S. N. Aitken, Adaptation, migration or extirpation: climate change outcomes for tree populations, Evolutionary Applications, vol.1, issue.1, pp.95-111, 2008.

F. J. Alberto, Potential for evolutionary responses to climate change -evidence from tree 2790 populations, Global Change Biology, vol.19, issue.6, pp.1645-1661, 2013.

C. D. Allen, A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests, Forest Ecology and Management, vol.259, issue.4, pp.660-684, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00457602

C. D. Allen, D. D. Breshears, and N. G. Mcdowell, On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene, Ecosphe, vol.6, issue.8, p.129, 2015.

W. R. Anderegg, Meta-analysis reveals that hydraulic traits explain cross-species 2800 patterns of drought-induced tree mortality across the globe, Proceedings of the National Academy of Sciences, vol.113, pp.5024-5029, 2016.

T. S. Anekonda, Genetic variation in drought hardiness of coastal Douglas-fir seedlings from British Columbia, Canadian Journal of Forest Research, vol.32, issue.10, pp.1701-1716, 2002.

I. Aranda, H. A. Bahamonde, and D. Sánchez-gómez, Intra-population variability in the drought response of a beech (Fagus sylvatica L.) population in the southwest of Europe, Tree Physiology, vol.37, issue.7, pp.938-949, 2017.

P. Baas, Evolution of xylem physiology. The Evolution of Plant Physiology, pp.273-295, 2004.

P. Baas, :BX ctJ0TH1GoJ:scholar.google.com&ots=l1Jq1C0BH1&sig=I3sd0dpgg6FvZgzPuZ7JJI2YPzE&red ir_esc=y#v=onepage&q&f=false, 2013.

P. Baas, E. Wheeler, and M. Chase, Dicotyledonous wood anatomy and the APG system of angiosperm classification, Botanical Journal of the Linnean Society, vol.134, issue.1-2, pp.3-17, 2000.

I. W. Bailey, The Structure of Bordered Pits of Conifers and it's Bearing upon the Tension hypotesis of the ascent of sap in plants, Botanical Gazette, vol.62, issue.2, pp.133-142, 1916.

S. Bansal, Climate-related genetic variation in drought-resistance of Douglas-fir (Pseudotsuga menziesii), Global Change Biology, vol.21, issue.2, pp.947-958, 2015.

S. Bansal, C. A. Harrington, . St, and J. B. Clair, Tolerance to multiple climate stressors: A case study of Douglas-fir drought and cold hardiness, Ecology and Evolution, vol.6, issue.7, pp.2074-2083, 2016.

T. S. Barigah, Water stress-induced xylem hydraulic failure is a causal factor of tree 2830 mortality in beech and poplar, Annals of Botany, vol.112, issue.7, pp.1431-1437, 2013.

A. Battisti, Natural History of the Processionary Moths (Thaumetopoea spp.): New Insights in Relation to Climate Change, Processionary Moths and Climate Change : An Update, pp.15-79, 2015.

B. Beikircher, Limitation of the Cavitron technique by conifer pit aspiration, Journal of Experimental Botany, issue.12, pp.3385-3393, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00964554

V. Belrose, L. Nageleisen, and J. Renaud, Les conséquences de la canicule et de la sécherresse sur la santé des Forêt: Bilan à la fin de l'année, p.2840, 2003.

C. Bigler, Drought induces lagged tree mortality in a subalpine forest in the Rocky Mountains, Oikos, vol.116, issue.12, pp.1983-1994, 2007.

B. Larsen and J. , Untersuchungen über die winterliche Trockenresistenz von 10 Herkünften der Douglasie (Pseudotsuga menziesii), Forstwissenschaftliches Centralblatt, vol.97, issue.1, pp.32-40, 1978.

T. C. Bonebrake, Managing consequences of climate-driven species redistribution requires integration of ecology, conservation and social science, Biological Reviews, vol.93, issue.1, pp.284-305, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02352589

P. S. Bouche, A broad survey of hydraulic and mechanical safety in the xylem of conifers, Journal of Experimental Botany, vol.65, issue.15, pp.4419-4431, 2014.

O. Bouriaud, Modelling variability of wood density in beech as affected by ring age, radial growth and climate, Trees -Structure and Function, vol.18, issue.3, pp.264-276, 2004.

N. Bréda and V. Badeau, Forest tree responses to extreme drought and some biotic events: Towards a selection according to hazard tolerance?, Comptes Rendus Geoscience, vol.340, issue.9, pp.651-662, 2008.

O. Brendel, Is the coefficient of variation a valid measure for variability of stable isotope 2860 abundances in biological materials?, Rapid Communications in Mass Spectrometry, vol.28, issue.4, pp.370-376, 2014.

K. R. Briffa, Unusual twentieth-century summer warmth in a 1, 000-year temperature record from siberia, Nature, vol.376, issue.6536, pp.156-159, 1995.

R. D. Britez, Adaptation du douglas (Pseudotsuga menziesii (MIRB.) FRANCO) aux changements climatiques : étude rétrospective basée sur l'analyse des cernes, AgroParisTech. Available, p.401660, 2016.
URL : https://hal.archives-ouvertes.fr/tel-02160493

T. J. Brodribb, Xylem function and growth rate interact to determine recovery rates after 2870 exposure to extreme water deficit, New Phytologist, vol.188, issue.2, pp.533-542, 2010.

C. J. Brown, Ecological and methodological drivers of species' distribution and phenology responses to climate change, Global Change Biology, vol.22, issue.4, pp.1548-1560, 2016.

S. Bucci, Functional convergence in hydraulic architecture and water relations of tropical savanna trees from leaf to whole plant, Tree Physiology, vol.24, issue.8, pp.891-899, 2004.

R. K. Campbell and F. C. Sorensen, Cold-Acclimation in Seedling Douglas-Fir Related to Phenology and Provenance, Source: Ecology, vol.54150, issue.5, pp.1148-1151, 1973.

J. A. Canchola, Correct Use of Percent Coefficient of Variation (%CV) Formula for Log-Transformed Data, MOJ Proteomics & Bioinformatics, vol.6, issue.3, pp.1-3, 2017.

S. Carlquist, Comparative Wood Anatomy: Sistematic Ecological, and Evolutionary Aspects of Dicotyledon Wood, 1988.

K. J. Chao, Growth and wood density predict tree mortality in Amazon forests, Journal of Ecology, vol.96, issue.2, pp.281-292, 2008.

K. J. Chao, How do trees die? Mode of death in northern Amazonia, Journal of Vegetation Science, vol.20, issue.2, pp.260-268, 2009.

J. Chave, REGIONAL AND PHYLOGENETIC VARIATION OF WOOD DENSITY ACROSS 2456 NEOTROPICAL TREE SPECIES, Ecological Applications, vol.16, issue.6, pp.2356-2367, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00132042

J. Chave, Towards a worldwide wood economics spectrum, Ecology Letters, vol.12, issue.4, pp.351-366, 2009.

P. Y. Chen, C. Welsh, and A. Hamann, Geographic variation in growth response of Douglasfir to interannual climate variability and projected climate change, Global Change Biology, vol.16, issue.12, pp.3374-3385, 2010.

D. J. Chmura, Limited variation found among Norway spruce half-sib families in physiological response to drought and resistance to embolism, Tree Physiology, vol.36, issue.2, pp.252-266, 2015.

B. Choat, Global convergence in the vulnerability of forests to drought, Nature, vol.491, issue.7426, pp.752-757, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00964681

B. Choat, Triggers of tree mortality under drought, Nature, vol.558, issue.7711, pp.531-539, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01840984

B. Choat, A. R. Cobb, and S. Jansen, Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function, New Phytologist, vol.177, issue.3, pp.608-626, 2008.

P. Ciais, Europe-wide reduction in primary productivity caused by the heat and drought in 2003, Nature, vol.437, issue.7058, pp.529-533, 2005.
URL : https://hal.archives-ouvertes.fr/insu-00373792

B. J. Clough, Climate-driven trends in stem wood density of tree species in the eastern United States: Ecological impact and implications for national forest carbon assessments. Global, Ecology and Biogeography, vol.26, issue.10, pp.1153-1164, 2017.

H. Cochard, A technique for measuring xylem hydraulic conductance under high negative pressures, Plant, Cell and Environment, vol.25, issue.6, pp.815-819, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01189665

H. Cochard, Cavitation in trees, Comptes Rendus Physique, vol.7, issue.9, pp.1018-1026, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01189232

H. Cochard, Does sample length influence the shape of xylem embolism vulnerability curves? A test with the Cavitron spinning technique, Plant, Cell and Environment, vol.33, issue.9, pp.1543-1552, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00964752

H. Cochard, Is xylem cavitation resistance a relevant criterion for screening drought resistance among Prunus species, Journal of Plant Physiology, vol.165, issue.9, pp.976-982, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00964491

H. Cochard, Methods for measuring plant vulnerability to cavitation: A critical review, Journal of Experimental Botany, vol.64, issue.15, pp.4779-4791, 2013.

H. Cochard, Methods for measuring plant vulnerability to cavitation: A critical review, Journal of Experimental Botany, vol.64, issue.15, pp.4779-4791, 2013.

H. Cochard, New Insights into the Mechanisms of Water-Stress-Induced Cavitation in Conifers, Plant Physiology, vol.151, issue.2, pp.949-954, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01189369

H. Cochard, E. Casella, and M. Mencuccini, Xylem vulnerability to cavitation varies among poplar and willow clones and correlates with yield, Tree physiology, vol.27, issue.12, pp.1761-1767, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01189244

N. Council and R. , Climate Change Science: An Analysis of Some Key Questions, +Climate+Change+Science:+An++Analysis++of++Some++ Key++Questions+, pp.1-42, 2001.

L. Corcuera, Phenotypic plasticity in mesic populations of Pinus pinaster improves resistance to xylem embolism (P50) under severe drought, Trees -Structure and Function, vol.25, issue.6, p.2950, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00964489

, , pp.1033-1042, 2018.

L. Corcuera, J. J. Camarero, and E. Gil-pelegrín, Effects of a severe drought on Quercus ilex radial growth and xylem anatomy, Trees -Structure and Function, vol.18, issue.1, pp.83-92, 2004.

L. Corcuera, E. Gil-pelegrin, and E. Notivol, Differences in hydraulic architecture between mesic and xeric Pinus pinaster populations at the seedling stage, Tree Physiology, vol.32, issue.12, pp.1442-1457, 2012.

C. Creese, A. M. Benscoter, and H. Maherali, Xylem function and climate adaptation in Pinus, p.2960, 2011.

, American Journal of Botany, vol.98, issue.9, pp.1437-1445, 2018.

J. F. Crow and M. Kimura, An Introduction to Population Genetics Theory, p.591, 1970.

H. E. Cuny, Kinetics of tracheid development explain conifer tree-ring structure, New Phytologist, vol.203, issue.4, pp.1231-1241, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01195088

G. Dalla-salda, Dynamics of cavitation in a Douglas-fir tree-ring: transition-wood, the lord of the ring, Journal of Plant Hydraulics, vol.1, p.5, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01095363

G. Dalla-salda, Genetic variation of xylem hydraulic properties shows that wood density is involved in adaptation to drought in Douglas-fir (Pseudotsuga menziesii (Mirb.)), Annals of Forest Science, vol.68, issue.4, pp.747-757, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00930824

G. Dalla-salda, Rôle fonctionnel et adaptatif du bois chez le douglas (Pseudotsuga Menziesii (Mirb) Franco) : variabilité génétique des propriétés hydrauliques du xylème et relation avec la densité du bois. Orléans: Institut des Sciences et Industries du Vivant et de l'Environnement, 2014.

G. Dalla-salda, Variation of wood density and hydraulic properties of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) clones related to a heat and drought wave in France, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00964863

, Forest Ecology and Management, vol.257, issue.1, pp.182-189

M. B. Davis and R. G. Shaw, Range shifts and adaptive responses to quaternary climate change, Science, vol.292, issue.5517, pp.673-679, 2001.

S. Delzon, Field evidence of colonisation by holm oak, at the Northern Margin of its distribution range, during the anthropocene period, PLoS ONE, vol.8, issue.11, pp.80443-141, 2013.

,

S. Delzon, Mechanism of water-stress induced cavitation in conifers: Bordered pit structure and function support the hypothesis of seal capillary-seeding, Plant, Cell and Environment, vol.33, issue.12, pp.2101-2111, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00964477

T. J. Dewitt and S. M. Scheiner, Phenotypic plasticity : functional and conceptual approaches, 2004.

H. H. Dixon, Transpiration and the Ascent of Sap in Plants. Macmillan's Science Monographs, p.216, 1914.

J. Domec and B. L. Gartner, How do water transport and water storage differ in coniferous earlywood and latewood, Journal of Experimental Botany, vol.53, issue.379, pp.2369-2379, 2002.

J. C. Domec and B. L. Gartner, Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees, Trees -Structure and Function, vol.15, issue.4, pp.204-214, 2001.

J. C. Domec, B. Lachenbruch, and F. C. Meinzer, Bordered pit structure and function determine spatial patterns of air-seeding thresholds in xylem of douglas-fir, 2006.

, Pinaceae) trees. American Journal of Botany, vol.93, issue.11, pp.1588-1600

L. C. Dória, Insular woody daisies (Argyranthemum, Asteraceae) are more resistant to drought-induced hydraulic failure than their herbaceous relatives, Functional Ecology, vol.32, issue.6, pp.1467-1478, 2018.

B. Du, A coastal and an interior Douglas fir provenance exhibit different metabolic strategies to deal with drought stress, Tree Physiology, vol.36, issue.2, pp.148-163, 2015.

B. Du, Foliar nitrogen metabolism of adult Douglas-fir trees is affected by soil water 3010 availability and varies little among provenances B. Heinze, PLoS ONE, vol.13, issue.3, p.194684, 2018.

B. Eilmann, Origin matters! Difference in drought tolerance and productivity of coastal Douglas-fir (Pseudotsuga menziesii (Mirb.)) provenances. Forest Ecology and Management, vol.302, pp.133-143, 2013.

B. J. Enquist, Allometric scaling of production and life-history variation in vascular plants, Nature, vol.401, issue.6756, pp.907-911, 1999.

J. Esper, E. R. Cook, and F. H. Schweingruber, Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability, Science, vol.295, issue.5563, pp.2250-2253, 2002.

M. Feinard-duranceau, Plastic response of four maritime pine (Pinus pinaster Aiton) families to controlled soil water deficit, Annals of Forest Science, vol.75, issue.2, p.47, 2018.

R. Fichot, Common trade-offs between xylem resistance to cavitation and other physiological traits do not hold among unrelated Populus deltoides × Populus nigra hybrids, Plant, Cell and Environment, vol.33, issue.9, pp.1553-1568, 2010.

T. Franceschini, Effect of ring width, cambial age, and climatic variables on the withinring wood density profile of Norway spruce Picea abies, L.) Karst. Trees -Structure, vol.3030, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01001029

, Function, vol.27, issue.4, pp.913-925

A. Fries, Genetic parameters, genetic gain and correlated responses in growth, fibre dimensions and wood density in a Scots pine breeding population, Annals of Forest Science, vol.69, issue.7, pp.783-794, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00930851

J. P. George, Genetic variation, phenotypic stability, and repeatability of drought response in European larch throughout 50 years in a common garden experiment, Tree Physiology, vol.37, issue.1, pp.33-46, 2017.

J. P. George, Inter-and intra-specific variation in drought sensitivity in Abies spec. and its relation to wood density and growth traits, Agricultural and Forest Meteorology, vol.3040, pp.430-443, 2015.

F. Gérémia and M. Nassau, Le point sur le carottage mécanisé d'arbres vivants. Les Cahiers Techniques de l'Inra, pp.83-86, 2006.

Q. Girard, La forêt face aux évènements climatiques extrêmes : Etude de l'impact de la sécheresse de 2003 sur la croissance des arbres des forêts françaises à partir des données IFN, 2009.

S. M. Gleason, Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world's woody plant species, New Phytologist, vol.209, issue.1, pp.123-136, 2016.

M. González-elizondo, Tree-rings and climate relationships for Douglas-fir chronologies from the Sierra Madre Occidental, Mexico: A 1681-2001 rain reconstruction, Forest Ecology and Management, vol.213, issue.1-3, p.143, 2005.

N. González-muñoz, Quantifying in situ phenotypic variability in the hydraulic properties of four tree species across their distribution range in Europe, PLOS ONE, vol.13, issue.5, p.196075, 2018.

N. J. Gotelli and J. Stanton-geddes, Climate change, genetic markers and species distribution 3060 modelling, Journal of Biogeography, vol.42, issue.9, pp.1577-1585, 2015.

A. Granier, Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agricultural and Forest Meteorology, vol.143, pp.123-145, 2007.

S. Greenwood, Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area, Ecology Letters, vol.20, issue.4, pp.539-553, 2017.

C. Grossiord, Precipitation, not air temperature, drives functional responses of trees in semi-arid ecosystems, Journal of Ecology, vol.105, issue.1, pp.163-175, 2017.

R. Guay, R. Gagnon, and H. Morin, A new automatic and interactive tree ring measurement system based on a line scan camera. The Forestry Chronicle, vol.68, pp.138-141, 1992.

J. Guet, Stem xylem resistance to cavitation is related to xylem structure but not to growth and water-use efficiency at the within-population level in Populus nigra L, Journal of Experimental Botany, vol.66, issue.15, pp.4643-4652, 2015.

U. G. Hacke, Scaling of angiosperm xylem structure with safety and efficiency, Tree Physiology, vol.26, issue.6, pp.689-701, 2006.

U. G. Hacke, Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure, Oecologia, vol.126, issue.4, pp.457-461, 2001.

U. G. Hacke, Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure, Oecologia, vol.126, issue.4, pp.457-461, 2001.

U. G. Hacke and S. Jansen, Embolism resistance of three boreas conifer speices varies with pit structure, New Phytologist, vol.182, pp.675-686, 2009.

U. G. Hacke and J. S. Sperry, Functional and ecologycal xylem anatomy, p.144, 2001.

U. G. Hacke, J. S. Sperry, and J. Pittermann, Analysis of circular bordered pit function II. Gymnosperm tracheids with torus-margo pit membranes, American Journal of Botany, vol.91, issue.3, p.3090, 2004.

H. Hänninen, Effects of climatic warming on northern trees: Testing the frost damage hypothesis with meteorological data from provenance transfer experiments, Scandinavian Journal of Forest Research, vol.11, issue.1-4, pp.17-25, 1996.

H. Hänninen and K. Kramer, A framework for modelling the annual cycle of trees in boreal and temperate regions, Silva Fennica, vol.41, issue.1, pp.167-205, 2007.

H. Hartmann, Research frontiers in drought-induced tree mortality: Crossing scales and disciplines, New Phytologist, vol.205, issue.3, pp.965-969, 2015.

A. P. Hendry, Key questions on the role of phenotypic plasticity in eco-evolutionary dynamics, 2016.

, Journal of Heredity, pp.25-41, 2018.

S. Herbette, Immunolabelling of intervessel pits for polysaccharides and lignin helps in understanding their hydraulic properties in Populus tremula × alba, Annals of Botany, vol.115, issue.2, pp.187-199, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01268876

M. Hess, Transcriptome responses to temperature, water availability and photoperiod are conserved among mature trees of two divergent Douglas-fir provenances from a coastal and an interior habitat, BMC Genomics, vol.17, issue.682, p.682, 2016.

P. Hietz, Comparison of methods to quantify loss of hydraulic conductivity in Norway spruce, Annals of Forest Science, vol.65, issue.5, pp.502-502, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00883403

W. A. Hoffmann, Hydraulic failure and tree dieback are associated with high wood density in a temperate forest under extreme drought, Global Change Biology, vol.17, issue.8, pp.2731-2742, 2011.

Z. Hong, Measuring stiffness using acoustic tool for Scots pine breeding selection, 2015.

, Scandinavian Journal of Forest Research, vol.30, issue.4, pp.363-372, 2018.

G. T. Howe, From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees, Canadian Journal of Botany, vol.81, issue.12, pp.1247-1266, 2003.

T. Ibanez, Community variation in wood density along a bioclimatic gradient on a hyperdiverse tropical island S. Roxburgh, Journal of Vegetation Science, vol.28, issue.1, pp.19-33, 2017.

M. Ivkovic and P. Rozenberg, A method for describing and modelling of within-ring wood density distribution in clones of three coniferous species, Annals of Forest Science, issue.8, p.3130, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00883820

, , pp.759-769, 2018.

A. L. Jacobsen, Do xylem fibers affect vessel cavitation resistance? Plant physiology, vol.139, pp.546-56, 2005.

S. Jansen, Plasmodesmatal pores in the torus of bordered pit membranes affect cavitation resistance of conifer xylem, Plant, Cell and Environment, vol.35, issue.6, pp.1109-1120, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00964805

S. Jansen, Plasmodesmatal pores in the torus of bordered pit membranes affect cavitation resistance of conifer xylem, Plant, Cell and Environment, vol.35, issue.6, pp.1109-1120, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00964805

Y. Jin, C. Wang, and Z. Zhou, Conifers but not angiosperms exhibit vulnerability segmentation between leaves and branches in a temperate forest F. Meinzer, Tree Physiology. Available, 2018.

W. Jinagool, Is There Variability for Xylem Vulnerability to Cavitation in Walnut Tree Cultivars and Species ( Juglans spp, HortScience, vol.53, issue.2, pp.132-137, 2018.

D. M. Johnson, A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species N. Phillips, Tree Physiology, vol.36, issue.8, pp.983-993, 2016.

, , 2018.

T. J. Kawecki and D. Ebert, Conceptual issues in local adaptation, Ecology Letters, vol.7, issue.12, pp.1225-1241, 2004.

D. A. King, The role of wood density and stem support costs in the growth and mortality of tropical trees, Journal of Ecology, vol.94, issue.3, pp.670-680, 2006.

A. Kleiber, Drought effects on root and needle terpenoid content of a coastal and an interior Douglas fir provenance, Tree Physiology, vol.37, issue.12, pp.1648-1658, 2017.

T. Klein, Differential ecophysiological response of a major Mediterranean pine species across a climatic gradient, Tree Physiology, vol.33, issue.1, pp.26-36, 2013.

T. E. Koralewski, Plants on the move: Assisted migration of forest trees in the face of climate change, Forest Ecology and Management, vol.344, pp.30-37, 2015.

N. J. Kraft, The relationship between wood density and mortality in a global tropical forest data set, New Phytologist, vol.188, issue.4, pp.1124-1136, 2010.

B. Lachenbruch and K. A. Mcculloh, Traits, properties, and performance: How woody plants 3170 combine hydraulic and mechanical functions in a cell, tissue, or whole plant, New Phytologist, vol.204, issue.4, pp.747-764, 2014.

J. Lamy, Résistance à la cavitation : Des mécanismes physiologiques à la génétique évolutive Resistance to cavitation : From physiological mechanisms to evolutionary quantitative genetic, 2012.

J. B. Lamy, Limited genetic variability and phenotypic plasticity detected for cavitation resistance in a Mediterranean pine, New Phytologist, vol.201, issue.3, pp.874-886, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00964858

J. B. Lamy, Uniform selection as a primary force reducing population genetic differentiation of cavitation resistance across a species range, PLoS ONE, issue.8, p.6, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00964845

M. Larter, Aridity drove the evolution of extreme embolism resistance and the radiation of conifer genus Callitris, New Phytologist, vol.215, issue.1, pp.97-112, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01606790

M. Larter, Extreme aridity pushes trees to their physical limits, Plant Physiology, vol.168, pp.804-807, 2015.

F. Lefèvre, Processus biologiques de réponse des arbres et forêts au changement climatique : adaptation et plasticité phénotypique, Innovations Agronomiques, vol.47, pp.63-79, 2015.

F. Lens, Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer, New Phytologist, vol.190, issue.3, pp.709-723, 2011.

S. Li, INTERVESSEL PIT MEMBRANE THICKNESS AS A KEY DETERMINANT of EMBOLISM RESISTANCE in ANGIOSPERM XYLEM, IAWA Journal, vol.37, issue.2, pp.152-171, 2016.

, , 2018.

Y. Li, Evaluation of centrifugal methods for measuring xylem cavitation in conifers, diffuse-and ring-porous angiosperms, New Phytologist, vol.177, issue.2, pp.558-568, 2008.

S. R. Loarie, The velocity of climate change Mat & Meth, Nature, vol.53, issue.9, pp.1689-1699, 2013.

R. López, Plasticity in Vulnerability to Cavitation of Pinus canariensis Occurs Only at the Driest End of an Aridity Gradient, Frontiers in Plant Science, vol.7, pp.1-10, 2016.

R. López, Vulnerability to cavitation, hydraulic efficiency, growth and survival in an insular pine (Pinus canariensis), Annals of Botany, vol.111, issue.6, pp.1167-1179, 2013.

S. Luss, Within-ring variability of wood structure and its relationship to drought sensitivity in Norway spruce trunks, IAWA Journal, vol.40, issue.1, pp.1-23, 2018.

H. Maherali, W. T. Pockman, and R. B. Jackson, Adaptive variation in the vulnerability of woody plants to xylem cavitation, Ecology, vol.85, issue.8, pp.2184-2199, 2004.

P. Manion, Tree disease concepts. Tree disease concepts., (Ed. 2), p.xiv + 402 pp, 1991.

H. I. Martínez-cabrera, Wood anatomy and wood density in shrubs: Responses to varying aridity along transcontinental transects, American Journal of Botany, vol.96, issue.8, pp.1388-1398, 2009.

A. Martinez-meier, Genetic control of the tree-ring response of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) to the 2003 drought and heat-wave in France, Annals of Forest Science, vol.65, issue.1, pp.102-102, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00884145

A. Martinez-meier, Réponse du Douglas à des évènements climatiques extrêmes, Ecole, vol.3220, 2009.

A. Martinez-meier, What is hot in tree rings? The wood density of surviving Douglas-firs to the 2003 drought and heat wave, Forest Ecology and Management, vol.256, issue.4, pp.837-843, 2008.

J. Martínez-vilalta, Hydraulic adjustment of Scots pine across Europe, New Phytologist, vol.184, issue.2, pp.353-364, 2009.

J. Martínez-vilalta, Interspecific variation in functional traits, not climatic differences among species ranges, determines demographic rates across 44 temperate and Mediterranean tree species, Journal of Ecology, vol.98, issue.6, pp.1462-1475, 2010.

S. Mayr and H. Cochard, A new method for vulnerability analysis of small xylem areas reveals that compression wood of Norway spruce has lower hydraulic safety than opposite wood, Plant, Cell and Environment, vol.26, issue.8, pp.1365-1371, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01190861

A. J. Mcelrone, Variation in xylem structure and function in stems and roots of trees to 20 m depth, New Phytologist, vol.163, issue.3, pp.507-517, 2004.

A. Menzel, European phenological response to climate change matches the warming pattern, Global Change Biology, vol.12, issue.10, pp.1969-1976, 2006.

D. Montwé, H. Spiecker, and A. Hamann, Five decades of growth in a genetic field trial of, 2015.

, Douglas-fir reveal trade-offs between productivity and drought tolerance, Tree Genetics and Genomes, vol.11, issue.2, p.29, 2018.

E. Moran, The genetics of drought tolerance in conifers, New Phytologist, vol.216, issue.4, pp.1034-1048, 2017.

X. Morin, Leaf phenology changes in 22 North American tree species during the 21st century, Global Change Biology, vol.15, pp.961-975, 2009.

X. Morin and I. Chuine, Will tree species experience increased frost damage due to climate change because of changes in leaf phenology?, Canadian Journal of Forest Research, vol.44, issue.12, pp.1555-1565, 2014.

E. Mork, Die Qualitat des Fichtenholzes unter besonderer Rucksichtnahme auf Schleif-und Papierholz, Der Papier-Fabrikant, vol.26, p.1928, 1928.

F. Mothe, Localisation de la transition bois initial -bois final dans un cerne de chêne par analyse microdensitométrique, Annales des Sciences Forestieres, vol.55, issue.1, pp.437-449, 1998.

C. Nabais, The effect of climate on wood density: What provenance trials tell us, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01691369

D. B. Neale and A. Kremer, Forest tree genomics: Growing resources and applications, Nature Reviews Genetics, vol.12, issue.2, pp.111-122, 2011.

M. Ogasa, Recovery performance in xylem hydraulic conductivity is correlated with cavitation resistance for temperate deciduous tree species, Tree Physiology, vol.33, issue.4, pp.335-344, 2013.

L. Olsson, Ö. Hedenberg, and S. Lundqvist, Measurements of growth ring patterns-3270 comparisons of methods, 1998.

N. Oreskes, The scientific consensus on climatic change, Science, vol.306, issue.5702, p.1686, 2004.

R. K. Pachauri, Climate Change, Synthesis Report, 2014.

M. Pacifici, Assessing species vulnerability to climate change, Nature Climate Change, vol.5, issue.3, pp.215-225, 2015.

N. W. Pammenter and C. V. Willigen, A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation, Tree Physiology, vol.18, pp.589-593, 1998.

Y. I. Park and H. Spiecker, Variations in the tree-ring structure of Norway spruce (Picea abies) under contrasting climates, Dendrochronologia, vol.23, issue.2, pp.93-104, 2005.

C. Parmesan, Ecological and Evolutionary Responses to Recent Climate Change, Annual Review of Ecology, Evolution, and Systematics, vol.37, issue.1, pp.637-669, 2006.

R. G. Pearson, Climate change and the migration capacity of species, Trends in Ecology &, vol.3290, 2006.

, Evolution, vol.21, issue.3, pp.111-113, 2018.

J. Perrin and J. Ferrand, Automatisation des mesures sur carottes de sondage de la densité du bois, de son retrait et des contraintes de croissance, Annales des Sciences Forestieres, issue.1, pp.69-86, 1984.

O. L. Phillips, Drought-mortality relationships for tropical forests, New Phytologist, vol.187, issue.3, pp.631-646, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01092529

J. Pittermann, Mechanical reinforcement of tracheids compromises the hydraulic efficiency of conifer xylem, Plant, Cell and Environment, vol.29, issue.8, pp.1618-1628, 2006.

J. Pittermann, The Relationships between Xylem Safety and Hydraulic Efficiency in the Cupressaceae: The Evolution of Pit Membrane Form and Function, PLANT PHYSIOLOGY, vol.153, issue.4, pp.1919-1931, 2010.

J. Pittermann, Torus-Margo Pits Help Conifers Compete with Angiosperms, Science, vol.310, pp.84112-84112, 2005.

H. Polge, Établissement des courbes de variation de la densité du bois par exploration densitométrique de radiographies d ' échantillons prélevés à la tarière sur des arbres vivants, Applications dans les domaines Technologique et Physiologique. Annales des sciences forestières, vol.23, p.215, 1966.

L. Poorter, The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species, New Phytologist, vol.185, issue.2, pp.481-492, 2010.

C. Rathgeber, Linking intra-tree-ring wood density variations and tracheid anatomical characteristics in Douglas fir (Pseudotsuga menziesii (Mirb.) Franco). afs-journal.org, vol.63, p.3320, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00884020

M. Rebetez, Heat and Drought 2003 in Europe: a climate synthesis, Annals of Forest Science2, vol.63, pp.569-577, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00884013

A. Roques, Climate Warming and Past and Present Distribution of the Processionary Moths (Thaumetopoea spp.) in Europe, Asia Minor and North Africa, Processionary Moths and Climate Change : An Update, pp.81-161, 2015.

S. Rosner, Hydraulic and biomechanical optimization in norway spruce trunkwood -A review, IAWA Journal, vol.34, issue.4, pp.365-390, 2013.

S. Rosner, Tradeoffs between hydraulic and mechanical stress responses of mature Norway spruce trunk wood, Tree Physiology, vol.28, issue.8, pp.1179-1188, 2008.

S. Rosner, Wood density as a proxy for vulnerability to cavitation : Size matters, Journal of Plant Hydraulic, vol.4, pp.1-10, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01438784

S. Rosner, Wood density as a screening trait for drought sensitivity in Norway spruce 1, Canadian Journal of Forest Research, vol.44, issue.2, pp.154-161, 2014.

S. Rosner, Wood density as a screening trait for drought sensitivity in Norway spruce 1, 2014.

, Canadian Journal of Forest Research, vol.44, issue.2, pp.154-161, 2018.

P. Rozenberg, Clonal variation of indirect cambium reaction to within-growing season temperature changes in Douglas-fir, Forestry, vol.77, issue.4, pp.257-268, 2004.

P. Rozenberg, Clonal variation of indirect cambium reaction to within-growing season temperature changes in Douglas-fir, Forestry, vol.77, issue.4, pp.257-268, 2004.

P. Rozenberg, Genetic control of stiffness of standing Douglas fir; from the standing stem to the standardised wood sample, relationships between modulus of elasticity and wood density 3350 parameters. Part II, ANNALS OF FOREST SCIENCE, vol.56, issue.2, pp.145-154, 1999.

M. Ruiz-diaz-britez, Wood density proxies of adaptive traits linked with resistance to drought in Douglas fir (Pseudotsuga menziesii (Mirb.) Franco). Trees -Structure and Function, vol.28, pp.1289-1304, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01268792

I. B. Sachs, Torus of the bordered-pit membrane in conifers, Nature, vol.198, issue.4883, pp.906-907, 1963.

C. Sáenz-romero, Genetic variation of drought-induced cavitation resistance among 3360, 2013.

, Pinus hartwegii populations from an altitudinal gradient, Acta Physiologiae Plantarum, vol.35, issue.10, pp.2905-2913

O. Savolainen, M. Lascoux, and J. Merilä, Ecological genomics of local adaptation, Nature reviews. Genetics, vol.14, issue.11, pp.807-827, 2013.

O. Savolainen, T. Pyhäjärvi, and T. Knürr, Gene Flow and Local Adaptation in Trees, Annual Review of Ecology, Evolution, and Systematics, vol.38, issue.1, pp.595-619, 2007.

H. Saxe, Tree and forest functionning in response to global warming, New Phytologist, vol.149, issue.123, pp.369-400, 2001.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nature Methods, vol.9, issue.7, pp.671-675, 2012.

M. W. Schwartz, Managed Relocation: Integrating the Scientific, Regulatory, and Ethical Challenges, BioScience, vol.62, issue.8, pp.732-743, 2012.

I. Scotti, Adaptive potential in forest tree populations: what is it, and how can we measure it?, Annals of Forest Science, vol.67, issue.8, pp.801-801, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00883652

A. Sergent, Diversité de la réponse au déficit hydrique et vulnérabilité au dépérissement du douglas, 2011.

A. S. Sergent and N. Bréda, Coastal and interior Douglas-fir provenances differ in growth performance and response to drought episodes at adult age, Annals of Forest Science, vol.71, issue.6, pp.709-720, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01102703

A. S. Sergent, P. Rozenberg, and N. Bréda, Douglas-fir is vulnerable to exceptional and recurrent drought episodes and recovers less well on less fertile sites, Annals of Forest Science, vol.71, issue.6, pp.697-708, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01102690

J. Soubeyroux, Sécheresses des sols en France et changement climatique, Résultats et applications du projet ClimSec. La Météorologie, vol.8, p.21, 2012.

J. S. Sperry and U. G. Hacke, Analysis of circular bordered pit function I. Angiosperm vessels with homogenous pit membranes, American Journal of Botany, vol.91, issue.3, pp.369-385, 2004.

J. S. Sperry, U. G. Hacke, and J. Pittermann, Size and function in conifer tracheids and angiosperm vessels, American Journal of Botany, vol.93, issue.10, pp.1490-1500, 2006.

J. S. Sperry, F. C. Meinzer, and K. A. Mcculloh, Safety and efficiency conflicts in hydraulic architecture: Scaling from tissues to trees, Plant, Cell and Environment, vol.31, issue.5, pp.632-645, 2008.

R. Spicer and B. L. Gartner, Compression wood has little impact on the water relations of 3400, 2002.

. Douglas-fir, Pseudotsuga menziesii) seedlings despite a large effect on shoot hydraulic properties, New Phytologist, vol.154, issue.3, pp.633-640, 2018.

R. Spicer and B. L. Gartner, How does a gymnosperm branch (Pseudotsuga menziesii) assume the hydraulic status of a main stem when it takes over as leader?, Plant, Cell and Environment, vol.21, issue.10, pp.1063-1070, 1998.

R. Spicer and B. L. Gartner, Hydraulic properties of Douglas-fir (Pseudotsuga menziesii) branches and branch halves with reference to compression wood, Tree Physiology, vol.18, issue.11, pp.777-784, 1998.

, , 2018.

J. B. St-clair and G. T. Howe, Genetic maladaptation of coastal Douglas-fir seedlings to future climates, Global Change Biology, vol.13, issue.7, pp.1441-1454, 2007.

V. Stiller, Soil salinity and drought alter wood density and vulnerability to xylem cavitation of baldcypress (Taxodium distichum (L.) Rich.) seedlings, Environmental and Experimental Botany, vol.67, issue.1, pp.164-171, 2009.

L. Stratton, G. Goldstein, and F. C. Meinzer, Stem water storage capacity and efficiency of water transport: their functional significance in a Hawaiian dry forest, Plant, Cell and Environment, vol.3420, issue.1, pp.99-106, 2000.

N. G. Swenson and B. J. Enquist, Ecological and evolutionary determinants of a key plant functional trait: Wood density and its community-wide variation across latitude and elevation, 2007.

, American Journal of Botany, vol.94, issue.3, pp.451-459

R. C. Team, R: A language and Environment for Statistical Computing, 2018.

R. Team, RStudio: Integrated Development Environment for R, 2016.

F. R. Thistlethwaite, Genomic prediction accuracies in space and time for height and wood 3430 154 density of Douglas-fir using exome capture as the genotyping platform, BMC Genomics, vol.18, issue.1, p.930, 2017.

T. E. Timell, Compression Wood in Gymnosperms, p.2150, 1986.

M. T. Tyree, Drought-induced leaf shedding in walnut : evidence for vulnerability segmentation, Plant, Cell and Environment, 1993.

M. T. Tyree and F. W. Ewers, Tansley Review No. 34. The Hydraulic Architecture of Trees and Other Woody Plants, New Phytologist, vol.119, issue.3, pp.345-360, 1991.

M. T. Tyree and J. S. Sperry, Vulnerability of Xylem to Cavitation and Embolism, Annual Review of Plant Physiology and Plant Molecular Biology, vol.40, issue.1, pp.19-38, 1989.

M. Urli, Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees, Tree Physiology, vol.33, issue.7, pp.672-683, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00964818

M. D. Venturas, J. S. Sperry, and U. G. Hacke, Plant xylem hydraulics: What we understand, current research, and future challenges, Journal of Integrative Plant Biology, vol.59, issue.6, pp.356-389, 2017.

A. Vilà-cabrera, J. Martínez-vilalta, and J. Retana, Functional trait variation along environmental gradients in temperate and Mediterranean trees, Global Ecology and Biogeography, vol.24, issue.12, pp.1377-1389, 2015.

T. Wang, Locally downscaled and spatially customizable climate data for historical and future periods for North America, PLoS ONE, vol.11, issue.6, pp.1-17, 2016.

R. H. Waring and S. W. Running, Sapwood water storage: its contribution to transpiration and effect upon water conductance through the stems of old-growth Douglas-fir, Plant, Cell & Environment, vol.1, issue.2, pp.131-140, 1978.

B. L. Webber, J. K. Scott, and R. K. Didham, Translocation or bust! A new acclimatization agenda for the 21st century? Trends in ecology & evolution, vol.26, pp.495-501, 2011.

J. K. Wheeler, Inter-vessel pitting and cavitation in woody Rosaceae and other vessel led 155 plants: A basis for a safety versus efficiency trade-off in xylem transport, Plant, Cell and Environment, vol.28, issue.6, pp.800-812, 2005.

B. F. Wilson and R. R. Archer, Reaction Wood: Induction and Mechanical Action, Annual Review of Plant Physiology, vol.28, issue.1, pp.23-43, 1977.

R. Wortemann, Etude de la variabilité génétique et la plasticité phénotypique de la vulnérabilité à la cavitation chez Fagus sylvatica, pp.1-129, 2011.

R. Wortemann, Genotypic variability and phenotypic plasticity of cavitation resistance in Fagus sylvatica L. across Europe, Tree Physiology, issue.11, pp.1175-1182, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00964543

S. Zhang, Spatial patterns of wood traits in China are controlled by phylogeny and the environment, Global Ecology and Biogeography, vol.20, issue.2, pp.241-250, 2011.

M. H. Zimmerman and C. L. Brown, Trees: structure and function. Trees: structure and function, 1971.

M. H. Zimmermann, Hydraulic architecture of some diffuse-porous trees, Canadian Journal of Botany, vol.56, issue.394, pp.2286-2295, 1978.

M. H. Zimmermann, The Cohesion Theory of Sap Ascent, pp.37-65, 1983.

B. J. Zobel and J. P. Van-buijtenen, Wood Variation, 1989.

S. N. Aitken, S. Yeaman, J. A. Holliday, T. Wang, and S. Curtis-mclane, Adaptation, migration or extirpation: climate change outcomes for tree populations, Evolutionary Applications, vol.1, pp.95-111, 2008.

C. D. Allen, D. D. Breshears, and N. G. Mcdowell, On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the, Anthropocene. Ecosphere, vol.6, p.129, 2015.

I. Aranda, H. A. Bahamonde, and D. Sánchez-gómez, Intra-population variability in the drought response of a Beech (Fagus sylvatica L.) population in the southwest of Europe, Tree Physiology, vol.37, pp.938-949, 2017.

S. Bansal, C. A. Harrington, P. J. Gould, . St, and J. B. Clair, Climate-related genetic variation in drought-resistance of Douglas-fir (Pseudotsuga menziesii), Global Change Biology, vol.21, pp.947-958, 2015.

S. Bansal, C. A. Harrington, . St, and J. B. Clair, Tolerance to multiple climate stressors: a case study of Douglas-fir drought and cold hardiness, Ecology and Evolution, vol.6, pp.2074-2083, 2016.

T. S. Barigah, O. Charrier, M. Douris, M. Bonhomme, S. Herbette et al., Water stress-induced xylem hydraulic failure is a causal factor of tree mortality in Beech and Poplar, Annals of Botany, vol.112, pp.1431-1437, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00964827

D. Bates, M. Mächler, B. Bolker, and S. Walker, Fitting linear mixed-effects models using 4070 lme4, Journal of Statistical Software, vol.67, pp.1-48, 2015.

B. Larsen and J. , Untersuchungen über die winterliche trockenresistenz von 10 herkünften der Douglasie (Pseudotsuga menziesii), Forstwissenschaftliches Centralblatt, vol.97, pp.32-40, 1978.

J. Boiffin, V. Badeau, and N. Bréda, Species distribution models may misdirect assisted migration: insights from the introduction of Douglas-fir to Europe, Ecological Applications, vol.27, pp.446-457, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01555261

A. E. Bourne, D. Creek, J. Peters, D. S. Ellsworth, and B. Choat, Species climate range influences hydraulic and stomatal traits in Eucalyptus species, Annals of Botany, vol.120, pp.123-133, 2017.

O. Brendel, Is the coefficient of variation a valid measure for variability of stable isotope abundances in biological materials?, Rapid Communications in Mass Spectrometry, vol.28, pp.370-376, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01268540

T. J. Brodribb, D. Bowman, S. Nichols, S. Delzon, and R. Burlett, Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit, New Phytologist, vol.188, pp.533-542, 2010.

R. K. Campbell and F. C. Sorensen, Cold-acclimation in seedling Douglas-Fir related to phenology and provenance, Ecology, vol.54, pp.1148-1151, 1973.

J. A. Canchola, S. Tang, P. Hemyari, E. Paxinos, and E. Marins, Correct use of percent coefficient of variation (%CV) formula for log-transformed data, MOJ Proteomics & 4090 Bioinformatics, vol.6, pp.1-3, 2017.

P. Chen, W. C. Hamann, and A. , Geographic variation in growth response of Douglas-fir to interannual climate variability and projected climate change, Global Change Biology, vol.16, pp.3374-3385, 2010.

D. J. Chmura, M. Guzicka, K. A. Mcculloh, and R. Zytkowiak, Limited variation found among Norway spruce half-sib families in physiological response to drought and resistance to embolism, Tree Physiology, vol.36, pp.252-266, 2016.

B. Choat, T. J. Brodribb, C. R. Brodersen, R. A. Duursma, R. López et al., Triggers of tree mortality under drought, Nature, vol.558, pp.531-539, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01840984

B. Choat, S. Jansen, T. J. Brodribb, H. Cochard, S. Delzon et al., , p.4100

S. M. Gleason and U. G. Hacke, Global convergence in the vulnerability of forests to drought, Nature, vol.491, pp.752-755, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00964681

H. Cochard, A technique for measuring xylem hydraulic conductance under high negative pressures, Plant, Cell and Environment, vol.25, pp.815-819, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01189665

H. Cochard, S. T. Barigah, M. Kleinhentz, and A. Eshel, Is xylem cavitation resistance a relevant criterion for screening drought resistance among Prunus species, Journal of Plant Physiology, vol.165, pp.976-982, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00964491

H. Cochard, G. Damour, C. Bodet, I. Tharwat, M. Poirier et al., Evaluation of a new centrifuge technique for rapid generation of xylem vulnerability curves, Physiologia Plantarum, vol.124, pp.410-418, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01189141

L. Corcuera, H. Cochard, E. Gil-pelegrin, and E. Notivol, Phenotypic plasticity in mesic populations of Pinus pinaster improves resistance to xylem embolism (P50) under severe drought, Trees, vol.25, pp.1033-1042, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00964489

L. Corcuera, E. Gil-pelegrin, and E. Notivol, Differences in hydraulic architecture between mesic and xeric Pinus pinaster populations at the seedling stage, Tree Physiology, vol.32, pp.1442-1457, 2012.

J. F. Crow and M. Kimuar, An introductrion to population genetics theory. An introduction to population genetics theory, 1970.

G. Dalla-salda, M. E. Fernández, A. Sergent, P. Rozenberg, E. Badel et al., Dynamics of cavitation in a Douglas-fir tree-ring: transition-wood, the lord of 4120 the ring, Journal of Plant Hydraulics, vol.1, p.5, 2014.

G. Dalla-salda, A. Martinez-meier, H. Cochard, and P. Rozenberg, Genetic variation of xylem hydraulic properties shows that wood density is involved in adaptation to drought in Douglas-fir (Pseudotsuga menziesii (Mirb.)), Annals of Forest Science, vol.68, pp.747-757, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00930824

S. Delzon, C. Douthe, A. Sala, and H. Cochard, Mechanism of water-stress induced cavitation in conifers: bordered pit structure and function support the hypothesis of seal capillary-seeding, Plant, Cell & Environment, vol.33, pp.2101-2111, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00964477

T. J. Dewitt and S. M. Scheiner, Phenotypic plasticity: functional and conceptual approaches, 2004.

J. C. Domec and B. L. Gartner, How do water transport and water storage differ in coniferous earlywood and latewood, Journal of Experimental Botany, vol.53, pp.2369-2379, 2002.

B. Du, K. Jansen, A. Kleiber, M. Eiblmeier, B. Kammerer et al., A coastal and an interior Douglas fir provenance exhibit different metabolic strategies to deal with drought stress, Tree Physiology, vol.36, pp.148-163, 2016.

B. Du, J. Kreuzwieser, M. Dannenmann, L. V. Junker, A. Kleiber et al., Foliar nitrogen metabolism of adult Douglas-fir trees is affected by soil water availability and varies little among provenances, PLoS One, vol.13, p.194684, 2018.

B. Eilmann, S. De-vries, J. Den-ouden, G. Mohren, P. Sauren et al., Origin matters! Difference in drought tolerance and productivity of coastal Douglas-Fir (Pseudotsuga menziesii (Mirb.)) provenances, Forest Ecology and Management, vol.302, pp.133-143, 2013.

M. Feinard-duranceau, A. Berthier, C. Vincent-barbaroux, S. Marin, F. Lario et al., Plastic response of four maritime pine (Pinus pinaster Aiton) families to controlled soil water deficit, Annals of Forest Science, vol.75, p.47, 2018.

N. González-muñoz, F. Sterck, J. M. Torres-ruiz, G. Petit, H. Cochard et al., Quantifying in situ phenotypic variability in the hydraulic properties of four tree species across their 4150 distribution range in Europe, PLoS One, vol.13, p.196075, 2018.

C. Grossiord, S. Sevanto, H. D. Adams, A. D. Collins, L. T. Dickman et al., Precipitation, not air temperature, 175 drives functional responses of trees in semi-arid ecosystems, Journal of Ecology, vol.105, pp.163-175, 2017.

H. Hartmann, H. D. Adams, W. Anderegg, S. Jansen, and M. Zeppel, Research frontiers in drought-induced tree mortality: crossing scales and disciplines, New Phytologist, vol.205, pp.965-969, 2015.

M. Hess, H. Wildhagen, L. V. Junker, and I. Ensminger, Transcriptome responses to temperature, water availability and photoperiod are conserved among mature trees of 4160 two divergent Douglas-fir provenances from a coastal and an interior habitat, BMC Genomics, vol.17, p.682, 2016.

W. Jinagool, L. Lamacque, M. Delmas, S. Delzon, H. Cochard et al., Is there variability for xylem vulnerability to cavitation in Walnut tree cultivars and species, HortScience, vol.53, pp.132-137, 2018.

T. J. Kawecki and D. Ebert, Conceptual issues in local adaptation, Ecology Letters, vol.7, pp.1225-1241, 2004.

A. Kleiber, Q. Duan, K. Jansen, L. V. Junker, B. Kammerer et al., Drought effects on root and needle terpenoid content of a coastal and an interior Douglas Fir provenance, Tree Physiology, vol.37, pp.4170-1648, 2017.

T. Klein, D. Matteo, G. Rotenberg, E. Cohen, S. Yakir et al., Differential ecophysiological response of a major Mediterranean pine species across a climatic gradient, Tree Physiology, vol.33, pp.26-36, 2013.

J. Lamy, L. Bouffier, R. Burlett, C. Plomion, H. Cochard et al., Uniform selection as a primary force reducing population genetic differentiation of cavitation resistance across a species range, PLoS One, vol.6, p.23476, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00964845

J. Lamy, S. Delzon, P. S. Bouche, A. R. Vendramin, G. G. Cochard et al., Limited genetic variability and phenotypic plasticity detected for cavitation resistance in a Mediterranean pine, New Phytologist, vol.201, pp.874-886, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00964858

S. Lê, J. Josse, and F. Husson, FactoMineR: An R Package for Multivariate Analysis, 2008.

, J. of Statistical Software, vol.25, issue.1, pp.1-18, 2018.

X. Li, C. J. Blackman, B. Choat, R. A. Duursma, P. D. Rymer et al., Tree hydraulic traits are coordinated and strongly linked to climate-of-origin across a rainfall gradient, Plant, Cell & Environment, vol.41, pp.646-660, 2018.

R. López, U. López-de-heredia, C. Collada, F. J. Cano, B. C. Emerson et al., Vulnerability to cavitation, hydraulic efficiency, growth and survival in an insular pine (Pinus canariensis), Annals of Botany, vol.111, pp.1167-1179, 2013.

D. Montwé, H. Spiecker, and A. Hamann, Five decades of growth in a genetic field trial of 4190, 2015.

, Douglas-Fir reveal trade-offs between productivity and drought tolerance, Tree Genetics & Genomes, vol.11, pp.1-11

E. Moran, J. Lauder, C. Musser, A. Stathos, and M. Shu, The genetics of drought tolerance in conifers, New Phytologist, vol.216, pp.1034-1048, 2017.

C. Nabais, J. K. Hansen, R. David-schwartz, M. Klisz, R. López et al., The effect of climate on wood density: what provenance trials tell us?, Forest Ecology and Management, vol.408, pp.148-156, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01691369

N. W. Pammenter and C. Van-der-willigen, A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation, Tree Physiology, vol.18, pp.589-593, 1998.

R. Development-core and . Team, R: A language and environment for statistical computing, 2005.

, R Foundation for Statistical Computing

C. Sáenz-romero, J. Lamy, E. Loya-rebollar, A. Plaza-aguilar, R. Burlett et al., Genetic variation of drought-induced cavitation resistance among Pinus hartwegii populations from an altitudinal gradient, Acta Physiologiae Plantarum, vol.35, pp.2905-2913, 2013.

O. Savolainen, T. Pyhäjärvi, and T. Knürr, Gene flow and local adaptation in trees, Annual Review of Ecology, Evolution, and Systematics, vol.38, pp.595-619, 2007.

A. Sergent, N. Bréda, L. Sanchez, J. Bastein, and P. Rozenberg, Coastal and interior Douglas-Fir provenances differ in growth performance and response to drought 4210 episodes at adult age, Annals of Forest Science, vol.71, pp.709-720, 2012.

A. Sergent, P. Rozenberg, and N. Bréda, Douglas-Fir is vulnerable to exceptional and recurrent drought episodes and recovers less well on less fertile sites, Annals of Forest Science, vol.71, pp.697-708, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01102690

M. T. Tyree and J. S. Sperry, Vulnerability of xylem to cavitation and embolism, Annual Review of Plant Biology, vol.40, pp.19-36, 1989.

M. Urli, A. J. Porte, H. Cochard, Y. Guengant, R. Burlett et al., Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees, Tree Physiology, vol.33, pp.672-683, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00964818

T. Wang, A. Hamann, D. Spittlehouse, and C. Carroll, Locally downscaled and spatially 4220 customizable climate data for historical and future periods for North America, PLoS One, vol.11, p.156720, 2016.

R. Wortemann, S. Herbette, T. S. Barigah, B. Fumanal, A. R. Ducousso et al., Genotypic variability and phenotypic plasticity of cavitation resistance in Fagus sylvatica L. across Europe, Tree Physiology, vol.31, pp.1175-1182, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00964543

D. Zwillinger and S. Kokoska, Standard probability and statistics tables and formulae, Technometrics, vol.43, pp.249-250, 2000.