T. Sakai and J. J. Jonas, Dynamic recrystallization: Mechanical and microstructural considerations, Acta Metallurgica, vol.32, issue.2, pp.189-209, 1984.

M. Luton and C. Sellars, Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation, Acta Metallurgica, vol.17, issue.8, pp.90049-90051, 1969.

C. M. Sellars, Recrystallization of Metals during Hot Deformation, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.288, pp.147-158, 1350.

T. Sakai, Dynamic recrystallization microstructures under hot working conditions, Journal of Materials Processing Technology, vol.53, issue.1-2, pp.349-361, 1995.

F. J. Humphreys and M. Hatherly, Recrystallization and related annealing phenomena, 2004.

A. Momeni, K. Dehghani, and G. R. Ebrahimi, Modeling the initiation of dynamic recrystallization using a dynamic recovery model, Journal of Alloys and Compounds, vol.509, issue.39, pp.9387-9393, 2011.

D. Li, Q. Guo, S. Guo, H. Peng, and Z. Wu, The microstructure evolution and nucleation mechanisms of dynamic recrystallization in hot-deformed Inconel 625 superalloy, Materials and Design, vol.32, issue.2, pp.696-705, 2011.

H. Jiang, L. Yang, J. Dong, M. Zhang, and Z. Yao, The recrystallization model and microstructure prediction of alloy 690 during hot deformation, Materials and Design, vol.104, pp.162-173, 2016.

Z. Wan, Y. Sun, L. Hu, and H. Yu, Experimental study and numerical simulation of dynamic recrystallization behavior of TiAl-based alloy, Materials & Design, vol.122, pp.11-20, 2017.

K. Huang and R. Logé, A review on dynamic recrystallization phenomena in metallic materials, Materials & Design, vol.111, pp.548-574, 2016.

X. G. Fan, H. Yang, P. F. Gao, R. Zuo, and P. H. Lei, The role of dynamic and post dynamic recrystallization on microstructure refinement in primary working of a coarse grained two-phase titanium alloy, Journal of Materials Processing Technology, vol.234, pp.290-299, 2016.

M. H. Maghsoudi, A. Zarei-hanzaki, P. Changizian, and A. Marandi, Metadynamic recrystallization behavior of AZ61 magnesium alloy, Materials and Design, vol.57, pp.487-493, 2014.

J. A. Spitznagel and R. Stickler, Correlation between precipitation reactions and bulk density changes in type 18-12 austenitic stainless steels, Metallurgical Transactions, vol.5, issue.6, pp.1363-1371, 1974.

K. C. Mills, Recommended values of thermophysical properties for selected commercial alloys, 2002.

S. Towfighi, D. Romilly, and J. Olson, Elevated temperature material characteristics of AISI 304L stainless steel, Materials at High Temperatures, vol.30, pp.151-155, 2013.

F. C. Campbell, Elements of metallurgy and engineering alloys, ASM International, 2008.

Z. C. Smith, Introduction to Grains, Phases, and Interfaces-an Interpretation of Microstructure, Trans. AIME, vol.175, pp.15-51, 1948.

W. T. Read and W. Shockley, Dislocation Models of Crystal Grain Boundaries, Physical Review, vol.78, issue.3, pp.275-289, 1950.

F. J. Humphreys and M. Hatherly, Recrystallization and related annealing phenomena, 1996.

D. Wolf and . Read, Shockley model for high-angle grain boundaries, Scripta Metallurgica, vol.23, issue.10, pp.1713-1718, 1989.

A. Mallick and S. Vendantam, Phase field study of the effect of grain boundary energy anisotropy on grain growth, Computational Materials Science, vol.46, issue.1, pp.21-25, 2009.

D. L. Olmsted, E. A. Holm, and S. M. Foiles, Survey of computed grain boundary properties in face-centered cubic metalsII: Grain boundary mobility, Acta Materialia, vol.57, issue.13, pp.3704-3713, 2009.

V. V. Bulatov, B. W. Reed, and M. Kumar, Grain boundary energy function for fcc metals, Acta Materialia, vol.65, pp.161-175, 2013.

J. Fausty, N. Bozzolo, D. Muñoz, and M. Bernacki, A novel Level-Set Finite Element formulation for grain growth with heterogeneous grain boundary energies
URL : https://hal.archives-ouvertes.fr/hal-01890856

C. Herring, Surface Tension as a Motivation for Sintering, in: Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids, pp.33-69, 1999.

P. R. Rios, F. Siciliano, H. R. Sandim, R. L. Plaut, and A. F. Padilha, Nucleation and growth during recrystallization, Materials Research, vol.8, issue.3, pp.225-238, 2005.

C. S. Smith, The effect of crystal arrangements on 'secondary recrystallization' in metals, Journal of the Institute of Metals, vol.74, p.758, 1948.

H. Hu, Direct observations on the annealing of Si-Fe crystals in the electron microscope, Transactions of the Metallurgical Society of AIME, vol.224, issue.1, pp.75-84, 1962.

H. Hu, Interscience: Electron Microscopy and Strength of Crystals, pp.564-573, 1963.

A. R. Jones, B. Ralph, and N. Hansen, Subgrain Coalescence and the Nucleation of Recrystallization at Grain Boundaries in Aluminium, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.368, pp.345-357, 1734.

R. Sandström, B. Lehtinen, E. Hedman, I. Groza, and S. Karlsson, Subgrain growth in Al and Al-1% Mn during annealing, Journal of Materials Science, vol.13, issue.6, pp.1229-1242, 1978.

P. A. Beck and P. R. Sperry, Strain Induced Grain Boundary Migration in High Purity Aluminum, Journal of Applied Physics, vol.21, issue.2, pp.150-152, 1950.

K. Li and P. Yang, The Formation of Strong {100} Texture by Dynamic Strain-Induced Boundary Migration in Hot Compressed Ti-5Al-5Mo-5V-1Cr-1Fe Alloy, Metals, vol.7, issue.10, p.412, 2017.

D. Li, D. Zhang, S. Liu, Z. Shan, X. Zhang et al.,

. Han, Dynamic recrystallization behavior of 7085 aluminum alloy during hot deformation, Trans. Nonferrous Met. Soc. China, vol.26, issue.16, pp.64254-64255, 2016.

K. Kashihara, Y. Takeuchi, and T. Shibayanagi, Characteristics of Strain-Induced Boundary Migration as Evaluated by the Crystal Rotation Axis Method in (001) [100] and (112, Aluminum Bicrystal Deformed by Plane-Strain Com

J. E. Bailey and P. B. Hirsch, The Recrystallization Process in Some Polycrystalline Metals, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.267, 1328.

S. Bellier and R. Doherty, The structure of deformed aluminium and its recrystallization investigations with transmission Kossel diffraction, Acta Metallurgica, vol.25, issue.5, pp.521-538, 1977.

P. A. Beck, The Formation of Recrystallization Nuclei, Journal of Applied Physics, vol.20, issue.6, pp.633-634, 1949.

R. W. Cahn, A New Theory of Recrystallization Nuclei, Proceedings of the Physical Society. Section A, vol.63, issue.4, pp.323-336, 1950.

A. Cottrell, Progress in Metal Physics, vol.4, pp.251-255, 1953.

E. Brünger, X. Wang, and G. Gottstein, Nucleation mechanisms of dynamic recrystallization in austenitic steel alloy 800H, Scripta Materialia, vol.38, issue.12, pp.1843-1849, 1998.

C. Zener and J. H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, Journal of Applied Physics, vol.15, issue.1, pp.22-32, 1944.

W. Roberts and B. Ahlbom, A nucleation criterion for dynamic recrystallization during hot working, Acta Metall, vol.26, pp.801-813, 1978.

A. Kolmogorov, On the Statistical Theory of Crystallization of Metals, Izv. Akad. Nauk SSSR, Ser. Mat, vol.3, pp.355-359, 1937.

M. Avrami, Kinetics of Phase Change. I General Theory, The Journal of Chemical Physics, vol.7, issue.12, pp.1103-1112, 1939.

W. Johnson and R. Mehl, Reaction Kinetics in Processes of Nucleation and Growth, vol.135, pp.416-442, 1939.

M. Hillert, On the theory of normal and abnormal grain growth, Acta Metallurgica, vol.13, issue.3, pp.227-238, 1965.

F. Montheillet, O. Lurdos, and G. Damamme, A grain scale approach for modeling steady-state discontinuous dynamic recrystallization, Acta Materialia, vol.57, issue.5, pp.1602-1612, 2009.
URL : https://hal.archives-ouvertes.fr/emse-00463547

P. Bernard, S. Bag, K. Huang, and R. Logé, A two-site mean field model of discontinuous dynamic recrystallization, Materials Science and Engineering: A, vol.528, issue.24, pp.7357-7367, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00612438

O. Beltran, K. Huang, and R. Logé, A mean field model of dynamic and post-dynamic recrystallization predicting kinetics, grain size and flow stress, Computational Materials Science, vol.102, pp.293-303, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01137230

C. E. Krill and L. Q. Chen, Computer simulation of 3-D grain growth using a phase-field model, Acta Materialia, vol.50, issue.12, pp.84-92, 2002.

M. Bernacki, Y. Chastel, T. Coupez, and R. Logé, Level set framework for the numerical modelling of primary recrystallization in polycrystalline materials, Scripta Materialia, vol.58, issue.12, pp.1129-1132, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00509731

Y. Mellbin, H. Hallberg, and M. Ristinmaa, A combined crystal plasticity and graphbased vertex model of dynamic recrystallization at large deformations, Modelling and Simulation in, Materials Science and Engineering, vol.23, issue.4, p.45011, 2015.

A. D. Rollett and D. Raabe, A hybrid model for mesoscopic simulation of recrystallization, Computational Materials Science, vol.21, issue.1, pp.69-78, 2001.

S. Haghighat and A. Karimitaherib, An analytical and experimental investigation on the normal grain growth in metals using the Monte Carlo method, Materials & Design, vol.28, issue.9, pp.2533-2539, 2007.

D. Raabe, Introduction of a scalable three-dimensional cellular automaton with a probabilistic switching rule for the discrete mesoscale simulation of recrystallization phenomena, Philosophical Magazine A, vol.79, issue.10, pp.2339-2358, 1999.

Y. Lin, Y. Liu, M. Chen, M. Huang, X. Ma et al., Study of static recrystallization behavior in hot deformed Ni-based superalloy using cellular automaton model, Materials & Design, vol.99, pp.107-114, 2016.

S. Kim and Y. Yoo, Dynamic recrystallization behavior of AISI 304 stainless steel, Materials Science and Engineering, vol.311, pp.108-113, 2001.

S. Venugopal, S. L. Mannan, and P. Rodriguez, Optimum design of a hot extrusion process for AISI type 304L stainless steel using a model for the evolution of microstructure, Modelling and Simulation in Materials Science and Engineering, vol.10, issue.3, pp.253-265, 2002.

A. Dehghan-manshadi, M. Barnett, and P. Hodgson, Hot Deformation and Recrystallization of Austenitic Stainless Steel: Part I. Dynamic Recrystallization, Metallurgical and, Materials Transactions A, vol.39, issue.6, pp.1359-1370, 2008.

S. Cho and Y. Yoo, Metadynamic recrystallization of austenitic stainless steel, Journal of Materials Science, vol.36, issue.17, pp.4279-4284, 2001.

P. Uranga, A. Fernandez, B. Lopez, and J. Rodriguez-ibabe, Transition between static and metadynamic recrystallization kinetics in coarse Nb microalloyed austenite, Materials Science and Engineering: A, vol.345, issue.1-2, pp.510-515, 2003.

A. Dehghan-manshadi, M. Barnett, and P. Hodgson, Recrystallization in AISI 304 austenitic stainless steel during and after hot deformation, Materials Science and Engineering: A, vol.485, issue.1-2, pp.664-672, 2008.

J. Burke and D. Turnbull, Recrystallization and grain growth, Prog. Met. Phys, vol.3, p.220, 1952.

R. Kamachali and I. Steinbach, 3-D phase-field simulation of grain growth: Topological analysis versus mean-field approximations, Acta Materialia, vol.60, issue.6-7, pp.2719-2728, 2012.

A. Cruz-fabiano, R. Logé, and M. Bernacki, Assessment of simplified 2D grain growth models from numerical experiments based on a level set framework, Computational Materials Science, vol.92, pp.305-312, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01023803

K. Lücke, R. Brandt, and G. Abbruzzese, Normal and Abnormal Grain Growth as Transient Phenomena, Tech. rep, 1998.

G. Abbruzzese, I. Heckelmann, and K. Lücke, Statistical theory of two-dimensional grain growthI. The topological foundation, Acta Metallurgica et Materialia, vol.40, issue.3, pp.519-532, 1992.

K. Lücke, I. Heckelmann, and G. Abbruzzese, Statistical theory of two-dimensional grain growthII. Kinetics of grain growth, Acta Metallurgica et Materialia, vol.40, issue.3, pp.533-542, 1992.

D. G. Cram, H. S. Zurob, Y. J. Brechet, and C. R. Hutchinson, Modelling discontinuous dynamic recrystallization using a physically based model for nucleation, Acta Materialia, vol.57, issue.17, pp.5218-5228, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00805034

G. Smagghe, modélisation de la recristallisation lors du forgeageà chaud de l'acier 304L-Une approche semi-topologique pour les modèles en champs moyens, 2017.

W. Chao and L. I. Guoquan, Reanalysis of the 3D quasi-stationary grain size distribution based on Hillert grain growth rate equation, Ser. E Technological Sciences, vol.47, issue.1, pp.112-120, 2004.

P. R. Rios, T. G. Dalpian, V. S. Brandao, J. A. Castro, and A. C. Oliveira, Comparison of analytical grain size distributions with three-dimensional computer simulations and experimental data, Scripta Materialia, vol.54, issue.9, pp.1633-1637, 2006.

R. Kamachali, A. Abbondandolo, K. F. Siburg, and I. Steinbach, Geometrical grounds of mean field solutions for normal grain growth, Acta Materialia, vol.90, pp.252-258, 2015.

A. Laasraoui and J. J. Jonas, Prediction of Steel Flow Stresses at High Temperatures and Strain Rates

A. Yoshie, H. Morikawa, Y. Onoe, and K. Itoh, Formulation of static recrystallization of austenite in hot rolling process of steel plate, Transactions of the Iron and Steel Institute of Japan, vol.27, issue.6, pp.425-431, 1987.

A. L. Cruz-fabiano, Modelling of crystal plasticity and grain boundary motion of 304L steel at the mesoscopic scale, 2013.

O. Bouaziz and P. Buessler, Iso-work Increment Assumption for Heterogeneous Material Behaviour Modelling, Advanced Engineering Materials, vol.6, issue.12, pp.79-83, 2004.

U. Kocks and H. Mecking, Physics and phenomenology of strain hardening: the FCC case, Progress in Materials Science, vol.48, issue.3, pp.3-8, 2003.

D. Turnbull, Theory of Grain Boundary Migration Rates, Trans Am Inst Min Metall Eng, p.661, 1951.

S. V. Raj and G. M. Pharr, A Compilation and Analysis of Data for the Stress Dependence of the Subgrain Size, Materials Science and Engineering, vol.81, pp.217-237, 1986.

D. Piot, G. Smagghe, J. J. Jonas, C. Desrayaud, F. Montheillet et al., A semitopological mean-field model of discontinuous dynamic recrystallization Toward a correct and rapid prediction of grain-size distribution, Journal of Materials Science, vol.53, pp.8554-8566, 2018.
URL : https://hal.archives-ouvertes.fr/emse-02008506

D. Piot, G. Damamme, and F. Montheillet, Mesoscopic Modeling of Discontinuous Dynamic Recrystallization: Steady-State Grain Size Distributions, Materials Science Forum, vol.706, pp.234-239, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00858912

G. Smagghe, D. Piot, F. Montheillet, G. Perrin, A. Montouchet et al., The Issue of Grain Size Distribution Using Mean Field Models for Dynamic and Post-Dynamic Recrystallization, Materials Science Forum, vol.879, pp.1794-1799, 2016.

R. B. Potts and C. Domb, Some generalized order-disorder transformations, Mathematical Proceedings of the Cambridge Philosophical Society, vol.48, issue.01, p.106, 1952.

M. P. Anderson, D. J. Srolovitz, G. S. Crest, and P. S. Sahni, Computer simulation of grain growth-I. kinetics, Acta Metallurgica, vol.32, issue.5, pp.783-791, 1984.

D. Srolovitz, M. Anderson, P. Sahni, and G. Grest, Computer simulation of grain growth-II. Grain size distribution, topology, and local dynamics, Acta Metallurgica, vol.32, issue.5, pp.793-802, 1984.

M. Srolovitz, . Anderson, P. Grest, and . Sahni, Computer simulation of grain growth-III. Influence of a particle dispersion, Acta Metallurgica, vol.32, issue.9, pp.1429-1438, 1984.

G. Grest, D. Srolovitz, and M. Anderson, Computer simulation of grain growth-IV. Anisotropic grain boundary energies, Acta Metallurgica, vol.33, issue.3, pp.90093-90101, 1985.

D. Srolovitz, G. Grest, and M. Anderson, Computer simulation of grain growth-V. Abnormal grain growth, Acta Metallurgica, vol.33, issue.12, pp.90185-90188, 1985.

D. Srolovitz, G. Grest, M. Anderson, and A. D. Rollett, Computer simulation of recrystallization-II. Heterogeneous nucleation and growth, Acta Metallurgica, vol.36, issue.8, pp.90313-90319, 1988.

A. Rollett, D. Srolovitz, M. Anderson, and R. Doherty, Computer simulation of recrystallization-III. Influence of a dispersion of fine particles, Acta Metallurgica et Materialia, vol.40, issue.12, pp.3475-3495, 1992.

A. D. Rollett, M. J. Luton, and D. J. Srolovitz, Microstructural simulation of dynamic recrystallization, vol.40, pp.43-55, 1992.

S. Esche, Monte Carlo Simulations of Grain Growth in Metals, pp.581-610, 2011.

P. Peczak, A Monte Carlo study of influence of deformation temperature on dynamic recrystallization, Acta Metallurgica et Materialia, vol.43, issue.3, pp.1279-1291, 1995.

J. Li, H. Xu, T. Mattila, J. Kivilahti, T. Laurila et al., Simulation of dynamic recrystallization in solder interconnections during thermal cycling, Computational Materials Science, vol.50, issue.2, pp.690-697, 2010.

J. Neumann, The general and logical theory of automata, the Charles Babbage Institute Reprint Series for the History of Computing, vol.12, 1963.

S. Wolfram, Theory and applications of cellular automata : Advanced Series on Complex Systems, 1986.

S. Kundu, M. Dutta, S. Ganguly, and S. Chandra, Prediction of phase transformation and microstructure in steel using cellular automaton technique, Scripta Materialia, vol.50, issue.6, pp.891-895, 2004.

R. Chen, Q. Xu, and B. Liu, Cellular automaton simulation of three-dimensional dendrite growth in Al-7Si-Mg ternary aluminum alloys, Computational Materials Science, vol.105, pp.90-100, 2015.

L. Hongwei, S. Xinxin, and Y. He, A three-dimensional cellular automata-crystal plasticity finite element model for predicting the multiscale interaction among heterogeneous deformation, DRX microstructural evolution and mechanical responses in titanium alloys, International Journal of Plasticity, vol.87, pp.154-180, 2016.

D. Raabe, Recrystallization Simulation by Use of Cellular Automata, in: Handbook of Materials Modeling, pp.2173-2203, 2005.

H. Hallberg, Approaches to Modeling of Recrystallization, Metals, vol.1, issue.1, pp.16-48, 2011.

K. Kremeyer, Cellular Automata Investigations of Binary Solidification, Journal of Computational Physics, vol.142, issue.1, pp.243-263, 1998.

H. Hallberg, M. Wallin, and M. Ristinmaa, Simulation of discontinuous dynamic recrystallization in pure Cu using a probabilistic cellular automaton, Computational Materials Science, vol.49, issue.1, pp.25-34, 2010.

L. Madej, M. Sitko, A. Legwand, K. Perzynski, and K. Michalik, Development and evaluation of data transfer protocols in the fully coupled random cellular automata finite element model of dynamic recrystallization, Journal of Computational Science, vol.26, pp.66-77, 0200.

R. Ding and Z. Guo, Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization, Acta Materialia, vol.49, pp.3163-3175, 2001.

H. Hallberg, B. Svendsen, T. Kayser, and M. Ristinmaa, Microstructure evolution during dynamic discontinuous recrystallization in particle-containing Cu, vol.84, pp.327-338, 2014.

M. Sitko and L. Madej, Development of Dynamic Recrystallization Model Based on Cellular Automata Approach, Key Engineering Materials, pp.617-624, 2014.

W. Chuan, Y. He, and L. H. Wei, Modeling of discontinuous dynamic recrystallization of a near-? titanium alloy IMI834 during isothermal hot compression by combining a cellular automaton model with a crystal plasticity finite element method, Computational Materials Science, vol.79, pp.944-959, 2013.

E. Popova, Y. Staraselski, A. Brahme, R. K. Mishra, and K. , Coupled crystal plasticity -Probabilistic cellular automata approach to model dynamic recrystallization in magnesium alloys, International Journal of Plasticity, vol.66, pp.85-102, 2015.

A. Soares, A. Ferro, and M. Fortes, Computer simulation of grain growth in a bidimensional polycrystal, Scripta Metallurgica, vol.19, issue.12, pp.90157-90164, 1985.

H. Frost, C. Thompson, C. Howe, and J. Whang, A two-dimensional computer simulation of capillarity-driven grain growth: Preliminary results, Scripta Metallurgica, vol.22, issue.1, pp.80307-80314, 1988.

K. Nakashima, T. Nagai, and K. Kawasaki, Scaling behavior of two-dimensional domain growth: Computer simulation of vertex models, Journal of Statistical Physics, vol.57, issue.3-4, pp.759-787, 1989.

Y. Mellbin, H. Hallberg, and M. Ristinmaa, Recrystallization and texture evolution during hot rolling of copper, studied by a multiscale model combining crystal plasticity and vertex models, Modelling and Simulation in Materials Science and Engineering, vol.24, issue.7, p.75004, 2016.

E. A. Lazar, J. K. Mason, R. D. Macpherson, and D. J. Srolovitz, A more accurate three-dimensional grain growth algorithm, Acta Materialia, vol.59, issue.17, pp.6837-6847, 2011.

K. Pieko?, J. Tarasiuka, K. Wierzbanowski, and B. Bacroix, Generalized vertex model of recrystallization Application to polycrystalline copper, Computational Materials Science, vol.42, issue.4, pp.584-594, 2008.

Y. Mellbin, H. Hallberg, and M. Ristinmaa, An extended vertex and crystal plasticity framework for efficient multiscale modeling of polycrystalline materials, International Journal of Solids and Structures, vol.125, pp.150-160, 2017.

J. Warren and W. Boettinger, Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method, Acta Metallurgica et Materialia, vol.43, issue.2, pp.689-703, 1995.

R. Kobayashi, Modeling and numerical simulations of dendritic crystal growth, Physica D: Nonlinear Phenomena, vol.63, issue.3-4, p.90120, 1993.

N. Moelans, B. Blanpain, and P. Wollants, Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in anisotropic systems, Physical Review B, vol.78, issue.2, p.24113, 2008.

L. Chen and W. Yang, Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics, Physical Review B, vol.50, issue.21, pp.15752-15756, 1994.

D. Fan and L. Chen, Computer simulation of grain growth using a continuum field model, Acta Materialia, vol.45, issue.2, pp.611-622, 1997.

I. Steinbach, F. Pezzolla, B. Nestler, M. Seeßelberg, R. Prieler et al., A phase field concept for multiphase systems, Physica D: Nonlinear Phenomena, vol.94, issue.3, pp.135-147, 1996.

H. Garcke, B. Nestler, and B. Stoth, On anisotropic order parameter models for multiphase systems and their sharp interface limits, Physica D: Nonlinear Phenomena, vol.115, issue.1-2, pp.87-108, 1998.

N. Moelans, A. Godfrey, Y. Zhang, and D. Jensen, Phase-field simulation study of the migration of recrystallization boundaries, Physical Review B, vol.88, issue.5, p.54103, 2013.

T. Takaki, T. Hirouchi, Y. Hisakuni, A. Yamanaka, and Y. Tomita, Multi-Phase-Field Model to Simulate Microstructure Evolutions during Dynamic Recrystal

T. Takaki, Y. Hisakuni, T. Hirouchi, A. Yamanaka, and Y. Tomita, Multi-phasefield simulations for dynamic recrystallization, Computational Materials Science, vol.45, issue.4, pp.881-888, 2009.

T. Takaki, C. Yoshimoto, A. Yamanaka, and Y. Tomita, Multiscale modeling of hotworking with dynamic recrystallization by coupling microstructure evolution and macroscopic mechanical behavior, International Journal of Plasticity, vol.52, pp.105-116, 2014.

L. Chen, J. Chen, R. A. Lebensohn, Y. Z. Ji, T. W. Heo et al., An integrated fast Fourier transform-based phase-field and crystal plasticity approach to model recrystallization of three dimensional polycrystals, Computer Methods in Applied Mechanics and Engineering, vol.285, pp.829-848, 2015.

P. Zhao, T. Song-en, Y. Low, S. R. Wang, and . Niezgoda, An integrated full-field model of concurrent plastic deformation and microstructure evolution: Application to 3D simulation of dynamic recrystallization in polycrystalline copper, International Journal of Plasticity, vol.80, pp.38-55, 2016.

H. Hallberg, A modified level set approach to 2D modeling of dynamic recrystallization, Modelling and Simulation in Materials Science and Engineering, vol.21, issue.8, p.85012, 2013.

M. Bernacki, H. Resk, T. Coupez, and R. E. Logé, Finite element model of primary recrystallization in polycrystalline aggregates using a level set framework, Modelling and Simulation in, Materials Science and Engineering, vol.17, issue.6, p.64006, 2009.

K. Hitti, Direct numerical simulation of complex Representative Volume Elements (RVEs): Generation, Resolution and Homogenization
URL : https://hal.archives-ouvertes.fr/pastel-00667428

B. Scholtes, Development of an efficient level set framework for the full field modeling of recrystallization in 3D, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01719664

M. Shakoor, Three-dimensional numerical modeling of ductile fracture mechanisms at the microscale, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01626736

S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, vol.79, issue.1, pp.90002-90004, 1988.

B. Merriman, J. K. Bence, and S. J. Osher, Motion of Multiple Junctions: A Level Set Approach, Journal of Computational Physics, vol.112, issue.2, pp.334-363, 1994.

H. Zhao, T. Chan, B. Merriman, and S. Osher, A Variational Level Set Approach to Multiphase Motion, Journal of Computational Physics, vol.127, issue.1, pp.179-195, 1996.

M. Elsey, S. Esedoglu, and P. Smereka, Diffusion generated motion for grain growth in two and three dimensions, Journal of Computational Physics, vol.228, issue.21, pp.8015-8033, 2009.

C. Mießen, N. Velinov, G. Gottstein, and L. A. Barrales-mora, A highly efficient 3D level-set grain growth algorithm tailored for ccNUMA architecture, Modelling and Simulation in Materials Science and Engineering, vol.25, issue.8, p.84002, 2017.

B. Merriman, J. K. Bence, and S. J. Osher, Motion of Multiple Junctions: A Level Set Approach, Journal of Computational Physics, vol.112, issue.2, pp.334-363, 1994.

B. Scholtes, R. Boulais-sinou, A. Settefrati, D. Pino-muñoz, I. Poitrault et al., 3D level set modeling of static recrystallization considering stored energy fields, Computational Materials Science, vol.122, pp.57-71, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01327901

A. Agnoli, N. Bozzolo, R. E. Logé, J. Franchet, J. Laigo et al., Development of a level set methodology to simulate grain growth in the presence of real secondary phase particles and stored energy Application to a nickel-base superalloy, Computational Materials Science, vol.89, pp.233-241, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00983317

L. Madej, Digital/virtual microstructures in application to metals engineering A review, Archives of Civil and Mechanical Engineering, vol.17, issue.4, pp.839-854, 2017.

M. Shakoor, B. Scholtes, P. Bouchard, and M. Bernacki, An efficient and parallel level set reinitialization method Application to micromechanics and microstructural evolutions, Applied Mathematical Modelling, vol.39, pp.7291-7302, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01139858

M. A. Groeber and M. A. Jackson, DREAM.3D: A Digital Representation Environment for the Analysis of Microstructure in 3D, Integrating Materials and Manufacturing Innovation, vol.3, issue.1, p.5, 2014.

S. Dancette, A. Browet, G. Martin, M. Willemet, and L. Delannay, Automatic processing of an orientation map into a finite element mesh that conforms to grain boundaries Related content Automatic processing of an orientation map into a finite element mesh that conforms to grain boundaries, Modelling Simul. Mater. Sci. Eng, vol.24, pp.55014-55028, 2016.

M. S. Wu and J. Guo, Analysis of a Sector Crack in a Three-Dimensional Voronoi Polycrystal With Microstructural Stresses, Journal of Applied Mechanics, vol.67, issue.1, p.50, 2000.

R. Quey, P. Dawson, and F. Barbe, Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing, Computer Methods in Applied Mechanics and Engineering, vol.200, pp.1729-1745, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00858028

K. Hitti, P. Laure, T. Coupez, L. Silva, and M. Bernacki, Precise generation of complex statistical Representative Volume Elements (RVEs) in a finite element context, Computational Materials Science, vol.61, pp.224-238, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00699554

Z. Fan, Y. Wu, X. Zhao, and Y. Lu, Simulation of polycrystalline structure with Voronoi diagram in Laguerre geometry based on random closed packing of spheres, Computational Materials Science, vol.29, issue.3, pp.301-308, 2004.

H. Telley, T. M. Liebling, and A. Mocellin, The Laguerre model of grain growth in two dimensions I. Cellular structures viewed as dynamical Laguerre tessellations, Philosophical Magazine B, vol.73, issue.3, pp.395-408, 1996.

B. Scholtes, M. Shakoor, N. Bozzolo, P. Bouchard, A. Settefrati et al., Advances in Level-Set modeling of recrystallization at the polycrystal scale -Development of the Digimu software, p.2015, 2015.

D. N. Ilin, N. Bozzolo, T. Toulorge, and M. Bernacki, Full field modeling of recrystallization: Effect of intragranular strain gradients on grain boundary shape and kinetics, Computational Materials Science, vol.150, pp.149-161, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01770044

M. Zouari, R. E. Loge, O. Beltran, S. Rousselle, and N. Bozzolo, Multipass forging of Inconel 718 in the delta-Supersolvus domain: assessing and modeling microstructure evolution, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01064804

M. Elsey, S. Esedoglu, and P. Smereka, Large-scale simulation of normal grain growth via diffusion-generated motion, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.467, pp.381-401, 2011.

A. L. Cruz-fabiano, Modelling of crystal plasticity and grain boundary migration of 304L steel at the mesoscopic scale, 2014.
URL : https://hal.archives-ouvertes.fr/pastel-01069080

A. Agnoli, Origin of inhomogeneous grain growth in Inconel 718 forgings, 2013.
URL : https://hal.archives-ouvertes.fr/tel-02003459

Y. Jin, B. Lin, M. Bernacki, G. Rohrer, A. Rollett et al., Annealing twin development during recrystallization and grain growth in pure nickel, Materials Science and Engineering: A, vol.597, pp.295-303, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00945387

S. Florez, Progress report: A new FE framework for the modeling of complex moving interfaces, Tech. rep., MINES ParisTech (CEMEF), 2018.

M. F. Vaz and M. Fortes, Grain size distribution: The lognormal and the gamma distribution functions, Scripta Metallurgica, vol.22, issue.1, pp.80302-80310, 1988.

B. Raeisinia and C. W. Sinclair, A representative grain size for the mechanical response of polycrystals, Materials Science and Engineering A, vol.525, issue.1-2, pp.78-82, 2009.

T. Luther and C. Könke, Polycrystal models for the analysis of intergranular crack growth in metallic materials, Engineering Fracture Mechanics, vol.76, issue.15, pp.2332-2343, 2009.

J. K. Mason, E. A. Lazar, R. D. Macpherson, and D. J. Srolovitz, Geometric and topological properties of the canonical grain-growth microstructure, Physical Review E, vol.92, issue.6, p.63308, 2015.

Y. Suwa, Y. Saito, and H. Onodera, Parallel Computer Simulation of Three-Dimensional Grain Growth Using the Multi-Phase-Field Model, vol.49, pp.704-709, 2008.

S. G. Kim, D. I. Kim, W. T. Kim, and Y. B. Park, Computer simulations of twodimensional and three-dimensional ideal grain growth, Physical Review E, vol.74, issue.6, p.61605, 2006.

A. Baskaran, D. Crist, and D. Lewis, Effect of initial variance of microstructures on grain growth under mean curvature, Modelling and Simulation in, Materials Science and Engineering, vol.25, issue.6, p.65010, 2017.

E. Miyoshi, T. Takaki, M. Ohno, Y. Shibuta, S. Sakane et al., Ultra-large-scale phase-field simulation study of ideal grain growth, npj Computational Materials, vol.3, issue.1, p.25, 2017.

M. E. Wahabi, J. Cabrera, and J. Prado, Hot working of two AISI 304 steels: a comparative study, Materials Science and Engineering: A, vol.343, issue.1-2, pp.116-125, 2003.

R. Kamachali and I. Steinbach, 3-D phase-field simulation of grain growth: Topological analysis versus mean-field approximations, Acta Materialia, vol.60, issue.6-7, pp.2719-2728, 2012.

N. Petch, The cleavage strength of polycrystals, The Journal of the Iron and Steel Institute, vol.174, pp.25-28, 1953.

L. Maire, B. Scholtes, C. Moussa, N. Bozzolo, D. Pino-muñoz et al., Improvement of 3D mean field models for capillarity-driven grain growth based on full field simulations, Journal of Materials Science, vol.51, issue.24, pp.10970-10981, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01369919

U. F. Kocks, Laws for Work-Hardening and Low-Temperature Creep, Journal of Engineering Materials and Technology, vol.98, issue.1, p.76, 1976.

H. Mecking and U. Kocks, Kinetics of flow and strain-hardening, Acta Metallurgica, vol.29, issue.11, 1981.

P. Peczak and M. J. Luton, The effect of nucleation models on dynamic recrystallization I. Homogeneous stored energy distribution, Philosophical Magazine Part B, vol.68, issue.1, pp.115-144, 1993.

K. Huang, Towards the modelling of recrystallization phenomena in multi-pass conditions: application to 304L steel, 2012.
URL : https://hal.archives-ouvertes.fr/pastel-00682138

S. Kim, B. Ko, C. Lee, S. Hwang, and Y. Yoo, Evolution of dynamic recrystallisation in AISI 304 stainless steel, Materials Science and Technology, vol.19, issue.12, pp.1648-1652, 2003.

L. Gavard and F. Montheillet, Dynamic recrystallization and grain refinement in a high purity 304L type austenitic stainless steel, Matériaux & Techniques, vol.88, issue.5-6, pp.65-68, 2000.

R. T. Dehoff and G. Q. Liu, On the relation between grain size and grain topology, Metallurgical Transactions A, vol.16, issue.11, pp.2007-2011, 1985.

G. Liu, H. Yu, and X. Qin, Three-dimensional grain topology size relationships in a real metallic polycrystal compared with theoretical models, Materials Science and Engineering: A, vol.326, issue.2, pp.1497-1503, 2002.

G. Abbruzzese and A. Campopiano, Topological aspects of grain growth microstructure: The two-dimensional and three-dimensional cases, STERMAT94, Proceedings of the 4th International Conference on Stereology and Image Analysis in Material Science, 1994.

C. Zhang, M. Enomoto, A. Suzuki, and T. Ishimaru, Characterization of threedimensional grain structure in polycrystalline iron by serial sectioning, Metallurgical and Materials Transactions A, vol.35, issue.7, pp.1927-1933, 2004.

S. O. Poulsen, P. W. Voorhees, and E. M. Lauridsen, Three-dimensional simulations of microstructural evolution in polycrystalline dual-phase materials with constant volume fractions, Acta Materialia, vol.61, pp.1220-1228, 2013.

D. Zöllner and P. Streitenberger, Normal Grain Growth: Monte Carlo Potts Model Simulation and Mean-Field Theory, in: Micro-Macro-interaction, pp.3-18, 2008.

F. Wakai, N. Enomoto, and H. Ogawa, Three-dimensional microstructural evolution in ideal grain growth general statistics, Acta Materialia, vol.48, issue.6, pp.1297-1311, 2000.

G. P. Michon, Final answers (2004) See Thomsen's formulas and Cantrell's comments

G. Shen, S. L. Semiatin, and R. Shivpuri, Modeling microstructural development during the forging of Waspaloy, Metallurgical and Materials Transactions A, vol.26, issue.7, pp.1795-1803, 1995.

G. Smagghe, D. Piot, F. Montheillet, A. Montouchet, M. Bernacki et al., An extended mean field approach for modelling realistic grain size distribution evolutions during Discontinuous Dynamic RX and Post-Dynamic RX, 6th International Conference on Recrystallization and Grain Growth: Recrystallization II: Dynamic Recrystallization, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01479167

M. Zouari, N. Bozzolo, and R. E. Loge, Mean field modelling of dynamic and postdynamic recrystallization during hot deformation of Inconel 718 in the absence of ? phase particles, Materials Science and Engineering: A, vol.655, pp.1-17, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01297977

A. Hensel, T. Spittel, and . Kraft-und-arbeitsbedarf-bildsamer-formgebungsverfahren, , 1978.

C. M. Sellars and W. J. Tegart, La relation entre la résistance et la structure dans la deformationà chaud, Mémoires Scientifiques de la Revue de Metallurgie, vol.63, pp.731-746, 1966.

J. J. Jonas, C. M. Sellars, and W. J. Tegart, Strength and structure under hotworking conditions, vol.14, pp.1-24, 1969.

C. M. Sellars and W. J. Tegart, Hot Workability, International Metallurgical Reviews, vol.17, issue.1

O. O. Tairu, P. O. Aiyedun, and O. T. Tairu, Relationship between Yield stress and yield Strength on Various Grade of steel Being Hot rolled, IOSR Journal of Mechanical and Civil Engineering Ver. I, vol.11, issue.1, pp.2320-334, 2014.

A. Y. Churyumov and V. V. Teleshov, Quantitative description of the flow-stress dependence of aluminum alloys at the stage of steady flow upon hot deformation on the ZenerHollomon parameter, Physics of Metals and Metallography, vol.118, issue.9, pp.905-912, 2017.

J. J. Jonas, X. Quelennec, and L. Jiang, The Avrami kinetics of dynamic recrystallization, Acta Materialia, vol.57, pp.2748-2756, 2009.

G. I. Taylor, The Mechanism of Plastic Deformation of Crystals, Royal Society Yarrow Professor F.R.S, 1934.

E. V. Kozlov and N. A. Koneva, Internal fields and other contributions to flow stress, Materials science & engineering, pp.982-985, 1997.

L. Bäcke, Modeling the Microstructural Evolution during Hot Deformation of Microalloyed Steels, 2009.

D. Hull and D. Bacon, , 2011.

L. Gavard, Recristallisation dynamique d'aciers inoxydables austénitiques de haute pureté, 2001.

N. Yazdipour, C. Davies, and P. Hodgson, Microstructural modeling of dynamic recrystallization using irregular cellular automata, Computational Materials Science, vol.44, issue.2, pp.566-576, 2008.

A. Winkelmann and N. Gert, Analysis of Kikuchi band contrast reversal in electron backscatter diffraction patterns of silicon, Ultramicroscopy, vol.110, issue.3, pp.190-194, 2010.

F. Bachmann, R. Hielscher, P. E. Jupp, W. Pantleon, H. Schaeben et al., Inferential statistics of electron backscatter diffraction data from within individual crystalline grains, Journal of Applied Crystallography, vol.43, issue.6, pp.1338-1355, 2010.

R. Heilbronner and D. Bruhn, The influence of three-dimensional grain size distributions on the rheology of polyphase rocks, Journal of Structural Geology, vol.20, issue.6, pp.695-705, 1998.

R. Boulais-sinou, B. Scholtes, D. Pino-muñoz, C. Moussa, I. Poitrault et al., Full field modeling of dynamic recrystallization in a global level set framework, application to 304L stainless steel, Proceedings of Numiform 2016: The 12th international conference on numerical methods in industrial forming processes
URL : https://hal.archives-ouvertes.fr/hal-01421567

D. Ruiz, Deal with high anisotropies of interface properties and crystal plasticity in context of the level set method -Application to polycrystal microstructures, 2017.

S. Florez, Development of new meshing/remeshing capabilities to describe large 3D real or representative polycrystals and grain boundary motion in context of non-uniform finite element mesh, 2017.