si � S Set of computers within pool i .

� i Arrival rate of the jobs assigned to pool i .

� Mean job size, in oating-point operations.

Cs Capacity of computer s, in oating-point operations per second.

� s Capacity of computer s, in number of jobs per second.

�
Expected amount of service dedicated to a job before interrupting
its service, in oating-point operations.

m = �
� Expected number of service interruptions per job.

c = (c1; : : : ; cn) 2 I � State of the central queue used by the dispatcher to schedule jobs.
Microstate of the multi-server queue in the queueing model.

x = jcj 2 NI Macrostate of the multi-server queue.

� i (x); � i (c) Overall service rate of the jobs assigned to pooli .

�(x); �(c) Balance function of the service rates.

� Capacity region of the multi-server queue.

Load balancing in Chapter 8

I = f 1; : : : ; I g(= S) Index set of the computers.

i; j 2 I Computer indices.

K = f 1; : : : ; K g Index set of the job types.

k 2 K A job type.

K i � K The set of job types that can be assigned to computeri .

� k Arrival rate of type- k jobs.

� Mean job size, in oating-point operations.

Ci Capacity of computer i , in oating-point operations per second.

� i Capacity of computer i , in number of jobs per second.

` i
Maximum number of jobs that can be assigned to computeri .
Number of tokens owned by this computer.

` = (`1; : : : ; ` I) 2 NI Vector of numbers of tokens.

177

Chapter A. Notations

d = (d1; : : : ; dm) 2 I � Sequence of available tokens at the dispatcher.
Microstate of the multi-server queue in the queueing model.

D = f d 2 I � : jdj � `g State space of the queue microstate.

y = jdj 2 NI Macrostate of the multi-server queue.

Y = f y 2 NI : y � `g State space of the queue macrostate.

� (A) =
P

k2
S

i 2A
K i

� k

Overall arrival rate of the job types that can be assigned to at
least one computer inA .
Rank function de�ned by (8.3) on the power set of I .

� i (y); � i (d) Arrival rate at computer i .

�(y); �(d) Balance functions of the arrival rates.

� Capacity region of the multi-server queue.

178

B Useful probability notions

This appendix gives an overview of the probability tools used in the manuscript, like speci�c
distributions of random variables and stochastic processes. This is also an opportunity to introduce
useful notations and terminology.

B.1 Random variables

We �rst describe two distributions of discrete random variables and then we move on to continuous
random variables.

Geometric. A discrete random variable X has a geometric distribution with parameter p 2 [0; 1]
if it takes its values in N, and

P(X = x) = p(1 � p)x ; 8x 2 N:

Such a random variable can be obtained by counting the number of failures before a success in
a Bernoulli process with success probabilityp. As we saw in the introduction, this is also the
stationary distribution of the Markov process de�ned by the state of an M/M/1 queue|in which
case the success probability isp = 1 � � . The geometric distribution is the only memorylessdiscrete
distribution, in the sense that

P(X > x + y j X > x) = P(X > y) = (1 � p)y+1 ; 8x; y 2 N:

The expected value of this random variable isE(X) = 1� p
p .

Another variant of the geometric distribution, only considered in Appendix C, consists of count-
ing the number of trials Y = X + 1 instead of the number of failures X in the Bernoulli process.
The random variable Y takes its values inN� = f 1; 2; : : :g, and its distribution is given by

P(Y = y) = p(1 � p)y � 1; 8y 2 N� :

Its expected value isE(Y) = 1
p and its generating function is the formal seriesE(sY) = ps

1� (p� 1)s :
This last de�nition will be useful in Appendix C.

Poisson. A discrete random variable X has a Poisson distribution with rate � > 0 if it takes its
values in N, and

P(X = x) =
� x

x!
e� � ; 8x 2 N:

As explained in Section B.2, such a random variable can be used to count the number of arrivals
at a queueing system during a unit time interval, provided that the customers arrive according to
a Poisson process with rate� . The expected value of this random variable isE(X) = � .

Exponential. A continuous random variable X has an exponential distribution with rate � > 0
if it takes its values in R+ , and satis�es the following memorylessproperty:

P(X > s + t j X > s) = P(X > t) = e� �t ; 8s; t 2 R+ :

179

Chapter B. Useful probability notions

This is the distribution of the customer inter-arrival times at a queueing system when the arrival
process is Poisson with rate� . The expected value of this random variable is given byE(X) = 1

� .
The exponential distribution is also commonly used to describe of the customer service requirements
in a queueing system. In this case, the parameter� is rather denoted by � .

The following result is important for the de�nition of Markov processes|see Section B.2. Con-
sider two independent random variablesX 1 and X 2 that are exponentially distributed with rates
� 1 and � 2, respectively, and let X denote the minimum of X 1 and X 2. The random variable X is
also exponentially distributed, with rate � 1 + � 2. Independently of its value, X is equal to X 1 with
probability � 1

� 1 + � 2
and to X 2 with probability � 2

� 1 + � 2
. This result can be extended ton independent

random variables with an exponential distribution.

Coxian. Consider a positive integerK , K positive reals� 1; : : : ; � K , and K positive realsp1; : : : ; pK

such that pk � 1 for eachk = 1 ; : : : ; K . A continuous random variable X has a Coxian distribution
with parameters K , � 1; : : : ; � K , and p1; : : : ; pK , if is distributed like the time until absorption of a
Markov chain|see Section B.2|with K transient states, denoted by 1 toK , and a single absorbing
state, denoted by 0. State 1 is the initial state. For eachk = 1 ; : : : ; K , the sojourn time in state k
is exponentially distributed with rate 1

� k
and, after state k, the next visited state is state 0 with

probability pk and state k + 1 with probability 1 � pk . We adopt the convention that state K
always leads to state 0, meaning thatpK = 1. The expected value of this random variable is

E(X) =
KX

k=1

(1 � p1) � � � (1 � pk � 1)� k ; (B.1)

where the product is taken equal to one ifk = 1.
The Coxian distribution is commonly used to describe the distribution of the customer service

requirements in a queueing system. The advantage is that, although Coxian distributions can be
seen as mixtures of exponential distributions, they are also known to form a dense subset of the
set of non-negative random variables|see Section 3.4 of [89].

B.2 Markov chains and processes

We now consider sequences of random variables with a discrete state space. In the manuscript,
such a sequence typically represents the evolution of the state of a queueing system over time. The
sequence is called aMarkov chain if time is discrete and a Markov processif time is continuous.
In both cases, the Markov property imposes that the future system state is independent of its
past state conditionally on its present state. For a more complete reminder on Markov chains and
processes, see for instance Chapters 3 to 5 of [19], Chapter 1 of [57], and Section 1.1 of [89].

Markov chains. Consider a sequence of random variables (X n)n 2 N that take values in a discrete
state spaceX . This sequence (X n)n 2 N is called a Markov chain if, for each n 2 N and each
x0; : : : ; xn ; xn +1 2 X , we have

P(X n +1 = xn +1 j X 0 = x0; : : : ; X n = xn) = P(X n +1 = xn +1 j X n = xn); (B.2)

wheneverP(X 0 = x0; : : : ; X n = xn) > 0. In other words, the future X n +1 is conditionally inde-
pendent of the pastX 0,. . . ,X n � 1 given the presentX n . In our applications, a Markov chain could
represent the sequence of queues|or classes|visited by a customer in a queueing system.

We focus ontime-homogeneousMarkov chains, in which the probability P(X n +1 = y j X n = x)
is independent ofn. For each x; y 2 X , we de�ne the transition probability from state x to state y
by

px;y = P(X n +1 = y j X n = x); 8n 2 N:

Equivalently, we can consider the transition diagram of the Markov chain. This is the directed
graph on X in which there is an edge from nodex to node y, with weight px;y , if and only if
px;y > 0. A realization of the Markov chain forms an in�nite path in its transition diagram. The
product of the edge weights of a path in this diagram gives the probability that the Markov chain
follows that path, assuming that it starts from the path origin. The Markov chain is said to be

180

Section B.2. Markov chains and processes

irreducible it its transition diagram is strongly connected. It is said to be aperiodic if the greatest
common divisor of the lengths of the cycles in the transition diagram is equal to one.

The Markov chain is said to be stationary if its distribution is the same at all times, meaning
that P(X n = x) = P(X 0 = x) for each n 2 N� and eachx 2 X . In this case, we will often write
� (x) = P(X n = x) for each x 2 X , and call � the stationary distribution of the Markov chain.
This stationary distribution satis�es the following balance equations:

� (x) =
X

y2X

� (y)py;x ; 8x 2 X : (B.3)

These equations state that, when the Markov chain is stationary, the probability ow out of
each state is equal to the probability ow into that state. A stationary measure of the Markov
chain is a positive measure onX that satis�es these balance equations (B.3) but may not sum
to one|nor even have a �nite sum. One can show that such a stationary measure always exists
when the Markov chain is irreducible. It is unique up to a multiplicative constant if the Markov
chain is also aperiodic. In the remainder of this appendix, we will assume these two conditions
to be satis�ed. Then the Markov chain has a|unique|stationary distribution if and only if the
stationary measures have a �nite sum, in which case the stationary distribution is obtained by
normalizing any of them. Under this condition, the Markov chain is said to be ergodic because,
for eachx 2 X , the stationary probability � (x) is also the proportion of time spent by the Markov
chain in state x, that is,

1
N

N � 1X

n =0

1f X n = x g �����!
N ! + 1

� (x) almost surely:

More generally, for each non-negative functionf de�ned on X , we have

1
N

N � 1X

n =0

f (X n) �����!
N ! + 1

X

x 2X

� (x)f (x) almost surely:

Galton-Watson tree. As an example, a Galton-Watson tree is a Markov chain (X n)n 2 N de�ned
on N, such that X 0 = 1 with probability one, and

X n +1 =
X nX

i =1

A n;i ; 8n 2 N; (B.4)

where (A n;i)n 2 N;i 2 N is a sequence of i.i.d. random variables. The sequence (X n)n 2 N can be inter-
preted as the number of nodes at generationn in a rooted tree|hence the name|in which the
number of children of each node is given by the random variables (A n;i)n 2 N;i 2 N. This Markov
chain is only considered in Appendix C.

Markov process. A Markov process can be seen as a time-continuous Markov chain, in which
the time spent in each state has an exponential distribution instead of being constant. We just
give an informal de�nition, which is enough to address the content of the manuscript.

Consider a sequence (X t)t 2 R+ of random variables that take values in a discrete state spaceX .
This sequence is called a Markov process if, for eachn 2 N� , each t1; : : : ; tn ; tn +1 2 R+ with
t1 � : : : � tn � tn +1 , and eachx1; : : : ; xn ; xn +1 2 X , we have

P(X t n +1 = xn +1 j X t 1 = x1; : : : ; X t n = xn) = P(X t n +1 = xn +1 j X t n = xn); (B.5)

wheneverP(X t 1 = x1; : : : ; X t n = xn) > 0. Similarly to Markov chains, this condition means that
the future X t n +1 is conditionally independent of the past X t 1 , . . . , X t n � 1 given the presentX t n .

We focus ontime-homogeneousMarkov processes, in which the quantityP(X t n +1 = y j X t n = x)
only depends on the di�erencetn +1 � tn but not on the value of tn . Given mild assumptions on the
form of the process|in particular, we assume that the process does not make an in�nite number
of jumps during a �nite time interval|we can de�ne, for each x; y 2 X , the transition rate from
state x to state y as follows:

� x;y = lim
h! 0+

1
h

P(X t + h = y j X t = x); 8x; y 2 X ; 8t 2 R+ :

181

Chapter B. Useful probability notions

The transition diagram of the Markov process is the directed graph onX in which there is an edge
from node x to node y, with weight � x;y , if and only if � x;y > 0. A realization of the Markov
process forms an in�nite path on its transition diagram. For each x 2 X , the sojourn time in
state x is exponentially distributed with rate

P
y2X � x;y and the probability of jumping to state y

from state x is � x;y =
P

y02X � x;y 0, for each y 2 X . The Markov process is said to beirreducible if
its transition diagram is strongly connected.

The Markov process is said to bestationary if its distribution is the same at all times, meaning
that P(X t = x) = P(X 0 = x) for each t 2 R+ and eachx 2 X . In this case, we will often write
� (x) = P(X t = x) for each x 2 X , and call � the stationary distribution of the Markov process.
This stationary distribution satis�es the following balance equations:

� (x)
X

y2X

� x;y =
X

y2X

� (y)� y;x ; 8x 2 X : (B.6)

The intuition behind this equation is the same as for Markov chains. A stationary measure of
the Markov process is a positive measure onX that satis�es these balance equations (B.6) but
may not sum to one. One can show that such a stationary measure exists and is unique up to a
multiplicative constant whenever the Markov process is irreducible. In the remainder, we assume
this condition to be satis�ed. Then a stationary distribution exists if and only if the stationary
measures have a �nite sum, in which case the stationary distribution is unique, and can be obtained
by normalizing any stationary measure. Under this condition, the Markov process is said to be
ergodic because, for eachx 2 X , the stationary probability � (x) is also the proportion of time
spent by the Markov chain in state x, that is,

lim
T ! + 1

1
T

Z T

0
1f X t = x gdt �����!

T ! + 1
� (x) almost surely.

More generally, the ergodic theoremguarantees that, for each functionf from X to R+ , we have

1
T

Z T

0
f (X t)dt �����!

T ! + 1

X

x 2X

� (x)f (x) almost surely.

Therefore, the distribution � is representative of the long-term behavior of the Markov process
(X t)t 2 R+ , even when this process is not stationary.

Function of a Markov process. We frequently manipulate stochastic processes that do not have
the Markov property but are functions of Markov processes. In this paragraph, we briey explain
what we mean when we talk about their stationary measure or distribution.

Consider an irreducible Markov process (X t)t 2 R+ and a function f de�ned on its state spaceX .
Let N denote the codomain of this function f and, for eacht 2 R+ , N t = f (X t). The stochastic
process (N t)t 2 R+ does not have the Markov property in general, even if the sequence (X t)t 2 R+

does. Let � denote a stationary measure the Markov process (X t)t 2 R+ , de�ned by the balance
equations (B.6). With a slight abuse of notations, we let

� (n) =
X

x 2X :
f (x)= n

� (x); 8n 2 N : (B.7)

The measure � de�ned on N by (B.7) is called a stationary measure of the process (N t)t 2 R+ .
Similarly, if (X t)t 2 R+ is ergodic and� denotes its stationary distribution, the distribution � de�ned
by (B.7) on N is called the stationary distribution of the process (N t)t 2 R+ . The intuition is that,
when the Markov process (X t)t 2 R+ is stationary, the distribution of the stochastic process (N t)t 2 R+

is given by its stationary distribution. Furthermore, the ergodic theorem guarantees that, for each
function g from N to R+ , we have

1
T

Z T

0
g(N t)dt �����!

T ! + 1

X

n 2N

� (n)g(n) almost surely,

so that the stationary distribution is again representative of the long-term behavior of the process.

182

Section B.2. Markov chains and processes

Poisson process. A ow of customers arriving at a queueing system is said to form a Poisson
process with rate � > 0 if the inter-arrival times are independent and exponentially distributed
random variables with rate � . In this way, if (T n)n 2 N denotes the sequence of arrival times, the
conditional distribution of T n +1 � T n given that T n = t is exponential with rate � , for eachn 2 N
and eacht 2 R+ . The sequence (X t)t 2 R+ that counts the number of customers arrived up to time t
is a Markov process onN, in which the only possible transitions are from statex to state x + 1,
with rate � , for each x 2 N. One can show that, for eacht; h > 0, the number of customers that
enter the system between timest and t + h has a Poisson distribution with rate �h .

183

184

C Excursion into analytic
combinatorics and network calculus

Stochastic network calculus is a tool for computing error bounds on the performance of queueing
systems. However, deriving accurate bounds for networks consisting of several queues or subject to
non-independent tra�c inputs is challenging. In this chapter, we investigate the relevance of the
tools from analytic combinatorics, especially thekernel method, to tackle this problem. Applying
the kernel method allows us to compute the generating functions of the queue state distributions in
a stationary network. As a consequence, error bounds with an arbitrary precision can be computed.
This preliminary work, presented in [P04, P13], focuses on simple examples that are representative
of the di�culties that the kernel method allows us to overcome. My main contribution|and
motivation|consisted of understanding a posteriori the form of the generating function obtained
via the kernel method.

C.1 Introduction

The development of new wireless communication technologies|5G|sheds a new light on queueing
theory, as the strong requirements on bu�er occupancy, latencies, and reliability bring the need for
accurate dimensioning rules. In many scenarios, data packets arrive by batches and are processed
by a server that can deal with a �xed number of packets per time slot [88]. TheG=D=1 queue is
thus a natural model. A powerful tool to analyze such queues is Stochastic Network Calculus [39].
The aim of Stochastic Network Calculus is to derive precise error bounds on the performance of
systems, combining deterministic network calculus and probabilistic tools.

Among the techniques developed so far, the Tailbounded approach [52] introduces a violation
probability in the parameters of the deterministic setting. It makes possible the computation of
error bounds in networks, as in [28], but these bounds are usually loose. A second technique,
introduced in [26], relies on moment generating functions. It can be very accurate for one queue.
For example, in [29, 84], the authors obtain tight upper and lower bounds for the single-server
case under various service policies and arrival processes, using martingales and Doob's inequality.
However, for more general topologies, the method becomes non applicable due to interdependen-
cies between the processes. Recently, some|looser|bounds have been computed using H•older's
inequality [8, 80]. The use of generating functions to investigate random processes is the core prin-
ciple of analytic combinatorics, a sub�eld of combinatorics|see [41]. This community developed
mathematical tools to study random walks [40], such as thekernel method[6, 25], described later.
The link between random walks and queueing theory is known and results on the former were
transferred to the latter [38].

In this chapter, we show how generating functions and the kernel method can be applied to
derive precise results on queueing systems. In Section C.2, we �rst recall the main de�nitions and
notations of generating functions. The main contribution of the paper is given in Section C.3, where
we show in detail how to apply the kernel method to study theGI=D=1 queue. Although the result
itself is well-known |we retrieve the Pollaczek-Khinchine formula|the interest of the analysis is
that it contains all the pieces for further extensions, such as several classes of customers, several
queues, or non i.i.d. arrivals. Some of these extensions are developed in Section C.4: random service,
multi-class and multi-queue. Finally, we confront our results with simulations in Section C.5.

185

Chapter C. Excursion into analytic combinatorics and network calculus

C.2 Reminder on generating functions

In this section, we recall some basics of generating functions. Let (an)n � 0 be a sequence of non-
negative numbers. Its generating function is the formal series

A(u) =
X

n � 0

an un :

The n-th monomial an will also be denoted by [un]A(u). In combinatorics, an is often the number
of objects of sizen within a given family. In probability, an is usually the probability that a random
variable A , with values in N, is equal to n, that is

A(u) =
X

n � 0

P(A = n) un :

In this case, we write A � A. The convergence radius of the functionA is at least 1 and we
have A(1) = 1 and A0(1) = E[A]. We assume that limu! � A(u) = + 1 to simplify the asymptotic
analyses.

Two elementary operations can be performed on generating functions. Suppose thatA and B
are the generating functions of two random variablesA and B , respectively. If the eventsf A = ng
and f B = ng are disjoint for each n 2 N, then

A(u) + B (u) =
X

n � 0

P(f A = ng [f B = ng)un :

Alternatively, if the random variables A and B are independent, thenA(u)B (u) is the generating
function of the random variable A + B .

Consider the example of a Galton-Watson tree|see Appendix B.2 for a de�nition|where the
number of children of each node is i.i.d. with distribution given by the generating function A. The
number of nodes of the tree is

X = 1 +
AX

k=1

X k ;

where A � A is the number of children of the root and X k is the number of nodes in the subtree
rooted at the k-th child of the root. Conditionally on A , X k has the same distribution asX for
eachk = 1 ; : : : ; A , hence the same generating function, denoted byTA . Since the random variables
X 1; : : : ; X A are also conditionally independent givenA , we obtain

TA (u) = u A(TA (u)) : (C.1)

This equation characterizes the generating
function TA . Indeed, being the generating
function of a probability distribution, TA (u)
must be a solution of (C.1) that is analytic at
0, also known as asmall root of the equation.
TA (u) is then the abscissa coordinate of the
�rst intersection of A(x) with the line x=u.
Figure C.1 shows howTA (u) is computed.
There is a maximal value � TA > 1 of u for
which a root exists. Finally, by deriving both
sides of (C.1) at u = 1, we obtain E[X] =
1 + E[X]E[A], so that E[X] = (1 � E[A]) � 1

if E[A] < 1.
Figure C.1: Equation TA (u) = u A(TA (u)) .

Adopting a combinatorics viewpoint allows us to consider generating functions that do not
represent a probability distribution. For example, TA

k is the generating function of the distribution
of the overall size ofk independent Galton-Watson trees, and 1

1� TA
=

P
k � 0 TA

k is the sum of

186

Section C.3. The single-server queue

these generation functions for all possiblek. If (X j) j � 0 denotes the sequence of the sizes of i.i.d.
Galton-Watson trees in which the number of children per node has the generating functionA, we
obtain

[un]
1

1 � TA (u)
= P(9k; X 1 + � � � + X k = n):

Studying the behavior of this series will prove useful to derive the asymptotic probability that an
arbitrary number of trees has a given total size. AsTA (u) < 1 for all 0 � u < 1 and TA (1) = 1,
we can apply the result of Theorem V.1 in [41, p. 294]:

[un]
1

1 � TA (u)
�

n !1

1
T0

A (1)
= 1 � E[A]: (C.2)

All these de�nitions can be extended to the multivariate case.

C.3 The single-server queue

In this section, we present the simple example of a single-server queue with one class of customers,
as depicted in Figure C.2. The results presented here are not new|we eventually rediscover the
Pollaczek-Khinchine formula|and apply tools developed by [6], but our aim is to present the
method that will be generalized later.

C.3.1 Queueing model

The queue is initially empty. At each time slot t � 1, one customer, if any, is served and thenA t

customers arrive. The sequence (A t)t � 1 is i.i.d. with generating function A and mean� < 1. We
let X t denote the number of customers in the queue at the end of time slott. The system is driven
by the equations

X 0 = 0 and X t +1 = (X t � 1)+ + A t +1 ; 8t � 0; (C.3)

where (�)+ = max(�; 0).

Figure C.2: A single-server queue crossed by a single class of customers.

C.3.2 Generating function

We de�ne the generating function of the queue state as

�(u; z) =
X

n � 0

X

t � 0

P(X t = n)un zt : (C.4)

For each t 2 N, taking the coe�cient of zt yields

�
zt � �(u; z) =

X

n � 0

P(X t = n)un ;

which is the generating function of X t . We will show that

Lemma C.1. The generating function of the single-server queue satis�es the equation

�(u; z) = 1 + zA(u)
�
(�(u; z) � �(0 ; z))u� 1 + �(0 ; z)

�
: (C.5)

187

Chapter C. Excursion into analytic combinatorics and network calculus

Proof. We only give a sketch of proof. Equation (C.3) implies that X 0 = 0 and, for each t � 1,
with the notation an = P(A = n),

P(X t = n � 1) = an � 1(P(X t � 1 = 0) + P(X t � 1 = 1)) +
nX

m =2

an � m P(X t � 1 = m):

Multiplying this relation by un zt , summing over n and t, and dividing both sides by u leads
to (C.5). This formula can also be derived using theSymbolic Method[41].

Equation (C.5) can be rewritten as

�(u; z)
�
1 � zA(u)u� 1�

= 1 � �(0 ; z)zA(u)
�
u� 1 � 1

�
: (C.6)

Although (C.6) characterizes �(u; z), it is not straightforward to derive an explicit formula for
�(u; z) from it, as we would need an expression for �(0; z). This expression will be obtained with
the kernel method.

C.3.3 Kernel method

When the left-hand side of (C.6) is zero, so is the right-hand side. The kernel method [6, 25]
consists of taking u = U(z) such that the second factor of the left-hand side cancels. Here,
U(z) is implicitly de�ned by the equality U(z) = zA(U(z)), and we recognize from (C.1) the size
distribution of a Galton-Watson tree in which the distribution of the number of children per node
has the generating functionA. Therefore, we haveU = TA .

Injecting TA (z) in (C.6) cancels its left-hand side, and its right-hand side can be rewritten as

�(0 ; z) =
1

1 � TA (z)
:

Going back to (C.6), we obtain

�(u; z) =
1 + 1

1� TA (z) zA(u)
�
1 � u� 1

�

1 � zA(u)u� 1 : (C.7)

The kernel method has the following interpretation in terms of the queue sample paths. The
generating function �(0 ; z) =

P
t � 0 P(X t = 0) zt is associated with the probability of having an

empty queue. Consider the duration between two consecutive instants when the queue is empty,
called aninter-empty period. It was showed in [59] that we can build a Galton-Watson tree in which
the distribution of the number of children per node has generating functionA from an inter-empty
period: each node represents a time slot; its children are the time slots when the customers arrived
during this time slot are served. Having an empty queue at timet means that the realization
between times 0 andt is made of an arbitrary number of inter-empty periods. This corresponds
exactly to 1

1� TA (z) , where TA is as de�ned in (C.1).

C.3.4 Asymptotic performance

In this paragraph, our aim is to bound the probability that X t exceeds some valueR in a stationary
queue. Note that, by monotony, this will also be an upper bound for the initially empty queue. We
proceed in two steps. We �rst compute �, the generating function of the stationary distribution
of (X t), and then we derive the asymptotic behavior of �.

Computating � . We know that, under the stability condition A0(1) = � < 1, the distribution
of X t converges to a stationary distribution � as t tends to + 1 . The �rst step of our analysis
consists of �nding the generating function � of this distribution � . Recall that, for each t 2 N,
the generating function of X t is � t (u) = [zt]�(u; z): By [41, p. 624], it su�ces to study the limit
of � t (u) as t tends to + 1 , when u is �xed. The obtained limit is exactly �(u).

Let us �x u = u0. We see in (C.7) that �(u0; z) has two potential poles, 1 andu0=A(u0). It
can be checked thatTA (u 0

A (u 0)) = u0, so that u0=A(u0) is actually not a pole. In order to derive the

188

Section C.4. Extensions

asymptotic behavior of � t (u0) as t tends to + 1 , we �rst compute a simpler equivalent of �(u0; z)
in the neighborhood of its polez = 1. After some rewriting, we obtain

�(u0; z) =
u0

u0 � zA(u0)
+

1
1 � TA (z)

zA(u0)(u0 � 1)
u0 � zA(u0)

:

As a consequence,

�(u0; z) �
z! 1

u0

u0 � A(u0)
+

1
1 � TA (z)

A(u0)(u0 � 1)
u0 � A(u0)

;

and from (C.2), the terms are equivalent to

[zt]�(u0; z) �
t !1

(1 � �)
A(u0)(u0 � 1)

u0 � A(u0)
:

Therefore, the generating function of� is equal to the one given by the Pollaczek-Khinchine formula

�(u) = (1 � �)
A(u)(u � 1)

u � A(u)
:

Error bound. The second solution� of the equation u = A(u) is the convergence radius of the
function �|with � = + 1 in the degenerate case whereA(u) is linear. The error bound, that is,
the probability that the bu�er occupancy is at least R, is

P
n � R � (n). Its generating function is

E(u) =
X

R � 0

� X

n � R

� (n)
�

uR =
1 � u�(u)

1 � u
: (C.8)

The asymptotic analysis of this generating function yields

Theorem C.2. With X � � , we have

P(X � R) �
R !1

(1 � �)
�

A0(�) � 1
� � R . (C.9)

C.4 Extensions

The analysis in the previous section shows that deriving an equation satis�ed by the generating
function from the system dynamics is the easy step; solving this equation is harder. We now
consider a few simple extensions of the model ofxC.3.1, where the kernel method allows us to
perform the analysis and derive explicit formulas for the performance metrics.

C.4.1 Random service

We consider a �rst extension of the model ofxC.3.1 where the service is random. Speci�cally, at
each time slot t � 1, the server processes one customer, if any, with some probabilityp > � , and
zero customer otherwise. The system is driven by the equations

X 0 = 0 and X t +1 = (X t � St)+ + A t +1 ; 8t � 0;

where (St)t 2 N is a sequence of independent, Bernoulli distributed random variables with parameter
p. The corresponding generating function isS(u) = 1 � p + pu. The generating function � of the
system state is again de�ned by (C.4). The equation satis�ed by � is a rewriting of (C.6), where
u� 1 is replaced byS(u� 1):

�(u; z)[1 � zA(u)S(u� 1)] = 1 � �(0 ; z)zA(u)[S(u� 1) � 1]:

189

	Contents

