M. Abbas, A. Ern, and N. Pignet, A Hybrid High-Order method for finite elastoplastic deformations within a logarithmic strain framework, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01978385

M. Abbas, A. Ern, and N. Pignet, A Hybrid High-Order method for incremental associative plasticity with small deformations, Comput. Methods Appl. Mech. Eng, vol.346, pp.891-912, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01768411


M. Abbas, A. Ern, and N. Pignet, Hybrid High-Order methods for finite deformations of hyperelastic materials, Comput. Mech, vol.62, pp.909-928, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01575370

A. Akhrass, D. Bruchon, J. Drapier, S. Fayolle, and S. , Integrating a logarithmic-strain based hyperelastic formulation into a three-field mixed finite element formulation to deal with incompressibility in finitestrain elastoplasticity, Finite Elem. Anal. Des, vol.86, pp.61-70, 2014.
URL : https://hal.archives-ouvertes.fr/emse-01063686

F. Aldakheel, Mechanics of nonlocal dissipative solids: gradient plasticity and phase field modeling of ductile fracture, 2016.

F. Aldakheel, P. Wriggers, and C. Miehe, A modified Gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling, Comput. Mech, vol.62, pp.815-833, 2018.

R. Alessi, Coupling damage and plasticity for a phase-field regularisation of brittle, cohesive and ductile fracture: One-dimensional examples, Int. J. Mech. Sci, vol.18, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01542843

R. Alessi, M. Ambati, T. Gerasimov, S. Vidoli, and L. De-lorenzis, Comparison of phase-field models of fracture coupled with plasticity, Advances in Computational Plasticity, pp.1-21, 2018.

O. Allix, The bounded rate concept: A framework to deal with objective failure predictions in dynamic within a local constitutive model, Int. J. Damage Mech, vol.22, pp.808-828, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01745205


O. Allix, P. Feissel, and P. Thévenet, A delay damage mesomodel of laminates under dynamic loading: basic aspects and identification issues, Comput. Struct, vol.81, issue.03, p.35, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01745211

. Ambati, A phase-field model for ductile fracture at finite strains and its experimental verification, Comput Mech, 2016.

. Ambati, Phase-field modeling of ductile fracture, Comput Mech, vol.24, 2015.

L. Ambrosio and V. M. Tortorelli, Approximation of functional depending on jumps by elliptic functional via t-convergence, Commun. Pure Appl. Math, vol.43, pp.999-1036, 1990.

T. L. Anderson, Fracture mechanics: fundamentals and applications, 2017.

F. Andrade, J. C. De-sá, and F. A. Pires, Assessment and comparison of non-local integral models for ductile damage, Int. J. Damage Mech, vol.23, pp.261-296, 2014.

P. M. Areias and T. Belytschko, Analysis of three-dimensional crack initiation and propagation using the extended finite element method, Int. J. Numer. Methods Eng, vol.63, pp.760-788, 2005.

F. Auricchio, L. Beirão-da-veiga, C. Lovadina, A. Reali, R. L. Taylor et al., Approximation of incompressible large deformation elastic problems: some unresolved issues, Comput. Mech, vol.52, pp.1153-1167, 2013.

P. Badel and E. Lorentz, Critères de convergence en mécanique des solides, in: 10e Colloque National En Calcul Des Structures, pp.Clé-USB, 2011.

Z. P. Bazant, T. B. Belytschko, and T. Chang, Continuum theory for strain-softening, J. Eng. Mech, vol.110, pp.1666-1692, 1984.

Z. P. Bazant and G. Pijaudier-cabot, Nonlocal continuum damage, localization instability and convergence, J. Appl. Mech, vol.55, pp.287-293, 1988.

C. Beachem and G. Yoder, Elastic-plastic fracture by homogeneous microvoid coalescence tearing along alternating shear planes, Metall. Trans, vol.4, pp.1145-1153, 1973.

R. Becker, R. Smelser, and O. Richmond, The effect of void shape on the development of damage and fracture in plane-strain tension, J. Mech. Phys. Solids, vol.37, pp.111-129, 1989.

A. Benallal, R. Billardon, and G. Geymonat, Bifurcation and localization in rate-independent materials. Some general considerations, Bifurcation and Stability of Dissipative Systems, pp.1-44, 1993.
URL : https://hal.archives-ouvertes.fr/hal-01718298

A. A. Benzerga, Micromechanics of coalescence in ductile fracture, J. Mech. Phys. Solids, vol.50, pp.1331-1362, 2002.

A. A. Benzerga and J. Besson, Plastic potentials for anisotropic porous solids, Eur. J. Mech.-ASolids, vol.20, pp.397-434, 2001.

J. Bergheau, J. Leblond, and G. Perrin, A new numerical implementation of a second-gradient model for plastic porous solids, with an application to the simulation of ductile rupture tests, Comput. Methods Appl. Mech. Eng, vol.268, pp.105-125, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01434742

J. Besson, Continuum models of ductile fracture: a review, Int. J. Damage Mech, vol.19, pp.3-52, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00550957

J. Besson, Damage of ductile materials deforming under multiple plastic or viscoplastic mechanisms, Int. J. Plast, vol.25, pp.2204-2221, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00438822

J. Besson, C. Mccowan, and E. Drexler, Modeling flat to slant fracture transition using the computational cell methodology, Eng. Fract. Mech, vol.104, pp.80-95, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00830626

J. Besson, D. Moinereau, and D. Steglich, Local approach to fracture, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00755207

J. Besson, D. Steglich, and W. Brocks, Modeling of plane strain ductile rupture, Int. J. Plast, vol.19, pp.1517-1541, 2003.

J. Besson, D. Steglich, and W. Brocks, Modeling of crack growth in round bars and plane strain specimens, Int. J. Solids Struct, vol.38, pp.8259-8284, 2001.

R. Billardon and I. Doghri, Prediction of macrocrack initiation by damage localization, Acad. Sci. Comptes Rendus Ser. II-Mec. Phys. Chim. Sci. Univers Sci. Terre, vol.308, pp.347-352, 1989.

M. J. Borden, T. J. Hughes, C. M. Landis, A. Anvari, and I. J. Lee, A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects, Comput Methods Appl Mech Engrg, vol.37, 2016.

B. Boroomand and O. Zienkiewicz, Recovery procedures in error estimation and adaptivity. Part II: Adaptivity in nonlinear problems of elasto-plasticity behaviour, Comput. Methods Appl. Mech. Eng, vol.176, pp.127-146, 1999.

B. Bourdin, G. A. Francfort, and J. Marigo, Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, vol.48, pp.797-826, 2000.

S. Brach, E. Tanné, B. Bourdin, and K. Bhattacharya, Phase-field study of crack nucleation and propagation in elastic-perfectly plastic bodies, Comput. Methods Appl. Mech. Eng, vol.353, pp.44-65, 2019.

T. Brepols, S. Wulfinghoff, and S. Reese, Gradient-extended two-surface damage-plasticity: Micromorphic formulation and numerical aspects, Int. J. Plast, vol.97, pp.64-106, 2017.

U. Brink and E. Stein, On some mixed finite element methods for incompressible and nearly incompressible finite elasticity, Comput. Mech, vol.19, pp.105-119, 1996.

F. Bron and J. Besson, A yield function for anisotropic materials application to aluminum alloys, Int. J. Plast, vol.20, pp.937-963, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00165873

L. Brown and J. Embury, Initiation and growth of voids at second-phase particles, Proc. Conf. on Microstructure and Design of Alloys, Institute of Metals and Iron and Steel Insitute, pp.164-169, 1973.

M. Brünig, Formulation and numerical treatment of incompressibility constraints in large strain elasticplastic analysis, Int. J. Numer. Methods Eng, vol.45, pp.1047-1068, 1999.

B. Budiansky, J. Hutchinson, and S. Slutsky, Void growth and collapse in viscous solids, pp.13-45, 1982.

T. Cao, Numerical simulation of 3D ductile cracks formation using recent improved Lode-dependent plasticity and damage models combined with remeshing, Int. J. Solids Struct, vol.51, pp.2370-2381, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00974745

T. Cao, P. Montmitonnet, and P. Bouchard, A detailed description of the Gurson-Tvergaard-Needleman model within a mixed velocity-pressure finite element formulation: GTN MODEL IMPLEMENTATION IN MIXED VELOCITY-PRESSURE FE FORMULATION, Int. J. Numer. Methods Eng, vol.96, pp.561-583, 2013.

W. Carroll and R. Barker, A theorem for optimum finite-element idealizations, Int. J. Solids Struct, vol.9, pp.883-895, 1973.

O. Cazacu, B. Revil-baudard, N. Chandola, and D. Kondo, New analytical criterion for porous solids with Tresca matrix under axisymmetric loadings, Int. J. Solids Struct, vol.51, pp.861-874, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01667110

O. Cazacu and J. B. Stewart, Analytic plastic potential for porous aggregates with matrix exhibiting tensioncompression asymmetry, J. Mech. Phys. Solids, vol.57, pp.325-341, 2009.

M. Cervera, M. Chiumenti, and R. Codina, Mixed stabilized finite element methods in nonlinear solid mechanics: Part i: Formulation, Comput. Methods Appl. Mech. Eng, vol.199, pp.2559-2570, 2010.

Y. Chen, C. Zhang, and C. Varé, An extended GTN model for indentation-induced damage, Comput. Mater. Sci, vol.128, pp.229-235, 2017.

C. Chu and A. Needleman, Void nucleation effects in biaxially stretched sheets, J. Eng. Mater. Technol, vol.102, pp.249-256, 1980.

M. Crouzeix and A. L. Mignot, Analyse numérique des équations différentielles, 1984.

J. Dally and R. Sanford, Strain-gage methods for measuring the opening-mode stress-intensity factor, K I, Exp. Mech, vol.27, pp.381-388, 1987.

K. Danas and N. Aravas, Numerical modeling of elasto-plastic porous materials with void shape effects at finite deformations, Compos. Part B Eng, vol.43, pp.2544-2559, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00755844

R. De-borst and H. Mühlhaus, Gradient-dependent plasticity: formulation and algorithmic aspects, Int. J. Numer. Methods Eng, vol.35, pp.521-539, 1992.

E. De-souza-neto, D. Peri?, M. Dutko, and D. Owen, Design of simple low order finite elements for large strain analysis of nearly incompressible solids, Int. J. Solids Struct, vol.33, pp.3277-3296, 1996.

E. A. De-souza-neto, D. Peric, and D. R. Owen, Computational methods for plasticity: theory and applications, 2011.

R. Desmorat and F. Gatuingt, Introduction of an internal time in nonlocal integral theories, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00200898

G. Di-luzio and Z. P. Ba?ant, Spectral analysis of localization in nonlocal and over-nonlocal materials with softening plasticity or damage, Int. J. Solids Struct, vol.42, pp.6071-6100, 2005.

D. Pietro, D. A. Ern, and A. , A hybrid high-order locking-free method for linear elasticity on general meshes, Comput. Methods Appl. Mech. Eng, vol.283, pp.1-21, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00979435

D. Pietro, D. A. Ern, A. Lemaire, and S. , An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators, Comput. Methods Appl. Math, vol.14, pp.461-472, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00978198

E. Diamantopoulou, W. Liu, C. Labergere, H. Badreddine, K. Saanouni et al., Micromorphic constitutive equations with damage applied to metal forming, Int. J. Damage Mech, vol.26, pp.314-339, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02279328

V. Dias-da-silva, A simple model for viscous regularization of elasto-plastic constitutive laws with softening, Commun. Numer. Methods Eng, vol.20, pp.547-568, 2004.

I. Doghri, Mechanics of deformable solids: linear, nonlinear, analytical and computational aspects, 2013.

W. P. Doherty, E. L. Wilson, and R. L. Taylor, Stress analysis of axisymmetric solids utilizing higher-order quadrilateral finite elements, 1969.

T. Elguedj, Y. Bazilevs, V. M. Calo, and T. J. Hughes, F-bar projection method for finite deformation elasticity and plasticity using NURBS based isogeometric analysis, Int. J. Mater. Form, vol.1, pp.1091-1094, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00517501

T. Elguedj, Y. Bazilevs, V. M. Calo, and T. J. Hughes, B and F Projection Methods for Nearly Incompressible Linear and Nonlinear Elasticity and Plasticity using Higher-order NURBS Elements: Defense Technical Information Center, 2007.

K. Enakoutsa and J. Leblond, Numerical implementation and assessment of the GLPD micromorphic model of ductile rupture, Eur. J. Mech. -ASolids, vol.28, pp.445-460, 2009.

K. Enakoutsa, J. B. Leblond, and G. Perrin, Numerical implementation and assessment of a phenomenological nonlocal model of ductile rupture, Comput. Methods Appl. Mech. Eng, vol.196, pp.1946-1957, 2007.

R. A. Engelen, M. G. Geers, and F. P. Baaijens, Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour, Int. J. Plast, vol.19, pp.403-433, 2003.

A. C. Eringen and D. Edelen, On nonlocal elasticity, Int. J. Eng. Sci, vol.10, pp.233-248, 1972.

A. Ern and J. Guermond, Theory and practice of finite elements, 2013.

H. D. Espinosa, P. D. Zavattieri, and G. L. Emore, Adaptive FEM computation of geometric and material nonlinearities with application to brittle failure, Mech. Mater, vol.29, pp.275-305, 1998.

J. Faleskog, X. Gao, and C. F. Shih, Cell model for nonlinear fracture analysis-I. Micromechanics calibration, Int. J. Fract, vol.89, pp.355-373, 1998.

S. Feld-payet, Amorçage et propagation de fissures dans les milieux ductiles non locaux 171, 2010.

S. Feld-payet, J. Besson, and F. Feyel, Finite Element Analysis of Damage in Ductile Structures Using a Nonlocal Model Combined with a Three-field Formulation, Int. J. Damage Mech, vol.20, pp.655-680, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00619641

S. Feld-payet, V. Chiaruttini, J. Besson, and F. Feyel, A new marching ridges algorithm for crack path tracking in regularized media, Int. J. Solids Struct, vol.71, pp.57-69, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01199601

A. Flatten, D. Klingbeil, and B. Svendsen, Non-local modeling of thermomechanical localization in metals, PAMM: Proceedings in Applied Mathematics and Mechanics, pp.369-370, 2006.

S. Forest, Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage, J. Eng. Mech, vol.135, pp.3-117, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00368014

M. Fortin and F. Brezzi, Mixed and hybrid finite element methods, 1991.

M. Fortin and R. Glowinski, Augmented Lagrangian methods: applications to the numerical solution of boundary-value problems, 1983.

G. A. Francfort and J. Marigo, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, vol.46, pp.1319-1342, 1998.

W. Garrison and N. Moody, Ductile fracture, J. Phys. Chem. Solids, vol.48, pp.1035-1074, 1987.

M. G. Geers, Finite strain logarithmic hyperelasto-plasticity with softening: a strongly non-local implicit gradient framework, Comput. Methods Appl. Mech. Eng, vol.193, pp.3377-3401, 2004.

M. G. Geers, R. L. Ubachs, and R. A. Engelen, Strongly non-local gradient-enhanced finite strain elastoplasticity, Int. J. Numer. Methods Eng, vol.56, pp.2039-2068, 2003.

M. Gologanu, J. Leblond, and J. Devaux, Approximate models for ductile metals containing nonspherical voids-case of axisymmetric oblate ellipsoidal cavities, J. Eng. Mater. Technol, vol.116, pp.290-297, 1994.

M. Gologanu, J. Leblond, and J. Devaux, Approximate models for ductile metals containing nonspherical voids-case of axisymmetric prolate ellipsoidal cavities, J. Mech. Phys. Solids, vol.41, pp.1723-1754, 1993.

M. Gologanu, J. Leblond, G. Perrin, and J. Devaux, Recent extensions of Gurson's model for porous ductile metals, Continuum Micromechanics, pp.61-130, 2007.

M. Gologanu, J. Leblond, G. Perrin, and J. Devaux, Theoretical models for void coalescence in porous ductile solids. I. Coalescence "in layers, Int. J. Solids Struct, vol.38, pp.5581-5594, 2001.

P. Grassl, D. Xenos, M. Jirásek, and M. Horák, Evaluation of nonlocal approaches for modelling fracture near nonconvex boundaries, Int. J. Solids Struct, vol.51, pp.3239-3251, 2014.

A. A. Griffith, VI. The phenomena of rupture and flow in solids, Philos. Trans. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character, vol.221, pp.163-198, 1921.

D. Gross and T. Seelig, Fracture mechanics: with an introduction to micromechanics, 2017.

D. Gross and T. Seelig, Fracture mechanics: with an introduction to micromechanics, Mechanical engineering series, 2011.

A. L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol, vol.99, pp.2-15, 1977.

J. Hadamard and ;. A. Hermann, Leçons sur la propagation des ondes et les équations de l'hydrodynamique, 1903.

G. Hahn and A. Rosenfield, Metallurgical factors affecting fracture toughness of aluminum alloys, Metall. Trans. A, vol.6, pp.653-668, 1975.

X. Han, J. Besson, S. Forest, B. Tanguy, and S. Bugat, A yield function for single crystals containing voids, Int. J. Solids Struct, vol.50, pp.2115-2131, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00830364

K. Handerhan and W. Garrison, A study of crack tip blunting and the influence of blunting behavior on the fracture toughness of ultra high strength steels, Acta Metall. Mater, vol.40, pp.1337-1355, 1992.

F. Hannard, A. Simar, E. Maire, and T. Pardoen, Quantitative assessment of the impact of second phase particle arrangement on damage and fracture anisotropy, Acta Mater, vol.148, pp.456-466, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01814028

J. Heerens and M. Schödel, On the determination of crack tip opening angle, CTOA, using light microscopy and ?5 measurement technique, Eng. Fract. Mech, vol.70, pp.417-426, 2003.

L. R. Herrmann, Elasticity equations for incompressible and nearly incompressible materials by a variational theorem, AIAA J, vol.3, pp.1896-1900, 1965.

E. Hinton and J. Campbell, Local and global smoothing of discontinuous finite element functions using a least squares method, Int. J. Numer. Methods Eng, vol.8, pp.461-480, 1974.

H. Hu, On some variational principles in the theory of elasticity and plasticity, Sci Sin, vol.4, pp.33-54, 1955.

H. Hu, On some variational principles in the theory of elasticity and the theory of plasticity, 1954.

Y. Huang, Accurate dilatation rates for spherical voids in triaxial stress fields, ASME J Appl Mech, vol.58, pp.1084-1086, 1991.

A. E. Huespe, A. Needleman, J. Oliver, and P. J. Sánchez, A finite strain, finite band method for modeling ductile fracture, Int. J. Plast, vol.28, pp.53-69, 2012.

T. J. Hughes, The finite element method: linear static and dynamic finite element analysis. Courier Corporation, 2012.

T. J. Hughes, Generalization of selective integration procedures to anisotropic and nonlinear media, Int. J. Numer. Methods Eng, vol.15, pp.1413-1418, 1980.

J. Hutchinson, Singular behaviour at the end of a tensile crack in a hardening material, J. Mech. Phys. Solids, vol.16, pp.13-31, 1968.

G. Hütter, A micromechanical gradient extension of Gurson's model of ductile damage within the theory of microdilatational media, Int. J. Solids Struct, pp.15-23, 2017.

G. Hütter, T. Linse, U. Mühlich, and M. Kuna, Simulation of ductile crack initiation and propagation by means of a non-local Gurson-model, Int. J. Solids Struct, vol.50, pp.662-671, 2013.

G. Hütter, T. Linse, S. Roth, U. Mühlich, and M. Kuna, A modeling approach for the complete ductilebrittle transition region: cohesive zone in combination with a non-local Gurson-model, Int. J. Fract, vol.185, pp.129-153, 2014.

G. Hütter, L. Zybell, and M. Kuna, Size effects due to secondary voids during ductile crack propagation, Int. J. Solids Struct, vol.51, pp.839-847, 2014.

G. R. Irwin, Analysis of stresses and strains near the end of a crack traversing a plate, J Appl Mech, 1957.

J. Jackiewicz and M. Kuna, Non-local regularization for FE simulation of damage in ductile materials, Comput. Mater. Sci, vol.28, pp.684-695, 2003.

M. Jirásek, Nonlocal damage mechanics, Rev. Eur. Génie Civ, vol.11, pp.993-1021, 2007.

M. Jirásek and S. Rolshoven, Comparison of integral-type nonlocal plasticity models for strain-softening materials, Int. J. Eng. Sci, vol.41, pp.1553-1602, 2003.

E. P. Kasper and R. L. Taylor, A mixed-enhanced strain method Part I: Geometrically linear problems, Comput. Struct, vol.14, 2000.

E. P. Kasper and R. L. Taylor, A mixed-enhanced strain method Part II: Geometrically nonlinear problems, Comput. Struct, vol.10, 2000.

S. Keralavarma and A. Benzerga, A constitutive model for plastically anisotropic solids with non-spherical voids, J. Mech. Phys. Solids, vol.58, pp.874-901, 2010.

S. Keralavarma and S. Chockalingam, A criterion for void coalescence in anisotropic ductile materials, Int. J. Plast, vol.82, pp.159-176, 2016.

D. Kim, F. Barlat, S. Bouvier, M. Rabahallah, T. Balan et al., Non-quadratic anisotropic potentials based on linear transformation of plastic strain rate, Int. J. Plast, vol.23, pp.1380-1399, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01193013

J. Kim, X. Gao, and T. S. Srivatsan, Modeling of void growth in ductile solids: effects of stress triaxiality and initial porosity, Eng. Fract. Mech, vol.71, pp.379-400, 2004.

D. Ko, B. Kim, and J. Choi, Finite-element simulation of the shear process using the element-kill method, J. Mater. Process. Technol, vol.72, pp.129-140, 1997.

J. Koplik and A. Needleman, Void growth and coalescence in porous plastic solids, Int. J. Solids Struct, vol.24, pp.835-853, 1988.

E. Kröner, Elasticity theory of materials with long range cohesive forces, Int. J. Solids Struct, vol.3, pp.731-742, 1967.

C. Kuhn and T. Noll, On phase field modeling of ductile fracture 20, 2016.

P. Ladevèze and J. P. Pelle, La maîtrise du calcul en mécanique linéaire et non linéaire, Hermès Science publ, 2001.

J. Leblond, G. Perrin, and J. Devaux, Bifurcation effects in ductile metals with nonlocal damage, J. Appl. Mech, vol.61, pp.236-242, 1994.

E. Lee, Some comments on elastic-plastic analysis, Int. J. Solids Struct, vol.17, pp.859-872, 1981.

H. C. Lee, J. S. Choi, K. H. Jung, and Y. T. Im, Application of element deletion method for numerical analyses of cracking, J. Achiev. Mater. Manuf. Eng, vol.35, 2009.

N. Lee and K. Bathe, Error indicators and adaptive remeshing in large deformation finite element analysis, Finite Elem. Anal. Des, vol.16, pp.99-139, 1994.

J. Lemaitre, Coupled elasto-plasticity and damage constitutive equations, Comput. Methods Appl. Mech. Eng, vol.51, pp.31-49, 1985.

J. Lemaitre and J. Chaboche, Aspect phénoménologique de la rupture par endommagement, J Méc Appl, vol.2, 1978.

J. Lemaitre, R. Desmorat, and M. Sauzay, Anisotropic damage law of evolution, Eur. J. Mech.-ASolids, vol.19, pp.187-208, 2000.

H. Li, M. W. Fu, J. Lu, and H. Yang, Ductile fracture: Experiments and computations, Int. J. Plast, vol.27, pp.147-180, 2011.

J. Lian, M. Sharaf, F. Archie, and S. Münstermann, A hybrid approach for modelling of plasticity and failure behaviour of advanced high-strength steel sheets, Int. J. Damage Mech, vol.22, pp.188-218, 2013.

J. Lian, J. Wu, and S. Münstermann, Evaluation of the cold formability of high-strength low-alloy steel plates with the modified Bai-Wierzbicki damage model, Int. J. Damage Mech, vol.24, pp.383-417, 2015.

R. C. Lin, D. Steglich, W. Brocks, and J. Betten, Performing RVE calculations under constant stress triaxiality for monotonous and cyclic loading, Int. J. Numer. Methods Eng, vol.66, pp.1331-1360, 2006.

S. Lindqvist, K. Wallin, D. Moinereau, M. Smith, S. Marie et al., Advanced Structural Integrity Assessment Tools for Safe Long Term Operation (ATLAS+), ASME 2018 Pressure Vessels and Piping Conference, pp.6-06, 2018.

T. Linse, G. Hütter, and M. Kuna, Simulation of crack propagation using a gradient-enriched ductile damage model based on dilatational strain, Eng. Fract. Mech, vol.95, pp.13-28, 2012.


G. Ljustina, M. Fagerström, and R. Larsson, Rate Sensitive Continuum Damage Models and Mesh Dependence in Finite Element Analyses, Sci. World J, vol.2014, pp.1-8, 2014.

E. Lorentz, A nonlocal damage model for plain concrete consistent with cohesive fracture, Int. J. Fract, vol.207, pp.123-159, 2017.

E. Lorentz, Ill-posed boundary conditions encountered in 3D and plate finite element simulations, Finite Elem. Anal. Des, vol.41, pp.1105-1117, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00086967

E. Lorentz, Lois de comportement à gradients de variables internes: construction, formulation variationnelle et mise en oeuvre numérique, 1999.

E. Lorentz and S. Andrieux, Analysis of non-local models through energetic formulations, Int. J. Solids Struct, vol.40, pp.2905-2936, 2003.

E. Lorentz and A. Benallal, Gradient constitutive relations: numerical aspects and application to gradient damage, Comput. Methods Appl. Mech. Eng, vol.194, pp.5191-5220, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01718363


E. Lorentz, J. Besson, and V. Cano, Numerical simulation of ductile fracture with the Rousselier constitutive law, Comput. Methods Appl. Mech. Eng, vol.197, pp.1965-1982, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00268315

E. Lorentz and V. Cano, A nonlocal formulation applied to ductile damage, Lat. Am. J. Solids Struct, vol.2, pp.17-27, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00467464

E. Lorentz and V. Godard, Gradient damage models: Toward full-scale computations, Comput. Methods Appl. Mech. Eng, vol.200, pp.1927-1944, 2011.

G. Loubignac, G. Cantin, and G. Touzot, Continuous stress fields in finite element analysis, AIAA J, vol.15, pp.1645-1647, 1977.

K. Madou and J. Leblond, Numerical studies of porous ductile materials containing arbitrary ellipsoidal voids-I: Yield surfaces of representative cells, Eur. J. Mech.-ASolids, vol.42, pp.480-489, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01436280

K. Madou, J. Leblond, and L. Morin, Numerical studies of porous ductile materials containing arbitrary ellipsoidal voids-II: Evolution of the length and orientation of the void axes, Eur. J. Mech.-ASolids, vol.42, pp.490-507, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01436276

L. Malcher, F. M. Andrade-pires, and J. M. César-de-sá, An extended GTN model for ductile fracture under high and low stress triaxiality, Int. J. Plast, vol.54, pp.193-228, 2014.

J. Marigo, C. Maurini, and K. Pham, An overview of the modelling of fracture by gradient damage models, Meccanica, vol.51, pp.3107-3128, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01374814

F. A. Mcclintock, A criterion for ductile fracture by the growth of holes, J. Appl. Mech, vol.35, pp.363-371, 1968.

F. A. Mcclintock, On the plasticity of the growth of fatigue cracks, 1963.

R. M. Mcmeeking, Finite deformation analysis of crack-tip opening in elastic-plastic materials and implications for fracture, J. Mech. Phys. Solids, vol.25, pp.357-381, 1977.

R. Mcmeeking and D. Parks, On criteria for J-dominance of crack-tip fields in large-scale yielding, in: Elastic-Plastic Fracture, 1979.

R. M. Mcmeeking and J. Rice, Finite-element formulations for problems of large elastic-plastic deformation, Int. J. Solids Struct, vol.11, pp.601-616, 1975.

J. Mediavilla, R. H. Peerlings, and M. G. Geers, Discrete crack modelling of ductile fracture driven by non-local softening plasticity, Int. J. Numer. Methods Eng, vol.66, pp.661-688, 2006.


J. Mediavilla, R. H. Peerlings, and M. G. Geers, A nonlocal triaxiality-dependent ductile damage model for finite strain plasticity, Comput. Methods Appl. Mech. Eng, vol.195, pp.4617-4634, 2006.

J. Mediavilla, R. H. Peerlings, and M. G. Geers, An integrated continuous-discontinuous approach towards damage engineering in sheet metal forming processes, Eng. Fract. Mech, vol.73, pp.895-916, 2006.

J. Mediavilla, R. H. Peerlings, and M. G. Geers, A robust and consistent remeshing-transfer operator for ductile fracture simulations, Comput. Struct, vol.84, pp.604-623, 2006.


C. Miehe, Variational gradient plasticity at finite strains. Part I: Mixed potentials for the evolution and update problems of gradient-extended dissipative solids, Comput. Methods Appl. Mech. Eng, vol.268, pp.677-703, 2014.

C. Miehe, F. Aldakheel, and A. Raina, Phase field modeling of ductile fracture at finite strains: A variational gradient-extended plasticity-damage theory, Int. J. Plast, vol.84, pp.1-32, 2016.


C. Miehe, N. Apel, and M. Lambrecht, Anisotropic additive plasticity in the logarithmic strain space: modular kinematic formulation and implementation based on incremental minimization principles for standard materials, Comput. Methods Appl. Mech. Eng, vol.191, pp.5383-5425, 2002.

C. Miehe and M. Lambrecht, Algorithms for computation of stresses and elasticity moduli in terms of Seth-Hill's family of generalized strain tensors, Commun. Numer. Methods Eng, vol.17, pp.337-353, 2001.

V. Monchiet and G. Bonnet, A Gurson-type model accounting for void size effects, Int. J. Solids Struct, vol.50, pp.320-327, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01165812

V. Monchiet, O. Cazacu, E. Charkaluk, and D. Kondo, Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids, Int. J. Plast, vol.24, pp.1158-1189, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00275511

V. Monchiet and D. Kondo, Combined voids size and shape effects on the macroscopic criterion of ductile nanoporous materials, Int. J. Plast, vol.43, pp.20-41, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01165815

T. F. Morgeneyer and J. Besson, Flat to slant ductile fracture transition: Tomography examination and simulations using shear-controlled void nucleation, Scr. Mater, vol.65, pp.1002-1005, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00658608

T. F. Morgeneyer, T. Taillandier-thomas, L. Helfen, T. Baumbach, I. Sinclair et al., In situ 3-D observation of early strain localization during failure of thin Al alloy (2198) sheet, Acta Mater, vol.69, pp.78-91, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00952176

H. Mühlhaus and E. Alfantis, A variational principle for gradient plasticity, Int. J. Solids Struct, vol.28, pp.845-857, 1991.

K. Nahshon and J. Hutchinson, Modification of the Gurson model for shear failure, Eur. J. Mech.-ASolids, vol.27, pp.1-17, 2008.

A. Needleman and V. Tvergaard, An analysis of ductile rupture in notched bars, J. Mech. Phys. Solids, vol.32, pp.461-490, 1984.

A. Nonn and C. Kalwa, Modeling of damage behaviour of high strength pipeline 8, 2010.

J. Oliver, A. E. Huespe, J. C. Cante, and G. Díaz, On the numerical resolution of the discontinuous material bifurcation problem, Int. J. Numer. Methods Eng, 2010.

E. Oñate and J. Castro, Adaptive mesh refinement techniques for structural problems, The Finite Element Method in the 1990's, pp.133-145, 1991.

M. Ortiz and J. Quigley-iv, Adaptive mesh refinement in strain localization problems, Comput. Methods Appl. Mech. Eng, vol.90, pp.781-804, 1991.

T. Pardoen and F. Delannay, A method for the metallographical measurement of the CTOD at cracking initiation and the role of reverse plasticity on unloading, Eng. Fract. Mech, vol.65, pp.128-137, 2000.

T. Pardoen and J. Hutchinson, An extended model for void growth and coalescence, J. Mech. Phys. Solids, vol.48, pp.2467-2512, 2000.

P. Paris, H. Tada, A. Zahoor, and H. Ernst, The theory of instability of the tearing mode of elastic-plastic crack growth, in: Elastic-Plastic Fracture, 1979.

J. Paux, L. Morin, R. Brenner, and D. Kondo, An approximate yield criterion for porous single crystals, Eur. J. Mech.-ASolids, vol.51, pp.1-10, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01062662

C. Pavanachand and R. Krishnakumar, Remeshing issues in the finite element analysis of metal forming problems, J. Mater. Process. Technol, vol.75, pp.63-74, 1998.

T. V. Pavankumar, M. K. Samal, J. Chattopadhyay, B. K. Dutta, H. S. Kushwaha et al., Transferability of fracture parameters from specimens to component level, Int. J. Press. Vessels Pip, vol.82, pp.386-399, 2005.

R. H. Peerlings, R. De-borst, and W. A. Brekelmans, Gradient enhanced damage for quasi-brittle materials 13, 1996.

R. H. Peerlings, M. G. Geers, R. De-borst, and W. A. Brekelmans, A critical comparison of nonlocal and gradient-enhanced softening continua, Int. J. Solids Struct, vol.38, pp.87-94, 2001.

D. Peri?, C. Hochard, M. Dutko, and D. Owen, Transfer operators for evolving meshes in small strain elasto-placticity, Comput. Methods Appl. Mech. Eng, vol.137, pp.331-344, 1996.

V. A. Phadnis, F. Makhdum, A. Roy, and V. V. Silberschmidt, Drilling in carbon/epoxy composites: Experimental investigations and finite element implementation, Compos. Part Appl. Sci. Manuf, vol.47, pp.41-51, 2013.

G. Pijaudier-cabot and Z. P. Ba?ant, Nonlocal damage theory, J. Eng. Mech, vol.113, pp.1512-1533, 1987.

C. Polizzotto, Nonlocal elasticity and related variational principles, Int. J. Solids Struct, vol.38, pp.39-46, 2001.

E. Rank, Adaptive h-, p-and hp-versions for boundary integral element methods, Int. J. Numer. Methods Eng, vol.28, pp.1335-1349, 1989.

D. Reddi, V. Areej, and S. Keralavarma, Ductile failure simulations using a multi-surface coupled damageplasticity model, Int. J. Plast, 2019.

J. Rice, W. J. Drugan, and T. Sham, Elastic-plastic analysis of growing cracks, in: Fracture Mechanics, 1980.

J. Rice and D. M. Tracey, Computational fracture mechanics, Numerical and Computer Methods in Structural Mechanics, pp.585-623, 1973.

J. R. Rice, A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech, vol.35, pp.379-386, 1968.

J. Rice and G. F. Rosengren, Plane strain deformation near a crack tip in a power-law hardening material, J. Mech. Phys. Solids, vol.16, pp.1-12, 1968.

J. R. Rice and D. M. Tracey, On the ductile enlargement of voids in triaxial stress fields, J. Mech. Phys. Solids, vol.17, pp.201-217, 1969.

G. Rousselier, Finite deformation constitutive relations including ductile fracture damage, 1981.
URL : https://hal.archives-ouvertes.fr/hal-02060680

J. W. Rudnicki and J. Rice, Conditions for the localization of deformation in pressure-sensitive dilatant materials, J. Mech. Phys. Solids, vol.23, pp.371-394, 1975.

M. Samal, M. Seidenfuss, E. Roos, B. Dutta, and H. Kushwaha, Experimental and numerical investigation of ductile-to-brittle transition in a pressure vessel steel, Mater. Sci. Eng. A, vol.496, pp.25-35, 2008.

M. Samal, M. Seidenfuss, E. Roos, B. Dutta, and H. Kushwaha, Finite element formulation of a new nonlocal damage model, Finite Elem. Anal. Des, vol.44, pp.358-371, 2008.

M. K. Samal, M. Seidenfuss, and E. Roos, A new mesh-independent Rousselier's damage model: Finite element implementation and experimental verification, Int. J. Mech. Sci, vol.51, pp.619-630, 2009.

M. K. Samal, M. Seidenfuss, E. Roos, B. K. Dutta, and H. S. Kushwaha, Experimental and numerical investigation of ductile-to-brittle transition in a pressure vessel steel, Mater. Sci. Eng. A, vol.496, pp.25-35, 2008.

M. Seidenfuss, M. Samal, and E. Roos, On critical assessment of the use of local and nonlocal damage models for prediction of ductile crack growth and crack path in various loading and boundary conditions, Int. J. Solids Struct, vol.48, pp.3365-3381, 2011.

A. Seupel, G. Hütter, and M. Kuna, An efficient FE-implementation of implicit gradient-enhanced damage models to simulate ductile failure, Eng. Fract. Mech, vol.199, pp.41-60, 2018.


A. Seupel and M. Kuna, A gradient-enhanced damage model motivated by engineering approaches to ductile failure of steels, Int. J. Damage Mech, 2019.

Y. Shinohara, Y. Madi, and J. Besson, Anisotropic ductile failure of a high-strength line pipe steel, Int. J. Fract, vol.197, pp.127-145, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01295773

F. Sidoro and A. Dogui, Some issues about anisotropic elastic±plastic models at ®nite strain, Int. J. Solids Struct, vol.10, 2001.

T. Siegmund and W. Brocks, Prediction of the Work of Separation and Implications to Modeling 20, 1999.

J. Simo and C. Miehe, Associative coupled thermoplasticity at finite strains: Formulation, numerical analysis and implementation, Comput. Methods Appl. Mech. Eng, vol.98, pp.41-104, 1992.

J. Simo, R. L. Taylor, and K. Pister, Variational and projection methods for the volume constraint in finite deformation elasto-plasticity, Comput. Methods Appl. Mech. Eng, vol.51, pp.177-208, 1985.

J. Simo and F. Armero, Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes, Int. J. Numer. Methods Eng, vol.33, pp.1413-1449, 1992.

J. C. Simo and M. S. Rifai, A class of mixed assumed strain methods and the method of incompatible modes, Int. J. Numer. Methods Eng, vol.29, pp.1595-1638, 1990.

I. N. Sneddon, The distribution of stress in the neighbourhood of a crack in an elastic solid, Proc R Soc Lond A, vol.187, pp.229-260, 1946.

D. Steglich and W. Brocks, Micromechanical modelling of damage and fracture of ductile materials, Fatigue Fract. Eng. Mater. Struct, vol.21, pp.1175-1188, 1998.

D. Sun, D. Siegele, B. Voss, and W. Schmitt, Application of local damage models to the numerical analysis of ductile rupture, Fatigue Fract. Eng. Mater. Struct, vol.12, pp.201-212, 1989.

T. Sussman and K. Bathe, A finite element formulation for nonlinear incompressible elastic and inelastic analysis, Comput. Struct, vol.26, pp.357-409, 1987.

B. Tanguy and J. Besson, An extension of the Rousselier model to viscoplastic temperature dependent materials 21, 2002.

M. E. Tanné, Variational phase-field models from brittle to ductile fracture: nucleation and propagation 160, 2017.

R. L. Taylor, A mixed-enhanced formulation tetrahedral finite elements, Int. J. Numer. Methods Eng, vol.47, pp.205-227, 2000.

P. Thomason, A three-dimensional model for ductile fracture by the growth and coalescence of microvoids, Acta Metall, vol.33, pp.1087-1095, 1985.

P. Thomason, Three-dimensional models for the plastic limit-loads at incipient failure of the intervoid matrix in ductile porous solids, Acta Metall, vol.33, pp.1079-1085, 1985.

M. Torki, A. Benzerga, and J. Leblond, On void coalescence under combined tension and shear, J. Appl. Mech, vol.82, p.71005, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01667714

M. E. Torki, A unified criterion for void growth and coalescence under combined tension and shear, Int. J. Plast, 2019.

D. Turcke and G. Mcneice, Guidelines for selecting finite element grids based on an optimization study, Comput. Struct, vol.4, pp.499-519, 1974.

V. Tvergaard and J. W. Hutchinson, The relation between crack growth resistance and fracture process parameters in elastic-plastic solids, J. Mech. Phys. Solids, vol.40, pp.1377-1397, 1992.

V. Tvergaard and A. Needleman, Nonlocal effects on localization in a void-sheet, Int. J. Solids Struct, vol.34, pp.2221-2238, 1997.

V. Tvergaard and A. Needleman, Effects of nonlocal damage in porous plastic solids, Int. J. Solids Struct, vol.32, pp.1063-1077, 1995.

V. Tvergaard and A. Needleman, Analysis of the cup-cone fracture in a round tensile bar, Acta Metall, vol.32, pp.157-169, 1984.

P. Vincent, P. Suquet, Y. Monerie, and H. Moulinec, Effective flow surface of porous materials with two populations of voids under internal pressure: I. A GTN model, Int. J. Plast, vol.56, pp.45-73, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00911873

P. Vincent, P. Suquet, Y. Monerie, and H. Moulinec, Effective flow surface of porous materials with two populations of voids under internal pressure: II. Full-field simulations, Int. J. Plast, vol.56, pp.74-98, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00912637

H. M. Westergaard, Bearing pressures and cracks, 1939.

P. Wriggers, Nonlinear finite element methods, 2008.

L. Xia and C. F. Shih, Ductile crack growth-I. A numerical study using computational cells with microstructurally-based length scales, J. Mech. Phys. Solids, vol.43, pp.233-259, 1995.

L. Xue, Constitutive modeling of void shearing effect in ductile fracture of porous materials, Eng. Fract. Mech, vol.75, pp.3343-3366, 2008.

L. Xue and T. Wierzbicki, Numerical simulation of fracture mode transition in ductile plates, Int. J. Solids Struct, vol.46, pp.1423-1435, 2009.

Y. Zhang, Modélisation et simulation numérique robuste de l'endommagement ductile 161, 2016.

Y. Zhang, E. Lorentz, and J. Besson, Ductile damage modelling with locking-free regularised GTN model, Int. J. Numer. Methods Eng, vol.113, pp.1871-1903, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01758768

Z. Zhang and E. Niemi, A new failure criterion for the Gurson-Tvergaard dilational constitutive model, Int. J. Fract, vol.70, pp.321-334, 1994.

Z. Zhang and E. Niemi, Analyzing ductile fracture using dual dilational constitutive equations, Fatigue Fract. Eng. Mater. Struct, vol.17, pp.695-707, 1994.

Z. Zhang, C. Thaulow, and J. Ødeg\a-ard, A complete Gurson model approach for ductile fracture, Eng. Fract. Mech, vol.67, pp.155-168, 2000.

O. Zienkiewicz, R. Taylor, and J. Too, Reduced integration technique in general analysis of plates and shells, Int. J. Numer. Methods Eng, vol.3, pp.275-290, 1971.