&. References, , 2010.

O. References-aaltonen and O. Jauhiainen, The preparation of lignocellulosic aerogels from ionic liquid solutions, Carbohydrate Polymers, vol.75, issue.1, pp.125-129, 2009.

,

M. A. Aegerter and N. Leventis, Aerogels Handbook, 2011.

M. Alnaief, M. A. Alzaitoun, C. A. García-gonzález, and I. Smirnova, Preparation of biodegradable nanoporous microspherical aerogel based on alginate, Carbohydrate Polymers, vol.84, issue.3, pp.1011-1018, 2011.

M. Alnaief, S. Antonyuk, C. M. Hentzschel, C. S. Leopold, S. Heinrich et al., A novel process for coating of silica aerogel microspheres for controlled drug release applications, Microporous and Mesoporous Materials, vol.160, pp.167-173, 2012.

M. Alnaief and I. Smirnova, Effect of surface functionalization of silica aerogel on their adsorptive and release properties, Journal of Non-Crystalline Solids, vol.356, issue.33, pp.1644-1649, 2010.

J. C. Arboleda, M. Hughes, L. A. Lucia, J. Laine, K. Ekman et al., Soy protein-nanocellulose composite aerogels, Cellulose, vol.20, issue.5, pp.2417-2426, 2013.

M. Ashford, J. Fell, D. Attwood, H. Sharma, and P. Woodhead, An evaluation of pectin as a carrier for drug targeting to the colon, Journal of Controlled Release, vol.26, issue.3, pp.213-220, 1993.

M. A. Axelos and J. Thibault, CHAPTER 6 -The Chemistry of Low-Methoxyl Pectin Gelation, pp.109-118, 1991.

R. Baetens, B. P. Jelle, and A. Gustavsen, Aerogel insulation for building applications: A state-of-the-art review, Energy and Buildings, vol.43, issue.4, pp.761-769, 2011.

,

S. Basu, U. S. Shivhare, and P. Chakraborty, Chapter 14 -Influence of Sugar Substitute in Rheology of Fruit Gel, Advances in Food Rheology and Its Applications, pp.355-376, 2017.

J. N. Bemiller and R. L. Whistler, Industrial Gums: Polysaccharides and Their Derivatives, 2012.

P. Campia, E. Ponzini, B. Rossi, S. Farris, T. Silvetti et al., Aerogels of enzymatically oxidized galactomannans from leguminous plants: Versatile delivery systems of antimicrobial peptides and enzymes, Carbohydrate Polymers, vol.158, pp.102-111, 2017.

B. Cao and C. Zhu, Sol-gel derived self-supporting film, Journal of Non-Crystalline Solids, vol.246, issue.1, pp.34-38, 1999.

F. Capel, T. Nicolai, D. Durand, P. Boulenguer, and V. Langendorff, Calcium and acid induced gelation of (amidated) low methoxyl pectin, Food Hydrocolloids, vol.20, issue.6, pp.901-907, 2006.

G. Caputo, M. Scognamiglio, and I. Marco, Nimesulide adsorbed on silica aerogel using supercritical carbon dioxide, Chemical Engineering Research and Design, vol.90, issue.8, pp.1082-1089, 2012.

A. Cárdenas, F. M. Goycoolea, and M. Rinaudo, On the gelling behaviour of 'nopal' (Opuntia ficus indica) low methoxyl pectin, Carbohydrate Polymers, vol.73, issue.2, pp.212-222, 2008.

D. O. Carlsson, G. Nyström, Q. Zhou, L. A. Berglund, L. Nyholm et al., , 2012.

, Electroactive nanofibrillated cellulose aerogel composites with tunable structural and electrochemical properties, Journal of Materials Chemistry, vol.22, issue.36, pp.19014-19024

X. Chang, D. Chen, and X. Jiao, Chitosan-Based Aerogels with High Adsorption Performance, The Journal of Physical Chemistry B, vol.112, issue.26, pp.7721-7725, 2008.

Y. Cheng, L. Lu, W. Zhang, J. Shi, and Y. Cao, Reinforced low density alginate-based aerogels: Preparation, hydrophobic modification and characterization, Carbohydrate Polymers, vol.88, issue.3, pp.1093-1099, 2012.

Y. Chien, Novel Drug Delivery Systems, 1991.

M. Chtchigrovsky, A. Primo, P. Gonzalez, K. Molvinger, M. Robitzer et al., Functionalized chitosan as a green, recyclable, biopolymer-supported catalyst for the [3+2] Huisgen cycloaddition, International Ed. in English), vol.48, issue.32, pp.5916-5920, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00418394

L. M. Comin, F. Temelli, and M. D. Saldaña, Barley ?-glucan aerogels as a carrier for flax oil via supercritical CO2, Journal of Food Engineering, vol.111, issue.4, pp.625-631, 2012.

M. J. Comstock, Chemistry and Function of Pectins, Copyright, Chemistry and Function of Pectins, 1986.

L. B. Fagundes, T. G. Sousa, A. Sousa, V. V. Silva, and E. M. Sousa, SBA-15-collagen hybrid material for drug delivery applications, Journal of Non-Crystalline Solids, vol.352, issue.32, pp.3496-3501, 2006.

M. L. Fishman and P. H. Cooke, The structure of high-methoxyl sugar acid gels of citrus pectin as determined by AFM, Carbohydrate Research, vol.344, issue.14, pp.1792-1797, 2009.

I. Fraeye, A. Deroeck, T. Duvetter, I. Verlent, M. Hendrickx et al., Influence of pectin properties and processing conditions on thermal pectin degradation, Food Chemistry, vol.105, issue.2, pp.555-563, 2007.

I. Fraeye, T. Duvetter, E. Doungla, A. Van-loey, and M. Hendrickx, Fine-tuning the properties of pectin-calcium gels by control of pectin fine structure, gel composition and environmental conditions, Trends in Food Science & Technology, vol.21, issue.5, pp.219-228, 2010.

C. A. García-gonzález, M. Alnaief, and I. Smirnova, Polysaccharide-based aerogels-Promising biodegradable carriers for drug delivery systems, Carbohydrate Polymers, vol.86, issue.4, pp.1425-1438, 2011.

C. A. García-gonzález, M. Jin, J. Gerth, C. Alvarez-lorenzo, and I. Smirnova, Polysaccharide-based aerogel microspheres for oral drug delivery, Carbohydrate Polymers, vol.117, pp.797-806, 2015.

C. A. Garcia-gonzalez and I. Smirnova, Use of supercritical fluid technology for the production of tailor-made aerogel particles for delivery systems, Journal of Supercritical Fluids, vol.79, pp.152-158, 2013.

C. A. García-gonzález, J. J. Uy, M. Alnaief, and I. Smirnova, Preparation of tailor-made starch-based aerogel microspheres by the emulsion-gelation method, Carbohydrate Polymers, vol.88, issue.4, pp.1378-1386, 2012.

C. A. García-gonzález, E. Carenza, M. Zeng, I. Smirnova, and A. Roig, Design of biocompatible magnetic pectin aerogel monoliths and microspheres, vol.2, pp.9816-9823, 2012.

C. Garnier, M. A. Axelos, and J. Thibault, Phase diagrams of pectin-calcium systems: Influence of pH, ionic strength, and temperature on the gelation of pectins with different degrees of methylation, Carbohydrate Research, vol.240, pp.84185-84194, 1993.

C. Garnier, M. A. Axelos, and J. Thibault, Selectivity and cooperativity in the binding of calcium ions by pectins, Carbohydrate Research, vol.256, issue.1, pp.71-81, 1994.

P. D. Gaudio, G. Auriemma, T. Mencherini, G. D. Porta, E. Reverchon et al., Design of alginate-based aerogel for nonsteroidal anti-inflammatory drugs controlled delivery systems using prilling and supercritical-assisted drying, Journal of Pharmaceutical Sciences, vol.102, issue.1, pp.185-194, 2013.

R. Gavillon and T. Budtova, Kinetics of cellulose regeneration from cellulose--NaOH--water gels and comparison with cellulose--N-methylmorpholine-N-oxide--water solutions, Biomacromolecules, vol.8, issue.2, pp.424-432, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00522031

R. Gavillon and T. Budtova, Aerocellulose: new highly porous cellulose prepared from cellulose-NaOH aqueous solutions, Biomacromolecules, vol.9, issue.1, pp.269-277, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00509828

A. Ghafar, P. Gurikov, R. Subrahmanyam, K. Parikka, M. Tenkanen et al., Mesoporous guar galactomannan based biocomposite aerogels through enzymatic crosslinking, Composites Part A: Applied Science and Manufacturing, vol.94, pp.93-103, 2017.

M. J. Gidley, E. R. Morris, E. J. Murray, D. A. Powell, and D. A. Rees, Evidence for two mechanisms of interchain association in calcium pectate gels, International Journal of Biological Macromolecules, vol.2, issue.5, pp.90060-90064, 1980.

P. M. Gilsenan, R. K. Richardson, and E. R. Morris, Thermally reversible acid-induced gelation of low-methoxy pectin, Carbohydrate Polymers, vol.41, issue.4, pp.119-127, 2000.

V. S. Gonçalves, P. Gurikov, J. Poejo, A. A. Matias, S. Heinrich et al., Alginate-based hybrid aerogel microparticles for mucosal drug delivery, European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V, vol.107, pp.160-170, 2016.

B. S. Gorle, I. Smirnova, and W. Arlt, Adsorptive crystallization of benzoic acid in aerogels from supercritical solutions, The Journal of Supercritical Fluids, vol.52, issue.3, pp.249-257, 2010.

G. T. Grant, E. R. Morris, D. A. Rees, P. J. Smith, and D. Thom, Biological interactions between polysaccharides and divalent cations: The egg-box model, FEBS Letters, vol.32, issue.1, pp.80770-80777, 1973.

C. R. Grosso and M. A. Rao, Dynamic rheology of structure development in lowmethoxyl pectin+Ca2++sugar gels1Based on a paper presented at the 3rd International Hydrocolloids Conference, Food Hydrocolloids, vol.1, issue.3, pp.357-363, 1996.

E. Guilminot, R. Gavillon, M. Chatenet, S. Berthon-fabry, A. Rigacci et al., New nanostructured carbons based on porous cellulose: Elaboration, pyrolysis and use as platinum nanoparticles substrate for oxygen reduction electrocatalysis, Journal of Power Sources, vol.185, issue.2, pp.717-726, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00386274

,

X. Guo, H. Meng, Q. Tang, R. Pan, S. Zhu et al., Effects of the precipitation pH on the ethanolic precipitation of sugar beet pectins, Food Hydrocolloids, vol.52, pp.431-437, 2016.

P. Gurikov, S. P. Raman, D. Weinrich, M. Fricke, and I. Smirnova, A novel approach to alginate aerogels: carbon dioxide induced gelation, vol.5, pp.7812-7818, 2015.

P. Gurikov and I. Smirnova, Non-Conventional Methods for Gelation of Alginate, Gels, vol.4, issue.1, 2018.

L. Gyarmati, I. Racz, P. Szentmiklosi, and J. Plachy, United States Patent No. US4199560A, 1980.

E. Haimer, M. Wendland, K. Schlufter, K. Frankenfeld, P. Miethe et al., Loading of Bacterial Cellulose Aerogels with Bioactive Compounds by Antisolvent Precipitation with Supercritical Carbon Dioxide, Macromolecular Symposia, vol.294, issue.2, pp.64-74, 2010.

P. Hao, Z. Zhao, Y. Leng, J. Tian, Y. Sang et al., Graphenebased nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for ANIE22>3, 2015.

K. Ingar-draget, K. Østgaard, and O. Smidsrød, Homogeneous alginate gels: A technical approach, Carbohydrate Polymers, vol.14, issue.2, p.90028, 1990.

J. Innerlohinger, H. K. Weber, and G. Kraft, Aerocellulose: Aerogels and Aerogel-like Materials made from Cellulose, Macromolecular Symposia, vol.244, issue.1, pp.126-135, 2006.

H. Itagaki, M. Tokai, and T. Kondo, Physical gelation process for cellulose whose hydroxyl groups are regioselectively substituted by fluorescent groups, Polymer, vol.38, issue.16, pp.1007-1012, 1997.

C. Jiménez-saelices, B. Seantier, B. Cathala, and Y. Grohens, Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties, Carbohydrate Polymers, vol.157, pp.105-113, 2017.

H. Jin, M. Kettunen, A. Laiho, H. Pynnönen, J. Paltakari et al., Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil, Langmuir: The ACS Journal of Surfaces and Colloids, vol.27, issue.5, pp.1930-1934, 2011.

A. E. Kadib, K. Molvinger, T. Cacciaguerra, M. Bousmina, and D. Brunel, Chitosan templated synthesis of porous metal oxide microspheres with filamentary nanostructures, Microporous and Mesoporous Materials, vol.142, issue.1, pp.301-307, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00579605

A. E. Kadib, K. Molvinger, C. Guimon, F. Quignard, and D. Brunel, Design of Stable Nanoporous Hybrid Chitosan/Titania as Cooperative Bifunctional Catalysts, Chemistry of Materials, vol.20, issue.6, pp.2198-2204, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00266935

,

A. Rubinstein, R. Radai, M. Ezra, S. Pathak, and J. S. Rokem, In vitro evaluation of calcium pectinate: a potential colon-specific drug delivery carrier, Pharmaceutical Research, vol.10, issue.2, pp.258-263, 1993.

C. Rudaz, Cellulose and Pectin Aerogels: Towards their nano-structuration, 2013.
URL : https://hal.archives-ouvertes.fr/pastel-00957296

C. Rudaz, R. Courson, L. Bonnet, S. Calas-etienne, H. Sallée et al., Aeropectin: Fully Biomass-Based Mechanically Strong and Thermal Superinsulating Aerogel, Biomacromolecules, vol.15, issue.6, pp.2188-2195, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01022581

C. Rühl, P. Appleby, J. Fennema, A. Naumov, and M. Schaffer, Economic development and the demand for energy: A historical perspective on the next 20 years, Energy Policy, vol.50, pp.109-116, 2012.

A. S. Sandberg, R. Ahderinne, H. Andersson, B. Hallgren, and L. Hultén, The effect of citrus pectin on the absorption of nutrients in the small intestine, Human Nutrition. Clinical Nutrition, vol.37, issue.3, pp.171-183, 1983.

F. Schwertfeger, W. Glaubitt, and U. Schubert, Hydrophobic aerogels from Si(OMe)4/MeSi(OMe)3 mixtures, Journal of Non-Crystalline Solids, vol.145, pp.80435-80436, 1992.

G. Horvat, K. Xhanari, M. Fin?gar, L. Gradi?nik, U. Maver et al., Novel ethanol-induced pectin-xanthan aerogel coatings for orthopedic applications, Carbohydrate Polymers, vol.166, pp.365-376, 2017.

J. Innerlohinger, H. K. Weber, and G. Kraft, Aerocellulose: Aerogels and Aerogel-like Materials made from Cellulose, Macromolecular Symposia, vol.244, issue.1, pp.126-135, 2006.

. Iupac-gold and . Book, , 2017.

M. Johannsen and G. Brunner, Solubilities of the xanthines caffeine, theophylline and theobromine in supercritical carbon dioxide, Fluid Phase Equilibria, vol.95, pp.80070-80077, 1994.

S. M. Krall and R. F. Mcfeeters, Pectin Hydrolysis: Effect of Temperature, Degree of Methylation, pH, and Calcium on Hydrolysis Rates, Journal of Agricultural and Food Chemistry, vol.46, issue.4, pp.1311-1315, 1998.

D. R. Lide, G. Baysinger, S. Chemistry, L. I. Berger, R. N. Goldberg et al., CRC Handbook of Chemistry and Physics, 2005.

W. J. Malfait, S. Zhao, R. Verel, S. Iswar, D. Rentsch et al., Surface Chemistry of Hydrophobic Silica Aerogels, Chemistry of Materials, vol.27, issue.19, pp.6737-6745, 2015.

M. A. Masuelli, Mark-Houwink Parameters for Aqueous-Soluble Polymers and Biopolymers at Various Temperatures, Journal of Polymer and Biopolymer Physics Chemistry, vol.2, issue.2, pp.37-43, 2014.

M. A. Aegerter, N. Leventis, and M. M. Koebel, Aerogels Handbook, 2011.

G. Agoda-tandjawa, S. Durand, C. Gaillard, C. Garnier, and J. Doublier, Rheological behaviour and microstructure of microfibrillated cellulose suspensions/low-methoxyl pectin mixed systems. Effect of calcium ions, Carbohydrate Polymers, vol.87, issue.2, pp.1045-1057, 2012.

A. H. Alaoui, T. Woignier, G. W. Scherer, and J. Phalippou, Comparison between flexural and uniaxial compression tests to measure the elastic modulus of silica aerogel, Journal of Non-Crystalline Solids, vol.354, issue.40, pp.4556-4561, 2008.

,

M. A. Axelos, Ion complexation of biopolymers: Macromolecular structure and viscoelastic properties of gels. Makromolekulare Chemie, Macromolecular Symposia, vol.39, issue.1, pp.323-328, 1990.

M. A. Axelos and J. Thibault, CHAPTER 6 -The Chemistry of Low-Methoxyl Pectin Gelation, pp.109-118, 1991.

R. Basak and R. Bandyopadhyay, Formation and rupture of Ca2+ induced pectin biopolymer gels, Soft Matter, vol.10, issue.37, pp.7225-7233, 2014.

,

M. Bayarri, N. Oulahal, P. Degraeve, and A. Gharsallaoui, Properties of lysozyme/low methoxyl (LM) pectin complexes for antimicrobial edible food packaging, Journal of Food Engineering, vol.131, pp.18-25, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02187820

I. Braccini and S. Pérez, Molecular Basis of Ca 2+ -Induced Gelation in Alginates and Pectins: The Egg-Box Model Revisited, Biomacromolecules, vol.2, issue.4, pp.1089-1096, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00307667

N. Buchtová and T. Budtova, Cellulose aero-, cryo-and xerogels: towards understanding of morphology control, Cellulose, vol.23, issue.4, pp.2585-2595, 2016.

,

V. L. Budarin, J. H. Clark, R. Luque, D. J. Macquarrie, and R. J. White, Palladium nanoparticles on polysaccharude-derived mesoporous materials and their catalytic performance in C-C coupling reactions, The Royal Society of Chemistry, vol.10, pp.382-387, 2008.

F. Capel, T. Nicolai, D. Durand, P. Boulenguer, and V. Langendorff, Calcium and acid induced gelation of (amidated) low methoxyl pectin, Food Hydrocolloids, vol.20, issue.6, pp.901-907, 2006.

A. Cárdenas, F. M. Goycoolea, and M. Rinaudo, On the gelling behaviour of 'nopal' (Opuntia ficus indica) low methoxyl pectin, Carbohydrate Polymers, vol.73, issue.2, pp.212-222, 2008.

M. Chtchigrovsky, A. Primo, P. Gonzalez, K. Molvinger, M. Robitzer et al., Functionalized chitosan as a green, recyclable, biopolymer-supported catalyst for the [3+2] Huisgen cycloaddition, International Ed. in English), vol.48, issue.32, pp.5916-5920, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00418394

F. De-cicco, P. Russo, E. Reverchon, C. A. García-gonzález, R. P. Aquino et al., Prilling and supercritical drying: A successful duo to produce core-shell polysaccharide aerogel beads for wound healing, Carbohydrate polymers, vol.147, pp.482-489, 2016.

A. Demilecamps, Synthesis and characterization of polysaccharides-silica composite aerogels for thermal superinsulation, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01279456

N. Diascorn, S. Calas, H. Sallee, P. Achard, and A. Rigacci, Polyurethane aerogels synthesis for thermal insulation -textural, thermal and mechanical properties, Journal of Supercritical Fluids, vol.106, pp.76-84, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01155110

V. M. Dronnet, C. M. Renard, M. A. Axelos, and J. Thibault, , 1996.

, Characterisation and selectivity of divalent metal ions binding by citrus and sugar-beet pectins, Carbohydrate Polymers, vol.30, issue.4, pp.107-112

L. Druel, R. Bardl, W. Vorwerg, and T. Budtova, Starch Aerogels: A Member of the Family of Thermal Superinsulating Materials, Biomacromolecules, vol.18, issue.12, pp.4232-4239, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01674362

S. Dumitriu, Polysaccharides: Structural Diversity and Functional Versatility, Second Edition, 2004.

I. Fraeye, A. Deroeck, T. Duvetter, I. Verlent, M. Hendrickx et al., Influence of pectin properties and processing conditions on thermal pectin degradation, Food Chemistry, vol.105, issue.2, pp.555-563, 2007.

I. Fraeye, I. Colle, E. Vandevenne, T. Duvetter, S. Van-buggenhout et al., Influence of pectin structure on texture of pectin-calcium gels, Innovative Food Science & Emerging Technologies, vol.11, issue.2, pp.401-409, 2010.

I. Fraeye, E. Doungla, T. Duvetter, P. Moldenaers, A. Van-loey et al., Influence of intrinsic and extrinsic factors on rheology of pectin-calcium gels, Food Hydrocolloids, vol.23, issue.8, pp.2069-2077, 2009.

I. Fraeye, T. Duvetter, E. Doungla, A. Van-loey, and M. Hendrickx, Fine-tuning the properties of pectin-calcium gels by control of pectin fine structure, gel composition and environmental conditions, Trends in Food Science & Technology, vol.21, issue.5, pp.219-228, 2010.

C. A. García-gonzález, M. Jin, J. Gerth, C. Alvarez-lorenzo, and I. Smirnova, Polysaccharide-based aerogel microspheres for oral drug delivery, Carbohydrate Polymers, vol.117, pp.797-806, 2015.

C. Garnier, M. A. Axelos, and J. Thibault, Phase diagrams of pectin-calcium systems: Influence of pH, ionic strength, and temperature on the gelation of pectins with different degrees of methylation, Carbohydrate Research, vol.240, pp.84185-84194, 1993.

C. Garnier, M. A. Axelos, and J. Thibault, Selectivity and cooperativity in the binding of calcium ions by pectins, Carbohydrate Research, vol.256, issue.1, pp.71-81, 1994.

R. Gavillon, Preparation and characterization of ultra porous cellulosic materials (École Nationale Supérieure des Mines de Paris), Consulté à l'adresse, 2007.

R. Gavillon and T. Budtova, Kinetics of cellulose regeneration from cellulose--NaOH--water gels and comparison with cellulose--N-methylmorpholine-N-oxide--water solutions, Biomacromolecules, vol.8, issue.2, pp.424-432, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00522031

R. Gavillon and T. Budtova, Aerocellulose: new highly porous cellulose prepared from cellulose-NaOH aqueous solutions, Biomacromolecules, vol.9, issue.1, pp.269-277, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00509828

,

L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, 1999.

M. J. Gidley, E. R. Morris, E. J. Murray, D. A. Powell, and D. A. Rees, Evidence for two mechanisms of interchain association in calcium pectate gels, International Journal of Biological Macromolecules, vol.2, issue.5, pp.90060-90064, 1980.

R. Sescousse, R. Gavillon, and T. Budtova, Aerocellulose from cellulose-ionic liquid solutions: Preparation, properties and comparison with cellulose-NaOH and cellulose-NMMO routes, Carbohydrate Polymers, vol.83, issue.4, pp.1766-1774, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00574148

,

C. K. Siew, P. A. Williams, and N. W. Young, New Insights into the Mechanism of Gelation of Alginate and Pectin: Charge Annihilation and Reversal Mechanism, Biomacromolecules, vol.6, issue.2, pp.963-969, 2005.

P. Sriamornsak, Chemistry of pectin and its pharmaceutical uses: A review, Silpakorn University International Journal, vol.3, issue.1-2, pp.206-228, 2003.

A. Ström, P. Ribelles, L. Lundin, I. Norton, E. R. Morris et al., Influence of Pectin Fine Structure on the Mechanical Properties of Calcium?Pectin and Acid?Pectin Gels, Biomacromolecules, vol.8, issue.9, pp.2668-2674, 2007.

,

A. Ström, E. Schuster, and S. M. Goh, Rheological characterization of acid pectin samples in the absence and presence of monovalent ions, Carbohydrate Polymers, vol.113, pp.336-343, 2014.

R. Subrahmanyam, P. Gurikov, P. Dieringer, M. Sun, and I. Smirnova, On the Road to Biopolymer Aerogels-Dealing with the Solvent, Gels, vol.1, issue.2, pp.291-313, 2015.

B. R. Thakur, R. K. Singh, A. K. Handa, and M. A. Rao, Chemistry and uses of pectin -A review, Critical Reviews in Food Science and Nutrition, vol.37, issue.1, pp.47-73, 1997.

J. F. Thibault and M. Rinaudo, Chain association of pectic molecules during calciuminduced gelation, Biopolymers, vol.25, issue.3, pp.455-468, 1986.
URL : https://hal.archives-ouvertes.fr/hal-00309943

G. Tkalec, ?. Knez, and Z. Novak, Fast production of high-methoxyl pectin aerogels for enhancing the bioavailability of low-soluble drugs, The Journal of Supercritical Fluids, vol.106, pp.16-22, 2015.

J. Trygg, P. Fardim, M. Gericke, E. Mäkilä, and J. Salonen, Physicochemical design of the morphology and ultrastructure of cellulose beads, Carbohydrate Polymers, vol.93, issue.1, pp.291-299, 2013.

F. Voragen, H. Schols, and R. G. Visser, Advances in Pectin and Pectinase Research, 2013.

R. H. Walter, Cellulose aero-, cryo-and xerogels: towards understanding of morphology control, Cellulose, vol.23, issue.4, pp.2585-2595, 2012.

,

F. Capel, T. Nicolai, D. Durand, P. Boulenguer, and V. Langendorff, Calcium and acid induced gelation of (amidated) low methoxyl pectin, Food Hydrocolloids, vol.20, issue.6, pp.901-907, 2006.

N. Diascorn, S. Calas, H. Sallee, P. Achard, and A. Rigacci, Polyurethane aerogels synthesis for thermal insulation -textural, thermal and mechanical properties, Journal of Supercritical Fluids, vol.106, pp.76-84, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01155110

M. Djabourov, K. Nishinari, and S. B. Ross-murphy, Physical gels from biological and synthetic polymers, 2013.

I. Fraeye, E. Doungla, T. Duvetter, P. Moldenaers, A. Van-loey et al., Influence of intrinsic and extrinsic factors on rheology of pectin-calcium gels, Food Hydrocolloids, vol.23, issue.8, pp.2069-2077, 2009.

I. Fraeye, T. Duvetter, E. Doungla, A. Van-loey, and M. Hendrickx, Fine-tuning the properties of pectin-calcium gels by control of pectin fine structure, gel composition and environmental conditions, Trends in Food Science & Technology, vol.21, issue.5, pp.219-228, 2010.

P. M. Gilsenan, R. K. Richardson, and E. R. Morris, Thermally reversible acid-induced gelation of low-methoxy pectin, Carbohydrate Polymers, vol.41, issue.4, pp.119-127, 2000.

S. Groult and T. Budtova, Thermal conductivity/structure correlations in thermal superinsulating pectin aerogels, Carbohydrate Polymers, vol.196, pp.73-81, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01809322

,

S. Hoepfner, L. Ratke, and B. Milow, Synthesis and characterisation of nanofibrillar cellulose aerogels, Cellulose, vol.15, issue.1, pp.121-129, 2008.

C. Löfgren, S. Guillotin, H. Evenbratt, H. Schols, and A. Hermansson, Effects of Calcium, pH, and Blockiness on Kinetic Rheological Behavior and Microstructure of HM Pectin Gels, Biomacromolecules, vol.6, issue.2, pp.646-652, 2005.

,

C. Löfgren, P. Walkenström, and A. Hermansson, Microstructure and Rheological Behavior of Pure and Mixed Pectin Gels, Biomacromolecules, vol.3, issue.6, pp.1144-1153, 2002.

E. R. Morris, M. J. Gidley, E. J. Murray, D. A. Powell, and D. A. Rees, Characterization of pectin gelation under conditions of low water activity, by circular dichroism, competitive inhibition and mechanical properties, International Journal of Biological Macromolecules, vol.2, issue.5, pp.327-330, 1980.

R. W. Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde, Journal of Materials Science, vol.24, issue.9, pp.3221-3227, 1989.

,

C. Rudaz, R. Courson, L. Bonnet, S. Calas-etienne, H. Sallée et al., Aeropectin: Fully Biomass-Based Mechanically Strong and Thermal Superinsulating Aerogel, Biomacromolecules, vol.15, issue.6, pp.2188-2195, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01022581

A. Ström, E. Schuster, and S. M. Goh, Rheological characterization of acid pectin samples in the absence and presence of monovalent ions, Carbohydrate Polymers, vol.113, pp.336-343, 2014.

B. R. Thakur, R. K. Singh, A. K. Handa, and M. A. Rao, Chemistry and uses of pectin -A review, Critical Reviews in Food Science and Nutrition, vol.37, issue.1, pp.47-73, 1997.

M. D. Walkinshaw and S. Arnott, Conformations and interactions of pectins: II. Models for junction zones in pectinic acid and calcium pectate gels, Journal of Molecular Biology, vol.153, issue.4, pp.1075-1085, 1981.

J. G. Wijmans, F. W. Altena, and C. A. Smolders, Diffusion during the immersion precipitation process, Journal of Polymer Science: Polymer Physics Edition, vol.22, issue.3, pp.519-524, 1984.

J. G. Wijmans, J. P. Baaij, and C. A. Smolders, The mechanism of formation of microporous or skinned membranes produced by immersion precipitation, Journal of Membrane Science, vol.14, issue.3, pp.263-274, 1983.

M. Alnaief and I. Smirnova, Effect of surface functionalization of silica aerogel on their adsorptive and release properties, Journal of Non-Crystalline Solids, vol.356, issue.33, pp.1644-1649, 2010.

G. Caputo, M. Scognamiglio, and I. Marco, Nimesulide adsorbed on silica aerogel using supercritical carbon dioxide, Chemical Engineering Research and Design, vol.90, issue.8, pp.1082-1089, 2012.

X. Chang, D. Chen, and X. Jiao, Chitosan-Based Aerogels with High Adsorption Performance, The Journal of Physical Chemistry B, vol.112, issue.26, pp.7721-7725, 2008.

, Consulté 26 mars, 2019.

F. De-cicco, P. Russo, E. Reverchon, C. A. García-gonzález, R. P. Aquino et al., Prilling and supercritical drying: A successful duo to produce core-shell polysaccharide aerogel beads for wound healing, Carbohydrate polymers, vol.147, pp.482-489, 2016.

G. Dupuis, O. Chambin, C. Génelot, D. Champion, and Y. Pourcelot, Colonic drug delivery: influence of cross-linking agent on pectin beads properties and role of the shell capsule type, Drug Development and Industrial Pharmacy, vol.32, issue.7, pp.847-855, 2006.

K. M. Gallagher and O. I. Corrigan, Mechanistic aspects of the release of levamisole hydrochloride from biodegradable polymers, Journal of Controlled Release, vol.69, issue.2, pp.305-314, 2000.

C. A. García-gonzález, M. Jin, J. Gerth, C. Alvarez-lorenzo, and I. Smirnova, Polysaccharide-based aerogel microspheres for oral drug delivery, Carbohydrate Polymers, vol.117, pp.797-806, 2015.

C. A. Garcia-gonzalez and I. Smirnova, Use of supercritical fluid technology for the production of tailor-made aerogel particles for delivery systems, Journal of Supercritical Fluids, vol.79, pp.152-158, 2013.

R. Gavillon and T. Budtova, Kinetics of cellulose regeneration from cellulose--NaOH--water gels and comparison with cellulose--N-methylmorpholine-N-oxide--water solutions, Biomacromolecules, vol.8, issue.2, pp.424-432, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00522031

V. S. Gonçalves, P. Gurikov, J. Poejo, A. A. Matias, S. Heinrich et al., Alginate-based hybrid aerogel microparticles for mucosal drug delivery, European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V, vol.107, pp.160-170, 2016.

G. T. Grant, E. R. Morris, D. A. Rees, P. J. Smith, and D. Thom, Biological interactions between polysaccharides and divalent cations: The egg-box model, FEBS Letters, vol.32, issue.1, pp.80770-80777, 1973.

M. Grassi, I. Colombo, and R. Lapasin, Experimental determination of the theophylline diffusion coefficient in swollen sodium-alginate membranes, Journal of Controlled Release, vol.76, issue.1, pp.93-105, 2001.

M. Grassi, G. Grassi, R. Lapasin, I. Colombo, G. Grassi et al., Understanding Drug Release and Absorption Mechanisms : A Physical and Mathematical Approach, 2006.

S. Groult and T. Budtova, Thermal conductivity/structure correlations in thermal superinsulating pectin aerogels, Carbohydrate Polymers, vol.196, pp.73-81, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01809322

,

E. Haimer, M. Wendland, K. Schlufter, K. Frankenfeld, P. Miethe et al., Loading of Bacterial Cellulose Aerogels with Bioactive Compounds by Antisolvent Precipitation with Supercritical Carbon Dioxide, Macromolecular Symposia, vol.294, issue.2, pp.64-74, 2010.

G. Horvat, K. Xhanari, M. Fin?gar, L. Gradi?nik, U. Maver et al., Novel ethanol-induced pectin-xanthan aerogel coatings for orthopedic applications, Carbohydrate Polymers, vol.166, pp.365-376, 2017.

X. Huang and C. S. Brazel, On the importance and mechanisms of burst release in matrix-controlled drug delivery systems, Journal of Controlled Release, vol.73, issue.2, pp.248-254, 2001.

N. Job, A. Théry, R. Pirard, J. Marien, L. Kocon et al., Carbon aerogels, cryogels and xerogels: Influence of the drying method on the textural properties of porous carbon materials, Carbon, vol.43, issue.12, pp.2481-2494, 2005.

M. Johannsen and G. Brunner, Solubilities of the xanthines caffeine, theophylline and theobromine in supercritical carbon dioxide, Fluid Phase Equilibria, vol.95, pp.80070-80077, 1994.

G. Kortüm, W. Vogel, and K. Andrussow, Disssociation constants of organic acids in aqueous solution, Pure and Applied Chemistry, vol.1, issue.2-3, pp.187-536, 1960.

,

L. Liu, M. L. Fishman, J. Kost, and K. B. Hicks, Pectin-based systems for colonspecific drug delivery via oral route, Biomaterials, vol.24, issue.19, pp.3333-3343, 2003.

R. R. Mallepally, M. A. Marin, V. Surampudi, B. Subia, R. R. Rao et al., Silk fibroin aerogels: potential scaffolds for tissue engineering applications, Biomedical Materials, vol.10, issue.3, p.35002, 2015.

M. A. Marin, R. R. Mallepally, and M. A. Mchugh, Silk fibroin aerogels for drug delivery applications, Journal of Supercritical Fluids, vol.91, pp.84-89, 2014.

,

Y. C. Martin, Exploring QSAR: Hydrophobic, Electronic, and Steric Constants, Journal of Medicinal Chemistry, vol.39, issue.5, pp.1189-1190, 1996.

T. Mehling, I. Smirnova, U. Guenther, and R. H. Neubert, Polysaccharide-based aerogels as drug carriers, Journal of Non-Crystalline Solids, vol.355, pp.2472-2479, 2009.

R. M. Obaidat, B. M. Tashtoush, M. F. Bayan, T. Bustami, R. Alnaief et al., Drying Using Supercritical Fluid Technology as a Potential Method for Preparation of Chitosan Aerogel Microparticles, AAPS PharmSciTech, vol.16, issue.6, pp.1235-1244, 2015.

N. A. Peppas and J. J. Sahlin, A simple equation for the description of solute release. III. Coupling of diffusion and relaxation, International Journal of Pharmaceutics, vol.57, issue.2, pp.169-172, 1989.

A. Rezaei, A. Nasirpour, H. Tavanai, and M. Fathi, A study on the release kinetics and mechanisms of vanillin incorporated in almond gum/polyvinyl alcohol composite nanofibers in different aqueous food simulants and simulated saliva, Flavour and Fragrance Journal, vol.31, issue.6, pp.442-447, 2016.

P. L. Ritger and N. A. Peppas, A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs, Journal of Controlled Release, vol.5, issue.1, pp.23-36, 1987.

P. L. Ritger and N. A. Peppas, A simple equation for description of solute release II. Fickian and anomalous release from swellable devices, Journal of Controlled Release, vol.5, issue.1, pp.90035-90041, 1987.

A. Rubinstein, R. Radai, M. Ezra, S. Pathak, and J. S. Rokem, In vitro evaluation of calcium pectinate: a potential colon-specific drug delivery carrier, Pharmaceutical Research, vol.10, issue.2, pp.258-263, 1993.

J. Saurí, D. Millán, J. M. Suñé-negre, H. Colom, J. R. Ticó et al., Quality by Design approach to understand the physicochemical phenomena involved in controlled release of captopril SR matrix tablets, International Journal of Pharmaceutics, vol.477, issue.1, pp.431-441, 2014.

N. Sengupta, SMART Technologies for Natural Resource Conservation and Sustainable Development, 2016.

R. Sescousse, R. Gavillon, and T. Budtova, Aerocellulose from cellulose-ionic liquid solutions: Preparation, properties and comparison with cellulose-NaOH and cellulose-NMMO routes, Carbohydrate Polymers, vol.83, issue.4, pp.1766-1774, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00574148

,

I. Smirnova, J. Mamic, and W. Arlt, Adsorption of Drugs on Silica Aerogels, Langmuir, vol.19, issue.20, pp.8521-8525, 2003.

I. Smirnova, S. Suttiruengwong, and W. Arlt, Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems, Journal of Non-Crystalline Solids, vol.350, pp.54-60, 2004.

I. Smirnova, S. Suttiruengwong, and W. Arlt, Aerogels: Tailor-made Carriers for Immediate and Prolonged Drug Release, KONA Powder and Particle Journal, vol.23, pp.86-97, 2005.

G. Tkalec, ?. Knez, and Z. Novak, Fast production of high-methoxyl pectin aerogels for enhancing the bioavailability of low-soluble drugs, The Journal of Supercritical Fluids, vol.106, pp.16-22, 2015.

G. Tkalec, ?. Knez, and Z. Novak, PH sensitive mesoporous materials for immediate or controlled release of NSAID, Microporous and Mesoporous Materials, vol.224, pp.190-200, 2016.

A. Veronovski, ?. Knez, and Z. Novak, Comparison of ionic and non-ionic drug release from multi-membrane spherical aerogels, International Journal of Pharmaceutics, vol.454, issue.1, pp.58-66, 2013.

A. Veronovski, ?. Knez, and Z. Novak, Preparation of multi-membrane alginate aerogels used for drug delivery, The Journal of Supercritical Fluids, vol.79, pp.209-215, 2013.

A. Veronovski, G. Tkalec, ?. Knez, and Z. Novak, Characterisation of biodegradable pectin aerogels and their potential use as drug carriers, Carbohydrate Polymers, vol.113, pp.272-278, 2014.

S. H. Yalkowsky, Y. He, P. Jain, Y. He, and P. Jain, Handbook of Aqueous Solubility Data, 2016.

A. Assifaoui, F. Bouyer, O. Chambin, and P. Cayot, Silica-coated calcium pectinate beads for colonic drug delivery, Acta Biomaterialia, vol.9, issue.4, pp.6218-6225, 2013.

T. B?aszczy?ski, A. ?losarczyk, and M. Morawski, Synthesis of Silica Aerogel by Supercritical Drying Method. Procedia Engineering, vol.57, pp.200-206, 2013.

,

A. M. Buckley and M. Greenblatt, The Sol-Gel Preparation of Silica Gels, Journal of Chemical Education, vol.71, issue.7, p.599, 1994.

G. Caputo, M. Scognamiglio, and I. Marco, Nimesulide adsorbed on silica aerogel using supercritical carbon dioxide, Chemical Engineering Research and Design, vol.90, issue.8, pp.1082-1089, 2012.

A. Demilecamps, C. Beauger, C. Hildenbrand, A. Rigacci, and T. Budtova, Cellulosesilica aerogels, Carbohydrate Polymers, vol.122, pp.293-300, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01576824

,

I. Fraeye, A. Deroeck, T. Duvetter, I. Verlent, M. Hendrickx et al., Influence of pectin properties and processing conditions on thermal pectin degradation, Food Chemistry, vol.105, issue.2, pp.555-563, 2007.

J. Grignon and A. M. Scallan, Effect of pH and neutral salts upon the swelling of cellulose gels, Journal of Applied Polymer Science, vol.25, issue.12, pp.2829-2843, 1980.

S. Groult and T. Budtova, Tuning structure and properties of pectin aerogels, European Polymer Journal, vol.108, pp.250-261, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02419292

E. Haimer, M. Wendland, K. Schlufter, K. Frankenfeld, P. Miethe et al., Loading of Bacterial Cellulose Aerogels with Bioactive Compounds by Antisolvent Precipitation with Supercritical Carbon Dioxide, Macromolecular Symposia, vol.294, issue.2, pp.64-74, 2010.

N. Job, A. Théry, R. Pirard, J. Marien, L. Kocon et al., Carbon aerogels, cryogels and xerogels: Influence of the drying method on the textural properties of porous carbon materials, Carbon, vol.43, issue.12, pp.2481-2494, 2005.

S. M. Krall and R. F. Mcfeeters, Pectin Hydrolysis: Effect of Temperature, Degree of Methylation, pH, and Calcium on Hydrolysis Rates, Journal of Agricultural and Food Chemistry, vol.46, issue.4, pp.1311-1315, 1998.

R. A. Laudise and D. W. Johnson, Supercritical drying of gels, Journal of Non-Crystalline Solids, vol.79, issue.1, pp.90043-90051, 1986.

X. Luo and L. Zhang, Creation of regenerated cellulose microspheres with diameter ranging from micron to millimeter for chromatography applications, Journal of Chromatography A, vol.1217, issue.38, pp.5922-5929, 2010.

,

W. J. Malfait, S. Zhao, R. Verel, S. Iswar, D. Rentsch et al., Surface Chemistry of Hydrophobic Silica Aerogels, Chemistry of Materials, vol.27, issue.19, pp.6737-6745, 2015.

T. Mehling, I. Smirnova, U. Guenther, and R. H. Neubert, Polysaccharide-based aerogels as drug carriers, Journal of Non-Crystalline Solids, vol.355, pp.2472-2479, 2009.

M. Mohammadian, T. S. Jafarzadeh-kashi, M. Erfan, and F. P. Soorbaghi, Synthesis and characterization of silica aerogel as a promising drug carrier system, Journal of Drug Delivery Science and Technology, vol.44, pp.205-212, 2018.

,

G. M. Pajonk, E. Elaloui, P. Achard, B. Chevalier, J. Chevalier et al., Physical properties of silica gels and aerogels prepared with new polymeric precursors, Journal of Non-Crystalline Solids, vol.186, pp.210-213, 1995.

J. Phalippou and L. Kocon, Aérogels Aspects fondamentaux. Techniques de l'ingénieur, Matériaux Fonctionnels, issue.AF3609, p.1, 2004.

C. M. Renard and J. Thibault, Degradation of pectins in alkaline conditions: kinetics of demethylation, Carbohydrate Research, vol.286, pp.139-150, 1996.

,

C. Rudaz, Cellulose and Pectin Aerogels: Towards their nano-structuration, 2013.
URL : https://hal.archives-ouvertes.fr/pastel-00957296

I. Smirnova, J. Mamic, and W. Arlt, Adsorption of Drugs on Silica Aerogels, Langmuir, vol.19, issue.20, pp.8521-8525, 2003.

I. Smirnova, S. Suttiruengwong, and W. Arlt, Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems, Journal of Non-Crystalline Solids, vol.350, pp.54-60, 2004.

I. Smirnova, S. Suttiruengwong, and W. Arlt, Aerogels: Tailor-made Carriers for Immediate and Prolonged Drug Release, KONA Powder and Particle Journal, vol.23, pp.86-97, 2005.

I. Smirnova, S. Suttiruengwong, M. Seiler, and W. Arlt, Dissolution rate enhancement by adsorption of poorly soluble drugs on hydrophilic silica aerogels, Pharmaceutical Development and Technology, vol.9, issue.4, pp.443-452, 2004.

R. A. Strøm, Y. Masmoudi, A. Rigacci, G. Petermann, L. Gullberg et al., Strengthening and aging of wet silica gels for up-scaling of aerogel preparation, Journal of Sol-Gel Science and Technology, vol.41, issue.3, pp.291-298, 2007.

P. B. Wagh, R. Begag, G. M. Pajonk, A. V. Rao, and D. Haranath, Comparison of some physical properties of silica aerogel monoliths synthesized by different precursors, Materials Chemistry and Physics, vol.57, issue.3, p.217, 1999.

S. H. Yalkowsky, Y. He, P. Jain, Y. He, and P. Jain, Handbook of Aqueous Solubility Data, 2016.

, With the aim of extended-drug release during the longer time possible, we suggest the use of non-hydrosoluble polymer such as cellulose or with lower solubility (such as starch) to make bio-aerogels. Indeed, decrease the solubility of the aerogel would strongly protect the matrix from rapid degradation by solubilization and thus might prolong the release over time

. Markstedt, Recently, pectin gels were found to be also printable materials in order to encapsulate alive plant cells (Vancauwenberghe, Baiye Mfortaw Mbong, et al., 2017) or to produce tunable food stimulants, ? Finally, the 3-D printing technology of complex three-dimensional structure with a defined shape open up the potential for innovative food manufacturing or for creating bio-artificial tissue (regenerative medicine, 2011.

E. Axpe and M. L. Oyen, Applications of Alginate-Based Bioinks in 3D Bioprinting, International Journal of Molecular Sciences, issue.12, p.17, 2016.

,

L. Druel and T. Budtova, Patent FR1902812

K. Markstedt, A. Mantas, I. Tournier, H. Martínez-Ávila, D. Hägg et al., 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications, vol.16, pp.1489-1496, 2015.

N. Ni, M. Tesconi, S. E. Tabibi, S. Gupta, and S. H. Yalkowsky, Use of pure t-butanol as a solvent for freeze-drying: a case study, International Journal of Pharmaceutics, vol.226, issue.1, pp.39-46, 2001.

S. Song, J. Choi, Y. Park, S. Hong, J. J. Lee et al., Sodium Alginate Hydrogel-Based Bioprinting Using a Novel Multinozzle Bioprinting System: THOUGHTS AND PROGRESS, Artificial Organs, vol.35, issue.11, pp.1132-1136, 2011.

G. Tkalec, ?. Knez, and Z. Novak, PH sensitive mesoporous materials for immediate or controlled release of NSAID, Microporous and Mesoporous Materials, vol.224, pp.190-200, 2016.

V. Vancauwenberghe, V. Baiye-mfortaw-mbong, E. Vanstreels, P. Verboven, J. Lammertyn et al., 3D printing of plant tissue for innovative food manufacturing: Encapsulation of alive plant cells into pectin based bio-ink, Journal of Food Engineering, 2017.

V. Vancauwenberghe, L. Katalagarianakis, Z. Wang, M. Meerts, M. Hertog et al., Pectin based food-ink formulations for 3-D printing of customizable porous food simulants. Innovative Food Science & Emerging Technologies, vol.42, pp.138-150, 2017.

S. Wittaya-areekul and S. L. Nail, Freeze-Drying of tert-Butyl Alcohol/Water Cosolvent Systems: Effects of Formulation and Process Variables on Residual Solvents, Journal of Pharmaceutical Sciences, vol.87, issue.4, pp.491-495, 1998.

R. Brophy, M. R. Deasy, and P. B. , Application of the Higuchi model for drug release from dispersed matrices to particles of general shape, International Journal of Pharmaceutics, vol.37, issue.1, pp.41-47, 1987.

M. L. Bruschi, Strategies to Modify the Drug Release from Pharmaceutical Systems, 2015.

P. Colombo, Swelling-controlled release in hydrogel matrices for oral route, Advanced Drug Delivery Reviews, vol.11, issue.1, pp.37-57, 1993.

K. M. Gallagher and O. I. Corrigan, Mechanistic aspects of the release of levamisole hydrochloride from biodegradable polymers, Journal of Controlled Release, vol.69, issue.2, pp.305-314, 2000.

J. Heller, R. F. Helwing, R. W. Baker, and M. E. Tutte, Controlled release of watersoluble macromolecules from bioerodible hydrogels, Biomaterials, vol.4, issue.4, pp.262-266, 1983.

T. Higuchi, Rate of Release of Medicaments from Ointment Bases Containing Drugs in Suspension, Journal of Pharmaceutical Sciences, vol.50, issue.10, pp.874-875, 1961.

A. W. Hixson and J. H. Crowell, Dependence of Reaction Velocity upon surface and Agitation, Industrial & Engineering Chemistry, vol.23, issue.8, pp.923-931, 1931.

,

H. B. Hopfenberg, Controlled Release from Erodible Slabs, Cylinders, and Spheres, Controlled Release Polymeric Formulations, vol.33, pp.26-32, 1976.

D. S. Hsieh, W. D. Rhine, and R. Langer, Zero-Order Controlled-Release Polymer Matrices for Micro-and Macromolecules, Journal of Pharmaceutical Sciences, vol.72, issue.1, pp.17-22, 1983.

H. Kim and R. Fassihi, Application of binary polymer system in drug release rate modulation. 2. Influence of formulation variables and hydrodynamic conditions on release kinetics, Journal of Pharmaceutical Sciences, vol.86, issue.3, pp.323-328, 1997.

C. M. Klech and A. P. Simonelli, Examination of the moving boundaries associated with non-fickian water swelling of glassy gelatin beads: Effect of solution pH, Journal of Membrane Science, vol.43, issue.1, pp.87-101, 1989.

R. W. Korsmeyer, R. Gurny, E. Doelker, P. Buri, and N. A. Peppas, Mechanisms of solute release from porous hydrophilic polymers, International Journal of Pharmaceutics, vol.15, issue.1, pp.25-35, 1983.

K. Kosmidis, P. Argyrakis, and P. Macheras, Fractal kinetics in drug release from finite fractal matrices, The Journal of Chemical Physics, vol.119, issue.12, pp.6373-6377, 2003.

N. J. Kuipers and A. A. Beenackers, Non-fickian diffusion with chemical reaction in glassy polymers with swelling induced by the penetrant: a mathematical model, Chemical Engineering Science, vol.48, issue.16, pp.2957-2971, 1993.

, , p.80041

J. E. Möckel and B. C. Lippold, Zero-Order Drug Release from Hydrocolloid Matrices, Pharmaceutical Research, vol.10, issue.7, pp.1066-1070, 1993.

,

N. V. Mulye and S. J. Turco, A Simple Model Based on First Order Kinetics to Explain Release of Highly Water Soluble Drugs from Porous Dicalcium Phosphate Dihydrate Matrices, Drug Development and Industrial Pharmacy, vol.21, issue.8, pp.943-953, 1995.

N. A. Peppas, Analysis of Fickian and non-Fickian drug release from polymers, Pharmaceutica Acta Helvetiae, vol.60, issue.4, pp.110-111, 1985.

N. A. Peppas and B. Narasimhan, Mathematical models in drug delivery: How modeling has shaped the way we design new drug delivery systems, Journal of Controlled Release, vol.190, pp.75-81, 2014.

N. A. Peppas and J. J. Sahlin, A simple equation for the description of solute release. III. Coupling of diffusion and relaxation, International Journal of Pharmaceutics, vol.57, issue.2, pp.169-172, 1989.

C. R. Rabin and S. J. Siegel, Delivery systems and dosing for antipsychotics, Handbook of Experimental Pharmacology, issue.212, pp.267-298, 2012.

P. L. Ritger and N. A. Peppas, A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs, Journal of Controlled Release, vol.5, issue.1, pp.23-36, 1987.

P. L. Ritger and N. A. Peppas, A simple equation for description of solute release II. Fickian and anomalous release from swellable devices, Journal of Controlled Release, vol.5, issue.1, pp.90035-90041, 1987.

J. B. Schwartz, A. P. Simonelli, and W. I. Higuchi, Drug release from wax matrices I. Analysis of data with first-order kinetics and with the diffusion-controlled model, Journal of Pharmaceutical Sciences, vol.57, issue.2, pp.274-277, 1968.

,

R. A. Siegel and M. J. Rathbone, Overview of Controlled Release Mechanisms, Fundamentals and Applications of Controlled Release Drug Delivery, pp.19-43, 2012.

,

J. Siepmann and F. Siepmann, Mathematical modeling of drug delivery, International Journal of Pharmaceutics, vol.364, issue.2, pp.328-343, 2008.

,

J. Siepmann and N. A. Peppas, Higuchi equation: Derivation, applications, use and misuse, International Journal of Pharmaceutics, vol.418, issue.1, pp.6-12, 2011.

J. Siepmann, R. A. Siegel, and M. J. Rathbone, Fundamentals and Applications of Controlled Release Drug Delivery, 2012.

S. K. Singh and L. T. Fan, A generalized model for swelling-controlled release systems, Biotechnology Progress, vol.2, issue.3, pp.145-156, 1986.

, Various mechanisms of network formation, gelation and non-solvent induced phase separation, were demonstrated to play a very important role in aerogel morphology and properties. Thermal conductivity of pectin aerogels was very low, around 0.015 -0.020 W/(m.K), and showing U-shape dependence on density. When used as drug delivery matrices, the kinetics of drug release was correlated with pectin aerogels' structure and density. Composite cellulose-pectin and silica-pectin aerogels were synthesized and also used as drug carriers

, Bio-aerogel, pectin, density, morphology, drug release, thermal insulation

. Mots-clés,

. Bio, RÉSUMÉ Les aérogels sont des matériaux nano-structurés ultralégers, hautement poreux et présentant une surface spécifique élevée. Les bio-aérogels sont une nouvelle génération d'aérogels entièrement biosourcés, offrant de ce fait de grands potentiels pour des applications à l'interface avec le vivant tout en valorisant la biomasse

. Dans-le-cadre-de-cette-thèse,

, ? Le premier était de déterminer et de maîtriser les corrélations existantes entre les caractéristiques de la pectine et les conditions de préparation d'une part, avec la structure interne de l'aérogel et ses propriétés physico

, ? Le second était d'évaluer et développer les aérogels de pectine pour deux applications distinctes : l'isolation thermique et la libération de médicaments

, Il a été établi que les différents mécanismes de formation du réseau, la gélification et la séparation de phase, jouaient un rôle majeur sur la morphologie et les propriétés finales de l'aérogel. La conductivité thermique des aérogels de pectine s'est révélée très faible, p.20

, et a présenté une courbe de dépendance en forme de U avec leurs densités. Les aérogels ont également été utilisés en tant que matrices supports de médicament. Les cinétiques de libération du médicament en milieu liquide ont été corrélées aux structures et densités des aérogels de pectine. Des aérogels composites, de type cellulose-pectine et silice-pectine, ont été préparés et utilisés comme supports de médicament menant à une libération

T. Dans-cette, nous avons mis en évidence le potentiel élevé des aérogels de pectine utilisés en tant que biomatériaux avancés, versatiles et aux fonctionnalités ajustables