A. Heinz, Recent development in aluminium alloys for aerospace applications, Materials Science and Engineering: A, vol.280, issue.1, pp.102-107, 2000.

H. L. Xing, Recent development in the mechanics of superplasticity and its applications, Journal of Materials Processing Technology, vol.151, issue.1, pp.196-202, 2004.

K. Sotoudeh and P. Bate, Diffusion creep and superplasticity in aluminium alloys, Acta Materialia, vol.58, issue.6, pp.1909-1920, 2010.

R. Grimes, 11 -Superplastic forming of aluminium alloys, Superplastic Forming of Advanced Metallic Materials, pp.247-271, 2011.

P. Friedman and W. Copple, Superplastic response in Al-Mg sheet alloys, Journal of materials engineering and performance, vol.13, issue.3, pp.335-347, 2004.

R. Chatterjee and J. Mukhopadhyay, A Review of Super plastic forming, Materials Today: Proceedings, issue.5, pp.4452-4459, 2018.

J. Bonet, Simulating superplastic forming, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.48, pp.6580-6603, 2006.

K. S. Fong, Enabling wider use of Magnesium Alloys for lightweight applications by improving the formability by Groove Pressing, Procedia CIRP, vol.26, pp.449-454, 2015.

Y. Luo, Development of an advanced superplastic forming process utilizing a mechanical pre-forming operation, International Journal of Machine Tools and Manufacture, vol.48, issue.12, pp.1509-1518, 2008.

J. Liu, Superplastic-like forming of non-superplastic AA5083 combined with mechanical pre-forming. The International Journal of Advanced Manufacturing Technology, vol.52, pp.123-129, 2011.

J. Jeswiet, Asymmetric Single Point Incremental Forming of Sheet Metal, CIRP Annals, vol.54, issue.2, pp.88-114, 2005.

W. S. Miller, Recent development in aluminium alloys for the automotive industry, Materials Science and Engineering: A, vol.280, issue.1, pp.37-49, 2000.

R. J. Wanhill, Chapter 15 -Aerospace Applications of Aluminum-Lithium Alloys, Aluminum-lithium Alloys, pp.503-535, 2014.

P. F. Bariani, Hot stamping of AA5083 aluminium alloy sheets, CIRP Annals, vol.62, issue.1, pp.251-254, 2013.

S. Mahabunphachai and M. Koç, Investigations on forming of aluminum 5052 and 6061 sheet alloys at warm temperatures. Materials & Design, pp.2422-2434, 1980.

N. Abedrabbo, F. Pourboghrat, and J. Carsley, Forming of aluminum alloys at elevated temperatures -Part 1: Material characterization, International Journal of Plasticity, vol.22, issue.2, pp.314-341, 2006.

H. S. Kim and M. Koç, Numerical investigations on springback characteristics of aluminum sheet metal alloys in warm forming conditions, Journal of Materials Processing Technology, vol.204, issue.1, pp.370-383, 2008.

H. Takuda, Finite element simulation of warm deep drawing of aluminium alloy sheet when accounting for heat conduction, Journal of Materials Processing Technology, vol.120, issue.1, pp.412-418, 2002.

N. R. Harrison, P. A. Friedman, and J. Pan, Warm forming die design, Part III: Design and validation of a warm forming die, Journal of Manufacturing Processes, vol.20, pp.356-366, 2015.

Z. Shi, An investigation, using standard experimental techniques, to determine FLCs at elevated temperature for aluminium alloys, Proceedings of the 3rd International Conference on New Forming Technology. China, 2012.

J. Lin, R. P. Garrett, and A. D. Foster, Process for forming metal alloy sheet components, 2008.

T. Maeno, R. K.-i.-mori, and . Yachi, Hot stamping of high-strength aluminium alloy aircraft parts using quick heating, CIRP Annals, vol.66, issue.1, pp.269-272, 2017.

S. H. Zhang and J. Danckert, Development of hydro-mechanical deep drawing, Journal of Materials Processing Technology, vol.83, issue.1, pp.14-25, 1998.

L. Lang, Pressure rate controlled unified constitutive equations based on microstructure evolution for warm hydroforming, Journal of Alloys and Compounds, vol.574, pp.41-48, 2013.

G. Palumbo, Warm HydroForming of the heat treatable aluminium alloy AC170PX, Journal of Manufacturing Processes, vol.20, pp.24-32, 2015.

G. Palumbo, Evaluation of the optimal working conditions for the warm sheet HydroForming taking into account the yielding condition, Materials & Design, vol.91, pp.411-423, 2016.

S. Matsubara, Incremental backward bulge forming of a sheet metal with a hemispherical head tool-a study of a numerical control forming system II, vol.35, pp.1311-1316, 1994.

K. Jackson and J. Allwood, The mechanics of incremental sheet forming, Journal of Materials Processing Technology, vol.209, issue.3, pp.1158-1174, 2009.

Y. H. Ji and J. J. Park, Formability of magnesium AZ31 sheet in the incremental forming at warm temperature, Journal of Materials Processing Technology, vol.201, issue.1, pp.354-358, 2008.

J. R. Duflou, Laser Assisted Incremental Forming: Formability and Accuracy Improvement, CIRP Annals, vol.56, issue.1, pp.273-276, 2007.

G. Fan, Electric hot incremental forming: A novel technique, International Journal of Machine Tools and Manufacture, vol.48, issue.15, pp.1688-1692, 2008.

A. H. Chokshi, A. K. Mukherjee, and T. G. Langdon, Superplasticity in advanced materials, Materials Science and Engineering: R: Reports, vol.10, issue.6, pp.237-274, 1993.

N. Chandra, Constitutive behavior of superplastic materials, International Journal of Non-Linear Mechanics, vol.37, issue.3, pp.461-484, 2002.

A. Barnes, Journal of Materials Engineering and performance, vol.16, pp.440-454, 2007.

S. Boude, Maîtrise du procédé de formage superplastique et réalisation d'une installation pilote, 1994.

Y. M. Hwang and H. S. Lay, Study on superplastic blow-forming in a rectangular closed-die, Journal of Materials Processing Technology, vol.140, issue.1, pp.426-431, 2003.

M. Kawasaki and T. G. Langdon, achieving superplasticity in metals processed by highpressure torsion, Journal of materials science, vol.49, pp.6487-6496, 2014.

D. H. Shin, Constrained groove pressing and its application to grain refinement of aluminum, Materials Science and Engineering: A, vol.328, issue.1, pp.98-103, 2002.

A. Krishnaiah, U. Chakkingal, and P. Venugopal, Applicability of the groove pressing technique for grain refinement in commercial purity copper, Materials Science and Engineering: A, pp.337-340, 2005.

F. Khodabakhshi, M. Kazeminezhad, and A. H. Kokabi, Constrained groove pressing of low carbon steel: Nano-structure and mechanical properties, Materials Science and Engineering: A, vol.527, issue.16, pp.4043-4049, 2010.

T. Furushima and K. Manabe, 14 -Superplastic micro-tubes fabricated by dieless drawing processes A2 -Giuliano, Gillo, in Superplastic Forming of Advanced Metallic Materials, pp.327-360, 2011.

P. E. Krajewski and J. G. Schroth, 12 -Quick Plastic Forming of aluminium alloys A2 -Giuliano, Gillo, in Superplastic Forming of Advanced Metallic Materials, pp.272-303, 2011.

P. E. Krajewski and J. G. Schroth, Overview of Quick Plastic Forming Technology, Materials Science Forum, pp.3-12, 2007.

P. A. Friedman, Method and apparatus for superplastic forming, Google Patents, 2003.

J. Liu, Superplastic-like forming of Ti-6Al-4V alloy, The International Journal of Advanced Manufacturing Technology, vol.69, issue.5-8, pp.1097-1104, 2013.

H. Wu, Modified male die rapid gas blow forming of fine-grained Mg alloy AZ31B thin sheet, The International Journal of Advanced Manufacturing Technology, vol.80, issue.5-8, pp.1241-1252, 2015.

J. Liu, Process optimization and microstructural development during superplastic-like forming of AA5083. The International Journal of Advanced Manufacturing Technology, vol.69, pp.2415-2422, 2013.

R. Boissiere, Quick-plastic forming: Similarities and differences with super-plastic forming, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00359715

G. R. Johnson and W. H. Cook, A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures, Proceedings of Seventh International Symposium on Ballistics. Netherlands, 1983.

Y. C. Lin, X. Chen, and G. Liu, A modified Johnson-Cook model for tensile behaviors of typical high-strength alloy steel, Materials Science and Engineering: A, vol.527, issue.26, pp.6980-6986, 2010.

L. Chen, G. Zhao, and J. Yu, Hot deformation behavior and constitutive modeling of homogenized 6026 aluminum alloy, Materials & Design, vol.74, pp.25-35, 2015.

Q. Y. Hou and J. T. Wang, A modified Johnson-Cook constitutive model for Mg-Gd-Y alloy extended to a wide range of temperatures, Computational Materials Science, vol.50, issue.1, pp.147-152, 2010.

H. Zhang, W. Wen, and H. Cui, Behaviors of IC10 alloy over a wide range of strain rates and temperatures: Experiments and modeling, Materials Science and Engineering: A, vol.504, issue.1-2, pp.99-103, 2009.

Y. C. Lin and X. Chen, A combined Johnson-Cook and Zerilli-Armstrong model for hot compressed typical high-strength alloy steel, Computational Materials Science, vol.49, issue.3, pp.628-633, 2010.

Y. C. Lin and X. Chen, A critical review of experimental results and constitutive descriptions for metals and alloys in hot working, Materials & Design, vol.32, issue.4, pp.1733-1759, 2011.

C. Zener and J. H. Hollomon, Effect of strain rate upon plastic flow of steel, Journal of Applied physics, vol.15, issue.1, pp.22-32, 1944.

J. Li, Comparative investigation on the modified Zerilli-Armstrong model and Arrhenius-type model to predict the elevated-temperature flow behaviour of 7050 aluminium alloy, Computational Materials Science, vol.71, pp.56-65, 2013.

G. Ji, Comparative study of phenomenological constitutive equations for an as-rolled M50NiL steel during hot deformation, Journal of Alloys and Compounds, vol.695, pp.2389-2399, 2017.

H. R. Ashtiani and P. Shahsavari, A comparative study on the phenomenological and artificial neural network models to predict hot deformation behavior of AlCuMgPb alloy, Journal of Alloys and Compounds, vol.687, pp.263-273, 2016.

H. R. Rezaei-ashtiani, M. H. Parsa, and H. Bisadi, Constitutive equations for elevated temperature flow behavior of commercial purity aluminum, Materials Science and Engineering: A, vol.545, pp.61-67, 2012.

Z. Cai, F. Chen, and J. Guo, Constitutive model for elevated temperature flow stress of AZ41M magnesium alloy considering the compensation of strain, Journal of Alloys and Compounds, vol.648, pp.215-222, 2015.

H. Y. Li, Constitutive modeling for hot deformation behavior of ZA27 alloy, Journal of Materials Science, vol.47, issue.14, pp.5411-5418, 2012.

H. Wu, Hot deformation characteristics and strain-dependent constitutive analysis of Inconel 600 superalloy, Journal of Materials Science, vol.47, issue.9, pp.3971-3981, 2012.

Y. Wang, Modeling and application of constitutive model considering the compensation of strain during hot deformation, Journal of Alloys and Compounds, vol.681, pp.455-470, 2016.

H. R. Ashtiani and P. Shahsavari, Strain-dependent constitutive equations to predict high temperature flow behavior of AA2030 aluminum alloy, Mechanics of Materials, vol.100, pp.209-218, 2016.

Y. C. Lin, M. Chen, and J. Zhong, Constitutive modeling for elevated temperature flow behavior of 42CrMo steel, Computational Materials Science, vol.42, issue.3, pp.470-477, 2008.

S. Mandal, Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel, Materials Science and Engineering: A, vol.500, issue.1-2, pp.114-121, 2009.

J. H. Sung, J. H. Kim, and R. H. Wagoner, A plastic constitutive equation incorporating strain, strain-rate, and temperature, International Journal of Plasticity, vol.26, issue.12, pp.1746-1771, 2010.

F. J. Zerilli and R. W. Armstrong, Dislocation-mechanics-based constitutive relations for material dynamics calculations, Journal of Applied Physics, vol.61, issue.5, pp.1816-1825, 1987.

Y. C. Lin, M. Chen, and J. Zhong, Prediction of 42CrMo steel flow stress at high temperature and strain rate, Mechanics Research Communications, vol.35, issue.3, pp.142-150, 2008.

G. Z. Voyiadjis and F. H. Abed, Microstructural based models for bcc and fcc metals with temperature and strain rate dependency, Mechanics of Materials, vol.37, issue.2, pp.355-378, 2005.

S. Wang, Physically based constitutive analysis and microstructural evolution of AA7050 aluminum alloy during hot compression, Materials & Design, vol.107, pp.277-289, 2016.

V. Vilamosa, A physically-based constitutive model applied to AA6082 aluminium alloy at large strains, high strain rates and elevated temperatures, Materials & Design, vol.103, pp.391-405, 2016.

Y. C. Lin, A physically-based constitutive model for a typical nickel-based superalloy, Computational Materials Science, vol.83, pp.282-289, 2014.

J. Lin, A set of unified constitutive equations for modelling microstructure evolution in hot deformation, Journal of Materials Processing Technology, pp.281-285, 2003.

H. Zhang, A modified Zerilli-Armstrong model for alloy IC10 over a wide range of temperatures and strain rates, Materials Science and Engineering: A, vol.527, issue.1-2, pp.328-333, 2009.

C. Y. Gao and L. C. Zhang, A constitutive model for dynamic plasticity of FCC metals, Materials Science and Engineering: A, vol.527, pp.3138-3143, 2010.

F. H. Abed and G. Z. Voyiadjis, A consistent modified Zerilli-Armstrong flow stress model for BCC and FCC metals for elevated temperatures, Acta Mechanica, vol.175, issue.1-4, pp.1-18, 2005.

W. Lee and C. Liu, The effects of temperature and strain rate on the dynamic flow behaviour of different steels, Materials Science and Engineering: A, vol.426, issue.1-2, pp.101-113, 2006.

T. Özel and Y. Karpat, Identification of Constitutive Material Model Parameters for High-Strain Rate Metal Cutting Conditions Using Evolutionary Computational Algorithms. Materials and Manufacturing Processes, vol.22, pp.659-667, 2007.

D. Samantaray, A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel, Materials Science and Engineering: A, vol.526, issue.1, pp.1-6, 2009.

A. He, A modified Zerilli-Armstrong constitutive model to predict hot deformation behavior of 20CrMo alloy steel, Materials & Design, vol.56, pp.122-127, 1980.

H. Zhang, A physically-based constitutive modelling of a high strength aluminum alloy at hot working conditions, Journal of Alloys and Compounds, vol.743, pp.283-293, 2018.

Z. Lu, Artificial neural network prediction to the hot compressive deformation behavior of Al-Cu-Mg-Ag heat-resistant aluminum alloy, Mechanics Research Communications, vol.38, issue.3, pp.192-197, 2011.

Y. C. Lin, J. Zhang, and J. Zhong, Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel, Computational Materials Science, vol.43, issue.4, pp.752-758, 2008.

G. Quan, A characterization for the flow behavior of 42CrMo steel, Computational Materials Science, vol.50, issue.1, pp.167-171, 2010.

H. Sheikh and S. Serajzadeh, Estimation of flow stress behavior of AA5083 using artificial neural networks with regard to dynamic strain ageing effect, Journal of Materials Processing Technology, vol.196, issue.1-3, pp.115-119, 2008.

S. Toros and F. Ozturk, Flow curve prediction of Al-Mg alloys under warm forming conditions at various strain rates by ANN, Applied Soft Computing, vol.11, issue.2, pp.1891-1898, 2011.

W. Langford, S. Snyder, and J. Bausch, New Criteria for Predicting the Press Performance of Deep Drawing Steels. Transaction of, vol.42, pp.1197-1232, 1950.

D. Banabic and S. Wagner, Anisotropic behaviour of aluminium alloys sheets. Aluminium, vol.78, pp.926-930, 2002.

R. Hill, A theory of the yielding and plastic flow of anisotropic metals, Proceedings of the Royal Society of London. Series A, Mathematical and Physical, vol.193, pp.281-297, 1033.

Z. Chen and X. Dong, The GTN damage model based on Hill'48 anisotropic yield criterion and its application in sheet metal forming, Computational Materials Science, vol.44, issue.3, pp.1013-1021, 2009.

J. Woodthorpe and R. Pearce, The anomalous behaviour of aluminium sheet under balanced biaxial tension, International Journal of Mechanical Sciences, vol.12, issue.4, pp.341-347, 1970.

D. Banabic, Determination of yield loci cross tensile tests assuming various kinds of yield criteria, proceedings of the 20th Biennial, 2000.

D. Banabic, An improved analytical description of orthotropy in metallic sheets, International Journal of Plasticity, vol.21, issue.3, pp.493-512, 2005.

D. Banabic, Plastic behaviour of sheet metal, Sheet Metal Forming Processes, pp.27-140, 2010.

S. Ahmadi, A. R. Eivani, and A. Akbarzadeh, An experimental and theoretical study on the prediction of forming limit diagrams using new BBC yield criteria and M-K analysis, Computational Materials Science, vol.44, issue.4, pp.1272-1280, 2009.

S. Izadpanah, S. H. Ghaderi, and M. Gerdooei, Material parameters identification procedure for BBC2003 yield criterion and earing prediction in deep drawing, International Journal of Mechanical Sciences, pp.552-563, 2016.

D. Banabic and K. Siegert, Anisotropy and formability of AA5182-0 aluminium alloy sheets, CIRP Annals, vol.53, issue.1, pp.219-222, 2004.

M. Oyane, Criteria of Ductile Fracture Strain, Bulletin of JSME, vol.15, issue.90, pp.1507-1513, 1972.

F. A. Mcclintock, A criterion for ductile fracture by the growth of holes, Journal of applied mechanics, vol.35, issue.2, pp.363-371, 1968.

J. R. Rice and D. M. Tracey, On the ductile enlargement of voids in triaxial stress fields, Journal of the Mechanics and Physics of Solids, vol.17, issue.3, pp.201-217, 1969.

A. L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media, Journal of engineering materials and technology, vol.99, issue.1, pp.2-15, 1977.

M. Oyane, Criteria for ductile fracture and their applications, Journal of Mechanical Working Technology, vol.4, issue.1, pp.65-81, 1980.

J. L. Chaboche, M. Boudifa, and K. Saanouni, A CDM Approach of Ductile Damage with Plastic Compressibility, International Journal of Fracture, vol.137, issue.1, pp.51-75, 2006.

V. Tvergaard and A. Needleman, Analysis of the cup-cone fracture in a round tensile bar. Acta metallurgica, vol.32, pp.157-169, 1984.

T. Pardoen and J. Hutchinson, An extended model for void growth and coalescence, Journal of the Mechanics and Physics of Solids, vol.48, issue.12, pp.2467-2512, 2000.

A. Benzerga, J. Besson, and A. Pineau, Anisotropic ductile fracture: Part I: experiments, Acta Materialia, vol.52, issue.15, pp.4623-4638, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00164227

K. Nahshon and J. Hutchinson, Modification of the Gurson model for shear failure, European Journal of Mechanics-A/Solids, vol.27, issue.1, pp.1-17, 2008.

M. Cockcroft and D. Latham, Ductility and the workability of metals, Journal of the Institute of Metals, vol.96, issue.1, pp.33-39, 1968.

A. P. Karafillis and M. C. Boyce, A general anisotropic yield criterion using bounds and a transformation weighting tensor, Journal of the Mechanics and Physics of Solids, vol.41, issue.12, pp.1859-1886, 1993.

T. Wierzbicki, Calibration and evaluation of seven fracture models, International Journal of Mechanical Sciences, vol.47, issue.4, pp.719-743, 2005.

Y. Bai and T. Wierzbicki, Application of extended Mohr-Coulomb criterion to ductile fracture, International Journal of Fracture, vol.161, issue.1, p.1, 2010.

T. Wierzbicki and L. Xue, On the effect of the third invariant of the stress deviator on ductile fracture, p.136, 2005.

Y. Bao and T. Wierzbicki, On fracture locus in the equivalent strain and stress triaxiality space, International Journal of Mechanical Sciences, vol.46, issue.1, pp.81-98, 2004.

V. Palchik, Application of Mohr-Coulomb failure theory to very porous sandy shales, International Journal of Rock Mechanics and Mining Sciences, vol.7, issue.43, pp.1153-1162, 2006.

M. Luo, M. Dunand, and D. Mohr, Experiments and modeling of anisotropic aluminum extrusions under multi-axial loading -Part II: Ductile fracture, International Journal of Plasticity, pp.36-58, 2012.

J. Papasidero, V. Doquet, and D. Mohr, Determination of the Effect of Stress State on the Onset of Ductile Fracture Through Tension-Torsion Experiments, Experimental Mechanics, vol.54, issue.2, pp.137-151, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00958597

T. Sjöberg, J. Kajberg, and M. Oldenburg, Fracture behaviour of Alloy 718 at high strain rates, elevated temperatures, and various stress triaxialities, Engineering Fracture Mechanics, vol.178, pp.231-242, 2017.

B. Valoppi, S. Bruschi, and A. Ghiotti, Modelling of Fracture Onset in Ti6Al4V Sheets Deformed at Elevated Temperature. Procedia Manufacturing, vol.5, pp.248-258, 2016.

A. H. Clausen, Flow and fracture characteristics of aluminium alloy AA5083-H116 as function of strain rate, temperature and triaxiality, Materials Science and Engineering: A, vol.364, issue.1, pp.260-272, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01718241

B. Valoppi, Johnson-Cook based criterion incorporating stress triaxiality and deviatoric effect for predicting elevated temperature ductility of titanium alloy sheets, International Journal of Mechanical Sciences, vol.123, pp.94-105, 2017.

M. F. Novella, Ductile damage modeling at elevated temperature applied to the cross wedge rolling of AA6082-T6 bars, Journal of Materials Processing Technology, vol.222, pp.259-267, 2015.

A. S. Khan and H. Liu, Strain rate and temperature dependent fracture criteria for isotropic and anisotropic metals, International Journal of Plasticity, vol.37, pp.1-15, 2012.

Y. Zhu, A new methodology for prediction of fracture initiation in hot compression of Ti40 titanium alloy, Materials Science and Engineering: A, vol.553, pp.112-118, 2012.

J. Lemaitre, Local approach of fracture, Engineering Fracture Mechanics, vol.25, issue.5, pp.523-537, 1986.

T. S. Cao, A Lode-dependent enhanced Lemaitre model for ductile fracture prediction at low stress triaxiality, Engineering Fracture Mechanics, pp.80-96, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00987142

J. Lian, Y. Feng, and S. Münstermann, A Modified Lemaitre Damage Model Phenomenologically Accounting for the Lode Angle Effect on Ductile Fracture, Procedia Materials Science, vol.3, pp.1841-1847, 2014.

T. Naka and F. Yoshida, Deep drawability of type 5083 aluminium-magnesium alloy sheet under various conditions of temperature and forming speed, Journal of Materials Processing Technology, pp.19-23, 1999.

R. A. Ayres, Alloying aluminum with magnesium for ductility at warm temperatures (25 to 250 C), Metallurgical Transactions A, vol.10, issue.7, pp.849-854, 1979.

R. A. Ayres and M. L. Wenner, Strain and strain-rate hardening effects in punch stretching of 5182-0 aluminum at elevated temperatures, Metallurgical Transactions A, vol.10, issue.1, pp.41-46, 1979.

T. Naka, The effects of temperature and forming speed on the forming limit diagram for type 5083 aluminum-magnesium alloy sheet, Journal of Materials Processing Technology, vol.113, issue.1, pp.648-653, 2001.

R. Verma, Grain refinement and superplasticity in 5083 Al, Materials Science and Engineering: A, vol.191, issue.1-2, pp.143-150, 1995.

P. Friedman and A. Ghosh, Microstructural evolution and superplastic deformation behavior of fine grain 5083Al. Metallurgical and Materials Transactions A, vol.27, pp.3827-3839, 1996.

R. Verma, Characterization of superplastic deformation behavior of a fine grain 5083 Al alloy sheet. Metallurgical and Materials Transactions A, vol.27, pp.1889-1898, 1996.

C. Martin, J. Blandin, and L. Salvo, Variations in microstructure and texture during high temperature deformation of Al-Mg alloy, Materials Science and Engineering: A, vol.297, issue.1-2, pp.212-222, 2001.

T. R. Mcnelley, Characteristics of the Transition from Grain-Boundary Sliding to Solute Drag Creep in Superplastic AA5083. Metallurgical and Materials Transactions A, vol.39, pp.50-64, 2007.

D. Singh, Effect of initial grain size on microstructure and mechanical behavior of cryorolled AA 5083, Materials Today: Proceedings, vol.4, pp.7609-7617, 2017.

J. Cho, A study on the hot-deformation behavior and dynamic recrystallization of Al-5 wt.% Mg alloy, Journal of Materials Processing Technology, vol.118, issue.1-3, pp.356-361, 2001.

S. J. Hosseinipour, An investigation into hot deformation of aluminum alloy 5083, Materials & Design, vol.30, issue.2, pp.319-322, 2009.

G. Meng, Hot deformation and processing maps of an Al-5.7wt.%Mg alloy with erbium, Materials Science and Engineering: A, vol.517, issue.1-2, pp.132-137, 2009.

M. A. Mostafaei and M. Kazeminezhad, Hot deformation behavior of hot extruded Al-6Mg alloy, Materials Science and Engineering: A, vol.535, pp.216-221, 2012.

V. Senthilkumar, A. Balaji, and R. Narayanasamy, Analysis of hot deformation behavior of Al 5083-TiC nanocomposite using constitutive and dynamic material models, Materials & Design, vol.37, pp.102-110, 2012.

F. Varela, The harmonic method: A new procedure to obtain wall periodic cross response factors, International Journal of Thermal Sciences, vol.58, pp.20-28, 2012.

R. Alizadeh, Microstructural evolution and superplasticity in an Mg-Gd-Y-Zr alloy after processing by different SPD techniques, Materials Science and Engineering, vol.682, pp.577-585, 2017.

J. Peirs, P. Verleysen, and J. Degrieck, Novel Technique for Static and Dynamic Shear Testing of Ti6Al4V Sheet, Experimental Mechanics, vol.52, issue.7, pp.729-741, 2012.

X. Y. Liu, Flow behavior and microstructural evolution of Al-Cu-Mg-Ag alloy during hot compression deformation, Materials Science and Engineering: A, vol.500, issue.1, pp.150-154, 2009.

W. Liu, Hot deformation behavior of AA7085 aluminum alloy during isothermal compression at elevated temperature, Materials Science and Engineering: A, vol.596, pp.176-182, 2014.

Q. Yang, Hot deformation behavior and microstructure of AA2195 alloy under plane strain compression. Materials Characterization, vol.131, pp.500-507, 2017.

J. Driver and O. Engler, Design of aluminum rolling processes for foil, sheet, and plate, Materials Engineering, vol.24, pp.69-114, 2004.

T. Naka, Effects of temperature on yield locus for 5083 aluminum alloy sheet, Journal of Materials Processing Technology, vol.140, issue.1-3, pp.494-499, 2003.

S. A. Aksenov, A. V. Kolesnikov, and A. V. Mikhaylovskaya, Design of a gas forming technology using the material constants obtained by tensile and free bulging testing, Journal of Materials Processing Technology, vol.237, pp.88-95, 2016.

A. Abedini, C. Butcher, and M. J. Worswick, Fracture Characterization of Rolled Sheet Alloys in Shear Loading: Studies of Specimen Geometry, Anisotropy, and Rate Sensitivity, Experimental Mechanics, vol.57, issue.1, pp.75-88, 2017.

G. H. Majzoobi, Damage characterization of aluminum 2024 thin sheet for different stress triaxialities, Archives of Civil and Mechanical Engineering, vol.18, issue.3, pp.702-712, 2018.

X. Gao, On stress-state dependent plasticity modeling: Significance of the hydrostatic stress, the third invariant of stress deviator and the non-associated flow rule, International Journal of Plasticity, vol.27, issue.2, pp.217-231, 2011.

Y. Li, Mixed mode stable tearing of thin sheet AI 6061-T6 specimens: experimental measurements and finite element simulations using a modified Mohr-Coulomb fracture criterion, International Journal of Fracture, vol.168, issue.1, pp.53-71, 2010.

J. Kang, Hot Deformation Characteristics of 304 Stainless Steels by Tensile Test, International Journal of Applied Engineering Research, vol.12, issue.22, pp.12415-12420, 2017.

E. M. Taleff, Warm-temperature tensile ductility in Al? Mg alloys. Metallurgical and Materials Transactions A, vol.29, pp.1081-1091, 1998.

G. Chen, Application of genetic algorithms for optimizing the Johnson-Cook constitutive model parameters when simulating the titanium alloy Ti-6Al-4V machining process, Proceedings of the Institution of Mechanical Engineers, vol.226, pp.1287-1297, 2012.

M. A. Nazzal, M. K. Khraisheh, and B. M. Darras, Finite element modeling and optimization of superplastic forming using variable strain rate approach, Journal of Materials Engineering and Performance, vol.13, issue.6, pp.691-699, 2004.

E. M. Taleff, Material Models for Simulation of Superplastic Mg Alloy Sheet Forming, Journal of Materials Engineering and Performance, vol.19, issue.4, pp.488-494, 2010.

E. A. De-souza-neto, D. Peric, and D. R. Owen, Computational methods for plasticity: theory and applications, 2011.

J. Choung, Failure strain formulation via average stress triaxiality of an EH36 high strength steel. Ocean Engineering, vol.91, pp.218-226, 2014.

Y. Bai and T. Wierzbicki, A new model of metal plasticity and fracture with pressure and Lode dependence, International Journal of Plasticity, vol.24, issue.6, pp.1071-1096, 2008.

Y. Li, Prediction of shear-induced fracture in sheet metal forming, Journal of Materials Processing Technology, vol.210, issue.14, pp.1858-1869, 2010.

G. R. Johnson and W. H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Engineering Fracture Mechanics, vol.21, issue.1, pp.31-48, 1985.

M. Bellet, Modélisation numérique du formage superplastique de tôles, 1988.

C. Robert, Contribution à la simulation numérique des procédés de mise en forme-Application au formage incrémental et au formage superplastique

N. O. Martinez, Optimization of superplastic forming production of Al-5083-SPF parts via finite element analysis. PhD thesis, 2012.

F. S. Jarrar, New approach to gas pressure profile prediction for high temperature AA5083 sheet forming, Journal of Materials Processing Technology, vol.210, issue.6, pp.825-834, 2010.

J. Yang, Étude expérimentale et modélisation du formage superplastiqued'un alliage d'aluminium Al7475. PhD thesis. Arts et Métiers ParisTech, 2014.