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CHAPTER 1. INTRODUCTION

1.1 Industrial context

By 2030, considering the progress of High Performance Computing (HPC), aerospace manufactur-
ers like Safran Aircraft Engines (SAE), hope to be able to simulate a whole aircraft engine, at full
scale, using Computational Fluid Dynamic (CFD). Indeed, in the next 20 years, their objective is
to replicate all the physical phenomenon that occur inside an aircraft engine in order to certify it
without using expensive real-life tests rigs. However, some parts of the engine are still challenging
to model with existing codes. In particular, we can identify among them: (i) the rotating parts,
(ii) the reactive ows in the combustion chamber and (iii) the cooling systems. These three parts
are presented in Figure 1.1. For the rotating parts, the dif culty is to be able to move the mesh at
high speed inside another domain using ef cient moving mesh methods. For reactive ows how-
ever, high delity chemical models are needed to describe the gas reactions inside the combustion
chamber and to ensure a strong coupling with the ow dynamics.

(i) the rotating parts

(ii) the reactive flows in the
combustion chamber

(iii) the cooling systems

Figure 1.1 — Slice view of Safran Aircraft Engines LEAP 1B
Credit: Safran Aircraft Engines.

1.1.1 Generalities on the cooling of aircraft engines

Concerning the cooling systems, their design plays a critical role in the life span of the aircraft en-
gine components. As mentioned by Hetmanczyk et al. in[ ], the gas turbine engines operate in
one of the harshest environments. Indeed, their components are subjected to severe mechanical
loads, high temperatures, corrosion and erosion. These dif cult conditions often cause consid-
erable damages on the engine components, that can even lead to cracking on one of the engine
parts. A way to improve the parts resistance is by studying the micro-structure of the material it-
self. To do so, mechanical engineerslikein[ ]have tried to nd advanced alloys materials capable
of dealing with these harsh conditions. Another way consists in improving the ef ciency of the
cooling systems in order to keep the material in an acceptable range of temperature to avoid any
weakening of the part caused by meeting with hot gases.

However, the ef ciency of the cooling systems has been increasingly endangered over the past
decades. Indeed, in the last decades, we have observed an increase of the turbofans By-Pass Ratio
(BPR) which is de ned by the following formula:

secondary

m
BPRA
Mprimary

(1.1)
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Figure 1.7 — Schematic view of the impingement jetin cross-ow|[ ]

models. Other numerical studies likein[ ]were made atthe Of ce National d'Etudes et de Recherche
Aérospatiales (ONERA) using hybrid numerical methods like the Zonal Detached Eddy Simulation
(ZDES) with parietal laws, computed with the CEDRE code, coupled with the Navier-Stokes solver
CHARME. For now, these numerical studies were not able to predict accurately the heat transfer
coef cient distribution on the impact plate. Indeed, in all of these research works, an over estima-

tion of the heat transfer coef cient distribution was found.

From these previous numerical studies, and from the preliminary results we obtained on this
geometry, some critical dif culties were reported to the research network of SAE. These critical
dif culties were rst related to the aerodynamic boundary conditions of the problem. Indeed, we
noted that the velocity pro les at the geometry's inlet and the turbulence rate of the primary ow
had not been measured by the experimental studies. For this reason, it was dif cult for computer
scientists to know a priori the right inlet boundary condition to put on the geometry. Furthermore,
the pressure differential between the primary and the secondary ows was not clearly de ned in
the experimental setup and thus, had to be assumed. After some numerical experiments made
during this PhD work, we managed to show that this lack of information had a damaging effect on
the heat transfer results. Finally, these dif culties were emphasized by the lack of references on
this particular case in the literature.

The goal of this PhD project is to address the challenges around the impingement jet cooling
and to nd in what measure we are able to tackle them. To do so, we were advised by SAE to focus
our work on a more simple case, closely linked to the jet in cross- ow. Indeed, from our prelim-
inary analysis on the jet in cross- ow, the challenges of the cooling by impinging jet are mostly
related to the impinging jet itself, and our ability to capture the parietal heat exchanges in the
boundary layer formed by the impact plate. Furthermore, to our knowledge, the impingement jet
cooling has never been studied using an eulerian nite element framework. It was thus necessary
to study more in details a benchmark con guration of the latter in order to validate the nite el-
ement framework on this type of aerothermal problems. This benchmark con guration study is
the object of Chapter 2 and itis, in particular, the common thread running through this PhD work.
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1.2 State of the art

Over the last years, CFD in aerospace industry has reached a technological cross-road for sev-
eral reasons. Slotnick et al. from National Aeronautics and Space Administration (NASA) in [ ]
propose to summarized these reasons in a technological road map given in Figure  1.8. Indeed,
for several years now, despite the fact that RANS and Hybrid RANS/Large Eddy Simulation (LES)
methods with improved Reynolds Stress Transport (RST) methods have reached high Technology
Readiness Level (TRL), computer scientists have observed that they are still unable to predict with
high accuracy the aerodynamic of turbulent ows in a large number of cases. In particular, as seen

in the last section, it brings issues in aerothermal simulations where the heat exchanges are ma-
jorly convective and occurs in turbulent boundary layers. The dif culty met by these methods is

to predict the turbulent ow separation in the boundary layers at ight Reynolds numbers i.e. at
Reynolds numbers above 10°. The technology demonstration of these methods is indeed due in
2020. After this point, LES methods will need to demonstrate better TRL in order to allow com-
puter scientists to simulate unsteady separated ows in complex 3D geometries like the ones met

in rotating turbomachinery for example.






CHAPTER 1. INTRODUCTION

Along these physical modeling considerations, research efforts are also needed at a software
level. Indeed, according to the technology road map, the convergence and robustness of CFD
solvers has not yet reached high TRL. The grid convergence is still dif cult to achieve in a num-
ber of turbulent cases where prohibitive computational resources are needed. For this reason,
research work on the scalability and ef ciency of solvers needs to be continuously updated, and
foundational mathematical research in highly scalable linear and non linear systems is still re-
quired. In particular, to improve the ef ciency of numerical solvers, new reliable error estimates
need to be designed, tested and validated on realistic industrial cases. Improvements on error
analysis are also required to asses for the propagation of uncertainties during simulations. In par-
ticular, discretization error estimation is a key ingredient for the realization of an adaptive solution
process.

Indeed, closely linked to discretization error estimates, Adaptive Mesh Re nement (AMR) meth-
ods have yet to prove their capabilities in industrial CFD codes. For a few years now, aerospace
industry has welcomed these new techniques allowing to automatically adapt meshes according
to the simulations needs. The AMR strategies offer indeed the potential of a superior accuracy at
a reduced cost. However, these methods were, until recently, mostly applied to academic cases
where limited computational resources were needed. In fact, they were not widely spread due to
code robustness and software complexity issues. For many ows involving dif cult ow physics
and complex geometries, many of the current AMR techniques are not strong enough to ensure
a robust solver convergence. For this reason, NASA predicts an entry in industrial production of
these adaptive techniques not until 2020. Before that, these techniques will need to demonstrate
their capabilities on realistic industrial cases where large computational resources are involved.

In fact, the fast development of the HPC at the hardware level keeps pushing computer scien-
tists to readjust their numerical tools, in order to improve the performances of their CFD codes on
new emerging hardware architectures. According to the NASA report, considering the actual evo-
lution of technologies, computer scientists predict that the future hardware systems will reach a
computational peak capacity of 30 Exa FLoating-point Operations Per Second (FLOPS) in 2030. To
reach this performance, it will be necessary to operate a complete change of paradigm in the nu-
merical simulation. This change of paradigm will require a complete restructuring of the hardware
architectures but also an effort from the numerical scientists to adapt their numerical methods to
the new computational systems.

Indeed, until today, the majority of numerical method developers did not take into account
these hardware considerations. It is therefore very dif cult for today's computer scientists to cap-
italize as much as possible on the new emerging hardware architectures. An algorithmic research
work effort is thus needed to continuously improve the scalability of numerical methods. This
notion is called the "co-design”. The co-design allows developing numerical methods in close
consultation with the progress of HPC. In particular, it allows taking into account a high level of
parallelism in hardware systems during the development of numerical methods.

These considerations have also been noticed by the members of the ExaFLOW project in [
]. In this project, they summarize the scienti ¢ locks that CFD has to overcome to reach the
exascalecomputation. They are stated as follows:
1. error control and adaptive mesh re nement in complex computational domains,
2. resilience and fault tolerance in complex simulations,

3. heterogeneous modeling,

4. evaluation of energy ef ciency in solver design,
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5. parallel input/output and in-situ compression for extreme data.

1.3 Contribution of the thesis

The goal of this PhD thesis is then to bring a scienti ¢ contribution to this research framework. In-
deed, we propose in this work the development of a variational adaptive nite element method in
amassively parallel computational framework allowing to improve the aerothermal turbulent sim-
ulations related to the cooling of aircraft engines. More precisely, our goal is to develop a new mul-
tiscale mesh adaptation technique, adapted to the resolution of the highly convective aerothermal
problems in turbulent ows.

To do so, we rst propose to study a complex industrial problem that requires heterogeneous
modeling taking into account: (i) the parts thermal history, (ii) the unsteady and turbulent na-
ture of the ow, (iii) a complex three dimensional (3D) geometry, and above all, (iv) the multiscale
dominant aspects of the ow. In fact, we propose to use a novel set of CFD tools to solve the
aerothermal problem of the turbine vane cooling. More precisely, the research effort is put on a
benchmark con guration of the single impingement jet cooling. To our knowledge, this is the rst
attempt to solve the impingement jet cooling problem using an adaptive eulerian nite element
framework.

To solve this aerothermal problem, we solve two different decoupled Partial-Differential Equa-
tion (PDE) systems. The rst PDE system is dedicated to the solving of the unsteady incompress-
ible Navier-Stokes equations. It uses a stabilized nite element methods called the Variational
Multi-Scale (VMS) formulation under the assumption of a convection dominated regime. The sec-
ond PDE system is dedicated to the solving of the convection-diffusion equation for the tempera-
ture. It takes, as an input and from the previous resolution, the resulting velocity in the convection
term. We refer to the use of the well known Streamline Upwind Petrov/Galerkin (SUPG) scheme
introducedin[  ]to stabilize the standard Galerkin formulation. Furthermore, as we solve decou-
pled aerothermal problems, additional numerical models are needed in order to achieve aerother-
mal coupling in the simulation. In this work, we use two different numerical models simultane-
ously: (i) the Sutherland law and (ii) the Smagorinsky Model (SM). These numerical models are
tested and validated on the benchmark case of a 3D ventilated cavity.

Furthermore, a new hierarchical control of errors is proposed via the development of a new
multiscale mesh adaptation technique based on recently developed subscales error estimators. In
this thesis, we compute the subscales error estimator using two different methods. The rst one
uses stabilizing parameters derived from the VMS analysis and local norms de ned on the ele-
ments. The second method uses a linear combination of bubble functions to establish a pointwise
computation of the error. The rst contribution of this work is then to propose a new isotropic
mesh adaptation technique based on the previous subscales error estimator. To do so, we de-
ne a new isotropic metric tensor H j5o and we solve an optimization problem under the con-
straint of a xed number of elements. Until now, the VMS error estimators were only derived for
isotropic mesh adaptation. In this work, we also propose to use the sub-mesh scale information
for anisotropic mesh adaptation.

The second contribution is therefore to combine both the coarse scales interpolation error in-
dicator and the subscales error estimator for anisotropic mesh adaptation. To do so, we derive a
new anisotropic metric tensor H ;‘ﬁi‘g’o that allows taking into account the anisotropic variations
of the solution on the mesh and also relies upon the sub-grid information of the solution. This
new anisotropic mesh adaptation technique takes into account the nite element VMS frame-

work used for the numerical resolution of the convection-diffusion equation. In fact, the VMS
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approach allows quantifying the a posteriori subscales errors that can be used as weight to en-
rich the anisotropic error indicator of the conventional Hessian based approach. Unlike existing
anisotropic a posteriori error estimators, this hybrid approach takes advantages from both a priori
and a posteriori methods.

Finally, we propose a description of the parallel software capabilities of our nite element li-
brary Cimlib-CFD. First of all, we present the Finite Element (FE) framework, the mesh partition-
ing principles and the load balancing algorithms. Then, the algorithm behind parallel mesh adap-
tation is introduced as well as important notions on the particular treatment of the partitions'
interfaces. A mention of the parallel visualization tool is also proposed allowing to complete the
parallel computational framework developed in this work. Second of all, we propose a presen-
tation of the two hardware systems used to develop numerical tools and to produce numerical
results during the thesis. The rst one is the lab's cluster, called Cluster Intel, allowing the devel-
opment of numerical methods. The second one is the GENCI Occigen Il supercomputer on which
we executed Cimlib-CFD for the rst time during this PhD work. This system allows producing
numerical results using massively parallel computations. Taking into account the characteristics
of the super-computer, a fault tolerant checkpoint-restart procedure is developed. We then pro-
pose application cases for parallel computations. The rst one is dedicated to a strong scalability
analysis of our nite element code on a well known benchmark. Then, parallel mesh adaptation
is tested on the two hardware systems for the case of the single impingement jet cooling. Finally,
we present a more complex but realistic industrial case that concerns the cooling of a complete
turbine vane composed by 39 holes.

1.4 Author's contributions during the PhD

Refereed Journal Articles

1. Bazile, A., Hachem, E., Larroya-Huguet, J. C., & Mesri, Y., Variational Multiscale error estima-
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problems. Computer Methods in Applied Mechanics and Engineering, Vol. 331, pp 94-115,
2018.

2. Bazile, A., Mesri, Y., Larroya-Huguet, J. C., & Hachem, E., Aerothermal Impingement Jet Flow

Simulations using Anisotropic Multiscale Mesh Adaptation. In 2018 Fluid Dynamics Confer
ence, 2898, AIAA AVIATION Forum, 2018.

3. Mesri, Y., Bazile, A., Larroya-Huguet, J., & Hachem, E., Parallel and adaptive VMS nite ele-

ments formulation for aerothermal problems . Computer & Fluids, Vol 173, pp 42-50, 2018.

Communications

1. Bazile, A., Mesri, Y., Larroya-Huguet, J., & Hachem, E., Formulation adaptative variation-
nelle et calcul massivement paralléle pour I'aérothermique industrielle avec Safran Aircraft

Engines. Research & Technology Day 2018, Safran Aircraft Engines, Villaroche, France, 2018.

2. Bazile, A., Mesri, Y., Larroya-Huguet, J., & Hachem, E., Turbine blade cooling simulations
using parallel anisotropic multiscale mesh adaptation , Journée Des Doctorants Safran Mé-

caniques des Fluides, Safran Tech, Magny-les-Hameaux, France, 2018.

3. Bazile, A., Mesri, Y., Larroya-Huguet, J., & Hachem, E., LES multi-physique avec maillage
adaptatif et refroidissement par impact , Journée Des Doctorants Safran Mécaniques des Flu-

ides, Safran Helicopter Engines, Bordes, France, 2017.
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Résumé du chapitre en francais

Ce chapitre d'introduction nous permet d'abord de présenter le contexte industriel de cette thése
en partenariat Convention Industrielle de Formation par la REcherche (CIFRE) avec SAE. Nous
proposons ici une description générale autour des enjeux du refroidissement des turbomachines
notamment via une analyse sur la diminution du FPR. En effet, cette diminution a pour effet de
fortement dégrader les performances des systémes de refroidissement actuels et rend les prob-
Iématiques autour du refroidissement des moteurs de plus en plus dif ciles. Ensuite, certaines
considérations sur le refroidissement des aubes de turbines sont présentées. Notamment, il est
expligué que l'augmentation de la température d'entrée des gazes dans la turbine haute pression
(TET) peut avoir un fortimpact sur la résistance des matériaux qui la compose. Les techniques de
refroidissement des aubes sont décrites et plus particulierement, la technique de refroidissement
par impact de jets sur la paroi interne de l'aube. La stratégie a complexité incrémentale de SAE
sur ce cas aérothermique est présentée. Il s'agit d'abord (i) de traiter le cas du refroidissement
d'un seul jet sur plaque plane, pour ensuite (ii) traiter le cas d'une rangée de jet sur paroi con-
cave, pour en n (iii) s'intéresser a la géométrie compléte de l'aube. Suivant cette stratégie, nous
présentons une géométrie préliminaire de jet a écoulement cisaillant amont étudiée en début de
these. Cette géométrie a été étudiée expérimentalement par d'autres laboratoires mais elle reste
aujourd'hui trop complexe a mettre en place pour plusieurs raisons. Dés lors, nous avons décidé
de nous ramener a une géomeétrie benchmark du méme type mais plus largement étudiée dans la
littérature. Cette géométrie benchmark du jet impactant constitue notamment le | rouge de ces
travaux de these.
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Nous proposons également dans ce chapitre un état de I'art technologique des méthodes numériques
liées ala CFD. En se basant sur un rapport de la NASA, nous mettons en évidence les dif cultés des
méthodes actuelles, utilisées dans l'industrie, a déterminer avec précision I'aérodynamique des
écoulements turbulents. En paralléle de ces dif cultés de modélisation physique, certaines con-
sidérations softwares sont prises en compte. Elles concernent notamment I'ef cacité des solvers
numérigues et le développement d'estimateurs d'erreur plus performants pour les améliorer. Etroite-
ment lié a cela, lI'avancée technologique des méthodes d'adaptation de maillage est présentée
ainsi que la notion de co-design. Ces considérations sont reprises par les participants du projet
ExaFLOW qui résument parfaitement les objectifs de la CFD dans les années a venir:

1. le contrble hiérarchique des erreurs et l'adaptation de maillage sur des géométries com-
plexes,

2. larésilience et et la "fault tolerance" des systémes complexes,

3. l'ef cacité des solveurs par des méthodes de Galerkin mixtes, continues ou discontinues et
par le choix approprié de préconditionneurs,

4. la modélisation hétérogene,
5. I'évaluation de I'ef cacité énergétique dans lI'implémentation du solveur,
6. limplémentation paralléle et la compression des données de calcul.

L'objectif de ces travaux de these est donc d'apporter une contribution scienti que a ce con-
texte numérique. Pour cela, hous proposons de résoudre un cas industriel complexe faisant in-
tervenir une modélisation hétérogene prenant en compte: (i) I'histoire thermique de la piéce, (ii)
la nature turbulente et instationnaire de I'écoulement, (iii) une géométrie complexe en 3D et (iv)
les aspects multi-échelles de la simulation. De plus, dans ce travail, nous proposons un contrdle
hiérarchique des erreurs via le développement d'une nouvelle méthode d'adaptation de maillage
multi-échelle basée sur le développement récent d'estimateurs d'erreur a posteriori. Pour cela,
nous dé nissons deux nouveaux tenseurs métriques H jso et H 1= " qui permettent 'adaptation
isotrope du maillage en se basant sur l'information sous-échelle mais également la combinaison
de cette information avec les méthodes d'adaptation de maillage anisotropes conventionnelles
basées sur le Hessien. En n, ces méthodes numériques sont développées dans un contexte de
calcul massivement paralléle que nous nous attachons a présenter dans le dernier chapitre. No-
tamment, ce dernier chapitre permet de montrer les premiers résultats de Cimlib-CFD sur le su-
percalculateur national GENCI Occigen Il avec la mise en place d'un cas massivement parallele
représentant une aube de turbine compléte composées de 39 trous.
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CHAPTER 2. THE SINGLE IMPINGEMENT JET COOLING

2.1 Introduction

This chapter is dedicated to the study of a single uncon ned isothermal jet impinging normally

on a hot at plate. In the past decades, several experimental and numerical studies like in [ -
] have been made on this aerothermal problem. An example of a smoke visualization from the

experimental studies of Cornaro etal. in[  ]is given in Figure 2.1. In the past, a large number

of different con gurations have been studied. In particular, these studies have shown that the

con guration characteristics that had the most in uence on the plate cooling were: (i) the shape

of the jet nozzle (round or square) (ii) the injection Reynolds number R ej,j (i.e. the Reynolds

number inside the inlet tube) and (iii) the normalized impact distance H/D, with H being the

impact distance and D the jet nozzle diameter.

Figure 2.1 — Experimental visualization of a single jetimpingingona atplateforR  ej,; £60000andH/D A2
from Cornaroetal. in[ ]

In particular, for an impact distance of H/D A2 and injection Reynolds numbers above 10
000, it has been noticed by experimental studies that the ow turbulence induced a very speci ¢
heat transfer distribution on the plate. In fact, for this particular impact distance, the rebound of
the jet primary structures on the plate induces the creation of turbulent secondary vortices that
generate a local increase of convective heat transfer on the plate. Because of this local increase,
a secondary peak appears in the radial Nusselt number distribution. To better understand this
mechanism, the reader can refer to Figure 2.14 that will be presented later in this chapter. The
secondary peak is visible in the experimental results from Cooper et al. in Figure  2.2. Our study
aims at capturing this speci ¢ radial Nusselt number distribution associated with the particular
impinging jet con gurationof H/D /2.

In the past few years, several research units have tried to capture this secondary peak using
HPC associated with powerful CFD codes. Among them, important work from Tsubokura et al.

was madein|[ ]describingthe ow behavior at the injection hole exit. In | ], Grenson et al. pro-
posed a LES simulation of the impingement jet cooling with Reynolds numbers up to 60 000 using
the nite-volume solver elsA from ONERA. More recently, Uddin et al. in [ ] performed a fully

3D LES simulation in the exact same con guration using the FASTEST code. As well, Dairay et al.
in[ J]and[ ] proposed respectively a LES and a Direct Numerical Simulation (DNS) using the
nite difference code "Incompact3d" with an impact distance of H/D /2. The particularity of this
latter work is the use of a conditional averaging post-processing procedure to compute the radial
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2.2 Preliminary study using the software ANSYS CFX and ANSY'S Fluent

To begin this chapter on the single impingement jet cooling, we propose hereafter a preliminary
study made during this thesis using the commercial software ANSYS CFX and ANSYS Fluent. This
study allows testing a well known numerical framework in terms of meshing strategy, boundary
conditions, solvers and post-treatment procedures, on the resolution of the impingement jet cool-

ing. In particular, it makes it possible for us to con rm the conclusions from the literature [ -]
concerning the capture of the secondary peak in the Nusselt number distribution for the impact
distance H/D A2, using these commercial software.

2.2.1 Context and problematic of the study

The goal of this study is to realize a preliminary study on the single impingement jet cooling using

a numerical framework, currently used in aerospace research and industry. Indeed, ANSYS CFX
and Fluent are well known software, often used to solve this type of aerothermal problem. Several
numerical studies have already been made on the single impingement jet cooling using ANSYS
software. To cite only one of them, the work of Wienand et al. in [ ] shows interesting results in
terms of radial Nusselt number distribution and velocity pro les in the boundary layer for differ-
entimpact distances H/D A{2,6,10,14}.

The rstidea here is to reproduce the study, for the con guration H/D /B2, in order to validate
our problem's setup in terms of geometry and boundary conditions. Secondly, this study allows us
to asses for the practical aspects of computation in terms of (i) discretization, (ii) available numer-
ical methods and (iii) possible post-treatment procedures. Finally, this study allows con rming
the conclusions of the literature review about the origins of the secondary peak and, in particular,
about the impossibility to capture it using steady-state RANS simulations.

2.2.2 Numerical methods
2.2.2.1 Structured 3D mesh

For both ANSYS CFX and ANSYS Fluent simulations, a structured hexahedral mesh is used. As
seen previously in this chapter, the secondary peak in the Nusselt number distribution appears

in the region between r/D Y41.5and r/D ¥42.6. Therefore, we build a mesh with a conic shape in

order to capture more precisely the evolution of the turbulence in the free jet region. This mesh

is presented in Figure 2.3. The height of the conic shape is H ; £4.8D and the radius of the conic
shape is R; Z£3D.

Figure 2.3 — Initial meshing strategy for ANSYS simulations.

For the mesh in the near plate area, in order to capture accurately the variation of temperature
in the Z direction, the mesh size is chosen referring to the simulation of Wienand et al. in | ]. The
height of the rstlayer onthe plateissetto  z; £13ei & m and the height ratio of the adjacent mesh
in two layers is setto 1.2. The successive layers are presented in Figure 2.4. With these parameters,
we get a value of ZA E0.74.
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2.2.3.1 Velocity and pressure eld

The resulting velocity and pressure elds computed with ANSYS CFX are given in Figure  2.6. In
this gure, we observe a time averaged solution of the problem. In fact, if we compare these results

to the visualization from Cornaro et al in Figure 2.1, we observe that the RANS equations have a
smoothing effect on the solution. Eveniif, by usingthe kj ! SST turbulence model, we indeed take
into account the effect of turbulence in the resolution of the velocity and pressure elds, we cannot
observe any in uence of the turbulence on the macro-scale solution. In particular, as mentioned

in the introduction of the present chapter, we cannot observe the primary nor secondary vortices,
illustrated in Figure 2.14. The successive rebounds of the primary structures are not visible in these
results.

2.2.3.2 Comparison on the velocity pro les in the boundary layer

Now that we have analyzed the velocity eld macro-scale results, let's have a closer look on the ve-
locity pro les in the boundary layer. The results on the velocity pro les at location r/D A{0,1,2,3}
are presented in Figure 2.7. In this gure, we observe that, at location r/D A{1,2,3}, the velocity
pro les predicted by CFX are in good agreement with the experimental data. Then, for r/iD A3,
the results from CFX show an over-prediction of 8%. On the other hand, the results predicted by
Fluent are accurate at point r/D /1 but shows a distinct over-prediction from the location be-
tween r/D A2 and r/D A3. The maximal gap between the radial velocity predicted by Fluent and
the radial velocity from the experiment is observed at point  r/D A2. At this point, the error is
estimated at about 40%.

2.2.3.3 Comparison on the radial Nusselt number distribution

The results on the radial Nusselt number distribution computed by ANSYS CFX and ANSY'S Fluent
are presented in Figure 2.8. In general, both Fluent and CFX predict the tendency of the Nusselt
number decrease with the radius. The results are in relative good agreement with the experimental
data. Indeed, in the region 0 Cr/D C 1, the predictions are both relatively accurate. The results
calculated by Fluent t well with the experimental data, and the results calculated by CFX are 9

% higher than the experimental results. However, intheregion1 Cr/D C 2, the secondary peak
in the Nusselt number distribution appears in the experimental data. On one hand, ANSYS-CFX
predicts a uctuation of the Nusselt number distribution in this region but this uctuation cannot

be identi ed as a proper secondary peak. On the other hand, ANSYS Fluent does not predict any
uctuation in the Nusselt number distribution in this area. The missing secondary peak in these
simulations causes the inaccurate predictions in the nextregion2  Cr/D C 3. Finally, in the region
r/D E 3, when the radius increases, the effect of the missing secondary Nusselt peak decreases.
The slope of the Nusselt number in both simulations becomes indeed comparable to the Nusselt
number slope in the experimental data.

It is interesting to note that the location r/D A2 is, indeed, the location where the maximal
error in the velocity pro les was found. Furthermore, it is also the location where the secondary
peak appears in the Nusselt number distribution. Therefore, we can clearly see that the missing
secondary peak in the radial Nusselt distribution is due to a poor resolution of the radial velocity
in the boundary layer. As expected, this result illustrates the need to have a highly precise ow
motion solution in the boundary layer in order to get the right convective heat transfer on the
plate.

2.2.4 Conclusions and discussions on the study

To conclude, this study allowed us rst, by running simulations on trustworthy commercial soft-
ware, to test a computational framework currently used in aerospace research and industry. Fur-
thermore, it made it possible for us to validate the problem's setup in terms of geometry and
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Figure 2.6 — Resulting velocity magnitude and pressure eld for RANS ki ! SST simulations with ANSYS
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boundary conditions. A structured type mesh was used here along with well known numerical
methods like the time averaged RANS equations combined withthe k j ! SST turbulence model.
Finally, a well adapted post-treatment procedure designed to compute the radial Nusselt number
distribution was proposed and validated in this computational framework.

This study also allowed us to draw several conclusions on the impingement jet cooling itself. In
fact, from Section 2.2.3.1, we can conclude that it is impossible to obtain the primary nor the sec-
ondary vortices in the ow using the RANS equations. The smoothing effect cancels the rebound
of the primary vortices on the plate. The consequence of these missing vortices was directly ob-
servable on the heat transfer results. Indeed, the resulting radial Nusselt number distributions
from ANSYS CFX and Fluent were in relative good agreement with the experimental results except
at the location of the secondary peak. A closer look on the velocity pro les inside the boundary
layer showed the exact same results. Indeed, the RANS simulations allowed us to get good results
on the velocity pro les in the boundary layer, except where secondary vortices should appear.

Finally, this preliminary study demonstrates the impossibility to get a precise result on the
radial Nusselt number distribution of the impingement jet cooling using the ANSYS numerical
frameworks. In particular, it is clearly impossible to capture the ow motion that will give birth
to the secondary peak in the Nusselt number distribution. As mention in the introduction of the
present chapter, in order to solve this aerothermal case, we need a fully 3D turbulent and unsteady
resolution of the problem. The second part of this chapter aims at giving our developments and
results in this direction using Cimlib-CFD.

2.3 Numerical investigations using the nite element code Cimlib-CFD

In this section, we propose to test another numerical framework, that breakout from the one pre-
sented in the previous section. This framework uses the nite element code Cimlib-CFD, de-
veloped by the Computing and FLuid (CFL) research group at the Centre de Mise En Forme des
matériaux (CEMEF) MINES-Paristech laboratory. To our knowledge, this is the rst attempt to
solve the impingement jet cooling problem using this nite element numerical framework. This
section gives the main outlines of our numerical investigations on this complex aerothermal case.

2.3.1 Geometry and boundary conditions
2.3.1.1 Afully 3D con guration

To begin this section, the 3D geometry of the problem is presented in Figure  2.9. The present con-
guration has an axial symmetry of revolution around the Z axis going through the center of the
injection hole. As shown in previous studies and in particular by Dairay et al. in [ ], a fully 3D
turbulent resolution is needed to solve this complex aerothermal problem. In fact, considering
that the jet is fully developed at the injection hole exit, it has been proven that the jet implies the
development of turbulent structures that will evolved in the three spatial directions X, Y and Z axis.

Referring to previous works on the subject [ .« s+ s+, ., ] thenozzle to plate distance
H is taken as two times the jet diameter D. In addition, we add an inlet tube of length 2D at the
injection hole. The radial size of the domain is taken as 10D. However, in order to reduce the size
of the domain and thanks to the cylindrical symmetry of the latter, we split the computation in
half, keeping only the X axis positive sector. To do so, we impose a symmetric boundary condition
onthe plane (Y, Z) at x A0. Several numerical experiments made during this work have shown that
this splitting had no in uence on the nal results.
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(_8;/ Inlet tube
Impingement plate I&I Sr&
e]

Figure 2.9 — Geometry of the computational domain

2.3.1.2 General boundary conditions

A representation of the problem boundary conditions is given in Figure 2.10. This gure repre-
sents a 2D slice of the 3D computation. The geometrical and physical parameters associated with
these boundary conditions are given on Table 2.1; along with other physical parameters of the
problem. The plate and the inlet tube edges are considered to be walls with no slip conditions.
On the top boundary of the domain, a co- ow with a magnitude representing 5% of the bulk ve-
locity is imposed. The choice of this value will be argue in the next section. At the outlet, to avoid
any re-circulation of degenerated vortices, we choose to impose an output velocity for which the
magnitude was determined after several tests on the geometry. At initialization, the velocity is null
everywhere in the domain except on the boundary conditions.

As in previous experimental studies[ , ], the jet temperature is taken at T et ZLTinit £
300K. The plate is treated as an isothermal wall with atemperature T pjate A£330K. Inthiswork and
from a numerical point of view, we thus propose to solve a thermal convection-diffusion problem
with only Dirichlet boundary conditions.

Inlet
6L @E(ZIQ
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Figure 2.10 — Boundary conditions of the single impinging jet cooling
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Parameter | Numerical value | Parameter | Numerical value

g 9.81m.si ? Ve 17.5m/s
- 3.4ei3Kil Vp 13.8m/s

° fluid 15.6ei ®m2.si ! D 0.026m

! fluid 19 6 Pa.s H 0.052m

Y4 1uid 1.225kg.mi3 Lpiate 0.260m

. fluid 0.027 Wmi 1 Kil Ltube 0.052m

® 1uid 20ei ®m2sit Tinlet 300K
Cp 1004 Jkgi t.Ki? Tplate 330K

Remj 23000 Po 0 Pa

Table 2.1 — Geometrical and physical problem parameters

2.3.1.3 Co- ow boundary condition

For uncon ned impinging jets, setting only a static pressure  pg on the top free boundary as for
standard outlets is usually not suf cient to obtain accurate simulations. In fact, re-circulation of

the ambient air occurs on this top boundary leading to massive in ow and out ow. To counter this
issue, Aillaud etal. in[ ] suggest a speci ¢ treatment of this boundary condition by imposing a
weak constant and perpendicular co- ow directed towards the plate. In [ ], the same author also
proposes a sensitivity analysis to demonstrate that: for a co- ow velocity magnitude inferior to 5%

of the bulk velocity, the co- ow has no in uence on: (i) the mean ow, (i) the jet dynamic and (iii)

the heat transfer. Furthermore, in the work of Hadziabdic et al. in [ ], the authors also highlight
that, within this co- ow velocity magnitude range, the jet ow region is not in uenced by the co-

ow. They explain this non-in uence by the fact that the small intensity of the co- ow compared

to the jet velocity allows the jet ow to act as a shield preventing any in uence of the co- ow on

the plate heat transfer. Furthermore, in [ ], Grenson et al. propose to impose a velocity pro le
along the radial direction for this boundary condition. The mean value of the pro le is around
15% of the bulk velocity but the pro le itself presents the interest to be equal to zero close to the
free jet region. However, it is equivalent to our con guration as we consider, in our geometry,

a pipe thickness that cancel the co- ow velocity near the free jet region. Finally, following the
argumentation of these three authors, and comparing our results with the numerical results of
Aillaud etalin[ ], the velocity magnitude of our co- ow is xed at 5% of the bulk velocity V b-

2.3.1.4 Turbulentinlet

In the present con guration, the inlet velocity boundary condition is of major importance because
the jet needs to be fully developed at the injection hole exit. To treat this boundary condition, we
rst propose to impose a mean velocity pro le for which the bulk velocity is given by:

Reinj £ ° fiuid

25

b 5 (2.5)
with ©¢,iq the air kinematic viscosity. Following the work of Cooper et al. in [ ] and other au-

thors onthe subjectin[ , ], the axial velocity is expressed using a speci ¢ power law pro le for

turbulent pipe ows. Indeed, we need to choose a pro le law that is applicable to fully developed
turbulent jets exiting a long tube. In direction Z, we have:

H fl1/7.23
V()£ 1j D £V, (2.6)

where r represents the distance to jet center axis and V . is the centerline velocity. According to
Cooper et al., itis given by the following expression:
Vb
/e
0.811A0.038(og(Re) 4)

2.7)

Ve
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Furthermore, to simulate a fully developed turbulent jet at the injection hole exit and because
we do not simulate the ow inside the long experimental tube, we add synthetic turbulent pertur-
bations which are superimposed on the mean velocity pro le. These perturbations are computed
using the expression given by Gautieretal. in[  ]. We have:

X
VZ Afmoa () Am(t) cosmpAAn () (2.8)
m AL
where p is the angle on the inlet plane, m is an azimuthal mode and N is the number of excited
azimuthal modes. The amplitude and phase (A m(t),An(t)) are generated randomly up to a cutoff
frequency. Referring to Dairay etal. in[ , ], the modulation function fq,oq(r) is adjusted in
order to match roughly the experimental conditions. It is expressed as follows:

fmod (") AR r)exp(i ¥{Ri r)) (2.9)

with A A0.7¥%exp(1) and %/41/(0.02R).

In order to impose this turbulent inlet boundary condition, one can explore other solutions in
the literature. For example, acommon way to impose this turbulent inlet is by adding isotropic ho-
mogeneous turbulence based on the approach of Bechara et al. in | ]. Doing so, the turbulence
is injected over the whole in ow section in order to feed the core region of the tube with resolved
turbulent content. Then, comparable to the solution proposed here but in a compressible uid
context, Bogey et al. in[ ] propose to generate vortex rings in the ow eld in the close vicinity
of the tube's wall. Doing so, it allows starting up the boundary layer inside the tube in order for the
ow to rapidly evolve into a turbulent state. Finally, other works like in [ ] propose to compute
a preliminary simulation of the ow inside a long inlet tube. This allows computing the develop-
ment of turbulence inside a long tube in order to provide the unsteady inlet boundary condition
of a fully developed jet to the impinging jet cooling simulation. However, the drawback of this
solution is the need to have a well resolved preliminary computation that can be computationally
demanding.

2.3.2 Temporal and spatial discretizations
2.3.2.1 Temporal discretization

In Cimlib-CFD, we use implicit time integration schemes concerning the temporal discretization

of PDEs. Doing so, we thus circumvent the Courant—Friedrichs—Lewy (CFL) condition necessary
for the convergence of explicit time integration schemes. Therefore, we do not have any numerical
restriction on the choice of the simulation time step. The only thing that matters in this choice are
physical considerations.

Indeed, the time step of the simulation is chosen in order to capture the unsteady ow behav-
ior, in particular, at the injection hole exit where the generation of the main turbulent structures
occurs. The goal here is to compute a mean value of the heat transfer by still capturing the un-
steady ow characteristics that will drive the convective heat transfer on the plate. Therefore, the
time step ¢ is chosen with respect to the impinging frequency of the main large scale turbulent
structures. The impinging frequency fq of these structures is computed thanks to the Strouhal
number Stp A0.79, the bulk velocity V , and the diameter D of the injection hole (see [ ] for more

details). We have:
StpVp

fo £E (2.10)

Then, we can deduce a period for these main large scale structures whichisequalto T ¢ £A0.0024s.
After several numerical experiments, we decided to compute around 100 increments for each of
these periods. Therefore, we choose a time step equals to ¢t A£0.00002s. For a time step of
¢t A£0.00002s, the maximum CFL condition is evaluated around 0.3 which gives us con dence
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on our starting hypothesis. Finally, to be able to have a representative simulation of the problem
going from the beginning of the transient regime to an established unsteady regime, as in previous
works[ , , ], we decide to take around 20 periods of the main large scale structures for sta-
tistical analysis. These considerations give us a total simulation duration of ~ t{qt5 40.1 s counting
thus 5 000 increments.

2.3.2.2 Initial meshing strategy

The reference mesh for the simulation is presented in Figure 2.11. Itis a xed mesh, adapted
thanks to the well known Level-Set method mentioned in [ , ] for example. This mesh counts
10 052 861 P1 elements and it is composed by different speci c parts. The rst speci c part is a
geometric cone shape of axis Z going through the center of the injection hole. This geometric form
allows, on one hand, keeping a suf cient number of elements inside the inlet tube (see Figure 2.11
a)). And on the other hand, it allows re ning the mesh in the central area of the domain where
most of the turbulent structures will appear. Doing so, we keep an accurate aerodynamic reso-
lution in the main region of interest but we also save an important number of elements from the

area located far from the central region.

The mesh is then adapted where the aerodynamic boundary layer is susceptible to appear i.e.
on the impingement plate (see Figure 2.11c)). Because we use unstructured meshes, the mesh
sizes can be different from one direction to the other. For this reason, we plot the diameter of the
elements in Figure 2.11a) and the minimal diameter of the elements in Figure  2.11b). In this g-
ure, we observe that we reach mesh sizes of order 10 ' ®m on the plate. Furthermore, as we want to
capture the thermal activity on the plate, it is therefore necessary to have an important number of
elements inside this boundary layer. For this reason, in Figure 2.11d), we plot the dimensionless
distance z* that will be introduced in Section  3.4.2to show that, in the near wall region, we keep a
value of z* - 1. For comparison, a similar mesh was proposed in the work of Wienand et al. in [ ]
with, instead, 20 prism layers on the plate to achieve an acceptable value for the dimensionless

distance z*.

2.3.3 Available experimental and numerical data

In this section, we focus our interest on the plate heat transfer results and their validation with re-
spect to experimental and numerical references. Several experimental databases on Nusselt num-
ber distribution are available in the literature. In particular, data from the work of Baughn et al.
and Cooperetal. in[ Jand[ ]on the radial Nusselt number distributions are given in the ER-
COFTAC database. As we saw in introduction, Cornaro etal. in[ ] also proposed an experimental
study to visualize the impingement jet ow at different Reynolds numbers but also with different
impact distances and different relative curvatures for the impingement plate. More recently, Fenot
etal. in[ ]also proposed an experimental database for the impingement jet cooling in our spe-

ci ¢ con guration.

Concerning numerical references, the recent results from Aillaud et al. in [ ] on the impinge-
ment jet con guration H/D A2 and Re A23 0000 are used in this paper. Indeed, we refer to the
database the author sent us for comparison.

2.3.4 Post-treatment procedure for the Nusselt number

From an industrial point of view, the main objective of this work is to evaluate the cooling perfor-
mance of the impingement jet. To do so, we compute the radial Nusselt number distribution on
the impingement plate. In the particular case of the impingement jet cooling, the Nusselt number
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b)

d)

Figure 2.11 — Initial xed adapted mesh. a) Element size distribution over the domain; b) Minimal element

size distribution over the domain; c) Slice view of element diameters in plane (Z, X) at
of A parameter on plane (Z,X) at y A0

y A0; d) Zoomed view
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is de ned by the following formula:

Al
Nu ;EHLChCOI']V /ELChCOI'lV (211)

, total  zAD s fluid

where L is the characteristic length of the problem; taken as the hole diameter D,  h¢ony is the
convective heat transfer coef cientand | o154 IS the uid thermal conductivity. Since we use the
Van Driest damping function in the computation of | {4tar , its value on the plate at z A0 is equals
to | fiuig (see Section 3.4.2for more details).

2.3.4.1 Theoretical aspects

To evaluate the Nusselt number at each point of the plate, we start by normalizing the temperature.
Thus, we work with the normalized temperature  pr and we have:

Hr ;Ew (2.12)
Tplate i Tinlet

Then, the heat ux from the hot surface to the uid coolant is written as:

. . M 1.
. i i @t
Aconv ABhconv Tpiate i Tinlet #E i, fluid Tplatei Tinlet —- (2.13)
@ zAD
with q
- Fag
hconv /CEI, fluid —=~ (2-14)
@ z/AD
Thus, we deduce the following formula for the Nusselt number:
TR |
Lch
Nu £2— £iD or (2.15)
. fluid @ :m

With this expression, we note that, in this case, the local Nusselt number at each point of the plate
is computed only by extracting the normalized temperature gradientat ~ z /0.

2.3.4.2 Azimuthal and temporal averaging procedures

In order to compare our results with experimental and numerical references, we need to com-
pute an average value of the radial Nusselt number distribution. To do so, we rst compute an
azimuthal average value of the Nusselt number. To achieve this, we set 73 probes on the plate
from which we extract the local Nusselt number N u. These probes consists in 12 points spreading
in 6 azimuthal directions which allow us to obtain 12 concentric circles around the plate center.
The probes locations are presented in Figure 2.12. In this gure, the curved arrows represent the
azimuthal averaging procedure. Following these arrows, an azimuthal average value is computed
and a radial Nusselt distribution is drawn along the axis  r/D in Section 2.3.5.4.

Then, since we solve an unsteady aerothermal problem, a temporal averaging procedure is
also needed. Referringto[ , , ]andasexplainedin Section 2.3.2.1, we compute the temporal
average value of the Nusselt number over 20 cycles of the main large scale structure. The physical
duration of this averaging procedure is therefore around  tyean A0.05s. To illustrate the unsteady
behavior of the simulation, we show in Figure 2.13the local Nusselt number data extracted from
the 12 sensors along direction 1.

Remark 1 In Figure 2.13, the plot named " Dir ¢ Pt1" corresponds to the temporal data extracted
from the central point of the plate.
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2.3.5 Results and discussions

The results on the velocity and pressure elds ( v,p) are obtained via the implicit solving of the
unsteady incompressible Navier-Stokes equations. The incompressible assumption stands here
because the maximum velocity encountered in the ow is around 20 m/s, giving a Mach Number
around 0.06 which less than the 0.3 limit for incompressible ows. The solver uses the stabilized
nite element formulation VMS and details about its resolution will be given in the next chapter.
Concerning the temperature T, we solve the convection-diffusion equation using the SUPG nu-
merical scheme to stabilized the standard Galerkin formulation. As well, details on the resolution
of this nite element problem will be given in the next chapter.

In this section, we present the results obtained with Cimlib-CFD using the previously de-
scribed boundary conditions, temporal/spatial discretizations and post-treatment procedures.
First, to introduce the general ow behavior of this speci ¢ con guration, we present the obtained
velocity/pressure elds overtime. Then, to complete the ow analysis, a post-treatment procedure
on vortex identi cation is proposed. Furthermore, the velocity pro les inside the plate boundary
layer are analyzed and compared to experimental data. From the velocity pro les validation, we
complete our aerothermal analysis by a comparison of the resulting radial Nusselt number distri-
bution with experimental and numerical references.

2.3.5.1 Instantaneous velocity and pressure elds

The resulting velocity eld over time is presented in Figure  2.14. As mention in the introduction
of the present chapter, the fundamental phenomenon that occurs during the impingement jet
cooling concerns the rebound of the primary structures when the jet impacts the hot plate. The

rst primordial rebound takes place during the transitional ow atincrement | AE700. As shown in
Figure 2.14, it generates secondary vortices in the primary vortex opposite direction near the wall
and induces a re-injection of cold uid on the plate. Furthermore, we can observe at increment

| ££3 000 that the rebound phenomenon does not disappear over time. Indeed, it evolves into

a periodic wave that is caused by the successive rebounds of the successive primary structures
exiting the injection hole during the simulation.

The resulting pressure eld over time is presented in Figure  2.15. We observe the same ow
structure than the velocity eld. In particular, between increment | /600 and | ££700, we can fol-
low the rst rebound of the primary vortex on the plate. In this area, the inversion of the pressure
sign is a reliable parameter to identify the vortex directions that will be highlighted in the next
subsection. The birth of secondary vortices and thus the injection of cold uid on the plate seems
to clearly start at increment | /A600. Then, as expected, at increment | /A3 000, we recover the pe-
riodic wave caused by the successive rebounds of the primary structures.

2.3.5.2 Vortex identi cation

To complete this aerodynamic analysis, we propose here to use the vortex identi cation technique
to theoretically identify the primary and the secondary vortices in the impinging jet. To do so, we
use the well known Q-criterion method, introduced by Haller et al. in | ], where Q is de ned by:

1£ a1 o,
QA (tr(r V)2i tr(rverv) - vii%iii Svii? (2.16)

where -  is the skew-symmetric part of the velocity gradienttensorand S | is the symmetric part of
the velocity gradient tensor. In Cartesian coordinates, by simpli cation of the previous expression,
we have the following de nition of Q:
l )l 1
‘ey@. @@, ,"e@, @@ ', 'e.0, @:@:

“*@e ee ecea oe ea ea
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+ Lsrr + Ltrr + Lyrr + Lsrrr
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Figure 2.14 — Resulting velocity eld over time
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Figure 2.15 — Resulting pressure eld over time
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Referring to the work of Dairay etal. in[ ], we extract the contour of iso-values of Q such that
2
Q /Eloo\%. The resulting contour is given in Figure 2.16 (without considering the colors).

As explained in the previous subsection, the primary vortices are identi ed by the ow vor-
tices rotating clockwise around the Y axis. In the same way, the secondary vortex are identi ed by
the ow vortices rotating anticlockwise around the Y axis. Therefore, to identify the vortices, we
compute the vorticity ! ofthe ow de ned by:

u

g
L 82y Oy @x @ @y G

— i = = = i (2.18)
@ @ @ @& @& O

In particular, we extract the vorticity component around the Y axis called I'y. Thesignof! y
allows us to know if the ow is rotating clockwise or anticlockwise around the Y axis. In fact, if
Ly E 0, then the ow is rotating clockwise and if ! y G0, then the ow is rotating anticlockwise.
The result are presented in Figure 2.16. Inthis gure, the red color correspondsto ! y E 0 and thus,
is associated to a primary vortex structure; as well, the blue color correspondsto ! y €0, and thus,
is associated to a secondary vortex structure.

+ Ltrr + Lurr + Lxrr
+ Lyrr + Lzrr + Lsrrr
+ Lurrr
Figure 2.16 — Resulting instantaneous vortex identi cation over time. Red color corresponds to Ly E 0 (pri-

mary vortex). Blue color correspondsto ! y C 0 (secondary vortex).

In Figure 2.16, from increment| /200 to increment| A600, we observe the rebound of the rst
primary vortex on the impingement plate. Then, from increment | /600 to increment | A1000,
we observe the birth of the secondary vortices on the plate (see the blue color at increment | yis
600). The secondary vortices then evolve into something more chaotic until increment | /AE3000.
However, even if the structure of the uid is less clear at increment | /3000, if we look at the
bottom of the plate (see last picture in Figure 2.16), we nd the previously mentioned periodic
wave that induces the injection of cold uid air on the plate. Indeed, the circular blue regions on
this picture can be considered as cold spots, i.e. places where the plate meets with cold uid.
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2.3.5.3 Velocity pro les in the boundary layer

Now that we have analyzed the overall ow behavior of the impingement jet, we propose here to
take an interest in the ow velocity pro les in the boundary layer formed by the impact plate. In-
deed, this region is of major importance because this is where the heat transfer between the plate
and the uid occur. We base our aerodynamic analysis on the experimental study of Cooper et al.
in[ ]and we refer to the experimental data from the ERCOFTAC database.

For the reader's understanding, Figure 2.17 shows a schematic representation of the velocity
pro le setup. To obtain them, we place 35 sensors distributed along the Z direction at each r/D
position. The sensors' positions in the Z direction are chosen with respect to the experimental data
which are available for a height going from z/D A0to z/D A0.4 (i.e. z £0.0104m). At each itera-
tion, the radial and normal velocity components are extracted from the sensors. Then, a temporal
averaging procedure is done to obtain the time averaged velocity pro les ateach  r/D position.

Figure 2.17 — Schematic representation of the extracted radial and normal velocity pro les

We rstanalyze the velocity pro le in the boundary layer at r/D AQ. Atthis position, the veloc-
ity component given by the experimental data is the normal velocity (i.e. the velocity component
along the Z axis). The results are presented in Figure 2.18. In this gure, we observe that our nu-
merical results are in good agreement with the experimental data. Indeed, the central point of the
plate seems to be well resolved by our numerical tools. This observation gives us con dence on
the fact that the inlet mean velocity pro le is correct and well imposed at the tube's entry.

Then, the experimental study gives the velocity pro les of the ow at 3 other positions: r/iD A
1, 2,and 3 (i.e. r /A£0.026m, 0.052m, and 0.078m). This time, the velocity component is the radial
one and the results are given in Figure 2.19. In this gure, we compare the resulting velocity pro-
les to the experimental ones. At each r/D position, the numerical result respects the expected
order of magnitude and corresponds to each experimental plot. In particular, in direction r/D A1
the results t well with the experimental data.

However, the results tend to be less accurate when we go further from the plate center, i.e.

when we look at direction r/D A2 and r/D A3. This loss of accuracy_can be explained by the
unclear de nition of the output velocity on the side of the domain (see "l on the Outlet in Figure
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Figure 2.18 — Normal velocity pro les in the boundary layerat  r/D AQ

2.10). Indeed, the location of this outlet boundary condition remains unclear in the literature and
the width of the domain can vary from a study to the other. During this work, a smaller geometry
of radial size 5D was tested and the results got better when increasing the size of the domain to
10D. Doing so, we indeed moved apart the outlet boundary condition from the plate center and
thus, reduced its effects on the ow. However, the effect of this boundary condition still seems to
play an important role and this problem should be addressed as a perspective.

Furthermore, we have good agreement with experimental data in the near plate region. How-
ever, going away from the plate, the results tend to be less accurate. This shows that the mesh
size in the boundary layer plays a crucial role on the velocity pro les results. We indeed used
anisotropic elements to be able to maximize the resolution inside this boundary layer in the Z
direction in order to capture the thermal gradients on the plate, without having prohibitive com-
putational costs inherent to isotropic meshes. In our case, anisotropic mesh adaptation seems to
be the best candidate to solve this problem.

2.3.5.4 Radial Nusselt number distribution

To nish the aerothermal analysis, we propose here to compare our results in terms of radial Nus-
selt number distribution with experimental and numerical references. Itis rstimportantto recall

that, as shown in Section 2.3.5.1, Section 2.3.5.2and in previous works [ ], the generated peri-
odic wave plays an important role in the convective heat transfer. In fact, the re-injection of cold

air created by the secondary vortices enhances locally the cooling and thus generates a secondary
peak in the radial Nusselt number distribution. This secondary peak is visible in Figure 2.20. It
appears experimentally at r/D ¥1.3 and reaches its maximum at r/D ¥2. The results obtained
thanks to the post-treatment procedure developed in Section  2.3.4are given in Figure 2.20.

In this gure, we observe that the impact point is, again, well resolved by the proposed numer-

ical framework. Looking at the result obtained at the impact point in the analysis of the velocity
pro les, this result was expected. Indeed, in our case, the convective heat transfer are dominant.
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Figure 2.19 — Radial velocity pro les in the boundary layerat r/D A1, 2, &3

Figure 2.20 — Comparison of radial Nusselt number distribution with an experimental reference from
Baughnetal.in[ ]and with a numerical reference from Aillaud et al. in [ ]
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Therefore, the results on the velocity pro les in the boundary layer majorly drive the heat transfer
results on the plate. Consequently, the observations made on the velocity pro les still hold for the
analysis of the Nusselt number distribution. A loss of accuracy is observed when we get away from
the plate center and this can be explained by both (i) the outlet free boundary condition and (ii)
the mesh topology in the boundary layer.

Furthermore, the fact that our prediction of the Nusselt number is below the expected result
can also be explained by the lack of mixing in the boundary layer. Indeed, the more the ow will be
mixed in the boundary layer, the higher the convective heat transfer will be and thus, the higher
the Nusselt number will get. According to the literature on this subject, this mixing is majorly
driven by the inlet turbulent model used at the tube's entry. As a perspective, it would also be in-
teresting to test other ways to impose the turbulent inlet boundary condition and observe their
effects on the Nusselt number distribution.

Despite that, in Figure 2.20, we observe that our results allow in a certain way to capture the
secondary peak in the radial Nusselt number distribution. In fact, even if we are quite far from
the expected radial distribution, we observe a secondary peak at the same position that the exper-
imental results. This shows that our unsteady simulation is able, in a certain way, to capture the
complex heat transfer on the plate. This was in fact expected from the results in Section  2.3.5.2
where we clearly showed our ability to capture the complex turbulent structures in the overall
analysis of the ow behavior.

2.4 Conclusion

To conclude, this chapter made it possible for us to better understand the complexity of the phys-
ical phenomenon occurring during the impingement jet cooling. We proposed in this chapter two
different numerical frameworks to solve this complex aerothermal problem. The rst one used
ANSYS CFX and ANSYS Fluent and the second one used Cimlib-CFD. The preliminary study using
the ANSYS framework clearly showed the need to have a fully 3D turbulent and unsteady resolu-
tion of the problem in order to capture the very speci ¢ heat transfer distribution of the impinge-
ment jet cooling on the impact plate. To do so, we then proposed numerical investigations around
this complex aerothermal case using the nite element code Cimlib-CFD.

In Cimlib-CFD, we rst proposed a description of the problem in terms of geometry and bound-
ary conditions. In particular, an argumentation on the top co- ow boundary condition and a
practical way to impose a turbulent inlet at the tube's entry were developed. Then, we explained
the choices of spatial and temporal discretizations for this aerothermal simulation and a post-
treatment procedure on the Nusselt number was developed.

The overall observations on the results obtained using Cimlib-CFD showed our ability to cap-
ture the global turbulent behavior of the ow. Indeed, the instantaneous velocity and pressure
elds clearly showed the rebound of the primary vortices on the plate creating secondary vortices
in the opposite direction. In particular, these vortices were identi ed using a vortex identi cation
method that corroborated our results. With this phenomenological analysis, we managed to ex-
plain the re-injection of cold uid air on the plate and thus, the appearance of the secondary peak
in the radial Nusselt number distribution.

From the analysis made on the velocity pro les in the boundary layer but also, from the anal-
ysis made on the Nusselt number distribution on the plate, the results showed that the impact
point was well resolved by the proposed numerical framework. However, from these results, sev-
eral perspectives can be proposed for future works. In fact, the in uence of the outlet boundary
condition still seems to play a crucial role on the ow motion in the boundary layer. The location
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of this boundary condition and the way to impose it in the nite element framework is still an
open question. Furthermore, the mesh in the boundary layer can still be improve in order to cap-
ture more precisely both (i) the velocity pro les in the boundary layer and (ii) the thermal gradient
on the plate. To tackle this problem, anisotropic mesh adaptation seems to be the best solution.

Finally, even if we are con dent that the proposed synthetic perturbations model for the tur-
bulent inlet boundary condition is, indeed, well suited for our simulation, other solutions can be
explored. Among others, we propose for future works a preliminary computation of the ow inside
a long inlet tube in order to provide the turbulent inlet boundary condition of a fully developed
jet. It will then be interesting to analyze the effects of this inlet boundary condition on the Nusselt
number distribution.

In the next chapter, we will present the set of numerical tools used to solve this kind of highly
convective aerothermal problem in Cimlib-CFD. In particular, we will propose additional numer-
ical models to reinforce the aerothermal coupling of the simulation. These numerical tools will be
validated on the benchmark case of the 3D ventilated cavity and different aerothermal couplings
will be tested in order to choose the best one for our simulations.

Résumé du chapitre en francais

Ce chapitre est consacré a I'étude aérothermique d'un jet non-con né€, isotherme, impactant ver-
ticalement sur une plaque a refroidir. Ces derniéres années, de nombreuses études numériques
et expérimentales ont été réalisées sur ce cas d'étude. En particulier, pour une distance d'impact
H/D A2 et un nombre de Reynolds d'injection supérieur a 10 000, il a été remarqué que la tur-
bulence de I'écoulement générait une carte thermique trés spéci que sur la plaque. En effet,
I'apparition de tourbillons secondaires dans I'écoulement va favoriser localement les échanges
thermiques convectifs et créer un second pique dans la distribution radiale du nombre de Nusselt.
Dans tous les travaux mentionnés, malgré la grande variété des méthodes numériques utilisées,
les auteurs insistent sur la dif culté de résoudre cette con guration aérothermique a n d'obtenir
une distribution radiale du nombre de Nusselt en corrélation avec les études expérimentales. En
particulier, ils mentionnent I'importance de réaliser une simulation turbulente et instationnaire

en 3D qui demande (i) de gérer des géomeétries complexes en 3D, (ii) d'avoir des méthodes de post-
traitement ef caces et (iii) d'avoir la possibilité d'utiliser d'importantes ressources de calcul.

Dans ce travail, nous proposons d'utiliser un nouvel ensemble d'outils CFD pour résoudre ce
probléme aérothermique. C'est, a notre connaissance, la premiére fois que ce cas est réalisé avec
les outils numériques que nous développons au laboratoire. Pour cela, nous proposons d'abord
une description du probléme et de ses conditions aux limites. Ensuite, le choix des discrétisa-
tions spatiales et temporelles est développé dans notre contexte numérique. Par la suite, nous
proposons une méthode de post-traitement développée sur MATLAB et implémentée pendant
la thése qui permet d'obtenir en temps-réel la distribution radiale du nombre de Nusselt sur la
plagque.

Les résultats sur le comportement global de I'écoulement nous permettent de mettre en évi-
dence la capacité de nos méthodes numériques a capturer le comportement turbulent de I'écoulement.
En particulier, les visualisations instantanées des champs de vitesse et de pression permettent
d'observer le rebond des structures primaires sur la plaque, donnant naissance aux tourbillons
secondaires. De plus, le développement d'une méthode d'identi cation de tourbillons nous per-
met de corroborer ces résultats. Avec cette analyse, nous montrons notre capacité a expliquer
I'apparition du second pique dans la distribution radiale du nombre de Nusselt.

A partir de l'analyse faite sur les pro les de vitesse dans la couche limite mais également, a
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partir de I'analyse faite sur la distribution du nombre de Nusselt sur la plaque, les résultats mon-
trent que le point d'impact du jet est bien résolu avec les outils numériques proposés. Cependant,
venant de ces résultats, certaines perspectives peuvent étre proposées. En effet, I'in uence de la
condition aux limites de sortie semble toujours jouer un réle crucial sur le déplacement du u-
ide dans la couche limite. La localisation de cette condition aux limite et la maniére de l'imposer
dans un framework éléments nis est toujours une question ouverte a ce jour. De plus, le maillage
peut également étre amélioré dans la couche limite dans le but de capturer plus précisément (i) les
pro les de vitesse et (ii) les gradients thermiques sur la plaque. Pour résoudre cela, I'adaptation
anisotrope de maillage semble étre la meilleure solution.

En n, méme si nous sommes con ant que la proposition apportée pour générer des pertur-
bations synthétiques turbulente a I'entrée du jet est, en effet, la mieux adaptée a notre contexte
numérique, d'autres solutions peuvent étre explorées. Parmi d'autres, nous proposons dans le
futur d'effectuer un calcul préliminaire d'un jet dans un long tube d'entrée de maniére a fournir
un jet turbulent développé en entrée de la simulation du refroidissement par impact. Il sera alors
intéressant de regarder comment la distribution du nombre de Nusselt est affectée par cette nou-
velle condition aux limites.
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3.1 Introduction

In this chapter, we introduce the numerical methods used to solve aerothermal problems for tur-
bulent ows in Cimlib-CFD. Itis rstimportant to mention here that we solve decoupled aerother-

mal problems that require to solve two different PDE systems. The rst PDE system is dedicated
to the implicit solving of the unsteady incompressible Navier-Stokes equations to compute the
velocity and pressure elds v and p. This solver uses the stabilized nite element method intro-
ducedin[ , - JandappliedbyHachemetal.in[ ]. Inparticular, the VMS formulation used
in the latter paper shows to be favorable for simulating ows in the Reynolds number range of the
present study. Indeed, the assumption of a convection dominant problem still hold in our case
since we deal with turbulent ows associated to high Reynolds numbers. The solving of this rst
PDE system is the subject of Section 3.2.

The second PDE system is dedicated to the solving of the convection-diffusion equation for
the temperature u. It takes, as an input and from the previous resolution, the resulting velocity v
in the convection term. Considering the thermal diffusivity ~ afyjq of the problem, we compute it
from the physical parameters given in Table 2.1. We get:

Afluid /CE& /226l 6 mZ.Si 1 (3.1)
Ya1uid Cp

Therefore, with a thermal diffusivity of this magnitude, the convective heat transfers are consid-
ered to be dominants during the cooling. We thus refer to the use of the well known SUPG scheme
introduced in [ ] to stabilize the standard Galerkin formulation. The resolution of this thermal
nite element problem is the subject of Section  3.3. It is written in a generalized way using u to
refer to the solution of the problem that is, in our case, the temperature.

Furthermore, as we solve decoupled aerothermal problems, additional numerical models are
needed in order to achieve aerothermal coupling in the simulation. In this work, we use two dif-
ferent numerical models simultaneously: (i) The Sutherland law and (ii) the Smagorinsky Model
(SM). These additional numerical models are presented in Section 3.4

Finally, in Section 3.5, we propose a numerical study of the 3D ventilated cavity in order to val-
idate the numerical methods implemented in Cimlib-CFD and the additional numerical models
that we add in order to achieve aerothermal coupling. This study is based on a well documented
benchmark and allows, in particular, to test different aerothermal coupling con gurations in order
to choose the best one for our study.

3.2 Theincompressible Navier-Stokes equations

3.2.1 Governing equations

To x the notations, let - %RY be the uid domain, where d is the space dimension, and @- its
boundary. The strong form of the incompressible Navier Stokes equations reads:
Y%
Y(@VvAverv)jre ¥aAf

rev /A0 (3.2)

where r is the gradient operator, t 2 [0,tt4 ] IS the time, v(X,t) is the velocity, p(x,t) is the pres-
sure, Y2/ 4iq is the density and x is the position vector. The Cauchy stress tensor %afor a Newto-
nian uid is given by:

YaAE2 "(V)i p g, (3.3)
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with I4 the d-dimensional identity tensor and * A ¢,iq the dynamic viscosity. The strain rate
tensor " is de ned by:

£
" (V) /E% VATV (3.4)

In order to close the problem, Eqg. ( 3.2) are subject to the homogeneous Dirichlet boundary condi-
tions.

The weak form of problem ( 3.2) combined with ( 3.3) is obtained by multiplication of a test
function and integration by parts. Let H (- ) be the Sobolev space of square integrable functions
whose distributional derivatives are square integrable, and let V. % H(- 2@ be afunc‘FgonaI space
properly chosen according to the boundary conditions. Finally, letQ & q2L?(- ): _ q /&0 . By
denoting ( ¢ @ the scalar product of the space L 2(- ), the weak form of problem ( 3.2) on @- reads:

g Find (v, p)2V£quchthat ¢
1/2[(@V W)A(v¢rv W)]A 21" (v): "(W) i p,r¢w A(f,w), 8w2V (3.5)
r¢ v,q AEO 8920Q.

where Y2and ! are the density and the dynamic viscosity respectively.

The standard Galerkin approximation consists in decomposing the domain - into N ele-
ments - ¢ such that they cover the domain. Therefore, the elements are either disjoint or share
a complete edge (or face in 3D). Using a partition T4, the above-de ned functional spaces V and
Q are approached by nite dimensional spacesV  and Qy, such that:

Vi A{Vhjvh 2 CO¢- )", Vhj. . 2P (- &)", 8- e 2Th} (3.6)
Qn Z&{pniph 2C%- )", phj- . 2P (- ¢)", 8- ¢2Th} 3.7)

The Galerkin discrete problem consists therefore in solving the following mixed problem:

8

3 Find (vh,pn) 2 Vh £ Qp such that ¢
1/2[(@Vh Wh)A(Vh ¢ rvn, Wil A 24" (vh): "(Wh) [ IOh.f¢Wh A(f,wn), 8wp2Vy  (3.8)
F¢Vh dh /EO 8qh 2Qh

It is well known that the stability of the semi-discrete formulation requires an appropriate
choice of the nite element spaces V  and Qy that must ful Il a compatibility condition [ ]-
Accordingly, the standard Galerkin method using P1/P1 elements (i.e. the same piecewise lin-
ear space for Vy, and Qy,) is not stable. Moreover, convection-dominant problems (i@. problems
where the convection term v ¢rv is much larger than the diffusion term r¢ 2t " ) also lead to a
loss of coercivity in the formulation ( 3.5). This phenomenon manifests itself as oscillations that
pollute the solution.

3.2.2 The VMS formulation applied to the Navier-Stokes equations

In this work, we use a VMS method [ ] which circumvents both the previously stated problems
through a Galerkin approach. The basic idea is to consider that the unknowns can be splitinto two
components, a coarse one and a ne one, corresponding to different scales or levels of resolution.
First, we solve the ne scales in an approximate manner and then we replace their effect into the
large-scale equation. We present here only an outline of the method, and the reader is referred to
[ ]for extensive details about the formulation.

3.2.2.1 Basic principles of the multiscale approach

Let us split the velocity and the pressure elds into resolvable coarse-scale and unresolved ne-
scale components: v Z&vy Avland p £py, A p® The same decomposition can be applied to the
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weighting functions: w &£w, Aw®and q £qn A q® Subscript h is used hereafter to denote the
nite element (coarse) component, whereas the prime is used for the so called sub-grid scale ( ne)
component of the unknowns. The enrichment of the functional spaces is performed as follows:

V AV, ©VO Vo £V, 0© V) and Q £Qp ©QP. Thus, the nite element approximation for the time-
dependent Navier-Stokes problem reads:

Find(v,p) 2 V£ Q such that:
" @(vh AV, (wh, AW()¢_ A (vh AvO €r(vy AV, (w, chﬁq:_ Al (vh AV " (wp, AWC)¢_
_ i '(on A (),rd:(whAw()(]:_ /Elf,(whAw%q:_ , 8w2\V
"re (vi AVY,(gnAq% A0, 8q20Q.
(3.9
To derive the VMS formulation, we split Eq. ( 3.9) into a large-scale and a ne-scale problem.
Integrating by parts within each element, we obtain the so-called coarse-scale problem:

3 1/zi@(vh Av%,w_hq:_ Al/zi(vh AvOer(vy, Av‘),whq;_ Ai21""(vh):"(wh)¢_
i '(onApYrewn  AE(f,wWh). . 8Wh2Vho (3.10)

3 .
T e vy AVY,qn . /O, 8qn2Qp.

and the so-called ne-scale problem:

8 : . .
3 1/zl@(thvc),WOQ:_ Al/zl(thVCZ(l:r(thvC),woq:_ A|21"“(vh):“(wcﬁ¢_
i e | ¢ e e
i (prnAp9rew® Afw® , 8wl2Vv) (3.11)

B .
: lr¢(thv‘5,qh /A0, 8q°2Q°

where (¢@. represents the scalar product on the whole domain while (¢ ¢. , is the scalar product
on element - .

To derive our stabilized formulation, we rst solve the ne scale problem ( 3.11), de ned on
the sum of element interiors and written in terms of the time-dependent large scale variables.
Then we substitute the ne scale solution back into the coarse problem ( 3.10), thereby eliminating
appearance of the ne-scale while still modelling their effects . Asin[ ]; we recall here 3 important
remarks/assumptions that have to be made:

» by considering the small scale velocity as bubble functions vanishing on the boundaries
of the element, terms involving integrals over the element interior boundaries will be ne-
glected,

» we neglect the second derivatives of the weighting function in the momentum residuals of
(3.11),

« asthe ne-scale space is assumed to be H *-orthogonal to the nite element space, crossed
viscous terms vanish in ( 3.10) and (3.11).

3.2.2.2 The ne scale sub-problem

Under several assumptions about the time-dependency and the non-linearity of the momentum
equation of the sub-scale system detailed in[ ], the ne-scale solutions vPand p®can be written
in terms of the time-dependent large-scale variables using residual-based terms that are derived
consistently. Forall - ¢ 2Ty, we have:

V3., EikR
¢ 3.12
PR c (342
where the momentum residual R, and the continuity residual R . are expressed as:
Rw Afi @i Yun Crvhir pp (3.13)

R.Ar¢ vy
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In this work, we adopt the de nition proposed by Codinain [ ] for the stabilizing coef cient
éxand e

‘H 2]/1(Vh k. eﬂZ U‘41 1-[2: i %

— , 3.14
e > (3.14)

ek AE
M 1 ﬂZ uCszh k. . ﬂ2> %

ce ]/2 C_‘]_he

(3.15)

where hg is the characteristic length of the element and c¢; and c; are algorithmic constants. We
take them as ¢ /A4 and c, /2 for linear elements. kvnk. , is the coarse scale velocity norm on the
element, de ned by:

q____
kvpk. £ V2, Av;h Avih (3.16)

X,

3.2.2.3 The coarse scale sub-problem

Let us consider the coarse scale problem ( 3.10). Taking into account the assumptions prescribed
in[ Jandrecalled in Section 3.2.2.1forthe ne scale elds, the large-scale system becomes:

8 i ¢ R ¢
3 1/2(_@Vh,Wh).¢A Yp Crvp,wy - A Yy ervOwy o A28 (vy) st (wy)
- 'ph,r¢wh i 'pO,r¢(\t/vh _A(F,wh)., 8Wh2Vhg (3.17)
Yevhgn . A'revlqn . A0, 8qn2Qn.

Then, integrating by parts the third term in the rst equation and the second term in the sec-

ond equation of ( 3.17) and substituting the expressions of both the ne-scale pressure and the
ne-scale velocity of ( 3.12), the large-scale system reads:

8

i ¢ P i ¢ i ¢
3 Y{@vn,Wp). A v, ¢¢th,Wh i 2Ty KR v A Wy e/-\ 2v" (vp) :" (W) .
|
s i¢ph,Pr¢ Wh i . e2Th(&cR ofCwp).  A(f,wp)., 8wh2Vho (3.18)
| |
" revh,Oh L i -1, ¢ékRwran . AO0, 80n2Qp

Finally, substituing the residuals of the momentum equation and developping all the addi-
tional terms, we obtain a modi ed coarse scale formulation expressed exclusively in terms of
coarse scale variables. The new modi ed problem for linear tetrahedral elements can now be
decomposed into four main term: the rst one is the standard Galerkin contribution, the second
and the third terms take into account the in uence of the ne-scale velocity on the nite element
components and the last term models the in uence of the ne-scale pressure onto the large-scale
problem. We nally get:

i ¢ i ¢ i ¢
Y{@Vh Avp.r vy, wp). Alzl""(Vh)i"(Wh) i Iph,f Wh Alr VhoOh _ i (F,wh).

X i ¢
A ik A@Vh Aviyr vin) AT phi fYnr wh .

- 32Th . ¢
i 3.19
A ik A@vn Avh.rvh)Ar ppi fran (3:19)
- 82Ty
A (écfCvn,réwy). A0 8wh2Vho, 80n2Qh
- eZTh

Compared to the standard Galerkin method, the proposed stable formulation involves addi-
tional integrals that are evaluated element-wise. These additional terms represent the stabilizing
effect of the sub-grid scales and are introduced in a consistent way in the Galerkin formulation.
They make it possible to avoid instabilities caused by both dominant convection terms and in-
compatible approximation spaces.
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3.3 Convection-diffusion equation

3.3.1 Governing equation

The second PDE system we solve is the thermal convection-diffusion system. To begin this section,
let's introduce some notations. Referring to Irissarri etal. in | ], we express the PDE as:

8

< @uij atuAveru £f in -
u/ g onijg (3.20)
Bu/h onjp

where r and ¢ are the gradient and the Laplacian operator, a is the diffusion coef cient and v
the velocity eld. B is an operator acting on the boundary that de nes the natural boundary
condition; g is the value of the Dirichlet boundary condition and  h determines the Neumann
boundary condition. In this work, we consider only Dirichlet boundary conditions. For the case

of a convection-diffusion equation, we de ne the generic differential operator:

Lu&ZjatuAveru (3.21)

We de ne the solution and test function spaces as standard Sobolev spaces:

S A{u 2 HY- )ju &g onj g}

V A{w 2 HY(- )jw /A0on j g} (3.22)
The variational formulation of Eq. ( 3.20) is:
8
< Find u2S suchthat:
(3.23)

a(w,u) A(w,f), 8w2V

where a(4 ¢ is a bilinear form, ( ¢ ¢ the L?(- ) inner product.

3.3.2 The Galerkin FE formulation

Applying the Finite Element Method (FEM), we mesh the domain into N non-overlapping ele-
ments - ¢. We write - and | as:

~ N ~ N
-E -6 i E e\ (3.24)
e/ e/l

We de ne the FE solution and weighting function spaces S h15S and V" 14V such that:

S h/E{UhZHl(- )j Uhj_EZPk, uhjigﬁEg 8- e2'~}

: ~ 3.25
VP E{wp 2HY- ) jwhj. , 2Py, Whj, A08- ¢2-} (3.25)

with Py the space of polynomial of degree k. In this work, we will only use linear elements, hence
k /1.

With these de nitions, we apply the standard Galerkin method:

8
< Find up 2 S " such that,
(3.26)
a(Wn,up) Ewp, 1), 8wy 2V"

It is well known that this formulation is unstable and leads to spurious oscillations when the

convective term of the equation is dominant. For this reason, we stabilize the formulation using
the SUPG numerical scheme.
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3.3.3 Streamline Upwind Petrov-Galerkin (SUPG) method

The SUPG method consists in introducing stabilizing terms in the standard Galerkin formulation.

To do so, for all terms in Eq. ( 3.26), we replace the weighting function wy, by a new weighting
function wpA¢everwy. This modi cation of the formulation is usually interpreted as adding more
weight to the node upstream, reducing the weight on the node downstream. It adds an arti cial
weighted diffusion along the streamline direction. This stabilization is done locally and on each
element we have:

a(Wp A eV erwn,up) Awn A ceverwy, f) 8wy 2V" (3.27)
Thanks to the bi-linearity of a(¢ ¢ and of (¢, the formulation can be written as:
a(wp,up)Aa(ceverwp,up)i (ceverwep, f) Awp,f) 8wy 2vh (3.28)
And so,
a(Wp,up)A(ceverwy, L upi f)AEWn,f) 8wy 2Vh (3.29)

Finally, summing on each element, we have a new bi-linear form  a, (¢ @ and we can write the
following formulation:
X
a,(Wh,un) Ba(wn,up)A  (verwp,ce(L uni f))., Awn,f) 8wy 2V" (3.30)
- 02
Concerning the choice of the stabilizing parameter ¢, we refer to Hughes etal. in[ ]and we
choose: vl 1
AE—=_ coth(Pe. )i
2jjVjj2 Pe.
where he is the local mesh size, computed as described in[  ]. Pe. _ is the local Peclet number
de ned as:

(3.31)

e

Vilahe
¢ 2a
Remark 2 In order to study the error of this numerical scheme, we use the VMS analysis. In fact, it
has to be noted that the SUPG scheme can be considered as a particular form of the generalized VMS
formulation. Indeed, the stabilizing term of Eq. ( 3.30) can also be seen as the effect of the subscales
on the coarse scales. Hughes gives more details about this concordance in{ 1.

Pe. (3.32)

3.3.4 The VMS formulation applied to the Convection-Diffusion equation

As in the previous section, the VMS formulation consists in decomposing the solution and test
functions spaces into two sub-spaces: a mesh scale subspace (or coarse scales) (S ",v") and an
under-mesh scale subspace (or subscales) (S °V9 suchthat S &S "©S %and vV £v"©V° There-
fore, we can decompose the solution and test functions as follow:

u&Zup Au® up2Sy, u%2s?©

w Aw, AwC w,2W,, wo2s 0 (3.33)

Thanks to the orthogonality between the coarse scales subspace and the subscales subspace,
the variational form can be split into a coarse scales sub-problem and a subscales sub-problem
[ I
a(wp,up)Aa(wp,u9 Awy, f) 8wy 2V"
awOup)Aawlud £wlf) sw2Vvo
We start by solving the subscales sub-problem (second equation). For smooth functions on the
element interior but rough across the inter-element boundaries, the integration by parts leads to
the following equation:

(3.34)

awlud £ijawlup) AW )

awOuY A i WOL Ui 1) (WO[B un); i (WOB up);, BWO2VY (339
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where the jumpterm|[ ¢ represents the difference of the uxes on both sides of the element bound-
aries (see[ ]for more details). An analytic solution of problem ( 3.35) can be found. This solution
will be developed in the next chapter.

3.4 Aerothermal coupling in turbulent ows

As mentioned in the introduction of this chapter, we solve decoupled aerothermal problems in
Cimlib-CFD. Therefore, we have to implement additional numerical models in order to take into
account for the aerothermal coupling between the temperature  u and the velocity/pressure cou-
ple (v,p). To do so, we compute both: (i) a modi ed dynamic viscosity ! (qt5 and (ii) a modi ed
thermal conductivity | {otal -

Indeed, a thermal model is rst used to compute the modi ed uid dynamic viscosity 1T
which will then be taken as input in the Navier-Stokes VMS solver. The modi ed uid dynamic
viscosity 7 takes into account the variations of dynamic viscosity due to the temperature's uc-
tuations in the uid. To compute it, we use the well known Sutherland law introduced in [ ].

Then, a sub-grid scale turbulence model is used to compute the turbulent viscosity Liurb;
which will be then used to compute the modi ed thermal conductivity . total ; Which will then be
taken as an input for the thermal convection-diffusion solver. The turbulent viscosity Liurp allows
taking into account the turbulent characteristics of the ow in the computation of the modi ed
thermal conductivity | total - TO COmpute it, we use the well known Smagorinsky Model (SM) in-
troducedin[ .

3.4.1 Thermal model

This rst numerical model is used to compute the modi ed uid dynamic viscosity 1 1 that takes
into account the dynamic viscosity variations due to temperature's uctuations in the uid. In-

deed, Sutherlandin[ ] explicit the modi cation of uid viscosity along with its temperature with

the following formula:

The Sutherlandslaw [ ]:

u

T BT, Ac
L1 A fid

Tinit TAC

(3.36)
with 1 ¢14iq the tabulated uid dynamic viscosityatT i+ and C a xed constant equals to 110.4 K.

3.4.2 Sub-grid scale turbulence model

The second numerical model is used to compute the turbulent dynamic viscosity Liurp Which
allows taking into account the turbulent characteristics of the uid in the modi ed thermal con-
ductivity | total - TO compute the turbulent dynamic viscosity ! {yrp, We use the well known SM
which is written as follows:

The Smagorinsky Model (SM)[ ]

_ q
Lturb A 1uid (Cste)?iSui A% uid (Cste)® 25 Sij (3.37)

where Y4 ,iq is the tabulated uid density, ¢ is the length scale related to the grid size. We take

¢ . as the cubic root of the cell volume. Therefore we have: ¢ &£} oj with j- ¢j the volume of
the element - . One can note that this de nition works well on isotropic elements but can be
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discussed in the case of anisotropic meshes. Theterm S |, corresponds to the symmetric part of the
velocity gradient and, & corresponds to the symmetric part of the resolved velocity gradient on
the mesh nodes.

The Smagorinsky constant C ¢ needs to be speci ed prior to the simulation. The lack of clar-
ity concerning the optimal value of the Smagorinsky constant is one of the main drawback of this
model. Indeed, the Smagorinsky constant C g depends on: (i) the type of ow, (ii) the lter being
used and (iii) the numerical method. In [ ], Lilly et al. found a theoretical value equals to 0.18
whereas Germano et al. in[ ] have introduced and developed a dynamic sub-grid scale model.
Indeed, the authors replaced the constant coef cient C ¢ by a parameter C 4(x,t) which evolves dy-
namically in space and time. In this study, we choose the theoretical value of Lilly et al. and we
take Cg A0.18.

The second drawback concerns the introduction of too much numerical diffusion in particular
in the laminar regions located near the plate. In order to reduce the turbulent viscosity near the
walls and to take into account the anisotropy of the turbulence, the SM is modi ed using the Van
Driest damping function introduced in [ ]- We have:

Lturb A 1uid (Cstef:)3S) (3.38)
with

The Van Driest damping function:

f. A1 el 2125 (3.39)

where z* is the dimensionless wall distance. Indeed, z* is de ned by (i) the absolute distance to
the nearest wall z, (ii) the friction velocity at the nearest wall  u, and (iii) the local uid kinematic
viscosity © ¢yig - Itis written as follow:

Z U,

AEps_ (3.40)
[0} .

fluid

where u, is computed thanks to the wall shear stress ¢ . We have:

s
‘w
u, (3.41)
¢ Y3 1uid
Therefore, we get a new expression of zA only written in terms of uid dynamic viscosity:
y s
Fluid Z ;
Ay ow (3.42)
Ytiuid  YFuid
In Equation 3.42, the wall shear stress ¢,y is given by:
éw A fiuid (r VOn)em (3.43)

where n is the normal direction of the walls. To compute the normal  n, we use the Level-Set func-
tion ®characterizing the walls. Using the Level-Set method, we can de ne the normal direction to
the walls as:

r®

——

iir ®j

Finally, we de ne a new dynamic viscosity 1!t thattakes into account (i) the Sutherland law
and (ii) the turbulent sub-grid scale model. We have:

(3.44)

! total A TAl turb (3-45)
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3.4.3 Effects of turbulence on thermal conductivity

Now that we have computed the turbulent dynamic viscosity 1 ¢y, , We compute a modi ed ther-
mal conductivity | {qta that takes into account the turbulent effects of 1 ¢y . Itis written as:

, total ZE, fiuid A, turb (3.46)

where the rstterm | ¢,iq is the tabulated thermal uid conductivity.

The second term however, allows taking into account the change of conductivity due to the
ow turbulence. Itis written | (,rp and is expressed with the following formula:

C 1
p ~ turb
s turb T

Pr

(3.47)
with ¢, the speci ¢ heat of the uid and P r the Prandtl number de ned here with the Rayleigh
number R a and the Grashof number G r according to the following de nition:

Pr £— (3.48)
Gr

The Rayleigh number is de ned by the following formula:

-
Ra E——————(Twail i Tref)Ly (3.49)
fluid ®Fluid
where g is the acceleration due to gravity, ~ is the thermal expansion coef cient, ° ¢),iq isthe kine-
matic viscosity, ®¢|yiq isthe thermal diffusivity, T 4 isthe temperature of the hotwall, T ¢ isthe
temperature far from the walland L . is the characteristic length of the problem.

Using also these parameters, the Grashof number is de ned by the following expression:

9 (Twall i Tref)Lgl/%uid
Gr /£ (3.50)
 fluid

Therefore, we can deduce the Prandtl number expression which is:

° fluid
Pr /E (3.51)
® uid
Finally, we compute the modi ed thermal conductivity with the following equation:
Cp * turb
. total #E, fluid Ap—ru (3.52)

To conclude, we indeed achieve a strong correlation between the turbulent activity and the
uid's thermal properties. The proposed coupling allows to take into account: (i) the modi cations
of the dynamic viscosity due to the temperature's variations and (ii) the modi cations of the uid
thermal conductivity due to the sub-grid scale turbulence. Thus, we reinforce the aerothermal
coupling of the simulation.

3.5 Validation case: mixed convection problem of a 3D ventilated cavity

In this section, we propose to validate the numerical methods previously introduced on a well
known aerothermal benchmark called the 3D ventilated cavity. The validation case presented
here concerns the numerical simulation of an indoor air ow inside an empty room equipped with

a mechanical ventilation system. In this aerothermal problem, the air ow is moved around the
room by mixed convection. Indeed, the air distribution in the room results of two effects: (i) the
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effect due to the temperature difference inside the room (natural convection) and (ii) the effect of
a mechanical ventilation system (forced convection).

In the past years, this case has been treated with the two common approaches: the experimen-
tal approach and the numerical approach. The experimental approach requires real life measure-
ment in a full-scale environmental chamber that needs to be isolated from the external world. The
work of Nielsen etal. in[ ] proposes an experimental study with measurement, models and cal-
culations of the velocity and temperature characteristics in two dimensions. This work provides
a consistent database of velocity and temperature distributions that has been largely used in the
literature and allows numerical scientists to compare their results to real-life experimental mea-
surements.

From a numerical science point of view, indoor air ows have been extensively investigated in
the past decades. In particular, they have proved to be reliable benchmarks for numerous tur-
bulence model adjustments. Therefore, several works can be found in the literature concerning
simulations of indoor air ows using RANS or LES approaches. In particular, Chen et al. use this
benchmark to asses the performance of ki 2 modelsin[ ]. Furthermore, Zhangetal. in[ ]
investigate two LES models: a classical SM, and a Filtered Dynamic Scale Model (FDSM). Their re-
sults show that the predicted velocity, temperature and turbulence distribution agree reasonably
well with the experimental data. However, they observe that the FDSM has trouble determining
with good accuracy the turbulence distribution and therefore, the heat transfer inside the cavity.
The SM is therefore said to be preferred in this con guration.

The goal of this study is to validate the numerical methods presented in this chapter in term of
(i) air ow solution, (ii) heat transfer and (iii) aerothermal coupling. To do so, in Section 3.5.1, we
start by presenting the geometry and boundary conditions of the case along with the description
of the 3 different computations realized to validate the aerothermal coupling. Then, in Section
3.5.2.1the results in terms of global averaged velocity and temperature elds are presented and
analyzed. Furthermore, the different resulting variables related to the aerothermal coupling are
presented and discussed in Section 3.5.2.2 Finally, a comparison between the three aerothermal
computations and the experimental data is made in Section 3.5.2.3 leading to validation of the
numerical framework.

3.5.1 Description
3.5.1.1 Geometry and boundary conditions

The geometry of the cavity is presented in Figure 3.1. The cold jet is injected through a slot of
height hi, Z£0.018 m with a velocity magnitude V i, Z£0.57 m.si 1. These two parameters give a
Reynolds number value at the injection equals to 684. The temperature of the cold jet is xed at
Tret A£155C. The two walls of normal X axis, along with the top wall are maintained at temperature
Tref. The wall corresponding to the heated oor is maintained at temperature T a1 £35*C. Fi-
nally, the two walls of normal Y axis are considered to be adiabatic. The air ow is free to evacuate
the cavity through an output slot of height  hgy; £0.024m. At initialization, except on the bound-
ary conditions, the velocity eld is null everywhere inside the cavity. The geometric and physical
parameters of this particular con guration are given in Table 3.1

Except for the walls, the initial temperature in the domain is taken as the averaged value be-
tween the temperature of the heated wall T 5 and the temperature of the injected jet T . We

have:
Twall ATref +
To ATmean FE# A25C (3.53)

Form Eg. 3.49, and replacing by the values given in Table 3.1, we compute the Rayleigh num-
ber and we obtain R a /£2.4e°. As well, from Eq. 3.50, we obtain the Grashof number G r A3e°.
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due to the temperature and by considering the ow turbulence only in the thermal conductivity.

Solver Computation A | Computation B | Computation C
Navier-Stokes VMS 1 f)uid ! total LT
Convection-Diffusion . fluid , total , total

Table 3.2 — Three types of numerical modeling for the aerothermal coupling

In the next section, we will compare the three computations A, B and C with experimental
data and we will deduce which one is the best choice to solve this kind of aerothermal problems
in Cimlib-CFD.

3.5.2 Results on the 3D ventilated cavity

In this section, we rst present the results in term of temporal averaged velocity and temperature
elds to asses for the qualitative shape of the aerodynamic and thermal solutions. The presented
computation corresponds to Computation B which requires the computation of all the aerother-
mal coupling parameters. It allows us then to present the variations of the aerothermal coupling
parameters inside the 3D ventilated cavity. Finally, a comparison with experimental data and pre-
vious numerical studies is proposed to validate the results.

3.5.2.1 Resulting temporal averaged velocity and temperature elds

The results on velocity, pressure and temperature elds presented in this section are the resulting
temporal averaged elds computed over the complete simulation (i.e. during tiotal Z£1208S). The
temporal averaged values are computed at each point of the mesh taking into account a data out-
put frequency of 100 increments.

As a start, we present in Figure 3.3 a slice view of the mean velocity magnitude eld along with
the streamlines of the mean velocity vector inside the cavity. We can observe the characteristic
clockwise movement of the uid due to the injection of air at the top left corner. Also, as shown by
Ezzouhrietal.in[ ], we observe on the streamline gure the counter clockwise movement of the
uid in the upper right part and the bottom left part of the cavity.

Figure 3.3 — Slice view of the mean velocity magnitude on plan XZ atY 40.15 (left) and streamlines of the
mean velocity vector (right).

The mean temperature eld is presented in Figure  3.4. We observe that the heat from the hot
plate is well convected inside the cavity and follows the clockwise movement of the uid.
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Figure 3.10 — Results on the temperature T at x A£0.52m, y A£0.15m along the Z axis direction.

therefore the one proposed in Computation B that takes into account the Sutherland law and the
turbulence sub-grid scale model to compute either the dynamic viscosity, and the thermal con-
ductivity.

3.5.3 Conclusions on the validation case

To conclude, the 3D ventilated cavity benchmark case allows us to validate the numerical methods
presented in this chapter, and used in Cimlib-CFD to solve aerothermal problems. In fact, the re-
sults presented here are in good agreement with experimental data. Furthermore, this benchmark
study makes it possible for us to validate the implemented numerical models dedicated to the
aerothermal coupling and to test three different types of coupling between the ow and its tem-
perature. The coupling correspondingto Computation B was therefore selected to solve aerother-
mal problems in Cimlib-CFD and in particular, to solve the single impingement jet cooling case
presented in the previous chapter.
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mulation VMS.

Le second systéme concerne la résolution de I'équation thermique de convection-diffusion
pour calculer la température du uide. Cette résolution utilise la vitesse calculée dans le systeme
d'équation précédent dans le terme de convection. Les transferts thermiques convectifs sont con-
sidérés dominants pendant la simulation. Pour cette raison, nous utilisons le schéma de résolu-
tion SUPG de maniére a stabiliser la formulation éléments nis du probléme thermique.

Nos systémes d'équations étant découplés, nous proposons dans ce travail l'introduction de
deux modeéles numériques additionnels permettant de renforcer le couplage aérothermique de la
simulation. Ces modeéles sont: (i) la loi de Sutherland (i) et le modéle de sous-maille de Smagorin-
sky.

Ces méthodes numériques sont testées et validées sur un cas de cavité ventilée en 3D. Les
résultats montrent qu'ily a une bonne corrélation entre nos résultats et les références numériques
et expérimentales. En particulier, trois couplages aérothermiques différents sont testés dans le cas
de la cavité 3D. Les résultats montrent que le meilleur couplage aérothermique est réalisé lorsque
les deux modéles additionnels sont pris en compte dans le calcul de la viscosité dynamique et de
la conductivité thermique du uide.
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4.1 Introduction

The use of CFD for industrial applications has been in constant increase for the last decades. Re-
searchers are continuously developing new techniques to reach higher level of precision. Never-
theless, to comply with industrial expectations, a trade-off has to be found between high precision
levels and high computational costs [  ]. Different strategies can be found in the literature. Most
of them are related to high order elements (see[ - ]), parallel computing (see[ , — ])orin
particular, adaptive methods (see[ - ).

Indeed, adaptive methods make it possible to improve the accuracy and the ef ciency of nu-
merical methods. In particular, anisotropic mesh adaptation has proved to be powerful in captur-
ing dynamically the heterogeneities that can appear in numerous physical applications including
those having boundary or inner layers [ , ] Inthese cases, gradients of the solution are highly
directional and can be captured with a good accuracy using fewer additional elements. These
mesh adaptation techniques are based on local modi cations of an existing mesh. Usually, it con-
sists in a local stretching of the elements which is de ned by a metric eld. This metric eld is
built from an error analysis on the mesh. In [ ., ]forexample, the error analysis is done on
the edges of the elements.

In fact, theories of anisotropic error estimation have been well developed, leading to some
standardization of the adaptation process. Error estimation of the discretization error and in par-
ticular, of the interpolation error have been performed in a number of works such as in [ -1
From the interpolation error analysis, several recent results [ — ] have brought renewed focus
on metric-based mesh adaptation where the underling metric is derived from a recovered Hessian.
Indeed, the Hessian based metric mesh adaptation has several advantages from which we note: (i)
the general computation framework, (ii) the relatively easy way of implementation and above all,

(iii) the robustness.

Despite the practical construction of this kind of anisotropic error estimators, the information
derived from them is only an indicator for the mesh adaptation mechanics. Indeed, the ne scale
features related to some dynamic ow solutions are still dif cult to capture without considering
the PDE-dependent approximation error. The estimation of the latter involves the development
of multiscale a posteriori error estimators that can be computationally prohibitive.

However, the VMS method that we use to stabilize our continuous nite element scheme pro-
vides, by construction, a cost free PDE-dependent a posteriori error estimator. The VMS approach,
introduced in the previous chapter, consists in the splitting of the solution into a resolved part (i.e.
coarse scales) and an unresolved part (i.e. subscales). The resolution of the unresolved part gives
a direct access to the sub-mesh scale information of the solution and allows us to compute an ap-
proximation error estimator without solving any additional equation. Recently, several works re-
lated to VMS (or subscales) error estimators in the VMS framework have been published. Granzow
etal. in[ ]developed an error representation for output quantities based on a dual enrichment
technique. Also,in[ ], Baiges et al. proposed a general error estimator for the nite element solu-
tion of solid mechanics problems. John et al. proposed in [ ] arobust residual-based a posteriori
estimator for the SUPG nite element method applied, in particular, to stationary convection-
diffusion-reaction equations.

In this chapter, we compute the subscales error estimator using two different methods. The
rst one uses stabilizing parameters derived from the VMS analysis and local norms de ned on
the elements. It has been developed by Hauke etal. in[ , ]and provides an element-wise com-
putation of the error. Referring to Irisarri et al., the second method uses a linear combination of
bubble functions to establish a pointwise computation of the error. It has been developed for one-
dimensional transport equation in [ ] and for 2D transport equation in [ ]
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The rst contribution of this work is then to propose a new isotropic mesh adaptation tech-
nique based on the previous subscales error estimator. To do so, we de ne a hew isotropic metric
tensor H j5o and we solve an optimization problem under the constraint of a xed number of el-
ements. Until now, the VMS error estimators were only derived for isotropic mesh adaptation. In
this work, we also propose to use the sub-mesh scale information for anisotropic mesh adaptation.

The second contribution is therefore to combine both the coarse scales interpolation error
indicator and the subscales error estimator for anisotropic mesh adaptation. To the best of our
knowledge, such strategy has never been tempted. To do so, we derive a new anisotropic met-
ric tensor H ;‘ﬁi"svo that allows taking into account the anisotropic variations of the solution on the
mesh and also relies upon the sub-grid information of the solution. This new anisotropic mesh
adaptation technigue takes into account the nite element VMS framework used for the numeri-
cal resolution of the convection-diffusion equation. In fact, the VMS approach allows quantifying
the a posteriori subscales errors that can be used as weight to enrich the anisotropic error indi-
cator of the conventional Hessian based approach. Unlike existing anisotropic a posteriori error
estimatorslikein[ — ]to mention afew, this hybrid approach takes advantages from both a pri-
ori and a posteriori methods. Indeed, we build an isotropic a posteriori error estimator targeting
the subscales and we combine it with an anisotropic a priori interpolation based error indicator
targeting the coarse scales.

To begin this chapter, we refer to the VMS formulation applied to convection-diffusion prob-
lems introduced in Chapter 3, Section 3.3. From this mathematical background, we present, in
Section 4.2, the two different computation methods of the subscales error estimator. Then, mesh
adaptation is presented in Section 4.3. As a reminder, we introduce the Hessian based anisotropic
mesh adaptation in Section 4.3.1. Then, we de ne the isotropic metric tensor  H g0, built from
the subscales error estimator in Section 4.3.2. Finally, we present the new combination of the in-
terpolation error indicator and the subscales error estimator in Section  4.3.3. This combination
is tested on 2D and 3D convection-diffusion benchmarks in Section  4.4. In this latter section, an
error analysis of the exact error is made to highlight the two contributions of this chapter. Finally,
we apply these new mesh adaptation techniques to the single impingement jet cooling in Section
4.5in order to demonstrate the capabilities of these multiscale mesh adaptation techniques on a
realistic industrial case.

4.2 A posteriori error estimation on solution's subscales

To begin, we can recall here that the VMS analysis introduced in Section 3.3.4 gives access to a
solution of the subscales u® Indeed, we gave an exact expression of u®in Eq. (3.35). Consider-
ing the relation u ZAup, Au? this part of the solution can also be considered as the subscales error
However, u®is not explicitly computed during the simulation. To obtain it, we use an a posteriori
computation.

In this chapter, we use two different methods for the a posteriori computation of the subscales
error estimator. Both methods are residual based and rely upon convection-dominated regime
assumptions:

« The rst method consists in computing the error estimator as the multiplication of the sta-
bilizing parameter's norm and the residual’s norm. The computation is done element-wise
because of the local de nition of the stabilizing parameter and the local error norms used.

e The second method does not use the stabilizing parameter. The error estimator is com-
puted thanks to the pointwise error estimation of Irisarri etal. in [ ] It uses a set of bubble
functions as a substitution of the subscales Green's functions.

65



CHAPTER 4. VMS ERROR ESTIMATOR FOR ANISOTROPIC ADAPTIVE SIMULATIONS

In this section, we give the key features of these two computation methods.

4.2.1 Computation using stabilizing parameters

Going back to Section 3.3.4, we had the following sub-problem for the subscales:
awOuY AiwoL uni f)i WO[BunD: i WOBup);, 8wo2V°

According to [ ], this problem can be solved analytically using Green's function ~ g¥x,y). We
have the following paradigm:
z Z z

u)&i . gL uni DA yi _ gxIB undiyi g% y)(B upn)y)diy (4.1)

-y iy ihy
This error estimator includes:
* Interior residuals, L uni fin .
« Inter-elements residuals, [ B up]on i
» Natural boundary condition residual B up on

From here, multiple cases can be considered. In this work, we use linear shape functions with
a piecewise constant source term f. Therefore, we can make the assumption that the residual
L unj f isPO. Furthermore, we consider only Dirichlet boundary conditions. Thus, we neglect the
effects of the boundary condition residual. Finally, as for all convection-dominated regimes, we
will rst consider the smooth case, i.e. that the discontinuity of the subscales is not preponderant
and that the inter-elements residuals can be neglected. With these assumptions, we write:

z
u) i gL uni F)(y)d-y (4.2)
Ty

We will also make the assumption that the error has a local in uence. Thus, we can replace the
subscales Green's function by a local Green's function that vanishes at the element boundary, i.e.,
g%(x,y) £0 on i €. We can write:

g%%,y) Yag®(x,y) Yacet(yi X) (4.3)
with,
1 Z Z

_ ®(x,y)d- exd- 4.4
meas(- o) - ., g (X,y)d- exd- ey (4.4)

Tey

e FE

In[ 1, the author shows that the above assumptions work well for convection-dominated
regimes. In fact, numerical experiments show that for high Peclet number ows and stabilized
solutions, the contribution of jump terms is negligible.

From here, we can therefore write a local error estimator like the following:

Z Z
ui-  Yai goGY)(L uni F)WA- y Ei cex(yi X)L upi F)Y)d- y Ajcell uni f)(X)
: : (4.5)
Taking the L2 norm, we can nally write the following local error estimator for the solution
subscales:
JudiiLz.  Egeifil uni fiicz. . (4.6)

We know the expression of ¢¢ from the application of the SUPG method (see Section 3.3.3) and
we can a posteriori compute the PO residual in our nite element computation domain. As said
in the introduction, the sub-scale information computed here is element-wise and can be used as
such in mesh adaptation.
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4.2.2 Computation using high order bubbles functions

In this section, we refer to the work of Irisarri et al. in [ ]. This time, we apply a pointwise com-
putation of the error estimator. This computation method consists in decomposing the error into
two components according to the nature of the residuals:

u%x) &£, () A ugon (x). 4.7
The rstterm ugub is the internal residual error and it is related to the local internal residual,
f i L up,inside the elements. As we will see later, this part of the error is modeled locally thanks
to a set of bubble functions. The second term ugoll is the inter-element error. It represents the
pollution error due to sources of errors outside the element. As said in the previous section, it is
negligible when considering convection-dominated regime. Consequently, in this work we will
consider only the internal residual error and suppose that:

u%x) vau,, (%) (4.8)

4.2.2.1 Practical aspects

As proposed by Irisarrietal. in[ ], the way of obtaining a numerical solution of u gub is by solving
the following discrete problem:

8 0 h
< Findu,,, 2S |, suchthat
A (4.9)
AWy Upyp) EWpyp, f i L Un), 8w, 2S Ly
This time, the error component is expressed with a combination of bubble functions b;:
0 Lt
Upup ) & ¢ bi(x) (4.10)
iAa

Considering bubbles functions of order 3, we have:
ud,, (X) ZcPb1(x) A chba(x) A clbs(x) (4.11)
with cib unknown constant to be determined.

Referringto [ ], the de nition of the rst bubble function b1(x) is the following:

oAL
by(x) Ad A1)dAL T

s |

i AL

(4.12)

where d is the dimension of the problem and ,Ai are the barycentric coordinates in the reference
element.

The next bubble functions by(x) and bs(x) are built by adding the monomials of the Pascal tri-
angle with center in the barycenter c¢ /(»e, ¢) of the element. For example, in 2D, in the reference
element: - ;e A{(» ):0- »- 1;0- ~ - 1j »}, we choose the following bubble functions:

bi(»" ) A27E » (1i »i ")
ba(»” ) A27E » (L7 »i )i ™) (4.13)
ba(» ) E27£» (Li »i ") i b)

with ce (), ), » A£L/3and " A£L/3.
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Approximating ugub(x) by Taylor series and neglecting the second order terms, we have an
expression of ugub(x) close to the centroid c; of the element[ :

d(fj L up). d(fj L up).
W0, () ¥abs (O)(F i L uh)(ci)Ab;(x)%Jy@iAb@(x)%wmo (4.14)
where: Z Z
by, £  g°(x.y)(y1i ci1)d-y and by £ g°(xy)(y2i Ci2)d- y (4.15)

As said before, we make the assumption that the residual f j L uy is PO. Therefore, we have:

d(fi L up). d(fi L up).
S il LV Y = L . - /EQ 4.16
d V1 JylﬁE:. d Y2 ])/2/EI| ( )

Consequently, the internal residual can be simply expressed as follows:
udup () AD1)(F i L up)(ci) (4.17)
Developing the residual with the convection-diffusion generic operator L , we have:
U () AD1)(T () Aatun(c)i verun(ci)) (4.18)

Then, uy is P1, therefore, r up (c;i) is a constant inside the elementand ¢ up(c;) AO. For this reason,
we nally get:
Upyp (X) AD1()(f (Ci) i VErun(ci)) (4.19)

The above computation of the error estimator is  pointwise . In fact, the error estimator is given
at each point x of the domain. However, to include the error information in the mesh adaptation,
we need an information of the error inside each element. To get this information, we can compute
3 different types of norm: L 1, L? and L* . We recall here the de nition of these 3 norms:

X
liupupiii(- o) £ el £ jug,p )i (4.20)
16i6Ninterp
p_ S—x
upypiiz- &) £ - &£ jul  (x)i2 (4.21)
16i6Ninterp
© a
judupiict (- &) Amax jup,, (i J X AE(Xi)1616 Niners (4.22)

where (Xi)16i6 Ni,er, are the interpolation points de ned by the integration points of the bubble
function by(x) and Ninterp Is the number of interpolation points. The consistency of this error
estimate resides in the fact that it goes to zero when the interior residual goes to zero.

4.2.2.2 Validation of computation using bubbles functions

Now that we have developed practical computation aspects, we validate the computation on a
benchmark of a convection-diffusion equation. To do so, we take the example given in [ ]of an
error estimation where the FEM is stabilized by the SUPG scheme. We recall that the differential
operatoris givenby: L u /E ja¢uAveru with a £0.03,f 1, v A(1,1) and homogeneous Dirichlet
boundary conditions.

We compute the SUPG solution on P1 triangular elements instead of the Q2 bilinear quadrilat-
eral elements used in the referred paper. Therefore, we choose a number of elements in order to
get approximately the same SUPG solution in comparison with Irisarri et al.. We choose to divide
each square cell in 8 triangles and we obtain a mesh of 512 triangular elements. We compare our
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2. An anisotropic mesh adaptation (described in [ ]): This technique uses the anisotropic
local interpolation error indicator. From the latter, we derived an anisotropic metric tensor
H aniso to adapt the mesh.

3. Anew anisotropic mesh adaptation: This technique uses a new anisotropic local error indi-
cator that takes into account (i) the interpolation error indicator and (ii) the subscales error

estimator. From the latter, we derive a new metric tensor H ;‘r?i"svo.

As a reminder, we start by introducing the principles of anisotropic mesh adaptation and the
construction of the anisotropic metric tensor  H aniso. Then, the isotropic tensor H ;5o based
on the subscales error estimator is de ned in Section 4.3.2. Finally, a combination between the
anisotropic local error indicator and the subscales error estimator is proposed and the new metric

new ; H H
tensor H aniso 1S de ned in Section 4.3.3.

4.3.1 Principles of anisotropic mesh adaptation

To discretize our computational domain, we use anisotropic unstructured meshes. It implies that
we can stretch the elements in certain directions according to the solution features. To do so, we
start by performing an error analysis on the mesh. Then, to correlate the error with the geometry,
ametric eld is de ned. From this metric eld, an anisotropic error indicator is de ned and used

as a functional for a re-meshing optimization problem.

Let us consider a certain triangulation - ,,. We can derive an upper bound of the approxima-
tion error using an interpolation error analysisinthe L P norm. Referring to Almeidaetal. in[ ],
this upper bound is expressed thanks to the recovered Hessian of the approximated solution  uy,.
In fact, using P1 linear elements, we usually cannot compute directly the Hessian of the solution.
Instead, we compute an approximation called the recoveredHessian matrix:

jiui unfiteey - CNSiHRURI D (4.23)

where ®, 0,N. , the number of elements of the mesh for the triangulation - , Hr(up)(x) the re-
coveredHessian matrix and C is independent of the element size.

To apply the re-meshing strategy, we build an equilateral tetrahedron in the metric space. As

in[ ], itis de ned at an arbitrary point P by the local metric eld M :
1
M (P) & er- etALA ed- € 4.24
(P) P S & ha(Py ™ & (4.24)

with ( & )i & g the eigenvectors of H gr(up (x)) and h; (P) the mesh sizes in the e; directions.

However, the recoveredHessian matrix is not a metric because it is not positive de nite. There-
fore, we de ne the following metric tensor:

H aniso ZFRBR T (4.25)

where R is the orthogonal matrix built with the eigenvectors (€ )i m g of Hr(up(x)) and = is the
diagonal matrix of absolute value of the eigenvalues | of Hgr(un(x)). This metric tensor can also
be written as follow:

H aniso ARER T AEj 1jer- e1A..Aj, gjeq- €g (4.26)

Here, we want to align the mesh with the solution eld  u. It means that we want the error to be
equi-distributed on each direction of the domain. To do so, the shape of each element have to
be such that the local error is equal in any direction. It is equivalent to say that the local error is
constant per element in the principal directions of curvature. Therefore, we have:

i, 1ihf £.. £E] gjh] Acte (4.27)
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Following the work of Mesri et al. in [ ], we introduce the following local error indicator
inthe L P norm: .
. Adj- ej?], g(X0)ih (4.28)

where j, 4(Xp)j is the maximum eigenvalues of H r(up(x)) corresponding to direction d, j- ¢j is the
volume of the element and hy is the length of the element in direction  d.

In[ ], the authors de ne a minimization problem where the functional is the error indicator

of Eq. (4.28). This optimization problem is expressed as follows:
8
Find h. Afhi..,...hq. } - e2- n that minimizes the cost function:

X
Fh-)& (-
-e2-n

under the constraint: (4.29)

Y4 Y 1

N .o A£CH?! d- ¢
" sy -eimhi-.

where Cy is the volume of a regular tetrahedronand - ﬂ is the new triangulation.

Then, this multidimensional optimization problem is replaced by a one-dimensional opti-
mization problem. The unknown is no more  h. _ but the mesh size corresponding to the max
ofthe (hi - .)16i6d. The way of dealing with anisotropy is via stretching factors (s - .)16i6d; 1 de-
ned between the mesh sizes ( h; . )isisd. The solution is given by Mesrietal. in[  ]. In3D and
LP norm, it is expressed thanks to the following theorem:

Theorem1 Ford =3, the optimization problem (' 4.29) has a unigue solution and is given by:

#H_ 1
- Y4 2(pA3)

§ h3 e (2pA3)C ] C2,- ed' e
Sy eh3 .
g hl

/ESl eS2,- h3 e

e

with 38 " "
% hy _j,2) 2
S]_’_ e/E—/CE —
ho ], lJﬂ
B |
E h2 ul, 3 2
T Sy e/E—/E —
hs ], 2
where
Ci. . A3PCost, S5 J. 3P, Co- e/ECblsl 152 and
SA I ) 9
1 < : Z—Z . s 1 -
~Toh N i1 X | 1 £(pA3) Co.. ZpA?)Cl_e %(p)&s)d_ .
_h-ez_h- _ecz,_ed-e .e ! 3 ' L

Finally, the above solution gives the mesh sizes in the 3 directions that de ne the metric eld
on each element. These mesh sizes are computed with respectto a xed number of elements  N._ 0.
4.3.2 Isotropic mesh adaptation with the subscales error estimator

The rst use of the subscales error estimator computed in Section 4.2 is for an isotropic mesh
adaptation. Referringto[ ] and from a theoretical convergence point of view, we know that the
error is linked to the local mesh size h according to the following relation:

jjudj (- ) vaC.hkAL (4.30)
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where C is independent of the element size. In our case, using linear elements, we have:
jjui (- )vaC.h? (4.31)

To control the mesh size of our adaptive process, the user has to give atolerance value  jj u?ol jiL
so that the local mesh size stays above an acceptable bound. In fact, this tolerance corresponds
to the desired error that the user wants to obtain on the mesh. For example, ina  pointwise error
estimation, jju?oljj L1 is the tolerated error at each control point inside the element. Referring to
[ 1, we can write the tolerated pointwise error as a scalar positive value u?OL:
jiugy i Aufor (4.32)

Starting from here, we can consider three strategies to adapt the mesh. Indeed, we can decide
to either:

1. uniformly distribute the desired local error norm overthe  old mesh or,
2. uniformly distribute the desired local error norm overthe  new mesh or,
3. uniformly distribute the desired pointwise error.

In this work, we will use the 2 "4 mesh adaptation strategy for the element-wise computation of
the error estimator (i.e. the one using stabilizing parameters); and the 3 "4 mesh adaptation strat-
egy for the pointwise computation of the error estimator (i.e. the one using bubble functions).

For the 3"9 strategy, still referringto[ ], we write the relationship between the error and the
tolerance in a uniform pointwise error distribution:

H T 0
h u
_new  g-ToL (4.33)
h uo

where hpew is the size of the new mesh (after mesh adaptation), u’is the estimated error.

Then, we build the isotropic metric tensor:

HisoFRER T Ejjer- e1A..Aj jeq- eg (4.34)
with (1 “
Co 1 jjudju (- 1
i E— A £ (4.35)
hiew UToL

where R is the orthogonal matrix built with the eigenvectors (€ )i m g of Hr(un (X)).

Here, the eigenvalues , of the metric are equal in all directions. Therefore, the mesh will be
adapted isotropically . However, we keep the eigenvectors of H r(up (x)) in the de nition of H jg0.
Thus, we keep the elements orientation prescribed by the recoveredHessian matrix. Finally, the
re-meshing strategy is the same that the one described in Section 4.3.1. In particular, as we apply
an isotropic re-meshing, the stretching factors (s . ,)1sied; 1 between the meshsizes (h; . )isi6d
are equal to 1.

4.3.3 Combination of subscales error estimator with anisotropic mesh adaptation

The second use of the subscales error estimator computed in Section  4.2is for an anisotropic mesh
adaptation. In this section, we propose to combine both the coarse scales error indicator and the
subscales error estimator. To do so, we derive a new metric that allows taking into account the
anisotropic variations of the solution on the mesh but also relies on the subscales error estimator
previously computed.
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We rst consider the previous anisotropic local error indicator "__,denedinEq. ( 4.28) and
recalled here: .
o Adj- ej?], a(x0)ih
Then, going back to the previous section, we write:

2 0
hd new uTo|_

h2 Tjudii - e)
Now, the unknown of the re-meshing problemis  hg new. In fact, we want the new mesh size to

take into account the error estimator of the subscales. Thus, we propose a hew anisotropic local
error indicator " . _new de ned as:

- e,nEW AEdj- ¢ p £], d(Xo)i£ hd new (4.36)
From here, we can de ne the new anisotropic metric tensor as:
u
HIeW AFRaoRT /E—(]JL ( e)] 1jer- elA.. A]—J BIEY e)J dj€d - €q (4.37)
u? u?
TOL TOL

Doing so, we keep the anisotropic effects from the solution variations but we isotropically scale
this effect by the subscales error estimator.

With this new error indicator, we solve the same optimization problem of Eq. 4.29 with the
unknown hg new. The optimal mesh is obtained exactly in the same way but using " . _new as
fun%tional. Consequently, the optimization problem becomes:

Find h_ _new N1 . new:--Nd - .new} - e 2- n that minimizes the cost function:

X
F(h- cnew) £ (- cnew)’
- e2‘ h
under the constraint: (4.38)

4 X £ v 1
N .o AEC) —d- ¢
h - e2- 1 -ei/ELhi,- e,New
where Cy is the volume of a regular tetrahedron and - ﬂ is the new triangulation.

Following the same proof that Mesri et al. in [ ], the solution of this new optimization prob-
lem becomes:

Theorem 2 For d = 3, the optimization problem ( 4.38) has a unique solution and it is given by:

_ z ? o
% h3. . new £ W ] Co. d- ¢
1,- e,new e
% h2 enew'qESZ eh3 e,New
hi- new ZES1- .S2- N3- .new
with 8 W
2
% s e"E ﬁE] 2)
h2 J,1Jﬂ
TR it
h 2
hs ' .2
where
Ci- onew AP Cosy. &, £ ”“—q’ufo(.—) £i. 4", Cz. , AC) L and
8:5\ I 4 T 9
1 < " Zony £ : S =
—ZpA3) ﬁEN_iol - 1 3 Co. . 2pA3 L onew 3(pA3)d_ .
h_ez_h' _eczv_ed'e - e 3 )
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By re-de ning the optimization problem, we integrate the effect of the subscales error estima-
tor with respect to the constraint on the xed number of elements. This new re-meshing strategy
is tested on 2D and 3D benchmarks in the next section.

4.4 Numerical examples

In this section, we test the effectivity and the accuracy of our new local error indicator on 2D and
3D convection-diffusion benchmark cases in a convection-dominated regime. To do so, we start
by computing the FE solution up, thanks to the SUPG scheme described in this thesis. The solution
is computed on 6 different types of meshes:

» Fixed mesh: Using no mesh adaptation,

* Isotropic mesh 1: Using the isotropic metric tensor H j5o computed with the subscales error
estimator using the stabilizing parameter (see Section 4.2.1),

* Isotropic mesh 2: Using the isotropic metric tensor H jso, computed with the subscales error
estimator using the bubble functions (see Section 4.2.2),

 Anisotropic mesh 1: Using the anisotropic metrictensor H zniso computed without the sub-
scales error estimator,

» Anisotropic mesh 2: Using the new anisotropic metric tensor H Qﬁi";’o computed with the
subscales error estimator using the stabilizing parameter,

+ Anisotropic mesh 3: Using the new anisotropic metric tensor H I®¥ = computed with the
subscales error estimator using the bubble functions.

For the benchmark cases 4.4.1 and 4.4.3, we have a known analytic solution u. Thus, we can
compute the exact discrete error e, AU i up on each element of the mesh. With this local discrete
error, we compute the global L 2 norm of the error such that:

V74 L7
iienii2 £ eld-p (4.39)

~h

For the case 4.4.1, we de ne an ef ciency index | ¢+ for our subscales error estimator as follow:

udic

— (4.40)
jienjiL2

leff

4.4.1 Case 1: regular boundary layers in 2D

This rst case has a continuous solution and regular boundary layers. It has been studied by sev-
eral authors like Zhang etal. in[  ]or Hachemetal. in[ ]. We consider the domain - /(0,1)?
and the velocity eld v(x,y) £(1,1)". Instead of a source term f /1 like in Section 4.2.2.2, we

choose the source term corresponding to the following analytic solution:
3 ’3 e

ux,y) Axy 1j e % 1jelw (4.41)
Thus, we have the following source term:
’ Slixo M, : S liy . M,
f(x,y)E(xAy) 1jel ae @ Axjy)e aje (4.42)

We compute the FE SUPG solution uy, for two different diffusion coef cients:  a {10 ;10 4}.
In addition, for practical purpose, we de ne the following stretching factor S

- e
2 0

h u
S fE-new g TOL 4.43
© h?  Tjjulie - e) (4.43)
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To keep an acceptable mesh even where jjulj 1 (- ¢) is close to zero, we have to impose a lower
bound for the stretching factor S . .. We decide that, from an iteration to the other, the size of the
element should not increase of more than 10 times the previous one. Therefore, the condition:

S. > 0.01is applied.

The effectivity index for the two ways of computation of the error estimator is given in Figure
4.3.

Figure 4.3 — Effectivity indexes for a £10' % and a A£10' 4

The rst observation that can be made concerning the ef ciency index | ef ¢ IS that for the two
different Peclet numbers and for the different mesh sizes considered, our ef ciency index | eff
stays close to 1. Therefore, we can say that our error estimator is effective for all con gurations.
Secondly, we observe that the error estimation computed with bubble functions is more effective
than the one computed with stabilizing parameters which overestimates the error. Finally, we ob-
serve that the effectivity index | ¢+ gets closer to 1 when the diffusion coef cient is reduced (i.e.
when the element Peclet number increases). This nding is in accordance with the convection-
dominated regime assumption.

Now that we have con rmed the effectivity of our error estimation, we can use this estimation
in the mesh adaptation. To analyze the mesh convergence of uy, we compute uy, for 6 different
mesh sizes: 2 000, 20 000, 40 000, 60 000, 80 000 and 100 000 elements.

The distributions of the discrete error ey, are presented in Figure 4.4. The corresponding meshes
for each error distribution are given below. On this gure, the case corresponds to a diffusion co-
ef cientof a /10 3. Mesh adaptation is under a constraint of 20 000 elements and the gures are
respectively:

 Figure 4.4.(a) corresponding to the Fixed mesh,
» Figure 4.4.(b) corresponding to the Isotropic mesh 1,

 Figure 4.4.(c) corresponding to the Isotropic mesh 2,
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» Figure 4.4.(d) corresponding to the Anisotropic mesh 1,
* Figure 4.4.(e) corresponding to the Anisotropic mesh 2,

 Figure 4.4.(f) corresponding to the Anisotropic mesh 3.

To begin the analysis of the results on the error distributions, we compare the Figure  4.4.(a), (b)
and (c). We notice that the isotropic mesh adaptation according to our subscales error estimator
reduces the error in the boundary layer. In fact, we notice from Figure  4.4.(b) and (c) that the mesh
is isotropically adapted in the boundary layer. However, we observe that the error stays above the
prescribed tolerance u$OL /E0.01 when we get close to the wall. To counter this effect, anisotropic
mesh adaptation is a really ef cient technique. In Figure  4.4.(d), we observe that the anisotropic
mesh adaptation makes it possible for the error to go under the tolerance. However, we still keep
an error approximately equals to the tolerance on the right top angle.

To eliminate this last part of the error, the new local error estimator proposed in Section 4.3.3
is well adapted as one can see in Figure 4.4.(f). In fact, we notice from the comparison of these
6 gures that our new local anisotropic error indicator " _ .new IS the best driver of mesh adap-
tation. We observe in Figure 4.4.(e) and 4.4.(f) a drastic reduction of the error in the boundary
layers compared to the other mesh adaptation techniques. Therefore, the use of the sub-scale in-
formation into the new anisotropic error indicator allows improving the locality of the mesh nodes
with respect to the equi-distribution of different error scales. Furthermore, we see that the equi-
distribution is optimal when the error estimator is computed with the bubble functions (see Figure
4.4.(f)). To nish, we notice that the constraint of a xed number of elements is well respected with
a deviation of less than 19% with the targeted number of elements N .

The reduction of the error can also be observed on the results for the global L 2 norm of the
error jjenjj 2. This is true for the case a /10 2 in Figure 4.5and the case a Z£10i 4 in Figure 4.6. As
expected, the isotropic mesh adaptation reduces the error for both cases of a. The error estimator
computed with bubble functions shows to be the best driver of isotropic mesh adaptation; in par-
ticular when the number of element increases.

To increase the slope of convergence, we use anisotropic mesh adaptation. In fact, it has been
shown in a number of works (for example in [ ]) that the Hessian based anisotropic mesh adap-
tation leads to a convergence of order 2. This fact is highlighted in our results as we observe the
increase of the slope going from isotropic to anisotropic mesh adaptation. In Figure 4.5and 4.6, we
observe that our new anisotropic local error indicator ~ “ . _ new behaves as expected. Thisisthe rst
important result of the present work. In fact, we observe that for coarse meshes (i.,e. N /A2 000
elements), the effect of the subscales error estimator is important. This reduction is even slightly
better for the case with a Z10i 4. On the latter gure, we observe that, with only 20 000 elements,
we are below the error of an interpolation based anisotropic mesh adaptation of 100 000 elements.

As the number of elements increases, we notice that the effect of the subscales error estimator
becomes less important. Indeed, the slopes of the Anisotropic mesh 2 and Anisotropic mesh 3 cases
decreases. This behavior is expected when we acknowledge that the subscales error estimator can
also be considered as an estimation of the subscales error. Thus, when the number of element
increases, the local mesh size decreases and, for this reason, the modeled part of the solution be-
comes smaller.

The second important result of the present work concerns the last ( Anisotropic mesh 3) case
corresponding to anisotropic mesh adaptation taking into account the error estimator computed
with bubble functions. Again, we can state that this error estimator is the best choice to drive
anisotropic mesh adaptation in comparison with the one computed with stabilizing parameters.
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Figure 4.4 — Error distributions and meshes of 2D regular boundary layers for different mesh adaptation
technigues
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In addition, we notice that the subscales error estimator computed with stabilizing terms has no
effect when we reach an important number of elements (for example: N /Z100 000).

Figure 4.5 — Errorin L , norm with a Z10i 2 for regular boundary layers in 2D

4.4.2 Case 2: parabolic boundary layers with recirculating convective eld

For this benchmark, we consider a domain - 4(j 1,1)? with a non-constant ow. The diffusion
coef cientis a A0.001. We apply a zero source term inside the domain. The right side wall has a
Dirichlet boundary condition equals to 1. The other walls have a homogeneous Dirichlet bound-

ary conditions. We apply a recirculating convective eld de ned by vAERYAi x2),i 2x(1i y?)
that will form boundary layers in the domain. The SUPG solution is given in Figure 4.7.

This example represents the propagation of the right wall heat inside the domain through the
convective eld. For this complex problem, it is dif cult to capture the structure of the boundary
layer. Our goal here is to show the ef ciency of our new anisotropic error indicator in the cap-
ture of the parabolic layer. To illustrate the latter, we plot the two different error estimators (one
computed with stabilizing parameter and the other with bubble functions) in Figure 4.8. The aim
of this gure is to compare the two isotropic components of the two different error estimators.
Therefore, it is suf cient to plot only the subscales part of the error estimation. As a result, we
observe that the localization of the error is improved by the bubble functions method.

The resulting adapted meshes are presented in Figure 4.9. The cases (a), (b), (c), (d), (e) and
(f) correspond to the same mesh adaptation techniques than in the previous example (Case 1). In
Figure 4.9 (b) and (e) we observe that the isotropic and anisotropic mesh adaptation techniques
follow the localization prescribed by the error estimator based on the stabilizing parameter (see
Figure 4.8). Consequently, the mesh is adapted only on a restraint region of the parabolic bound-
ary layer. In Figure 4.9(d), we observe that the conventional Hessian based anisotropic mesh adap-
tation already capture the 4 boundary layers. However, it does not take into account the sub-grid
information that can improve the anisotropic mesh adaptation. In fact, the mesh adaptation tech-
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Figure 4.6 — Errorin L , norm with a Z10i 4 for regular boundary layers in 2D

Figure 4.7 — Numerical SUPG solution for parabolic layers with a &£10i 3
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Figure 4.8 — Subscales error estimator computed with stabilizing parameters (left) and bubble functions
(right)

nigue using the new anisotropic local error indicator taking into account the subscales error in-
dicator based on bubble functions (see Figure 4.9(f)) shows to be the best choice to accurately
capture the 4 parabolic boundary layers.

4.4.3 Case 3: regular boundary layers in 3D

This 3D benchmark case is inspired by the one in Section 4.4.1. It takes the same con guration
concerning velocity eld, source term, boundary conditions and analytic solution with an extru-

sion in the z direction. However, the convection-diffusion equation is now solved on a cubic do-
main - A(0,1)£ (0,1)£ (0,1). The analytic solution is given in Figure 4.10. We compute the FE
SUPG solution up, with the 6 mesh adaptation techniques previously describe for 9 mesh sizes:

N /40 000, 80 000, 120 000, 160 000, 200 000, 300 000, 400 000, 500 000 and 600 000 elements.

As for the 2D benchmark, the error distribution corresponding of each mesh is given in Figure
4.11. In Figure 4.11.(a), (b) and (c), we observe the instabilities due to the highly convective regime.
Having isotropic elements, the local mesh size in the direction of the velocity eld is too important.

As said in the introduction of this chapter, we observe that anisotropic mesh adaptation is a really

ef cient technique to eliminate the spurious oscillations in the boundary layer. This is highlighted

in Figure 4.11.(d). However, there is still a part of the error that is not reduced on this gure. To
counter this effect, we see that our new anisotropic local error indicator " _ _ hew IS, @gain, ef cient.
Also, we observe that the constraint of a xed number of elements is again well respected with a
deviation of less than 6% with the targeted N . Finally, the analysis on error distribution in 2D still
holds in 3D and moreover, it seems to be enforce by adding a new dimension to the problem.

The above statements on error distribution are also to be found in the global L 2 norm of the
error jjenjj2 in Figure 4.12. Moreover, the effects of the subscales error estimator on anisotropic
mesh adaptation is enforced in 3D. The important result here is that, with only 40 000 elements
in 3D, the error is below an interpolation based anisotropic mesh adaptation on 600 000 elements
with our new anisotropic local error estimator " . _ hew. Again, taking into account the sub-scale
information in mesh adaptation makes it possible to reduce drastically the error on the 3D coarse
meshes. With about 20 times less elements, we obtain the same global error  jjepjj, 2.
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Figure 4.9 — Resulting meshes for different types of mesh adaptation for the parabolic boundary layers.

Figure 4.10 — Analytic solution for 3D convection-diffusion equation with a A£10 3
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Figure 4.11 — Error distributions and meshes of 3D regular boundary layers for different mesh adaptation
techniques
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Figure 4.12 — Error in L 2 norm with a Z10' 2 for regular boundary layers in 3D

4.5 Application to the single impingement jet cooling

On one hand, in the previous section, the new multiscale mesh adaptation techniques were val-
idated on numerical benchmarks with analytic solutions; where an exact error analysis was fea-
sible. On the other hand, in this last section, we propose to apply these new techniques to the
industrial case of the single impingement jet cooling. In this case, we cannot compute the ex-
act error because we cannot know a priori the exact solution of the temperature  u in the ow.
However, the idea here is still to test these mesh adaptation techniques on a realistic aerothermal
problem and to present some observations on the resulting meshes. These observations are based
on the ow analysis given in Chapter 2 Section 2.3.5. As we will see later, some conclusions about
the qualitative ef ciency of these new multiscale mesh adaptation technigques can be made.

To realize this test, we propose to use the three types of mesh adaptation techniques corre-
sponding to the previous section and recalled here:

 Anisotropic mesh 1: Using the anisotropic metrictensor H aniso cOmputed without the sub-
scales error estimator,

* Isotropic mesh 2: Using the isotropic metric tensor H jso computed with the subscales error
estimator using the bubble functions,

+ Anisotropic mesh 3: Using the new anisotropic metric tensor H I®¥ " computed with the
subscales error estimator using the bubble functions.

In this realistic aerothermal problem, the unsteadiness of the ow has to be taken into ac-
count. Therefore, the mesh adaptation techniques need to be dynamic methods. It means that
the mesh is dynamically adapted over time during the simulation. We choose a mesh adaptation
step of 10 increments. Referring to Chapter 2, we have 5000 simulation increments. Therefore, we
realize 500 mesh adaptations steps for the total simulation time. Doing so, we allow the mesh to
follow the ow dynamics over time. The mesh adaptation techniques are tested on a 2D and a 3D
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con guration of the problem.

The results of the 2D con guration are given in Figure  4.13. In this gure, we observe that the

_ . _
proposed subscales error estimator ”u—%ﬁ allow us to locate with good accuracy the unresolved
TOL

part of the thermal solution. Then, thanks to our new anisotropic mesh adaptation technique, the
mesh is adapted anisotropically according to this sub-scale information. Doing so, it allows cap-
turing accurately the turbulent vortex structures in the ow. Indeed, as we can see on the right
part of Figure 4.13, this dynamic multiscale mesh adaptation technique allows us to follow the
secondary vortices over time during the unsteady simulation.

In Figure 4.14, we compare the different mesh adaptation technigues for a xed number of
elements N equals to 400 000. In this gure, we observe that the two new multiscale techniques
(Isotropic 2 and Anisotropic 3) show important differences with the standard one (Anisotropic 1).

In fact, we observe that the mesh follows more closely the thermal solution and in particular, it fol-
lows the convective heat exchanges due to the appearance of the secondary vortices. Furthermore,
we observe on the zoom view of Figure 4.14that the new multiscale anisotropic mesh adaptation
(using the metric tensor H "€Y )is, again, the choice that gives us the most suitable mesh regard-

aniso
ing the complexity of the ow behavior.

We can also observe in this gure that the mesh sizes are slightly different between the three
meshes. In fact, the re-meshing tool is based on an optimization procedure on unstructured
meshes. The solution is thus not unique and therefore, the targeted number of elements can be
different from an iteration to the other. However, the difference between the meshes represents
less than 15% of the total mesh sized. Therefore, we consider that the comparison between meshes
still holds.

The results for the 3D con guration are given on Figure  4.15. We start the mesh adaptation
procedure from an initial isotropic mesh of 800 000 P1 elements. A constrain of 4 000 000 P1 el-
ements is imposed to the optimization problem. The resulting adapted meshes are presented in
Figure 4.15. They corresponds to the meshes atincrement| 4900 i.e. when the secondary vortices
just start forming. They counts 4 263 472 P1 elements for the Anisotropic mesh 1 and 4 340428 P1
elements for Anisotropic mesh 3. It gives us a gap of less than 10% of the targeted value and we
consider that the two meshes are comparable in terms of numerical results.

In Figure 4.15(top left), we observe that the anisotropic hessian based adapted mesh (Anisotropic
mesh 1) is indeed re ned according to the anisotropic variations of temperature. We also observe
that the temperature is well convected by the velocity eld as we recognize the speci ¢ turbulent
vortex structures, highlighted in Chapter 2. However, in Figure 4.15(top right), we observe that the
multiscale isotropic mesh adaptation (Isotropic mesh 2) captures the ow structures but require
an important amount of elements on the plate to do so. This is due to the fact that we have a highly
directional ow and that isotropic mesh adaptation is, in any case, not adapted in this situation.

Finally, it is clearly visible that the hessian based mesh adaptation (Anisotropic mesh 1) does
not fully capture the complex vortex structures near the plate. It is apparent when we compare
the two adapted meshes on the plate plane (see Figure 4.15 (top left and bottom left)). In fact,
we observe that the new multiscale mesh adaptation (Anisotropic mesh 3) allows capturing more
in details the complex ow behavior on the plate. We recognize the kind of structure that we ob-
tained before for the velocity eld in Figure 2.14.

Furthermore, we add in Figure 4.16, a slice view of the meshes on the plate supporting the

velocity magnitude eld. In this gure, we observe that the new multiscale anisotropic adapted
mesh (Anisotropic mesh 3) is the one that is best tted to the velocity eld. Therefore, from these
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Secondary vortexes over timi

Figure 4.13 — Localization of the subscales error and new multiscale anisotropic mesh adaptation
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Figure 4.14 — Resulting meshes for different mesh adaptation techniques in 2D. (top) Anisotropic mesh 1:
anisotropic Hessian based mesh adaptation; (middle) Isotropic mesh 2: new isotropic mesh adaptation
based on the subscales error estimator; (bottom) Anisotropic mesh 3: new anisotropic mesh adaptation
based on the subscales error estimator.
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observations, we can expect the new multiscale anisotropic mesh adaptation to be better suited
to capture the complex convective heat transfer on the plate. Furthermore, we observe on this
view that the mesh is well adapted on the plate. Therefore, the thermal gradient and thus the heat
transfer should be well captured by our new anisotropic multiscale mesh adaptation technique.

Figure 4.15 — Resulting meshes for different mesh adaptation techniques in 3D. (top left) Anisotropic mesh
1: anisotropic Hessian based mesh adaptation; (top right) Isotropic mesh 2: new isotropic mesh adaptation
based on the subscales error estimator; (bottom left) Anisotropic mesh 3: new anisotropic mesh adaptation
based on the subscales error estimator; (bottom right) Zoom view of Anisotropic mesh 3.

Figure 4.16 — Slice view of resulting meshes for different mesh adaptation techniques in 3D: (left)
Anisotropic mesh 1; (middle) Isotropic mesh 2; (right) Anisotropic mesh 3.

4.6 Conclusion

In this chapter, we proposed a new a posteriori error estimator based on the VMS method for
anisotropic adaptive uid mechanics problems. This new error estimator was de ned by the com-
bination of both (i) an interpolation based anisotropic error indicator and (ii) a subscales error
estimator. The subscales error estimator was computed using two different methods. The de ni-
tion of a new re-meshing optimization problem allowed us to include this sub-grid information in
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mesh adaptation with respect to the constraint of a xed number of elements.

We rstvalidated these multiscale mesh adaptation techniques on 2D and 3D numerical bench-
marks, where an exact error analysis was feasible. The results showed that, for the subscales er-
ror estimator, the method using bubble functions was better suited to drive both isotropic and
anisotropic mesh adaptation. In fact, the localization of the residual subscales error was better
established with this method. Then, the results showed that the proposed multiscale mesh adap-
tation technique allowed us to compute highly precise solutions with much less elements in com-
parison with other mesh adaptation techniques. Finally, this work showed that this new multiscale
anisotropic mesh adaptation strategy was capable of dealing with boundary layers of convection-
diffusion problems associated with high Peclet number ows in 2D and 3D.

We then tested these multiscale mesh adaptation techniques on the realistic industrial case of
the single impingement jet cooling. This time an exact error analysis was not possible, but some
qualitative conclusions could be made. Indeed, the results showed that the combination of the
VMS error estimator with anisotropic mesh adaptation allowed getting relevant anisotropically
adapted meshes that captured the complex ow structures, which are the secondary vortices gen-
erated by the impinging jet. Indeed, the new multiscale anisotropic adapted mesh was better tted
to the solution. It is therefore a promising idea to simulate complex CFD aerothermal problems.

The next steps of this work is rstto demonstrate quantitatively the ef ciency of this new mul-
tiscale mesh adaptation method on the realistic industrial case of the impinging jet cooling. To do
S0, We propose as a perspective, a comparison of the obtained heat transfer distribution on a large
xed mesh, a hessian based adapted mesh, and a multiscale adapted mesh. In fact, as soon as the
physical modeling issues on the impingement jet cooling are dealt with, it will be interesting to
compare the heat transfer distributions obtained on both (i) a multiscale adapted mesh and (i) a
large isotropic reference mesh.

Another possible perspective is also to apply this new multiscale mesh adaptation technique to
other equations. Indeed, the subscales error estimator is PDE-dependent and in this work, we ap-
plied it to the thermal convection-diffusion equation. However, it also possible to apply this error
estimate to the incompressible Navier-Stokes equations. This time, the error estimator is com-
puted on the vector variable v in order to have an estimation of jjvdj. The same was also tested on
the variable p in order to have an estimation of jjpYj. The computation of the error estimate using
the residual free bubble matrix have yet to be undertaken for these equations.

In the next chapter, we will present the parallel computational framework in which these nu-
merical mesh adaptation methods were developed. Indeed, the ef ciency of these numerical
methods is closely linked to the parallel performance of the mesh partitioning and load balancing
algorithms used on different parallel computational systems.

Résumé du chapitre en francgais

Nous proposons dans ce chapitre un nouvel estimateur d'erreur a posteriori basé sur la formu-
lation VMS pour l'adaptation de maillages non-structurés. Ce nouvel estimateur d'erreur est ap-
pliqué a I'équation thermique de convection-diffusion associée aux problémes de Mécanique des
Fluides. Dans un premier temps, nous proposons deux méthodes permettant de le calculer. La
premiére méthode se base sur le calcul des termes stabilisants dérivés de I'analyse VMS et la déf-
inition de normes locales dé nies sur les éléments. La seconde méthode en revanche, est basée
sur l'utilisation d'une combinaison linéaire de fonctions bulles pour établir un calcul de I'erreur

en tous points de I'élément.
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La premiére contribution de ce travail est ensuite de proposer une nouvelle méthode d'adaptation
de maillage isotrope basée sur ce nouvel estimateur d'erreur. Pour ce faire, nous dé nissons un
tenseur métrique isotrope appelé H jso et nous résolvons un probléme d'optimisation sur les
tailles de mailles permettant de contraindre le maillage a un nombre xe d'éléments. Jusqu'a
maintenant, les estimateurs d'erreur VMS étaient surtout utilisés pour I'adaptation isotrope de
maillages. Dans ce travail, nous proposons également d'utiliser cette information de sous-maille
dans l'adaptation anisotrope du maillage.

La seconde contribution est donc de combiner a la fois (i) I'indicateur d'erreur d'interpolation
et (i) I'estimateur d'erreur sous-échelle dans le but de réaliser une adaptation anisotrope du mail-
lage. D'aprés ce que nous avons pu lire dans la littérature, cette stratégie n'a jamais été tentée
par le passé. Pour réaliser cela, nous dé nissons un nouveau tenseur métrique anisotrope ap-
pelé H ;‘ﬁi‘g’o qui permet de prendre en compte (i) les variations anisotropes de la solution mais
également (ii) l'information de sous maille. En effet, 'approche VMS nous permet de quanti er
a posteriori I'erreur de sous maille que nous pouvons ensuite utiliser pour enrichir l'indicateur
d'erreur anisotrope des approches hessiennes conventionnelles. Cette nouvelle méthode nous
permet donc de tirer partie (i) des méthodes d'adaptation de maillage construites a priori, et (ii)
de l'analyse VMS réalisée a posteriori.

Ces deux nouvelles méthodes d'adaptation de maillage multi-échelles sont d'abord testées sur
des cas analytiques 2D et 3D ou une analyse de I'erreur exacte est faisable. Les résultats montrent
que, pour l'estimateur d'erreur sous-échelle, la méthode de calcul utilisant les fonction bulles est
la mieux adaptée pour piloter I'adaptation isotrope et anisotrope du maillage. En effet, la localisa-
tion de I'erreur de sous-maille est mieux établie avec cette derniére. De plus, les résultats montrent
que ces deux nouvelles méthodes d'adaptation de maillage multi-échelles permettent d'obtenir
des solutions numériques hautement précises avec bien moins d'éléments en comparaison avec
les méthodes conventionnelles. Finalement, ce travail montre que ces méthodes d'adaptation
de maillage multi-échelles sont capables de gérer les couches limites associées aux problemes de
convection-diffusion & hauts nombre de Péclet en 2D et en 3D.

Ensuite, ces nouvelles méthodes d'adaptation de maillage sont appliquées a un cas industriel
plus réaliste qui est le cas du refroidissement par jet impactant. Cette fois, une analyse exacte de
l'erreur n'est bien sar pas possible mais certaines conclusions qualitatives peuvent quand méme
étre énoncées. En effet, les résultats montrent que la combinaison d'un estimateur d'erreur VMS
avec l'adaptation anisotrope de maillage nous permet de capturer les échanges thermiques com-
plexes générés par les structures turbulentes de I'écoulement. En effet, nous montrons que ces
nouveaux maillages permettent notamment de suivre les tourbillons secondaires générés par le
jetimpactant et que le maillage semble étre mieux aligné pour capturer les échanges thermiques
dans la couche limite. C'est donc une idée prometteuse pour améliorer la simulation de ce cas
aérothermique complexe.

Les perspectives de ce travail sont d'abord de démontrer quantitativement les effets de ces
nouvelles méthodes d'adaptation de maillage multi-échelles sur des cas industriels plus réalistes
tel que celui du refroidissement par impact de jet. Cela sera rendu possible par une comparai-
son avec des références numeériques et expérimentales des résultats de transferts thermiques cal-
culés en utilisant ce type de méthode. Une autre perspective possible de ce travail est également
d'appliquer ces nouvelles méthodes multi-échelles & d'autres équations. En effet, l'estimateur
d'erreur sous-échelle que nous développons est dépendant de la PDE. Dans ce travail, nous pro-
posons de l'appliquer a I'équation thermique de convection-diffusion mais d'autres équations
peuvent étre envisagées. Pendant cette thése, nous avons commencé a nous intéresser al'application
de cette méthode aux équation de Navier-Stokes incompressibles.
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Dans le chapitre suivant, nous présentons le contexte numérique paralléle dans lequel ces
méthodes numériques d'adaptation de maillage sont développées. En effet, I'ef cacité de ces
méthodes numériques est intimement liée a la performance en paralléle des algorithmes de repar-
titionnement de maillage et de répartition de la charge de calcul utilisés sur des systemes de calcul
paralléle.
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5.1 Introduction

In order to produce reliable aerothermal simulations in modern aircraft engines, the future com-
putational systems will have to break out from the existing ones. Indeed, referring to NASA report
by Slotnick etal. in[ ], considering the actual evolution of technologies, scientists predict that
the future systems will reach a computational peak capacity of 30 ExaFLOPS in 2030.

However, several factors show that these exascale systems wont be a simple evolution of the
existing petascale systems. In fact, from an energetic stand-point, the existing petascale systems
require between 10 to 20 MW, corresponding approximately to 1MW per PetaFLOPS. Following
this trend, the theoretical energy consumption of an exascale system will be around 1 GW. For
environmental reasons, it is of course not feasible to build such systems. Indeed, the targeted en-
ergy consumption for these systems is between 20 to 60 MW. Consequently, it is primordial for
computer scientists to nd new hardware systems capable to sustain this computational power
without prohibitive energy consumption.

Furthermore, to improve the performances of the existing systems, computer scientists cannot
rely on increasing the performance of a single core as they used to. For this reason, as mentioned
in[ ], in the last years, the number of cores per chip and per node have increased quite fast
but this aggregation necessitates research work on more complex memory hierarchies, networks
topologies and partitioning algorithms.

Finally, these new hardware systems will have to be robust and in particular, more fault tol-
erant than the existing ones in order to anticipate any kind of failure from a system's component.
In fact, by increasing the number of components like the Central Processing Unit (CPU)s for ex-
ample, the risk to get a failure from one of them is increased. In this case, it is necessary for the
computation to continue and for the computational loads to be redistributed ef ciently on the
other working components.

In this chapter, we present the parallel computational framework in which this PhD work
was realized. To do so, we rst present the parallel software capabilities of the nite element
code Cimlib-CFD and then, the two different hardware systems on which our developments were
tested. In Section 5.2, we present the FE framework and the mesh partitioning principles. Then,
the algorithm behind parallel mesh adaptation is introduced as well as important notions on the
particular treatment of the partitions interfaces. Additionally, we present the method used in
Cimlib-CFD to realize load balancing during the mesh adaptation process. To nalize the def-
inition of our parallel framework, a mention of the parallel visualization tools used during this
thesis is proposed.

In Section 5.3, we present the two different hardware systems tested during this PhD thesis. In
particular, we introduce the rst trials on running Cimlib-CFD on a massively parallel supercom-
puter allowing simulations over a thousand cores. Taking into account the characteristics of the
supercomputer, a fault tolerant checkpoint-restart procedure, implemented during this work, is
presented. In the last section, applications of the parallel components are proposed. In particular,
parallel mesh adaptation is applied to the single impingement jet cooling. Finally, we present the
massively parallel computation of a turbine vane composed by 39 holes, launched on the super-
computer along with preliminary results on this geometry.
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5.2 Parallel software components in Cimlib-CFD

5.2.1 Finite elements computations

The FE method is used to solve numerically a PDE de ned on a domain for a set of boundary
and initial conditions. For time-dependent equations, the different techniques used to solve the
problem are classi ed in three categories: (i) explicit, (i) semi-implicit and (iii) implicit. For in-
compressible uid mechanic problems, we usually prefer to use an implicit time discretization for
the Navier-Stokes equations due to the following reasons:

« for explicit methods, when the diffusive term is important, the stability criteria on the time
step can be very restrictive,

by using the FE method, even if an explicit time discretization is used, there is still a mass
matrix to inverse in order to solve the problem.

The implicit resolution of a PDE using the FE method leads to the solving of large linear or non-
linear systems. For a non-linear system, the application of the Newton-Raphson method leads
itself to the resolution of several large linear systems. A linear system can be written in matrix
form as follows:

Ax /b (5.1)

where Ais a matrix supposedly invertible, xis a vector of unknowns and b the second term.

In mostinvolving nite element codes, solving the linear system is done by using iterative pro-
cedures. For elliptic problems, the preconditioned Conjugate Gradient (CG) algorithm can be used
for example. For non-symmetric problems, the Generalized Minimal RESidual (GMRES) method
introduced by Saad etal. in[  ]is more suitable. The GMRES method gives an approximation X,
of the exact solution x which minimizes the norm of the residual  jjAx, i bjj. In our nite element
code, we use the Portable Extensible Toolkit for Scienti ¢ computation (PETSc) library to store
and solve large systems in parallel. PETSc is an open-source suite of data structures and routines
to solve scienti ¢ applications modeled by PDEs.

It has been noted in the past like in [ ., ]that, for most implicit simulations, 80% of the
computational time is dedicated to the solving linear systems. Furthermore, the size of a linear
system grows linearly with the size of the spatial and time dependent domain. This is therefore a
critical problematic in FEM and foundational mathematical research in highly scalable linear and
nonlinear solvers is still required. In the past, important research work aiming at improving the
convergence of iterative solvers using a posteriori error estimates was undertaken, starting with
Babuska and Rheinboldtin[ , ], followed by other authors like in — ] for example.

According to Houzeaux etal. in[ ], the algebraic solvers are mainly responsible for the limi-
tation of the parallel scalability of nite element codes. The solving of the linear systems is done
in parallel using mesh partitioning techniques.

5.2.2 Mesh partitioning

Mesh partitioning is a commonly used technique for parallelization of numerical methods. For
several years now, parallelisms by domain decomposition have been well developed for FE meth-
ods likein [ — ]. For distributed memory machines, which are currently the most used archi-
tecture for large parallel machines, mesh partitioning is used to distribute the workload over the
computational domain. From the FE point of view, the problem to solve is subdivided into sub-
problems and the computational domain into sub-domains. Each sub-domain is thus assigned
to a parallel process which carried out the operations on the different elds corresponding to this
part of the mesh. An example is given in Figure 5.1. In this gure, each color corresponds to a
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particular parallel process.

Figure 5.1 — Mesh partitioning on complex 3D geometries: a North American P-51, a Dassault Falcon 7x and
a Tyrix Aerospace Albadrone

Different types of operations are then possible on a partitioned mesh. On one hand, some
of them require no communications between the processes. For example, the unique value of a
norm can be calculated by adding the contributions from all the parallel processes via data recol-
lection. On the other hand, operations like the Sparse Matrix Vector product (SpMV), occupying a
central place in iterative solvers, require communications with the neighboring sub-domains. In-
deed, they are related to the coupling at the partitions borders and the data need to be exchanged
in order to include the interfaces in the computation of the new vector.

Thus, in CFD codes, different types of operations coexist and a unique partition suitable for
all of them needs to be generated. This partition have to provide a good balance of the resulting
workload, while minimizing the communication requirements. In general, the communication
costs are proportional to the size of the subdomains interfaces and therefore, it is necessary to
generate partitions that minimize them.

To evaluate the parallel performances of CFD codes, especially for large computations, the
notion of scalability is primordial. The scalability of a system is its capacity to handle a growing
amount of work, when allocated resources are added. For example, in CFD, a code will be consid-
ered scalable if, by adding an increasingly large number of computational resources, like CPUs, the
code is capable of dealing with increasingly large problems in terms Degrees Of Freedom (DOF) or
number of elements. In the context of HPC there are two common ways to de ne the scalability of
a code:

« the strong scalability: it is de ned by how the computational time vary with the number of
processors for a xed total problem size,

« the weak scalability: it is de ned by how the computational time vary with the number of
processors for a xed problem size per processor.

The weak scalability is most interesting for O( N ) algorithms. In this case, perfect weak scaling
shows a constant time, independent of processor count, to compute the solution. Deviations from
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under the constraint of a given number of elements in the new adapted mesh, an optimal mesh is
generated. The constraint could be considered as local to each subdomain. In this case, solving
the error estimate problem is straightforward. Indeed, all computations are local and there is no
need to exchange data between the processors. The local constraint on the number of elements
implies the generation of a new mesh with the same number of elements per processor. This al-
lows avoiding heavy load balancing cost after each mesh adaptation.

However, this approach tends towards an overestimate of the mesh density on subdomains
where ow activity is almost neglected. From a scaling point of view, this approach leads to a weak
scalability model for which the problem size grows linearly with respect to the number of proces-
sors. To derive a strong scalability model, which refers in general to parallel performance for a
xed problem size, the constraint on the number of elements for the new generated mesh should
be global. The global number of elements over the entire domain is distributed with respect to the
mesh density prescribed by the error estimator. This is a hard scalability model that leads to good
parallel performances. However, reload balancing is needed after each mesh adaptation stage.
The parallel behavior of the mesh adaptation is very close to the serial one and the error analysis
is still the same. For these reasons, this model is more relevant than the former one.

Update: The solution computed on the previous mesh then needs to be updated on the new
mesh. At this step, we use interpolation methods to transport the variables from the previous mesh
to the new one. In the context of anisotropic mesh adaptation with highly stretched elements, this
interpolation step is crucial and often leads to some dif culties. Indeed, interpolation methods
can reduce the conservation of important physical quantities and leads to errors that spoil the
solution accuracy. In the past years, important research work has been done on this subject like
in[ — ]for example. In particular, in [ ], Bahbah et al. propose a globally conservative
methods suitable for both interpolations on unstructured xed and adaptive anisotropic meshes.

It consists in combining an a posteriori error estimator that minimizes the interpolation error of
the nite element solution followed by an interpolation with restrictions method that conserves
physical properties of the eld being interpolated.

Figure 5.3 — Iterative parallel remeshing steps on a 2D distributed mesh

Repartition:  Finally, the new mesh is repartitioned over the allocated CPUs to take into ac-
count for the changes of mesh topology in the computational loads distribution. Indeed, mesh
repartitioning is the key process of parallel mesh adaptation methods [ , ]. The effective-
ness of the parallel mesh adaptation method depends on the repartitioning algorithms used and
on how the interfaces between subdomains are managed. Starting from a partitioned mesh into
multiple sub-domains, remeshing operations are performed using a sequential mesh adaptator
on each subdomain with an extra treatment of the interfaces. Two main approaches are then con-
sidered in the literature:

1. Aniterative one: Atthe rstiteration, remeshing is performed concurrently on each proces-
sor while the interfaces between sub-domains are locked to avoid any modi cation in the
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sequential remeshing kernel. Then, a new partitioning is calculated to move the interfaces
and remesh them at the next iteration. As illustrated in Figure 5.3, the algorithm iterates
until all items have been re-meshed.

2. The second approach consists in handling the interfaces by considering a complementary
data structure to manage remeshing on remote mesh entities.

The rst approach is preferred because of its high ef ciency and fully code reusing capability for
sequential remeshing kernels. However, the unstructured and dynamic nature of mesh adaptation
algorithms leads to imbalance the initial workload. Therefore, an ef cient dynamic load balancing
procedure is needed after each mesh adaptation step.

5.2.4 Dynamic load balancing

The load balance is one of the principal measurements to quantify the parallel performances of

a HPC system. It quanti es the workload distribution between the computational resources in-
volved in a computational task. Referring to [ ], if time; denotes the time spent by process i,
out of np processes, on the execution of a parallel task, the load balance can be expressed as the
averaged time ave;(time;), divided by the maximum time, max;(time;). This value represents
the ratio between the resources effectively used with respect to the resources engaged to carry out
the task. It is de ned by the following formula:

ave;j (time;
load balance :/EM (5.2)
max;(time;
In this work, we follow the same load balancing strategy than Mesri et al. in [ ]. A cost

function is de ned and takes into account the theoretical computation and communication time
of the allocated resources. Then, the load balancing process is realized using two major steps:

» Forming disjoint pairs of processors that are susceptible to minimize the cost function,

» Optimizing the cartography on each pair. This optimization is done by transferring mesh
nodes or mesh cells from a processor to the other using the notion of  strip migration .

These two steps are repeated as long as the global cost of the partition can be optimized. The
results from [ ] show that the use of this method on various system architectures allows acceler-
ating the mesh partitioning process. In terms of scalability, a linear behavior is observed. Indeed,
the mesh patrtitioning time evolves linearly with the number of processors and mesh nodes which
is a proof of good scalability performances.

An example of load balancing is given in Figure 5.4. It is the same example that the one in
Figure 5.3 after the parallel remeshing procedure. On the left side of Figure 5.4, it is trivial to ob-
serve that the partition is not optimal. In particular, as mention before, the size of the interfaces
is too large and this could have a damaging impact on the communication costs. Therefore, the
cost function is optimized using the previously described load balancing procedure by transfer-
ring nodes from one processor to the other in order to obtain the nal optimal partition presented
on the right side of Figure 5.4.

5.2.5 Parallel visualization component

In this PhD work, the meshes used can reach several millions of points on which solution data and
simulation parameters have to be stored. The le format used to store these results is the Visual-
ization Toolkit Unstructured points data (VTU) format. Because of the large number of data, these
les can exceed several gigabytes and they can be challenging to load using a single local machine.

97



CHAPTER 5. MASSIVELY PARALLEL COMPUTATIONAL FRAMEWORK

Figure 5.4 — Before (left) and after (right) load balancing

Therefore, parallel visualization tools are necessary in order to reduce the post-treatment compu-
tational times required by the visualization program. To realize this, we use the visualization tool
ParaView, and we launch it in parallel on the cluster.

ParaView is an open-source, multi-platform data analysis and visualization application. It
allows building visualizations to analyze resulting data using qualitative and quantitative tech-
niques. The data exploration can be done interactively in 3D or programmatically using ParaView's
batch processing capabilities, implemented using the python language. In particular, ParaView
was developed to run on supercomputers in order to analyze extremely large datasets using dis-
tributed memory computing resources. To do so, it uses the client-server environment. In this
mode, ParaView is launched on a local machine, named client, but all the computations necessary
for the visualization are done on the server, i.e. on the cluster.

Doing so, we manage opening the results and realizing the post-treatment analysis in parallel,
directly on the Cluster Intel. Furthermore, by visualizing the results in parallel, it allows complet-
ing the parallel computational framework of Cimlib-CFD. Indeed, from the mesh partitioning to
the post-treatment analysis, we ensure the full parallel capability of our numerical tools.

Note: in this PhD thesis, the client-server strategy have been set up only on the Cluster Intel.
As perspective, it would be optimal to set it up on the Occigen Il supercomputer. Indeed, it will
allow users to use the capabilities of the latter for visualization.

5.3 Hardware systems dedicated to High Performance Computing

Parallelization techniques have been broadly studied on homogeneous hardware architectures
where all the CPUs are identical and connected to one another with a fast communication net-
work. However, with the evolution of HPC, hardware architectures are more and more diversi ed.
Indeed, today's supercomputers are usually an agglomeration of clusters, CPUs and communica-
tion networks that have their own speci ¢ characteristics. Mesri et al. give an example in [ ]
where the focus is put on Grids. In fact, the Grid concept allows furnishing coordinate compu-
tational resources coming from different institutions or organizations for one same simulation.
This concept has been studied for several years and have caught the interest of numerical scien-
tists, especially in the domain of CFD. In particular, the authorsin [ ] show how the architecture
characteristics can affect the ef ciency of parallel mesh partitioning. For this reason, it is neces-
sary to complete the traditional parallelization schemes to take into account for the diversity of
hardware architectures encountered in the numerical scienti c world.

In this work, we manage to test our developments and to produce numerical results on two
different systems. The rst one is an intern system from the CEMEF research center. It is ad-
ministrated by CEMEF MINES-Paristech and develops a theoretical computational power of 25.8
TeraFLOPS. The second one however, is the GENCI Occigen Il supercomputer administrated by
the Centre Informatique National de I'Enseignement Supérieur (CINES) in Montpellier. It has
a theoretical computational power of 3.5 PetaFLOPS and was ranked 26 ™" on the Top500 list in
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November 2014.

The goal of this section is to present the characteristics of these two different systems in terms
of hardware environment and scheduler characteristics. Then, we present the work done in the
scope of the ARTEMIS project that allowed us to get access to the GENCI Occigen Il supercom-
puter. Finally, we present the implementation of the checkpoint-restart shell scripts used to adapt
Cimlib-CFD to the scheduling constrains of the supercomputer.

5.3.1 Parallel computations on the lab's Cluster Intel

In this work, the computations have rst been performed on our lab's cluster. It consists of 2000
heterogeneous cores interconnected with in niband network. The CEMEF's cluster is a linux sys-
tem with two Intel Xeon generations E5-2670 and E5-2680 chips. The main node characteristics of
this platform are described in Table 5.1.

Name Processor Family # of cores Core frequency (Ghz) Cache Memory (MB) Memory (GB)
CEMEF1 Xeon-E5-2670 20 2.6 25 64

CEMEF 2 Xeon-E5-2680 24 2.5 30 64

CEMEF 3 Xeon-E5-2680 28 2.4 30 128

Table 5.1 — Characteristics of the SMP nodes on the Cluster Intel

The jobs are scheduled using the OAR environment presented by Capit et al. in [ ]. OAR is
a versatile resource and task manager, also called a batch scheduler. It allows managing comput-
ing resources on a multi-users and multi-tasks system. Indeed, in this environment, the user can:
(i) choose the computational resources needed, (ii) plan his jobs by choosing starting dates and
wall-times, (iii) reserve computational resources in order to have exclusivity on them for a certain
amount of time. Using this information, the OAR environment schedules the different jobs com-
ing from the different users. The lab's policy allows the user to choose a maximum wall time of
3000 hours (i.e. 125 days, i.e. 4 months) which is largely suf cient for this work's computations.
However, the resources requests exceeding 200 cores have to be on nodes reserved in advance to
ensure a proper distribution of the computing resources between users.

To choose the computational resources needed for a job, two important things have to be taken
into account. First, a trade-off has to be found between using a large number of CPUs and limit-
ing the communications between them. Indeed, for a xed size problem, a large number of cores
may also implies a large number of communication between them. Therefore, an optimum has
to be found on a multi-objective cost function taking into account (i) the CPU time and (ii) the
communication time. This optimum depends mostly on the operations that are computed during
the simulation. As mentioned before, some operations, like the SpMV, require a large amount of
communications between the processes. Consequently, if the simulation requires computing a
large number of SpMV, it will not be appropriate to allocate a large number of CPUs because the
communications costs will be penalizing. On the contrary, if most of the operations are norms,
the parallelization will be more ef cient and thus, a large number of CPUs can be assigned to the
simulation.

The second thing to consider is the memory capacity of the CPUs. In the FE framework, a large
number of tables need to be allocated at the beginning of the simulation in order to store the en-
tities on the mesh. Furthermore, in our case, as we solve the Navier-Stokes equations implicitly,
we need to store the global sparse matrix of the linear system. To do so, we use advanced nu-
merical storage formats. Indeed, in the case of a sparse matrix, substantial memory requirement
reductions can be realized by storing only the non-zero entries. Depending on the number and
distribution of the non-zero entries, different data structures can be used but they all yield to huge

99



CHAPTER 5. MASSIVELY PARALLEL COMPUTATIONAL FRAMEWORK

savings in memory when compared to the basic approach. In our case, the Compress Sparse Row
(CSR) format allows obtaining a fast access to the matrix entities and thus facilitates the matrix
operations required. This format uses three arrays that respectively contain: (i) the non zero val-
ues, (ii) the compressed rows indexes (i.e. only the indexes where non-zero values appears) and
(iii) the column indexes.

In our case, as we solve two solvers which are (i) the Navier-Stokes VMS solver and (ii) ther-
mal convection-diffusion solver, operations, like matrix-vector multiplications, requiring a large
amount of communication are realized during the simulation. Therefore, after some experiments
it was observed that the optimum way to choose the computational resources was to allocate be-
tween 50 000 to 100 000 mesh elements per cores.

5.3.2 The GENCI Occigen Il supercomputer

To obtain resources on the GENCI Occigen Il supercomputer, we had to answer one of the two
campaigns launched by CINES in Autumn and Spring following the Demande d'Attribution de
Ressources Informatiques (DARI) procedure. This procedure was realized in the scope of the
ARTEMIS project carried out by Dr. Y. Mesri. Before presenting the hardware system character-
istics of the GENCI Occigen Il supercomputer, we propose here to give the main outlines of the
ARTEMIS project.

5.3.2.1 The ARTEMIS project

The goal of the ARTEMIS project is twofold. Indeed, it aims at both (i) driving architectural deci-
sions and (ii) adapting algorithms to the next generation of HPC computer architectures. ARTEMIS's
particular focus is put on the algorithms that underlie the high- delity analysis of aerothermal
computations implying heat transfer in turbulent ows. Thus, the ARTEMIS co-design process in-
volves to continually evaluates complex architectural and algorithmic trade-offs aiming ultimately

at the design of exascale algorithms that can ef ciently leverage them.

Indeed, many important thermal transport questions are accessible only through detailed sim-
ulations that span the full range of turbulent scales set by the geometry and the high Reynolds
numbers involved. Such simulations require extreme-scale computing resources and highly accu-
rate numerical discretizations to capture the scale interactions that govern the aerothermal behav-
ior of the targeted problem. Indeed, the multiscale nature of these simulations requires very huge
isotropic meshes to capture the small scales. The classical use in the literature is to build a static
huge mesh at the beginning of the simulation. On the contrary, the approach of the ARTEMIS
project focuses on the design of energy-aware algorithms which are dynamic and adaptive to the
multi-scale solutions.

However, as mentioned before, combining these mesh adaptation techniques with unsteady
Navier Stokes solvers remains a challenge in the literature. Moreover, designing an ef cient paral-
lel adaptive mesh and solver tools is still also a tough HPC challenge. In this project, we try to meet
these challenges and bring some answers in the context of aerothermal simulations. Therefore, we
propose in this project to launch massively parallel aerothermal computations using Cimlib-CFD
on the GENCI Occigen Il supercomputer in order to assess for the parallel capabilities of our code.

5.3.2.2 Presentation of the Occigen supercomputer

The GENCI Occigen supercomputer counts 34 racks where 27 racks are dedicated to computation
and 7 racks ensure connections, user services and data management. The cluster is split into two
different slices called Haswell and Broadwell:
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» Haswell counts 50 544 cores distributed over 2 106 nodes of 2 processors Intel with 12 cores
each. The processors Intel 12-Core E5-2690 V3 allows a nominal computation power of 124
GigaFLOPS.

» Broadwell counts 35 280 cores distributed over 1 260 nodes of 2 processors Intel with 14
cores each. The processors Intel 14-Core E5-2690 V4 allows a nominal computation power
of 145 GigaFLOPS.

These characteristics are summarized in Table 5.2. Haswell is splitinto two parts. Half of the nodes
have a memory capacity of 64 Go whereas the other half has a memory capacity of 128 Go. Within
these two different memory capacities, between 6 and 13 Go are used for system operations. The
connection network is also an in niband network.

Name Processor Family # of cores Core frequency (Ghz) Cache Memory (MB) Memory (GB)
Haswell (part1) Xeon-E5-2690V3 24 2.6 30 64

Haswell (part2) Xeon-E5-2690V3 24 2.6 30 128
Broadwell Xeon-E5-2690V4 28 2.6 35 64

Table 5.2 — Characteristics of the SMP nodes on the GENCI Occigen Il supercomputer

Concerning job management, the GENCI Occigen Il supercomputer uses the Simple Linux
Utility for Resource Management (SLURM) workload manager introduced by Yoo et al. in [ ]
It has globally the same functions than the OAR environment. First, it allocates exclusive and/or
non-exclusive access to resources to users for some duration of time so they can perform work.
Then, it provides a framework for starting, executing, and monitoring work on the set of allocated
nodes. Finally, it arbitrates contention for resources by managing a queue of pending work.

For scheduling reason and in order to handle as best as possible the queue of pending works,
the GENCI Occigen Il supercomputer does not allow jobs with a wall-time superior to 24 hours.
In our case, it causes a major problem because most of our unsteady aerothermal simulations re-
quire a total running time of more than 24 hours, even by using the large computing resources
of the supercomputer. Therefore, it was necessary for us to implement a checkpoint-restart pro-
cess, using the SLURM environment, in order to allow for our simulations to exceed 24 hours of
computational time. This process is described in the next section.

5.3.2.3 Checkpoint-restart process

The checkpoint-restart process designed during this PhD allows launching successive jobs for one
same simulation. It was implemented following a certain number of constrains:

« the simulation have to run from the start to the end without any intervention from the user,

« for the reasons explained in the previous section, each job require a running time inferior to
24 hours,

« if an hardware component fails, in order to be fault tolerant, the successive jobs have to be
relaunched on the other working components,

* itis not possible to use a shell daemon to schedule the different jobs because the machine
does not allow to have background daemons running for more than 30 minutes on the front
nodes.
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A schematic representation of the designed checkpoint-restart process is given in Figure  5.5.
The Launcher is a shell script that needs to be executed only at the beginning of the simulation. It
rst (i) initializes the simulation parameters, (ii) cleans the result and restart folders and (iii) con-
gures the initial job. Then, a SLURM script is executed and the initial job starts. At the end of the
execution of the mpirun command, the Checkpoint-Restart script is executed. It rst initializes
the variable for the next checkpoint. Then, it reads the error le ( .err) in order to check if hard-
ware component errors have appeared. Then, the next checkpoint time of the next job is updated
allowing the simulation to keep advancing in time. Also, the last result le from the previous job
is copied in the restart folder in order to keep the data from the restarting increment. Finally, the
MTC les (piloting the software), the job interface and the next .log and .err les are updated in
order to start the new job.

Depending on the errors, the simulation either continues or stops. Indeed, if the job has not
succeeded but the error is an hardware error, independent from a software failure, a new job is
launched from the last result le on the other working components and the simulation continues.
This way, our procedure is fault tolerant in case a failure from an hardware component occurs. On
the contrary, if the error is due to a software problem (like memory leak, segment fault or others...),
the simulation crashes and the checkpoint-restart process stops automatically.

The proposed checkpoint-restart process has been tested and validated on the GENCI Occigen
Il supercomputer. It works well and with this process, the simulation can reach the end even if
hardware errors occurs. However, the main drawback of this process is that it necessitates from the
user to know approximately how much increments will be computed in 24 hours. In fact, the user
has to acknowledge an intermediate number of increment for the successive jobs. In particular, if
no hardware error occurs, the mpirun command will stops only if the intermediate increment is
reached and it is only then that the checkpoint-restart process will be able to start.

5.4 Applications

In this section, we present different applications that illustrate the parallel computational frame-
work introduced in this chapter. The rst application concerns the well known benchmark of the

3D ventilated cavity studied in Chapter 3 and we propose a strong scalability analysis on the two
solvers used during this PhD work. The second application is the single impingement jet cooling
studied in Chapter 2. On the latter, we propose an application of the parallel mesh adaptation
procedure and, in particular, we apply this procedure on the two hardware systems previously in-
troduced. Finally, the last application concerns the industrial application of a complete turbine
vane and aims at demonstrating the parallel capabilities of Cimlib-CFD on the GENCI Occigen II
supercomputer.

5.4.1 3D ventilated cavity

This rst application refers to the 3D ventilated cavity presented in Chapter 3. For this case, we
propose a strong scalability analysis. Therefore, we use the xed mesh presented in the former
chapter but we realize four computations over 28, 56, 84 and 112 processors. Indeed, these com-
putations are launched on the Cluster Intel over 1, 2, 3, or 4 nodes of 28 processors. Doing so, as
required by the strong scalability analysis, we keep a xed problem size but we vary the number

of processors. The obtained partitions are given in Figure 5.6. In this gure, we observe that the
partitions respect our expectations in terms of distribution on the geometry. In particular, for the

last computation, the interfaces are well minimized.

The computational time of each computation is given in Table  5.3. For this case, we focus the
analysis on the two linear systems solved during the simulation, i.e. the Navier-Stokes VMS solver
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Figure 5.6 — Mesh partitioning over 28, 56, 84 and 112 processors

and the convection-diffusion solver. The computational time data are extracted over 1000 incre-
ments, from the beginning of the permanent regime. Indeed, the results presented in the table are
the mean computational time required to solve each system, averaged over 1000 increments. The
rst observable result is that the Navier-Stokes VMS solver requires more computational time than
the convection-diffusion solver. This is due to the fact that, for each point of the mesh, the Navier-
Stokes solver has 4 DOF (vy, vy, Vz, p) to solve, instead of 1 DOF (T) for the thermal convection-
diffusion solver.

Name Nb processors | Navier-Stokes VMS | Speed-up | Convection-Diffusion Speed-up
Computation 1 28 17.93 1 0.232 1
Computation 2 56 8.39 2.14 0.102 2.28
Computation 3 84 5.16 3.47 0.060 3.86
Computation 4 112 3.61 4.97 0.043 5.40

Table 5.3 — Mean computational time (in seconds) and speed-up on the Cluster Intel

Along this table, we present in Figure 5.7, the scalability charts of the two solvers. In particu-
lar, we plot the speed-up realized by doubling, tripling and quadrupling the allocated resources.
The time reference to compute these speed-ups is the computational time corresponding to one
node, i.e. to 28 processors. These speed-up charts both show linear behaviors with a determina-
tion coef cient close to one. This information give us con dence on the predictability and the
scalability of the algorithm used to solve the two linear systems in Cimlib-CFD. We notice that t he
speed-up values exceeds the perfect scalability expectations. Indeed, a perfect strong scalability
should give theoretical values of 2, 3 and 4 for the different computations. However, this anal-
ysis would not take into account the time's overhead due to communications. In particular, we
notice that the communications between the processor represent a more important part of the
resolution time when there are less DOF in the linear solver. For this reason, the speed-up of the
convection-diffusion solver is depreciated in comparison with the one for the Navier-Stokes VMS
solver. However, comparing the proportionality coef cient of these speed-up charts, we observe
that the convection-diffusion solver show a better scalability behavior that the Navier-Stokes VMS
solver.

5.4.2 Single impingement jet cooling

This second application allows testing the parallel mesh adaptation procedure presented in this
chapter. In particular, we test it on the two hardware systems presented previously. To do so,
we launch two distinct computations: Computation 1 on the Cluster Intel and Computation 2 on
the GENCI Occigen Il supercomputer. The details of these two computations are given in Table
5.4. Referring to Chapter 4, in order to follow the ow dynamics during the unsteady simulation,

the parallel mesh adaptation procedure is done every 10 increments over the 5 000 increments.
Therefore, for this simulation, 500 remeshing, repartitioning and load balancing procedures are
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+Lr + Lwrr + Lsrrr

+ Lswrr + Ltrrr + Lurrr

Figure 5.8 — Dynamic mesh partitioning over 28 processors: partition at different increments

presented in Chapter 4. Indeed, if we look closely at the plate, the processors distribution seems to
follow closely the mesh density in the area of interest. In fact, the mesh partitioning algori thm fol-
lows dynamically the capture of the turbulent structures on the plate and allocates a larger number

of resources where these structures are developing.

Finally, these two computations show our ability to launch the parallel mesh adaptation pro-
cedure on two different systems and at two different scales.

5.4.3 Turbine vane cooling

The close proximity between our research work and the industrial world represented by SAE con-
tinuously obliges us to deal with more and more complex simulations. The present study aims

at characterizing the ow eld in a schematic but realistic turbine vane. In fact, this work aims

at simulating the turbine vane cooling induced by 39 holes in interaction with themselves in a
complex geometry. In the literature, numerical and experimental references of the investigated
con guration can be found in the research works of Fenot et al. and Laroche et al. in [ ]and
[ ]respectively.

5.4.3.1 Geometry and time discretization

The test section of the geometry is presented in Figure 5.10. In this gure, we can see that the air is
injected through a central cavity section of length 12 mm and of height 20 mm. Then, the air goes
into the 39 holes distributed in 3 rows of 5 holes on the extrados, 1 row of 9 holes at the leading
edge and 3 rows of 5 holes on the intrados. The central cavity is a closed space except for the
inlet section and the trailing edges of the intrados and the extrados. Therefore, the air is inevitably
evacuated through the trailing edges of the intrados and the extrados.

From this test section, SAE generated a uid geometry given in Figure 5.11. Indeed, in this

study, we do not need to consider the material characteristics of the turbine vane itself. Therefore,
only the uid is considered. The entry of the uid into the domain is realized along the Z axis,
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through a convergent rectangular nozzle, visible in Figure 5.11. Then, the uid heterogeneously
feeds the 39 injection holes and impacts the leading edge and the intrados/extrados planes. Fi-
nally, the ow exits the geometry along the X axis through the trailing edges of the intrados and
extrados.

Leading edge

Convergent
rectangular
nozzle

\

N\

Central cavity Intrados trailing edge Extrados trailing edg

Figure 5.11 — Fluid geometry of the turbine vane

5.4.3.2 Numerical models and boundary conditions

In this work, we propose to compute velocity and the pressure elds ( v, p) using the implicit iter-
ative VMS solver for the unsteady incompressible Navier-Stokes equations. Concerning the aero-
dynamic boundary conditions, an input velocity corresponding to the mass ow rate (60 g/ s) pre-
scribed by the experimental study of Fenot et al. in [ ] is imposed at the convergent nozzle
entry section. Then, an atmospheric static pressure and output velocities are imposed on the in-
trados/extrados trailing edges sections. These output velocities are chosen with respect to the
mass ow rate equilibrium inside the overall geometry. In the middle part, corresponding to the
central cavity, the output section is a solid wall with a null Dirichlet boundary condition. For the
reader understanding, a representation of these boundary conditions is given in Figure ~ 5.12. For
all the other borders of the domain, null Dirichlet boundary conditions are imposed. At the begin-

ning of the simulation, the velocity is null everywhere except on the boundary conditions.

To solve the partial differential equation associated to the thermal problem, we use a stabi-
lized nite element method de ned by the SUPG scheme introduced in Chapter 3. Concerning
the thermal boundary conditions, as recommended in [ ], the initial temperature and the air
temperature T (¢, injected into the convergent nozzle is equal to 296K. Then, we consider mainly
two impinged plate corresponding, in the Y axis direction, to the top (extrados) and the lower
(intrados) part of the geometry. On these two plates a constant heat ux  ©cony £1600W/m? is
imposed. In this study, we look for the local convective heat transfer coef cient hcony ON the in-
trados/extrados planes de ned by the following formula:

©conv

h A (5.3)
conv Twail i Tret

with T 41 the wall temperature. Therefore, the resulting variable of interestis T 4 on the two
impinging plates.
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The two additional numerical models implemented in Chapter 3 to ensure a strong aerother-
mal coupling are also used here. Indeed, the modi ed dynamic viscosity ! {4t IS USed as an entry
in the Navier-Stokes VMS solver; and the modi ed thermal conductivity . total IS used as an entry
in the convection-diffusion SUPG solver.

Input Velocity Output Velocity

«— Wall

"\

Output Velocity

Heat Flux
(same at the bottom)

Figure 5.12 — lllustration of the boundary conditions of the turbine vane

Finally, the time discretization is chosen by taking into consideration the velocity boundary
conditions and the size of the geometry. After some experiments on the geometry, the simulation
time step is taken as ¢t A0.01 s and the total simulation duration is taken as  tiota1 Z50 s giving a
total of 5 000 simulation increments.

5.4.3.3 Incremental space discretization

From the uid geometry, we generate unstructured isotropic tetrahedral 3D meshes. In order to
test our parallel numerical tools, we propose in this work, an incremental space discretization. In
fact, 3 meshes M1, M2 and M3 counting respectively 500 000, 7 000 000 and 25 000 000 elements
are generated. These meshes are presented in Figure 5.13. In this gure, we observe that, in order
to obtain a homogeneous distribution of the cells inside the geometry, at least 25 millions ele-
ments are necessary. Concerning M3, if we look inside the holes, we can count around 15 cells
along the hole's diameter corresponding to the coarse mesh of Laroche et al. in [ ]
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5.4.3.4 Allocated resources

The three computations corresponding to the three meshes previously described are launched

on the GENCI Occigen Il supercomputer. We adapt the requested resources to the size of the
mesh. After numerical experiments, it was decided to allocated one CPU for 25 000 elements of
the meshes. The allocated resources for each mesh are given in Table 5.5.

Meshname Nbelements Nbcores/nodes Nbnodes Nb cores

M1 500 000 20 1 20
M2 7000 000 24 12 288
M3 25000 000 24 42 1008

Table 5.5 — Allocated resources for each case on the GENCI Occigen Il supercomputer

As we do not apply parallel mesh adaptation in these cases, the mesh is partitioned only at the
beginning of the simulation. The partitioned meshes are presented on Figure  5.14. In this gure,
we observe that the different processors are homogeneously distributed over the meshes, even if
the geometry is relatively complex. In particular, the partitions' interfaces are well minimized.

Figure 5.14 — Partitioned meshes of the turbine vane for: (top left) M1: 500 000 elements on 20 cores, (top
right) M2: 7 000 000 on 288 cores and (bottom) M3: 25 000 000 elements on 1008 cores

For these simulations, the checkpoint-restart procedure needs to be applied because their to-
tal computational times exceed 24 hours. After some numerical experiments on the supercom-
puter, it was decided to put a checkpoint-restart procedure every 400 increments. Therefore, 13
checkpoint-restart procedures were needed to reach the end of the simulation.

5.4.3.5 Computational time

In this section, we propose an analysis of the weak scalability of our nite element code. Indeed,
the allocated resources are adapted to the three computations allowing to keep a constant number
of elements per cores. The data concerning the computational time of each of the three compu-
tations are presented in Table 5.6. This computational time is given over 100 increments, 1000
increments and over the total simulation duration. It has to be noted that this computational time
takes into account the total computation time of our code. In particular, it takes into account:
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the initial mesh partitioning time,
« the execution times of the Cimlib-CFD models (solvers etc.),

* the writing time of the results on the disk,

the execution of the checkpoint-restart procedure,
« the queuing time of the successive jobs,

« the reading and repartitioning time of the last result le.

Taking this global metric to measure the computational time does not allow to do a fair scala-
bility analysis of our nite element code. In fact, too many variables, like the queuing time of the
successive jobs, are out of our control reach. However, it has the advantage to show, at a global
and practical scale, the behavior of Cimlib-CFD on the massively parallel supercomputer. In par-
ticular, looking at the results concerning M3, we observe that the total computational time for the
simulation represents 277 704 CPU hours which is expensive in comparison to the other cases
presented in the PhD work.

Mesh name | 100 increments 1000 increments Total
M1 1 h 02 min Odays14h49min | 2days 12 h 00 min
M2 1 h 55 min ldays 04 h33min | 4days05h28min
M3 4h11min 2days01h19min | 11 days 11 h31 min

Table 5.6 — Computational times on the GENCI Occigen Il supercomputer

Along Table 5.6, we draw in Figure 5.15 the charts of the computational times on the GENCI
Occigen Il supercomputer in function of the number of elements for the three meshes M1, M2 and
M3. These charts are given over the different ranges of increments. They allow to assess for the
weak scalability performances of Cimlib-CFD on the supercomputer. Keeping a constant number
of element, a perfect scalability should show the same computational times for the three compu-
tations. However, this analysis does not work if we consider the additional overhead times.

On the rst chart, corresponding to the computational time over 100 increments, a linear be-
havior is observed. Indeed, the determination coef cient of the linear approximation is equals
to 0.9997 which is a proof of a proper linear behavior. This shows that the overhead time behave
as expected and varies linearly with the number of elements. When we consider the computa-
tional times exceeding 400 increments, a linear behavior is still observed but the determination
coef cient is depreciated. This is caused by the effect of the checkpoint restart procedure and
the successive jobs' queuing times previously mentioned. However, looking at the total compu-
tational times and the fairly good linear behavior of the chart, we can say that our nite element
library shows good scalability performances on the machine.

5.4.3.6 Results and discussions

In this section we present the results in terms of aerothermal coupling parameters and velocity
elds obtained on the three meshes previously presented. An analysis of these results is proposed
along with some perspectives for future works.

5.4.3.6.1 Resulting aerothermal coupling parameters In the turbine vane cooling simulation,
the hypothesis of highly convective heat transfer in turbulent ows is still valid. Indeed, referring
to previous studies [ ], the Reynolds number inside the holes can be estimated like follows:

VpD 22£ 0.01
Re /E Va2 " 1414.000 (5.4)
© fluid 15ei 6
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Computational time over 100 increments

300
250 »
— . /M3 —e—Computational time over
E 200 s 100 increments
< // Linear approximation
° 150
£ / y = 8E-06x + 59,464
F 100 f R2 = 0,9997
M2
50 i1
0 ; ; ‘
0 10 20 30
Nb elements (in millions)
Computational time over 1000 increments
3500
3000
. // M3 —e— Computational time over
€ 2500 1000 increments
IS / ; ; ;
< 2000 Linear approximation
® // y = 8E-05x + 973,78
E 1500 / M2 R2=0,9784
|_
1000 |~
M1
500
0 ; ; ‘
10 20 30
Nb elements (in millions)
Total computational time
18000
16000 // 3
14000 /’ ——Total computational time
€ 12000 i imati
/ Linear approximation
£ 10000
- y = 0,0005x + 2900,9
2 8000 2
E / R? = 0,9941
= 6000
M2
4000 o~
2000 M1
0 ; ; ‘
0 10 20 30

Nb elements (in millions)

Figure 5.15 — Computational times for M1, M2 and M3 over diverse increment ranges
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Therefore, the hypothesis of highly convective heat transfer in a turbulent ows is still valid. For

this reason, we propose to use the two additional numerical models implemented in Chapter 3
to couple the Navier-Stokes VMS solver and the thermal convection-diffusion solver. We refer to
this chapter for the theoretical aspects of the aerothermal coupling parameters computation. In
particular, we propose here to use the Sutherland law and the Smagorinsky model to compute the
modi ed dynamic viscosity ! qta - Doing so, the chosen aerothermal coupling con guration for
the turbine vane cooling corresponds to Computation B of Table 3.2, which has shown to be the
best choice in previous cases.

A snapshot of the resulting modi ed dynamic viscosity ! {qta IS given in Figure 5.16. In this
gure, we observe that the turbulent dynamic viscosity is increased mainly in the holes where
important velocity gradients are expected. Also, the variations of this modi ed dynamic viscosity
is also important at the outlet of the geometry due to the imposed boundary condition. The use of
a sub-grid scale turbulence model in these area has a smoothing effect on the solution and helps
the convergence of the Navier-Stokes VMS solver.

Figure 5.16 — Snapshot of the modi ed dynamic viscosity ! (ota inplanYZ at x £ j45mm and in plan XY at
z AAOmm

5.4.3.6.2 Resulting velocity elds The resulting instantaneous velocity eld inside the turbine
vane is presented in Figure 5.17. In this gure, we observe the ow, coming from the rectangular
convergent nozzle, feeding progressively the 39 holes. In particular, we observe on each picture  the
ow acceleration caused by the convergence of the nozzle. The rst columns of holes are rapidly

fed but we need to wait until increment |  /A1250 to see the ow going through all the holes.

From this point, the ow motion inside the central cavity continues to evolve until the per-
manent regime is reached (around increment |  A5000). Following this evolution, we clearly see
the formation of a main vortex structure creating a massive ow re-circulation inside the central
cavity. This re-circulation seems to nd its origins at the crossing of the rectangular nozzle with
the central cavity, but it also seems to be caused by the closed wall on the other side of the cavity.
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a) c)

b) d)

Figure 5.19 — Visualization of the averaged velocity eld in plan YZ at x A& j45mm (i.e. the slice going
through row 2). a) CEDRE kj ! SST from Laroche et al. in [ ]; b) Results on M1; ¢) Results on M2; d)
Results on M3

magnitudes in the ow. However, the fact that we use an unsteady simulation imply that our res-
olution of the ow turbulent behavior is better established. Indeed, in our results, we can observe
the full ow turbulence of the jet arriving on the leading edge of the geometry. The complexity of
our simulation is therefore increase but our understanding of the ow physic can be improved by
these observations.

To nish, in order to illustrate our parallel mesh adaptation capabilities on such a complex
industrial case, we apply the parallel mesh adaptation procedure presented in this chapter. This
time, the criteria is based on the velocity eld but we use the same metric construction that the
one presented in Chapter 4. We start from the initial mesh M2, we wait for the pseudo-permanent
regime to be established. Then, we activate anisotropic mesh adaptation with a targeted number
of element of 7 000 000. This way, we only redistribute the elements inside the geometry, without
increasing the size of the problem. The resulting mesh is presented in Figure  5.21. Inthis gure, we
observe the possibilities that offers our parallel mesh adaptation framework. In fact, the mesh is
able to follow the ow complexity inside the entire domain. In particular, we observe areas where
the mesh follow the turbulent structures created by the rebound of the jets on the intrados and
extrados. Furthermore, in this geometry, a quite important number of boundary layers appear
and we can see that our mesh adaptation tool allows capturing several of them.

To conclude, we can say that, as we saw in Chapter 2 on the single impingement jet cooling and
as pointed by the previous numerical studies, the accurate capture of highly convective heat trans-
fer of impinging jets remains very challenging, and moreover in this kind of complex geometries.
Indeed, we showed that it is rstimportant to have a highly accurate solution of the velocity eld
inside the geometry, before even considering capturing the convective heat transfer. Our study
brings an answer to this rst dif culty but future works will have to focus more in details on the
computation of the heat transfer.

In fact, the next steps of this work will be to obtain the convective heat transfer coef cient on
the intrados, extrados and leading edge of the geometry. Achieving this is a real challenge. Duri  ng
this work, we tried to obtain this heat transfer but the meshes used were not suf ciently re ned
on the intrados and extrados area to hopefully obtain anything concerning them. In fact, if we link
these results on 39 jets to the ones obtain in Chapter 2 on a single jet, we realize that we wont be

117



CHAPTER 5. MASSIVELY PARALLEL COMPUTATIONAL FRAMEWORK

b) d)

c) e)

Figure 5.20 — Visualization of the averaged velocity eld in plan XY at z £0mm. a) PIV measurements; b)
CEDRE ZDES from Laroche etal. in[  ]; ¢) Results on M1; d) Results on M2; e) Results on M3

Figure 5.21 — Adapted mesh following of the complete turbine vane
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able to capture this highly convective heat transfer using numerical simulation at this scale. This
shows that, in order to obtain accurate results, we still need to increase the problem size and thus,
the allocated computational resources. It shows the need to do computations at a larger scale and
this work opens the way for future works on the turbine vane cooling with Cimlib-CFD.

5.5 Conclusion

To conclude, we proposed in this chapter a description of the parallel capabilities of Cimlib-CFD.
First of all, we presented the FE framework, the mesh partitioning principles and the load balanc-
ing algorithms used in this PhD work. In particular, the parallel mesh adaptation procedure was
presented and each step was detailed.

Second of all, we proposed a presentation of the two hardware systems used to develop nu-
merical tools and to produce numerical results during the thesis. The rst one was the lab's cluster,
called Cluster Intel, allowing the development of numerical methods. The second one however,
was the GENCI Occigen Il supercomputer on which we executed Cimlib-CFD for the rst time
during this PhD work. This system allowed us to produce numerical results using massively par-
allel computations. However, the adaptation of Cimlib-CFD on this new system required, among
others, the development of a checkpoint-restart procedure that we designed following a certain
number of constrains imposed by the user policy and hardware restrictions of the supercomputer.

Then, we proposed application cases for parallel computations. The rst one was dedicated
to a strong scalability analysis of our nite element code on a well known benchmark. The results
showed a linear increase of the speed-up with the allocated resources allowing us to conclude on
the hard strong scalability of the numerical methods used to solve linear systems in Cimlib-CFD.
Then, parallel mesh adaptation was tested on the two hardware systems for the case of the single
impingement jet cooling. In this work, we showed the parallel capabilities of the software at two
different scales by presenting dynamic parallel mesh adaptation over 28 cores on the Cluster Intel
and then, over 504 cores on the GENCI Occigen Il supercomputer. Our results showed that we
obtained relevant partitions in both cases.

Finally, we presented in this chapter a more complex but realistic industrial case which con-
cerned the cooling of a complete turbine vane composed by 39 holes. To study this geometry,
an incremental space discretization was chosen along with adapted allocated resources allowing,
in a certain way, to do a weak scalability analysis of our computations. The computational time
on these incremental meshes showed a linear tendency which illustrated the good behavior of
Cimlib-CFD on the supercomputer. Furthermore, the results showed our ability to obtain the un-
steady turbulent velocity eld inside this geometry but future works are still needed to obtain the
heat transfer coef cients on the turbine vane. In particular, these future works will have to in-
crease the size of the problem and to launch computations at an even larger scale.

Résumé du chapitre en francais

Ce chapitre s'attache a décrire les techniques de parallélisation de calcul utilisées dans Cimlib-
CFD. En effet, nous proposons d'abord une description détaillée des algorithmes de partition-

nement et de répartition de la charge de calcul au niveau software. Egalement, la procédure
d'adaptation paralléle de maillage est introduite et chacune des étapes clés de cette derniére est
expliquée.
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Nous proposons ensuite une présentation générale des deux systémes de calcul utilisés lors
de ce doctorat. Le premier est un systeme de calcul interne au laboratoire appelé Cluster Intel qui
a plus particulierement servi au développement des méthodes numériques introduites dans ce
manuscrit. Le second systéme, en revanche, est un super-calculateur national appelé GENCI Oc-
cigen Il sur lequel nous avons exécuté Cimlib-CFD pour la premiére fois pendant cette thése. Ce
super-calculateur nous a permit de produire des résultats numériques utilisant des calculs mas-
sivement paralléles. Cependant, I'adaptation de Cimlib-CFD a ce nouvel environnement de cal-
cul a nécessité, entre autres, le développement d'une procédure d'arrét et de reprise du calcul que
Nous avons congu en respectant un certain nombre de contraintes imposées par la politique util-
isateur du systéme.

Des cas d'application des techniques de parallélisation sont ensuite proposés. Le premier cas
est dédié a I'étude de la scalabilité forte des solvers linéaires utilisés pendant la thése et reprend le
fameux cas de la cavité ventilée 3D. Les résultats montrent une augmentation linéaire du speed-up
réalisé en augmentant les ressources de calcul. Cela nous permet de conclure sur la bonne scala-
bilité de nos méthodes de résolution de systémes linéaires dans Cimlib-CFD. Ensuite, I'adaptation
parallele de maillage est testée sur les deux systémes de calcul pour le cas du jet unique impactant.
Dans ce travail, nous montrons les capacités paralléles du programme a deux échelles différentes,
présentant d'abord une adaptation dynamique et paralléle du maillage sur 28 cceurs avec le Clus-
ter Intel, puis sur 504 coeurs avec le super-calculateur GENCI Occigen Il. Nos résultats montrent
gue I'on peut obtenir des partitions appropriées dans les deux cas.

En n, nous présentons dans ce chapitre un cas industriel plus réaliste qui concerne le re-
froidissement d'une aube de turbine complete composée de 39 trous. Pour étudier cette géométrie,
nous proposons d'utiliser une discrétisation spatiale incrémentale en adaptant les ressources de
calcul demandées a la taille du probleme. Cela nous permet, dans une certaine mesure, de faire
une analyse sur la scalabilité faible de notre code. Les temps de calcul sur ces maillages incré-
mentaux montrent une progression linéaire qui illustre le bon comportement de Cimlib-CFD
sur le super-calculateur. De plus, les résultats montrent que nous sommes capable d'obtenir le
champ de vitesse au sein de la géométrie. Cependant, des travaux futurs doivent étre envisagés
pour capture les coef cient de transferts thermiques. Pour cela, par comparaison avec les études
numeériques menées sur le cas du jet unique et plus largement, par les études numériques réal-
isées dans d'autres laboratoire, il sera nécessaire d'augmenter la taille du probléme et de lancer
des calculs a plus grande échelle.
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6.1 Conclusion

This PhD work was devoted to the development of a variational adaptive nite element method
allowing to improve the aerothermal simulations related to the cooling of aircraft engines. More
precisely, our goal was to develop a new multiscale mesh adaptation technique, well suited to the
resolution of highly convective aerothermal problems encountered in particular in the turbine
blade cooling. To study this complex aerothermal problems, it was necessary to focus our interest
on a benchmark con guration of the single impinging jet cooling bringing into play highly con-
vective heat transfer in turbulent ows.

The single impingement jet cooling problem was presented in Chapter 2. This chapter made
it possible for us to better understand the complexity of the physical phenomenon occurring dur-
ing the cooling. We proposed in this chapter two different numerical frameworks to solve this
aerothermal problem. The rst one used ANSYS CFX/Fluent and the second one used Cimlib-
CFD. The preliminary study using the ANSYS framework clearly showed the need to have a fully
3D turbulent and unsteady resolution of the problem in order to capture the very speci ¢ heat
transfer distribution of the impingement jet cooling on the impact plate. To do so, we then pro-
posed numerical investigations using Cimlib-CFD. To our knowledge, this was the rst attempt
to solve the single impingement jet cooling problem using the numerical methods developed in
Cimlib-CFD. The overall observations on the results showed our ability to capture the speci c tur-
bulent ow behavior of the studied con guration. Indeed, the instantaneous velocity and pressure
elds clearly showed the rebound of primary vortices on the plate creating secondary vortices in
the opposite direction. With this analysis, we managed to explain the re-injection of cold uid air
on the plate and thus, the appearance of a secondary peak in the radial Nusselt number distribu-
tion.

Then, we proposed in Chapter 3 a set of numerical tools to solve aerothermal problems in
Cimlib-CFD. These numerical tools made it possible for us to simulate highly convective heat
transferinturbulent ows. However, additional numerical models were needed to reinforce aerother-
mal coupling in the simulation. We thus proposed to implement two additional numerical models
in our nite element library which are: (i) the Sutherland law and (ii) the Smagorinsky Model. A
numerical benchmark study of a 3D ventilated cavity was then made in order to validate our set of
numerical tools. The results were in good agreement with experimental and numerical references.
In particular, they gave us the best way to couple the unsteady incompressible Navier-Stokes solver
with the thermal convection-diffusion solver using a modi ed dynamic viscosity and a modi ed
thermal conductivity.

In Chapter 4, we proposed an innovative adaptive multiscale method that allowed dealing
with highly convective aerothermal computations in Cimlib-CFD. Indeed, this chapter aimed at
proposing a new multiscale mesh adaptation technique that was well suited for the type of aerother-
mal problems developed in the rst two chapters. To do so, we proposed a new a posteriori error
estimate based on the VMS method for anisotropic adaptive uid mechanic problems. This new
error estimator was de ned by the combination of both (i) an interpolation based anisotropic
error indicator and (ii) a subscales error estimator. The subscales error estimator was computed
using two different methods. The rst one used stabilizing parameters derived from the VMS anal-
ysis and local norms de ned on the elements. The second method used a linear combination of
bubble functions to establish a pointwise computation of the error. The results showed that the
method using bubble functions was better suited to drive both isotropic and anisotropic mesh
adaptation. Then, the results on analytic 2D and 3D benchmarks also showed that the proposed
multiscale mesh adaptation technique allowed to obtain highly precise solutions with much less
elements in comparison with other mesh adaptation techniques. This multiscale mesh adaptation
technigue was then applied to the realistic industrial case of the single impingement jet cooling.
On this complex industrial case, the new multiscale mesh adaptation technique showed promis-
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ing qualitative results.

Finally, in Chapter 5, we proposed a description of the parallel software capabilities in Cimlib-
CFD. To do so, we presented the mesh partitioning principles in the FE framework. Then, the
algorithm behind parallel mesh adaptation was introduced as well as important notions on the
particular treatment of the partitions' interfaces. Finally, we presented the two different hard-
ware systems used during this PhD thesis. The rst one was the lab's cluster, called Cluster In-
tel, allowing the development of numerical methods. The second one however, was the GENCI
Occigen Il supercomputer on which we executed Cimlib-CFD for the rst time during this PhD
work. This system allowed us to produce numerical results using massively parallel computations.
The adaptation of Cimlib-CFD on this new system required, among others, the development of a
checkpoint-restart procedure that we designed following a certain number of constrains imposed
by the supercomputer user policy. Then, we proposed application cases for parallel computa-
tions. The rst one was dedicated to a strong scalability analysis of our nite element code on a
well known benchmark. The results showed a linear increase of the speed-up with the allocated
resources allowing us to conclude on the hard strong scalability of the numerical methods used
to solve linear systems in Cimlib-CFD. Parallel mesh adaptation was tested on the two hardware
systems for the case of the single impingement jet cooling. In this work, we showed the paral-
lel capabilities of the software by presenting dynamic parallel mesh adaptation over 28 cores on
the Cluster Intel and then, over 504 cores on the GENCI Occigen Il supercomputer. Our results
showed that we obtained relevant partitions in both cases. Finally, we presented in this chapter
a more complex but realistic industrial case. The latter concerned the cooling of a complete tur-
bine vane composed by 39 holes. To study this geometry, an incremental space discretization was
chosen along with adapted allocated resources. The computational times on these incremental
meshes showed a linear behavior which demonstrated the good scalability of Cimlib-CFD on the
supercomputer.

6.2 Perspectives

Along this work, several perspective were proposed. In this section, we propose to summarize the
main improvement axis highlighted in this PhD work. There are mainly two axis: one concerning
physical modeling, and the other on a more general numerical problematic.

6.2.1 Physical modeling of the single impinging jet cooling

Concerning the physical modeling of the single impingement jet cooling several perspectives were
proposed for future works. In fact, the in uence of the outlet boundary condition still seems to
play a crucial role on the ow motion in the boundary layer. The location of this boundary condi-
tion and the way to impose it in the nite element framework is still an open question. Further-
more, the mesh in the boundary layer can still be improved in order to capture more precisely both
(i) the velocity pro les in the boundary layer and (ii) the thermal gradient on the plate.

Furthermore, even if we are con dent that the proposed synthetic perturbations model for the
turbulent inlet boundary condition is, indeed, well suited for our simulation, other solutions can
be explored. Among others, we propose for future works a preliminary computation of the ow
inside a long inlet tube in order to provide the turbulent inlet boundary condition of a fully devel-
oped jet. It will then be interesting to analyze the effects of this inlet boundary condition on the
Nusselt number distribution.

In addition, the works of Dairay et al. in [ ]and Aillaud et al. in[ ] propose to use a statis-
tical analysis of the heat transfer events on the plate. Indeed, in order to deepened the analysis of
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the ow turbulence, it can be interesting to apply their method using Probability Density Function
(PDF) to decompose the heat transfer and to analyze at which scale our results are correlated to
theirs. Going even further, the use of conditional averaging procedure aiming at dissociating some
heat transfer events in the computation of the mean radial Nusselt number distribution can also
be a solution to look on.

Finally, from an industrial point of view, other types of cooling can be studied with Cimlib-
CFD. In particular, important works on Im cooling have already started and can be found in the
literature. Studying the Im cooling can, in fact, enable us to understand the other physical phe-
nomenon occurring during the turbine blade cooling. In particular, it will allow us, in the future,
to propose a complete modeling of the ow inside the turbine blade.

Related to this, on the complete turbine vane geometry and multi-jets simulation, a number of
improvements can be drawn from this work. Indeed, there is still a need to improve this aerother-
mal simulation in order to capture the convective heat transfers inside the geometry. To do so,
future works will have to answer questions related to the size of the mesh and control of errors in
the aerothermal context. In particular, our numerical tools will have to demonstrate their capabil-
ities on such complex 3D geometry and at a computation scale never achieved before. Achieving
this performance will require performing aerothermal error estimates allowing to target directly
the turbulent features of the ow motion but also, the distribution of the heat transfer inside the
cavity. This will be done by associating error estimates from different PDE equations. We will
developed this idea in the next section.

6.2.2 VMS error estimates for anisotropic adaptive simulations

Indeed, from a numerical point of view, the proposed multiscale mesh adaptation method showed
promising results on analytic benchmarks in 2D and 3D. Thus, the next step of this work is to
demonstrate the ef ciency of this new mesh adaptation method on more realistic industrial cases.
To do so, we will have to demonstrate quantitatively the capabilities of this new method. For in-
stance, as soon as the physical modeling issues on the impingement jet cooling are dealt with,
it will be interesting to compare the heat transfer distributions obtained on both (i) a multiscale
adapted mesh and (i) a large isotropic reference mesh. Doing so, as for analytic benchmarks, we
will hopefully be able to show that, with our new multiscale mesh adaptation method, we manage
to obtain equivalent aerothermal solutions using much less elements and thus, much less com-
putational resources compared to standard mesh adaptation methods.

Secondly, the combination between the anisotropic local error indicator and the subscales er-
ror estimator could be done differently. Indeed, the proposition made in this thesis consisting of
scaling the hessian's eigenvalues using a scale factor based on the subscale error was the rstidea
that came to our minds when addressing the problem. Furthermore, it showed very promising
results and thus, it was interesting to follow this direction. However, one could combine these two
information differently by doing another type of error analysis. For example, one could consider
intersecting the two metric tensors H j5o and H apiso and obtain a different mesh, comparable to
the one we obtained.

Thirdly, as mentioned in Chapter 4 and in the previous section, the subscales error estimate
can be applied to other types of equations. Important works on this subject can be found in the
literature. In fact, the PDE dependency of the subscales error estimate implies that we need to de-
velop a new error estimate when we change the problem's equation. As an example, it is possible
to apply this error estimate to the incompressible Navier-Stokes equations. This time, the error
estimator is computed on the vector variable v in order to have an estimation of jjv4j. The same
was also tested on the variable p in order to have an estimation of jjpYj. The computation of the
error estimate using the residual free bubble matrix have yet to be undertaken for these equations,
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and the way to combine this error estimate with mesh adaptation will also be challenging.

Finally, this PhD work is really the rst step into developing a complete aerothermal error es-
timate. Indeed, as mention in the previous section, the objective is then to control the errors si-
multaneously from the different PDEs solved during the turbine vane cooling (mainly the Navier-
Stokes equations and the convection-diffusion equation). Indeed, a complete aerothermal error
estimate will make it possible for us to control all the errors of the problem and to correlate them
to one another in order to obtain the best mesh possible in these complex aerothermal simula-
tions. This will require to decline subscales error estimates for all the equations, and to create an
aerothermal module that will associate these error estimates. With these advanced possible com-
binations, we will hopefully be able to solve this kind of complex aerothermal problems at reduced
computational costs.

Résumé du chapitre en francais

Cette these de doctorat a été consacrée au développement d'une méthode élément nis adapta-
tive permettant d'améliorer la simulation aérothermique du refroidissement des moteurs d'avion.
Plus précisément, notre but a été de développer une méthode d'adaptation de maillage multi-
échelle dédiée a la résolution des problémes aérothermiques rencontrés, en particulier, dans le
refroidissement des aubes de turbines. Pour étudier ce probléme aérothermique complexe, il a
été nécessaire de focaliser notre étude sur une con guration benchmark du refroidissement par
jet impactant mettant en jeu des transferts thermiques hautement convectifs dans des écoule-
ments turbulents.

Ce travail nous a permit de mieux comprendre les phénoménes physiques complexes inter-
venant lors du refroidissement par impact. A notre connaissance, il s'agit de la premiére ten-
tative de résoudre ce probleme aérothermique en utilisant les méthodes numériques dévelop-
pées au sein du CEMEF MINES-Paristech. Lanalyse de nos résultats a montré notre capacité
a capturer le comportement turbulent spéci que de cette con guration. En effet, l'analyse des
champs macroscopiques de vitesse et pression a clairement montré le rebond des structures pri-
maires sur la plaque, générant ainsi des tourbillons secondaires dans la direction opposée de
I'écoulement. Avec cette analyse, nous avons pu expliquer la ré-injection d'air froid sur la plague
et donc, I'apparition d'un pique secondaire dans la distribution radiale du nombre de Nusselt.

Dans ce manuscrit, hous avons ensuite décrit plus particulierement les outils numériques
nous permettant de réaliser des simulations aérothermiques turbulentes avec Cimlib-CFD. De
plus, nous avons proposé deux modeéles additionnels permettant de renforcer le couplage aérother-
mique de la simulation. Ainsi, nous avons présenté I'implémentation (i) d'une loi de Sutherland et
(i) d'un modele de Smagorinsky. Une étude de validation de ces deux modéles a été proposée sur
un cas de cavité 3D ventilée. Les résultats sur ce cas de validation sont trés proches des références
expérimentales et numériques auquel nous nous comparons. En particulier, cette étude de vali-
dation nous a permit de choisir la meilleure maniére de coupler le solver Navier-Stokes VMS in-
compressible et le solver thermique de convection-diffusion en utilisant une viscosité dynamique
modi ée, ainsi gu'une conductivité thermique modi ée.

Dans le Chapitre 4, nous avons proposé une méthode d'adaptation de maillage innovante per-
mettant de gérer des simulations aérothermiques hautement convectives avec Cimlib-CFD. En
effet, le but de ce chapitre a été de proposer une nouvelle méthode d'adaptation de maillage,
bien adaptée aux cas aérothermiques développés dans les deux premiers chapitres. Pour réaliser
cela, nous avons proposé un nouvel estimateur d'erreur a posteriori basé sur la méthode VMS
pour les problemes de Mécanique des Fluides. Ce nouvel estimateur d'erreur a été dé ni par
() un estimateur d'erreur d'interpolation anisotrope et (ii) un estimateur d'erreur sous-échelle.
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Les résultats sur des cas analytiques 2D et 3D ont montré que la méthode d'adaptation de mail-
lage multi-échelle permettait d'obtenir des solutions hautement précises avec un nombre réduit
d'éléments en comparaison aux autres techniques d'adaptation de maillage. De plus, cette méth-
ode d'adaptation de maillage multi-échelle a également été appliquée au cas plus réaliste du re-
froidissement par jet impactant et nous avons pu montré des résultats qualitatifs prometteurs sur
cette con guration.

En n, nous proposons dans ce manuscrit une description des possibilités de calcul parallele
offertes par Cimlib-CFD. Nous présentons les principes de partitionnement de maillage par dé-
composition de domaine dans le contexte numérique des éléments nis. Ensuite, l'algorithme
permettant une adaptation de maillage paralléle est introduit ainsi que le traitement particulier
des interfaces entre les partitions. Les deux systémes de calcul utilisés pendant ce doctorat sont
également présentés. Le premier est un cluster interne au laboratoire, appelé Cluster Intel, qui
a plus particulierement été utilisé pour le développement des méthodes numériques présentées
dans ce manuscrit. Le second en revanche, est le super-calculateur national GENCI Occigen |l
sur lequel nous avons pu exécuter Cimlib-CFD pour la premiére fois pendant cette thése de doc-
torat. Ce systéme nous a permit de réaliser des calculs massivement paralléles mais a nécessité
une adaptation de Cimlib-CFD a ce nouvel environnement de calcul. En particulier, une procé-
dure d'arrét et de reprise du calcul a été implémentée pour s'adapter aux contraintes imposées par
la politique utilisateur de ce nouveau systeme. Des cas d'application des techniques de paralléli-
sation sont ensuite proposés. Le premier cas est dédié a I'étude de la scalabilité forte des solvers
linéaires utilisés pendant la thése et reprend le fameux cas de la cavité ventilée 3D. Les résultats
montrent une augmentation linéaire du speed-up avec l'augmentation des ressources de calcul.
Ensuite, I'adaptation parallele de maillage est testée sur les deux systemes de calcul pour le cas
du jet unique impactant. Dans ce travail, nous montrons les capacités paralléles du programme a
deux échelles différentes.

En n, nous présentons dans ce chapitre un cas industriel plus réaliste qui concerne le re-
froidissement d'une aube de turbine complete composée de 39 trous. Pour étudier cette géométrie,
nous proposons d'utiliser une discrétisation spatiale incrémentale en adaptant les ressources de
calcul demandées a la taille du probleme. Cela nous permet, dans une certaine mesure, de faire
une analyse sur la scalabilité faible de notre code. Les temps de calcul sur ces maillages incrémen-
taux montrent une progression linéaire qui illustre le bon comportement de Cimlib-CFD sur le
super-calculateur. De plus, les résultats montrent que nous sommes capable d'obtenir le champ
de vitesse au sein de la géométrie. Cependant, des travaux futurs doivent étre envisagés pour cap-
ture les coef cient de transferts thermiques. Pour cela, en comparant cette étude avec I'étude
numeériques menée sur le cas du jet unique et plus largement, par les études numeériques réalisées
dans d'autres laboratoire, il sera nécessaire d'augmenter la taille du probleme et de lancer des cal-
culs a plus grande échelle.

Nous proposons dans ce travail un certain nombre de perspectives concernant la modélisation
physique du refroidissement par impact. En effet, I'in uence de la condition aux limites de sortie
semble toujours jouer un réle crucial dans le déplacement du uide, en particulier dans la couche
limite. La localisation de cette condition aux limites et la maniére de I'imposer dans Cimlib-CFD
est toujours une question ouverte a ce jour. Ensuite, bien que nous soyons con ant sur le fait
gue la solution retenue pour imposer des perturbations synthétiques turbulentes a I'entrée du jet
est la plus adaptée a notre contexte numeérique, d'autres solutions peuvent étre explorées. Parmi
d'autres, il serait intéressant d'effectuer un calcul dans un long tube, de maniére a fournir une
condition aux limites turbulente et instationnaire en entrée de la simulation du refroidissement
par jet impactant.

Un certain nombre de perspectives ont également été apportées aux travaux sur les estimateur
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d'erreur sous-échelle. En effet, la prochaine étape de ce travail sera de faire une étude quantitative
sur les capacités de cette nouvelle méthode. Par exemple, dés lors que les problemes liés a la mod-
élisation physique du jet impactant seront réglés, il sera intéressant de pouvoir comparer les dis-
tribution de coef cient de transferts thermiques calculés sur (i) un maillage adaptés multi-échelle

et (ii) un maillage isotrope de référence. Faisant cela, nous seront capables de montrer qu'il est
possible d'obtenir des solutions aérothermiques équivalentes avec un nombre réduit d'éléments
et donc, un nombre réduit de ressources de calcul.

Ensuite, comme mentionné dans le chapitre, I'estimateur d'erreur sous-échelle peut étre ap-
pliqué a d'autres type d'équations. En effet, la dépendance de ce dernier a la PDE implique que
nous devons développer un nouveau modele pour chaque équation. Un travail sur I'application
de cet estimateur d'erreur aux équations de Navier-Stokes incompressible a été engagé pendant
ce doctorat. Cependant, le calcul de I'estimateur d'erreur utilisant des fonctions bulles doit encore
étre entrepris et la maniére de la combiner a I'adaptation anisotrope de maillage peut s'avérer par-
ticulierement dif cile.

Finalement, ce travail de thése est en réalité le premier pas vers le développement d'un es-
timateur aérothermique complet. En effet, I'objectif nal serait de pouvoir contréler les erreurs
des différentes PDEs simultanément. Cela permettrait de corréler les erreurs du probléme et de
les contrdler en générant des maillages adaptés aux simulations aérothermiques de ce niveau de
complexité.
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List of Acronyms

2D twodimensional. 17, 25, 60, 64, 65, 67, 74, 80, 83, 84, 88, 89, 122, 124, 126

3D three dimensional. 10, 16, 17, 24, 25, 39, 42, 43, 50, 54, 55, 56, 58, 60, 61, 65, 71, 74, 80, 84, 88,
89, 98, 103, 105, 120, 122, 124, 126

AMR Adaptive Mesh Re nement. 9

BPR By-Pass Ratio. 2, 3

BSL BaSeLine. 19

CEMEF Centre de Mise En Forme des matériaux. 24, 98,99, 125

CERFACS Centre Européen de Recherche et de Formation Avancée en Calcul Scienti que. 17
CFD Computational Fluid Dynamic. 2,7,9, 10, 13, 16, 17, 39, 64, 88, 94, 98

CFL Computing and FLuid. 24

CFL Courant—Friedrichs—Lewy. 27

CG Conjugate Gradient. 93

CIFRE Convention Industrielle de Formation par la REcherche. 12

CINES Centre Informatique National de 'Enseignement Supérieur. 98, 100

CPU Central Processing Unit. 92,94, 96,98, 99, 111, 112

CSR Compress Sparse Row. 100

DARI Demande d'Attribution de Ressources Informatiques. 100
DNS Direct Numerical Simulation. 16

DOF Degrees Of Freedom. 94, 104
ERCOFTAC European Research Community on Flow, Turbulence and Combustion. 17, 28, 35

FDSM Filtered Dynamic Scale Model. 51
FE Finite Element. 11, 46, 74, 80, 92, 93,99, 119, 123

FEM Finite Element Method. 46, 68, 93
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FLOPS FLoating-point Operations Per Second. 9, 92,98, 101

FPR Fan Pressure Ratio. 3,12

GMRES Generalized Minimal RESidual. 93

HPC High Performance Computing. 2,9, 16, 94, 97, 98, 100
LES Large Eddy Simulation. 7,16, 51

MPI Message Passing Interface. 95

NASA National Aeronautics and Space Administration. 7,9, 13, 92

NEO New Engine Option. 3
ONERA Of ce National d'Etudes et de Recherche Aérospatiales. 6, 16

PDE Partial-Differential Equation. 10, 27, 42, 46, 64, 88, 89, 93, 124, 125, 127
PDF Probability Density Function. 124
PETSc Portable Extensible Toolkit for Scienti c computation. 93

PIV Particle Image Velocimetry. 116

RANS Reynolds-Averaged Navier-Stokes. 5, 7, 18, 19, 21, 24, 51

RST Reynolds Stress Transport. 7

SAE Safran Aircraft Engines. 2, 3,4,5, 6,12, 106

SLURM Simple Linux Utility for Resource Management. 101, 103
SM Smagorinsky Model. 10, 48, 49, 51, 59

SPMD Single Program Multiple Data. 95

SpMV Sparse Matrix Vector product. 94, 99

SST Shear Stress Transport. 19, 21, 24

SUPG Streamline Upwind Petrov/Galerkin. 10, 32,42, 46, 47, 61, 64, 66, 68, 69, 74, 78, 80, 108, 109

TET Turbine Entry Temperature. 4,12

TRL Technology Readiness Level. 7,9
URANS Unsteady Reynolds-Averaged Navier-Stokes. 5

VMS Variational Multi-Scale. 10, 32, 42, 43, 44, 47, 48, 53, 60, 61, 64, 65, 87, 88, 89, 95, 100, 103,
104, 108, 109, 114, 122, 125

VTU Visualization Toolkit Unstructured points data. 97
WALE Wall Adapting Local Eddy-viscosity. 59

ZDES Zonal Detached Eddy Simulation. 6
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Symbol
69
(69.
(9.,
[q

a(s9

Description

scalar product on the space L (- )
scalar product on the whole domain
scalar product on the whole domain
jump term

generic diffusion coef cient
constant in the modulation function
bilinear form

constant of proportionality between the shear

stress and the turbulent kinetic energy

uid (air) thermal diffusivity

amplitude of the excited azimuthal mode
stabilized bi-linear form

Level-Set function

average time of process i out of n, processes

operator acting on the boundary that de nes the

natural boundary condition
bubble functions
thermal expansion coef cient
Sutherland's law constant
algorithmic constant in the continuity stabilizing
parameter
algorithmic constant in the continuity stabilizing
parameter
barycenter of the element
centroid of the element
constant in the bubble functions combination
uid (air) speci ¢ heat
constant from Almeida et al.
constant of proportionality independent of the
element size
Smagorinsky constant
space dimension of the problem

jet nozzle diameter (for a round jet)

Units

m2.sil
mil

m2.sil

m.si1

K it

Page List
43, 46, 47
44
44
48
46, 68
27
46, 47
20

49, 55
97
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Symbol

exp

fo
F2

fmod

Q Q Q

IS o

H aniso

new
H aniso

hnew
hOUt

I
leff

Description
gradient operator
Laplacian operator
symmetric part of the resolved velocity gradient
on the mesh nodes
length scale related to the grid size
exact discrete error
eigenvectors of HR
turbulent dissipation
the strain rate tensor
anisotropic local error indicator
new anisotropic local error indicator

exponential function

source term

impinging frequency of the large scale structures
second blending function ofthe ki ! turbulence
model

modulation function

Van Driest damping function

gravitational acceleration constant

value of the Dirichlet boundary condition

Green's function

Grashof number

local mesh size

impact distance of the jet

anisotropic metric tensor

new anisotropic metric tensor

height of the conic shape in ANSYS CFX
convective heat transfer coef cient
unknown of the re-meshing problem
new unknown of the re-meshing problem
characteristic length of the element
mesh sizes in the g; directions

height of the inlet slot

new isotropic metric tensor

Neumann boundary condition

size of the new mesh (after mesh adaptation)
height of the outlet slot

recovered Hessian matrix

increment

d-dimensional identity tensor

ef ciency index

turbulent kinetic energy
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Symbol

Le

L

LP
I-pIate
I—tube

®1uid

v

sd

s fluid
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s total

s turb
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M

Mprimary
Msecondary
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1

Y fluid
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characteristic length of the problem m 30, 50, 52
generic differential operator 68
Lebesgue space of degreep 70,71
plate length m 26
tube length m 26
uid (air) thermal diffusivity m?2.sit 26, 50, 52
eigenvalue of the isotropic metric tensor 72
diagonal matrix of absolute value of the eigenval- 70
ues of Hr(up (X))
diagonal matrix of absolute value of the eigenval- 71
ues of Hr(up (X))
tabulated uid (air) thermal conductivity w. mitk! 26,3050,

52,54, 60
eigenvalues of Hr(un (X)) 70
calculated uid thermal conductivity wW. mlk! 30,4850,
54, 56, 60,
109
turbulent uid thermal conductivity w. mlk! 50
barycentric coordinates in the reference element 67
metric eld 70
mass ow rate of the primary ow kg.sit 3
mass ow rate of the secondary ow kg.si ! 3
maximum time of process i outof n, processes s 97
generic dynamic viscosity P a.s 43
uid (air) dynamic viscosity P a.s 26,43, 48,
52,54, 59
modi ed uid dynamic viscosity P as 48, 54, 55,
56, 59
total dynamic viscosity P a.s 48, 49,
54, 56,
60, 109,
114
turbulent uid dynamic viscosity P as 48,50, 53,
56
normal direction of the walls 49, 55
number of elements 43, 46, 76,
80, 84,94
number of interpolation points 68
number of elements for the triangulation - |, 70
number of elements for the triangulation - ﬂ 71
Nusselt number 30
uid (air) kinematic viscosity m?2.sit 26, 49, 50,
52
eddy viscosity m2.si ! 19
ow vorticity sil 34
spatial domain of the uid 42,43,74
boundary of the spatial domain 42,43
nite element 43,44, 46,
48
volume of the element - ¢ m3 48,71
triangulation of the domain 70
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P1
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Pe.
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Pr
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Description
reference element
turbulent speci ¢ dissipation

skew-symmetric part of the velocity gradient ten-
sor

ow vorticity around the Y axis

pressure

variable de ned on an mesh element (i.e. 2 Pg)
variable de ned on a mesh node (i.e. 2Pj)
inlet & outlet static pressure

resolved part of the pressure

space polynomial of degree k

unresolved part of the pressure

local Peclet number on element - ¢
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frequency of the excited azimuthal mode
Prandtl number

weighting function for the pressure

criterion for vortex identi cation

resolved part of the weighting function for the
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unresolved part of the weighting function for the
pressure

distance to the jet center axis

jet nozzle radius

orthogonal matrix built with the eigenvectors
(&)im,a of Hr(unh (X))

radius of the conic shape in ANSYS CFX
continuity residual

momentum residual

Rayleigh number

injection Reynolds number

generic density

uid (air) density

invariant measure of the strain rate in the bound-
ary layer

stretching factor

symmetric part of the velocity gradient tensor
constant in the modulation function

Cauchy stress tensor

Strouhal Number associated with the jet nozzle
diameter D

current time

impinging period of the main large scale struc-
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time step of the simulation
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temperature of the hot wall

shear stress in the boundary layer

stabilizing parameter for the continuity residual
stabilizing parameter in the SUPG scheme
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solution of the convection-diffusion problem
(temperature)

resolved part of the convection-diffusion solu-
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tolerated pointwise error

friction velocity at the nearest wall (usually the
plate)

velocity vector
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unresolved part of the weighting function for the
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temperature
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