C. Laboratoire and . Fabry, Institut d'Optique Graduate School, 2019.

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-gonokami, Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature, Phys. Rev. Lett, vol.82, p.1116, 1999.

E. A. Curtis, C. W. Oates, and L. Hollberg, Quenched narrow-line laser cooling of 40 Ca to near the photon recoil limit, Phys. Rev. A, vol.64, p.31403, 2001.

P. M. Duarte, R. A. Hart, J. M. Hitchcock, T. A. Corcovilos, T. Yang et al., All-optical production of a lithium quantum gas using narrow-line laser cooling, Phys. Rev. A, vol.84, p.61406, 2011.

S. Stellmer, B. Pasquiou, R. Grimm, and F. Schreck, Laser cooling to quantum degeneracy, Phys. Rev. Lett, vol.110, p.263003, 2013.

A. Dareau, M. Scholl, Q. Beaufils, D. Döring, J. Beugnon et al., Doppler spectroscopy of an ytterbium bose-einstein condensate on the clock transition, Phys. Rev. A, vol.91, p.23626, 2015.

W. C. Stwalley and H. Wang, Photoassociation of ultracold atoms: a new spectroscopic technique, J. Mol. Spectrosc, vol.195, p.194, 1999.

K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, Ultracold photoassociation spectroscopy: Longrange molecules and atomic scattering, Rev. Mod. Phys, vol.78, p.483, 2006.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof et al., An optical lattice clock with accuracy and stability at the 10 ?18 level, Nature, vol.506, p.71, 2014.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, Optical atomic clocks, Rev. Mod. Phys, vol.87, p.637, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01329728

L. Hollberg, C. W. Oates, G. Wilpers, C. W. Hoyt, Z. W. Barber et al., Optical frequency/wavelength references, J. Phys. B: At. Mol. Opt. Phys, vol.38, p.469, 2005.

S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic et al., Cold atom clocks and applications, J. Phys. B: At. Mol. Opt. Phys, vol.38, p.449, 2005.

J. Friebe, A. Pape, M. Riedmann, K. Moldenhauer, T. Mehlstäubler et al., Absolute frequency measurement of the magnesium intercombination transition 1 S0 ? 3 P1, Phys. Rev. A, vol.78, p.33830, 2008.

Y. Li, T. Ido, T. Eichler, and H. Katori, Narrow-line diode laser system for laser cooling of strontium atoms on the intercombination transition, Appl. Phys. B, vol.78, p.315, 2004.

H. G. Dehmelt, Monoion oscillator as potential ultimate laser frequency standard, IEEE Transactions on Instrumentation and Measurement IM, vol.31, 1982.

J. Wrachtrup, C. Von, J. Borczyskowski, M. Bernard, R. Orrit et al., Optical detection of magnetic resonance in a single molecule, Nature, vol.363, p.244, 1993.
URL : https://hal.archives-ouvertes.fr/hal-01549730

P. Kersten, F. Mensing, U. Sterr, and F. Riehle, A transportable optical calcium frequency standard, Appl. Phys. B, vol.68, p.27, 1999.

C. W. Oates, F. Bondu, R. W. Fox, and L. Hollberg, A diode-laser optical frequency standard based on lasercooled ca atoms: Sub-kilohertz spectroscopy by optical shelving detection, Eur. Phys. J. D, vol.7, p.449, 1999.
URL : https://hal.archives-ouvertes.fr/hal-01082153

H. Kai-kai, Z. Jian-wei, Y. De-shui, C. Zhen-hui, Z. Wei et al., Application of electronshelving detection via 423 nm transition in calcium-beam optical frequency standard, Chinese Phys. Lett, vol.23, p.3198, 2006.

J. J. Mcferran, J. G. Hartnett, and A. N. Luiten, An optical beam frequency reference with 10 ?14 range frequency instability, Appl. Phys. Lett, vol.95, p.31103, 2009.

H. Shang, X. Zhang, S. Zhang, D. Pan, H. Chen et al., Miniaturized calcium beam optical frequency standard using fully-sealed vacuum tube with 10 ?15 instability, Optics Express, vol.25, p.30459, 2017.

G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli et al., Precision frequency measurement of visible intercombination lines of strontium, Phys. Rev. Lett, vol.91, p.243002, 2003.

I. Courtillot, A. Quessada-vial, A. Brusch, D. Kolker, G. D. Rovera et al., Accurate spectroscopy of sr atoms, Eur. Phys. J. D, vol.33, p.161, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00016398

L. Hui, G. Feng, Y. Wang, X. Tian, J. Ren et al.,

Q. Lu, Y. Xu, H. Xie, and . Chang, Precision frequency measurement of 1 S0-3 P1 intercombination lines of sr isotopes, Chinese Phys. B, vol.24, p.13201, 2015.

B. T. Christensen, M. R. Henriksen, S. A. Schäffer, P. G. Westergaard, D. Tieri et al., Nonlinear spectroscopy of sr atoms in an optical cavity for laser stabilization, Phys. Rev. A, vol.92, p.53820, 2015.

J. J. Mcferran and A. N. Luiten, Fractional frequency instability in the 10 ?14 range with a thermal beam optical frequency reference, J. Opt. Soc. Am. B, vol.27, p.277, 2010.

J. Olson, R. W. Fox, T. M. Fortier, T. F. Sheerin, R. C. Brown et al., Ramsey-bordé matter-wave interferometry for laser frequency stabilization at 10 ?16 frequency instability and below, Phys. Rev. Lett, vol.123, p.73202, 2019.

J. Huckans, W. Dubosclard, E. Maréchal, O. Gorceix, B. Laburthe-tolra et al., Note on the reflectance of mirrors exposed to a strontium beam, 2018.

G. Camy, C. J. Bordé, and M. Ducloy, Heterodyne saturation spectroscopy through frequency modulation of the saturating beam, Optics Communications, vol.41, p.325, 1982.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford et al., Laser phase and frequency stabilization using an optical resonator, Appl. Phys. B, vol.31, p.97, 1983.

, We use the FSK function and define the frequency modulation as follows: a quarter of the period is a linear chirp increasing the frequency, a quarter period at constant frequency, a quarter period linear chirp to low frequency, a quarter period at constant frequency. The discretization in instantaneous frequency of the RF synthesis is kept below 0.6 kHz, The radio-frequency driver for this AOM is an AD9852 digital synthesizer

J. Rumble and R. , CRC Handbook of Chemistry and Physics, 2018.

, At 10 kHz, one quadrature displays a dispersive-like signal, suited for the spectroscopy, while the other quadrature has a Lorentzian shape that resembles a time-averaged, low-noise shelved population measurement. However, these signals are extremely sensitive to the demodulation phase, which can cause drifting offsets and asymmetric line shapes

C. J. Bordé, J. L. Hall, C. V. Kunasz, and D. G. , Hummer, Saturated absorption line shape: Calculation of the transit-time broadening by a perturbation approach, Phys. Rev. A, vol.14, p.236, 1976.

A. Wallard, Frequency stabilization of the helium-neon laser by saturated absorption in iodine vapour, J. Phys. E: Sci. Instrum, vol.5, p.926, 1972.

, For the data with I ? 100Isat, the fit uncertainties are only 15 % larger than what would result from true Lorentzian signals with same widths, amplitudes, and noise standard deviation

J. K. Crane, M. J. Shaw, and R. W. Presta, Measurement of the cross sections for collisional broadening of the intercombination transitions in calcium and strontium, Phys. Rev. A, vol.49, p.1666, 1994.

, It should be noted that the finite transit time broadening, induced by the finite waist of the spectroscopy beams, can also be interpreted in terms of Doppler shifts from the various plane wave components of the Gaussian spectroscopy beams, vol.33

C. J. Bordé, G. Camy, and B. Decomps, Measurement of the recoil shift of saturation resonances of 127 I2 at 5145 a: A test of accuracy for high-resolution saturation spectroscopy, Phys. Rev. A, vol.20, p.254, 1979.

A. , The second order doppler shift in cesium beam atomic frequency standards, Metrologia, vol.7, p.49, 1971.

I. Manek, Y. Ovchinnikov, and R. Grimm, Generation of a hollow laser beam for atom trapping using an axicon, Optics Communications, vol.147, p.67, 1998.

Z. Liu, H. Zhao, J. Liu, J. Lin, M. A. Ahmad et al., Generation of hollow gaussian beams by spatial filtering, Opt. Lett, vol.32, p.2076, 2007.

P. Dubé, A. A. Madej, J. E. Bernard, L. Marmet, and A. D. Shiner, A narrow linewidth and frequency-stable probe laser source for the 88 Sr + single ion optical frequency standard, Appl. Phys. B, vol.95, p.43, 2009.

C. Hagemann, C. Grebing, C. Lisdat, S. Falke, T. Legero et al., Ultrastable laser with average fractional frequency drift rate below 5 10 ?19 s ?1, Optics Letters, vol.39, p.5102, 2014.

N. Dubreuil and . Al, Non-linear electromagnetism : lectures from M2 LOM, 2017.

G. Grynberg and A. Aspect-claude-fabre, Optique Quantique 2 : Photons. Optique quantique (2), 2003.

A. Andrea, Super-resolution microscopy of single atoms in optical lattices ». en, New Journal of Physics, vol.18, 2016.

A. Marco, Two-photon ionization of cold rubidium atoms ». en, Journal of the Optical Society of America B, vol.21, issue.3, pp.740-3224, 2004.

. Andor, Understanding Read Noise in sCMOS Cameras

A. Alain, Évolution des système quantiques

W. S. Bakr, Probing the Superfluid-to-Mott Insulator Transition at the Single-Atom Level ». en, Science 329.5991 (juil. 2010), pp.36-8075

S. Waseem and . Bakr, A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice, Nature, vol.462, pp.28-0836, 2009.

A. Banerjee and N. Vasant, Saturated-absorption spectroscopy : Eliminating crossover resonances using co-propagating beams ». en, Optics Letters, vol.28, pp.146-9592, 2003.

J. P. Bartolotta, Laser Cooling by Sawtooth Wave Adiabatic Passage ». en, vol.98, pp.2469-9926, 2018.

B. Yannick, « Piégeage et refroidissement laser du strontium, Etude de l'effet des interférences en diffusion multiple, 2002.

B. Eric, URL : jila1.nickersonm.com/papers/NotesonthePound-Drever-Halltechnique, p.15, 2014.

M. Bober, Strontium optical lattice clocks for practical realization of the metre and secondary representation of the second ». en, Measurement Science and Technology, vol.26, pp.957-0233, 2015.

J. Brantut, Conduction of Ultracold Fermions Through a Mesoscopic Channel ». en. In : Science, vol.337, pp.36-8075, 2012.

S. Bravyi, M. B. Hastings, and F. Verstraete, Lieb-Robinson Bounds and the Generation of Correlations and Topological Quantum Order ». en, Physical Review Letters, vol.97, pp.31-9007, 2006.

G. Camy, C. J. Bordé, and M. D. , Heterodyne saturation spectroscopy through frequency modulation of the saturating beam ». en, Optics Communications, vol.41, issue.5, 1982.

C. Hugo, Measuring the momentum distribution of a lattice gas at the single-atom level, Optique Graduate School, 2018.

C. Caroline, « Trapping and cooling of ions ». en, p.29, 2008.

C. Thierry, « Diffusion multiple cohérente avec atomes froids de strontium : Effet de la saturation sur la rétrodiffusion coherente -Piege magnéto-optique sur raie étroite, 2004.

C. Marc, Light-cone-like spreading of correlations in a quantum manybody system ». en, Nature, vol.481, pp.28-0836, 2012.

C. , B. Diu, L. Franck, and . Mécanique-quantique, EDP sciences, 2018.

F. Diu, Mécanique quantique, 2017.

I. Courtillot, Accurate spectroscopy of Sr atoms, The European Physical Journal D, vol.33, issue.2, pp.1434-6060, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00016398

D. Jean, Des cages de lumière pour les atomes : la physique des pièges et des réseaux optiques, 2013.

D. Jean, Une brève histoire des atomes froids ». fr, 2015.

D. Sebastian, Topology by dissipation in atomic quantum wires ». en. In : Nature Physics 7.12 (déc. 2011), pp.1745-2473

T. P. Dinneen, « Cold collisions of Sr * -Sr in a magneto-optical trap, Physical Review A, vol.59, pp.1050-2947

B. Diu, Collection Enseignement des sciences, 1989.

R. W. Drever, Laser phase and frequency stabilization using an optical resonator ». en, Applied Physics B Photophysics and Laser Chemistry, vol.31, issue.2, pp.721-7269, 1983.

E. Jürgen, Laser cooling of trapped ions, J. Opt. Soc. Am. B, vol.20, pp.1003-1015, 2003.

C. F. , Atomes et lumière : interaction matière rayonnement ». fr, 2011.

B. Fak and J. Bossy, « Temperature Dependence of S(Q, E) in Liquid 4He Beyond the Roton ». en, Journal of Low Temperature Physics, vol.112, p.20, 1998.

G. Ferrari, Precision Frequency Measurement of Visible Intercombination Lines of Strontium ». en, Physical Review Letters, vol.91, pp.31-9007, 2003.

F. Sébastien, Optique des lasers et faisceaux gaussiens ». fr. In : (, p.48

G. Tatjana, High-resolution scanning electron microscopy of an ultracold quantum gas ». en, Nature Physics, vol.4, pp.1745-2473, 2008.

. Zhe-xuan and . Gong, « Persistence of Locality in Systems with Power-Law Interactions ». en, Physical Review Letters, vol.113, issue.3, pp.31-9007, 2014.

J. Gérald and B. , Techniques de l'ingénieur Techniques de mesure analogiques et numériques base documentaire : TIB416DUO.ref. article, p.358, 1997.

R. Grimm and J. M. , The effect of resonant light pressure in saturation spectroscopy ». en. In : Applied Physics B Photophysics and Laser Chemistry 49.3 (sept. 1989), pp.721-7269

G. Rudolf, M. Weidemüller, B. Yurii, and . Ovchinnikov, Optical dipole traps for neutral atoms, 1999.

B. Grüner, Integrated atom detector based on field ionization near carbon nanotubes ». en, Physical Review A, vol.80, issue.6, pp.1050-2947, 2009.

J. Kenneth and . Günter, « Design and implementation of a Zeeman slower for 87Rb, 2004.

J. L. Hall, C. J. Bordé, and K. U. , Direct Optical Resolution of the Recoil Effect Using Saturated Absorption Spectroscopy ». en, Physical Review Letters, vol.37, pp.31-9007, 1976.

H. Elmar, Single-atom imaging of fermions in a quantum-gas microscope, Nature Physics, vol.11, pp.1745-2473

P. Hauke and L. Tagliacozzo, Spread of Correlations in Long-Range Interacting Quantum Systems ». en, vol.111, pp.31-9007, 2013.

J. Esa, « Theoretical dete~nation of maximum signal levels obtainable with modulation transfer spectroscopy ». en, p.7

J. Manuel, Optique non-linéaire ». fr. In : (). URL : Joffre-Optiquenon-linÃl'aire. pdf:files/162/Joffre-Optiquenon-linÃl'aire.pdf:application/pdf

P. Jurcevic, Quasiparticle engineering and entanglement propagation in a quantum many-body system, Nature, vol.511, p.202

P. Kersten, « A transportable optical calcium frequency standard ». en, Applied Physics B : Lasers and Optics, vol.68, pp.946-2171, 1999.

K. Joannis, Imaging magnetic polarons in the doped Fermi-Hubbard model, 2018.

E. Ktster, « Resonant Raman Enhancement in Heterodyne Saturation Spectroscopy ». en, p.2

K. Stefan, Deterministic Delivery of a Single Atom ». en, p.3, 2001.

H. Elliott and . Lieb, The finite group velocity of quantum spin systems, p.7, 1972.

Y. Lin, « First Evaluation and Frequency Measurement of the Strontium Optical Lattice Clock at NIM ». en, Chinese Physics Letters, vol.32, issue.9, pp.256-307

L. Robert, « An experimental and theoretical guide to strongly interacting Rydberg gases, Journal of Physics B : Atomic, Molecular and Optical Physics, vol.45, pp.1088-1090, 2012.

R. M. , Hollow Cathode Discharges -Analytical Applications ». en, Journal of Research of the National Bureau of Standards, vol.89, pp.160-1741, 1984.

D. J. Mccarron, S. A. King, and S. L. Cornish, « Modulation transfer spectroscopy in atomic rubidium ». en, Measurement Science and Technology, vol.19, pp.957-0233, 2008.

J. Harold, . Metcalf, . Peter-van-der, and . Straten, Laser cooling and trapping. en. corr., 2nd printing, Graduate texts in contemporary physics. OCLC : 254060117. New York : Springer, 2002.

V. G. Minogin and O. T. Serimaa, Resonant light pressure forces in a strong standing laser wave ». en. In : Optics Communications 30.3 (sept. 1979), pp.373-379

M. Martin, Site-resolved imaging of ytterbium atoms in a two-dimensional optical lattice, Physical Review A, vol.91, issue.6, pp.1050-2947, 2015.

M. Butch, Camera Technologies for Low Light Imaging : Overview and Relative Advantages ». en. In : Methods in Cell Biology. T. 81, pp.251-283, 2007.

W. Dennis and . Mueller, « Collision Cross Section ». en, Nuclear Instruments and Methods in Physics Research, p.5, 1989.

R. Mukherjee, Many-body physics with alkaline-earth Rydberg lattices ». en, vol.44

S. S. Natu, L. Campanello, S. Das, and . Sarma, « Dynamics of correlations in a quasitwo-dimensional dipolar Bose gas following a quantum quench ». en, Physical Review A, vol.90, issue.4, pp.1050-2947, 2014.

S. S. Natu and E. J. Mueller, « Dynamics of correlations in shallow optical lattices ». en, Physical Review A, vol.87, issue.6, pp.1050-2947, 2013.

M. Norcia, Simple Laser Stabilization to the Strontium 88Sr Transition at 707 nm, Review of Scientific Instruments, vol.87, p.23110, 2016.

A. Matthew and . Norcia, « Narrow-line laser cooling by adiabatic transfer ». en, New Journal of Physics, vol.20, 2018.

O. Herwig, Single atom detection in ultracold quantum gases : a review of current progress ». en, In : Reports on Progress in Physics, vol.79, issue.5, 2016.

C. J. Pagett, Injection locking of a low cost high power laser diode at 461 nm ». en, Review of Scientific Instruments, vol.87, issue.5, pp.34-6748, 2016.

H. Metcalf and J. Phillips-prodan, Laser cooling of free neutral atoms in an atomic beam ». en, Laser Spectroscopy VI, vol.70, p.162, 1983.

D. William and . Phillips, Laser cooling and trapping of neutral atoms ». en, Rev. Mod. Phys, vol.70, p.21, 1998.

C. J. Picken, R. Legaie, and J. D. Pritchard, Single atom imaging with an sCMOS camera ». en, Applied Physics Letters, vol.111, pp.3-6951, 2017.

L. P. Pitaevskii, Propertries of the spectrum of elementary excitations near the disintergration thershold of the excitations ». en, Soviet Physics JETP, vol.36, p.8, 1958.

P. Anatoli, Nonequilibrium dynamics of closed interacting quantum systems ». en, Reviews of Modern Physics, vol.83, issue.3, pp.863-883, 2011.

, , pp.34-6861

R. Potvliege and C. Adams, « Photo-ionization in far-off-resonance optical lattices ». en, New Journal of Physics, vol.8, pp.163-163, 2006.

, /i=8/a=163?key=crossref.ba966e0837be10d83e161a6c0a21f432

R. Philip, Non-local propagation of correlations in quantum systems with long-range interactions, Nature 511 (juil. 2014), p.198

V. S. Letokhov, V. Minogin, and B. D. , Cooling and capture of atoms and molecules by a resonant light field, Soviet Journal of Experimental and Theoretical Physics, vol.45, p.698, 1977.

S. Kiyohide, Master-oscillator power-amplifier scheme for efficient green-light generation in a planar MgO :PPLN waveguide ». en, Optics Letters, vol.33, pp.146-9592, 2008.

. Bodhaditya-santra and O. Herwig, Scanning electron microscopy of cold gases ». en, Journal of Physics B : Atomic, Molecular and Optical Physics, vol.48, 2015.

A. Schenzle, R. G. Devoe, and R. G. Brewer, « Phase-modulation laser spectroscopy ». en, Physical Review A, vol.25, issue.5, pp.556-2791, 1982.

S. Marco, A compact and efficient strontium oven for laser-cooling experiments ». en, Review of Scientific Instruments, vol.83, pp.34-6748, 2012.

J. F. Sherson, Single-Atom Resolved Fluorescence Imaging of an Atomic Mott Insulator, Nature 467.7311 (sept. 2010), pp.28-0836
URL : https://hal.archives-ouvertes.fr/hal-01397842

H. S. Jon, Modulation transfer processes in optical heterodyne saturation spectroscopy ». en, Optics Letters, vol.7, issue.11, pp.146-9592, 1982.

S. Snigirev, Fast and dense magneto-optical traps for Strontium ». en

S. Simon, « Degenerate quantum gases of strontium, Faculty of Mathematics, 2013.

S. Simon, F. Schreck, C. Thomas, . Killian, . Quan-tum et al., Annual Review of Cold Atoms and Molecules. T. 2. WORLD SCIENTIFIC, pp.1-80, 2014.

S. Simon, Einstein Condensation of Strontium ». en. In : Physical Review Letters, vol.103, pp.31-9007, 2009.

T. Christophe and R. Guillaume, Physique statistique : Des processus élémentaires aux phénomènes collectifs. fr. Google-Books-ID : hAPnAQAACAAJ. Dunod, mai 2017

C. Vaillant, M. Jones, and R. Potvliege, Long-range Rydberg-Rydberg interactions in calcium, strontium and ytterbium ». en, vol.45, pp.953-4075

V. Wim, Cold and trapped metastable noble gases ». en, Reviews of Modern Physics, vol.84, pp.34-6861

M. Verheijen, « A discharge excited supersonic source of metastable rare gas atoms ». en, Journal of Physics E : Scientific Instruments, vol.17, pp.904-910, 1984.

V. Vladan, Degenerate Raman Sideband Cooling of Trapped Cesium Atoms at Very High Atomic Densities ». en, Physical Review Letters, vol.81, pp.31-9007, 1998.

W. William, E. S. Sørensen, and S. Subir, « The dynamics of quantum criticality revealed by quantum Monte Carlo and holography, Nature Physics, vol.10, issue.5, pp.1745-2473, 2014.

Y. Ryuta, An ytterbium quantum gas microscope with narrow-line laser cooling, New Journal of Physics, vol.18, p.23016, 2016.

D. Roger and É. Zee, Cavity-enhanced spectroscopies. en. Experimental methods in the physical sciences 40. OCLC : 249392020, 2002.

Z. Long and . Li, Modulation Transfer Spectroscopy for a Two-Level Atomic System with a Non-Cycling Transition ». en, Journal of the Physical Society of Japan, vol.80, pp.31-9015