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Je remercie d’abord mon directeur de thèse, Xavier D’Haultfœuille. Je lui suis très recon-
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Chapter 0

Résumé substantiel en Français

Cette thèse regroupe trois travaux d’économétrie reliés par l’application de l’apprentissage
automatique et de la statistique en grande dimension à l’évaluation de politiques publiques
et l’inférence causale.

La première partie propose une alternative paramétrique au contrôle synthétique (Abadie
and Gardeazabal, 2003; Abadie et al., 2010) dans un contexte de grande dimension du
vecteur des caractéristiques à apparier. Il prend la forme d’un estimateur reposant sur
une première étape de type Lasso, et on montre qu’il est doublement robuste, asymp-
totiquement Normal et “immunisé” contre les erreurs de première étape. On montre
qu’il permet de palier les limitations du contrôle synthétique, en particulier dans le cadre
de données micro-économiques. En particulier, l’estimateur proposé donne une solution
unique qui satisfait aux mêmes contraintes que le contrôle synthétique (non-négativité et
somme à un). Il permet également d’opérer une sélection de variable sur le même mode
que le Lasso, ce qui donne une alternative à la méthode originale du contrôle synthétique
offrant une procédure qui optimise la matrice V de pondération des variables via la norme
‖.‖V afin d’améliorer l’adéquation à la tendance pré-traitement. Finalement, on montre
que l’immunisation aboutit à une procédure de correction du biais lorsque le calage sur
une variable n’est pas parfait et que cette variable est pertinente pour prédire le résultat
sans le traitement.

La seconde partie étudie une version pénalisée du contrôle synthétique pour des données
de nature micro-économique. La pénalisation permet d’obtenir une unité synthétique
qui réalise un arbitrage entre, d’une part, reproduire fidèlement l’unité traitée durant la
période pré-traitement et, d’autre part, n’utiliser que des unités non-traitées suffisam-
ment semblables à celles-ci. Lorsque la pénalisation est suffisamment forte, l’estimateur
du contrôle synthétique pénalisé cöıncide avec l’estimateur de matching au plus proche
voisin. Nous établissons les propriétés géométriques de la solution ainsi que les pro-
priétés asymptotiques de l’estimateur. Enfin, nous proposons deux procédures de type
“validation croisée” qui permettent de choisir la pénalisation et discutons des procédures
d’inférence par permutation dans ce contexte.

Ces deux chapitres, de nature théorique, sont complétés par des simulations ainsi que
des replications d’articles empiriques. Le premier chapitre utilise des données d’un pro-

1



gramme américain d’emplois aidés ciblant les personnes éloignées du marché du travail,
et revisite également la “Proposition 99”, un programme de lutte contre le tabac mis en
place en Californie à la fin des années 1980, en tentant de quantifier son impact sur la
consommation individuelle de tabac. Le second chapitre utilise des données boursières
pour quantifier l’impact de la nomination de Tim Geithner à la tête du Trésor américain
au cœur de la crise de 2008 sur la valorisation des firmes auxquelles il était connecté,
et des données sur de participation aux élections présidentielles américaines au XXème
siècle pour quantifier l’impact d’une loi permettant de s’inscire sur les listes électorales le
jour du vote.

La dernière partie, à dominante empirique, porte sur l’application du Generic Ma-
chine Learning (Chernozhukov et al., 2018b) afin d’étudier l’hétérogénéité des effets
d’une expérience aléatoire visant à comparer la fourniture publique et privée d’aide à la
recherche d’emploi. Elle utilise les données d’une expérience française conduite par Pôle
Emploi en 2007-2008. D’un point de vue méthodologique, ce projet discute l’extension
du Generic Machine Learning à des expériences avec compliance imparfaite.

2



Chapter 1

Introduction

This introductory chapter presents the common themes that glue together the three core
parts of this PhD dissertation. Within each section, I describe the main intuitions and the
state of the art, I summarize the contribution of this thesis and outline a few perspectives
on the topic.

Section 1 introduces the post-selection inference problem and its solution in the form of
the double selection method that paved the way to the integration of Machine Learning
(ML) to the empirical researcher’s toolkit. Building on this first part, Section 2 discusses
the value-added of ML for econometricians, in particular in the context of Randomized
Controlled Trials (RCT). Finally, Section 3 discusses the synthetic control method, a
popular tool in policy evaluation, which has a close connection with the high-dimensional
literature and shares the same spirit of “letting the data speak” as ML algorithms.

1. High-Dimension, Variable Selection and Immunization

Model selection and parsimony among explanatory variables are traditional scientific
problems that have a particular echo in Econometrics. Leamer (1983) was one of the
first to raise the issue, famously quipping: “there are two things you are better off not
watching in the making: sausages and econometric estimates”, thereby questioning the
arbitrariness characterizing model choices. As high-dimensional datasets have become
increasingly available to statisticians in various fields, model selection has garnered grow-
ing attention over the past two decades. But even with a small dataset, high-dimensional
problems can occur, for example when doing series estimation of a non-parametric model.
In practice, applied researchers select variables by trial and error, guided by their intuition
and report results based on the assumption that the selected model is the true. These
results are often backed by further sensitivity analysis and robustness checks. However,
the variable selection step of empirical work is rarely fully acknowledged although it is
not innocuous.

The so-called post-selection inference problem is the stepping stone to understand the
recent developments in the Econometrics of high-dimensional models, all the way to the
integration of ML algorithms to the applied researcher’s toolkit. The intuition is simple



and carries over to more complicated cases where the first step does not necessarily involve
selecting variables, but relies on estimation of an unknown quantity using a non-standard
statistical tool such as a ML algorithm. The first section reviews the intuitions of Leeb
and Pötscher (2005). The second section illustrates the solution developed, for example,
in Belloni et al. (2014a). The third section discusses how this method is applied in the
first chapter of this thesis to propose an alternative to the synthetic control method.

1.1. The Post-Selection Inference Problem

I begin by analyzing the two-step inference method, i.e. selecting the model first, then
reporting results from that model as if it were the truth, in a small-dimensional context.
The intuition easily extends to the high-dimensional case. This section is based on the
work of Leeb and Pötscher (2005).

Assumption 1.1 (Possibly Sparse Gaussian Linear Model) Consider the indepen-
dent and identically distributed sequence of random variables (Yi, Xi)i=1,...,n such that:

Yi = Xi,1τ0 +Xi,2β0 + εi,

where εi ∼ N (0, σ2), σ2 is known, Xi = (Xi,1, Xi,2) is a vector of dimension 2, εi ⊥
⊥ Xi, and E(XiX

′
i) is non-singular. I use the following shorthand notation for the OLS

variance-covariance matrix elements:[
σ2
τ στ,β

στ,β σ2
β

]
:= σ2

[
1

n

n∑
i=1

XiX
′
i

]−1

.

The most sparse true model is coded by M0, a random variable taking value R (“re-
stricted”) if β0 = 0 and U (“unrestricted”) otherwise.

The econometrician is interested in performing inference over the parameter τ0 and won-
ders whether he should include Xi,2 in the regression. At the end, he reports the result

from model M̂ he has selected in a first step. In policy evaluation, Xi,1 is typically the

treatment of interest and Xi,2 a control variable. I denote by τ̂(U) and β̂(U) the OLS

estimators in the unrestricted model (model U) and by τ̂(R) and β̂(R) = 0 the restricted
OLS estimators (model R).

Everything in this section will be conditional on the covariates (Xi)1≤i≤n but I leave
that dependency hidden. In particular, conditional on the covariates, the unrestricted
estimator is Normally distributed:

√
n

[
β̂(U)− β0

τ̂(U)− τ0

]
∼ N

([
0
0

]
,

[
σ2
β στ,β

στ,β σ2
τ

])
.

The econometrician includes Xi,2 in the regression if its corresponding Student statistics
is large enough:

4



Assumption 1.2 (Decision Rule)

M̂ =

{
U if |

√
nβ̂(U)/σβ| > cn

R otherwise,

with cn →∞ and cn/
√
n→ 0 as n→∞.

The AIC criterion corresponds to cn =
√

2 and the BIC to cn =
√

log n. How does this
selection method performs asymptotically?

Lemma 1.1 (Model Selection Consistency) For M0 ∈ {U,R},

PM0

(
M̂ = M0

)
→ 1,

as n → ∞, where PM0 indicates the probability distribution of M̂ under the true model
M0.

All the proofs can be found in Gaillac and L’Hour (2019) or in the original paper of Leeb
and Pötscher (2005). Since the probability of selecting the true model tends to one with
the sample size, Lemma 1.1 might induce you to think that a consistent model selection
procedure allows inference to be performed “as usual”, i.e. that the model selection step
can be overlooked. However, for any given sample size n, the probability of selecting the
true model can be very small if β0 is close to zero without exactly being zero. For example,
assume that β0 = δσβcn/

√
n with |δ| < 1 then:

√
nβ0/σβ = δcn and the probability in

the proof of Lemma 1.1 is equal to 1 − Φ(cn(1 + δ)) + Φ((δ − 1)cn), and tends to zero
although the true model is U because β0 6= 0! This quick analysis tells us that the
model selection procedure is blind to small deviations from the restricted model (β0 = 0)
that are of the order of cn/

√
n. Statisticians say that in that case, the model selection

procedure is not uniformly consistent with respect to β0. For the applied researcher, it
means that the classical inference procedure, i.e. the procedure that assumes that the
selected model is the true, or that is conditional on the selected model being the true, and
uses the asymptotic normality to perform tests may require very large sample sizes to be
accurate. Furthermore, this required sample size depends on the unknown parameter β0.

More interestingly, Leeb and Pötscher (2005) analyze the distribution of the post-selection
estimator τ̃ defined by

τ̃ := τ̂(M̂) = τ̂(R)1M̂=R + τ̂(U)1M̂=U .

Bearing in mind the caveat issued in the previous paragraph, is a consistent model se-
lection procedure sufficient to waive concerns over the post-selection approach? Indeed,
using Lemma 1.1, it is tempting to think that, τ̃ will be asymptotically distributed as a
Gaussian and that standard asymptotic inference can be used to approximate the finite-
sample behavior of the estimator. However, let us show that its finite-sample distribution
can be very different from a standard Gaussian distribution.
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Lemma 1.2 (Density of the Post-Selection estimator, from Leeb, 2006) The finite-
sample (conditional on (Xi)i=1,...,n) density of

√
n(τ̃ − τ0) is given by:

f√n(τ̃−τ0)(x) = ∆

(√
n
β0

σβ
, cn

)
1

στ
√

1− ρ2
ϕ

(
x

στ
√

1− ρ2
+

ρ√
1− ρ2

√
nβ0

σβ

)

+

[
1−∆

(√
nβ0/σβ + ρx/στ√

1− ρ2
,

cn√
1− ρ2

)]
1

στ
ϕ

(
x

στ

)
,

where ρ = στ,β/στσβ, ∆(a, b) := Φ(a+ b)−Φ(a− b) and ϕ and Φ are the density and cdf
of N (0, 1), respectively.

Figure 1.1: Finite-sample density of
√
n(τ̃ − τ0), ρ = .4

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

.5

.3

.2

.1

Note: Density of the post-selection estimator τ̃ for different values of β0/σβ , see legend. Other parameters
are: cn =

√
log n, n = 100, στ = 1 and ρ = .4. See Lemma 1.2 for the mathematical formula.

Notice that the bias corresponds to the usual omitted-variable bias since

−β0ρστ/σβ
p−→ β0Cov(Xi,1, Xi,2)/V(Xi,1).

The fundamental problem is the omitted variable bias that the post-selection estimator
cannot overcome unless β0 = 0 or ρ = 0. Indeed, when ρ = 0,

√
n(τ̃ − τ0) ∼ N (0, σ2

τ );
while when β0 = 0,

√
n(τ̃ − τ0) ∼ N (0, σ2

τ/(1− ρ2)) (approximately), because ∆(0, cn) ≥
1−exp(−c2

n/2) - the probability of selecting the restricted model - is large. Figures 1.1 and
1.2 plot the finite-sample density of the post-selection estimator for several values of β0/σβ
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Figure 1.2: Finite-sample density of
√
n(τ̃ − τ0), ρ = .7
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4
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5
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.1

Note: See Figure 1.1. ρ = .7.

in the cases ρ = .4 and ρ = .7, respectively. Figure 1.1 shows a mild albeit significant
distortion from a standard Gaussian distribution. The post-selection estimator clearly
exhibits a bias. As the correlation between the two covariates intensifies, the density of
the post-selection estimator becomes highly non-Gaussian, even exhibiting two modes.
Following this analysis, it is clear that inference based on standard Gaussian quantiles
will in general give a picture very different from true distribution depicted in Figure 1.2.

1.2. State of the Art

Now, I suppose a high-dimensional set of control variable: in the model of the previous
section, I assume that p := dim(Xi,2) is large, possibly larger than the sample size n,
i.e. β0 is a high-dimensional nuisance parameter. Because high-dimensional nuisance
parameters require the use of non-standard tools, they can disrupt the standard inference
framework.

The message conveyed in the previous section was one of caution regarding the use of
selection devices such as the Lasso in empirical Economics: inference, without taking
into account the variable selection step, can be highly misleading. Even without explicit
reference to variable selection, estimation of a high-dimensional nuisance parameter using
ML algorithms will in general not lead to

√
n-consistent estimator and entails what is

called a regularization bias in the second step (Belloni et al., 2014b).

Now, assume that β0 is estimated using some ML algorithm, β̂, unlikely to be
√
n-
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consistent. Notice that the Normal equation implicitly used to define τ0 in Assumption
1.1 is

E
[(
Yi −Xi,1τ0 −X ′i,2β0

)
Xi,1

]
= 0, (1.1)

and the corresponding estimator takes the form

τ̂ =

∑n
i=1

(
Yi −X ′i,2β̂

)
Xi,1∑n

i=1 X
2
i,1

=

∑n
i=1

(
Yi −X ′i,2β0

)
Xi,1∑n

i=1 X
2
i,1

+
(
β0 − β̂

)′∑n
i=1Xi,2Xi,1∑n
i=1X

2
i,1

= τ0 +

∑n
i=1 εiXi,1∑n
i=1X

2
i,1

+
(
β0 − β̂

)′∑n
i=1Xi,2Xi,1∑n
i=1X

2
i,1

,

for some ML estimator β̂. The regularization bias comes from the fact that τ̂ is not first-
order insensitive to errors in the estimation of β0, i.e. the quantity

∑n
i=1Xi,2Xi,1/

∑n
i=1 X

2
i,1

will, in general, converge in probably to a non-zero constant. This fact, combined with

the fact that, in general, if β̂ comes from a ML algorithm, we don’t have
√
n
(
β0 − β̂

)
=

OP (1) will mean that in general
√
n (τ̂ − τ0) will not be asymptotically Gaussian with

mean zero. Of course, when β0 is of small-dimension, this is not a problem because it
suffices to replace β̂ by an OLS estimator. But when p is very large, this may not be
possible or even desirable.

The trick is to replace the moment equation (1.1) by another one, E[ψ(Yi, Xi, τ0, η0)] = 0,
for some moment ψ and nuisance parameter η0 such that ∂ηE[ψ(Yi, Xi, τ0, η0)] = 0. This
last condition, which is an orthogonality condition, ensures that the estimating moment
is first-order insensitive to deviations from the true value of the nuisance parameter. It
helps “immunizing” the estimator of τ0 from the first-step estimation using ML tools. In
my example, ψ takes the form

E[ψ(Yi, Xi, τ, η)] = E

[ (
Yi −Xi,1τ −X ′i,2β

)︸ ︷︷ ︸
Residual from

Outcome Regression

(
Xi,1 −X ′i,2δ

)︸ ︷︷ ︸
Residual from

Regression of X1 on X2

]
,

with η = (β, δ), and δ0 such that E
[
Xi,2

(
Xi,1 −X ′i,2δ0

)]
= 0. It is easy to check that

∂βE[ψ(Yi, Xi, τ0, η0)] = ∂δE[ψ(Yi, Xi, τ0, η0)] = 0. Notice that immunization also requires
the estimation of another nuisance parameter, δ0, which is of the same dimension as
β0. An estimation of τ0 based on the previous equation will, under mild conditions, be
asymptotically Gaussian – see Theorem 1 in Belloni et al. (2014b).

The previous equation has a Frish-Waugh-Lovell flavour. This idea has been developed
and extended in many papers by Victor Chernozhukov and his co-authors, for example
in Chernozhukov et al. (2015); Chernozhukov et al. (2015); Belloni et al. (2017); Cher-
nozhukov et al. (2017, 2018a), and appears under the name of double selection when the
problem comes from the use of the Lasso in a linear regression, immunized or Neyman-
orthogonal estimators in a general framework or double machine learning when it is
specifically applied to ML estimators. Typically, when using the Lasso, the procedure
takes the following form:
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1. Regress X1 on X2 using a Lasso, obtain δ̂L. Define ŜD :=
{
j = 1, ..., p, δ̂Lj 6= 0

}
the

set of selected variables,

2. Regress Y on X2 using a Lasso, obtain β̂L. Define ŜY :=
{
j = 1, ..., p, β̂Lj 6= 0

}
,

3. Regress Y on X1 and the ŝ = |ŜD ∪ ŜY | elements in X2 which correspond to the
indices j ∈ ŜD ∪ ŜY , using OLS.

And the resulting estimator in the last step will be asymptotically Gaussian. Although
the post-selection inference problem is now well-understood and the tools to resolve it
have been well developed, I believe that recalling the intuitions are important because
they constitute a key step for the integration of ML methods in the empirical researcher’s
toolkit.

1.3. Contribution

In Chapter 2 of this thesis, we propose an alternative to the synthetic control method by
suggesting a parametric form for the weights. The synthetic control method developed
by Abadie et al. (2010) is a an econometric tool to evaluate causal effects in presence of a
few treated units – see Section 3 below for a detailed presentation. While initially aimed
at evaluating the impact of large-scale macroeconomic changes with very few available
control units, it has increasingly been used in place of more well-known microeconometric
tools in a broad range of applications, but its properties in this context are not completely
known. In particular, when there are many untreated units, the minimization program
defining the synthetic control weights becomes high-dimensional and an infinite number
of solutions may exist.

Our parametric alternative is developed both in the usual asymptotic framework and in
the high-dimensional one. The use of a parametric form for the weights allows to change
the dimensionality of the problem from the number of untreated units to the number
of covariates to balance between the treated and the control group, thereby building on
the more standard high-dimensional statistics literature. In the low-dimensional context,
i.e. when the number of covariates is fixed and much smaller than the sample size, it
takes the form of a standard two-step Generalized Method of Moment (GMM). In a high-
dimensional context, i.e. when the number of covariates to account for in the choice of
the weights is larger or proportional to the sample size, the weights are determined by a
`1-minimization program in the same spirit as the Lasso. As a consequence, the resulting
treatment effect estimator also suffers from the post-selection inference problem described
above and needs to be “immunized”. We do so drawing inspiration from the methodology
developed by Chernozhukov et al. (2015). The proposed estimator is doubly robust,
consistent and asymptotically normal uniformly over a large class of data-generating
processes. We study its performance using Monte Carlo simulations and illustrate its
application on the California tobacco control program originally studied in Abadie et al.
(2010).

When I started working on this chapter, the use of the Lasso and its integration in a two-
step framework where the second-step estimator is proven to be asymptotically Gaussian
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was not as well-developed as they are now. Although some of the main contributions by
Victor Chernozhukov and co-authors had already been published, the general framework
as it appears, for example, in Chernozhukov et al. (2018a), was not available. From
the perspective of the econometric theory, our work can be seen an application of this
methodology before it was systematized.

2. Machine Learning in Empirical Economics

In this section, we adopt the potential outcome framework of Rubin (1974). Let D code
for the treatment, so D = 1 for a treated individual and D = 0 otherwise. Let Y1 and
Y0 be random variables representing potential outcomes under treatment and under no
treatment, respectively. The effect of the treatment is Y1 − Y0. Let X be a random vector
of observable individual characteristics.

2.1. State of the Art

Taking its roots in the post-selection inference problem, the integration of Machine Learn-
ing tools to the empirical economist’s toolkit started with the Lasso. Likely spurred by
the good theoretical understanding of this method and the sparsity of the resulting esti-
mator, it has been studied in a number of settings and models relevant for practitioners,
be it policy evaluation (Belloni et al., 2014b), instrumental variables (Belloni et al., 2012),
panel data (Belloni et al., 2016), demand estimation (Chernozhukov et al., 2017a), dis-
criminations (Bach et al., 2018), among others.

Many contributions in this literature were quick to highlight the potential benefits of these
modern statistical tools for policy evaluation and causal inference, while acknowledging
the difficulties posed by adapting them to achieve goals that are standard in empirical
Economics and which are often broader than prediction (e.g. Athey, 2015; Athey and Im-
bens, 2016). At first, the perceived value-added of machine learning methods relied mostly
in variable selection and high-quality estimation of high-dimensional nuisance parameters
under an unconfoundedness assumption, e.g. Belloni et al. (2014b,a, 2017); Farrell (2015).
Notice that while these methods had been applied in several empirical studies, they were
not suited for inference until a few years ago. Recent contributions went beyond the
Lasso to integrate other non-standard statistical tools of sufficiently high-quality to the
empiricist’s inference toolbox, such as random trees and forests, boosting, support vector
machines, kernel methods, or neural networks (e.g. Chernozhukov et al., 2018a). Two
ingredients played a key role in this breakthrough. First, the use of orthogonal scores
ensures that the resulting treatment effect estimator is first-order insensitive to deviations
from the true value of nuisance parameters (Chernozhukov et al., 2015; Chernozhukov
et al., 2015; Chernozhukov et al., 2018). In other words, orthogonal scores mitigate the
impact of replacing unknown nuisance parameters by machine learning estimators that
are often not

√
n-consistent. Most of the time, such a strategy requires the estimation of

more nuisance parameters, yielding the name of double selection (Belloni et al., 2014a) or
double machine learning (Chernozhukov et al., 2017; Chernozhukov et al., 2018a). Sec-
ond, sample-splitting appeared as a way to limit the proclivity of these tools to over-fit
the data. Indeed, several papers (e.g. Athey and Wager, 2018) advocate for splitting the
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data between an auxiliary sample where nuisance parameters are estimated and a main
sample where the parameter of interest is estimated using out-of-sample predictions based
on the predictors constructed on the auxiliary sample. Chernozhukov et al. (2017, 2018a)
suggest that the role of the two samples be then switched and the estimators combined
in order to prevent loss of efficiency, yielding the name cross-fitting. Finally, building on
these elements, a recent contribution by Chernozhukov et al. (2018b) provides a frame-
work to performance inference over some features of heterogeneous individual treatment
effects while assuming very little about the performance of the chosen ML algorithm,
hence the name of generic machine learning.

RCTs were, by design, less likely to benefit from the use of more complex economet-
ric tools. Indeed, independence between the treatment variable and confounding factors
immunizes RCT from a selection bias, granting them the status of ‘gold standard’ of
scientific evidence among regularly studied designs (e.g. Abadie and Cattaneo, 2018).
By leveraging the prediction performance of machine learning tools, inference regarding
treatment effect in RCT can, however, benefit from an increase in precision (lower stan-
dard error). Furthermore, they offer a way of searching for treatment effect heterogeneity
in the absence of a pre-analysis plan because they provide a flexible way to estimate
the Conditional Average Treatment Effect (CATE), E[Y1 − Y0|X], that is, the expected
treatment effect conditional on some individual characteristics. For example, by their
own natures, random trees and random forests partition the data to predict some out-
come of interest (they find thresholds and interact variables in a data-driven fashion,
Mullainathan and Spiess, 2017) and can be adapted for causal inference purposes (see
the causal trees of Athey and Wager, 2018). Contrary to pre-analysis plans, they don’t
require to specify the dimensions along which the economist will search for heterogeneity
beforehand while still not allowing for p-hacking if done correctly (Chernozhukov et al.,
2018b). Indeed, pre-analysis plans can be costly because they are inflexible and end up
wasting a lot of data points (Olken, 2015). In other words, machine learning ‘lets the
data speak’ and allows to discover dimensions along which the treatment effect differs
even if they previously were not suspected to matter.

So far, applications of these modern statistical methods to RCT have been scarce. Davis
and Heller (2017b) and Davis and Heller (2017a) use causal forests to study the hetero-
geneity in effectiveness of a youth summer job program in reducing the probability of
committing crimes and increasing the likelihood of attending school or being employed.
Davis and Heller (2017a) successfully identify a sub-group for which the program in-
creases employment while the effect of the program for employment is not statistically
significant on average. This sub-group appears to differ from the youth usually targeted
by these programs, thereby questioning the state of knowledge in this field.

2.2. Contribution

Chapter 4 of this thesis applies the Generic Machine Learning (Generic ML) framework
developed by Chernozhukov et al. (2018b) to a job-training experiment with imperfect
compliance in order to analyze the selection process of the applicants by the case-workers.

Put succinctly, the Generic ML framework allows to study heterogeneity in the effect of
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the treatment as long as the econometrician can produce two quantities: a ML proxy
of the treatment effect, i.e. a prediction of the individual treatment effect made using a
machine learning algorithm, and an unbiased signal of the individual treatment effect, i.e.
a random variable Ỹ such that E[Ỹ |X] = E[Y1 − Y0|X]. They develop a test that allows
to rule out the absence of heterogeneity and estimate some features of the distribution
of the CATE. Contrary to standard RCTs with perfect compliance, a unbiased signal for
the LATE does not exist and complicates the straightforward adaption of this convenient
framework. We show that some features of the conditional LATE still can be recovered
and propose other ways to analyze the selection of job-seekers by the case-workers.

We revisit a large-scale randomized experiment conducted in France in 2007-2008 that
was created to evaluate the impact of an intensive job-search counseling program on
employment outcomes. This experiment was specifically designed to compare a public
and a private provisions of job counselling. Originally, Behaghel et al. (2014) found
the public program to be twice as effective as the private program, a finding that they
partially blame on the payment structure to which the private providers were subject.
They suspect that it entailed two types of side effects: if the fixed part of the payment
is large, private providers are likely to maximize enrollment intro the program and offer
very little job counselling to keep the costs down (parking); if the conditional payment
is relatively large, they are likely to enroll the candidates with the best labor market
prospects and again, provide them with little job counselling (cream-skimming). On the
other hand, the public arm of the program provided by the French Public Employment
Service (PES), was not subject to financial incentives.

Using the Generic ML framework, we find evidence of heterogeneity in the baseline prob-
ability of finding a job and the treatment effect across individuals, in both the public and
the private program. Preliminary results also show differential rates of enrollment across
groups defined in terms of baseline outcome (outcome without the treatment) but not
across groups defined in terms of individual treatment effect. For both the public and the
private program, it suggests that case-workers targeted individuals who had lower labor
market prospects.

2.3. Perspectives

While the integration of machine learning tools to the empiricist’s toolbox has been
studied fairly extensively and requires the application of procedures such as sample-
splitting and the use of orthogonal scores, much remains to be done regarding the selection
of the underlying ML algorithm. More specifically, two questions arise in this context: (i)
is there any prior practical knowledge that can guide the econometrician in the choice of
the ML algorithm? (ii) is there a data-driven procedure to select the best ML algorithm
when the goal is inference regarding a particular parameter and not prediction?

Regarding the first question, the beginning of an answer can be found by looking at
theoretical results for a particular ML estimator when they exist. For example, it is
known that the Lasso requires sparsity in the true value of the parameter or at least
approximate sparsity (Belloni et al., 2012). As a consequence, if the empirical economist
suspects that only a few characteristics matter, using a Lasso makes sense. On the other
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hand, if many characteristics are suspected to contribute little (the parameter is dense), a
Ridge regression would be better. Similarly, when the regression function can be assumed
to be piece-wise constant, a random tree seems fitting (Mullainathan and Spiess, 2017).
However, on the one hand, most of these results pertain to a literature that can be quite
remote from applied researchers and the clues found there may not be so practical; on
the other hand, many ML algorithms, when they are applied in practice, differ quite
substantially from their vanilla, theoretical counterpart – when they have been studied
at all! Recently, several efforts have been made to provide guidance for application of
these modern tools. Abadie and Kasy (2018) study different choices of regularization in
a regression-type setting and provide guidance for the applied researcher as to when a
particular type of regularization is likely to perform better than another. Knaus et al.
(2018) study the performance of different machine learning estimators through Monte
Carlo simulations when the goal is detection of heterogeneous treatment effects. However,
theoretical contributions to this questions are likely to be of limited use while the answer
may depend quite heavily on the application. I believe that practical applications and
accumulated experience is key for further diffusion of these modern statistical tools.

Regarding the second question, notice that many empirical Economics questions are, in
fact, prediction questions. For example, policy evaluation seeks to answer the question
“what value would have taken the outcome had the policy not been implemented?”, i.e.
building a counterfactual can be viewed as a prediction task. The difficulty relies in the
absence of ground truth, that is, of the observation of the outcome under no treatment
for the treated units. Standard causal inference designs, such as unconfoundedness, allow
for straightforward application of ML principles to form a counterfactual. Indeed, the as-
sumption E[Y0|X,D = 1] = E[Y0|X,D = 0] – once observed characteristics are controlled
for, assignment to either treatment group does not help predicting the outcome without
the treatment – allows to estimate the regression function over the untreated sample and
apply it to the treated sample. All the usual ML arsenal such as cross-validation, etc. can
be deployed on the untreated sample. Nevertheless, this adaptation of off-the-shelf ML
tools is only partially satisfying. For instance, when looking for heterogeneous treatment
effects, the target is the CATE, rather than each single regression function and gains are
likely to be made by focusing on the right object, the CATE, see e.g. Künzel et al. (2019).
Within that context of detecting heterogeneous effects, Chernozhukov et al. (2018b) de-
velop measures of performance according to which pre-defined ML algorithms can be
ranked when the goal is detecting heterogeneity. However, the realm of applications is
limited by the requirement that the econometrician can construct an unbiased signal of
the CATE directly from the data, a quantity that does not exists when the target is the
conditional LATE. Furthermore, a model averaging perspective on this question maybe
fruitful but has not been investigated, to the best of my knowledge.

Lastly, and partly disconnected from econometric theory, the emergence of ML and Ar-
tificial Intelligence (AI) opens the door to study machine-based decision making in Eco-
nomics, e.g. Kleinberg et al. (2017, 2019).
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3. Synthetic Control, High-Dimension and Selection of the Control Group

3.1. State of the Art

Since the original contributions of Abadie and Gardeazabal (2003); Abadie et al. (2010,
2015), synthetic control methods have often been applied to estimate the treatment effects
of large-scale interventions (see, e.g., Kleven et al., 2013; Bohn et al., 2014a; Hackmann
et al., 2015; Cunningham and Shah, 2018). Suppose we observe data for a unit affected
by the treatment or intervention of interest, as well as data on a donor pool, that is, a
set of untreated units that are available to approximate the outcome that would have
been observed for the treated unit in the absence of the intervention. The idea behind
synthetic controls is to match the unit exposed to the intervention of interest to a weighted
average of the units in the donor pool that most closely resembles the characteristics of
the treated unit before the intervention. Once a suitable synthetic control is selected,
differences in outcomes between the treated unit and the synthetic control are taken as
estimates of the effect of the treatment on the unit exposed to the intervention of interest.
The simplicity of the idea behind synthetic control is probably one of the reasons why it
has been considered “the most important innovation in the policy evaluation literature in
the last fifteen years” by Athey and Imbens (2017) and has quickly garnered popularity
in empirical research – see the practical guide by Abadie (2019).

Formally, let Xtreat be the p× 1 vector of pre-intervention characteristics for the treated
unit. Let X1, . . . , Xn0 be the same characteristics measured for the donor pool. In most
applications, the p pre-intervention characteristics will contain pre-treatment outcomes
(in which case p = T0, the number of pre-treatment dates) but one might want to add
other predictors of the outcome observed during the pre-treatment period. For a vector of
dimension p, Z, and some real symmetric positive-definite matrix V of dimension p×p, let
‖Z‖V = Z ′V Z. The synthetic control solution W ∗ = (W ∗

1 , . . . ,W
∗
n0

) solves the program:

min
W∈Rn0

∥∥∥∥∥Xtreat −
n0∑
j=1

WjXj

∥∥∥∥∥
2

V

(SYNTH)

s.t. W1 ≥ 0, . . . ,Wn0 ≥ 0, (NON-NEGATIVITY)
n0∑
j=1

Wj = 1. (ADDING-UP)

The resulting synthetic control estimator for the post-treatment dates t = T0 + 1, . . . , T
is the difference between the outcome for the treated and a convex combination of the
outcomes of the untreated

τ̂t = Ytreat,t −
n0∑
j=1

W ∗
j Y1,t.

In recent years, many theoretical contributions came from studying synthetic controls
in relation with panel data methods and factor models, notably the interactive fixed
effect model of Bai (2009), e.g. Gobillon and Magnac (2016); Xu (2017). Several other
contributions studied the bias of the synthetic control estimator when the pre-treatment
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fit is imperfect (e.g. Fermand and Pinto, 2019) and proposed bias-corrected versions (e.g.
Ben-Michael et al., 2019, Arkhangelsky et al., 2018). Inference for synthetic controls is
also a prolific area of research. Indeed, the method is often applied in the context of long
panel data where the standard inference procedure based on asymptotic theory may not
provide a credible approximation of the true distribution of the estimator. For example,
in Abadie et al. (2010), T = 40, n0 = 38 and only one treated unit; in Acemoglu et al.
(2016), T ≈ 300, n0 = 513 and a dozen treated units. Abadie et al. (2010) proposed
using a type of cross sectional permutation-based inference closely related to Fisher exact
tests (Imbens and Rubin, 2015, Chapter 5) where the treatment is re-assigned at random
within units and the test statistics recomputed under that new assignment. Several
contributions studied that procedure and the choice of tests statistics (e.g. Firpo and
Possebom, 2018), while others adapted the so-called “conformal inference” framework
where residuals are computed under the null hypothesis and permuted across the time
dimension (Chernozhukov et al., 2017b).

While the connection with the high-dimensional/ML literature is not obvious at first
glance, the synthetic control method illustrates well the recent developments in Econo-
metrics, among which the integration of machine learning discussed previously is a trend.
First of all, synthetic controls are especially powerful in a context where there is no
common trend between the treatment and the control groups during the pre-treatment
period. As such, the synthetic control method is a way to select a control group that
matches the characteristics of the treated. In this context, the dimensionality of the prob-
lem is not related to p, the number of characteristics to be matched, but to n0 the size
of the donor pool. As a consequence, most of the time, synthetic controls require solving
a high-dimensional problem, involving its specific set of difficulties. Furthermore, the
synthetic control method, because it imposes little structure on the problem and offers a
way to systematize the choice of the control group, shares the same “spirit” as machine
learning. Several other contributions have also highlighted the connection between syn-
thetic controls and matrix completion methods, e.g. Athey et al. (2017); Athey et al.
(2019), introducing the possibility to use low-rank matrix factorization as a tool in this
context. No wonder then, that machine learning journals publish research on synthetic
control, e.g. Amjad et al. (2018).

3.2. Contribution

This thesis contains two chapters contributing to the synthetic control literature.

Chapter 2 solves the high-dimensionality question in synthetic controls by putting a
parametric structure on the weights, thereby providing an alternative to the synthetic
control method and connecting it to more standard econometric tools. The original
synthetic control method has some limitations, in particular when applied to micro data,
for which it was not initially intended. In such cases, the number of untreated units n0 is
typically larger than the dimension p of variables used to construct the synthetic units.
Then, as soon as the treated unit falls into the convex hull defined by the untreated units,
the synthetic control solution is not uniquely defined (see Chapter 3). Second, and still
related to the fact that the method was not developed for micro data, there is yet, to
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the best of our knowledge, no asymptotic theory available for synthetic control. This
means in particular, that inference cannot be conducted in a standard way. A third issue
is related to variable selection. The standard synthetic control method, as advocated in
Abadie et al. (2010), not only minimizes the norm ‖.‖V between the characteristics of
the treated and those of its synthetic unit under constraints, but also optimizes over the
weighting matrix V so as to obtain the best possible pre-treatment fit. This approach has
been criticized for being unstable and yielding unreproducible results, see in particular
Klößner et al. (2018). The proposed estimator addresses these issues.

Chapter 3 takes another perspective on the synthetic control method by viewing it as a
type of matching estimator where the n0 weights are assigned to the untreated units based
on a program that maximizes the pre-treatment characteristics. The requirement that
the weights are non-negative and sum to one provide some regularization but typically
not enough to obtain a unique solution. In general, if the treated falls into the convex hull
defined by the donor pool, the solution is not unique. In that case, the econometrician
may turn the curse of dimensionality to his advantage by adding more variables to be
matched on. However, this is neither always possible, nor desirable. To solve this problem,
we introduce a penalization parameter that trades off pairwise matching discrepancies
with respect to the characteristics of each unit in the synthetic control against matching
discrepancies with respect to the characteristics of the synthetic control unit as a whole.
This type of penalization is aimed to reduce interpolation biases by prioritizing inclusion
in the synthetic control of units that are close to the treated in the space of matching
variables. Moreover, we show that as long as the penalization parameter is positive,
the generalized synthetic control estimator is unique and sparse. If the value of the
penalization parameter is close to zero, our procedure selects the synthetic control that
minimizes the sum of pairwise matching discrepancies (among the synthetic controls that
best reproduce the characteristics of the treated units). If the value of the penalization
parameter is large, our estimator coincides with the pair-matching estimator. We study
both the geometric properties of the penalized synthetic control solution and the large-
sample properties of the resulting estimator, and propose data driven choices of the
penalization parameter. We also propose a bias-corrected version of the synthetic control
estimator. We complete this chapter by Monte Carlo simulations and two empirical
studies.

3.3. Perspectives

The use of the synthetic control method among empirical researchers is likely to keep
growing and along with it, the development of more data-driven methods to choose the
comparison group in a transparent manner.

A few particular aspects of the original method remained to be explored in a theoretical
fashion. For example, the original paper by Abadie et al. (2010) replaced (SYNTH) by
the objective:

min
W∈Rn0

p∑
k=1

vk

(
Xtreat,k −

n0∑
j=1

WjXj,k

)2

,
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where the positive weights v1, . . . ,vp reflect the importance given to each predictor of
the outcome in the minimization problem. The authors also proposed a data-driven way
of choosing these weights so as to minimize the discrepancy between the synthetic unit
and the treated unit in the outcome during the pre-treatment period. However, Klößner
et al. (2018) show that the solution found is not uniquely defined which can be a problem
for robustness and reproducibility of the results. When the choice of weights v1, . . . ,vp

does and does not matter and how to regularize this kind of cross-validation procedure
is unknown at the moment.
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Chapter 2

A Parametric Alternative to the
Synthetic Control Method with
Many Covariates

Joint work with Marianne Bléhaut, Xavier D’Haultfœuille and Alexandre Tsybakov.

Summary

The synthetic control method developed by Abadie et al. (2010) is a an econo-
metric tool to evaluate causal effects when a few units are treated. While
initially aimed at evaluating the effect of large-scale macroeconomic changes
with very few available control units, it has increasingly been used in place of
more well-known microeconometric tools in a broad range of applications, but
its properties in this context are unknown. This paper proposes a parametric
generalization of the synthetic control, which is developed both in the usual
asymptotic framework and in the high-dimensional one. The proposed esti-
mator is doubly robust, consistent and asymptotically normal uniformly over
a large class of data-generating processes. It is also immunized against first-
step selection mistakes. We illustrate these properties using Monte Carlo sim-
ulations and applications to both standard and potentially high-dimensional
settings, and offer a comparison with the synthetic control method.



1. Introduction

The original synthetic control method developed by Abadie and Gardeazabal (2003);
Abadie et al. (2010, 2015) is an econometric tool to quantify the effects of a policy change
that affects one or very few aggregate units, using aggregate-level data. The idea is to
construct a counterfactual treated unit using a convex combination of non-treated units,
the “synthetic control unit”, that closely recreates the characteristics of the treated. The
weight given to each control unit are computed by minimizing the discrepancy between
the treated and the synthetic unit in the mean of predictors of the outcome of interest.
The synthetic control method has been used to evaluate causal impacts in a wide range
of applications such as terrorism, civil wars and social unrest (Acemoglu et al., 2016),
political and monetary unions (Abadie et al., 2015, Wassmann, 2015), minimum wage
(Dube and Zipperer, 2015, Addison et al., 2014), health (Bilgel and Galle, 2015), fiscal
policies (Dietrichson and Elleg̊ard, 2015), geographical and regional policies (Gobillon and
Magnac, 2016), immigration policy (Bohn et al., 2014b), international trade (Nannicini
and Billmeier, 2011) and many more. While initially aimed at evaluating the effect of
large-scale macroeconomic changes with very few available units of comparison, most of
the time these units being states or regions, the synthetic control method has increasingly
been used in place of more well-known microeconometric tools. Contrasting with these
standard approaches, the theory behind the synthetic control estimator has not been fully
built yet, especially when the number of control units tends to infinity.

This paper proposes an alternative to the synthetic method by using a parametric form
for the weight given to each control unit. In the small-dimensional case where the number
of observations is much larger than the number of covariates, our approach amounts to
a two-step GMM estimator, where the parameters governing the synthetic weights are
computed in a first step so that the reweighted control group matches some features of the
treated. A key result of the paper is the double robustness of the estimator, as defined by
Bang and Robins (2005). Under that property, misspecifications in the synthetic control
weights do not prevent valid inference if the outcome regression function is linear for the
control group. This approach is also extended to the high-dimensional case where the
number of covariates is proportional or larger than the number of observations and to
cases where variable selection is performed. This extension makes the proposed estimator
suitable for comparative case studies and macroeconomic applications. Here, the double
robustness property helps constructing an estimator which is immunized against first-
step selection mistakes in the sense defined by Chernozhukov et al. (2015); Chernozhukov
et al. (2018a). In both cases, it is consistent and asymptotically normal uniformly over
a large class data-generating processes. Consequently, we develop inference based on
asymptotic approximation, linking the synthetic control method with more standard
microeconometric tools.

The present paper builds mainly along two lines of the treatment effect literature. The
first one is the literature related to propensity score weighting and covariate balancing
propensity scores. Several recent efforts have been made to include balance between co-
variates as an explicit objective for estimation with or without relation to the propensity
score (e.g. Hainmueller (2012); Graham et al. (2012)). Recently, Imai and Ratkovic
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(2014) integrated propensity score estimation and covariate balancing in the same frame-
work. Their covariate balancing propensity score method is estimated with GMM and
yields more robust estimates than standard propensity score-related methods. Indeed,
they show that this method is less impacted by potential misspecifications and retains
the theoretical properties of GMM estimators. Our Theorem 2.1 gives a theoretical basis
to support these empirical findings. It is to be noted that the covariate balancing idea is
related to the calibration on margins method used in survey sampling, see for example
Deville et al. (1993).

It also partakes in the econometric literature that addresses variable selection, and more
generally the use of machine learning tools, when estimating a treatment effect, especially
but not exclusively in a high-dimensional framework. The lack of uniformity for inference
after a selection step has been raised in a series of papers by Leeb and Pötscher (2005,
2008a,b), echoing earlier papers by Leamer (1983) who put into question the credibility
of many empirical policy evaluation results. One recent innovative solution proposed to
circumvent this post-selection conundrum is the use of double-selection procedures Belloni
and Chernozhukov (2013); Farrell (2015); Chernozhukov et al. (2015); Chernozhukov et al.
(2018a). For example, Belloni et al. (2014a,b) highlight the dangers of selecting controls
exclusively in their relation to the outcome and propose a three-step procedure that helps
selecting more controls and guards against omitted variable biases much more than a
simple “post-single-selection” estimator, as it is usually done by selecting covariates based
on either their relation with the outcome or with the treatment variable, but rarely both.
Farrell (2015) extends this approach by allowing for heterogeneous treatment effects,
proposing an estimator that is robust to either model selection mistakes in propensity
scores or in outcome regression. In addition, he deals explicitly with a discrete treatment
that is a more common setting in the policy evaluation literature. Chernozhukov et al.
(2015, 2018a) have theorized this approach by showing how using moments that are first-
order-insensitive to the selection step help immunizing the inference against selection
mistakes, or more generally against estimators that are not

√
n-consistent. A different

path to deal with the problem of propensity score specification has been followed by
Kitagawa and Muris (2016) using the Focused Information Criterion (FIC) of Claeskens
and Hjort (2003), but it does not explicitly accommodate for a high-dimensional nuisance
parameter and assumes that the researcher knows the true model.

The paper is organized as follows. Section 2 introduces our estimator and states its
properties in a standard low-dimensional setting. Section 3 extends the previous section
to the high-dimensional case and studies its asymptotic properties. Section 4 illustrates
the good inference properties of the estimator in a Monte Carlo experiment. Section 5
revisits LaLonde (1986)’s dataset to compare our procedure with other high-dimensional
econometric tools and the effect of the large-scale tobacco control program of Abadie
et al. (2010) for a comparison with synthetic control. The appendix gathers the proofs.
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2. A Parametric Alternative to Synthetic Control

2.1. Covariate Balancing Weights and Double Robustness

We are interested in the effect of a binary treatment, coded by D = 1 for the treated
and D = 0 for the non-treated. We let Y0 and Y1 denote the potential outcome un-
der no treatment and under the treatment, respectively. The observed outcome is then
Y = DY1 + (1 − D)Y0. We also observe a random vector X ∈ Rp of pre-treatment
characteristics. The quantity of interest is the Average Treatment Effect on the Treated
(ATET) defined a:

θ0 = E[Y1 − Y0|D = 1].

Since no individual is observed in both treatment states, identification of the counterfac-
tual E[Y0|D = 1] is achieved through the following two ubiquitous conditions.

Assumption 2.1 (Nested Support) P[D = 1|X] < 1 almost surely and π := P[D =
1] ∈ (0, 1).

Assumption 2.2 (Mean Independence) E[Y0|X,D = 1] = E[Y0|X,D = 0].

Assumption 2.1, a version of the usual common support condition, requires that there
exist control units for any possible value of the covariates in the population. Since the
ATET is the parameter of interest, we are never reconstructing a counterfactual for control
units so P[D = 1|X] > 0 is not required. Assumption 2.2 states that conditional on a
set of observed confounding factors, the expected potential outcome under no treatment
is the same for treated and control individuals. This assumption is a weaker form of the
classical conditional independence assumption : (Y0, Y1) ⊥⊥ D|X.

As in most of the time in policy evaluation settings, the counterfactual is identified and
estimated as a weighted average of non-treated unit outcomes:

θ0 = E[Y1|D = 1]− E[WY0|D = 0], (2.1)

where W is a random variable. Popular choices for the weights are the following:

1. Linear regression: W = E[DX ′]E[(1−D)XX ′]−1X, also referred to as the Oaxaca-
Blinder estimator Kline (2011),

2. Propensity score: W = P [D = 1|X]/(1− P [D = 1|X]),

3. Matching: see Smith and Todd (2005) for more details,

4. Synthetic controls: see Abadie et al. (2010).

This paper proposes another choice of weight W which can be seen as a particular solution
of the synthetic control. Formally, we look for weights W that (i) satisfy a balancing
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condition as in the synthetic control method, are (ii) positive and (iii) function of the
covariates. The first condition writes:

E[DX] = E[W (1−D)X]. (2.2)

Up to a proportional constant, this is equivalent to E[X|D = 1] = E[WX|D = 0]. This
condition means that W balances the first moment of the observed covariates between
the treated and the control group. The definition of the observable covariates X is left
to the econometrician and can include transformation of the original covariates so as to
match more features of their distribution. The idea behind such weights relies on the idea
of “covariate balancing” as in e.g. Imai and Ratkovic (2014). The following lemma shows
that under Assumption 2.1, weights satisfying the balancing condition always exist.

Lemma 2.1 (Balancing Weights) If Assumption 2.1 holds, the propensity score weight
W0 := P[D = 1|X]/(1− P[D = 1|X]) satisfies the balancing condition (2.2).

It is straightforward to verify by plugging this expression in equation (2.2) and using the
law of iterated expectations. Note that the linear regression weight W = E[DX ′]E[(1 −
D)XX ′]−1X also verifies the balancing condition but can be negative. The lemma sug-
gests estimating a binary choice model to obtain P[D = 1|X] and estimate weights W0 as
a first step, and plugging them to estimate θ0 in a second step. However, an inconsistent
estimate of the propensity score leads to an inconsistent estimator of θ0 and does not
guarantee that the implied weights will achieve covariate balancing. Finally, estimation
of a propensity score can be problematic when there are very few treated units. For these
reasons, we consider instead an estimation directly based on balancing equations:

E [(D − (1−D)W0)X] = 0. (2.3)

An important advantage of this approach over the usual one based on the propensity
score estimation through maximum likelihood is its double-robustness (for a definition,
see, e.g., Bang and Robins, 2005). Indeed, let W1 denote the weights identified by (2.3)
and a misspecified model on the propensity score. Because the balancing equations (2.3)
still hold for W1, the estimated treatment effect will still be consistent provided that
E[Y0|X] is linear in X. The formal result is provided in Theorem 2.1 below.

We consider a parametric estimator of W0. Suppose that P [D = 1|X] = G(X ′β0) for
some unknown β0 ∈ Rp and some known, strictly increasing cumulative distribution
function G. Then W0 = h(X ′β0) with h = G/(1 − G) and β0 is identified by (2.3). h is
a positive increasing function, meaning that its primitive H is convex and its derivative
(if it exists) is positive. A classical example of h would be h = exp, corresponding to a
logistic distribution for G. In such an example, h = h′ = H. In any case, the convexity
of H implies that β0 is the solution of the strictly convex program:

β0 = arg min
β

E [(1−D)H(X ′β)−DX ′β] . (2.4)

Note that this program is well-defined, whether or not P [D = 1|X] = G(X ′β0).
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We are now ready to state the main identification theorem that justifies the use of the
ATET estimand of equation (2.1):

Theorem 2.1 (Double Robustness) Suppose that Assumptions 2.1-2.2 hold and let
β0 defined by equation (2.4) for some positive, strictly increasing convex function H.
Then, for any µ ∈ Rp, θ0 satisfies

θ0 =
1

E(D)
E [(D − (1−D)h(X ′β0)) (Y −X ′µ)] , (2.5)

in two cases:

1. the regression function under no treatment is linear, i.e. there exists µ0 ∈ Rp such
that E[Y0|X] = X ′µ0, or

2. the propensity score is given by P [D = 1|X] = G(X ′β0), with G = h/(1 + h).

Theorem 2.1 highlights the double-robustness property of using an estimate of the propen-
sity score based on the balancing approach. This result is similar to the one obtained
by Kline (2011) for the Oaxaca-Blinder estimator, but his requires the propensity score
to follow specifically a log-logistic model in the propensity-score-well-specified case. So
Theorem 2.1 is more general. At this stage, µ in equation (2.5) does not play any role
and could be zero. However, we will see below that choosing carefully µ is important in
the high-dimensional case to obtain an “immunized” estimator of θ0.

2.2. Asymptotic Properties in Low-Dimension

Consider an asymptotic regime within which the dimension p of the covariates is fixed,
while the sample size n tends to infinity. An estimator of β0 is obtained by taking the
empirical counterpart of (2.4):

β̂ = arg min
β

1

n

n∑
i=1

(1−Di)H(X ′iβ)−DiX
′
iβ. (2.6)

Including an intercept among the X is strongly advised as it ensures that estimated
weights sum to one. This estimator is plugged in the empirical counterpart of (2.5) to
estimate θ0:

θ̃ :=
1

1
n

∑n
i=1Di

(
1

n

n∑
i=1

[Di − (1−Di)h(X ′iβ̂)]Yi

)
.

Denote the estimating moment for θ0 by g(Z, θ, β, µ) := [D−(1−D)h(X ′β)][Y−X ′µ]−Dθ.
In the low-dimensional case, θ̃ is such that

1

n

n∑
i=1

g(Zi, θ̃, β̂, 0) = 0

24



This estimator is a two-step GMM which is consistent and asymptotically normal with
variance given by

σ2 := E
[
g(Z, θ0, β0, µ0)2

]
/E(D)2,

where µ0 := E[h′(X ′β0)XX ′|D = 0]−1E[h′(X ′β0)XY |D = 0], under mild regularity con-
ditions, see Section 6 in Newey and McFadden (1994). The quantity µ0, appearing in
the variance, is the coefficient of the weighted population regression of Y on X for the
control group. The next section will use this observation to adapt the estimation in the
high-dimensional case.

3. High-Dimensional Covariates and Post-Selection Inference

3.1. Regularized Estimation

In practice, the empirical researcher can be faced with a high-dimensional set of covariates
in several situations:

1. In some applications the researcher is faced with a large dataset in the sense that
many covariates are to be considered with respect to the relatively small sample
size. It is a natural setting that often occurs in macroeconomic problems. For
example, in the Tobacco control program application by Abadie et al. (2010) the
control group size is limited due to the fact that the observational unit is the state
but many pre-treatment outcomes are included among the covariates. Section 5
revisits this example.

2. Sometimes the researcher also wants to consider a flexible form for the weights
and wants to include transformations of the covariates. This arises for example
when categorical variables are interacted with other categorical variables or with
continuous variables, or when a discrete variable such as the number of schooling
years is broken down into binary variables to have a very flexible non-linear effect.
This case can be labeled as “non-parametric”.

3. More specifically in our estimation strategy, one may want not only to balance the
first moments of the distribution of the covariates but also the second moments,
the covariances, the third moments and so on to make the distribution more similar
between the treated and the control group. In this case, a high-dimension setting
appears to be desirable.

An inherent element of the high-dimensional literature is the notion of sparsity, i.e. the
assumption that although we consider many variables, only a small number of elements
in the vector of parameter is different from zero. This assumption amounts to recasting
the problem in a variable selection framework where a good estimator should be able to
correctly select the relevant variables or approximate the quantities of interest and be con-
sistent at a rate close to

√
n, only paying a price proportional to the number of non-zero

elements. A less restrictive concept has been introduced by Belloni et al. (2012). Called
approximate sparsity, it assumes that the high-dimensional parameter can be decomposed
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into a sparse component, which has many zero entries and some large entries in absolute
value, and a small component for which all entries are small and decaying towards zero
without never exactly being zero. It has been shown that in both contexts, Lasso-type
estimators can provide a good approximation of the relevant quantities that are subject to
a sparse structure, be it finite or infinite dimensional parameters. Consequently, consider
the program (2.6), regularized by penalizing the `1-norm of β:

β̂ = arg min
β

1

n

n∑
i=1

(1−Di)H(X ′iβ)−DiX
′
iβ + λd

p∑
j=1

ψd,j|βj|, (2.7)

where λd > 0 is an overall penalty parameter set to dominate the noise that stems from
the gradient of the function and {ψd,j}j=1,...,p are covariate specific penalty loadings set
as to insure good asymptotic properties. The penalty loadings are estimated using the
algorithm presented in the appendix. For empirical applications, we advise not to penalize
the intercept in order to obtain final weights that sum to one by construction.

The form of this minimization program is one of the main contributions of this paper
to the existing literature on high-dimensional models. On the one hand, this program
targets covariate balancing as the main objective because equating the derivative of the
loss function to zero yields a balancing condition as in equation (2.3). On the other
hand, this objective function includes a term that penalizes the complexity of the model.
Such an objective function borrows from the Lasso estimator of Tibshirani (1996), further
studied and generalized most notably in Candes and Tao (2007); Van de Geer (2008);
Bickel et al. (2009). It has been specifically studied in the econometric literature by
Belloni et al. (2012); Belloni and Chernozhukov (2013). This type of penalization offers
multiple advantages: it regularizes the program so as to make it solvable contrary to a
non-penalized GMM estimator, it yields strict sparsity in the sense that some elements
of the estimated coefficients will be set exactly to zero if the penalty is large enough
contrary to an `2-penalization, it is computationally feasible because it gives rise to a
convex program contrary to an `0-penalization. The use of covariate-specific penalty
loadings borrows from the approach of Belloni et al. (2012) that adapts the Lasso to the
non-Gaussian, non-homoscedastic case. The drawback of penalizing by the `1-norm is the
bias that it induces in the estimation of the coefficients. To remove it, a popular solution
given in the Lasso-related econometric literature is the use of a Post-Lasso estimator.
Such an estimator would use a second step where variables corresponding to non-zero
elements of β̂ are kept in the model and the others are discarded. Then estimation is
done a second time using only these variables and no penalization to compute the Post-
Lasso solution (see Belloni and Chernozhukov, 2013). Our strategy allows this estimator
to be used, although we do not pursue this avenue here.

The estimator of β0 above will be consistent as n tends to infinity under classical assump-
tions used for the Lasso with quadratic loss, see Theorem 2.3 below. As suggested above,
we could then consider the plug-in estimator for the ATT, based on Equation (2.5) with
µ = 0:

θ̃ =
1∑n
i=1 Di

n∑
i=1

[Di − (1−Di)h(X ′iβ̂)]Yi.
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We refer to this estimator as the naive plug-in estimator. Notice that the Lasso estimator
of the nuisance parameter β0 is not asymptotically Normal. Intuitively, it cannot be the
case since there is a non-zero probability that an entry of β̂ is equal to zero due to the
`1-penalization. Because a high-dimensional setting requires an asymptotic framework
where p grows with n, the naive plug-in estimator will suffer from a regularization bias and
may not be asymptotically Normal, as illustrated for example in Belloni et al. (2014b);
Chernozhukov et al. (2015, 2018a).

3.2. Immunized Estimation

Following Chernozhukov et al. (2015, 2018a), consider an immunized estimator that is

first-order insensitive to β̂. This estimator will be asymptotically normal with a very
simple asymptotic variance that does not depend on the properties of the first-step es-
timator. The idea is to choose a µ in (2.5) so that the derivative of this moment with
respect to β is zero when taken at (θ0, β0). This holds for µ = µ0, where µ0 satisfies

E [(1−D)h′(X ′iβ0)(Y −X ′µ0)X] = 0.

Notice that since h is a strictly increasing function of its argument, h′ will be positive.
Recognizing the first order condition of a least-squares program, µ0 can be obtained as
the coefficient of a weighted regression of Y on X for the control group:

µ0 = arg min
µ

E
[
(1−D)h′(X ′β0)(Y −X ′µ)2

]
. (2.8)

Note that we have to estimate µ0 which is also of dimension p. Notice that by construction
the derivative of the moment condition (2.5) with respect to (β, µ) is equal to zero at the
true values (β0, µ0) so we are not introducing another source of nuisance in the estimation.
Consider once again a Lasso-type estimator for µ0:

µ̂ = arg min
µ

1

n

n∑
i=1

(1−Di)h
′
(
X ′iβ̂

)
(Yi −X ′iµ)

2
+ λy

p∑
j=1

ψy,j|µj|. (2.9)

As previously, λy > 0 is an overall penalty parameter set to dominate the noise that
stems from the gradient of the function, and {ψy,j}j=1,...,p are covariate-specific penalty
loadings. Finally, the immunized ATT estimator is defined as

θ̂ :=
1∑n
i=1Di

n∑
i=1

(
Di − (1−Di)h(X ′iβ̂)

)
(Yi −X ′iµ̂)

= θ̃︸︷︷︸
Naive Plug-In

−

[
1

n1

n∑
i:Di=1

Xi −
1

n1

n∑
i:Di=0

h(X ′iβ̂)Xi

]′
µ̂︸ ︷︷ ︸

Correction = Imbalance × Outcome-related X

.

Intuitively, the immunized moment corrects the naive plug-in estimate in the case where
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the balancing program has “missed” a covariate which appears to be very important
to predict the outcome. This result has a flavor of Frish-Waugh-Lowell partialling-out
procedure for model selection as put under the spotlights most notably by Belloni et al.
(2014a) and further theorized in Chernozhukov et al. (2015). Indeed, the estimating
moment (2.5) for θ0 can be re-written so as to highlight the partialling out of X from
both Y and D:

E

[D − (1−D)h(X ′β0)]︸ ︷︷ ︸
Residual Imbalance

[Y −X ′µ0]︸ ︷︷ ︸
Residual from Regression

 = E (Dθ0)

Here, the effect of X is taken out from Y in a linear fashion, while the effect of X on D
is taken out by re-weighting the control group so as to yield the same mean for X.

To summarize, the estimator in the high-dimensional case comprises the three following
steps. Each step is simple to obtain as it involves at most to minimize a convex (and in
general strictly convex) function:

1. (Balancing step) For a given level of penalty λd and positive covariate-specific
penalty loadings {ψd,j}pj=1 solve the following:

β̂ = arg min
β

1

n

n∑
i=1

(1−Di)H(X ′iβ)−DiX
′
iβ + λd

p∑
j=1

ψd,j|βj|, (2.10)

2. (Immunization step) For a given level of penalty λy and covariate-specific penalty

loadings {ψy,j}pj=1 solve the following, using β̂ estimated in the previous step:

µ̂ = arg min
µ

1

n

n∑
i=1

(1−Di)h
′(X ′iβ̂) (Yi −X ′iµ)

2
+ λy

p∑
j=1

ψy,j|µj|, (2.11)

3. (ATT estimation) Estimate the ATT using the immunized moment estimator:

θ̂ =
1∑n
i=1Di

n∑
i=1

[
Di − (1−Di)h(X ′iβ̂)

]
(Yi −X ′iµ̂). (2.12)

We will refer to the estimator θ̂ as the immunized estimator.

3.3. Asymptotic Properties

The current framework poses several challenges to achieving inference that would be
uniform on a large class of DGP. Firstly, X is of high-dimension, since we allows p > n
and p can grow with n under the conditions stated in Assumption 2.3. Secondly, the
ATT estimation is affected by estimation of nuisance parameters β0 and µ0 and we wish
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to neutralize their influence. Finally and closely related to high-dimensional statistical
problems, the `1-penalized estimators we use for β0 and µ0 are not conventional. The
estimator of β0 relies on a convex but potentially non-Lipschitz loss function, contrary
to cases considered by Van de Geer (2008). The estimation of µ0 is close to a standard
Lasso except that it relies on weights depending on β̂.

For the sake of brevity, we still denote the observed data by Zi := (Yi, Di, Xi) and let
η0 := (β0, µ0) denote the vector gathering the two nuisance parameters. Also denote the
estimating moment for θ0 by g(Z, θ, η) = g(Z, θ, β, µ). We recall that the true values
(θ0, η0) satisfy

Eg(Z, θ0, η0) = 0. (2.13)

Before introducing our assumptions, we introduce additional notations. Hereafter, a . b
means that a ≤ cb for some constant c > 0 independent of the sample size n. Φ and
Φ−1 are the distribution and quantile functions of a standard Normal random variable.
En(.) denotes the average over index i, n−1

∑n
i=1(.). For a vector δ ∈ Rp, ‖δ‖0 :=

Card {1 ≤ j ≤ p, δj 6= 0}, ‖δ‖1 :=
∑p

j=1 |δj|, ‖δ‖2 :=
√∑p

j=1 δ
2
j , ‖δ‖∞ := max

j=1,...,p
|δj|.

Assumption 2.3 (Sparsity and Dimension Restrictions) (i) The nuisance param-
eter η0 := (β′0, µ

′
0)′ is sparse in the following sense:

‖β0‖0 ≤ sβ, ‖µ0‖0 ≤ sµ.

(ii) Growth condition: log(p)(sβ + sµ)/
√
n→ 0,

(iii) sβ ∼ sµ.

Assumption 2.4 (Conditions on the Design) Consider a sequence {Pn}n∈N of sets
of probability measures such that for each sequence {Pn}n∈N ∈ {Pn}n∈N , the following
hold. (Yi, Xi, Xi) are i.i.d. random vectors such that:

‖Xi‖∞ ≤ Kn, a.s.,

‖X ′iβ0‖∞ ≤ K ′n, a.s.,

‖Yi −X ′iµ0‖∞ ≤ K ′′n, a.s.,

P(Di = 1) ∈ (0, 1),

h′′ is Lipschitz on any compact subset of R,
either h′ is bounded away from zero or ‖β0‖1 is bounded,

lim inf
n

min
{
E
(
(Y1i −X ′iµ0 − θ0)2|Di = 1

)
,E
(
h(X ′iβ0)2(Y0i −X ′iµ0)2|Di = 0

)}
> 0.

The following condition holds with Cn ∈ {Kn, K
′
n, K

′′
n}:

C2
ns log(n)2 log(s log(n))2 log(p ∨ n) = o(nc4

κ/cφ).

Define Σ := E((1 − D)XX ′), the theoretical Gram matrix on the control group. For a
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non-empty subset S ⊂ {1, ..., p} and α > 0, define the set:

C[S, α] := {v ∈ Rp : ‖vSC‖1 ≤ α‖vS‖1, v 6= 0} (2.14)

Assumption 2.5 (Conditions on the Gram matrix for the control group) For in-
tegers s := max(sβ, sµ), p such that 1 ≤ s ≤ p/2,m ≥ s, s + m ≤ p, a vector δ ∈ Rp

and a set of indices S with |S|0 ≤ s, denote by S1 the subset of {1, ..., p} corresponding
to the m largest in absolute value coordinate of δ outside of S and define S01 = S ∪ S1.
For α = c0cψ,

κ2
α(Σ) := min

S⊂{1,...,p}
|S|0≤s

min
δ∈C[S,α]

δ′Σδ

‖δS01‖2
2

> 0.

In order to analyze the sparsity of the estimator, a bound on the maximal eigenvalue is
needed. It exist constants cκ and cφ such that:

0 < c2
κ ≤ min

‖δ‖0≤s logn

δ′Σδ

‖δ‖2

≤ max
‖δ‖0≤s logn

δ′Σδ

‖δ‖2

≤ cφ <∞.

Define the random variable Vi such that

Vi := max {h′′(X ′iβ0), h′′(X ′iβ0)(Yi −X ′iµ0), |h′(X ′iβ0)|} .

There exist a finite fixed constant c′φ such that:

max
‖δ‖0≤s logn

δ′E ((1−Di)ViXiX
′
i) δ

‖δ‖2
2

≤ c′φ.

Moreover, there exists a constant cΣ > 1 such that for all v ∈ Rp,√
E[(v′(1−Di)XiX ′iv)2] ≤ cΣv

′Σv.

Assumption 2.6 (Penalty Loadings) Let c > 1, γ . log(p ∨ n) and β0 denote the
true coefficient.1 The ideal penalty loadings for estimation of β0 are given by:

λd := cΦ−1(1− γ/2p)/
√
n

ψd,j :=

√√√√ 1

n

n∑
i=1

[(1−Di)h(X ′iβ0)−Di]
2X2

i,j, for j = 1, ..., p

The ideal penalty loadings for estimation of µ0 are given by:

λy := 2cΦ−1(1− γ/2p)/
√
n

ψy,j :=

√√√√ 1

n

n∑
i=1

(1−Di)h′(X ′iβ0)2 [Yi −X ′iµ0]2X2
i,j, for j = 1, ..., p

1Belloni et al. (2012) set γ := 0.1/ log(p ∨ n) and c := 1.1.
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Moreover,

ψ̄ := max
1≤j≤p

max(ψd,j, ψy,j) <∞,
¯
ψ := min

1≤j≤p
min(ψd,j, ψy,j) <∞. (2.15)

Finally, cψ := ψ̄/
¯
ψ.

The following theorem constitutes the main asymptotic result of the paper.

Theorem 2.2 (Asymptotic Normality of the Immunized Estimator) Consider a
sequence {Pn} of sets of probability measures such that for each sequence {Pn} ∈ {Pn}
the assumptions 2.3 - 2.6 hold. The immunized estimator θ̂ defined in equation (2.12)
verifies:

σ̂−1
√
n(θ̂ − θ0)

d−→ N (0, 1), as n→∞,

where σ̂2 := En
[
g(Zi, θ̂, η̂)2

]
/En(Di)

2 is a consistent estimator of the asymptotic vari-
ance.

A proof of this theorem is given in the appendix. Establishing asymptotic normality of
two-step estimators that rely on a regularized first step such as θ̂ has long been a conun-
drum in this literature. However, Belloni et al. (2012, 2014a, 2017) among other papers by
the same authors broke the path to valid post-selection inference by moving from perfect
selection to combining estimation of the high-dimensional nuisance parameters with suf-
ficient quality with immunization of the estimating moment for the parameter of interest.
Chernozhukov et al. (2015) nicely exposes the theory behind this approach and serves as
the main methodological tool behind our proof. Chernozhukov et al. (2018a) extended
this approach to machine learning tools in general and further simplified the proofs by
proposing sample-splitting. While this more recent contribution is very appealing, it was
not available at the time the present paper was conceived.

This theorem relies on estimators of the nuisance parameters that are “good enough” in
terms rates of convergence. Theorem 2.3 in the appendix states these rates.

4. Simulations

The aim of this experiment is two-fold: illustrate the better properties of the immunized
estimator over the naive plug-in and compare it with other competitors. In particular,
we compare it with an inverse propensity score weighting estimator where the propensity
score is estimated using a Logit-Lasso Van de Geer (2008) and with a similar estimator
proposed by Farrell (2015).

In our main specification, DGP1, the outcome equation is linear and given by: yi =
diα + x′iµ + εi, where α = 0, εi ⊥⊥ xi, and εi ∼ N (0, 1). The treatment equation follows
a Probit model, di ∼ Probit (x′iγ). The covariates are simulated as xi ∼ N (0,Σ), where
each entry of the variance-covariance matrix is set as follows: Σj,k = .5|j−k|. The most
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interesting part of the DGP is the form of the coefficients γ and µ:

γj =

{
ρd(−1)j/j2, j < p/2

0, elsewhere
, µj =

{
ρy(−1)j/j2, j < p/2

ρy(−1)j+1/(p− j + 1)2, elsewhere

We are in an approximately sparse setting for both equations. ρy and ρd are constants
that fix the signal-to-noise ratio, in the sense that a larger ρy means that covariates play
a larger role. The trick here is that some variables that matter a lot in the outcome
equation are irrelevant in the treatment assignment rule. The fact that the balancing
program will miss some relevant variables for the outcome should create a bias, a non-
Normal behavior or at least a wider variance. Figure 2.1 depicts the sparsity pattern of
both coefficients for p = 20.

Figure 2.1: Sparsity patterns of β (crosses) and µ (circles)

5 10 15 20

j

β
j a

n
d
 µ

j

0

Note: In this example, ρd = ρy = 1. The central region of the graph represents the coefficients γ and
µ associated with variables that do not play an important role in either the equation equation or the
outcome equation. The left region shows the coefficients associated with variables that are important
for both equations. In the right region, only µ is different from 0, meaning that the variables determine
the outcome equation but not the selection equation.

We expect a naive plug-in estimator to miss the variables located at the far-right of the
plot, thereby creating a bias in the treatment effect estimate. The immunized procedure
is expected to correct for this bias.

We explore three alternatives to DGP1. DGP2 is similar in all respects, except that µj
is equal to 0 for all j. In other words, the outcome equation does not depend on the
covariates. In this specification, the naive plug-in estimator is theoretically correct and
we can check whether the immunized estimator performs as well as the naive version.
DGP3 explores a situation with a heterogeneous treatment effect: the outcome equation
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is specified as yi = diα + x′iµ + dix
′
iγ + εi, with γj = 10 for all j. Since xi ∼ N (0,Σ),

this setting still yields an ATT equal to zero. DGP4 relaxes the linearity of the outcome
equation and allows to check for double robustness. In this DGP, we specify the outcome
equation as follows: yi = diα + (x′iµ)2 + εi, but only the covariates xi are used in the
estimation procedure.

Tables 2.1 to 2.4 display the results of Monte-Carlo simulations for both the naive plug-in
estimator and the immunized estimator, compared with 3 potential alternatives: inverse
propensity score weighting and Farrell (2015) estimator (with either Lasso or post-Lasso
procedures). We present results of 1,000 replications with each DGP introduced in the
previous paragraph, for values of n and p varying between 50 and 500. All other param-
eters are held fixed.

The first striking characteristic of these results is that in our baseline DGP (Table 2.1),
the bias of the plug-in estimator is almost always larger in absolute value than the bias
of the immunized estimator, as predicted. In addition, the difference in bias grows with
the sample size. For example, for n = 500, the bias of the plug-in estimator is about
twice as big as the bias of the immunized estimator. Similarly, the root mean squared
error (RMSE) is always higher for the naive estimator than for the immunized one. The
difference again increases with sample size. The p-value of the Shapiro test is also usually
quite high, showing that the null hypothesis of normality cannot be rejected. These results
illustrate the theoretical asymptotic properties of our estimator. Moreover, Table 2.2 also
shows that in a setting in which the naive plug-in would be appropriate, the immunized
estimator performs as well as the naive estimator. Table 2.3 shows that these findings are
robust to heterogeneous treatment effects, as both estimators perform exactly the same
way with or without heterogeneity.

How does the immunized estimator fare compared with alternative methods? Tables 2.1
to 2.4 also show the performance of four alternative methods. The first one is inverse
propensity-score weighting, estimating the propensity score with a Logit-Lasso. Overall,
this method performs similarly to the naive plug-in estimator. This is not surprising, as
it is likely to suffer from the same bias as the latter. The second alternative is the method
introduced by Belloni et al. (2014a) (denoted as “BCH”). The main difference between
this estimator and the immunized estimator is that the former relies on the assumption
that the treatment effect is homogeneous. We thus expect the third DGP to yield better
results for the immunized estimator than for BCH. Indeed, Table 2.3 shows that BCH
has both a very high bias and RMSE in this case. As an order of magnitude, they tend
to be 10 times as high as for the immunized estimator, whatever the size of the sample
or the number of covariates. In addition, the null hypothesis of the Shapiro test tends to
be rejected most of the times.

The third and fourth alternatives are the Farrell (2015) estimator in two versions: one
based on a Lasso procedure (denoted as “Farrell” in our tables), and one based on a
post-Lasso procedure (“Farrell PL”). The theory suggests that the latter tends to have
a smaller bias, because it removes undue shrinkage introduced by the `1-regularization
in the first step. For DGP1 to DGP3, we find that the immunized estimator performs
similarly to Farrell’s method, and that the post-Lasso procedure indeed reduces the bias
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compared to our estimator. However, it has two drawbacks. First, the Shapiro test
tends to be rejected more often for the post-Lasso procedure than for the immunized
estimator. Second, Table 2.4 shows that Farrell’s methods are not as robust to non-linear
outcome equations as the immunized. Indeed, with DGP4 we find that the RMSE is
systematically smaller for the immunized than for Farrell’s estimators. In particular,
the post-Lasso procedure yields much higher RMSE for small samples (twice as high for
n = 50). This illustrates the advantages of the immunized estimator double robustness.

5. Empirical Applications

5.1. Job Training Program, LaLonde (1986)

We revisit LaLonde (1986). This dataset was first built to assess the impact of the
National Supported Work (NSW) program. The NSW is a transitional, subsidized work
experience program targeted towards people with longstanding employment problems: ex-
offenders, former drug addicts, women who were long-term recipients of welfare benefits
and school dropouts. Here, the quantity of interest is the ATET, defined as the impact
of the participation in the program on 1978 yearly earnings in dollars. The treated
group gathers people who were randomly assigned to this program from the population
at risk (n1 = 185).Two control groups are available. The first one is experimental: it is
directly comparable to the treated group as it has been generated by a random control
trial (sample size n0 = 260). The second one comes from the Panel Study of Income
Dynamics (PSID) (sample size n0 = 2490). The presence of the experimental sample
allows to obtain a benchmark for ATET obtained with observational data. We use these
datasets to compare our estimator with other competitors and defer discussion of the
NSW program and the controversy regarding econometric estimates of nonexperimental
causal effects to the paper by LaLonde (1986) and subsequent contributions by Dehejia
and Wahba (2002); Smith and Todd (2005).

To allow for a flexible specification, we consider the setting of Farrell (2015) and take the
raw covariates of the dataset (age, education, black, hispanic, married, no degree, income
in 1974, income in 1975, no earnings in 1974, no earnings in 1975), two-by-two-interactions
between the four continuous variables and the dummies, two-by-two interactions between
the dummies and up to a degree of order 5 polynomial transformations of continuous
variables. Continuous variables are linearly rescaled to [0, 1]. All in all, we end up with
172 variables to select from. The experimental benchmark for the ATT estimate is $1,794
(671). We compare several estimators: the naive plug-in estimator, the immunized plug-in
estimator, the doubly-robust estimator of Farrell (2015), the double-post-selection linear
estimator of Belloni et al. (2014b), and a simple OLS estimator where all the covariates
are included.

Table 2.5 displays the results. Columns (3)-(5) show estimators that give a credible
value for the ATT with respect to the experimental benchmark. However, they differ
in their variances as one can easily see. Farrell (2015) in its Lasso version and the
immunized estimator achieve the lowest standard-error. Notably, Farrell (2015) in its
Lasso version and the immunized estimator are the only ones out of six estimators which
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display a significant, positive impact similarly to the experimental benchmark. The
immunized estimator estimator offers a large improvement on bias and standard error
over the naive plug-in estimator, which augments the evidence given by the Monte Carlo
experiment. The estimate obtained using Farrell (2015) shown in the Table differ from
the on displayed in the original paper because we have not automatically included the
variables education, 1974 income and nodegree in the set of theory pre-selected covariates
as it is done in the original paper. When doing so, the results are slightly better but not
qualitatively different for this estimator, but we thought it would bias the comparison
as other estimators do not include a set of pre-selected variables. For estimators from
columns (2) to (6), the penalty parameters can potentially be tuned to obtain a better
bias-variance trade-off. The OLS estimator in column (7) presents a benchmark of a very
simple model that does not use any selection at all.

Table 2.5: Average Treatment Effect on the Treated for NSW.

Estimator:

Experimental Plug-In Immunized Farrell (2015)
benchmark Naive Estimator Lasso

(1) (2) (3) (4)

Estimate 1,794.34 214.72 1,495.91 1,537.80
Standard error (Asy.) (671.00) (873.88) (705.32) (675.16)
.95 confidence interval (Asy) [519;3,046] [-1,498;1,928] [114;2,878] [214;2,861]
# variables in Propensity Score none 8 8 3
# variables in Outcome function none none 11 16

Farrell (2015) BCH (2014) OLS
Post-Lasso - -

(5) (6) (7)

Estimate 1,340.24 382.28 83.17
Standard error (Asy.) (778.38) (852.40) (1,184.48)
.95 confidence interval (Asy) [-185;2,866] [-1,288;2,053] [-2,238;2,405]
# variables in propensity score 3 8 none
# variables in regression function 16 10 172

Note: The experimental estimate is computed on experimental data, column (1). (Asy.) signals the
asymptotic approximation estimator of the quantity is used.

5.2. California Tobacco Control Program, Abadie et al. (2010)

Proposition 99 is one of the first and most ambitious large-scale tobacco control program,
implemented in 1989 in California. It includes a vast array of measures, including an
increase in cigarette taxation of 25 cents per pack, and a significant effort in prevention
and education. In particular, the tax revenues generated by Proposition 99 were used
to fund anti-smoking campaigns. Abadie et al. (2010) analyze the impact of the law on
tobacco consumption in California. Since this program was only enforced in California,
it is a classic example where the synthetic control method applies, and more standard
public policy evaluation tools cannot be used. It is possible to reproduce a synthetic
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California by reweighting other states so as to imitate California’s behavior.

For this purpose, Abadie et al. (2010) consider the following covariates: retail price
of cigarettes, state log income per capita, percentage of population between 15-24, per
capita beer consumption (all 1980-1988 averages). 1970 to 1975, 1980 and 1988 cigarette
consumptions are also included. Using the same variables, we conduct the same analysis
with our estimator. Figure 2.2 displays the estimated effect of Proposition 99 using the
immunized estimator.

Figure 2.2: The effect of Proposition 99 on per capita tobacco consumption.
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Note: The shaded area represents the post-treatment period. The .95 confidence interval is based on the
asymptotic approximation.

We finds almost no effect of the policy over the pre-treatment period, giving credibility to
the counterfactual employed. A steady decline takes place after 1988, and in the long-run,
tobacco consumption is estimated to have decreased by about 30 packs per capita per
year in California as a consequence of the policy. The variance is larger towards the end
of the period, because covariates are measured in the pre-treatment period and become
less relevant as predictors. It is also to be noted that by construction, including 1970
to 1975, 1980 and 1988 cigarette consumptions among the covariates yields an almost
perfect fit at theses dates because of the immunization procedure (up to the amount of
shrinkage induced by the Lasso).

Finally, Figure 2.3 allows a comparison between the immunized estimator and the syn-
thetic control method. The dashed green line is the synthetic control counterfactual.
Notice that they do not exactly match the plots of Abadie et al. (2010), in which the
weights given to each predictors are optimized to best fit the outcome over the whole pre-
treatment period. Instead, the green curve optimizes the predictor weights only using
dates 1970 through 1975, 1980 and 1988. This strategy allows a fairer comparison with
our estimator that does not use California’s per capita tobacco consumption outside those
dates to optimize the fit, while period 1975-1988 can be thought of as a semi-placebo test.

Both our estimator and the synthetic control are credible counterfactuals, as both are
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Figure 2.3: Cigarette consumption in California, actual and counterfactual.
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able to closely match California pre-treatment tobacco consumption. They both offer a
sizable improvement over a sample average over the U.S. that did not implement any
tobacco control program. Furthermore, even if our estimator gives a result relatively
similar to the synthetic control, it displays a smoother pattern especially towards the end
of the 1980s. The estimated treatment effect appears to be larger with the immunized
estimate than with the synthetic control. However, it is hard to conclude that this
difference is significant because one cannot easily compute confidence intervals for the
synthetic control estimates, without making stringent assumptions about the program
effect. The availability of standard asymptotic approximation for confidence intervals is
to the advantage of our method.

6. Conclusion

This chapter proposed a parametric generalization of the synthetic control method, which
is developed both in the usual asymptotic framework and in the conventional high-
dimensional one. The basic idea to deal with the high-dimensionality inherent to the
synthetic control method is to move from choosing a weight for each non-treated unit to
choosing a weight for each covariates, by linking individual weights to covariates through
the propensity score.

The proposed estimator is doubly robust, consistent and asymptotically normal uniformly
over a large class of data-generating processes. It is also immunized against first-step se-
lection mistakes. We illustrated these properties using Monte Carlo simulations and
applications to both standard and potentially high-dimensional settings, and offer a com-
parison with the synthetic control method.
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7. Appendix A: Algorithm for Feasible Penalty Loadings

The ideal penalty loadings for estimation of β0 are given by:

λd := cΦ−1(1− γ/2p)/
√
n

ψdj :=

√√√√ 1

n

n∑
i=1

[(1−Di)h(X ′iβ0)−Di]
2X2

i,j, for j = 1, ..., p

The ideal penalty loadings for estimation of µ0 are given by:

λd := cΦ−1(1− γ/2p)/
√
n

ψyj :=

√√√√ 1

n

n∑
i=1

(1−Di)h′(XT
i β0)2 [Yi −XT

i µ0]
2
X2
i,j, for j = 1, ..., p

where c > 1 is an absolute constant, γ . log(p∨n) and β0 and µ0 are the true coefficients.
We follow Belloni et al. (2012) a,d set γ := .1/ log(p ∨ n) and c := 1.1.

For estimating the penalty loadings
{
ψdj
}d
j=1

in the calibration part, we use the following

algorithm:

Set a small constant v > 0 and a maximal number of iterations K.

1. Start by using a preliminary estimate β(0) of β0. For example set β(0) with its first
entries equal to log(n1/n0) and all other entries equal to zero. Then set ψ̃

(0)
j =√

En [(1−Di)h(XT
i β

(0))−Di]
2
X2
i,j, j = 1, ..., p.

At step k, set ψ̃
(k)
j =

√
En [(1−Di)h(XT

i β
(k))−Di]

2
X2
i,j, j = 1, ..., p.

2. Estimate the model by the Calibration Lasso of equation 2.7 using the overall
penalty level λ and penalty loadings found previously, to obtain β̂(k).

3. Stop if max
j=1,...,p

|ψ̃(k)
j − ψ̃

(k−1)
j | ≤ v or k > K. Set k=k+1 and go to step 1 otherwise.

Asymptotic validity of this approach is established in (Belloni et al., 2012, Lemma 11).
The penalty loadings estimation of the immunization step follows a similar procedure. In
this specific case, replace β0 by β̂ obtained in the calibration step.

8. Appendix B: Proofs

Proof of Theorem 2.1: First, note that β0 satisfies E [(1−D)h(X ′β0)X] = E [DX].
As a result, for any µ ∈ Rp,

E [(D − (1−D)h(X ′β0)) (Y −X ′µ)] = E [(D − (1−D)h(X ′β0))Y ] .
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Because (1 −D)Y = (1 −D)Y0 and DY = DY1, θ0 verifies the moment condition 2.5 if
and only if:

E [h(X ′β0)Y (1−D)] = E [DY0] .

The mean independence assumption allows to write:

E [h(X ′β0)Y (1−D)] = E [h(X ′β0)E(1−D|X)E(Y0|X)] .

We consider the two cases separately.

1. The linear case: E(Y0|X) = X ′µ0.

E [h(X ′β0)Y (1−D)] = E [h(X ′β0)(1−D)X ′µ0]

= E [DX ′µ0]

= E [DE(Y0|X)]

= E [DY0] .

The first equality uses the Mean Independence assumption. The second line follows
from the fact that β0 is such that E[(1−D)h(X ′β0)X] = E[DX].

2. Propensity score given by P (D = 1|X) = G(X ′β0).

E [h(X ′β0)Y (1−D)] = E [h(X ′β0)(1−G(X ′β0))E(Y0|X)]

= E [G(X ′β0)E(Y0|X)]

= E [E(D|X)E(Y0|X)]

= E [DY0] .

�

Proof of Theorem 2.2: Denote the observed data by Zi := (Yi, Di, Xi) and let η :=
(β′, µ′)′ denote the parameter gathering the two nuisance vectors. The estimating moment
for θ0 is g(Z, θ, η) := [D− (1−D)h(X ′β)][Y −X ′µ]−Dθ and π0 the probability of being
treated: π0 := P(D = 1). Recall that we define (θ0, η0) as the values satisfying:

Eg(Z, θ0, η0) = 0.

All these quantities implicitly depends on the sample size n, but we suppress it in the
notations when obvious.

By linearity of the estimating function g in θ and using Lemma 2.2, there exists t ∈ (0, 1)
such that:

Eng(Z, θ̂, η̂) = Eng(Z, θ0, η̂) + π̂(θ0 − θ̂)
= π̂(θ0 − θ̂) + Eng(Z, θ0, η0) + (η̂ − η0)′En∂ηg(Z, θ0, η0)
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+
1

2
(η̂ − η0)′En∂η∂η′g(Z, θ0, η̃)(η̂ − η0),

with η̃ := tη0 + (1 − t)η̂. The immunized estimator satisfies Eng(Z, θ̂, η̂) = 0. Thus, we
obtain

π̂
√
n(θ̂ − θ0) =

√
nEng(Zi, θ0, η0)︸ ︷︷ ︸

:=I1

+
√
n(η̂ − η0)′En∂ηg(Zi, θ0, η0)︸ ︷︷ ︸

:=I2

+ 2−1
√
n(η̂ − η0)′En∂η∂η′g(Zi, θ0, η̃)(η̂ − η0)︸ ︷︷ ︸

:=I3

.

We now prove that I1 tends to a normal variable (step 1 below), while I2 and I3 tend to
zero in probability (steps 2 and 3).

Step 1. Let gi,n := g(Zi, θ0, η0) (letting the dependence in n explicit in gi,n). Recall that
Egi,n = 0. We apply the Lindeberg-Feller Central Limit Theorem for triangular arrays
by checking a Lyapunov condition. Because the (gi,n)1≤i≤n are i.i.d. case, it suffices to
prove that

lim sup
E(g2+δ

1,n )

E(g2
1,n)1+δ/2

<∞. (B.1)

Using Assumption 2.4, E(g2+δ
1,n ) is bounded from above. Moreover,

E(g2
1,n) = π0E

(
(Y1 −X ′µ0 − θ0)2|D = 1

)
+ (1− π0)E

(
h(X ′β0)2(Y0 −X ′µ0)2|D = 0

)
.

Hence, lim inf E(g2
1,n) > 0. Thus, (B.1) holds, and I1 is asymptotically normal.

Step 2. The derivatives of the estimating moment with respect to the nuisance parameters
are

∂

∂β
g(Z, θ, η) = −(1−D)h′(X ′β) [Y −X ′µ]X,

∂

∂µ
g(Z, θ, η) = − [D − (1−D)h(X ′β)]X.

Define the random vector Ui of size 2p with each element given by:

Ui,j :=

{
−(1−Di)h

′(X ′iβ0) [Yi −X ′iµ0]Xi,j if 1 ≤ j ≤ p
− [Di − (1−Di)h(X ′iβ0)]Xi,j if p+ 1 ≤ j ≤ 2p.

Recall that Ψ is a square diagonal matrix of dimension 2p with elements
√
n−1

∑n
i=1 U

2
i,j

on its diagonal. Notice that:

‖I2‖1 ≤ ‖Ψ(η̂ − η0)‖1‖Ψ−1
√
nEn∂ηg(Zi, θ0, η0)‖∞.

From the orthogonality conditions and Assumption 2.4, EUi,j = 0 and E|Ui,j|3 < ∞ for
any i and any j. By Lemma 5 in Belloni et al. (2012) and the fact that Φ−1(1 − a) ≤
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√
−2 log(2a) for all a ∈]0, 1/2[, we have, with probability approaching one,

‖Ψ−1
√
nEn∂ηg(Zi, θ0, η0)‖∞ ≤ Φ−1(1− γ/4p) ≤

√
2 log(2p/γ).

By Theorem 2.3, ‖Ψ(η̂ − η0)‖1 . (sβ + sµ)
√

log(p)/n. Then, by the growth condition in
Assumption 2.3, I2 converges to 0 in probability.

Step 3. First, we have:

‖I3‖1 ≤
√
n

2
‖η̂ − η0‖2

2 sup
a=(a1,a2):‖a‖2>0,‖a1‖0≤ŝβ ,‖a2‖0≤ŝµ

√
a′En∂η∂η′g(Zi, θ0, η̃)a

‖a‖2

,

where in the supremum a1 ∈ Rp, a2 ∈ Rp and a = (a1, a2), and we use the notations
ŝβ := ‖β̂‖0, ŝµ := ‖µ̂‖0. From Theorem 2.3, ‖η̂ − η0‖2 . (

√
sβ +

√
sµ)
√

log(p)/n. Thus,
by Assumption 2.3-(ii), the first term on the right-hand side tends to 0. Hence, it suffices
to prove

sup
‖a‖2>0
‖a1‖0≤ŝβ
‖a2‖0≤ŝµ

a′En∂η∂η′g(Zi, θ0, η̃)a

‖a‖2
2

. 1. (B.2)

First,

∂2

∂β∂β′
g(Z, θ, η) = −(1−D)h′′(X ′β) [Y −X ′µ]XX ′,

∂2

∂µ∂β′
g(Z, θ, η) =

∂2

∂β∂µ′
g(Z, θ, η) = (1−D)h′(X ′β)XX ′,

∂2

∂µ∂µ′
g(Z, θ, η) = 0.

As a result,

a′En [∂η∂η′g(Zi, θ0, η̃)] a = a′1

[
1

n

n∑
i=1

(1−Di)h
′′(X ′iβ̃)(Yi −Xiµ̃)XiX

′
i

]
a1

+ 2a′2

[
1

n

n∑
i=1

(1−Di)h
′(X ′iβ̃)XiX

′
i

]
a1. (B.3)

Let us consider the first term on the right-hand-side of (B.3). We have

1

n

n∑
i=1

(1−Di)h
′′(X ′iβ̃)(Yi −X ′iµ̃)XiX

′
i = H1,n + H2,n + H3,n + H4,n,

where

H1,n = n−1

n∑
i=1

(1−Di)h
′′(X ′iβ0)(Yi −X ′iµ0)XiX

′
i,
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H2,n = n−1

n∑
i=1

(1−Di)h
′′(X ′iβ0)X ′i(µ0 − µ̃)XiX

′
i,

H3,n = n−1

n∑
i=1

(1−Di)(h
′′(X ′iβ̃)− h′′(X ′iβ0))(Yi −X ′iµ0)XiX

′
i,

H4,n = n−1

n∑
i=1

(1−Di)(h
′′(X ′iβ̃)− h′′(X ′iβ0))X ′i(µ0 − µ̃)XiX

′
i.

For any p× p matrix Q, let us define its m-sparse-norm as:

‖Q‖sp(m) := sup
‖δ‖0≤m
‖δ‖2>0

√
δ′Qδ

‖δ‖2

.

Start with H1,n. Assumption 2.5, Lemma 1 and Supplemental Appendix C in Belloni
and Chernozhukov (2013) imply that

‖H1,n‖sp(ŝβ) . 1.

Consider H2,n:

|a′1H2,na1| ≤
[

sup
i=1,...,n

|(1−Di)X
′
i(µ0 − µ̃)|

]
a′1

[
1

n

n∑
i=1

(1−Di)h
′′(X ′iβ0)XiX

′
i

]
a1

≤ Kn(1− t)2‖µ0 − µ̂‖2
2a
′
1

[
1

n

n∑
i=1

(1−Di)h
′′(X ′iβ0)XiX

′
i

]
a1.

Using inequalities Assumptions 2.5 and 2.4 and Lemma 1 and Supplemental Appendix
C in Belloni and Chernozhukov (2013), we obtain that:∥∥∥∥∥ 1

n

n∑
i=1

(1−Di)h
′′(X ′iβ0)XiX

′
i

∥∥∥∥∥
sp(ŝβ)

. 1,

which implies that

‖H2,n‖sp(ŝβ)

p−→ 0.

Next, consider H3,n:

|a′1H3,na1| ≤
[

sup
i=1,...,n

∣∣∣(1−Di)
(
h′′(X ′iβ̃)− h′′(X ′iβ0)

)∣∣∣] a′1
[

1

n

n∑
i=1

(1−Di)(Yi −X ′iβ0)XiX
′
i

]
a1

. Kn‖β̂ − β0‖2
2a
′
1

[
1

n

n∑
i=1

(1−Di)(Yi −X ′iβ0)XiX
′
i

]
a1.
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Following the same steps as above, we obtain that ‖H3,n‖sp(ŝβ)

p−→ 0. Finally, we have

|a′1H4,na1| ≤
[

sup
i=1,...,n

∣∣∣(1−Di)
(
h′′(X ′iβ̃)− h′′(X ′iβ0)

)
X ′i(µ0 − µ̃)

∣∣∣] a′1
[

1

n

n∑
i=1

(1−Di)XiX
′
i

]
a1

. K2
n‖β̂ − β0‖2

2‖µ̂− µ0‖2
2a
′
1

[
1

n

n∑
i=1

(1−Di)XiX
′
i

]
a1,

and similar arguments give ‖H4,n‖sp(ŝβ)

p−→ 0. As a consequence, the first element of the

right-hand side of (B.3) is bounded:∥∥∥∥∥ 1

n

n∑
i=1

(1−Di)h
′′(X ′iβ̃)(Yi −X ′iµ̃)XiX

′
i

∥∥∥∥∥
sp(ŝβ)

. 1.

Now, decompose the second element of the right-hand side of (B.3) into two parts:

1

n

n∑
i=1

(1−Di)h
′(X ′iβ̃)XiX

′
i = H′1,n + H′2,n,

where:

H′1,n =
1

n

n∑
i=1

(1−Di)h
′(X ′iβ0)XiX

′
i

H′2,n =
1

n

n∑
i=1

(1−Di)
[
h′(X ′iβ̃)− h′(X ′iβ0)

]
XiX

′
i.

Using the inequality uv ≤ u2 + v2/4, we have that:

a′1H
′
1,na2 =

1

n

n∑
i=1

(1−Di)
√
|h′(X ′iβ0)|(a′1Xi)

√
|h′(X ′iβ0)|(X ′ia2)

≤ a′1

[
1

n

n∑
i=1

(1−D1)|h′(X ′iβ0)|XiX
′
i

]
a1 +

1

4
a′2

[
1

n

n∑
i=1

(1−D1)|h′(X ′iβ0)|XiX
′
i

]
a2.

Assumption 2.5, Lemma 1 and Supplemental Appendix C in Belloni and Chernozhukov
(2013) imply that

sup
‖a‖2>0
‖a1‖0≤ŝβ
‖a2‖0≤ŝµ

a′1H
′
1,na2 . 1.
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Next, turn to H′2,n. Using a similar reasoning as above, we obtain:

a′1H
′
2,na2 ≤

[
sup

i=1,...,n

∣∣∣(1−Di)
(
h′(X ′iβ̃)− h′(X ′iβ0)

)∣∣∣] a′1
[

1

n

n∑
i=1

(1−Di)XiX
′
i

]
a2

. Kn‖β̂ − β0‖2
2

(
a′1

[
1

n

n∑
i=1

(1−Di)XiX
′
i

]
a1 +

1

4
a′2

[
1

n

n∑
i=1

(1−Di)XiX
′
i

]
a2

)
.

Again, we find that

sup
‖a‖2>0
‖a1‖0≤ŝβ
‖a2‖0≤ŝµ

a′1H
′
2,na2

p−→ 0.

All in all, coming back to equation (B.3), we can conclude that indeed:

sup
‖a‖2>0
‖a1‖0≤ŝβ
‖a2‖0≤ŝµ

a′En∂η∂η′g(Zi, θ0, η̃)a

‖a‖2
2

. 1,

which proves that I3
p−→ 0.

Conclusion: As a consequence of the previous steps:

π0√
E (g(Z, θ0, η0)2)

√
n(θ̂ − θ0)

d−→ N (0, 1),

σ̂−1
√
n(θ̂ − θ0)

d−→ N (0, 1),

with σ̂2 := En
(
g(Zi, θ̂, η̂)2

)
/En(Di)

2, a consistent estimator of the variance under As-

sumptions 2.4 and Theorem 2.3. �

Theorem 2.3 (Nuisance Parameter Estimation) Under Assumptions 2.3-2.6, the
nuisance parameters estimators defined in equations (2.7) and (2.9) satisfy, with proba-
bility tending to one,

‖β̂‖0 . sβ, (B.4)

‖β̂ − β0‖1 . sβ
√

log(p)/n, (B.5)

‖β̂ − β0‖2 .
√
sβ log(p)/n, (B.6)

‖µ̂‖0 . sµ, (B.7)

‖µ̂− µ0‖1 . sµ
√

log(p)/n, (B.8)

‖µ̂− µ0‖2 .
√
sµ log(p)/n. (B.9)
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Proof of Theorem 2.3: The proof is divided into two parts, one for each of the nuisance
parameters.

Part A: Verification of (B.4)-(B.6) for β̂.

Recall that β̂ is defined as:

β̂ = arg min
β∈Rp

1

n

n∑
i=1

(1−Di)H(X ′iβ)−DiX
′
iβ + λd

p∑
j=1

ψd,j|βj|, (B.10)

with ideal penalty loadings satisfying Assumption 2.6. Let Ψd be the diagonal matrix
with diagonal terms ψd,1, . . . , ψd,p. We let S0 := {j : β0j 6= 0}, and recall that Card(S0) =
‖β0‖0 ≤ sβ.

Step A.1: Concentration Inequality.

We first bound the sup-norm of the gradient of the objective function. Recall that for
p+ 1 ≤ j ≤ 2p, Ui,j = [(1−Di)h(X ′iβ0)−Di]Xi,j. Then let Sj :=

∑n
i=1 Ui,j/ψd,j and the

event

Bλd :=

{
1

n
max

p+1≤j≤2p

∣∣∣∣∣
n∑
i=1

Ui,j
ψd,j

∣∣∣∣∣ ≤ λd

c

}
.

(Xi, Di)
n
i=1 is a sequence of i.i.d. random vectors. By construction, E(Ui,j) = 0. Moreover,

by Assumptions 2.3 and 2.4, E(|Ui,j|3) ≤ +∞. Then, by Assumptions 2.3 and 2.6 and
Lemma 5 in Belloni et al. (2012),

P
(
BCλd
)

= P
(

c√
n

max
p+1≤j≤2p

|Sj| > cΦ−1(1− γ/2p)/
√
n

)
= P

(
max

p+1≤j≤2p
|Sj| > Φ−1(1− γ/2p)

)
→ 0.

Step A.2: Weighted Restricted Eigenvalue on Empirical Gram matrix.

This step links the restricted eigenvalue assumption on the theoretical Gram matrix Σ to
one on its empirical counterpart Σ̂. First, notice that Assumption 2.5 implies a weaker
one because S ⊂ S01:

κ̄2
α(Σ) := min

S⊂{1,...,p}
|S|0≤s

min
δ∈C[S,α]

δ′Σδ

‖δS‖2
2

> 0.

We then show that Assumption 2.5 for Σ implies a restricted eigenvalue condition for Σ̂.
Set α = c0 and ε := (1 − 7h

√
(p+ 2 log(2/µ))/n) for some µ → 0, log(µ) = o(n). By

Theorem 3.1 in Oliveira (2016), we have, for any δ ∈ Rp, that δ′Σ̂δ ≥ (1 − ε)δ′Σδ with
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probability tending to one. Then, by Assumption 2.5, with probability tending to one,

min
J⊂{1,...,p}
|J |0≤s

min
δ∈C[J,α]

δ′Σ̂δ

‖δJ01‖2
2

≥ (1− ε) min
J⊂{1,...,p}
|J |0≤s

min
δ∈C[J,α]

δ′Σδ

‖δJ01‖2
2

≥ (1− ε)κ̄2
α(Σ).

Hence, κα(Σ̂) > 0. Secondly, notice that ‖ΨdδJ01‖2 ≤ ψ̄‖δJ01‖2. Consequently:√
δ′Σ̂δ

‖ΨdδJ01‖2

≥ 1

ψ̄

√
δ′Σ̂δ

‖δJ01‖2

.

Moreover, Ψdδ ∈ C[J, α] implies by Assumption 2.3 that δ ∈ C[J, cψα]. Then with
probability tending to one,

κ̄α(Σ̂) ≥
√

1− ε
ψ̄

κ̄cψα(Σ) > 0.

Second, by the Cauchy-Schwarz inequality ‖δ‖1 ≤
√
‖δ‖0‖δ‖2. Hence, we have, with

probability tending to one,

κ̃α(Σ̂) := min
Ψdδ∈C[J,α]
|J |0≤s

√
s

√
δ′Σ̂δ

‖ΨdδJ‖1

> 0.

Step A.3: Basic Inequality.

We prove that with probability tending to one, β̂ satisfies:

M(β̂ − β0)′Σ̂(β̂ − β0) ≤ 2λd
(
‖Ψdβ0‖1 − ‖Ψdβ̂‖1

)
+

2λd

c
‖Ψd(β̂ − β0)‖1,

(BASIC INEQUALITY)
where M is a lower bound on inf

i=1,...,n
h′(X ′iβ̂) that does not depend on n.

By optimality of β̂:

1

n

n∑
i=1

γD
β̂

(Xi, Di)− γDβ0(Xi, Di) ≤ λd
(
‖Ψdβ0‖1 − ‖Ψdβ̂‖1

)
,

where γDβ (X,D) := (1−D)H(X ′β)−DX ′β. Subtract the inner product of the gradient

5βγ
D
β0

(Xi, Di) and β̂ − β0 on each side:

1

n

n∑
i=1

γD
β̂

(Xi, Di)− γDβ0(Xi, Di)− ((1−Di)h(X ′iβ0)−Di) (β̂ − β0)′Xi ≤

λd
(
‖Ψdβ0‖1 − ‖Ψdβ̂‖1

)
− 1

n

n∑
i=1

((1−Di)h(X ′iβ0)−Di) (β̂ − β0)′Xi.
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Now focus on the left-hand side of the equation. By Lemma 2.2, there exists 0 ≤ t ≤ 1
such that

1

n

n∑
i=1

γD
β̂

(Xi, Di)− γDβ0(Xi, Di)− ((1−Di)h(X ′iβ0)−Di) (β̂ − β0)′Xi =

1

2
(β̂ − β0)′

[
1

n

n∑
i=1

(1−Di)XiX
′
ih
′(X ′iβ̃)

]
(β̂ − β0),

with β̃ := tβ̂ + (1− t)β0. Plug this into the equation at the beginning of this paragraph
and use |

∑
i aibi| ≤ max

i
|bi|
∑

i |ai| on the right-hand side. On the event Bλd that occurs

with probability 1− o(1):

1

2
(β̂ − β0)′

[
1

n

n∑
i=1

(1−Di)XiX
′
ih
′(X ′iβ̃)

]
(β̂ − β0) ≤ (B.11)

λd
(
‖Ψdβ0‖1 − ‖Ψdβ̂‖1

)
− 1

n

n∑
i=1

((1−Di)h(X ′iβ0)−Di) (β̂ − β0)′Xi ≤

λd
(
‖Ψdβ0‖1 − ‖Ψdβ̂‖1

)
+‖Ψd(β̂ − β0)‖1 max

1≤j≤p

∣∣∣∣∣ 1n
n∑
i=1

Xi,j

ψd,j
((1−Di)h(X ′iβ0)−Di)

∣∣∣∣∣ ≤
λd
(
‖Ψdβ0‖1 − ‖Ψdβ̂‖1

)
+
λd

c
‖Ψd(β̂ − β0)‖1.

The left-hand side is non-negative. Hence, provided that c > 1, we have, under Bλd ,

0 ≤ λd
(
‖Ψdβ0‖1 − ‖Ψdβ̂‖1

)
+ λd/c‖Ψd(β̂ − β0)‖1

λd‖Ψdβ̂‖1 ≤ λd‖Ψdβ0‖1 + λd/c
(
‖Ψdβ̂‖1 + ‖Ψdβ0‖1

)
‖Ψdβ̂‖1 ≤ c0‖Ψdβ0‖1

‖β̂‖1 ≤ c0
ψ̄

¯
ψ
‖β0‖1 ≤ c0

ψ̄

¯
ψ
Cβ,

where the last inequality follows from by Assumptions 2.4, with c0 = (c+ 1)/(c− 1) and
‖β0‖1 ≤ Cβ. As a consequence, M := inf

i=1,...,n
h′(X ′iβ̂) is either equal to the lower bound of

h′ or to h′(−Knc0
ψ̄

¯
ψ
Cβ). The proof follows with:

M(β̂ − β0)′Σ̂(β̂ − β0) ≤ (β̂ − β0)′

[
1

n

n∑
i=1

(1−Di)XiX
′
ih
′(X ′iβ̃)

]
(β̂ − β0),

which gives a lower bound for inequality B.11 and gives us the desired result.

Step A.4: Control of `1-error for β̂.

52



We prove that with probability tending to one,∥∥∥β̂ − β0

∥∥∥
1
≤ 2c0λ

dsβ

¯
ψMκ̃c0(Σ̂)2

.

The first step of the proof seeks to bound ‖Ψdβ0‖1−‖Ψdβ̂‖1. By the triangular inequality:

‖Ψdβ0,S0‖1 − ‖Ψdβ̂S0‖1 ≤ ‖Ψd(β0,S0 − β̂S0)‖1.

Focusing on the other part and using |a− b| ≤ |a|+ |b| :

‖Ψdβ0,SC0
‖1 − ‖Ψdβ̂SC0 ‖1 = 2‖Ψdβ0,SC0

‖1 − ‖Ψdβ0,SC0
‖1 − ‖Ψdβ̂SC0 ‖1

≤ 2‖Ψdβ0,SC0
‖1 − ‖Ψd(β0,SC0

− β̂SC0 )‖1

≤ −‖Ψd(β0,SC0
− β̂SC0 )‖1.

The last inequality comes from ‖β0,SC0
‖1 = 0 and assumptions 2.3. Consequently:

λd‖Ψdβ0‖1 − λd‖Ψdβ̂‖1 +
λd

c
‖Ψd(β̂ − β0)‖1 ≤

λd
(

1 +
1

c

)
‖Ψd(β̂S0 − β0,S0)‖1−λd

(
1− 1

c

)
‖Ψd(β̂SC0 − β0,SC0

)‖1.

On Bλd , by the basic inequality:

M(β̂ − β0)′Σ̂(β̂ − β0) ≤ 2λd
(
‖Ψdβ0‖1 − ‖Ψdβ̂‖1 +

1

c
‖Ψd(β̂ − β0)‖1

)
,

so :

(β̂ − β0)′Σ̂(β̂ − β0) ≤
2

M
λd
[(

1 +
1

c

)
‖Ψd(β̂S0 − β0,S0)‖1−

(
1− 1

c

)
‖Ψd(β̂SC0 − β0,SC0

)‖1

]
. (B.12)

Using equation B.12 and c > 1, it follows that:

(β̂ − β0)′Σ̂(β̂ − β0) +
2λd

M

(
1− 1

c

)∥∥∥Ψd(β̂ − β0)
∥∥∥

1
≤ 4λd

M

∥∥∥Ψd(β̂S0 − β0,S0)
∥∥∥

1
.

From inequality B.12, because (β̂−β0)′Σ̂(β̂−β0) ≥ 0, notice that we have a cone condition
Ψd(β̂ − β0) ∈ C[S0, c0]. So, we can use Step A.2 :

(β̂ − β0)′Σ̂(β̂ − β0) +
2λd

M

(
1− 1

c

)∥∥∥Ψd(β̂ − β0)
∥∥∥

1
≤

4λd
√
sβ

M

√
(β̂ − β0)′Σ̂(β̂ − β0)

κ̃c0(Σ̂)
.
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Using the inequality 4uv ≤ u2 + 4v2:

(β̂ − β0)′Σ̂(β̂ − β0) +
2λd

M

(
1− 1

c

)∥∥∥Ψd(β̂ − β0)
∥∥∥

1
≤ (β̂ − β0)′Σ̂(β̂ − β0) +

4λd2sβ

M2κ̃c0(Σ̂)2
.

Consequently: ∥∥∥Ψd(β̂ − β0)
∥∥∥

1
≤
(

c

c− 1

)
2λdsβ

Mκ̃c0(Σ̂)2
≤ 2c0λ

dsβ

Mκ̃c0(Σ̂)2
,

where the last line results from c/(c− 1) < c0.

Step A.5: Control of `2-error for β̂.

We prove that with probability tending to one:

‖β̂ − β0‖2 ≤
(

1 + c0

√
sβ
m

)
4λd
√
sβ

¯
ψMκ2

c0
(Σ̂)

.

Because m ≥ sβ, we obtain

‖β̂ − β0‖2 .

√
sβ log(p)

n
.

Using the cone condition Ψd(β̂ − β0) ∈ C[S0, c0]:

∥∥∥Ψd(β̂ − β0)
∥∥∥

1
=
∥∥∥Ψd(β̂S0 − β0,S0)

∥∥∥
1

+
∥∥∥Ψd(β̂SC0 − β0,SC0

)
∥∥∥

1

≤ (1 + c0)
∥∥∥Ψd(β̂S0 − β0,S0)

∥∥∥
1

≤ (1 + c0)
√
sβ

∥∥∥Ψd(β̂S0 − β0,S0)
∥∥∥

2
.

Denote S01 = S0 ∪ S1, where S1 is the set of indices corresponding to the m largest
elements of Ψd(β̂ − β0) whose index is not in S0. Notice that the k-th largest in absolute

value element of Ψd(β̂SC0 − β0,SC0
) satisfies: k|Ψd(β̂SC0 − β0,SC0

)|(k) ≤
∥∥∥Ψd(β̂SC0 − β0,SC0

)
∥∥∥

1
.

∥∥∥Ψd(β̂SC01 − β0,SC01
)
∥∥∥2

2
≤
∥∥∥Ψd(β̂SC0 − β0,SC0

)
∥∥∥2

1

∑
k≥m+1

k−2 ≤ 1

m

∥∥∥Ψd(β̂SC0 − β0,SC0
)
∥∥∥2

1
.

From the above inequality and the cone condition Ψd(β̂ − β0) ∈ C[S0, c0]:∥∥∥Ψd(β̂SC01 − β0,SC01
)
∥∥∥

2
≤ 1√

m

∥∥∥Ψd(β̂SC0 − β0,SC0
)
∥∥∥

1

≤ c0√
m

∥∥∥Ψd(β̂S0 − β0,S0)
∥∥∥

1
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≤ c0

√
sβ
m

∥∥∥Ψd(β̂S0 − β0,S0)
∥∥∥

2

≤ c0

√
sβ
m

∥∥∥Ψd(β̂S01 − β0,S01)
∥∥∥

2
.

This last inequality gives:∥∥∥Ψd(β̂ − β0)
∥∥∥

2
≤
(

1 + c0

√
sβ
m

)∥∥∥Ψd(β̂S01 − β0,S01)
∥∥∥

2
.

We want to find an upper bound of the term in the right-hand side above. Using equation
(B.12) and c > 1, we have:

(β̂ − β0)′Σ̂(β̂ − β0) ≤ 4λd

M

∥∥∥Ψd(β̂S0 − β0,S0)
∥∥∥

1

≤ 4λd

M

∥∥∥Ψd(β̂S01 − β0,S01)
∥∥∥

1

≤
4λd
√
sβ

M

∥∥∥Ψd(β̂S01 − β0,S01)
∥∥∥

2
.

Using Step A.2 to bound (β̂ − β0)′Σ̂(β̂ − β0) from below and the inequality above, we
obtain: ∥∥∥Ψd(β̂S01 − β0,S01)

∥∥∥
2
≤

4λd
√
sβ

Mκ2
c0

(Σ̂)
.

Thus, we obtain: ∥∥∥Ψd(β̂ − β0)
∥∥∥

2
≤
(

1 + c0

√
sβ
m

)
4λd
√
sβ

Mκ2
c0

(Σ̂)
.

Step A.6: Empirical sparsity for β̂.

We prove that with probability tending to one ‖β̂‖0 . sβ.

Denote Ŝ :=
{
j : β̂j 6= 0

}
, the set of indices which indicates non-zero coefficients in β̂.

From KKT optimality conditions, we have that:∣∣∣∣∣ 1n
n∑
i=1

[(1−Di)h(X ′iβ̂)−Di]
Xi,j

ψd,j

∣∣∣∣∣ = λd, for all j ∈ Ŝ.

So:

λd
√
‖β̂‖0 ≤

∥∥∥∥∥ 1

n

n∑
i=1

[(1−Di)h(X ′iβ̂)−Di](Ψ
d−1Xi)Ŝ

∥∥∥∥∥
2
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≤

∥∥∥∥∥ 1

n

n∑
i=1

[(1−Di)h(X ′iβ0)−Di](Ψ
d−1Xi)Ŝ

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

n

n∑
i=1

(1−Di)[h(X ′iβ̂)− h(X ′iβ0)](Ψd−1Xi)Ŝ

∥∥∥∥∥
2

. (B.13)

Using the definition of the event Bλd , with probability tending to one:∥∥∥∥∥ 1

n

n∑
i=1

[(1−Di)h(X ′iβ0)−Di](Ψ
d−1Xi)Ŝ

∥∥∥∥∥
2

≤
√
‖β̂‖0

∥∥∥∥∥ 1

n

n∑
i=1

[(1−Di)h(X ′iβ0)−Di]Ψ
d−1Xi

∥∥∥∥∥
∞

≤ λd

c

√
‖β̂‖0. (B.14)

Define m̂β := |Ŝ\S0|. For notational simplicity, let us introduce X0 = ((1−Di)Xi,j)1≤i≤n,1≤j≤p

and F0 =
(

(1−Di)[h(X ′iβ̂)− h(X ′iβ0)]
)

1≤i≤n∥∥∥∥∥ 1

n

n∑
i=1

(1−Di)[h(X ′iβ̂)− h(X ′iβ0)](Ψd−1Xi)Ŝ

∥∥∥∥∥
2

≤ 1

¯
ψ

sup
‖δ
SC0
‖0≤m̂β

‖δ‖2≤1

∣∣∣∣∣δ′
(

1

n

n∑
i=1

(1−Di)[h(X ′iβ̂)− h(X ′iβ0)]Xi

)∣∣∣∣∣
≤ 1

¯
ψ

sup
‖δ
SC0
‖0≤m̂β

‖δ‖2≤1

∣∣∣∣ 1nδ′X0
′F0

∣∣∣∣
≤ 1

¯
ψ

sup
‖δ
SC0
‖0≤m̂β

‖δ‖2≤1

∥∥∥∥ 1√
n
δ′X0

′
∥∥∥∥

2

∥∥∥∥ 1√
n

F0

∥∥∥∥
2

≤ 1

¯
ψ

∥∥∥∥ 1√
n

F0

∥∥∥∥
2

∥∥∥Σ̂
∥∥∥
sp(m̂β)

, (B.15)

Assumptions 2.4-2.5 imply that
∥∥∥Σ̂
∥∥∥
sp(m̂β)

is bounded if m̂+ sβ ≤ sβ log(n) (see Lemma

1 and Supplemental Appendix C in Belloni and Chernozhukov, 2013). Next, we have∥∥∥∥ 1√
n

F0

∥∥∥∥
2

≤ Ch′
∥∥∥β̂ − β0

∥∥∥
2

∥∥∥Σ̂
∥∥∥
sp(m̂β)

.

Combining (B.13)-(B.15), we obtain:

λd
(

1− 1

c

)√
‖β̂‖0 ≤

Ch′

¯
ψ

∥∥∥β̂ − β0

∥∥∥
2

∥∥∥Σ̂
∥∥∥2

sp(m̂β)
,

which completes the proof in light of the result displayed in the previous step.
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Part B: Verification of (B.4)-(B.6) for µ̂.

Recall that µ̂ is defined as:

µ̂ = arg min
µ

1

n

n∑
i=1

(1−Di)h
′(X ′iβ̂) (Yi −X ′iµ)

2
+ λy

p∑
j=1

ψy,j|µj|,

This estimator is a weighted version of the usual Lasso. The steps needed to achieve
(B.4)-(B.6) for µ̂ closely follow the ones from the previous subsection or can be found in
Belloni et al. (2012) for example. For the sake of clarity we will state the points where
the proof differs from the one before.

Step B.1: Concentration Inequality.

Another concentration inequality is needed to bound the sup-norm of the gradient of the
objective function. Define Vi,j := (1 − Di)h

′(X ′iβ0) [Yi −X ′iµ0]Xi,j, S ′j :=
∑n

i=1 Vij/ψy,j
and the following event

B′λy :=

{
2

n
max
1≤j≤p

∣∣∣∣∣
n∑
i=1

Vij
ψy,j

∣∣∣∣∣ ≤ λy

c

}
.

(Yi, Xi, Di)
n
i=1 is a sequence of i.i.d. random vectors. By construction, E(Vij) = 0.

Moreover, by Assumptions 2.3 and 2.4, the variables Vij have finite third-order moments,
E(|Vij|3) ≤ +∞. Then, by Assumptions 2.3 and 2.6, and Lemma 5 in Belloni et al.
(2012),

P
(
B′Cλ
)

= P
(

c√
n

max
1≤j≤p

|S ′j| > cΦ−1(1− γ/2p)/
√
n

)
= P

(
max
1≤j≤p

|S ′j| > Φ−1(1− γ/2p)
)

→ 0.

Step B.2: Control of `1 and `2-errors for µ̂.

We prove that with probability tending to one:

‖Ψy(µ̂− µ0)‖1 ≤
c0λ

ysµ(
M− Ch′Kn‖β̂ − β0‖1

)
κ̄2
α(Σ̂)− 2

√
αn
.

This step is complicated because the empirical loss function for µ̂ depends on β̂ rather
than β0. Denote γYβ,µ(Zi) := (1−Di)h

′(X ′iβ) (Yi −X ′iµ)2. Use the decomposition:

1

n

n∑
i=1

γYβ0,µ̂(Zi)− γYβ0,µ0(Zi) = Rn +
1

n

n∑
i=1

γY
β̂,µ̂

(Zi)− γYβ̂,µ0(Zi),
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with Rn := (1/n)
∑n

i=1 γ
Y
β0,µ̂

(Zi)−γYβ̂,µ̂(Zi)−γYβ0,µ0(Zi)+γY
β̂,µ0

(Zi). Rewrite this remainder

term as Rn = R1
n +R2

n, with:

R1
n :=

1

n

n∑
i=1

(1−Di)
[
h′(X ′iβ0)− h′(X ′iβ̂)

]
[X ′i (µ0 − µ̂)]

2
,

R2
n :=

[
2

n

n∑
i=1

(1−Di)
[
h′(X ′iβ0)− h′(X ′iβ̂)

]
(Yi −X ′iµ0)Xi

]′
(µ0 − µ̂) .

With probability tending to one, [miniX
′
iβ̂,maxiX

′
iβ̂] ⊂ K compact. Then, because h′

is Lipschitz on this compact (with Lipschitz constant Ch′ , say),

|h′(X ′iβ̂)− h′(X ′iβ0)| ≤ Ch′ |X ′i(β̂ − β0)| ≤ Ch′Kn‖β̂ − β0‖1,

so we have:

|R1
n| ≤ Ch′Kn‖β̂ − β0‖1 (µ̂− µ0)′ Σ̂ (µ̂− µ0) . (B.16)

The second term satisfies (see Step A.6 for more details):

|R2
n| < 2Ch′‖µ̂− µ0‖2‖β̂ − β0‖2

∥∥∥∥∥ 1

n

n∑
i=1

(1−Di) (Yi −X ′iµ0)
2
XiX

′
i

∥∥∥∥∥
sp(m̂β)

. (B.17)

The sparse norm of the matrix in the term of right-hand side is bounded using Assump-
tions 2.5 and 2.4 and (Lemma 1 and Supplemental Appendix C in Belloni and Cher-
nozhukov, 2013). Because µ̂ is the minimizer of the empirical loss function we obtain:

1

n

n∑
i=1

γY
β̂,µ̂

(Zi)− γYβ̂,µ0(Zi) ≤ λy (‖Ψyµ0‖1 − ‖Ψyµ̂‖1) . (B.18)

On the other hand, we have:

1

n

n∑
i=1

γYβ0,µ̂(Zi)−γYβ0,µ0(Zi) + 2(1−Di)h
′(X ′iβ0)(Yi −X ′iµ0)X ′i(µ̂− µ0) =

(µ̂− µ0)′
(

1

n

n∑
i=1

(1−Di)h
′(X ′iβ0)XiX

′
i

)
(µ̂− µ0) .

Combine the previous equality with the inequalities B.16, B.17, B.18, and the concentra-
tion inequality for the gradient of the current loss function in Step A.4 to obtain:

(µ̂− µ0)′
(

1

n

n∑
i=1

(1−Di)h
′(X ′iβ0)XiX

′
i

)
(µ̂− µ0) ≤ λy (‖Ψyµ0‖1 − ‖Ψyµ̂‖1)

+ Ch′Kn‖β̂ − β0‖1 (µ̂− µ0)′ Σ̂ (µ̂− µ0)
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+ 2Ch′‖µ̂− µ0‖2‖β̂ − β0‖2

∥∥∥∥∥ 1

n

n∑
i=1

(1−Di) (Yi −X ′iµ0)
2
XiX

′
i

∥∥∥∥∥
sp(m̂β)

+
λy

c
‖µ̂− µ0‖1.

The two terms in the middle of the right-hand side are what separates us from the classical
case. Denote:

Ln :=

∥∥∥∥∥ 1

n

n∑
i=1

(1−Di) (Yi −X ′iµ0)
2
XiX

′
i

∥∥∥∥∥
sp(m̂β)

‖β̂ − β0‖2

Consider a series (αn)n such that αn → 0 and
√
nαn/sβ log(p) → +∞. We need to

consider two cases.

1. ‖µ̂−µ0‖2
2 ≤ L2

n/αn. This is the trivial case where we obtain ‖µ̂−µ0‖2
2 . sβlog(p)/(nαn) =

oP (1/n), and the `1-rate follows by Cauchy-Schwarz.

2. ‖µ̂ − µ0‖2
2 > L2

n/αn. Consequently 2Ln‖µ̂ − µ0‖2 ≤ 2
√
αn‖µ̂ − µ0‖2

2. Reproducing
the same reasoning as in Step A.4, the previous inequality becomes:

(µ̂− µ0)′
[(

M− Ch′Kn‖β̂ − β0‖1

)
Σ̂− 2

√
αnIp

]
(µ̂− µ0)

≤ λy

[(
1 +

1

c

)
‖Ψy(µ̂S0 − µ0,S0)‖1−

(
1− 1

c

)
‖Ψy(µ̂SC0 − µ0,SC0

)‖1+2c1ψ̄

√
s2
µ

n

]
.

We obtain a cone condition, ‖Ψy(µ̂SC0 − µ0,SC0
)‖1≤ c0‖Ψy(µ̂S0 − µ0,S0)‖1, which

allows to use the restricted eigenvalue condition above. For n sufficiently large so

we have 2
√
αn <

(
M− Ch′Kn‖β̂ − β0‖1

)
κ̄2
α(Σ̂), the following restricted eigenvalue

condition holds:

min
Ψyδ∈C[J,α]
|J |0≤s

δ′
[(

M− Ch′Kn‖β̂ − β0‖1

)
Σ̂− 2

√
αnIp

]
δ

‖ΨyδJ‖2
2

>

(
M− Ch′Kn‖β̂ − β0‖1

)
κ̄2
α(Σ̂)− 2

√
αn > 0,

and a similar condition with the `1-norm at the denominator also holds by Cauchy-
Schwarz inequality. Following the same path as in Step A.4, we arrive at:

‖Ψy(µ̂− µ0)‖1 ≤
c0λ

ysµ(
M− Ch′Kn‖β̂ − β0‖1

)
κ̄2
α(Σ̂)− 2

√
αn
.

Once that step is completed, the proof for µ̂ follows the same steps as for β̂.

Step B.3: Empirical sparsity for µ̂.
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We prove that with probability tending to one:

‖µ̂‖0 . sµ.

Using the same reasoning as in Step A.6, we have, this time defining Ŝ := {j : µ̂j 6= 0}:

λy
√
‖µ̂‖0 ≤

∥∥∥∥∥ 2

n

n∑
i=1

(1−Di)h
′(X ′iβ̂)(Yi −X ′iµ̂)(Ψ−1

y Xi)Ŝ

∥∥∥∥∥
2

.

Decompose the individual contribution to the gradient of the loss function in four parts:

(1−Di)h
′(X ′iβ̂)(Yi −X ′iµ̂)Ψ−1

y Xi = (1−Di)h
′(X ′iβ0)(Yi −X ′iµ0)Ψ−1

y Xi

+ (1−Di)h
′(X ′iβ0)X ′i(µ0 − µ̂)Ψ−1

y Xi

+ (1−Di)(h
′(X ′iβ̂)− h′(X ′iβ0))(Yi −X ′iµ0)Ψ−1

y Xi

+ (1−Di)(h
′(X ′iβ̂)− h′(X ′iβ0))X ′i(µ0 − µ̂)Ψ−1

y Xi.

On B′λy , the `2-norm of the first part obeys:∥∥∥∥∥ 2

n

n∑
i=1

(1−Di)h
′(X ′iβ0)(Yi −X ′iµ0)(Ψ−1

y Xi)Ŝ

∥∥∥∥∥
2

≤ λy

c

√
‖µ̂‖0.

Define:

G1 := ((1−Di)h
′(X ′iβ0)X ′i(µ0 − µ̂))1≤i≤n

G2 :=
(

(1−Di)(h
′(X ′iβ̂)− h′(X ′iβ0))(Yi −X ′iµ0)Xi

)
1≤i≤n

G3 :=
(

(1−Di)(h
′(X ′iβ̂)− h′(X ′iβ0))X ′i(µ0 − µ̂)

)
1≤i≤n

,

and similarly, Tj := 2
n

∑n
i=1 Gj,i(Ψ

−1
y Xi)Ŝ, for j = 1, 2, 3. Any of the Tj satisfies:

‖Tj‖2 ≤
1

¯
ψ

sup∥∥∥∥δSC0
∥∥∥∥
0

≤m̂µ

‖δ‖2≤1

∣∣∣∣ 2nδ′X0
′Gj

∣∣∣∣
≤ 2

¯
ψ

∥∥∥∥Gj√
n

∥∥∥∥
2

∥∥∥Σ̂
∥∥∥
sp(m̂µ)

.

We now need to bound ‖Gj/
√
n‖2 for j = 1, 2, 3. Firstly, using Holder inequality:∥∥∥∥ 1√

n
G1

∥∥∥∥
2

≤ ‖µ̂− µ0‖2

∥∥∥∥∥ 1

n

n∑
i=1

(1−Di)h
′(X ′iβ0)2XiX

′
i

∥∥∥∥∥
sp(m̂µ)

,
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where the sparse norm of the matrix in the term of left-hand side is bounded using
Assumptions 2.5 and 2.4 and (Lemma 1 and Supplemental Appendix C in Belloni and
Chernozhukov, 2013). Secondly:∥∥∥∥ 1√

n
G2

∥∥∥∥
2

≤ Ch′
∥∥∥β̂ − β0

∥∥∥
2

∥∥∥∥∥ 1

n

n∑
i=1

(1−Di)(Yi −X ′iµ0)2XiX
′
i

∥∥∥∥∥
sp(m̂β)

,

and the sparse norm of the matrix in the term of left-hand side is bounded using similar
arguments as the line above. Thirdly, using Cauchy-Schwarz inequality on the third line:

∥∥∥∥ 1√
n

G3

∥∥∥∥
2

=

√√√√ 1

n

n∑
i=1

(1−Di)
[
h′(X ′iβ̂)− h′(X ′iβ0)

]2

(µ̂− µ0)′XiX ′i (µ̂− µ0)

≤ Ch′

√√√√ 1

n

n∑
i=1

(1−Di)
(
β̂ − β0

)′
XiX ′i

(
β̂ − β0

)
(µ̂− µ0)′XiX ′i (µ̂− µ0)

≤ Ch′

(√(
β̂ − β0

)′
Σ̂
(
β̂ − β0

)√
(µ̂− µ0)′ Σ̂ (µ̂− µ0)

)1/2

≤ Ch′

(∥∥∥β̂ − β0

∥∥∥
2
‖µ̂− µ0‖2

∥∥∥Σ̂
∥∥∥
sp(m̂µ)

∥∥∥Σ̂
∥∥∥
sp(m̂β)

)1/2

.

Notice that:

λy
(

1− 1

c

)√
‖µ̂‖0 ≤

2

¯
ψ

∥∥∥Σ̂
∥∥∥
sp(m̂µ)

3∑
j=1

∥∥∥∥Gj√
n

∥∥∥∥
2

≤ 2

¯
ψ

∥∥∥Σ̂
∥∥∥
sp(m̂µ)

‖µ̂− µ0‖2

∥∥∥∥∥ 1

n

n∑
i=1

(1−Di)h
′(X ′iβ0)2XiX

′
i

∥∥∥∥∥
sp(m̂µ)

+ Ch′
∥∥∥β̂ − β0

∥∥∥
2

∥∥∥∥∥ 1

n

n∑
i=1

(1−Di)(Yi −X ′iµ0)2XiX
′
i

∥∥∥∥∥
sp(m̂β)

+ Ch′

√∥∥∥β̂ − β0

∥∥∥
2
‖µ̂− µ0‖2

∥∥∥Σ̂
∥∥∥
sp(m̂µ)

∥∥∥Σ̂
∥∥∥
sp(m̂β)

)
,

which proves the result in light of Steps A.4, A.5, B.2 and Assumption 2.3. �

Lemma 2.2 (A Taylor Expansion Lemma) Assume that f is a C2 function from Rp

to R. Then, for any (x, x0) ∈ (Rp)2, there exists t ∈ (0, 1) such that

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
(x− x0)′f ′′(x′)(x− x0),

with x′ = tx0+(1−t)x and where f ′(x0) and f ′′(x′) denote the gradient vector and hessian
matrix of f taken at x0 and x′, respectively.
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Proof of Lemma 2.2: Let h be a real function defined on [0, 1] by

h(t) = f(x)− f(tx0 + (1− t)x)− f ′(tx0 + (1− t)x)(x− x0)t− At2

with A defined such that h(1) = 0. Note that we also have h(0) = 0. Then, by Rolle’s
theorem, since h is C1, there exists t ∈ (0, 1) such that h′(t) = 0. This yields, with
x′ = tx0 + (1− t)x,

−f ′(x′)(x0 − x)− f ′(x′)(x− x0) + (x− x0)′f ′′(x′)(x− x0)t− 2At = 0.

Thus, because t > 0,

A =
1

2
(x− x0)′f ′′(x′)(x− x0).

The result follows using h(1) = 0. �
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Chapter 3

A Penalized Synthetic Control
Estimator for Disaggregated Data

Joint work with Alberto Abadie.

Summary

Synthetic control methods are commonly applied in empirical research to
estimate the effects of treatments or interventions of interest on aggregate
outcomes. A synthetic control estimator compares the outcome of a treated
unit to the outcome of a weighted average of untreated units that best re-
sembles the characteristics of the treated unit before the intervention. When
disaggregated data are available, constructing separate synthetic controls for
each treated unit may help avoid interpolation biases. However, the prob-
lem of finding a synthetic control that best reproduces the characteristics of
a treated unit may not have a unique solution. Multiplicity of solutions is
a particularly daunting challenge in settings with disaggregated data, that
is, when the sample includes many treated and untreated units. To address
this challenge, we propose a synthetic control estimator that penalizes the
pairwise discrepancies between the characteristics of the treated units and the
characteristics of the units that contribute to their synthetic controls. The pe-
nalization parameter trades off pairwise matching discrepancies with respect
to the characteristics of each unit in the synthetic control against matching
discrepancies with respect to the characteristics of the synthetic control unit
as a whole. We study the properties of this estimator and propose data driven
choices of the penalization parameter.



1. Introduction

Synthetic control methods (Abadie and Gardeazabal, 2003; Abadie et al., 2010, 2015;
Doudchenko and Imbens, 2016) are often applied to estimate the treatment effects of
aggregate interventions (see, e.g., Kleven et al., 2013; Bohn et al., 2014a; Hackmann
et al., 2015; Cunningham and Shah, 2018). Suppose we observe data for a unit that is
affected by the treatment or intervention of interest, as well as data on a donor pool, that
is, a set of untreated units that are available to approximate the outcome that would
have been observed for the treated unit in the absence of the intervention. The idea
behind synthetic controls is to match each unit exposed to the intervention or treatment
of interest to a weighted average of the units in the donor pool that most closely resembles
the characteristics of the treated unit before the intervention. Once a suitable synthetic
control is selected, differences in outcomes between the treated unit and the synthetic
control are taken as estimates of the effect of the treatment on the unit exposed to the
intervention of interest.

The synthetic control method is akin to nearest neighbor matching estimators (Dehe-
jia and Wahba, 2002; Abadie and Imbens, 2006; Imbens and Rubin, 2015) but departs
from traditional matching methods in two important aspects. First, the synthetic control
method does not impose a fixed number of matches for every treated unit. Second, instead
of using a simple average of the matched units with equal weights, the synthetic control
method matches each treated unit to a weighted average of untreated units with weights
calculated to minimize the discrepancies between the treated unit and the synthetic con-
trol in the values of the matching variables. Synthetic control estimators retain, however,
appealing properties of nearest neighbor matching estimators, in particular: sparsity and
non-negativity of the weights, and weights that sum to one. Like for nearest neighbor
matching estimators, most of the synthetic control weights are equal to zero and a small
number of untreated units contribute positive weights to reproduce the counterfactual
of each treated observation without the treatment. Sparsity and non-negativity of the
weights, along with the fact that synthetic control weights sum to one and define a
weighted average, are important features that allow incorporating expert knowledge to
evaluate and interpret the estimated counterfactuals (see Abadie et al., 2015). As shown
in Abadie et al. (2015), similar to the synthetic control estimator, a regression-based esti-
mator of the counterfactual of interest – i.e., the outcome for the treated in the absence of
an intervention – implicitly uses a linear combination of outcomes for the untreated with
weights that sum to one. However, unlike synthetic control weights, regression weights
are not explicit in the outcome in the procedure, they are not sparse, and they can be
negative or greater than one, allowing unchecked extrapolation outside the support of the
data and complicating the interpretation of the estimate and the nature of the implicit
comparison. While most applications of the synthetic control framework have focused
on cases where only one or a few aggregate units are exposed to the intervention of in-
terest, the method has found recent applications in contexts with disaggregated data,
where samples contain large numbers of treated and untreated units, and the interest
lies on the average effect of the treatment among the treated (see, e.g., Acemoglu et al.,
2016; Gobillon and Magnac, 2016; Kreif et al., 2016). In such settings, one could simply
construct a synthetic control for an aggregate of all treated units. However, interpolation
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biases may be much smaller if the estimator of the aggregate outcome that would have
been observed for the treated in the absence of the treatment is based on the aggregation
of multiple synthetic controls, one for each treated unit.

Using synthetic controls to estimate treatment effects with disaggregated data creates
some practical challenges. In particular, when the values of the matching variables for
a treated unit fall in the convex hull of the corresponding values for the donor pool, it
may be possible to find multiple convex combinations of untreated units that perfectly
reproduce the values of the matching variables for the treated observation. That is, the
best synthetic control may not be unique. One practical consequence of the curse of
dimensionality is that each particular treated unit is unlikely to fall in the convex hull of
the untreated units, especially if the number of untreated units is small. As a result, lack
of uniqueness is not often a problem in settings with one or a small number of treated
units and, if it arises, it can typically be solved by ad-hoc methods, like increasing the
number of covariates or by restricting the donor pool to units that are similar to the
treated units. In settings with many treated and many untreated units, non-uniqueness
may be an important consideration and a problem which is harder to solve.

More generally, in contrast to common aggregate data settings with a small donor pool
(see, e.g., Abadie and Gardeazabal, 2003; Abadie et al., 2010), when there is a large
number of units in the donor pool, single untreated units may provide close matches
to the treated units in the sample. Therefore, in such a setting, the researcher faces a
trade-off between minimizing the covariate discrepancy between each treated unit and its
synthetic control as a whole (pure synthetic control case) and minimizing the covariate
discrepancy between each treated unit and each unit that contributes to its synthetic
control (pure matching case).

This article provides a generalized synthetic control framework for estimation and infer-
ence. We introduce a penalization parameter that trades off pairwise matching discrep-
ancies with respect to the characteristics of each unit in the synthetic control against
matching discrepancies with respect to the characteristics of the synthetic control unit as
a whole. This type of penalization is aimed to reduce interpolation biases by prioritizing
inclusion in the synthetic control of units that are close to the treated in the space of
matching variables. Moreover, we show that as long as the penalization parameter is
positive, the generalized synthetic control estimator is unique and sparse. If the value of
the penalization parameter is close to zero, our procedure selects the synthetic control
that minimizes the sum of pairwise matching discrepancies (among the synthetic controls
that best reproduce the characteristic of the treated units). If the value of the penaliza-
tion parameter is large, our estimator coincides with the pair-matching estimator. We
study the formal properties of the penalized synthetic control estimator and propose data
driven choices of the penalization parameter.

Our approach is in the spirit of using machine learning techniques to improve the syn-
thetic control estimator or, more generally, to provide new tools for program evaluation
problems. Following Doudchenko and Imbens (2016) that represent synthetic controls
as a solution to complete an outcome matrix with missing entries, Athey et al. (2017)
assumes an underlying sparse factor structure for the outcome under no treatment and
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adapts matrix completion techniques to estimate a counterfactual. Their estimator penal-
izes the complexity of the factor structure, while our approach penalizes the discrepancy
between the treated unit and each control unit that enters the synthetic unit. Amjad et al.
(2018) study a `q-penalized version of the synthetic control after de-noising the outcome
for the donor pool. The bias-correction that we propose has also been independently
studied e.g. Ben-Michael et al. (2019), Arkhangelsky et al. (2018).

Section 2 presents the penalized synthetic control estimator and discusses several of its
geometric properties. Section 3 studies its large sample properties. Section 4 discusses
permutation inference. Section 5 presents ways to choose the penalization term. Sections
6 and 7 illustrate the properties of the estimator through simulations and empirical
applications, respectively. Section 8 contains a summary of the article and conclusions.
The appendix gathers the proofs.

2. Penalized Synthetic Control

2.1. Synthetic Control for Disaggregated Data

We code treatment using a binary variable, D, so D = 1 for treated individuals and
D = 0 otherwise. To define treatment effects we adopt the potential outcome notation in
Rubin (1974). Let Y1 and Y0 be random variables representing potential outcomes under
treatment and under no treatment, respectively. The effect of the treatment is Y1 − Y0.
Realized outcomes are defined as

Y =

{
Y1 if D = 1,
Y0 if D = 0.

Let X be a (p× 1)-vector of pre-treatment predictors of Y0. Consider the distributions of
the triple (Y1, Y0, X) under treatment and no treatment, with E[·|D = 1] and E[·|D = 0]
denoting the corresponding expectation operators, and E[·|X,D = 1] and E[·|X,D = 0]
denoting expectations conditional on X. Let P1 and P0 be the probability measures that
describe the distribution of X for treated and nontreated, respectively.

In contrast to Abadie et al. (2010, 2015) who focus on the case of one or a small number
of treated units, we adopt a framework where units are sampled at random from some
population of interest.

Assumption 3.1 (Sampling) {(Y1i, Xi)}i=1,...,n1
are n1 independent draws from the dis-

tribution of (Y1, X) and {(Y0i, Xi)}i=n1+1,...,n are n0 independent draws from the distribu-
tion of (Y0, X).

Combining data for treated and nontreated we obtain the pooled sample, {(Yi, Di, Xi)}ni=1,
n = n0 + n1. To simplify notation, we reorder the observations in the sample so that the
n1 treated observations are first and the n0 untreated observations are last. The quantity
of interest is the average treatment effect on the treated (ATET):

τ = E[Y1 − Y0|D = 1]. (3.1)
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Assumption 3.2 (Nested support) P1 � P0, that is, P1 is absolutely continuous with
respect to P0.

Assumption 3.3 (Unconfoundedness I) E[Y0|X,D = 1] = E[Y0|X,D = 0].

Versions of Assumptions 3.2 and 3.3 are ubiquitous in the program evaluation literature
(see, e.g., Imbens, 2004). Assumption 3.2 states that there is no value of X for which
individuals are always treated. In other words, for any treated unit, it should be possi-
ble to find a non-treated unit with the same value of the covariates in the population.
Assumption 3.3 states that conditionally on a set of observed covariates or confounding
factors, X, the expected potential outcome without the treatment is the same for treated
and control individuals. Graphical causal structures that support Assumption 3.3 are
studied in Pearl (2000) and the subsequent literature.

Notice that, under these two assumptions, the counterfactual E[Y0|D = 1] can be ex-
pressed as a weighted average of the outcome among the untreated, yielding

τ = E[Y |D = 1]− E[V Y |D = 0], (3.2)

where V = dP1/dP0. Many econometric estimators of τ based on Assumptions 3.2 and
3.3, whether explicitly or implicitly, employ a sample analog of equation (3.2),

1

n1

n∑
i=1

YiDi −
1

n0

n∑
i=1

Yi(1−Di)Vi. (3.3)

Popular estimators of this type in micro-econometrics include most notably regression
(Angrist and Pischke, 2009; Abadie et al., 2015), propensity score weighting (Rosenbaum
and Rubin, 1983; Hirano et al., 2003) and matching (Smith and Todd, 2005). For exam-
ple, in the case of the pair-matching estimator, the weight Vi given to control unit i is
equal to an integer counting the number of times control unit i is the nearest neighbor of a
treated unit, rescaled by n0/n1. The synthetic control method (Abadie and Gardeazabal,
2003; Abadie et al., 2010, 2015; Doudchenko and Imbens, 2016) also belongs to this class
of estimators. It matches each treated unit to a “synthetic control”, that is, a weighted
average of untreated units with weights chosen to make the values of the predictors of the
outcome variable of each synthetic control closely match the values of the same predictors
for the corresponding treated units.

While these assumptions are enough to recover the average treatment effect in equation
(3.1), identification of a wide variety of parameters can be attained by strengthening the
identifying conditions as in Assumptions 3.2′ and 3.3′ below.

Assumption 3.2′ (Common support) P1 � P0 and P0 � P1.

Assumption 3.3′ (Unconfoundedness II) Y1, Y0 ⊥⊥ D|X.

Parameters identified by the addition of Assumptions 3.2′ and 3.3′ include quantile treat-
ment effects, that is, differences in the quantiles of the distributions of potential outcomes
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(Firpo, 2007), bounds on the distribution of the treatment effect (Firpo and Ridder, 2008),
or counterfactual distributions (Chernozhukov et al., 2013), among others. They also in-
clude parameters describing conditional features of the distribution of potential outcomes
(see, e.g., Crump et al., 2008) and regression parameters obtained after imposing the
same distribution of X for treated and non-treated (Ho et al., 2007; Abadie and Spiess,
2016). While, for the sake of clarity, this article focuses on the estimation of average
treatment effects, the generalized synthetic control method outlined here can be applied
to estimate any of the parameters above. Moreover, Assumptions 3.1-3.3 are not the only
possible identification conditions in a synthetic control setting, nor necessarily the least
restrictive ones. In particular, Abadie et al. (2010) show that under a factor-structure
condition on the regression residual of the outcome on the covariates for the untreated,
using synthetic controls that match pre-treatment outcomes for the treated help control
for unobserved confounding that arises from heterogeneity in the factor loadings.

For any (p × 1) real vector X and any (p × p) real symmetric positive-definite matrix
Γ, define the norm ‖X‖ = (X ′ΓX)1/2. Because Γ is diagonalizable with strictly positive
eigenvalues, we can always transform the vector X so that the matrix Γ becomes the
(p × p) identity matrix. As a result, without loss of generality, we will consider only
Γ = I. In the synthetic control framework, model selection – that is, the choice of
the variables included in X – is operationalized through the choice Γ, which rescales or
weights each predictor in X according to its predictive power on the outcome (see Abadie
et al., 2010). In a setting with many treated and untreated units, the standard synthetic
control estimation procedure is as follows:

1. For each treated unit, i = 1, . . . , n1, compute the n0-vector of weights W ∗
i =

(W ∗
i,n1+1, . . . ,W

∗
i,n) that solves

min
Wi∈Rn0

∥∥∥∥∥Xi −
n∑

j=n1+1

Wi,jXj

∥∥∥∥∥
2

(3.4)

s.t. Wi,n1+1 ≥ 0, . . . ,Wi,n ≥ 0,
n∑

j=n1+1

Wi,j = 1,

where W ∗
i,j is the weight given to control unit j in the synthetic control unit corre-

sponding to treated unit i.

2. Estimate τ using the mean difference between the realized outcome and the syn-
thetic outcome for the treated

τ̂ =
1

n1

n1∑
i=1

[
Yi −

n∑
j=n1+1

W ∗
i,jYj

]
, (3.5)

Notice that τ̂ is the estimator in equation (3.3) reweighting each nontreated unit, j =
n1 + 1, . . . , n, by Vj = (n0/n1)

∑n1

i=1W
∗
i,j, with W ∗

i,j = 0 for i ≥ n1 + 1.
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While, to simplify notation, we described here a cross-sectional setting only, the extension
to the more common panel data setting for synthetic controls is immediate and we will
use it later (see Section 5).

2.2. Penalized Synthetic Control

The main contribution of this article is to propose a penalized version of the synthetic
control estimator in equation (3.4). For treated unit i and given a positive penalization
constant λ, the penalized synthetic control weights, W ∗

i,j(λ), solve

min
Wi∈Rn0

∥∥∥∥∥Xi −
n∑

j=n1+1

Wi,jXj

∥∥∥∥∥
2

+ λ
n∑

j=n1+1

Wi,j‖Xi −Xj‖2 (3.6)

s.t. Wi,n1+1 ≥ 0, . . . ,Wi,n ≥ 0,
n∑

j=n1+1

Wi,j = 1.

The penalized synthetic control estimator is then given by

τ̂(λ) =
1

n1

n1∑
i=1

[
Yi −

n∑
j=n1+1

W ∗
i,j(λ)Yj

]
. (3.7)

The tuning parameter λ sets the trade-off between componentwise and aggregate fit. The
choice of the value of λ is important and will be discussed in Section 5. The penalized
synthetic control estimator encompasses both the synthetic control estimator and the
nearest-neighbor matching as special polar cases. At one end of the spectrum, as λ→ 0,
the penalized estimator becomes the synthetic control that minimizes the sum of pair-
wise matching discrepancies among the set of synthetic controls that best reproduce the
characteristics of the treated units. Our motivation to choose among synthetic controls
that fit the treated unit equally well by minimizing the sum of pairwise matching dis-
crepancies is to reduce worst-case interpolation biases. At the other end of the spectrum,
as λ → ∞, the penalized estimator becomes the one-match nearest-neighbor matching
with replacement estimator in Abadie and Imbens (2006).

Let X0 be the (p× n0) matrix with column j equal to Xn1+j, and let ∆i be the (n0 × 1)
vector with j-th element equal to ‖Xi−Xn1+j‖2. Moreover, let ∆NN

i = minj=1,...,n0 ‖Xi−
Xn1+j‖2 be the smallest discrepancy between unit i and the units in the donor pool.
Finally, let W ∗

i (λ) be a solution to (3.6), and ∆∗i (λ) = ‖Xi −X0W
∗
i (λ)‖2 be the square

of the discrepancy between unit i and the (penalized) synthetic control.

Lemma 3.1 (Discrepancy Bounds) For any λ ≥ 0

0 ≤ ∆∗i (λ) ≤ ∆NN
i ,
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and for λ > 0

∆NN
i ≤ ∆′iW

∗
i (λ) ≤ 1 + λ

λ
∆NN
i .

All proofs are in the appendix.

The first result in Lemma 3.1 states that the synthetic unit is contained in a closed ball of
center Xi and radius equal to the distance to the nearest-neighbor,

√
∆NN
i . The second

result implies that the tuning parameter λ controls the compound discrepancy between
the treated unit and the units that contribute to the synthetic control, ∆′iW

∗
i (λ).

Some remarks are in order to justify the choice of the penalization term in equation (3.6).
First, notice that the penalty term is linear rather than quadratic in the weights. This
has the advantage of producing easy-to-interpret sparse solutions, similarly to a matching
procedure.

In addition, the optimization problem in (3.6) can be solved via quadratic programming,
like the standard synthetic control in (3.5). To see why notice that we can express the
optimization problem in (3.6) as

min
W∈Rn0

(Xi −X0W )′ (Xi −X0W ) + λ∆′iW (3.8)

s.t. 1′n0
W = 1,W ≥ 0,

where 1n0 is the (n0 × 1) vector of ones and the inequality restriction applies to each
component of W .

A third remark has to do with uniqueness of the solution. In the absence of the penalty
term (that is, when λ = 0), the problem in (3.6) and (3.8) can be solved by projecting
Xi on the convex hull of X0. Existence of sparse solutions follows from Carathéodory’s
theorem. However, if λ = 0 the solution to the problem in (3.6) and (3.8) may not
be unique if Xi belongs to the convex hull of the columns of X0. Adopting λ > 0
penalizes solutions with potentially large interpolation biases created by large matching
discrepancies and produces uniqueness and sparsity as stated in the following result.

Theorem 3.1 (Uniqueness and Sparsity) Suppose that any submatrix composed by
rows of [X ′0 1n0 ∆i] has full rank. Then, if λ > 0 the optimization problem in equation
(3.6) admits a unique solution W ∗

i (λ) with at most p+ 1 non-zero components.

Notice that the condition that any submatrix composed by rows of [X ′0 1n0 ∆i] has full
rank implies that there are no two control units with the same values of the predictors.
It also implies that there is no set of control units of cardinality p+ 2 or larger such that
the values of the predictors belong to a sphere with center at Xi.

Example: Consider a simple numerical example with only one covariate. Suppose, there
is one treated unit with X1 = 2 and three control units with X2 = 1, X3 = 4 and X4 = 5.
This simple setting is depicted in Figure 3.1.Notice that X1 belongs to [1, 5], the convex hull of the columns of X0 and ∆1 = (1, 4, 9)′.
Consider first the case with λ = 0. Then, W ∗(0) = (2/3, 1/3, 0)′ and W ∗∗(0) =
(3/4, 0, 1/4)′ are the only two sparse solutions (with number of non-zero weights not
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Figure 3.1: A simple example

X2 X1 X3 X4

1 2 3 4 5

d d du

greater than p + 1 = 2) to (3.6). The first sparse solution, W ∗(0), interpolates X1 = 2
using X2 = 1 and X3 = 4. The second sparse solution, W ∗∗(0) is of lower quality relative
to W ∗(0) in terms of compound discrepancy, as it uses an interpolation scheme that re-
places X3 with X4, an observation farther away from X1. As a result, W ∗(0) is preferred
over W ∗∗(0) in terms of worst case interpolation bias (e.g., under a Lipschitz bound on
E[Y |X,D = 0]). However, the better compound fit of W ∗(0) is not reflected in a better
value in the objective function in (3.4). Moreover, because any convex combination of
W ∗(0) and W ∗∗(0) is also a solution, the problem in (3.4) has an infinite number of solu-
tions, W∗0 = {aW ∗(0) + (1− a)W ∗∗(0) : a ∈ [0, 1]}. Let V̄ (a) = aW ∗(0) + (1− a)W ∗∗(0).
The compound discrepancy of V̄ (a) is

∆′iV̄ (a) = 3− a.

From Figure 1, it is apparent that W ∗(0), which is obtained making a = 1, produces the
lowest compound discrepancy among all the solutions to equation (3.4).

When λ > 0, however, the program (3.6) has a unique solution, which is sparse:

W ∗(λ) =

{
(2 + λ/2, 1− λ/2, 0)′/3 if 0 < λ ≤ 2,
(1, 0, 0)′ if λ > 2.

Notice that W ∗(λ) never puts any weight on X4. As λ→∞, W ∗(λ) selects the nearest-
neighbor match, and as λ→ 0, W ∗(λ) converges to W ∗(0), the (non-penalized) synthetic
control in W∗0 with the smallest compound discrepancy. �

The next theorem provides a characterization of the units contributing to a particular
synthetic control, X0W

∗
i (λ) with λ > 0, as vertices of the face of the Delaunay complex

(i.e. of a simplex) containing X0W
∗
i (λ) in the Delaunay tessellation of Xn1+1, . . . , Xn.

For general references on Delaunay tessellations and related concepts, see Okabe et al.
(2000); Boissonnat and Yvinec (1998).

Theorem 3.2 (Delaunay Property I) Let W ∗
i (λ) be a solution to the penalized syn-

thetic control problem in (3.6) with λ > 0. Consider the Delaunay tessellation induced
by the columns of X0. Then, for any control unit j = n1 + 1, . . . , n, such that Xj is not a
vertex of the face of the Delaunay complex containing X0W

∗
i (λ), it holds that W ∗

i,j(λ) = 0.

This result along with the first part of Lemma 3.1, which bounds ‖Xi − X0W
∗
i (λ)‖,

provides a notion of proximity between each treated unit Xi and the untreated units
that contribute to its synthetic control. Theorem 3.2 provides also a simple way to
compute the solution for the “pure synthetic control” case (λ → 0) that does not entail
the choice of an arbitrarily small value of λ to use in (3.6). Recall that when λ = 0, the
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problem of minimizing ‖Xi−X0W‖ subject to the weight constraints may have multiple
(infinite) solutions, in which case Xi = X0W for all solutions. In the presence of multiple
solutions, the pure synthetic control case selects the solution that produces the lowest
compound discrepancy, W ′∆i, among all W such that Xi = X0W . Directly solving
(3.6) for λ → 0 requires, in practice, a choice of a small value for λ. It also creates
computational difficulties, as the minimization problem is close to one with multiple
solutions and the dimension of W may be large. Theorem 3.2 provides a solution to
these problems, because it implies that the solution of (3.6) for λ→ 0 can assign positive
weights only to the vertices of the face in the Delaunay tessellation of Xn1+1, . . . , Xn that
contains the projection of Xi on the convex hull of the columns of X0. As a result, it is
enough to solve (3.6) allowing only positive weights on the observations that represent
the vertices of the Delaunay face that contains the projection of of Xi on the convex hull
of the columns of X0. In high dimensional settings, however, the large computation costs
of Delaunay triangulations may make this approach unfeasible.

The next theorem shows that untreated units contributing to the synthetic control are
connected to the treated unit through an edge in the augmented Delaunay tessellation
induced by Xi and the columns of X0.

Theorem 3.3 (Delaunay Property II) Suppose that the columns of [Xi X0] are in
General Quadratic Position. Let W ∗

i (λ) be a solution to the penalized synthetic control
problem in (3.6) with λ > 0. Consider the Delaunay tessellation induced by the columns
of X0 and the treated Xi, and denote Ii the set of indices of points in {Xn1+1, . . . , Xn} that
are connected to Xi through a Delaunay edge. For any j 6∈ Ii, it holds that W ∗

i,j(λ) = 0.

Theorem 3.3 provides a necessary condition for an untreated unit to take part in the
synthetic unit: it has to be connected to the treated in the augmented tessellation.
It therefore restricts the donor pool to these units connected to the treated and as such
provides a way to decompose the computation of the synthetic control. Most importantly,
this theorem also helps us controlling the probability of being assigned a non-zero weight,
conditional on the donor pool, which we need to study the large-sample behavior of the
synthetic control estimator (3.7). The assumption that the columns of [Xi X0] are in
General Quadratic Position ensures the existence and the uniqueness of the augmented
Delaunay tessellation (Okabe et al., 2000, Property D1). It requires the set of the n0 + 1
points {Xi, Xn1+1, . . . , Xn} to satisfy the following assumptions (Moller, 1994): (i) for
k = 2, . . . , p, no k+1 points lie in a (k−1)-dimensional hyperplane of Rp (non-collinearity)
and (ii) when n0 + 1 ≥ p+ 2, for k ≥ p+ 2, there does not exist a hypersphere such that
k points are on this hypershpere and all other points are outside of it (non-cosphericity).
Notice that it is verified almost surely if the columns of [Xi X0] are distributed according
to a measure absolutely continuous with respect to the Lebesgue measure.

Figure 3.2 illustrates Lemma 3.1 and Theorems 3.2-3.3. The top-left panel displays the
treated (black cross) on the Delaunay triangulation of untreated units. The top-right
panel draws the synthetic unit as λ changes (as λ increases, the solution drifts toward the
nearest neighbor and away from the treated – solid black line) and the circle centered on
the treated of radius equal to the distance between the treated and its nearest neighbor.
Notice that the synthetic unit is never located outside of this circle, as per Lemma 3.1.
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Figure 3.2: Geometric properties of penalized synthetic control estimator
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The bottom left panel shows the four untreated (black dots) that have a non-zero weight
across some solutions of the penalized synthetic control as λ changes. They are the
vertices of the two triangles where the synthetic unit is located, as per Theorem 3.2.
The bottom-right panel shows that these units are also connected to the treated in the
augmented Delaunay triangulation, as per Theorem 3.3. However, notice that being
connected to the treated is only a necessary condition and is not sufficient.

2.3. Bias-Corrected Synthetic Control

We will also consider bias-corrected versions of synthetic control estimator. We adopt a
bias correction analogous to that implemented in Abadie and Imbens (2011) for matching
estimators. Let µ0(x) = E[Y |X = x,D = 0], and µ̂0(x) be an estimator of µ0(x). A
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bias-corrected version of the synthetic control estimator in equation (3.7) is

τ̂BC(λ) =
1

n1

n1∑
i=1

[(
Yi − µ̂0(Xi)

)
−

n∑
j=n1+1

W ∗
i,j(λ)

(
Yj − µ̂0(Xj)

)]
. (3.9)

In independent research, Ben-Michael et al. (2019) propose a related bias-correction for
the synthetic control method.

3. Large Sample Properties

In this section we analyze the large sample properties of the penalized synthetic control
estimator (3.7). Let µ1(x) = E[Y |X = x,D = 1]. And let Sj(λ) =

∑n1

i=1W
∗
i,j(λ) be

the sum of weights given to untreated unit j across all synthetic units. Notice that
τ̂(λ)− τ = Bn(λ) +Mn(λ), where

Bn(λ) =
1

n1

n1∑
i=1

(
µ0(Xi)−

n∑
j=n1+1

W ∗
i,j(λ)µ0(Xj)

)
,

Mn(λ) =
1

n1

n∑
i=1

Di (µ1(Xi)− µ0(Xi)− τ) +
1

n1

n∑
i=1

(Di − (1−Di)Si(λ)) (Yi − µDi(Xi)) .

Bn(λ) is a bias term, while Mn(λ) has mean zero and can be expressed as a martingale
with respect to a certain filtration. First, consider the bias term.

3.1. Bias

Assumption 3.4 (Regularity Conditions) Suppose (i) P0, the probability measure of
X for the non-treated, admits a density that is bounded away from zero and above by a
constant on compact and convex support X ; (ii) µ0(.) is Lipschitz continuous on X .

Lemma 3.2 (Bias Bound) Under Assumptions 3.1, 3.2, 3.3 and 3.4, if λ > 0:

Bn(λ) = OP (n−1/p).

The bias term of the estimator, Bn(λ), exhibits a similar behavior to the one studied in
Theorem 1 of Abadie and Imbens (2006) for matching estimators.

3.2. Consistency

For d = 0, 1, let σ2
d(x) = var (Y |X = x,D = d).

Assumption 3.5 (Regularity Conditions, Consistency) Assume: (i) E
[
|Y |
∣∣D =

1
]
< ∞; (ii) σ2

0(.) is bounded on X by σ̄2
0 < ∞ a.s.; (iii) for j = n1 + 1, . . . , n,

(n0/n
2
1)E[Sj(λ)2|D = 0]→ 0.
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Theorem 3.4 (Consistency) Consider the estimator, τ̂(λ), defined in equation (3.7)
with weights W ∗

i,j(λ) defined in equation (3.6) and λ > 0. Under Assumptions 3.1, 3.2,
3.3, 3.4 and 3.5:

τ̂(λ)− τ = Mn(λ) +Bn(λ)
p−→ 0, as n1, n0 →∞.

3.3. Asymptotic Normality

In order to show asymptotic normality of the penalized synthetic control estimator, we
employ the martingale representation derived in Abadie and Imbens (2012) for matching
estimators. This representation allows us to use elegant results from martingale limit
theory (Hall and Heyde, 1980) to circumvent the difficulty posed by the dependence
between the sums of weights given to two different untreated units across all the synthetic
controls. Notice that

√
n1Mn(λ) =

2n∑
k=1

ξn,k,

where

ξn,k =


1
√
n1

Dk (µ1(Xk)− µ0(Xk)− τ) if 1 ≤ k ≤ n,

1
√
n1

(Dk−n − (1−Dk−n)Sk−n(λ))
(
Yk−n − µDk−n(Xk−n)

)
if n+ 1 ≤ k ≤ 2n.

Let Xn = {X1, ..., Xn}, Dn = {D1, ..., Dn} and consider Fn,k = σ(Dn, X1, ..., Xk) for
k ≤ n and Fn,k = σ(Dn,Xn, Y1, ..., Yk−n) for k > n. It follows that{

j∑
k=1

ξn,k,Fn,j, 1 ≤ j ≤ 2n

}

is a martingale.

Assumption 3.6 (Regularity Conditions, Asymptotic Normality) Assume: (i) E[Y 4

|X = x,D = d] <∞ and is uniformly bounded in x for d = 0, 1; (ii) σ2
d(.) for d = 0, 1 is

bounded from above and away from zero; (iii) for j = n1 + 1, . . . , n, (1/n0)E[Sj(λ)4|D =
0] → 0; (iv) for j = n1 + 1, . . . , n, k 6= j, either Cov(Sj(λ)2σ2

0(Xj), Sk(λ)2σ2
0(Xk)) ≤ 0,

or Cov(Sj(λ)2σ2
0(Xj), Sk(λ)2σ2

0(Xk))→ 0.

Theorem 3.5 (Asymptotic Normality) Consider the estimator τ̂(λ) defined in equa-
tion (3.7) with weights W ∗

i,j(λ) defined in equation (3.6). Under Assumptions 3.1, 3.2,
3.3, 3.5 and 3.6, if λ > 0:

σ̂−1(λ)
√
n1Mn(λ) = σ̂−1(λ)

√
n1 (τ̂(λ)− τ −Bn(λ))

d−→ N (0, 1), as n1, n0 →∞,
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where

σ̂2(λ) :=
1

n1

n∑
i=1

Di (µ1(Xi)− µ0(Xi)− τ)2 +
1

n1

n∑
i=1

Diσ
2
1(Xi) + (1−Di)Si(λ)2σ2

0(Xi).

In practice, as in Abadie and Imbens (2006, section 4), σ̂2(λ) can be replaced by an
estimator that does not require consistent estimation of the unknown functions, µ1(),
µ0(), σ2

1() and σ2
0().

Of independent interest, we develop methods in the proofs of Theorems 3.4 and 3.5 that
can also be applied to derive the large sample distribution of any estimator of ATET
of the form in equation (3.5), where the weights on the untreated depend on treatment
status and covariates but not on outcomes, and they sum to one across the second index.
This class includes the matching and hot-deck imputation estimators studied in Abadie
and Imbens (2006, 2012).

3.4. Asymptotic Behavior of S(λ)

Assumptions 3.5(iii) and 3.6(iii)-(iv) regarding the asymptotic behavior of Sj(λ) are high-
level. This section provides low-level assumptions under which they hold.

Assumption 3.7 (Regularity Conditions on Covariate Distributions) (i) P0, the
probability measure of X for the non-treated, admits a density that is Hölder continuous;
(ii) P1, the probability measure of X for the treated, admits a bounded density f1 on X ,
such that for x ∈ X , f1(x) ≤ f 1; (iii) there exist constants κ < p and C∂X > 0 such
that the inside covering number of ∂X , N(∂X , ε) ≤ C∂X ε

−κ; (iv) n1/n0 is bounded by a
constant.

The first three parts of Assumption 3.7 in addition to Assumption 3.4(i) are required to
control the volume of the largest hypersphere that does not contain any untreated unit,
using results from the stochastic geometry literature (Janson, 1987; Aaron et al., 2017).
Intuitively, a control on the largest empty hypersphere is useful because a necessary
condition for W ∗

i,j(λ) > 0 is that Xi is linked to Xj in the Delaunay tesselation induced
by Xi and the columns of X0 (see Theorem 3.3). Such an event can only happen if Xi

falls into the (empty) circumscribed hypersphere of any of the Delaunay simplex that has
Xj as a vertex in the Delaunay tesselation induced by the columns of X0. The volume
of the largest empty hypersphere, i.e. of the largest hypersphere that does not contain
any non-treated unit, provides a control on the conditional probability that W ∗

i,j(λ) > 0
and ultimately on the behavior of Sj(λ) =

∑n1

i=1W
∗
i,j(λ). The last part of Assumption

3.7 requires that the number of treated is proportional to the number of untreated.

Lemma 3.3 (Control of S(λ)) Under Assumptions 3.1, 3.2, 3.4(i) and 3.7, for any
j = n1 + 1, . . . , n, and λ > 0, Sj(λ) =

∑n1

i=1 W
∗
i,j(λ), the sum of weights given to control

unit j across all synthetic units is such that for m ≥ 1,

n0

n2
1

E [Sj(λ)m|D = 0]→ 0, as n1, n0 →∞.
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Assumption 3.6(iv) is more complex to verify. For the sake of discussion, let us suppose
that σ2

0(x) is constant over the support X . Intuitively, the negative covariance of the
squares could be viewed as a consequence of the Negative Association (NA) property of
the random variables Sn1+1(λ), . . . , Sn(λ). However, the NA property is not straightfor-
ward, as e.g. Theorem 2.6 in Joag-Dev and Proschan (1983) does not apply, even though
for any partition (I, J) of {n1 + 1, . . . , n}, and any non-decreasing functions f1, f2, we

have that Cov
(
f1

(∑
j∈I Sn1+j(λ)

)
, f2

(∑
j∈J Sn1+j(λ)

))
≤ 0 by Chebychev’s inequal-

ity. Furthermore, Assumption 3.6(iv) would also hold – still by Chebychev’s inequality
– if x → E[Sn1+1(λ)2|Sn1+2(λ) = x] was a decreasing function, a result in the flavor of
Efron (1965). Monte Carlo simulations using the design of Section 6 not reproduced in
the present article provide evidence that Assumption 3.6(iv) indeed holds as we never
reject it at a level of 5% for a wide range of possible values of n1, n0 and p.

4. Permutation Inference

The results of Section 3 provide an asymptotic approximation to the distribution of
synthetic control estimators (as n1, n0 → ∞). When large samples of treated and non-
treated are available, those results provide the basis for inferential exercises on ATET. In
other cases, however, the number of sample units may not be large enough to justify an
asymptotic approximation to the distribution of the penalized synthetic control estimator.

In this section, we adapt the inferential framework in Abadie et al. (2010) to the penalized
synthetic control estimators of Section 2. Like in Abadie et al. (2010), our inferential
exercises compare the value of a test statistic to its permutation distribution induced by
random reassignment of the treatment variable in the data set. This inferential exercise
is exact by construction, regardless of the number of sample units. We next describe two
possible implementations that employ different test statistics and permutation schemes.
Alternative test statistics and permutation schemes are possible and, in practice, the
choice among them should take into account the nature of the parameter(s) of interest
(e.g., individual vs. aggregate effects), the characteristics of the intervention that is
the object of the analysis and the structure of the data set. Randomized reassignment
of the treatment in the data is taken here as a benchmark against which we evaluate
the rareness of the sample value of a test statistic, and it may not reflect the actual
and typically unknown treatment assignment process (see Abadie et al., 2010, 2015).
Firpo and Possebom (2018) propose a procedure to assess the sensitivity of permutation
inference to deviations from the reassignment benchmark.

4.1. Inference on Aggregate Effects

Here we outline a simple permutation procedure that employs a test statistic, T̂ , that
measures aggregate effects for the treated. Examples of aggregate statistics of this type
are the synthetic controls estimators in equations (3.7) and (3.9). Similar to Abadie

et al. (2010), in a panel data setting T̂ can be based on the ratio between the aggregate
mean square prediction error in a post-intervention period T1 ⊆ {T0 + 1, . . . , T} and a
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pre-intervention period T0 ⊆ {1, . . . , T0},

∑
t∈T1

(
n1∑
i=1

τ̂it(λ)

)2/∑
t∈T0

(
n1∑
i=1

τ̂it(λ)

)2

. (3.10)

Let Dobs = (D1, ..., Dn) be the observed treatment assignment. We will write T̂ (Dobs) to

indicate the value of the test statistic in the sample, and T̂ (D) to indicate the value of
the test statistic when the treatment values are reassigned in the data as indicated in D.
The test is as follows:

1. Compute the treatment effect estimate in the original sample T̂ (Dobs).

2. At each iteration, b = 1, . . . , B, permute at random the components of Dobs to
obtain T̂ (D(b)).

3. Calculate p-values as the frequency across iterations of values of T̂ (D(b)) more

extreme than T̂ (Dobs). Typically, for two-sided tests:

p̂ =
1

B + 1

(
1 +

B∑
b=1

1
{
|T̂ (D(b))| ≥ |T̂ (Dobs)|

})
.

For one sided tests:

p̂ =
1

B + 1

(
1 +

B∑
b=1

1
{
T̂ (D(b)) ≥ T̂ (Dobs)

})
,

or

p̂ =
1

B + 1

(
1 +

B∑
b=1

1
{
T̂ (D(b)) ≤ T̂ (Dobs)

})
.

4.2. Inference Based on the Sum of Rank Statistics of Unit-Level
Treatment Effects Estimates

Similar to Dube and Zipperer (2015), we propose a test based on the rank statistics
of the unit-level treatment effects. Unlike the test in Dube and Zipperer (2015), we
calculate the permutation distribution directly from the data. The test we employ is
based on the sum of ranks of individual treatment effects in the ordered sample combining
the n1 × (B + 1) unit-level treatment effects for the actual assignments and B random

permutations. Individual treatment effects, T̂i, may be based on differences in outcomes
between treated and synthetic controls,

Yi −
n∑

j=n1+1

W ∗
i,j(λ)Yj,
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bias corrected versions of the unit-level treatment effects,

(Yi − µ̂0(Xi))−

(
n∑

j=n1+1

W ∗
i,j(λ)Yj − µ̂0(Xj)

)
,

or unit-level versions of the mean squared prediction error ratio in equation (3.10). The
test is implemented as follows:

1. Compute unit-level measures treatment effects for the treated, T̂i, for i = 1, . . . , n1,
under the actual treatment assignment, Dobs.

2. At each iteration b = 1, . . . , B, permute at random the components of Dobs to obtain
treatment effects T̂i(D

(b)) for the treated. Denote these estimates T̂
(b)
1 , . . . , T̂

(b)
n1 (in

arbitrary order).

3. Calculate the ranks R1, . . . , Rn1 , R
(1)
1 , . . . , R

(1)
n1 , . . ., R

(B)
1 , . . . , R

(B)
n1 associated to the

n1 × (B + 1) individual treatment effect estimates T̂1, . . . , T̂n1 , T̂
(1)
1 , . . . , T̂

(1)
n1 , . . .,

T̂
(B)
1 , . . . , T̂

(B)
n1 (or of their absolute values or negative values) and the sums of ranks

for each permutation, SR =
∑n1

i=1Ri, SR
(b) =

∑n1

i=1R
(b)
i , b = 1, . . . , B.

4. Calculate p-values as:

p̂ =
1

B + 1

(
1 +

B∑
b=1

1
{
SR(b) ≥ SR

})
.

5. Penalty Choice

We present two data-driven selectors for the penalty term, λ. In the context of treatment
effects estimation, cross-validation is complicated by the absence of data on a “ground
truth” (that is, on the values of Y0 for the treated units in the post-intervention periods,
see Athey and Imbens, 2016). Since synthetic controls are often applied to panel data,
we consider a balanced panel data setting with T periods and T0 < T pre-intervention
periods. We define Yit as the outcome for unit i at time t. Adaptation of (3.6) and
(3.7) to the panel data setting is straightforward by allowing Xi to potentially include
multiple pre-intervention values of the outcome variable and of other predictors of post-
intervention outcomes.

The first selector proposed in this section is based on cross-validation on the outcomes on
the untreated units in the post-intervention period. The second selector uses a strategy
similar to the model selection procedure in Abadie et al. (2015), minimizing Mean Squared
Prediction Error (MSPE) in a hold-out pre-intervention period.
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5.1. Leave-One-Out Cross-Validation of Post-Intervention Outcomes for the
Untreated

This section discusses a leave-one-out cross-validation procedure to select λ by minimizing
mean squared prediction error for the untreated units in the post-intervention period. The
procedure is as follows:

1. For each control unit i = n1 + 1, ..., n, and each post-intervention period, t =
T0 + 1, . . . , T , calculate

τ̂it(λ) = Yit −
n∑

j=n1+1
j 6=i

W ∗
i,j(λ)Yjt,

where W ∗
i,j(λ) is a synthetic control for unit i that is produced by the donor pool

{n1 + 1, . . . , n}\{i}.

2. Choose λ to minimize some measure of loss, such as the mean squared prediction
error for the individual outcomes,

1

n0(T − T0)

n∑
i=n1+1

T∑
t=T0+1

(
τ̂it(λ)

)2

.

5.2. Pre-Intervention Holdout Validation on the Outcomes of the Treated

An alternative selector of λ is based on validation over the outcomes for the treated
on a hold out pre-intervention period. This is similar in spirit to the model selection
procedure in Abadie et al. (2015). To simplify the exposition, and because it may be
the most natural choice, we will only describe the case where the training and validation
periods come immediately before the intervention, although other choices are possible.
Let h and k be the lengths of the training and validation periods, respectively. The
validation period comprises the k periods immediately before the intervention, and the
training period comprises the h periods immediately before the validation period. The
procedure is as follows:

1. For each treated individual, i, and validation period, t ∈ {T0 − k + 1, . . . , T0},
compute

τ̂it(λ) = Yit −
n∑

j=n1+1

W ∗
i,j(λ)Yjt,

where W ∗
i,j solve (3.6) with X1, . . . , Xn measured in the training period.

2. Choose λ to minimize a measure of error, such as the sum of the squared prediction

80



for the individual outcomes,

n1∑
i=1

T0∑
t=T0−k+1

(
τ̂it(λ)

)2

,

or the squared prediction error of the aggregate outcomes,

T0∑
t=T0−k+1

(
n1∑
i=1

τ̂it(λ)

)2

.

Notice that the cross-validation procedures delineated can also be applied here to guide
model selection (i.e., choice of the weight for each covariate in the minimization program)
as in Abadie et al. (2015).

6. Simulations

This section reports the results of a Monte Carlo experiment that investigates the finite
sample properties of the penalized synthetic control estimator relative to its unpenal-
ized version (λ = 0) and to the nearest-neighbor matching estimator in a panel data
framework.

The data generating process is as follows. Let Xmi be the m-th component of Xi. The
simulation design includes two periods: a pre-intervention period (t = 1), and a post-
intervention period (t = 2). Irrespective of the treatment status, the outcome at date

t ∈ {1, 2} is generated by Yit =
(∑p

j=1X
r
mi

)
/β + εit with r a positive real governing

the degree of linearity of the outcome function. Hence, the treatment effect is zero. For
any t, εit ⊥⊥ Xi and εit is standard normal. For the n1 treated units, Xi, is a vector of
dimension p with i.i.d. entries uniformly distributed on [.1, .9]. For the n0 control units,
Xi is a vector of the same dimension with i.i.d. entries distributed as

√
U , where U is

uniform on [0, 1] We set β =

√
var
(∑p

j=1 X
r
mi|Di = 1

)
, so that var(Yi,t|Di = 1) = 2 and

the signal-to-noise ratio for the treated is equal to one.

We compare the performances of synthetic control and matching estimators. We will
consider these two estimators with a fixed choice and a data-driven choice of λ and M .
Under the fixed procedure, we impose λ → 0 for the synthetic control and M = 1 in
the matching estimator, encompassing both polar cases of the penalized synthetic control
estimator highlighted in this paper. The case λ→ 0 is referred to as the “pure synthetic
control”. Among all the solutions to the unpenalized synthetic control optimization
problem in equation (3.4), it selects the one with the smallest componentwise matching
discrepancy,

∑n
j=n1+1Wi,j‖Xi − Xj‖2. The computation of the pure synthetic control

estimator is based on the result in Theorem 3.2 and discussion thereafter. The pure
synthetic control estimator is not to be confused with the non-penalized synthetic control
(λ = 0), for which we also report results, and which does not take into account the
compound discrepancy. The data-driven choice of λ and M uses the first period outcome
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to minimize the mean square error (MSE) over that period. In other words, we follow
the second procedure in Section 5. At each simulation step, λ and M are chosen so as to
minimize

MSE(λ) =
1

n1

n1∑
i=1

(
Yi1 −

n∑
j=n1+1

W ∗
i,j(λ)Yj1

)2

,

and

MSE(M) =
1

n1

n1∑
i=1

Yi1 − 1

M

∑
j∈JM (i)

Yj1

2

,

respectively, where JM(i) is the set of indices of the M control units that are the nearest
to treated unit i as measured by the euclidean norm. We also report a bias-corrected
version of the estimators as in Section 2.3, based on a linear specification.

The degree of the outcome function, r, is the key parameter governing the relative per-
formances of the candidate estimators. When r = 1, the outcome function is linear, in
which case we expect the unpenalized and pure synthetic control estimators to do well,
while the 1-to-1 matching should do relatively worse. In this setting, we expect the data
driven value of λ be small. As r increases, the unpenalized and pure synthetic control
estimators should suffer from a larger interpolation bias, while the performance of the
1-to-1 matching should improve. We expect the data-driven value of λ to increase with
r.

For each configuration and each estimator, we report four statistics computed on the
treated sample in the second period. The first is the individual-level MSE defined as

1

B

B∑
b=1

1

n1

n1∑
i=1

(
τ̂

(b)
i2

)2

.

The second is the aggregate-level MSE

1

B

B∑
b=1

(
1

n1

n1∑
i=1

τ̂
(b)
i2

)2

.

The third is the aggregate absolute bias∣∣∣∣∣ 1

B

B∑
b=1

1

n1

n1∑
i=1

τ̂
(b)
i2

∣∣∣∣∣ .
The last is the average sparsity defined as the average number of control units used in
the match to a given treated unit, i.e., number of non-zero entries of W ∗

i (λ) or number
of matches in the optimized matching procedure.

The results are reported in Tables 3.1, 3.2 and 3.3 for n0 ∈ {20, 40, 100} respectively, each
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time with n1 = 10. Table 3.4 reports results for n1 = 100, n0 = 500. For Table 3.4, the
pure synthetic control is omitted because of the high computational cost of calculating
Delaunay triangulations for the setting in the table. Each table is divided into sixteen
blocks corresponding to a particular value of (p, r). Each block is divided into two parts:
the upper half reports the results without bias-correction and the lower half reports results
with a bias-correction based on a linear specification of the regression function. Results
are color-coded column-by-column within each half-block on a continuous color scale. For
the upper half-block, the scale varies from dark blue (minimum column value) to light
yellow (maximum column value). For the lower half-block, the scale varies from bright
red (minimum column value) to light yellow (maximum column value).

Looking at Tables 3.1-3.3, several observations can be made. First, both the penalized and
the pure synthetic control estimators consistently outperform the matching procedures
across all three measures of performance. This advantage appears to be increasing with
p, the dimension of the covariates. Second, the unpenalized synthetic control estimator
shows mixed results, especially when p is small, but catches up with the pure synthetic
control estimator as p increases, which is expected. Indeed, the pure and unpenalized
synthetic control estimators coincide for treated units outside of the convex hull of the
untreated. And as the dimensionality of the matching variables increases, the probability
that a treated unit falls outside the convex hull of the untreated becomes large. Third,
the advantage of the penalized and pure synthetic control estimators with respect to the
bias slightly decreases as the degree of the outcome function r increases. When r is
relatively large, the matching procedure displays a low bias as expected, albeit at the
expense of a very large individual MSE. These three observations are magnified in Table
3.4 where the penalized synthetic control performs consistently well in each of the sixteen
blocks. The biases of the estimators go down substantially when we adopt the bias-
correction procedure of Section 2.3. Here, it is more difficult to rank estimators based
on the simulation as the amount of bias corrected by the procedure is different for each
estimator in a way that may be directly linked to the simulation design. That said, the
overall patterns of relative performance of the bias-corrected estimators is similar to that
of the the non-corrected estimators, albeit with more muted differences in performance.

Overall, Tables 3.1-3.4 give evidence that the penalized synthetic control estimator strikes
a favorable bias-variance trade-off by combining the strength of matching and (unpenal-
ized) synthetic control.

7. Empirical Applications

7.1. The Value of Connections in Turbulent Times, Acemoglu et al. (2016)

We revisit Acemoglu et al. (2016) which analyzes the effect of the announcement of the
appointment of Tim Geithner as Treasury Secretary on November 21, 2008 on stock
returns of firms that were connected to him. To choose λ we employ the pre-intervention
holdout procedure of Section 5.2. The training sample uses stock returns over a 250-day
window that ends 30 days prior to the Geithner announcement. The validation sample
to select the tuning parameter λ uses returns on the following 30-day window. Abnormal
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returns are defined as the difference between a connected firm’s returns and its synthetic
control’s returns. The measure of the announcement effect is the Cumulative Abnormal
Returns (CAR) defined as the sum of abnormal returns since the announcement day.

Our methodology differs in a few ways from the original study, albeit we start with the
same base sample. To mitigate complications caused by lack of uniqueness of the synthetic
control estimator, Acemoglu et al. (2016) construct synthetic controls on the basis of
pretreatment stock returns and restrict the units entering each synthetic control to the
20 untreated units with the highest correlation in returns with the treated unit during the
training window. This is a clever ad-hoc solution to the non-uniqueness problem described
in Section 1, but it does not easily generalize to contexts where synthetic controls are
constructed on the basis of multiple characteristics, and leaves unaddressed the issue of
how to decide on the maximum number of units that contribute to the synthetic controls.
Instead, we use the full sample of control units and apply the penalized synthetic control
estimator proposed in this article, without the pre-selection step in Acemoglu et al.
(2016). Moreover, the original study re-weights the CAR of each treated by goodness-of-
fit instead of using a simple average across the treated (see equation (7) in their paper).
The authors argue that treated firms for which their corresponding synthetic unit better
fits its returns over the pre-treatment period should be emphasized because they contain
more information. While this assertion makes intuitive sense, especially for cases when a
lack of common support prevents a particular treated unit from being well reproduced by
a convex combination of control units, the properties of such an estimator are unknown
and not covered in the theoretical part of our work.

Table 3.5 reports results. Estimates labeled “corrected inference” discard permuted
treated units for which the pre-treatment MSE was three times larger than the mean
pre-treatment MSE for the treated units, as in Acemoglu et al. (2016). The results in
Table 3.5 are qualitatively similar to the original study, albeit more muted: significance
is only obtained at the 5% level in the corrected inference procedure, as compared to
significance at the 1% level in the original study. Figure 3.3 displays the Geithner an-
nouncement’s effect on stock returns versus the Fisher distribution under the no treatment
effect assumption. With the selected penalty level of .1, we find that the median number
of active controls – defined as having a positive weight in the synthetic unit – for each
treated unit is 26.7 (min: 20, max: 40) which is substantially more than in the original
analysis where active controls are limited to be 20 or fewer. Another key difference in our
inference procedure is that we recompute the cross-validated λ and corresponding syn-
thetic control weights for every member of the treatment group under every permutation,
as explained in Section 4. These two observations help explain the difference between our
results and the original study.

7.2. The Impact of Election Day Registration on Voter Turnout, Xu (2017)

We revisit Xu (2017) which analyzes the impact of Election Day Registration (EDR)
on voter turnout in the United States. In most US states, eligible voters must register
on a separate day before casting their votes, which entails an extra cost of voting and
has been perceived as a cause of low turnout rates. With the objective of raising voter
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Table 3.5: Connections to Geithner and Reactions to Treasury Secretary Announcement,
Synthetic Control Inference.

Estimate Q 0.5% Q 2.5% Q 5 % Q 95% Q 97.5% Q 99.5%

Penalized Synthetic Control

Day 1, CAR[0,1] 0.061** - 0.064 - 0.050 - 0.042 0.049 0.061 0.083
[0.008; 0.116]

Day 10, CAR[0,10] 0.138* - 0.128 - 0.093 - 0.075 0.126 0.150 0.202
[0.016; 0.261]

Corrected Inference
Day 1, CAR[0,1] 0.061** - 0.065 - 0.049 - 0.042 0.045 0.058 0.087
Day 10, CAR[0,10] 0.138* - 0.123 - 0.091 - 0.073 0.116 0.142 0.202

Bias-corrected Estimator
Day 1, CAR[0,1] 0.058 - 0.108 - 0.080 - 0.067 0.064 0.077 0.105
Day 10, CAR[0,10] 0.125 - 0.229 - 0.171 - 0.142 0.156 0.186 0.247

Cross-val. (MSE) λ 0.08
Mean Sparsity 26.7

Non-Penalized Synthetic Control, λ = 0

Day 1, CAR[0,1] 0.060** - 0.070 - 0.054 - 0.046 0.047 0.060 0.082
Day 10, CAR[0,10] 0.114* - 0.155 - 0.124 - 0.108 0.094 0.119 0.171

Corrected Inference
Day 1, CAR[0,1] 0.060** - 0.068 - 0.053 - 0.045 0.044 0.057 0.087
Day 10, CAR[0,10] 0.114* - 0.165 - 0.126 - 0.111 0.084 0.114 0.171

Bias-corrected Estimator
Day 1, CAR[0,1] 0.058 - 0.110 - 0.082 - 0.068 0.063 0.076 0.104
Day 10, CAR[0,10] 0.119 - 0.238 - 0.178 - 0.150 0.149 0.180 0.243

Mean Sparsity 40.8
Sample size (n) 525
Nb. in treatment group (n1) 12

Note: This table displays Cumulative Abnormal Returns (CAR) on day 1 and 10 corresponding to panels B

and C, columns 2 and 3, of Table 5 in Acemoglu et al. (2016). Results are obtained on their base sample which

excludes the 10% firms whose returns are most correlated with Citigroup. We define being treated as at least

one meeting between the firm and Geithner in 2007-08. The estimate column corresponds to the difference

between the treated returns and synthetic control returns accumulated for the said number of days since

announcement. The number between brackets are Fisher confidence intervals at 95% levels, based on 5,000

permutations, computed by inverting the tests. The quantiles displayed in the other columns are computed as

quantiles of the Fisher distribution under the no-effect assumption. 20,000 random permutations have been

used. Corrected inference discards permuted treated units for which the pre-treatment MSE was three times

larger than the mean pre-treatment MSE for the treated units, as in Acemoglu et al. (2016). Bias-corrected

inference relies on a linear specification for the regression function. Asterisks denote significance levels (** =

5%, * = 10%).
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Figure 3.3: Abnormal Returns after Geithner Announcement, non-corrected inference
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turnout, EDR laws were first implemented in Maine, Minnesota and Wisconsin in 1976;
Idaho, New Hampshire and Wyoming followed suit in 1996; finally, Montana, Iowa and
Connecticut adopted the legislation as well in 2012. We refer the reader to the original
article for further details on the policy. The dataset, available in the R package gsynth

(Xu and Liu, 2018), comprises turnout rates measured during 24 elections (from 1920 to
2012), for 47 US states among which 9 are treated (i.e. adopted the EDR) and 38 are
non-treated. Since the adoption of the treatment was staggered, we consider first the
nine treated states together with treatment starting in 1976 and then break down the
analysis for each wave of adoption.

To choose λ we employ the pre-intervention holdout procedure of Section 5.2. The train-
ing sample uses turnout rates over the elections 1920-1948. The validation sample uses
elections 1952-1972. The procedure ends up selecting a very low value of .004 for λ,
so the penalized synthetic control estimate is very close to the non-penalized one. Fig-
ure 3.4 displays actual and counterfactual turnout rates computed using the penalized
synthetic control estimator. The impact is positive and significant at 5% for every post-
treatment election. The p-values obtained from randomized inference (B = 10, 000) using
the MSPE ratio (3.10) and the sum of ranks for the individual effects aggregated over
the post-treatment period are 5× 10−3 and 2× 10−4 respectively (see Section 4 for more
details). Due to the dimensionality of the problem (p = 14), all the treated are outside
of the convex hull defined by the untreated, so the pure synthetic control estimator is
equal to the non-penalized synthetic control estimator. Furthermore, all the treated are
connected to all the untreated in the augmented Delaunay tesselation.

We use a similar strategy when breaking down the results by wave of adoption, except
that for the second and third waves, more pre-treatment periods are available to select
the optimal λ and construct the counterfactual. Elections 1976-1992 and 1996-2008 are
further available for the second and third waves, respectively. We select a λ ≈ 0 for the
first wave (6 to 8 non-zero untreated units per synthetic unit) and λ ≈ .5 for the second
(3 to 4 non-zero untreated units per synthetic unit) and third (2 untreated units per
synthetic unit). Figure 3.5 breaks down the results for each wave. Our analysis confirms
the original study of Xu (2017), by finding that results are mainly driven by the first-
adopters while the adoption of EDR is statistically insignificant at the 5% level for the
states who adopted it later.

8. Conclusion

In this chapter, we proposed a penalized synthetic control estimator that trades-off pair-
wise matching discrepancies with respect to the characteristics of each unit in the syn-
thetic control against matching discrepancies with respect to the characteristics of the
synthetic control unit as a whole. We studied the properties of this estimator and pro-
posed data driven choices of the penalization parameter. We showed that the penalized
synthetic control estimator is unique and sparse, which makes it particularly convenient
for empirical applications with many treated units, where the focus is on average treat-
ment effects. Motivated by the case with many treated and untreated sample units, we
derived large sample properties of the penalized synthetic control estimator and proposed
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Figure 3.4: Voter Turnout in the US and EDR Laws
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Note: The .95 confidence intervals are computed by inverting Fisher Tests. 10,000 permutations are
used. The dashed purple line is the average turnout per election for the 38 nontreated States.
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Figure 3.5: Voter Turnout in the US and EDR Laws, by Wave of Adoption
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NH, WY); the bottom is the third (CT, IA, MT). The .95 confidence intervals are computed by inverting
Fisher Tests. 10,000 permutations are used.
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a bias-correction as in Abadie and Imbens (2011). The penalized synthetic control esti-
mators perform well in simulations. Finally, we illustrated their practical applicability in
two empirical examples based on Acemoglu et al. (2016) and Xu (2017).
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9. Appendix: Proofs

Notation

For any real matrix X, let CH(X) and DT (X) be the convex hull and the Delaunay
tesselation of the columns of X, respectively. We recall that DT (X) is a partition of
CH(X). µLeb denotes the Lebesgue measure.

Proof of Lemma 3.1

Notice that if the first result in Lemma 3.1 does not hold, then W ∗
i (λ) cannot be a solution

to the problem in equation (3.6). We start by proving the upper bound in the second
inequality. Since W ∗

i (λ) minimizes (3.6), it follows that

(Xi −X0W
∗
i (λ))′ (Xi −X0W

∗
i (λ)) + λ∆′iW

∗
i (λ) ≤ (Xi −XNNi)

′ (Xi −XNNi) + λ∆NN
i

Therefore,
λ∆′iW

∗
i (λ) ≤ (1 + λ)∆NN

i ,

and the result follows from λ > 0. The lower bound follows from the definition of ∆NN
i .

�

Proof of Theorem 3.1

Without loss of generality, consider the case with only one treated, n1 = 1. Program
(3.8) is

min
W

fλ(W ) = (X1 −X0W )′(X1 −X0W ) + λW ′∆1,

s.t. W ∈ W , (C.1)

where W = {W ∈ [0, 1]n0 |W ′1n0 = 1}. It is easy to check that the feasible set, W , is
convex and compact. Because fλ is continuous and W is compact, it follows that the
function attains a minimum on W . Moreover, X ′0X0 is positive semi-definite, so fλ is
convex.

Suppose that more than one solution exist. In particular, assume that W1 and W2

are solutions, with fλ(W1) = fλ(W2) = f ∗λ . Then, for any a ∈ (0, 1) we have that
aW1 + (1− a)W2 ∈ W . Because fλ is convex, we obtain

fλ(aW1 + (1− a)W2) ≤ afλ(W1) + (1− a)fλ(W2) = f ∗λ .

This implies that the problem has either a unique solution or infinitely many. In addition,
if there are multiple solutions they all produce the same fitted values X0W . To prove
this suppose there are two solutions W1 and W2 such that X0W1 6= X0W2. Then, because
‖x− c‖2 is strictly convex in c, for a ∈ (0, 1) we obtain

fλ(aW1 + (1− a)W2) = ‖X1 −X0(aW1 + (1− a)W2)‖2 + λ(aW1 + (1− a)W2)′∆1

< a‖X1 −X0W1‖2 + (1− a)‖X1 −X0W2‖2 + λ(aW1 + (1− a)W2)′∆1

= af ∗λ + (1− a)f ∗λ
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= f ∗λ ,

which contradicts that W1 and W2 are solutions. As a result, if W1 and W2 are solutions,
then X0W1 = X0W2. Moreover, λ > 0 implies W ′

1∆1 = W ′
2∆1. Let A = [X ′0 1n0 ∆1].

It follows that, if W1 and W2 are solutions, then A′(W1 −W2) = 0 p+2 (where 0 p+2 is a
(p+ 2)× 1 vector of zeros).

Karush-Kunh-Tucker conditions imply:

X ′j(X1 −X0W )− λ

2
∆1,j = π − γj

Wj ≥ 0, W ′1n0 = 1, γj ≥ 0, γjWj = 0.

Stacking the first n0 conditions above and pre-multiplying by W ′, we obtain

W ′X ′0(X1 −X0W )− λ

2
W ′∆1 = π.

From this equation, it follows that the value of π is unique across solutions, because X ′0W
and W ′∆1 are unique across solutions. Given that π is unique, the equations

X ′j(X1 −X0W )− λ

2
∆1,j = π − γj.

imply that the γj’s are unique across solutions. Let X̃0 be the submatrix of X0 formed

by the columns associated with zero γj’s, and define W̃ , ∆̃1, and 1ñ0 analogously, where

ñ0 is the number of columns of X̃0. Then,

X̃ ′0(X1 − X̃0W̃ ) =
λ

2
∆̃1 + π1ñ0 . (C.2)

Notice that if λ > 0, then ‖X1 − X0W‖ = 0 implies that ∆̃1 is a constant vector. We

therefore obtain that if λ > 0 and ∆̃1 is not constant, then it must be the case that
‖X1 −X0W‖ > 0.

Let Ã = [X̃ ′0 1ñ0 ∆̃1]. Consider the case ñ0 ≥ p+ 2. In this case Ã has full column rank,
which implies that equation (C.2) cannot hold if λ > 0. As a result, when λ > 0, the
solution to (C.1) has p+ 1 non-zero components at most.

Consider now the case ñ0 ≤ p + 1. For this case Ã has full row rank. Moreover, if W̃1

and W̃2 are solutions, it must be the case that Ã′(W̃1− W̃2) = 0 p+2. However, because Ã

has full row rank the system Ã′z = 0 p+2 admits only the trivial solution, z = 0 ñ0 , which
implies that the solution to (C.1) is unique. �

Lemma 3.4 (Optimality of Delaunay for the Compound Discrepancy, Rajan, 1994)

Let Z ∈ CH(X0). Consider a solution W̃ = (W̃n1+1, . . . , W̃n)′ of the problem

min
W∈[0,1]n0

n∑
j=n1+1

Wj‖Xj − Z‖2, (C.3)
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s.t. X0W = Z,
n∑

j=n1+1

Wj = 1. (C.4)

Then, non-zero values of W̃j occur only among the vertices of the face of the Delaunay
complex containing Z.

We restate the proof of Lemma 10 in Rajan (1994) for clarity and note that it does no
rely on general quadratic position of the set of points.

Proof of Lemma 3.4

For a point X ∈ Rp, consider the transformation φ : X → (X, ‖X‖2). The images under
φ of points in Rp belong to the paraboloid of revolution P with vertical axis and equation
xp+1 =

∑p
i=1 x

2
i . By Theorem 17.3.1 in Boissonnat and Yvinec (1998), the faces of the

Delaunay complex of the n0 points Xn1+1, . . . , Xn in Rp are obtained by projecting onto
Rp the faces of the lower envelope of the convex hull of the n0 points φ(Xn1+1), . . . , φ(Xn)
obtained by lifting the Xj’s onto the paraboloid P .

Now consider points
(∑n

j=n1+1WjXj,
∑n

j=n1+1 Wj‖Xj‖2
)

subject to the constraints in

(C.4). These points are equal to
(
Z,
∑n

j=n1+1Wj‖Xj − Z‖2 + ‖Z‖2
)

and belongs to the

convex hull of φ(Xn1+1), . . . , φ(Xn). Hence, a solution of (C.3) for a fixed Z is given by
such a point with the lowest (p+ 1)-th coordinate. It is a point on the lower envelope of
the convex hull of φ(Xn1+1), . . . , φ(Xn), so Z belongs to a p-face of the Delaunay complex.

As a consequence, the only non-zero entries of W̃ occur only among the vertices of the
face of the Delaunay complex of the columns of X0 containing Z. �

Proof of Theorem 3.2

It is enough to prove that the result holds for one treated unit, so we consider the
case n1 = 1 and drop the treated units subscripts from the notation. We proceed by
contradiction. Suppose that the synthetic control weights are given by the vectorW ∗(λ) =
(W ∗

2 (λ), . . . ,W ∗
n(λ))′, and that W ∗

j (λ) > 0 for j which is not a vertex of the face of the
Delaunay complex DT (X0) containing X0W

∗(λ). Because X0W
∗(λ) ∈ CH(X0), it follows

from Lemma 3.4 that we can always choose an n0-vector of weights W̃ ∈ [0, 1]n0 , such

that (i) X0W̃ = X0W
∗(λ), (ii)

∑n
j=2 W̃j = 1, (iii) W̃j = 0 for any j that is not a vertex

of the face of the Delaunay complex containing X0W
∗(λ), and (iv) W̃ induces a lower

compound discrepancy than W ∗(λ) relative to X0W̃ = X0W
∗(λ),

n∑
j=2

W̃j‖Xj −X0W̃ (λ)‖2 <
n∑
j=2

W ∗
j (λ)‖Xj −X0W

∗(λ)‖2. (C.5)

For any W ∈ [0, 1]n0 it can be easily seen that

n∑
j=2

Wj‖Xj −X1‖2 =
n∑
j=2

Wj‖Xj −X0W‖2 + ‖X1 −X0W‖2. (C.6)
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Combining equations (C.5) and (C.6) with the fact that ‖X1−X0W̃‖2 = ‖X1−X0W
∗(λ)‖2,

we obtain
n∑
j=2

W̃j‖Xj −X1‖2 <

n∑
j=2

W ∗
j (λ)‖Xj −X1‖2.

As a result

‖X1 −X0W̃‖2 + λ

n∑
j=2

W̃j‖Xj −X1‖2 < ‖X1 −X0W
∗(λ)‖2 + λ

n∑
j=2

W ∗
j (λ)‖Xj −X1‖2,

which contradicts the premise that W ∗(λ) is a solution to (3.6). �

Proof of Theorem 3.3

Since the columns of [X1 X0] are in general quadratic position, the augmented Delaunay
triangulation, DT ([X1 : X0]), exists and is unique. Without loss of generality, consider
the case of a single treated unit, and normalize X1 to be at the origin. Let X∗0 be
the submatrix of X0 formed by the columns of X0 that are connected to X1 in the
augmented triangulation, DT ([X1 : X0]), and UT (X1, X0) be the union of the Delaunay
simplices that have X1 as a vertex in DT ([X1 : X0]). Consider a point z ∈ CH([X1 :
X0])\UT (X1, X0). We will first show that z cannot be equal to X0W

∗(λ). Because z
does not belong to UT (X1, X0) and because the set CH([X1 : X0]) is convex, it is always
possible to find a point v ∈ CH([X1 : X0])\UT (X1, X0) on the line segment that connects
z and X1 such that ‖X1 − v‖ < ‖X1 − z‖ (or, equivalently, ‖v‖ < ‖z‖). For any point
in x ∈ CH([X1 : X0]) consider the set of non-negative weights, w1(x), . . . , wn(x), such
that: (i)

∑n
i=1 wi(x) = 1, (ii)

∑n
i=1 wi(x)Xi = x, and (iii) if Xi is not a vertex of the

Delaunay simplex containing x, then wi(x) = 0. If x ∈ CH([X1 : X0])\UT (X1, X0), then
the Delaunay simplex containing x in DT ([X1 : X0]) is the same as the the Delaunay
simplex contain x in DT (X0) (Devillers and Teillaud, 2003; Boissonnat et al., 2009).
Therefore, by Theorem 3.2, if x ∈ CH([X1 : X0])\UT (X1, X0) and X0W

∗ = x, then
W ∗(λ) = (w2(x), . . . , wn(x))′. Now, let f(x) =

∑n
i=1 wi(x)‖Xi‖2 =

∑n
i=1 wi(x)‖X1 −

Xi‖2. This function is convex because it is the lower boundary of the convex hull of
{(X1, ‖X1‖2), . . . , (Xn, ‖Xn‖2)} (Rajan, 1994), and is minimized at x = X1. As we move
from z to v we travel in the direction of the minimun of f(x). Because f(x) is a convex
function, it follows that f(v) < f(z). Because ‖v‖ < ‖z‖ and f(v) < f(z), it follows that
X0W

∗(λ) 6= z, regardless of the value of λ. This implies that X0W
∗(λ) must belong to

UT (X1, X0) and the result follows from Theorem 2. �

Lemma 3.5 (Sum of Weights) For j = n1 + 1, ..., n, denote Sj(λ) =
∑n1

i=1 W
∗
i,j(λ),

the sum of weights given to a particular control unit across all the synthetic units. Under
Assumption 3.1, for any λ ≥ 0: (i)

∑n
j=n1+1 Sj(λ) = n1, (ii) E[Sj(λ)] = n1/n0 for

every j = n1 + 1, ..., n, and (iii) ρ(Sj(λ), Sk(λ)) = −1/(n0 − 1) for any j 6= k, where
ρ(Sj(λ), Sk(λ)) = cov(Sj(λ), Sk(λ))/var(Sj(λ)).

Proof of Lemma 3.5

The first assertion holds because there are n1 synthetic units, so summing the share of
all synthetic units generated from every donor must yield n1. The second assertion is a
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consequence of the previous one, the linearity of the expectation operator and exchange-
ability. For the third assertion, notice that the first statement of the lemma implies
var(

∑n
j=n1+1 Sj(λ)) = 0 which in combination with exchangeability leads to:

n0var(Sj(λ)) + n0(n0 − 1)cov(Sj(λ), Sk(λ)) = 0. (C.7)

A consequence of equation (C.7) is that ρ(Sj(λ), Sk(λ)) = cov(Sj(λ), Sk(λ))/var(Sj(λ)) =
−1/(n0 − 1). �

Proof of Lemma 3.2

The bias term of the estimator is a simple average of the individual bias terms: Bn(λ) =
n−1

1

∑n1

i=1 bi(λ), where the individual bias term for treated unit i is defined as bi(λ) :=
µ0(Xi)−

∑n
j=n1+1W

∗
i,j(λ)µ0(Xj). Notice that because the synthetic weights sum to one:

bi(λ) =
n∑

j=n1+1

W ∗
i,j(λ)[µ0(Xi)− µ0(Xj)].

From Assumption 3.4, µ0(.) is Lipschitz-continuous with constant Cµ0 and using Jensen’s
inequality, keeping in mind that

∑n
j=n1+1W

∗
i,j(λ) = 1

|bi(λ)| ≤ Cµ0

n∑
j=n1+1

W ∗
i,j(λ)‖Xi −Xj‖

≤ Cµ0

√√√√ n∑
j=n1+1

W ∗
i,j(λ)‖Xi −Xj‖2

≤ Cµ0

√
1 + λ

λ
∆NN
i ,

where the last inequality uses Lemma 3.1. The aggregated bias term is therefore bounded:

|Bn(λ)| ≤ Cµ0

√
1 + λ

λ

1

n1

n1∑
i=1

√
∆NN
i .

Using the previous inequality and Jensen’s inequality again, notice

E
[
n2/pB2

n(λ)
]
≤ n2/pC2

µ0

1 + λ

λ
E

( 1

n1

n1∑
i=1

√
∆NN
i

)2


≤ C2
µ0

1 + λ

λ
E
[
n2/p∆NN

1

]
<∞,

where the last inequality follows from Lemma 2 in Abadie and Imbens (2006). Now,
Chebyshev’s inequality implies the result of Lemma 3.2. �
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Proof of Theorem 3.4

Lemma 3.2 implies Bn(λ)
p−→ 0. Next, we will show that Mn(λ)

p−→ 0. Since (i) the
support of X|D = 1 is contained in the support of X|D = 0, which is bounded, and (ii)
µ0 is Lipschitz, we obtain E[µ0(Xi)|Di = 1] < ∞. Also |µ1(Xi)| = |E[Yi|Xi, Di = 1]| ≤
E
[
|Yi|
∣∣Xi, Di = 1

]
. As a result, E

[
|µ1(Xi)|

∣∣Di = 1
]
≤ E[|Yi||Di = 1] <∞. By the weak

law of large numbers, we obtain

1

n1

n1∑
i=1

(µ1(Xi)− µ0(Xi)− τ)
p−→ 0,

and

1

n1

n1∑
i=1

(Yi − µ1(Xi))
p−→ 0.

By Chebyshev’s inequality, for any ε > 0:

Pr

(∣∣∣∣ 1

n1

n∑
i=n1+1

Si(λ)
(
Yi − µ0(Xi)

)∣∣∣∣ > ε

)

≤ 1

ε2

1

n2
1

E

[(
n∑

i=n1+1

Si(λ)
(
Yi − µ0(Xi)

))2]

=
1

ε2

1

n2
1

E

[
n∑

i=n1+1

Si(λ)2
(
Yi − µ0(Xi)

)2

]

+
1

ε2

1

n2
1

E

[
2

n∑
i=n1+1

n∑
j>i

Si(λ)Sj(λ)
(
Yi − µ0(Xi)

)(
Yj − µ0(Xj)

)]

=
1

ε2

n0

n2
1

E
[
S2
n1+1(λ)

(
Yn1+1 − µ0(Xn1+1)

)2
]

≤ 1

ε2
σ̄2

0

n0

n2
1

E[S2
n1+1(λ)],

where the second equality follows from E[Si(λ)Sj(λ)(Yi−µ0(Xi))(Yj−µ0(Xj))|D1, . . . , Dn, X1, . . . ,
Xn] = 0 for n1 + 1 ≤ i < j ≤ n. Now, the result follows from Assumption 3.5. �

In the proof of Theorem 3.5 we will use the notation (Yn,i ,Dn,i, Xn,i), for the outcome,
treatment, and covariates of observation i at sample size n, respectively. Similarly, Sn,i(λ)
is the sum of the weights assigned to observation i, for i such that Dn,i = 0. In this
notation, the order of the observations is invariant in n (i.e., there is no reordering). For
ease of reference we reproduce next a version of a Martingale CLT with random norming
(Hall and Heyde, 1980, Theorem 3.3, p. 64). We will use this result in the proof of
Theorem 3.5.

Theorem 3.6 (Martingale Central Limit Theorem) Let {Tn,k,Fn,k, 1 ≤ k ≤ kn, n ≥ 1}

100



be a zero-mean, square-integrable martingale array with differences ξn,k and squared vari-

ations U2
n,kn

=
∑kn

k=1 ξ
2
n,k and let η2 be an a.s. finite random variable. Suppose that as

n→∞
kn∑
k=1

E[ξ2
n,k1{|ξn,k| > ε}|Fn,k−1]

p−→ 0, for all ε > 0, (C.8)

V 2
n,kn =

kn∑
k=1

E[ξ2
n,k|Fn,k−1]

p−→ η2, (C.9)

with Pr(η2 > 0) = 1, and the σ-fields are nested Fn,k ⊂ Fn+1,k for 1 ≤ k ≤ kn, n ≥ 1.
Then:

Tn,kn/Un,kn =

∑kn
k=1 ξn,k√∑kn
k=1 ξ

2
n,k

d−→ N (0, 1).

Proof of Theorem 3.5

Consider the martingale array
√
n1Mn(λ) =

∑2n
k=1 ξn,k, where

ξn,k =


1
√
n1

Dn,k (µ1(Xn,k)− µ0(Xn,k)− τ) if 1 ≤ k ≤ n,

1
√
n1

(Dn,k−n − (1−Dn,k−n)Sn,k−n(λ))
(
Yn,k−n − µDn,k−n(Xn,k−n)

)
if n+ 1 ≤ k ≤ 2n.

Let Xn = {Xn,1, ..., Xn,n} = {X1, ..., Xn}, Dn = {Dn,1, ..., Dn,n} = {D1, ..., Dn} and
consider Fn,k = σ(Dn, Xn,1, ..., Xn,k) for k ≤ n and Fn,k = σ(Dn,Xn, Yn,1, ..., Yn,k−n) for
k > n. We will verify the conditions of Theorem 3.6. The Lyapunov’s condition

2n∑
k=1

E[|ξn,k|2+δ|Fn,k−1]
p−→ 0,

for some δ > 0 is sufficient for (C.8). For the first n terms of the martingale array,

n∑
k=1

E[|ξn,i|2+δ|Fn,k−1] =
1

n
δ/2
1

E[|µ1(X)− µ0(X)− τ |2+δ|D = 1]→ 0.

Now consider the last n terms. For δ > 0, let Cδ < ∞ be a bound on E[|Y −
µD(X)|2+δ|X = x,D = d]. Then,

2n∑
k=n+1

E[|ξn,k|2+δ|Fn,k−1]

=
1

n
1+δ/2
1

2n∑
k=n+1

|(Dn,k−n − (1−Dn,k−n)Sn,k−n(λ)|2+δE[|Yn,k−n − µDn,k−n(Xn,k−n)|2+δ|Fn,k−1]

≤ Cδ

n
δ/2
1

1

n1

2n∑
k=n+1

|Dn,k−n − (1−Dn,k−n)Sn,k−n(λ)|2+δ p−→ 0.
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Now, given that

E

[
1

n1

2n∑
k=n+1

|Dn,k−n − (1−Dn,k−n)Sn,k−n(λ)|2+δ

]
= 1 +

n0

n1

E[S2+δ
n,n1+1(λ)] <∞,

by Markov’s inequality we obtain
∑2n

k=n+1E[|ξn,k|2+δ|Fn,k−1]
p→ 0.

Turn to (C.9). Because of exchangeability, the conditional variance is

V 2
n,2n = E

[
(µ1(X)− µ0(X)− τ)2

∣∣D = 1
]

+
1

n1

n1∑
i=1

σ2
1(Xi) +

1

n1

n∑
j=n1+1

Sn,j(λ)2σ2
0(Xj).

Part (i) of Assumption 3.6 ensures that the middle term converges to E[σ2
1(X)|D = 1]

by the weak law of large numbers. Focusing on the last term, Chebychev’s inequality
together with part (iv) of Assumption 3.6 imply that for some ε > 0:

Pr

(∣∣∣∣∣ 1

n0

n∑
j=n1+1

Sn,j(λ)2σ2
0(Xj)− E

[
Sn,n1+1(λ)2σ2

0(Xn1+1)

]∣∣∣∣∣ > ε

)

≤ 1

n0

var [Sn,n1+1(λ)4σ4
0(Xn1+1)]

ε2
+
n0(n0 − 1)

n2
0

cov [Sn,n1+1(λ)2σ2
0(Xn1+1), Sn,n1+2(λ)2σ2

0(Xn1+2)]

ε2

≤ 1

n0

E [Sn,n1+1(λ)4σ4
0(Xn1+1)]

ε2
+
cov [Sn,n1+1(λ)2σ2

0(Xn1+1), Sn,n1+2(λ)2σ2
0(Xn1+2)]

ε2

≤ 1

n0

σ̄4
0E [Sn,n1+1(λ)4]

ε2
+
cov [Sn,n1+1(λ)2σ2

0(Xn1+1), Sn,n1+2(λ)2σ2
0(Xn1+2)]

ε2

→ 0.

As a consequence, as n1, n0 →∞, we obtain that the conditional variance converges to a
positive limit:

V 2
n,2n

p−→E
[
(µ1(X)− µ0(X)− τ)2

∣∣D = 1
]

+ E
[
σ2

1(X)
∣∣D = 1

]
+ lim

n→∞

n0

n1

E
[
Sn,n1+1(λ)2σ2

0(Xn1+1)
]
.

Applying Theorem 3.6:

σ̂−1(λ)
√
n1Mn(λ)

d−→ N (0, 1), as n1, n0 →∞,

where

σ̂2(λ) :=
1

n1

n∑
i=1

Di (µ1(Xi)− µ0(Xi)− τ)2 +
1

n1

n∑
i=1

Diσ
2
1(Xi) + (1−Di)Si(λ)2σ2

0(Xi).
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Lemma 3.6 (Conditional Probability of a Link) Under Assumptions 3.1, 3.2 and
3.7, for any i = 1, . . . , n1, j = n1 + 1, . . . , n, for λ > 0 and any integer r > 0

E[Pr
(
W ∗
i,j(λ) > 0|X0

)r |D = 0] = O ([log(n0)/n0]r) .

Proof of Lemma 3.6

It is enough to prove that the result holds for one non-treated unit and for one treated
unit, so we set i = 1. Theorem 3.3 establishes the necessary condition that control unit
j has to be linked to the treated unit through an edge in DT ([X1 : X0]) for W ∗

1,j(λ) > 0
to occur. We can rely on the incremental algorithm to construct Delaunay tessellations
to make this condition more practical in probabilistic terms (Berg et al., 2008, Chapter
9). Start from DT (X0) and insert X1 to create the augmented Delaunay tessellation
DT ([X1 : X0]). Theorem 9.7 in Berg et al. (2008) implies that any simplex in DT (X0)
whose circumscribed hypersphere does not contain X1 remains a Delaunay simplex and
will belong to DT ([X1 : X0]), hence the insertion of X1 only destroys (in the Delaunay
sense) simplices whose circumscribed hypersphere contains X1. Two cases have to be
distinguished:

(i) if X1 falls in a circumscribed hypersphere, then X1 has to be connected to all of
the vertices of the corresponding simplex,

(ii) if X1 does not fall in any circumscribed hypersphere, DT (X0) ⊂ DT ([X1 : X0])
and p new edges are created. In this case, X1 necessarily falls outside of the convex
hull CH(X0) of the columns of X0.

Define Fj, the flower of Xj, as the union of the circumscribed hyperspheres of Delaunay
simplices of DT (X0) which have Xj as a vertex. From the discussion above, if X1 ∈ Fj
then X1 is linked to Xj in the new tessellation DT ([X1 : X0]). Now, let us decompose
the event “X1 linked to Xj” by whether or not X1 falls into CH(X0):

Pr
(
W ∗

1,j(λ) > 0|X0

)
≤Pr (X1 linked to Xj|X0)

= Pr (X1 linked to Xj ∩X1 ∈ CH(X0)|X0)

+ Pr (X1 linked to Xj ∩X1 6∈ CH(X0)|X0)

≤Pr (X1 ∈ Fj ∩X1 ∈ CH(X0)|X0) + Pr (X1 6∈ CH(X0)|X0)

≤Pr (X1 ∈ Fj|X0) + Pr (X1 6∈ CH(X0)|X0) .

Using Minkowski’s inequality we obtain:

E[Pr
(
W ∗
i,j(λ) > 0|X0

)r |D = 0] ≤E[Pr (X1 ∈ Fj|X0)r |D = 0]

+ E[Pr (X1 6∈ CH(X0)|X0)r |D = 0). (C.10)

Notice that Pr (X1 6∈ CH(X0)|X0) = Pr (X1 ∈ X \ CH(X0)|X0) ≤ f̄1µ
Leb(X \ CH(X0)).

In order to show that µLeb(X \ CH(X0))
p−→ 0, we use Theorem 2 in Brunel (2017).
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Part (i) of Assumption 3.7 ensures that the so-called margin condition is satisfied with
α = 0 and that the density of X0 is bounded from above. As a consequence, the missing
volume, µLeb(X \ CH(X0))

p−→ 0 as n0 → ∞. Convergence also happens in Lr, r ≥ 1,
since Pr (X1 6∈ CH(X0)|X0) ≤ 1 (see also Corollary 2 in Brunel, 2017).

Focus on Pr (X1 ∈ Fj|X0). Fj is contained in a hypersphere C centered atXj of radius that
is twice the length of the radius of the largest circumscribed hypersphere of a Delaunay
simplex that has Xj as a vertex. Define an empty hypersphere with respect to X0 as
a sphere that does not contain any column of X0. By definition, all hyperspheres that
circumscribe a Delaunay simplex in DT (X0) are empty hyperspheres with respect to X0.
As a consequence, the volume of C is less than the volume of a hypersphere of radius
twice that of the largest empty hypersphere. Denote Vn0 the volume of the largest empty
hypersphere with respect to X0. Mathematically, we have

Pr (X1 ∈ Fj|X0) ≤ f1µ
Leb(Fj) ≤ f12pVn0 ,

which yields:

E [Pr (X1 ∈ Fj|X0)r |D = 0) ≤ f1
r
2prE

[
V r
n0
|D = 0

]
.

Define the random variable Zn0 := n0Vn0 − log(n0)− (p− 1) log(log(n0))− log(γ) where

γ :=
1

p!

[√
π

Γ(p/2 + 1)

Γ((p+ 1)/2)

]p−1

.

We have:

E
[
V r
n0
|D = 0

]
=

1

nr0
E [(Zn0 + log(n0) + (p− 1) log(log(n0)) + log(γ))r|D = 0] .

Under parts (i) and (iii) of Assumption 3.7, Theorem 2 in Aaron et al. (2017) states

that Zn0

d−→ U , as n0 → ∞, where P [U ≤ u] = exp (− exp(−u)). The random vari-
able U has finite moments of order r that do not depend on n0, which proves that
E[Pr (X1 ∈ Fj|X0)r |D = 0] = O ([log(n0)/n0]r). In light of equation (C.10), we have
proven the result. �

Proof of Lemma 3.3

It is enough to prove that the result holds for one non-treated unit. Define Bn1+1(λ) :=∑n1

i=1 1{W ∗
i,n1+1

(λ) > 0}. Sn1+1(λ)2 ≤ Bn1+1(λ) a.s. Treated units X1, . . . , Xn1 are inde-

pendent by Assumption 3.1 so conditionally onXn1+1, . . . , Xn, weightsW ∗
1,n1+1(λ), . . . ,W ∗

n1,n1+1(λ)

are independent. They are also identically distributed, soBn1+1(λ)|X0 ∼ B
(
n1,Pr

(
W ∗

1,n1+1(λ) > 0|X0

))
.

For m ≥ 1, the m-th moment of Bn1+1(λ) conditional on X0 is

E[Bn1+1(λ)m|X0] =
m∑
k=0

S(m, k)
n1! Pr

(
W ∗

1,n1+1(λ) > 0|X0

)k
(n1 − k)!
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≤
m∑
k=0

S(m, k)nk1 Pr
(
W ∗

1,n1+1(λ) > 0|X0

)k
,

where S(m, k) are Stirling numbers of the second kind. Then, because for m ≥ 1,
S(m, 0) = 0 and S(m, 1) = 1:

n0

n2
1

E [Sn1+1(λ)m|D = 0] ≤ n0

n2
1

E [Bn1+1(λ)m|D = 0]

=
n0

n2
1

E [E [Bn1+1(λ)m|X0] |D = 0]

≤ n0

n2
1

m∑
k=1

S(m, k)nk1E
[
Pr
(
W ∗

1,n1+1(λ) > 0|X0

)k |D = 0
]

≤ n0

n2
1

(
n1(p+ 1)

n0

+
m∑
k=2

S(m, k)nk1E
[
Pr
(
W ∗

1,n1+1(λ) > 0|X0

)k |D = 0
])

≤ p+ 1

n1

+ C
m∑
k=2

S(m, k)

(
n1

n0

)k−2
log(n0)k

n0

,

for some positive constant C. The last inequality uses Lemma 3.6. In light of the
assumption that n1/n0 is bounded, the right-hand side of the last inequality goes to zero.
�
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Chapter 4

Using Generic Machine Learning to
Analyze Treatment Heterogeneity:
An Application to Provision of Job
Counseling

Joint work with Bruno Crépon, Esther Duflo and Elia Pérennès.

Summary

We re-analyze a large-scale randomized experiment conducted in France in
2007-2008 that was created to evaluate the impact of an intensive job-search
counseling program on employment outcomes. This experiment was specif-
ically designed to compare public and private provisions of job counselling.
Originally, Behaghel et al. (2014) found the public program to be twice as
effective as the private program, a finding that they partially blame on the
payment structure to which the private providers were subject. We strongly
suspect that private providers had incentives to accept candidates without
any regards for their expected treatment effect. In particular, it is likely that
they cream-skimmed candidates based on their expected baseline probabil-
ity of finding a job and that they also indulged in parking candidates (i.e.
maxing-out the number of trainees but providing minimal training). Using
the generic machine learning methodology developed in Chernozhukov et al.
(2018b), we are able to find evidence of heterogeneous treatment effects and
construct ML proxies for the individualized treatment effect. We then study
the impact of both the individualized treatment effect and the individualized
baseline probability of finding a job on the likelihood of enrollment in both
programs.



1. Introduction

Who benefits from a treatment? What is the optimal treatment assignment? How are
applicants to Randomized Controlled Trials (RCT) selected when the treatment is not
mandatory? These are classical questions in empirical Economics that call for prediction
of the individual treatment effect. Fortunately, the developments of supervised Machine
Learning (ML) in the last decades have provided high-quality tools for prediction. How-
ever, applying them to predict individual treatment effects is not completely straightfor-
ward because the outcome under both treatment status is never observed for the same
individual, the individual treatment effect is never observed which means this is not a
simple supervised learning task, and since these tools have been designed for prediction
and not so much is known about their theoretical properties, they need to be adapted
to answer causal inference questions (Athey, 2015) . Recently, a burgeoning economet-
ric literature has tried to bridge that gap and integrate ML to the applied researcher’s
toolbox (e.g. Belloni et al., 2014b; Chernozhukov et al., 2018a; Athey and Wager, 2018;
Athey and Imbens, 2019; Chernozhukov et al., 2018b to cite only a few). Besides the
technical aspects, the introduction of ML into empirical Economics has opened a new
exciting avenue of research that studies the potential improvement of human decisions
by machine predictions, e.g. Kleinberg et al. (2017).

With these questions in mind, we revisit a large-scale randomized experiment conducted
in France in 2007-2008 that was created to evaluate the impact of an intensive job-search
counseling program on employment outcomes. This experiment was specifically designed
to compare a public and a private provisions of job counselling. Originally, Behaghel
et al. (2014) found the public program to be twice as effective as the private program.
They attribute this discrepancy to insufficient mastering of the counselling technology on
the private arm of the treatment and potential incentive problems in the design of the
contracts, particularly in a context where there exist heterogeneous propensities to exit
unemployment in the population. In particular, all private providers were subject to a
two-part payment structure: 30 percent of the maximal sum when the job seeker enrolled
intro the program, and 70 percent conditional on placement (35 percent if the job was
found within six months and the other 35 percent if the worker was still employed after six
months). They suspect that this payment structure entailed two types of side effects: if
the fixed part of the payment is large, private providers are likely to maximize enrollment
intro the program and offer very little job counselling to keep the costs down (parking);
if the conditional payment is relatively large, they are likely to enroll the candidates
with the best labor market prospects and again, provide them with little job counselling
(cream-skimming). On the other hand, the public arm of the program provided by the
French Public Employment Service (PES), was not subject to financial incentives.

The goal of this article is to study the selection process, by the caseworkers, of the program
applicants. In particular, we suspect that private providers indulged in parking and/or
cream-skimming. For that, we use ML algorithms to predict the baseline probability of
finding a job and the treatment effect at the individual level. We adapt the Generic
Machine Learning framework developed by Chernozhukov et al. (2018b) to randomized
controlled trials with imperfect compliance where the target parameter of interest is the
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Local Average Treatment Effect (LATE). Put succinctly, the Generic Machine Learning
framework allows to study heterogeneity in the effect of the treatment as long as the
econometrician can produce two quantities: a ML proxy of the treatment effect, i.e. a
prediction of the individual treatment effect made using a machine learning algorithm,
and an unbiased signal of the individual treatment effect, i.e. a random variable such
that its expectation conditional on observable characteristics is equal to the individual
treatment effect. They develop a test that allows to rule out the absence of heterogeneity
and estimate some features of the distribution of the Conditional Average Treatment
Effect (CATE). Contrary to standard RCTs with perfect compliance, a unbiased signal for
the LATE does not exist and complicates the straightforward adaption of this convenient
framework.

Section 2 draws an overview of the use of ML tools in empirical Economics. Section
3 describes the data and the experimental design. Section 4 deals with the empirical
strategy the we follow, while highlighting both the economic mechanisms we have in
mind when studying the selection process and the adaptation of the generic machine
learning framework to this context. Section 5 displays the results. Section 6 concludes.

2. Machine Learning in Empirical Economics

Taking its roots in the post-selection inference problem (Leamer, 1983; Leeb and Pötscher,
2005), the integration of machine learning tools to the empirical economist’s toolkit
started with the Lasso. Likely spurred by the good theoretical understanding of this
method, it has been studied in a number of settings and models relevant for practition-
ers, be it instrumental variables (Belloni et al., 2012), panel data (Belloni et al., 2016),
demand estimation (Chernozhukov et al., 2017a), discriminations (Bach et al., 2018),
among others.

Many contributions in this literature were quick to highlight the potential benefits of these
modern statistical tools for policy evaluation and causal inference, while acknowledging
the difficulties posed by adapting them to achieve goals that are standard in empirical
Economics and which are often broader than prediction (e.g. Athey, 2015; Athey and Im-
bens, 2016). At first, the perceived value-added of machine learning methods relied mostly
in variable selection and high-quality estimation of high-dimensional nuisance parameters
under an unconfoundedness assumption, e.g. Belloni et al. (2014b,a, 2017); Farrell (2015).
Notice that while these methods had been applied in several empirical studies, they were
not suited for inference until a few years ago. Recent contributions went beyond the
Lasso to integrate other non-standard statistical tools of sufficiently high-quality to the
empiricist’s inference toolbox, such as random trees and forests, boosting, support vector
machines, kernel methods, or neural networks (e.g. Chernozhukov et al., 2018a). Two
ingredients played a key role in this breakthrough. First, the use of orthogonal scores
ensures that the resulting treatment effect estimator is first-order insensitive to deviations
from the true value of nuisance parameters (Chernozhukov et al., 2015; Chernozhukov
et al., 2015; Chernozhukov et al., 2018). In other words, orthogonal scores mitigate the
impact of replacing unknown nuisance parameters by machine learning estimators that
are often not

√
n-consistent. Most of the time, such a strategy requires the estimation of
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more nuisance parameters, yielding the name of double selection (Belloni et al., 2014a) or
double machine learning (Chernozhukov et al., 2017; Chernozhukov et al., 2018a). Sec-
ond, sample-splitting appeared as a way to limit the proclivity of these tools to over-fit
the data. Indeed, several papers (e.g. Athey and Wager, 2018) advocate for splitting the
data between an auxiliary sample where nuisance parameters are estimated and a main
sample where the parameter of interest is estimated using out-of-sample predictions based
on the predictors constructed on the auxiliary sample. Chernozhukov et al. (2017, 2018a)
suggest that the role of the two samples be then switched and the estimators combined
in order to prevent loss of efficiency, yielding the name cross-fitting.

Analysis of RCTs was, by design, less likely to benefit from the use of more complex
econometric tools. Indeed, independence between the treatment variable and confounding
factors immunizes RCT from a selection bias, granting them the status of ‘gold standard’
of scientific evidence among regularly studied designs (e.g. Abadie and Cattaneo, 2018).
By leveraging the prediction performance of machine learning tools, inference regarding
treatment effect in RCT can, however, benefit from an increase in precision (lower stan-
dard error). Furthermore, they offer a way of searching for treatment effect heterogeneity
in the absence of a pre-analysis plan because they provide a flexible way to estimate
the Conditional Average Treatment Effect (CATE), that is, the expected treatment ef-
fect conditional on some individual characteristics. For example, by their own natures,
random trees and random forests partition the data to predict the outcome of interest
(they find thresholds and interact variables in a data-driven fashion, Mullainathan and
Spiess, 2017) and can be adapted for causal inference purposes (see the causal trees of
Athey and Wager, 2018). Contrary to pre-analysis plans, they don’t require to specify
the dimensions along which the economist will search for heterogeneity beforehand while
still not allowing for p-hacking if done correctly (Chernozhukov et al., 2018b). Indeed,
pre-analysis plans can be costly because they are inflexible and end up wasting a lot
of data points (Olken, 2015). In other words, machine learning ‘lets the data speak’
and allows to discover dimensions along which the treatment effect differs even if they
previously were not suspected to matter.

So far, applications of these modern statistical methods to RCT have been scarce. Davis
and Heller (2017b) and Davis and Heller (2017a) use causal forests to study the hetero-
geneity in effectiveness of a youth summer job program in reducing the probability of
committing crimes and increasing the likelihood of attending school or being employed.
Davis and Heller (2017a) successfully identify a sub-group for which the program in-
creases employment while the effect of the program for employment is not statistically
significant on average. This sub-group appears to differ from the youth usually targeted
by these programs, thereby questioning the state of knowledge in the field.

3. Data and Experimental Design

We analyze a large-scale randomized experiment conducted in France in 2007-2008 and
designed to evaluate the impact of an intensive job-search counseling on employment
outcomes. An initial evaluation can be found in Behaghel et al. (2014).
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3.1. Design of the Experiment

We study a program dedicated to help job seekers. This program involves the provision
of personalized job-search assistance : the job-seeker is assigned a dedicated personal
advisor with a much lower caseload than in the standard track. This translates into at
least one weekly contact (by e-mail or telephone) and one monthly face-to-face meeting
between the job-seeker and the caseworker. The average caseload ratio in this program
is around 40 job-seekers per caseworker. Compared to the usual track, where a contact
is supposed to take place every month and where PES agents assist on average 120
job-seekers, this is a significant increase in the human resources dedicated to assisting
the job-seeker. Participation in the program is voluntary. Job-seekers are enrolled by
signing a charter and their 6-month trajectory within the program is organized around
an individual action plan, the objectives of which are periodically reviewed.

The main steps of the experimental protocol consist in identifying a set of jobseekers
eligible for intensive job-search counseling and then to draw between three modalities
of accompaniment : standard track provided by the PES, intensive job-search counsel-
ing provided by a private provider, intensive job-search counseling provided by the PES.
There are three categories of eligible job-seekers : the newly unemployed (< 3 months)
entitled to at least one year of benefits, the newly unemployed (< 3 months) entitled to
benefits for less than one year and the long-term unemployed (> 3 months). The iden-
tification of eligible job-seekers is done by the local agency advisor, during an interview
with the job-seeker. The counselor identifies whether the job-seeker is part of the public
for whom the intensive support program was planned (the long-term unemployed) and
follows a set of statistical criteria (risk of long-term unemployment) and more qualitative
criteria (distance from employment, a sufficiently defined professional project). Proba-
bilities of assignment to each group varied locally and across time so as to maximize the
statistical power of the evaluation while complying with the quantitative objectives of
the program. The random assignment took place over 15 months, from January 2007 to
March 2008, in 393 local public employment offices in 16 of the 22 French administrative
regions.

Both the public and the private intensive job-search programs have previously been eval-
uated by Behaghel et al. (2014). They found that job-search assistance increases exit
rates to employment from 15 to 35% and that the impact of the public program was
about twice as large as that of the private program, at least during the first 6 months
after random assignment. Finally, they found that the effect of the public program was
relatively homogeneous with respect to gender, education, and age.

3.2. Data

Our sample consists of all newly unemployed individuals (for less than 3 months at the
time of randomization) with sufficient benefit entitlement and who were subject to the
random assignment for participation in the program. The total sample size is 57, 661
individuals, from which 40, 373 individuals were assigned to the private program, 7, 345
individuals were assigned to the public program and the others in the control group. Our
analysis is based on an administrative data file on job seekers provided by the Public
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Employment Service. These administrative records provide sociodemographic informa-
tion on job-seekers (age, gender, education level, family situation, reason for registration,
start and end dates of unemployment spells, level of UB, hours of work while on claim,
etc.). Some of the pre-treatment variables are continuous, some are categorical and some
are binary.

As noted above, program participation is voluntary. Job-seekers assigned to more in-
tensive programs are more likely to enter that program but they do not systematically
comply with the assignment: on average, program participation is around 46% among
those encouraged to participate to the private program and around 45% among those
encouraged to participate to the public program (see Table 4.1).

Table 4.1: Program participation

Entry

Standard Public Standard Private

Assignation
Standard 96.98% 3.02% Standard 95.11% 4.89%

Public 55.22% 44.78% Private 54.28% 45.72%

Table 4.10 in appendix provides some descriptive statistics among experimental groups.

4. Empirical Strategy

4.1. An Economic Model of Treatment Allocation

Behaghel et al. (2014) found that private program was half as effective as the public
program. Three reasons may be invoked: (i) the private providers did not master the
counselling technology as well as the PES, (ii) the populations enrolled in the public and
private arms of the treatment were different, and (iii) the private providers may have been
incentivized to enroll job-seekers and then provide little-to-no effort. We study these last
two possibilities. All private providers were subject to a two-part payment structure:
30 percent of the maximal sum when the job-seeker enrolled intro the program, and 70
percent conditional on placement (35 percent if the job was found within six months and
the other 35 percent if the worker was still employed after six months). This payment
structure may entail two types of side effects: if the fixed part of the payment is large,
private providers are likely to maximize enrollment into the program and offer very little
job counselling to keep the costs down (parking); if the conditional payment is relatively
large, they are likely to target the candidates with the best labor market prospect and
again, provide little job counselling (cream-skimming). On the other hand, the public
arm of the program provided by the French Public Employment Service (PES), was not
subject to financial incentives.

We suppose that the treatment choice is up to the training providers rather than to the
individual candidate once the randomization has taken place. Each job-seeker is defined
by the triple (Y0, Y1, X) where Y0 and Y1 are the probability of finding of job under
the standard track and under the treatment, respectively, and X is a set of observable
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characteristics. Only X is observable by the PES and the private providers so we assume
that they base their decisions on the couple (µ0(X), τ(X)) where µ0(X) = E[Y0|X] and
τ(X) = E[Y1−Y0|X]. For simplicity, we assume that (µ0(X), τ(X)) is the same for both
arms of the treatment and study the estimates of the treatment effect we will obtain in
both cases. In the following, we start from the base model in Section 5 of Behaghel et al.
(2012).

The PES will provide job-seekers with job counselling for those such that the bene-
fits of the treatment (the unemployment benefits U times the increase in the proba-
bility of finding a job) will be larger than its cost (cpub): τ(X)U ≥ cpub. As a conse-
quence, the optimal treatment rule is to treat all job-seekers such that their individ-
ual treatment effect is larger than the relative cost of treatment, cpub/U and we obtain
E[τ(X)|Public] = E[τ(X)|τ(X) ≥ cpub/U ]. In this context, and because the program was
specifically designed to have case-workers in charge of a moderate number of job-seekers,
there is no incentive for the PES to park candidates. On the other hand, if τ(X) and
µ0(X) are positively correlated, it may be optimal to cream-skim candidates, or, at least,
following that optimal treatment rule may look like cream-skimming in the data.

The private provider is subject to a two-part payment structure: for a maximal payment
of P , (1 − δ)P is paid on enrollment of a job-seeker and δP is paid conditional on
placement. In the context of the experiment, δ = .7 and P ∈ [3, 000; 4, 000] (euros).
Within this incentive scheme, the private case-worker has two decisions to take: (i) which
job-seekers should be accepted into the program? and (ii) which job-seekers should be
actually treated, i.e. who should the case-worker spend effort on? Let us start with the
second question and assume that the pure cost of enrollment is c, while the cost (including
enrollment) of treatment for a job-seeker is cpri > c. If the private case-worker decides to
not exert any effort on the job-seeker, its expected profit is Π0 = (1− δ)P +µ0(X)δP − c.
If the private case-worker decides to exert an effort on the job-seeker, its expected profit
is Π1 = (1− δ)P + (µ0(X) + τ(X))δP − cpri. As a consequence, a job-seeker is enrolled
if min(Π0,Π1) ≥ 0, that is to say, either if it has baseline labor-market prospects µ0(X)
larger than the threshold [c/P − (1 − δ)]/δ, or if it is a “high enough”-responder to
treatment, i.e. µ0(X) + τ(X) ≥ [cpri/P − (1 − δ)]/δ. Notice that cream-skimming is
directly a feature of the model, and if the threshold [c/P − (1 − δ)]/δ is low enough, it
may not even qualify as cream-skimming in the sense that any job-seeker is welcomed
in the program (but may not be treated). If that is the case, more job-seekers than is
optimal can end up being treated. Moreover, a job-seeker gets treated if and only if
Π1 ≥ Π0, that is to say if the job-seeker is a high-responder τ(X) ≥ (cpri − c)/δP . The
larger the cost of effort, the more likely the private provider is to indulge in parking. If
the cost of effort is too large that is, larger than cpub/U , job-seekers that would benefit
from the treatment under the PES would go untreated when assigned to the private
program. Notice also that if expectations on the treatment effect, are harder to form
i.e. τ(X) is a weak signal of Y1 − Y0, while µ0(X) is a stronger signal of Y0, the rule
τ(X) ≥ (cpri− c)/δP may oftentimes be violated, giving a low estimate of the treatment
effect when considering the private program.
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4.2. Methodological Aspects

We are interested in performing inference over the Local Average Treatment Effect
(LATE) conditional on covariates. However, adapting the framework of Chernozhukov
et al. (2018b) to randomized experiments with imperfect compliance is not straightfor-
ward.

Let Y0 and Y1 denote the potential outcomes under no-treatment and treatment, re-
spectively. Let D0 and D1 denote the potential treatments under non-assignment and
assignment, respectively. Let X be a vector of observed covariates and Z a binary vari-
able coding for the treatment assignment. We adopt the ubiquitous assumptions of the
LATE framework (see for example Assumption 2.1 in Abadie, 2003). For each individual
in the sample, we observe the vector (Y,D,Z,X) where D = D0 + Z(D1 − D0) and
Y = Y0 +DZ(Y1 − Y0). Consider the following structural model:

Y = µ(X) + τ(X)D + ε,

D = α(X) + β(X)Z + U,

where we assume that E[ε|X,Z] = E[U |X,Z] = 0, but in general E[ε|D,X] 6= 0 because
treatment choice is endogeneous. Notice that the second equation yields α(X) = E[D0|X]
and β(X) = E[D1 − D0|X] = P [D1 > D0|X], the probability of being a complier con-
ditional on X. It is easy to see that the causal effect of Z on Y is β(X)τ(X), which
is equal to the Intent-to-Treat and that dividing by β(X) gives τ(X) = (E[Y |X,Z =
1] − E[Y |X,Z = 0])/(E[D|X,Z = 1] − E[D|X,Z = 0]). As a consequence, we have
τ(X) = E[Y1 − Y0|X,D1 > D0], the LATE conditional on X. Finally we have µ(X) =
E[Y0|X] + P [D0 = 1](E[Y1 − Y0|X,D0 = 1]−E[Y1 − Y0|X,D1 > D0]) 6= µ0(X). Suppose
that we have a ML estimate of the LATE conditional on X that we denote τ̂(X) – the
so-called “proxy predictor”. Notice that τ̂(X) can be computed by taking the ratio of a
ML proxy of the Intent-to-Treat to a ML proxy of the take-up.

Chernozhukov et al. (2018b) define three parameters of interest in that context. The first
one is the Best Linear Predictor (BLP) of τ(X) using τ̂(X), i.e. the L2 projection of
τ(X) on a constant and τ̂(X):

BLP[τ(X)|τ̂(X)] = E[τ(X)] +
Cov(τ(X), τ̂(X))

V (τ̂(X))
(τ̂(X)− E[τ̂(X)]) .

The second one is the Sorted Group Average Treatment Effect (GATES). To define
it, divide the support of the proxy predictor by quantiles, defining groups that share
an (estimated) treatment response in a given interval and perform inference over their
expected treatment effect:

E[τ(X)|G1] ≤ . . . ≤ E[τ(X)|GK ],

for Gk = 1 {`k−1 ≤ τ̂(X) < `k} with −∞ = `0 ≤ `1 ≤ . . . ≤ `K = +∞. In that
context, G1 is a binary variable equal to one for a lowest-responder and GK is a binary
variable equal to one for a highest-responder. The third parameter(s) of interest are
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the the characteristics of the most and least affected groups, E[X|G1] and E[X|GK ] for
characteristics X since they are observed. This set of parameters is called Classification
Analysis (CLAN).

The strategy of Chernozhukov et al. (2018b) to estimate the BLP and GATES relies on
constructing an unbiased signal Ỹ of τ(X) and regressing it on the proxy predictor τ̂(X)
or on the group membership dummies G1, . . . , GK . In the absence of perfect compliance,
because E[ε|X,Z] 6= 0, it is not possible to construct a signal Ỹ such that E[Ỹ |X] = τ(X)
without assuming that we have a consistent estimate of β(X) – which in most cases is
not be available, or in contradiction with the agnostic approach of assuming that τ̂(X)
is merely a proxy predictor of the LATE. The CLAN, however, can still be performed.

Going further than these three types of parameters, we want to study selection into the
treatment by the job counsellor and define relevant quantities to be estimated. More
specifically, we are interested in the effect of the expected baseline employability E[Y0|X]
and of the expected treatment effect τ(X) on the probability of being admitted into the
program β(X). An unbiased signal for the probability of being a complier is D̃ defined
as:

D̃ =
Z − p(X)

p(X)(1− p(X))
D,

where p(X) = P [Z = 1|X]. It is unbiased in the sense that E[D̃|X] = β(X). Running
a regression of D̃ on τ̂(X)−E[τ̂(X)] will estimate the covariance between the conditional
probability of being a complier and the proxy predictor of the LATE, Cov(β(X), τ̂(X))/V ar(τ̂(X)).
The result is a straightforward adaptation of Theorem 2.1 in Chernozhukov et al. (2018b),
that we state in the appendix, see Theorem 4.1. As we have highlighted above, we be-
lieve that correlation to be small in the private program. Another way to analyze the
optimality of selection decisions by caseworkers, is to include the binary variable D in
the CLAN to check whether high-responders are more likely to enter in the program than
low-responders.

Moreover, we can also form a proxy predictor of E[Y0|X] and perform the regression
of D̃ on that proxy predictor to gauge the correlation between the probability of being
a complier and the estimated baseline probability of finding a job. Notice that the
CLAN analysis based on E[Y0|X] would also be meaningful. Estimation of E[Y0|X] is
not straightforward because of the selection issue. However, if there are no always-takers,
i.e. D0 = 0 a.s. we can write:

E[Y |Z = 0, X] = E[Y0 +D0(Y1 − Y0)|X] = E[Y0|X] = µ0(X).

So we can estimate E[Y0|X] by using the regression function estimated over the population
assigned to the standard track.

5. Results

(The empirical results in this section are preliminary.)

This section analyzes the heterogeneity in the treatment effect of both the public and the
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private programs using the generic machine learning framework described in the previous
section. We consider four outcomes of interest: (i) a dummy variable taking the value one
if the individual has received no unemployment benefit over the first six months of the
experiment, (ii) a dummy variable taking the value one if the individual has received no
unemployment benefit over months 6-12, (iii) the sum of all the unemployment benefits
over the first six months, (iv) the sum of all the unemployment benefits over months 6-12.

We considered four machine learning algorithms: Elastic Net, Boosting, Random Forests
and Neural Networks but only report the results for the first two as they yielded the
ML proxies that maximized the correlation with the true CATE, here β(X)τ(X). To
train each algorithm, we employ a two-fold cross-validation procedure and we report the
results obtained over 100 different random partitions of the data between the auxiliary
sample (where the algorithms are trained, 80% of the data) and the main sample (where
the treatment effect is predicted using the ML proxies obtained in the auxiliary sample,
20% of the data).

5.1. Detection of Heterogeneity

We are first interested in detecting heterogeneity in both the take up (that is β(X)) and
the intent-to-treat for each of the four outcomes (i.e. β(X)τ(X)). For this purpose, we
estimate the BLP of each these theoretical quantities using the ML proxies obtained by
an Elastic Net and a Boosting algorithm. For that, consider the theoretical quantity
S(X) (either β(X) or β(X)τ(X)) and the corresponding ML proxy Ŝ(X). Consider the
following weighted linear regression:

V = β1(Z − p(X)) + β2(Z − p(X)(Ŝ(X)− EŜ(X)) + ε, (BLP)

with weights given by w(X) = [p(X)(1− p(X))]−1. In our case, the left-hand variable V
is a place-holder either for D, the entry into the treatment, or each of the four outcomes
described above. Theorem 2.1 in Chernozhukov et al. (2018b) ensures that β1 = ES0(X)

and β2 = Cov(S0(X), Ŝ(X))/V ar(Ŝ(X)). Tables 4.2 and 4.3 report the results for β1 and
β2 from equation (BLP) for the public program and the private program, respectively.

For both the public and the private program, assignation into the treatment has a sig-
nificant impact on entry into the treatment, the take-up being estimated at 40% and
32% respectively. In both cases, there is heterogeneity in the treatment take-up, β(X),
that seems well-captured by both ML proxies as we reject the null hypothesis “β2 = 0”.
For the public program, we do not detect any heterogeneity in the intent-to-treat, while
only the probability of not perceived unemployment benefits over months 6 to 12 after
the start of the experiment is significantly affected by the treatment. Notice that not
rejecting “β2 = 0” can be due either to the absence of heterogeneity or to the lack of per-
formance of the ML proxies. Regarding the private program, we do not find a significant
impact in term of average treatment effect. We do however, detect a lot of heterogeneity
in terms of intent-to-treat for each outcome. In particular, the Elastic Net proxy is sig-
nificantly correlated to the individual treatment effect for the four outcomes, while the
Boosting proxy seems to capture only heterogeneity in the probability of not perceiving
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Table 4.2: Public Program – BLP

Elastic Net Boosting
ATE (β1) HET (β2) ATE (β1) HET (β2)

Program Entry (D) 0.408 0.298 0.408 0.402
(0.395,0.421) (0.158,0.436) (0.395,0.421) (0.115,0.600)

[0.000] [0.000] [0.000] [0.010]
No UB over 6m 0.003 -0.023 0.004 -0.026

(-0.007,0.014) (-0.166,0.128) (-0.006,0.014) (-0.154,0.099)
[1.000] [1.000] [0.862] [1.000]

No UB over 6-12m 0.021 -0.07 0.022 -0.07
(0.004,0.038) (-0.231,0.115) (0.005,0.039) (-0.236,0.122)

[0.034] [0.960] [0.022] [0.939]
Amount of UB 6m -86.44 0.125 -80.55 0.007

(-197.8,25.75) (-0.134,0.358) (-178.7,17.25) (-0.057,0.076)
[0.260] [0.779] [0.214] [1.000]

Amount of UB 6-12m -139.6 0.031 -124.9 0.002
(-348.7,66.40) (-0.059,0.125) (-317.4,66.33) (-0.063,0.069)

[0.370] [1.000] [0.405] [1.000]

Note: This table reports point estimates, .95 confidence interval and p-value for the test of nullity
of each coefficient from the weighted linear regression (BLP) for the public program.

any unemployment benefit.

We do not find exactly the same results regarding the average treatment effects as Be-
haghel et al. (2014), who originally found that participation in the public program in-
creased the chances of returning to employment after 6 months by 9.1 pp compared to
the baseline exit rate and that participation in the private program increased the chances
of returning to employment after 6 months by 4.2 pp. In order to compare these results
with our ITT estimates (β1) displayed in Tables 4.2 and 4.3, we multiply LATE estimates
from Behaghel et al. (2014) cited above with the average take-up rate for each program,
which leads to an ITT estimate of approximately 3.5 pp for the public program and of
about 1.9 pp for the private program, a magnitude quite different from what is shown in
Tables 4.2 and 4.3. Two reasons explain this discrepancy. First, we do not consider the
same outcome variables, ours are based on post-treatment unemployment benefits, while
the original paper had results directly on job findings. These outcomes are interesting
when considering the budgetary constraint of the government but not receiving any un-
employment benefits during a certain period can only be considered a proxy for return to
employment – keep in mind that we restrict our sample to individuals who are eligible to
benefits. Second, we consider a slightly different sample from the one used by Behaghel
et al. (2014): our dataset contains about 10,000 fewer jobseekers from the inflow eligible
to unemployment benefits, which may result in a sufficient loss of power to be unable to
detect the reported effect in the original study. We use this sample due to the wealth
of information it provides, especially regarding past unemployment benefits, number of
unemployment days, and number of part-time work hours up to 5 years before treatment
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Table 4.3: Private Program – BLP

Boosting Elastic Net
ATE (β1) HET (β2) ATE (β1) HET (β2)

Program Entry (D) 0.325 0.809 0.326 0.675
(0.309,0.342) (0.706,0.913) (0.309,0.342) (0.579,0.776)

[0.000] [0.000] [0.000] [0.000]
No UB over 6m -0.002 1.026 0.000 0.327

(-0.012,0.008) (0.930,1.122) (-0.010,0.009) (0.267,0.378)
[1.000] [0.000] [1.000] [0.000]

No UB over 6-12m -0.007 0.288 -0.007 0.137
(-0.025,0.010) (0.138,0.438) (-0.025,0.010) (0.032,0.246)

[0.827] [0.000] [0.834] [0.016]
Amount of UB 6 -6.832 0.056 -2.203 0.134

(-141.2,127.4) (-0.304,0.398) (-117.8,113.3) (0.067,0.206)
[1.000] [1.000] [1.000] [0.000]

Amount of UB 6-12m -154.20 -0.338 -83.67 0.095
(-411.6,105.2) (-0.546,-0.067) (-316.2,146.2) (0.029,0.163)

[0.496] [0.013] [0.949] [0.012]

Note: This table reports point estimates, .95 confidence interval and p-value for the test of nullity
of each coefficient from the weighted linear regression (BLP) for the private program.

(and up to 10 years after the beginning of the treatment). We considered these covariates
as additional and relevant data to train machine learning models.

5.2. Dimension of Heterogeneity (CLAN)

Since we detected some heterogeneity in both the take-up and the intent-to-treat, we per-
form the CLAN. If the dimensions of heterogeneity differs between β(X) and E[Y |X,Z =
1]−E[Y |X,Z = 0], then we can conclude that there is some heterogeneity in the condi-
tional LATE which is the ratio of these two quantities. Table 4.4 reports the results for
the public program and 4.5 reports the results for the private program, for the probability
of not receiving any unemployment benefits during months 6-12.

We see that the composition of groups defined in terms of quantiles of take-up and ITT
differ along a number of characteristics, suggesting heterogeneity in the conditional LATE.
In particular, for the public program, there are more individuals targeting manager-
level positions amongst the least likely to enter, although they are not particularly over-
represented amongst the “low-responders” in terms of ITT. The unskilled and high-school
dropouts are over-represented among the least likely to enter, but also among the lowest-
responders. Conversely, people with more than 5 years of working experiences are over-
represented among the most likely to enter and among the highest-responders. We find
similar evidence for the private program although the dimensions are not the same. This
time unskilled blue collars are not particularly over or under represented in the least or
most likely to enter.
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Table 4.4: Dimensions of Heterogeneity (CLAN) in Take-Up and ITT, Public Program

Selection, β(X) Intent-To-Treat, E[Y |X,Z = 1]− E[Y |X,Z = 0]

Most likely
to Enter

Least likely
to Enter

Difference Most Affected Least Affected Difference

Manager/Engineer 0.064 0.103 -0.033 0.095 0.083 0.014
(0.053,0.075) (0.092,0.114) (-0.049,-0.018) (0.084,0.107) (0.072,0.094) (-0.001,0.029)

- - [0.000] - - [0.150]
Unskilled blue collar 0.073 0.094 -0.026 0.068 0.095 -0.029

(0.062,0.084) (0.083,0.104) (-0.042,-0.010) (0.057,0.079) (0.085,0.106) (-0.044,-0.014)
- - [0.003] - - [0.000]

Unskilled employee 0.100 0.189 -0.089 0.131 0.160 -0.021
(0.086,0.114) (0.176,0.203) (-0.108,-0.070) (0.117,0.144) (0.146,0.174) (-0.041,-0.002)

- - [0.000] - - [0.105]
French citizen 0.945 0.799 0.151 0.881 0.869 0.011

(0.932,0.958) (0.786,0.812) (0.133,0.168) (0.868,0.895) (0.855,0.882) (-0.007,0.030)
- - [0.000] - - [0.470]

Less than high school 0.126 0.254 -0.138 0.145 0.217 -0.070
(0.111,0.142) (0.239,0.270) (-0.160,-0.116) (0.130,0.159) (0.202,0.232) (-0.092,-0.049)

- - [0.000] - - [0.000]
College degree 0.080 0.148 -0.069 0.100 0.152 -0.047

(0.067,0.093) (0.136,0.161) (-0.087,-0.051) (0.088,0.113) (0.139,0.166) (-0.066,-0.028)
- - [0.000] - - [0.000]

Aged above 56 0.008 0.084 -0.076 0.040 0.040 -0.001
(-0.001,0.016) (0.076,0.092) (-0.088,-0.065) (0.033,0.048) (0.032,0.047) (-0.012,0.010)

- - [0.000] - - [1.000]
Age below 26 0.126 0.207 -0.080 0.175 0.175 -0.001

(0.111,0.141) (0.192,0.221) (-0.100,-0.059) (0.160,0.190) (0.160,0.190) (-0.022,0.021)
- - [0.000] - - [1.000]

No experience 0.076 0.301 -0.225 0.182 0.192 -0.008
(0.061,0.091) (0.286,0.315) (-0.246,-0.205) (0.166,0.197) (0.176,0.208) (-0.030,0.013)

- - [0.000] - - [1.000]
Above 5 years of experience 0.444 0.296 0.130 0.378 0.331 0.050

(0.426,0.463) (0.277,0.315) (0.103,0.156) (0.360,0.397) (0.312,0.350) (0.023,0.077)
- - [0.000] - - [0.001]

First unemployment spell 0.121 0.109 0.005 0.078 0.141 -0.067
(0.108,0.134) (0.096,0.122) (-0.012,0.023) (0.066,0.090) (0.129,0.153) (-0.085,-0.049)

- - [1.000] - - [0.000]
Woman 0.563 0.481 0.090 0.549 0.479 0.063

(0.544,0.583) (0.461,0.500) (0.062,0.117) (0.529,0.569) (0.459,0.498) (0.035,0.091)
- - [0.000] - - [0.000]

No child 0.466 0.588 -0.122 0.530 0.562 -0.035
(0.446,0.485) (0.569,0.608) (-0.150,-0.094) (0.510,0.549) (0.543,0.582) (-0.063,-0.008)

- - [0.000] - - [0.034]
Married 0.464 0.460 0.011 0.480 0.418 0.066

(0.445,0.484) (0.440,0.480) (-0.017,0.039) (0.461,0.500) (0.398,0.437) (0.038,0.094)
- - [0.906] - - [0.000]

Economic layoff 0.098 0.096 0.010 0.107 0.075 0.029
(0.086,0.109) (0.084,0.108) (-0.007,0.026) (0.095,0.118) (0.063,0.086) (0.014,0.045)

- - [0.598] - - [0.001]

Note: This table reports the point estimate and .95 confidence interval for the average characteristics of individuals grouped by value of their ML
proxy corresponding either to their expected take-up probability or to their expected ITT. The column “difference” reports the difference and p-value
(between brackets) for the test of no difference between a “high” group and a “low” group. On the left side of the table, the most likely to enter
sub-group is defined as the sub-sample of individuals among the top 20% in terms of ML proxy for the conditional take-up probability and the less
likely to enter sub-group is the sub-sample of individuals among the bottom 20%. The right side of the table reports the same metrics for groups
defined in terms of conditional ITT, where most affected gathers the top 20% individuals and less affected the bottom 20%. The outcome is the
indicator of not receiving any unemployment benefits during months 6-12.
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Table 4.5: Dimensions of Heterogeneity (CLAN) in Take-Up and ITT, Private Program

Selection, β(X) Intent-To-Treat, E[Y |X,Z = 1]− E[Y |X,Z = 0]

Most likely
to Enter

Least likely
to Enter

Difference Most Affected Least Affected Difference

Manager/Engineer 0.128 0.117 0.012 0.110 0.106 0.010
(0.120,0.137) (0.109,0.125) (0.001,0.024) (0.102,0.118) (0.099,0.113) (-0.001,0.020)

- - [0.077] - - [0.183]
Unskilled blue collar 0.057 0.060 -0.004 0.034 0.090 -0.057

(0.051,0.063) (0.055,0.066) (-0.012,0.004) (0.028,0.039) (0.084,0.095) (-0.065,-0.049)
- - [0.651] - - [0.000]

Unskilled employee 0.074 0.203 -0.130 0.087 0.204 -0.114
(0.066,0.083) (0.195,0.212) (-0.142,-0.118) (0.078,0.095) (0.195,0.213) (-0.126,-0.102)

- - [0.000] - - [0.000]
French citizen 0.949 0.750 0.200 0.755 0.889 -0.136

(0.941,0.957) (0.741,0.758) (0.188,0.212) (0.746,0.764) (0.880,0.898) (-0.149,-0.122)
- - [0.000] - - [0.000]

Less than high school 0.143 0.283 -0.139 0.181 0.253 -0.079
(0.133,0.153) (0.273,0.293) (-0.153,-0.124) (0.171,0.192) (0.243,0.263) (-0.093,-0.064)

- - [0.000] - - [0.000]
College degree 0.096 0.158 -0.063 0.137 0.147 -0.009

(0.088,0.104) (0.150,0.166) (-0.074,-0.051) (0.128,0.145) (0.138,0.156) (-0.022,0.003)
- - [0.000] - - [0.281]

Aged above 56 0.000 0.245 -0.245 0.023 0.080 -0.058
(-0.008,0.008) (0.238,0.253) (-0.256,-0.234) (0.017,0.028) (0.075,0.086) (-0.066,-0.050)

- - [0.000] - - [0.000]
Age below 26 0.052 0.181 -0.128 0.161 0.128 0.036

(0.044,0.060) (0.172,0.189) (-0.140,-0.117) (0.152,0.169) (0.119,0.137) (0.023,0.048)
- - [0.000] - - [0.000]

No experience 0.015 0.294 -0.279 0.073 0.258 -0.184
(0.007,0.024) (0.286,0.303) (-0.291,-0.268) (0.064,0.082) (0.249,0.267) (-0.197,-0.172)

- - [0.000] - - [0.000]
Above 5 years of experience 0.642 0.326 0.314 0.424 0.344 0.062

(0.631,0.654) (0.314,0.338) (0.297,0.331) (0.412,0.436) (0.332,0.356) (0.045,0.079)
- - [0.000] - - [0.000]

First unemployment spell 0.123 0.175 -0.053 0.130 0.119 0.016
(0.114,0.132) (0.167,0.184) (-0.065,-0.040) (0.122,0.138) (0.110,0.127) (0.005,0.027)

- - [0.000] - - [0.015]
Woman 0.548 0.501 0.047 0.448 0.553 -0.106

(0.535,0.560) (0.489,0.514) (0.030,0.065) (0.435,0.460) (0.540,0.565) (-0.123,-0.089)
- - [0.000] - - [0.000]

No child 0.393 0.613 -0.222 0.505 0.557 -0.043
(0.381,0.405) (0.601,0.625) (-0.239,-0.205) (0.492,0.517) (0.545,0.569) (-0.061,-0.026)

- - [0.000] - - [0.000]
Married 0.564 0.463 0.093 0.480 0.473 0.014

(0.551,0.576) (0.451,0.476) (0.075,0.110) (0.468,0.493) (0.460,0.485) (-0.003,0.032)
- - [0.000] - - [0.221]

Economic layoff 0.186 0.095 0.093 0.126 0.103 0.022
(0.178,0.195) (0.087,0.104) (0.081,0.105) (0.118,0.134) (0.095,0.111) (0.011,0.033)

- - [0.000] - - [0.000]

Note: This table reports the point estimate and .95 confidence interval for the average characteristics of individuals grouped by value of their ML
proxy corresponding either to their expected take-up probability or to their expected ITT. The column “difference” reports the difference and p-value
(between brackets) for the test of no difference between a “high” group and a “low” group. On the left side of the table, the most likely to enter
sub-group is defined as the sub-sample of individuals among the top 20% in terms of ML proxy for the conditional take-up probability and the less
likely to enter sub-group is the sub-sample of individuals among the bottom 20%. The right side of the table reports the same metrics for groups
defined in terms of conditional ITT, where most affected gathers the top 20% individuals and less affected the bottom 20%. The outcome is the
indicator of not receiving any unemployment benefits during months 6-12.
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For entry in both programs, citizenship seems to matter a lot. French individuals repre-
sent a higher proportion of the most likely to enter than of the least likely to enter but
they do not compose the most the same proportions.

Notice that when we say ”over-represented” in a group we implicitly mean “relatively to
the other extreme group”, not to the general population.

5.3. Selection into the Treatment

To study selection into the treatment, we employ the two strategies described in the
previous section: (i) a comparison of the rates of entrance intro the program for groups
defined in terms of similar ML proxy levels either for the baseline outcome or for the
treatment effect, (ii) a regression of the unbiased signal for the probability of being a
complier, D̃ = D(Z − p(X))/(p(X)(1− p(X))), on both the ML proxy for the individual
baseline outcome, µ̂0(X), and the ML proxy for the individual treatment effect, τ̂(X).
Tables 4.6 and 4.7 report the results for the public program, while Tables 4.8 and 4.9
report the results for the private program.

In the case of the public program, these results have to be interpreted carefully as we did
not detect any treatment effect heterogeneity except for one outcome. We can however in-
terpret results regarding the baseline outcomes. From Table 4.6, it seems that individuals
that are classified among the top 20% in terms of probability of not receiving unemploy-
ment benefits over the first six months without treatment by both the Boosting and the
Elastic Net proxies enter into the treatment at a significantly lower rate than those who
are classified amongst the bottom 20%. Conversely, individuals who are classified among
the top 20% in terms of their baseline amount of unemployment benefits over the first
six months enter the treatment at a significantly higher rate that those who are classified
amongst the bottom 20%. Table 4.7 provides qualitatively similar results where a 1 pp
increase in the probability of not receiving any unemployment benefits over the first six
months roughly translates into a decrease of .3 pp in the probability of enrollment. This
suggests that case-workers in the public program targeted people with fewer labor market
prospects.

Regarding the private program, the results are qualitatively similar albeit clearer: indi-
viduals who appear to be more at risk of unemployment are accepted into the program
at significantly higher rates. There is a about a 6% difference when groups are defined
in terms of probability of not perceiving unemployment benefits, and a 12% difference
when groups are defined in terms of amount of unemployment benefits. Although we
detected heterogeneity in the treatment effect, individual expected treatment effect does
not appear to affect enrollment rates.

6. Conclusion

In this chapter, we revisited a randomized experiment designed to compare public and
private provision of job counselling using machine learning tools. The difference in the
payment structure between the two arms of the treatment made it likely that job coun-
sellors had different incentives to select randomized applicants. In particular, we studied
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how private providers had the incentive to either cream-skim or park candidates. Using
the generic machine learning methodology developed in Chernozhukov et al. (2018b), we
are able to find evidence of heterogeneous treatment effects and construct ML proxies for
the individualized treatment effect. We then study the impact of both the individual-
ized treatment effect and the individualized baseline probability of finding a job on the
likelihood of enrollment in both programs.

Very preliminary results show that contrary to our assumptions, both public and pri-
vate providers had a tendency to target individuals with gloomier baseline labor market
prospects, while we do not find any evidence of selection based on the expected individual
treatment effect.

From a methodological standpoint, we have discussed the extent to which the generic
machine learning framework can be applied to randomized experiments with imperfect
compliance.
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7. Appendix: Descriptive Statistics

Table 4.10: Descriptive characteristics among experimental groups

Standard Public (1)-(2) Private (1)-(3)
Age below 26 0.17 0.17 0.16
Aged above 56 0.05 0.05 0.05
College degree 0.14 0.14 0.14
Less than high school 0.20 0.20 0.21 ***
No experience 0.15 0.15 0.14 **
Above 5 years of experience 0.39 0.40 0.40 ***
Woman 0.52 0.51 0.50 **
Married 0.46 0.45 * 0.47
French citizen 0.86 0.85 0.84 ***
No child 0.54 0.56 * 0.54
First unemployment spell 0.13 0.12 *** 0.13
Manager/Engineer 0.11 0.11 0.12 *
Unskilled employee 0.14 0.14 0.14
Unskilled blue collar 0.06 0.06 0.06 ***
Economic layoff 0.12 0.12 0.12 **

Note: Each cell displays a proportion. Columns (1), (2) and (4) characterize job-
seekers by their random assignment; columns (1)-(2) and (1)-(4) report the signifi-
cance level of the difference between the coefficients in stated columns. *, **, ***:
significance at 10%,5% and 1%. Observations are weighted by the inverse of the
assignment probability.

8. Appendix: Adaptation of Th. 2.1 in Chernozhukov et al. (2018b)

Suppose that we are interested in an unobservable quantity S0(X) and observe the ran-
dom variable V . Suppose also that we can construct an unbiased signal of S0(X), i.e.
the random variable w(X)(D − p(X))V with w(X) = [p(X)(1 − p(X))]−1 that has the
property E[w(X)(Z − p(X))V |X] = S0(X). We also assume V = b0(X) + ZS0(X) +
U , where E[U |X,Z] = 0. On the other hand, we have a ML proxy x → m̂(x), obtained
on the auxiliary sample, that may or may not be an estimate of S0(X) but for which we
want to learn the best linear predictor of S0(X) using m̂(X), i.e. the L2 projection of
S0(X) on a constant and m̂(X):

BLP[S0(X)|m̂(X)] = E[S0(X)] +
Cov(S0(X), m̂(X))

V (m̂(X))
(m̂(X)− E[m̂(X)]) .

To obtain an estimate of Cov(S0(X), m̂(X))/V (m̂(X)) we can regress the unbiased signal
w(X)(D − p(X))V on m̂(X)−E[m̂(X)] in the main sample, that is, run the regression:

w(X)(Z − p(X))V = β1 + β2(m̂(X)− E[m̂(X)]) + ε, E[ε(1, (m̂(X)− E[m̂(X)]))′] = 0.
(4.1)
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Theorem 4.1 (Adaptation of Th. 2.1 in Chernozhukov et al. (2018b)) Consider
x→ m̂(x) as a fixed map. Assume that V has finite second moment and that V (m̂(X)) 6=
0. Then (β1, β2) defined in (4.1) are the coefficient of the BLP of S0(x) given m̂(X):

β1 = E[S0(X)] and β2 =
Cov(S0(X), m̂(X))

V (m̂(X))
.

Proof of Theorem 4.1

We only show that β2 = Cov(S0(X), m̂(X))/V (m̂(X)) since the proof for β1 is similar.
The normal equations that define (β1, β2) in Equation 4.1 give for β2:

β2 =
Cov(w(X)(Z − p(X))V, m̂(X)− E[m̂(X)])

V (m̂(X)− E[m̂(X)])
.

The denominator is equal to V (m̂(X)). Now since m̂(X)−E[m̂(X)] has mean zero, the
numerator is:

Cov(w(X)(Z − p(X))V, m̂(X)− E[m̂(X)]) = E[w(X)(Z − p(X))V (m̂(X)− E[m̂(X)])].

Notice that E[w(X)(Z − p(X))Z|X] = [w(X)(Z − p(X))2|X] = 1 since Z|X ∼ B(p(X)).
Recall that V = b0(X) + ZS0(X) + U , the law of iterated expectations yields:

E[w(X)(Z − p(X))b0(X)(m̂(X)− E[m̂(X)])] = E[w(X)b0(X)(m̂(X)− E[m̂(X)])E[Z − p(X)|X]︸ ︷︷ ︸
=0

] = 0,

E[w(X)(Z − p(X))ZS0(X)(m̂(X)− E[m̂(X)])] = E[S0(X)(m̂(X)− E[m̂(X)])] = Cov(S0(X), m̂(X)),

E[w(X)(Z − p(X))U(m̂(X)− E[m̂(X)])] = E[w(X)(Z − p(X))E[U |X,Z]︸ ︷︷ ︸
=0

(m̂(X)− E[m̂(X)])] = 0,

proving that β2 = Cov(S0(X), m̂(X))/V (m̂(X)). �

In the main text, we use this strategy for several instances of S0(X) and m̂(X). In
particular, we consider S0(X) = β(X) = P [D1 > D0|X] with the signal V = D for
entry into the program. While we formed m̂(X) = τ̂(X) a ML proxy for the conditional
LATE.
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Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France


